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Risk Premiums in Dynamic Term Structure
Models with Unspanned Macro Risks

SCOTT JOSLIN, MARCEL PRIEBSCH, and KENNETH J. SINGLETON∗

ABSTRACT

This paper quantifies how variation in economic activity and inflation in the United
States influences the market prices of level, slope, and curvature risks in Treasury
markets. We develop a novel arbitrage-free dynamic term structure model in which
bond investment decisions are influenced by output and inflation risks that are un-
spanned by (imperfectly correlated with) information about the shape of the yield
curve. Our model reveals that, between 1985 and 2007, these risks accounted for a
large portion of the variation in forward terms premiums, and there was pronounced
cyclical variation in the market prices of level and slope risks.

A POWERFUL IMPLICATION of virtually all macro-finance affine term structure
models (MTSMs)—reduced-form and equilibrium alike—is that the macro fac-
tors that determine bond prices are fully spanned by the current yield curve.1

That is, the affine mapping between bond yields and the risks in the macroe-
conomy in these models can be inverted to express these risk factors as lin-
ear combinations of yields. This theoretical macro-spanning condition implies
strong and often counterfactual restrictions on the joint distribution of bond
yields and the macroeconomy, as well as on how macroeconomic shocks affect
term premiums.

Consider, for instance, an MTSM in which the macro variables Mt that di-
rectly determine bond yields are output growth and inflation. Macro spanning
implies that these macro variables can be replicated by portfolios of bond yields.
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is with the Federal Reserve Board. Singleton is with Stanford University, Graduate School of
Business and NBER. We are grateful for feedback from seminar participants at MIT, Stanford
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Tristani, and Jonathan Wright. An earlier version of this paper was circulated under the title “Risk
Premium Accounting in Macro-Dynamic Term Structure Models.” The analysis and conclusions
set forth in this paper are those of the authors and do not indicate concurrence by other members
of the research staff or the Board of Governors of the Federal Reserve System.

1 Reduced-form models that enforce theoretical spanning include Ang and Piazzesi (2003), Ang,
Dong, and Piazzesi (2007), Rudebusch and Wu (2008), Ravenna and Seppälä (2008), Smith and
Taylor (2009), and Bikbov and Chernov (2010). In many equilibrium models with long-run risks
(e.g., Bansal, Kiku, and Yaron (2012a), Bansal and Shaliastovich (2013)), it is expected consumption
growth and expected inflation that are spanned by yields.
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As a result, after conditioning on the current yield curve, macro variables are
uninformative about both expected excess returns (risk premiums) and future
values of M. The first of these restrictions on the joint distribution of M and
bond yields is contradicted by the evidence in Cooper and Priestley (2008) and
Ludvigson and Ng (2010). The second is contradicted by a large body of evidence
on forecasting the business cycle (Stock and Watson (2003)). Both restrictions
are strongly rejected statistically in our data set.

There is an equally compelling conceptual case for relaxing macro spanning.
The first three principal components (PCs) of bond yields—the level, slope,
and curvature—explain almost all of the variation in yields, and this fact moti-
vates the small number of risk factors in reduced-form MTSMs.2 Real economic
growth in the U.S. economy is a distinct agglomeration of a high-dimensional
set of risks from financial, product, and labor markets. The yield PCs are cor-
related with output growth, but the natural premise in economic modeling is
surely that the portfolio of risks that shape growth are not spanned by the PCs
of U.S. Treasury yields. In fact, in our data, only about 30% of the variation in
output growth is spanned by even the first five PCs of yields.

In this paper, we develop a family of reduced-form Gaussian MTSMs that al-
lows for macroeconomic risks that are unspanned by the yield curve and thereby
introduces macroeconomic risks that are distinct from PC (yield curve) risks.
Central to the construction of our MTSM are the assumptions that the pricing
kernel investors use when discounting cash flows depends on a comprehensive
set of priced risks Zt in the macroeconomy, and the short-term Treasury rate
is an affine function of a smaller set of “portfolios” of these risks Xt (consistent
with the evidence that a small number of PCs explain most of the variation
in the cross section of yields). We then construct a Treasury-market-specific
stochastic discount factor MX such that: (i) MX prices the entire cross section
of Treasury bonds; (ii) MX has market prices of X risks that may depend on
the entire menu of macro risks Z; (iii) the model-implied yields do not span Z;
and (iv) MX does not price all of these macro risks. In this manner, we accom-
modate much richer dynamic codependencies among risk premiums and the
macroeconomy than in extant MTSMs.

Specializing to a setting where Mt comprises measures of output growth and
expected inflation, we document economically large effects of the unspanned
components of Mt on risk premiums in Treasury bond markets. Illustrating our
findings are the “in-two-years-for-one-year” forward term premiums FTP2,1

t dis-
played in Figure 1. The premiums from our preferred model with unspanned
macro risks (Mus) show a pronounced cyclical pattern with peaks during reces-
sions (the shaded areas) and a trough during the period Chairman Greenspan
has labeled the “conundrum.” Notably, there are systematic differences be-
tween FTP2,1 from model Mus and the projection of FTP2,1 onto the PCs of
bond yields (PMus). These differences arise entirely from our accommodation

2 See Litterman and Scheinkman (1991), Dai and Singleton (2000), and Duffee (2002) for sup-
porting evidence. Ang, Piazzesi, and Wei (2006) and Bikbov and Chernov (2010), among others,
draw explicitly on this evidence when setting the number of risk factors.
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Figure 1. Term premiums. This figure depicts the “in-two-years-for-one-year” forward term
premiums FTP2,1

t , defined as the difference between the forward rate that one could lock in today
for a one-year loan commencing in two years, and the expectation for two years in the future of the
one-year yield. We plot FTP2,1

t implied by our preferred model with unspanned macro risks (Mus),
the projection of FTP2,1 from model Mus onto the first three PCs of bond yields (PMus), and the
FTP2,1 implied by the nested model that enforces spanning of expectations of the macro variables
by the yield PCs (Mspan).

of macro shocks that are unspanned by yields. Unspanned macro risks have
their largest impacts on FTP2,1 during the peaks and troughs of business cycles,
as well as during the conundrum period.

Enforcing macro spanning within an MTSM (constraining Mus and PMus to
be identical) can lead to highly inaccurate model-implied risk premiums. Con-
sider, for instance, the fitted FTP2,1 (Mspan) from the MTSM that (incorrectly)
constrains expected output growth and inflation to be spanned by the yield
PCs. Both PMus and Mspan are exact linear combinations of yield PCs. Yet
their differences are often huge, with Mspan frequently declining when PMus
is increasing. We subsequently use these implied premiums to reassess recent
interpretations of the interplay between term premiums, the shape of the yield
curve, and macroeconomic activity, including those of Chairman Bernanke.3

While the extant literature is vast, we are unaware of prior research that
explores the relationship between unspanned macro shocks and risk premi-
ums in bond markets within arbitrage-free pricing models. Independently,

3 See, for example, his speech before the Economic Club of New York on March 20, 2006 titled
“Reflections on the Yield Curve and Monetary Policy.” His talks draw explicitly on the model
estimated by Kim and Wright (2005), and their model is nested in our canonical model.
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Duffee (2011) proposes a latent factor (yields-only) model for accommodating
unspanned risks in bond markets.4 We formally derive a canonical form for
MTSMs with unspanned information that affects expected excess returns, and
provide a convenient normalization that ensures econometric identification.
Moreover, as we illustrate, the global optimum of the associated likelihood
function is achieved extremely quickly. Wright (2011) and Barillas (2011) use
our framework to explore the effects of inflation uncertainty on bond market
risk premiums using international data, and optimal bond portfolio choice in
the presence of macro-dependent market prices of risk, respectively.

The remainder of this paper is organized as follows. In Section I we review
the modeling choices made in the current generation of MTSMs, and argue
that these models enforce strong and counterfactual restrictions on how the
macroeconomy affects yields. In Section II we propose a canonical MTSM with
unspanned macro risks that takes a large step toward bringing MTSMs in
line with the historical evidence. We derive the associated likelihood function
in Section III. We present our formal estimation and the model-implied risk
premiums on exposures to “level” and “slope” risks in Section IV. In Section V
we explore the properties of risks premiums in our MTSM in more depth by
examining the links between macroeconomic shocks and the time-series prop-
erties of forward term premiums. There we elaborate on Figure 1, as well as
counterparts for longer-dated forward term premiums. In Section VI we docu-
ment that unspanned macro risks have had economically significant effects on
the shape of the forward premium curve. In Section VII we elaborate on the
structure of our MTSM and explore the robustness of our empirical findings
to extending our sample well into the current crisis period. In Section VIII we
consider several extensions. Finally, in Section IX we conclude.

I. Empirical Observations Motivating Our MTSM

Consider an economic environment in which agents value nominal bonds
using the stochastic discount factor

MZ,t+1 = e−rt− 1
2 �′

Zt�Zt−�′
Ztη

P
t+1 , (1)

where the R × 1 state-vector Zt encompasses all risks in the economy. Suppose
that Zt follows the Gaussian process5

Zt = KP
0Z + KP

1ZZt−1 +
√

�ZηP
t , (2)

4 Duffee (2011) does not explore the econometric identification of such a model, nor does he
empirically implement a dynamic term structure model with unspanned risks.

5 Our analysis easily extends to the case in which (2) is the companion form of a higher-order
vector-autoregressive (VAR) representation of Z. Below we provide empirical evidence supporting
our assumption that Z follows a first-order VAR with nonsingular �Z.
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ηP
t ∼ N(0, I) the market prices �Zt of the risks ηP

t+1 are affine functions of Zt,
and the yield on a one-period bond rt is an affine function of Zt,

rt = ρ0Z + ρ1Z · Zt. (3)

Bond prices are then computed with standard recursions; see Appendix A. This
formulation encompasses virtually all of the Gaussian MTSMs in the literature.

Perhaps the most salient feature of these MTSMs is that Zt includes a set of
macro risk factors Mt, typically measures of output growth and inflation (for
examples, see the references in footnote 1). Joslin, Le, and Singleton (2013)
(JLS) show that, for such choices of Zt, except in degenerate cases, (1) to (3) are
theoretically equivalent to an MTSM in which Zt is normalized to the first R
PCs of bond yields, denoted by P, so that

rt = ρ0P + ρ1P · Pt, (4)

and Mt is related to Pt through the macro-spanning restriction

Mt = γ0 + γ1P · Pt. (5)

Thus, the only feature of extant MTSMs that differentiates them from term
structure models with no macro risk factors and rt specified as in (4) (Duffee
(2002), Joslin, Singleton, and Zhu (2011) (JSZ)) is the restriction (5) that Mt is
spanned by Pt.

To motivate the specification of our canonical MTSM, we highlight the three
observations that challenge the empirical plausibility of this family of MTSMs.
First, output, inflation, and other macroeconomic risks are not linearly spanned
by the information in the yield curve. Second, the unspanned components of
many macro risks have predictive power for excess returns (risk premiums) in
bond markets, over and above the information in the yield curve. Third, the
cross section of bond yields is well described by a low-dimensional set of risk
factors.

A. Macroeconomic Risks Are Unspanned by Bond Yields

For our subsequent empirical analysis, we include measures of real economic
activity (GRO) and inflation (INF) in Mt. In particular, GRO is the three-
month moving average of the Chicago Fed National Activity Index (CFNAI),
a measure of current real economic conditions,6 and INF is the expected rate
of inflation over the coming year as computed from surveys of professional

6 The Federal Reserve Bank of Chicago constructs the CFNAI from economic indicators that
belong to the categories production and income (23 series), employment and hours (24 series),
personal consumption and housing (15 series), and sales, orders, and inventories (23 series). The
data are inflation adjusted. The methodology used is similar to that employed by Stock and Watson
(1999) to construct their index of real economic activity, and is also related to the PCs of economic
activity used by Ludvigson and Ng (2010) to forecast excess returns in bond markets.
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forecasters by Blue Chip Financial Forecasts.7 We make the parsimonious
choice of M′

t = (GROt, INFt) as these risks have received the most attention in
prior studies.8

As evidence on the macro-spanning condition (5), consider the projection of
GRO and INF onto the PCs of yields on U.S. Treasury nominal zero-coupon
bonds with maturities of six months and 1 through 5, 7, and 10 years.9 The
projection of GRO onto the first three PCs gives an (adjusted) R2 of 15%,
so about 85% of the variation in GRO arises from risks distinct from P3′

t =
(PC1, PC2, PC3). Adding PC4 and PC5 as regressors only raises the R2 for
GRO to 32%. The comparable R2s for INF are 83% (P3) and 86% (P5).

B. Macro Risk Factors Forecast Bond Excess Returns

Not only is Mt unspanned by P3
t , but the projection error OMt = Mt −

Proj[Mt|P3
t ] has considerable predictive power for excess returns, over and

above P3. For instance, consider the one-year holding period returns on 2-year
and 10-year bonds, xr2

t+12 and xr10
t+12. The adjusted R2 from the projection of

xr2
t+12 (xr10

t+12) onto P3
t is 0.14 (0.20), while that onto {P3

t , GROt, INFt} is 0.48
(0.37).10 If we project the excess returns onto P5

t , the adjusted R2 drops to 0.27
and 0.22.11

C. Bond Yields Follow a Low-Dimensional Factor Model

Another salient feature of the yield curves in most developed countries is
that the cross section of bond yields is well described by a low-dimensional
factor model. Often three or four factors explain nearly all of the cross-sectional
variation in yields.

7 The CFNAI for a specific month is first published during the following calendar month, and
subject to revisions. The Blue Chip forecasts are available in real time subject only to at most a
few days’ lag.

8 Ang, Piazzesi, and Wei (2006) and Jardet, Monfort, and Pegoraro (2011) focus on models in
which GROt is the sole macro risk. Kim and Wright (2005) explore MTSMs in which expected
inflation is the sole macro risk. Bikbov and Chernov (2010) and Chernov and Mueller (2012)
examine models in which M′

t = (GROt, INFt). Only Chernov and Mueller (2012) relax the macro-
spanning constraint by allowing expected inflation to be unspanned by real yields; our framework
is substantially more general in that we allow arbitrary factors to be unspanned by either the real
or the nominal yield curve.

9 The zero curves for U.S. Treasury series are described in more depth in Le and Singleton
(2013). The zero curves are constructed using the same bond selection criteria as in the Fama-
Bliss data used in many previous studies. Importantly, we use a consistent series out to 10 years
to maturity, and throughout our sample period.

10 The descriptive analysis in Cieslak and Povala (2013) provides complementary evidence that
the unspanned component of inflation has substantial predictive content for excess returns in
bond markets. Our modeling framework allows for the accommodation of their findings within an
MTSM.

11 If we restrict our sample to end in 2003, as in Cochrane and Piazzesi (2005), the adjusted R2

for projecting xr2
t+12 and xr10

t+12 onto P5
t are 0.28 and 0.30, respectively.
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These empirical observations highlight an inherent tension in MTSMs that
enforces versions of the spanning condition (5), one that likely compromises
their goodness-of-fit and the reliability of their inferences about the dynamic
relationships between macro risks and the yield curve. In particular, JLS show
that, for the typical case of R = 3 and M′

t = (GROt, INFt) measured perfectly,
canonical MTSMs fit individual yields poorly, with pricing errors exceeding 100
basis points in some periods. Furthermore, adding measurement errors on Mt
leads the likelihood function to effectively drive out the macro factors, leaving
filtered risk factors that more closely resemble P3

t . In light of this evidence, it
seems doubtful that low-dimensional factor models in which macro variables
comprise half or more of the risk factors provide reliable descriptions of the
joint dynamics of macro and yield curve risks.

Expanding the number of risk factors (increasing R) mitigates the fitting
problem for bond yields, but at the expense of overparameterizing the risk-
neutral distribution of Zt. The consequent overfitting of MTSMs is material:
both Duffee (2010) and JSZ document that model-implied Sharpe ratios for
certain bond portfolios are implausibly large when R is as low as four. This
problem is likely to be exacerbated in MTSMs, since an even larger R (relative
to yields-only models) may be needed to accurately price individual bonds.

We overcome these problems by specifying a canonical MTSM with the fol-
lowing fitting properties:

FP1: the number of risk factors is small (three in our empirical implementa-
tion);

FP2: the macroeconomic risks are unspanned by bond yields; and
FP3: the unspanned components of Mt have predictive content for excess re-

turns.

We show that all of these features arise naturally from the projection of
agents’ economy-wide pricing kernel onto the set of risk factors that character-
ize the cross-sectional distribution of Treasury yields. That is, taking as given
the low-dimensional factor structure of bond yields FP1, features FP2 and
FP3 are direct consequences of agents’ attitudes toward risks in the broader
economy.

II. A Canonical Model with Unspanned Macro Risks

Consistent with FP1, suppose that a low-dimensional R-vector of portfolios
of risks determines the one-period bond yield rt according to (4). At the same
time, let us generalize the generic pricing kernel (1) and (2) to the one capturing
the N > R economy-wide risks Zt underlying all tradable assets available to
agents in the economy. Conceptually, the dimension reduction from N to R
(from Z to P) in (4), implied by FP1, could arise because the economy-wide
risks underlying MZ impinge on bond yields only through the R portfolios
of risks P. Alternatively, N > R could arise because certain risks in ηP

t (e.g.,
cash flow risks in equity markets) are largely inconsequential for the pricing
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of Treasury bonds. In either case, Pt and Zt will in general be correlated, but
Zt will not be deterministically related to Pt.

Most MTSMs are designed to price zero-coupon bonds in a specific bond mar-
ket12 and as such their pricing kernels are naturally interpreted as projections
of the economy-wide MZ onto the portfolios of risks Pt that specifically under-
lie variation in bond yields. Pursuing this logic in a notationally parsimonious
way, we suppose that the macro risks of interest Mt “complete” the state vec-
tor in the sense that (P ′

t, M′
t) and Zt represent linear rotations of the same N

risks.13 Then, to construct our bond-market-specific MP,t+1, we project MZ,t+1
onto Pt+1 (the priced risks in the bond market) and Zt (the state of the economy)
to obtain

MP,t+1 ≡ Proj
[
MZ,t+1

∣∣Pt+1, Zt
] = e−rt− 1

2 �′
Pt�Pt−�′

Ptε
P
P,t+1 . (6)

Though (6) resembles the kernels in previous studies with spanned macro
risks, there are several crucial differences. The risks εP

P,t+1 in (6) are the first
R innovations from the unconstrained VAR[

Pt

Mt

]
=

[
KP

0P

KP
0M

]
+

[
KP
PP KP

PM

KP
MP KP

MM

] [
Pt−1

Mt−1

]
+

√
�ZεP

Zt, (7)

where εP
Zt ∼ N(0, IN), the N × N matrix �Z is nonsingular, and �PP is the upper

R × R block of �Z. Accordingly, consistent with features FP2 and FP3, Mt is
not deterministically spanned by Pt and forecasts of P are conditioned on the
full set of N risk factors Zt.14

To close our model, we assume that Pt follows an autonomous Gaussian VAR
under the pricing (risk-neutral) distribution Q,

Pt = KQ

0P + KQ

PPPt−1 +
√

�PPε
Q

Pt. (8)

Under these assumptions and the absence of arbitrage opportunities, the yield
on an m-period bond, for any m > 0, is an affine function of Pt,

ym
t = AP (m) + BP (m) · Pt, (9)

where the loadings AP (m) and BP (m) are known functions of the parame-
ters governing the Q distribution of yields (see Appendix A). Without loss of

12 Two exceptions are the reduced-form equity and bond pricing models studied by Lettau and
Wachter (2011) and Koijen, Lustig, and van Nieuwerburgh (2012). These models raise spanning
issues as well. For instance, the Koijen, Lustig, and van Nieuwerburgh (2012) model implies that
the value-weighted return on the NYSE is a linear combination of three PCs of bond yields.

13 Our key points are easily derived for the case in which Zt includes more risks than those
spanned by (P ′

t, M′
t). Also, implicit in our construction is the assumption that N − R elements of

Mt are unspanned by the yield portfolios Pt.
14 In this respect, (7) is very similar to the descriptive six-factor model studied by Diebold,

Rudebusch, and Aruoba (2006). As in their analysis, we emphasize the joint determination of the
macro and yield variables. We overlay a no-arbitrage pricing model with unspanned macro risk to
explore their impact on risk premiums in bond markets.



Term Structure Models with Unspanned Macro Risks 1205

generality, we rotate the risk factors so that P corresponds to the first R PCs
of yields.15

The market prices of risk in (6),

�P (Zt) = �
−1/2
PP

(
μP
P (Zt) − μ

Q

P (Pt)
)
, (10)

are constructed from the drift of Pt under P (obtained from (7)) and the drift of
Pt under Q (obtained from (8)). They are affine functions of Zt, even though the
only (potentially) priced risks in Treasury markets are Pt. Thus, agents’ risk
tolerance is influenced by information broadly about the state of the economy.
It follows that agents’ pricing kernel cannot be represented in terms of Pt
alone. Furthermore, our framework implies that the residual OMt in the linear
projection

Mt = γ0 + γ1P · Pt + OMt (11)

is informative about the primitive shocks impinging on the macroeconomy and
therefore about risk premiums and future bond yields.

In contrast, the spanning condition (5) adopted by the vast majority of
MTSMs implies that OMt is identically zero. Economic environments that
maintain this constraint have the property that all aggregate risk imping-
ing on the future shape of the yield curve can be fully summarized by the yield
PCs Pt. In particular, the spanning condition implies that the past history of Mt
is irrelevant for forecasting not only future yields, but also future values of M,
once one has conditioned on Pt. It follows that MTSMs that enforce spanning
fail to satisfy fitting properties FP2 and FP3.

Not only might there be important effects of OMt on expected excess returns,
but the market prices of spanned macro risks may well be affected by OMt.
In particular, the market price of spanned inflation risk, an easily computable
linear combination of the market prices of the PC risks �P (Zt), may be very dif-
ferent from its counterpart in a model that assumes inflation risks are spanned
by PCs.16

15 This rotation is normalized so that the parameters governing the Q distribution of yields—
(ρ0, ρP , KQ

0P , KQ
PP )—are fully determined by the parameter set (�PP , λQ, rQ

∞) (see JSZ), where λQ

denotes the R-vector of ordered nonzero eigenvalues of KQ
PP and rQ

∞ denotes the long-run mean of
rt under Q. As in JSZ, we can accommodate repeated and complex eigenvalues. As they show, a
minor modification allows us to consider zero eigenvalues in the canonical form. The parameters
(λQ, rQ

∞) are rotation invariant (that is, independent of the choice of pricing factors) and hence are
economically interpretable parameters.

16 A generic feature of all reduced-form MTSMs designed to price nominal Treasury bonds is
that one cannot identify the market prices of the full complement of risks Zt from the bond-market-
specific pricing kernel MX. This means, in particular, that the market prices of the total—spanned
plus unspanned—macro risks are not econometrically identified, because nominal bond prices are
not sensitive to the risk premiums that investors demand for bearing the unspanned macro risks.
The market prices of unspanned inflation risk are potentially identified from yields on Treasury
inflation-protected securities (TIPS), as in D’Amico, Kim, and Wei (2008) and Campbell, Sunderam,
and Viceira (2013). However, the introduction of TIPS raises new issues related to illiquidity and
data availability, so we follow most of the extant literature and focus on nominal bond yields alone.
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We stress that whether an MTSM embodies the spanning property (5) is
independent of the issue of errors in measuring either bond yields or macro
factors. As typically parameterized in the literature, measurement errors are
independent of economic agents’ decision problems and hence of the economic
mechanisms that determine bond prices.

Interestingly, the framework of Kim and Wright (2005), the model cited by
Chairman Bernanke when discussing the impact of the macroeconomy on bond
market risk premiums, formally breaks the perfect spanning condition (5),
but without incorporating FP3. Kim and Wright assume that Mt is inflation,
and they arrive at their version of (11) by assuming that expected inflation is
spanned by the pricing factors in the bond market. They additionally assume
that P follows an autonomous Gaussian process under Q, so their model and
ours imply exactly the same bond prices. However, the P-distribution of Zt
implied by their assumptions (adapted to our framework) is[

Pt

Mt

]
=

[
KP

0P

γ0

]
+

[
KP
PP 0

γ ′
1P KP

PP 0

] [
Pt−1

Mt−1

]
+

√
�Z

[
εP
Pt

ηt

]
, (12)

where ηt = (νt + γ ′
1P

√
�PPεP

Pt). Thus, the Kim-Wright formulation leads to a
constrained special case of our model under which the history of Mt has no
forecasting power for future values of M or P, once one conditions on the
history of P. As we will see below, the zero restrictions in (12) are strongly
rejected in our data.

Left open by this discussion is the issue of whether our model is canonical
in the sense that all R-factor MTSMs with N − R unspanned macro risks are
observationally equivalent to a model in the class we specify here. We show in
Appendix B the conditions on the latent factor model to allow for unspanned
risks. We then show in Appendix C that every model with unspanned macro risk
is observationally equivalent to our MTSM with the state vector Z′

t = (P ′
t, M′

t),
where Pt are the first R principal components of yt.17

III. The Likelihood Function

In constructing the likelihood function for our canonical MTSM we let yt de-
note the J-dimensional vector of bond yields (J > N) to be used in assessing the
fit of an MTSM. We assume that Zt, including Pt, is measured without error and
that the remaining J − R PCs of the yields yt, PCe′ ≡ (PC(R + 1), . . . , PC J),
are priced with i.i.d.N(0, �e) errors. Sufficient conditions for any errors in mea-
suring (pricing) Pt to be inconsequential for our analysis are derived in JLS,
and experience shows that the observed low-order PCs comprising Pt are virtu-
ally identical to their filtered counterparts in models that accommodate errors

17 Appendix C also gives the explicit construction of (ρ0, ρP , KQ

0P , KQ
PP ) from (�PP , λQ, rQ

∞) for our
choice of P as a vector of yield PCs.
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in all PCs. With this error structure, the conditional density of (Zt, PCe
t ) is

f
(
Zt, PCe

t |Zt−1; 

) = f

(
PCe

t |Zt, Zt−1; 

) × f (Zt|Zt−1; 
)

= f
(
PCe

t |PCt; λQ, rQ
∞, LZ, Le

) × f
(
Zt|Zt−1; KP

Z, KP
0 , LZ

)
, (13)

where LZ and Le are the Cholesky factorizations of �Z and �e, respectively.
A notable property of the log-likelihood function associated with (13) is the

complete separation of the parameters (KP
0Z, KP

1Z) governing the conditional
mean of the risk factors from those governing risk-neutral pricing of the bond
yields and PCs. Absent further restrictions, the ML estimators of (KP

0Z, KP
1Z) are

recovered by standard linear projection.
Even more striking is the implication of (13) that the least-squares estimators

of (KP
0Z, KP

1Z) are invariant to the imposition of restrictions on the Q distribution
of (Zt, yt). In particular, consider the following two canonical MTSMs with iden-
tical state vector Z′

t = (P ′
t, M′

t): model 1 has R < N pricing factors normalized
to Pt, and model 2 has N pricing factors normalized to Zt. Model 1 is precisely
our MTSM. In contrast, model 2 is equivalent to an MTSM in which the pricing
factors are the first N PCs of yields and the spanning condition (5) is enforced.
In both of these models, the likelihood function factors as in (13) and, there-
fore, both models imply identical ML estimates (KP

0Z, KP
1Z) and hence identical

optimal forecasts of Z.
Pursuing this comparison, the implausibly large Sharpe ratios that arise in

models of type 2 with relatively large N must arise from overfitting the pricing
distribution of the risk factors, f (PCe

t |Zt, Zt−1). We avoid this overfitting by
adopting a more parsimonious f (PCe

t |Zt, Zt−1) (shrinking N factors down to
R).18 The pricing kernel underlying our MTSM has the appealing interpretation
as the projection of agents’ kernel onto the factors Pt that, consistent with FP1,
describe the cross section of bond yields. Moreover, this parsimony is achieved
with the likelihood function of our canonical MTSM being fully unencumbered
in fitting the conditional mean of Zt, thereby offering maximal flexibility in
matching FP2 and FP3.

IV. Risk Premium Accounting

Our sample extends from January 1985 through December 2007. There is
substantial evidence that the Federal Reserve changed its policy rule during
the early 1980s, following a significant policy experiment (Taylor (1999), Clar-
ida, Gali, and Gertler (2000), Woodford (2003)). Our starting date is well after
the implementation of new operating procedures, and covers the Greenspan
and early Bernanke regimes. See Section VI for a discussion of alternative

18 Certainly, other sets of constraints on an N-factor pricing model might avoid the overspecifi-
cation of f (PCe

t |Zt, Zt−1). However, care must be exercised in choosing these constraints so as to
avoid solving a problem with the Q distribution at the expense of contaminating the P distribution
of Z. The possibility of transferring misspecification from the Q to the P distribution arises, for
example, when constraints are imposed on �P (Zt) to attenuate excessive Sharpe ratios (Duffee
(2010)).
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Figure 2. Term structure and macro variables. This figure plots the principal components of
U.S. Treasury–implied zero-coupon yields (PC1, PC2, PC3) as well as macro variables GRO and
INF. GRO is the three-month moving average of the Chicago Fed National Activity Index and
INF is the expected rate of inflation over the coming year as computed from surveys of professional
forecasters by Blue Chip Financial Forecasts. The shaded areas mark NBER recessions.

sample periods. Consistent with the literature, we tie the choice of the number
of risk factors underlying bond prices (R) to the cross-sectional factor structure
of yields over the range of maturities we examine. Over 99% of the variation in
yields is explained by their first three PCs, so we set R = 3 and, without loss of
generality (see Section II), normalize Pt to be these three PCs. Macro risks Mt
include the measures of output growth and expected inflation (GRO, INF) de-
scribed in Section I so that N = 5. The time series (P ′

t, GROt, INFt) is displayed
in Figure 2.19

With R = 3 and N = 5, our canonical model with unspanned macro risk has
45 parameters governing the P distribution of Z (those comprising KP

0 , KP
Z, and

LZ). There are four additional parameters governing the Q distribution of Z
(rQ

∞ and λQ). Faced with such a large number of free parameters, we proceed
with a systematic model selection search over admissible parameterizations
of the market prices of P risks. The scaled market prices of risk, �

1/2
PP �P (Zt),

depend on the 15 parameters of the matrix �1 ≡ KP
PZ − [KQ

PP 03×2] governing
state dependence, where KP

PZ is the first three rows of KP
Z, and also on the

19 Letting � j,i denote the loading on PCj in the decomposition of yield i, the PCs have been
rescaled so that (1)

∑8
i=1 �1,i/8 = 1, (2) �2,10y − �2,6m = 1, and (3) �3,10y − 2�3,2y + �3,6m = 1. This

puts all the PCs on similar scales.
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three intercept terms �0 ≡ KP
0P − KQ

0P . We address two distinct aspects of model
specification with our selection exercise.

First, we seek the best set of zero restrictions on these 18 parameters govern-
ing risk premiums, trading off good fit against overparameterization. Exploit-
ing the structure of our MTSM, we show in Appendix D that, to a first-order
approximation, the first row of �0 + �1 Zt is the (scaled) excess return on the
yield portfolio whose value changes (locally) one-for-one with changes in PC1,
but whose value is unresponsive to changes in PC2 or PC3. Similar interpre-
tations apply to the second and third rows of �0 + �1 Zt for PC2 and PC3. By
examining the behavior of the expected excess returns on these PC-mimicking
portfolios, xPCjt ( j = 1, 2, 3), we gain a new perspective on the nature of priced
risks in Treasury markets. This economic interpretation of the constraints on
[�0 �1] is a benefit of our canonical form—no such model-free interpretation is
possible within a latent factor model.

Second, in applying these selection criteria, we are mindful of the near unit-
root behavior of yields under both P and Q. Substantial evidence shows that
bond yields are nearly cointegrated (e.g., Giese (2008), Jardet, Monfort, and
Pegoraro (2011)). We also find that PC1, PC2, and INF exhibit behavior con-
sistent with a near-cointegrating relationship, whereas PC3 and GRO appear
stationary. While we do not believe that (PC1, PC2, INF) literally embody
unit-root components, it may well be beneficial to enforce a high degree of
persistence under P, since ML estimators of drift parameters are known to be
biased in small samples (Yamamoto and Kumitomo (1984)). This bias tends to
be proportionately larger the closer a process is to a unit-root process (Phillips
and Yu (2005), Tang and Chen (2009)).

Moreover, when KP
Z is estimated from a VAR, its largest eigenvalue tends

to be sufficiently below unity to imply that expected future interest rates out
10 years or longer are virtually constant (see below). This is inconsistent with
surveys on interest rate forecasts (Kim and Orphanides (2005)),20 and leads to
the attribution of too much of the variation in forward rates to variation in risk
premiums.

To address this persistence bias, we exploit two robust features of MTSMs:
the largest eigenvalue of KQ

PP tends to be close to unity, and the cross section
of bond yields precisely identifies the parameters of the Q distribution (in our
case, rQ

∞ and λQ). Any zero restrictions on �1 called for by our model selection
criteria effectively pull KP

Z closer to KQ

PP , so the former may inherit more of
the high degree of persistence inherent in the latter matrix. In addition, we
call upon our model selection criteria to evaluate whether setting the largest
eigenvalues of the feedback matrices KP

Z and KQ

PP equal to each other improves
the quality of our MTSM. Through both channels we are effectively examining
whether the high degree of precision with which the cross section of yields
pins down λQ is reliably informative about the degree of persistence in the

20 Similar considerations motivated Cochrane and Piazzesi (2008), among others, to enforce
even more persistent unit-root behavior under P in their models.
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data-generating process for Zt. Again, this exploration is not possible absent
the structure of an MTSM.21

A. Selecting Among Models

Since there are 18 free parameters governing risk premiums, there are 218

possible configurations of MTSMs with some of the risk premium parameters
set to zero. We examine each of these models with and without the eigenvalue
constraint across KP

Z and KQ

PP , for a total of 219 specifications. Though 219 is
large, the rapid convergence to the global optimum of the likelihood function
obtained using our normalization scheme makes it feasible to undertake this
search using formal model selection criteria. For each of the 219 specifications
examined, we compute full-information ML estimates of the parameters and
then evaluate the Akaike (1973), Hannan and Quinn (1979), and Schwarz
(1978) Bayesian information criteria (AIC, HQIC, and SBIC, respectively).22

The HQIC and SBIC are consistent (i.e., asymptotically they select the correct
configuration of zero restrictions on [�0 �1]), while the AIC may asymptotically
overfit (have too few zero restrictions) with positive probability.23

The model selected by both the HQIC and SBIC has 12 restrictions: 11
zero restrictions on [�0 �1] and the eigenvalue constraint (see Appendix E for
further details). The AIC calls for fewer zero restrictions. All three criteria call
for enforcing near-cointegration through the eigenvalue constraint. We proceed
to investigate the more parsimonious MTSM that enforces the eigenvalue and
11 zero restrictions on the market prices of the risks �Pt identified by the HQIC
and SBIC. We denote this MTSM with unspanned macro risks by Mus.

B. Risk Premium Accounting: Model Comparison

Initially, we compare our preferred model Mus to three other models: the
unconstrained canonical model (Mnosel

us ); the model Me
us obtained by imposing

only the eigenvalue constraint; and model M0
us, which imposes the 11 zero re-

strictions on risk premiums through [�0 �1], but not the eigenvalue constraint.
ML estimates of the parameters governing the Q distribution of Zt from model
Mus are displayed in the first column of Table I.24 The estimates for the other
three models are virtually indistinguishable from these estimates, typically

21 Alternative approaches to addressing small-sample bias in the estimates of the P distribution
in dynamic term structure models include the near-cointegration analysis of Jardet, Monfort, and
Pegoraro (2011) and the bootstrap methods used by Bauer, Rudebusch, and Wu (2012).

22 Bauer (2011) proposes a complementary approach to model selection based on the posterior
odds ratio from Bayesian analysis. Another potential approach to deal with overparameterization
is given in Duffee (2010). He places restrictions on the maximal Sharpe ratio. However, in our
formulations with unspanned macro risks, the maximal Sharpe ratios are reasonable and such
constraints would be slack. Further, a spanning model would not allow unspanned macro risks.

23 These properties apply both when the true process is stationary and when it contains unit
roots, as discussed in Lütkepohl (2005), especially Propositions 4.2 and 8.1.

24 Throughout our analysis asymptotic standard errors are computed by numerical approxima-
tion to the Hessian and using the delta method.
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Table I
Persistence Parameters

This table presents maximum likelihood estimates of the Q parameters for our preferred model
with unspanned macro risks (Mus): the long-run mean of the short rate under Q, rQ

∞, and the
eigenvalues of the feedback matrix under Q, λQ, which control the Q-rates of the factors’ mean
reversion. Also tabulated are the moduli of the eigenvalues of the P feedback matrix KP

Z for models
Mnosel

us (no model selection imposed), M0
us (only risk premium zero constraints), Me

us (only eigen-
value constraint), and Mus (our preferred model), which determine the P-rates of mean reversion.
Asymptotic standard errors are given in parentheses.

Param Mus Param Mnosel
us M0

us Me
us Mus

rQ
∞ 0.0918 |λP

1 | 0.9838 0.9939 0.9972 0.9971
(0.0058) (0.0096) (0.0089) (0.0005) (0.0005)

λ
Q

1 0.9971 |λP
2 | 0.9412 0.9541 0.9408 0.9539

(0.0005) (0.0221) (0.0112) (0.0222) (0.0111)
λ

Q

2 0.9650 |λP
3 | 0.9412 0.9541 0.9408 0.9539

(0.0026) (0.0221) (0.0112) (0.0222) (0.0111)
λ

Q

3 0.8868 |λP
4 | 0.9313 0.8867 0.9311 0.8819

(0.0122) (0.0333) (0.0452) (0.0333) (0.0513)
|λP

5 | 0.7633 0.8606 0.7631 0.8625
(0.0433) (0.0267) (0.0432) (0.0349)

differing in the fourth decimal place. This says that the parameters of the Q

distribution are determined largely by the cross-sectional restrictions on bond
yields, and not by their time-series properties under the P distribution. Models
Me

us and Mus exploit this precision to restrict the degree of persistence of Zt
under P.

Thus, any differences in the model-implied risk premiums must be at-
tributable to differences in either the model-implied loadings of the yields onto
the pricing factors Pt in (9), or the feedback matrices KP

Z (differences in the
P distributions of Pt). The loadings are fully determined by the Q parameters
(rQ

∞, λQ, �PP ) (Appendix A). We have just seen that the parameters (rQ
∞, λQ) are

nearly identical across models and, as it turns out, so are the ML estimates of
�PP . Consequently, the loadings (Am, Bm) are also (essentially) indistinguish-
able across the four models examined.

In contrast, there are notable differences in the estimated feedback matri-
ces KP

Z. The eigenvalues of KP
Z (fourth through seventh columns of Table I)25

reveal that the largest P eigenvalue in the canonical model Mnosel
us is smaller

than in the constrained models. Its small value implies that expected future
short-term rates beyond 10 years are (nearly) constant or, equivalently and
counterfactually, that virtually all of the variation in long-dated forward rates
arises from variation in risk premiums.

Comparing across models also sheds light on the effects of our constraints
on the P persistence of the risk factors. Enforcing the 11 zero restrictions in

25 The fact that there are pairs of equal moduli in all three models means that there are complex
roots in KP

Z. The complex parts are small in absolute value.



1212 The Journal of Finance R©

Table II
Risk Premium Parameters

This table presents maximum likelihood estimates from our preferred model with unspanned macro
risks (Mus) of the parameters �0 and �1 governing expected excess returns on the PC-mimicking
portfolios: xPC = �0 + �1 Zt. Standard errors are given in parentheses. Zeros correspond to the
11 restrictions from our model selection.

P const PC1 PC2 PC3 GRO INF

PC1 0 −0.0896 −0.0510 0 0.1083 0.1729
(0.0157) (0.0122) (0.0313) (0.0326)

PC2 0 0 0 −0.1035 −0.1487 0.0486
(0.0330) (0.0307) (0.0123)

PC3 0 0 0 0 0 0

model M0
us increases the largest eigenvalue of KP

Z from 0.984 to 0.994, and
thus closes most of the gap between models Mnosel

us and Mus. In model M0
us, Zt

is sufficiently persistent under P for long-dated forecasts of the short rate to
display considerable time variation. A further increase in the largest eigenvalue
of KP

Z comes from adding the eigenvalue constraint in model Mus.
Estimates from model Mus of the parameters governing the expected excess

returns xPCjt ( j = 1, 2, 3) are displayed in Table II. The first and second rows
of �1 have nonzero entries, while the last row is set to zero by our model
selection criteria. It follows that exposures to PC1 and PC2 risks are priced,
but exposure to PC3 risk is not priced, at the one-month horizon and during
our sample period. That both level and slope risks are priced, instead of just
level risk as presumed by Cochrane and Piazzesi (2008), is one manifestation of
the important influence of macro factors on risk premiums.26 The macro risks
GRO and INF both have statistically significant effects on xPC1 and xPC2.
In addition, xPC1 is influenced by PC1 and PC2, while xPC2 also depends on
the curvature factor PC3.

The signs of the coefficients imply that shocks to GRO induce pro- (counter-)
cyclical movements in the risk premiums associated with exposures to PC1
(PC2). These effects can be seen graphically in Figure 3 for models Mnosel

us and
Mus, where the shaded areas represent the NBER-designated recessions. Ex-
posures to PC1 (PC2) lose money when rates fall (the curve flattens), which
is when investors holding long level (slope) positions make money. This ex-
plains the predominantly negative (positive) expected excess returns on the
annualized xPC1 (xPC2), and why it is small (large) during the 1990 and 2001
recessions. There is broad agreement on the fitted excess returns across models
Mnosel

us and Mus.
The premium on PC2 risk achieves its lowest value, and concurrently the

premium on PC1 risk achieves its highest value, during 2004 to 2005. Between
June 2004 and June 2006, the Federal Reserve increased its target federal
funds rate by 4% (from 1.25% to 5.25%). Yields on 10-year Treasuries actually

26 With a model fit to yields alone, Duffee (2010) also finds evidence for two priced risks.
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Figure 3. Excess returns. This figure depicts expected excess returns on the level- and slope-
mimicking portfolios implied by our preferred model with unspanned macro risks, Mus, and the
counterpart without model selection applied, Mnosel

us .
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Table III
Intercept and Feedback Parameters

This table presents maximum likelihood estimates of KP
0 and KP

Z for our preferred model with
unspanned macro risks (Mus): EP

t [Zt+1] = KP
0 + KP

ZZt. Standard errors are reported in parentheses.

KP
Z

Z KP
0 PC1 PC2 PC3 GRO INF

PC1 0.0002 0.9138 −0.0211 −0.0482 0.1083 0.1729
(0.0000) (0.0156) (0.0121) (0.0031) (0.0313) (0.0326)

PC2 −0.0004 −0.0188 0.9697 0.0426 −0.1487 0.0486
(0.0001) (0.0012) (0.0017) (0.0327) (0.0307) (0.0123)

PC3 0.0007 0.0155 0.0010 0.8757 0 0
(0.0001) (0.0016) (0.0023) (0.0117)

GRO 0.0009 −0.0157 0.0191 −0.1035 0.8889 0.0233
(0.0006) (0.0144) (0.0109) (0.0381) (0.0262) (0.0322)

INF 0.0003 −0.0002 0.0090 −0.0395 0.0347 0.9966
(0.0002) (0.0086) (0.0056) (0.0223) (0.0161) (0.0194)

fell during this time, leading to a pronounced flattening of the yield curve, which
Chairman Greenspan referred to as a conundrum. We revisit these patterns
below.

ML estimates of KP
0 and KP

Z governing the P drift of Zt are displayed in
Table III for model Mus.27 The nonzero coefficients on (GROt−1, INFt−1) in the
rows for (PC1, PC2) are all statistically different from zero at conventional
significance levels, confirming that macro information is incrementally useful
for forecasting future bond yields after conditioning on {PC1, PC2, PC3}.
Additionally, the coefficients on the own lags of GRO and INF are large
and significantly different from zero, as expected given the high degree of
persistence in these series.

For comparison, we also estimate a model Mspan that enforces spanning of
the forecasts of output growth and expected inflation by the yield PCs. Re-
call that this is the nested special case with the last two columns of KP

Z set
to zero, as in (12). Similar models with macro spanning, based on the analy-
ses of Bernanke, Reinhart, and Sack (2004) and Kim and Wright (2005), are
referenced by Chairman Bernanke in discussions of the impact of the macroe-
conomy on bond risk premiums. For our choices of macro factors (GRO, INF),
the χ2 statistic for testing the null hypothesis that the last two columns of KP

Z
are zero is 1,189 (the 5% cutoff is 18.31). As we next show, the misspecified
model Mspan implies very different term premiums from the model Mus with
unspanned macro risks.

27 The zeros in row PC3 follow from the zero constraints on �1. A zero in �1 means that the
associated factor has the same effect on the P forecasts as Q forecasts (i.e., KQ

PP,i j = KP
PP,i j ). Since,

by construction, the macro factors do not incrementally affect the Q expectations of the PCs, it
follows that Mt has no effect on the P forecasts of PC3.
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V. Forward Term Premiums

Excess holding period returns on portfolios of individual bonds reflect the
risk premiums for every segment of the yield curve up to the maturity of the
underlying bond. A different perspective on market risk premiums comes from
inspection of the forward term premiums, the differences between forward
rates for a q-period loan to be initiated in p periods, and the expected yield
on a q-period bond purchased p periods from now. Within affine MTSMs, both
forward rates and expected future q-year rates (and thus their difference) are
affine functions of the state Zt: FTPp,q

t = f p,q
0 + f p,q

Z · Zt.
To illustrate the differences between the risk premiums implied by MTSMs

with and without macro spanning, in Figure 1 we display three different vari-
ants of the “in-two-for-one” forward term premium FTP2,1. One is the fitted
premium from our selected model Mus with unspanned macro risks. The pro-
jection of this premium onto Pt is displayed as PMus. By construction, the
Mus premium depends on the entire set of risk factors Zt, and any differences
between Mus and PMus arise entirely from the effect of the unspanned com-
ponents of Mt on FTP2,1

t . The Mus premium shows pronounced countercyclical
swings about a gently downward-drifting level. The differences between the
Mus and PMus premiums induced by unspanned macro risks are largest dur-
ing the late 1980s and the conundrum period, as well as at most peaks and
troughs of FTP2,1. These peak-trough differences are a consequence in large
part of the dependence of the Mus premium on GRO.

Equally striking from Figure 1 are the very different patterns in the fitted
FTP2,1 from model Mus and the premium from model Mspan that constrains
Et−1[Mt] to be spanned by Pt−1 (as in (12)). Both PMus and Mspan are graphs
of premiums that are spanned by Pt. However, they will coincide only when the
macro-spanning constraint imposed in model Mspan is consistent with the data-
generating process for Zt. In fact, the cyclical turning points of the premiums
from models Mus and Mspan are far from synchronized: Mspan drifts much
lower during the late 1990s, and it stays (relatively) high after the burst of
the dot-com bubble when Mus was declining along with the Federal Reserve’s
target federal funds rate. Clearly, the macro-spanning constraint distorts the
fitted risk premiums in economically significant ways.

Turning to longer-dated forward term premiums, the standardized “in-nine-
for-one” premium FTP9,1 is displayed in Figure 4, along with a standardized
version of GRO. The band about the fitted FTP9,1 is the 95% confidence band
based on the precision of the ML estimates of f 9,1

Z . Importantly, with condi-
tioning on both the macro factors and the shape of the yield curve, the im-
plied FTP9,1 does not follow an unambiguously countercyclical pattern. While
FTP9,1 is high during the recession of the early 1990s, there are subperi-
ods during 1993 through 2000 when GRO and FTP9,1 track each other quite
closely.

The sources of this procyclicality are revealed by the estimated coefficients
f p,1
Z that link the FTPs to Zt (Table IV). The negative weights on GRO and
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Figure 4. Forward term premnum and economic activity. This figure shows the standard-
ized “in-nine-years-for-one-year” forward term premium (FTP9,1) from our preferred model with
unspanned macro risk (Mus), against the standardized Chicago Fed National Activity Index (GRO).
FTP9,1 is defined as the difference between the forward rate that one could lock in today for a one-
year loan commencing in nine years, and the expectation for nine years in the future of the one-year
yield. The shaded band around FTP9,1 is the 95% confidence band.

INF induce countercyclical movements in FTPs.28 However, all three PCs have
statistically significant, positive effects on FTP9,1. The first PC in particular
follows a procyclical path during the 1990s (Figure 2), and the FTPs reflect a
blending of the influences of the priced level and slope risks. Evidently, there
were important economic forces driving term premiums that were orthogonal
to output growth and inflation.

We turn next to a more in-depth exploration of the contributions of un-
spanned macro risks to variation in risk premiums.

VI. Spanned and Unspanned Macro Risks

An intriguing aspect of our empirical findings is the horizon-dependence of
the impact of macro risk factors on risk premiums in the Treasury market.
Figure 3 shows distinct cyclical patterns for level and slope risk premiums.
Additionally, the loadings in Table IV imply that the effects of GRO on FTPp,1

decline markedly, while those for INF remain large and of the same sign, as

28 Complementary evidence that real economic activity affects expected excess returns on short-
dated federal funds futures positions is presented in Piazzesi and Swanson (2008).
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Table IV
Forward Term Premium Parameters

This table presents coefficients f p,1
0 and f p,1

Z determining the mapping between the forward term

premiums FTPp,1
t and the state Zt in our preferred model with unspanned macro risks (Mus):

FT P p,1
t = f p,1

0 + f p,1
Z · Zt. FTPp,1 is defined as the difference between the forward rate that one

could lock in today for a one-year loan commencing in p years and the expectation for p years in
the future of the one-year yield. Standard errors are reported in parentheses.

const PC1 PC2 PC3 GRO INF

2-for-1 −0.0153 1.1522 0.2227 0.9066 −0.5950 −1.5141
(0.0108) (0.1987) (0.1841) (0.3768) (0.2786) (0.4280)

5-for-1 −0.0103 0.9090 0.4179 0.4262 0.2430 −0.8301
(0.0137) (0.1166) (0.1238) (0.2641) (0.1737) (0.3989)

9-for-1 −0.0023 0.7392 0.5341 0.6875 0.0828 −0.7623
(0.0151) (0.0813) (0.0983) (0.1600) (0.1046) (0.2994)

the contract horizon p increases. To what extent are the cyclical risk profiles of
Treasury bonds determined by shocks to unspanned versus spanned macroe-
conomic factors?

Analogous to the loadings on GRO in Table IV, we find that a positive inno-
vation to GRO tends to lower FTP1,1, while (as the table shows) being largely
neutral for FTP9,1, thus inducing a steepening of the forward premium curve
(increase in SLF9

1 ≡ FTP9,1 − FTP1,1). The impulse responses (IRs) of SLF9
1 to

innovations in spanned (SGRO) and unspanned (OGRO) output growth are
displayed in the left panel of Figure 5 for model Mus.29 A shock to OGRO
induces an immediate, large steepening of the forward premium curve, and its
effect then dissipates rapidly over the following year. This dominant role for
OGRO emerges even though SGRO is ordered first in the underlying VAR.
The macro-spanning restriction rules out any effect of OGRO on SLF9

1 .
Moreover, macro-spanning restrictions severely distort the responses of

SLF9
1 to shocks to total output growth GRO. The response of SLF9

1 to a GRO
shock in model Mus (right panel of Figure 5) looks nearly identical to its re-
sponse to OGRO in the adjacent figure, a manifestation of the large unspanned
component of GRO. On the other hand, under macro spanning in model Mspan,
the response of SLF9

1 to a growth shock is (virtually) zero at all horizons.
Evidently, shutting down the feedback from GRO to future Z drives out the
economically important effects of growth on the slope of the forward premium
curve.

In comparison to GRO, survey expectations of inflation are largely spanned
by Pt (85% of its variation) and INF shows higher persistence. The latter
property of INF gives it a level-like effect in that innovations in INF (roughly

29 These IRs are computed from the (ordered) VAR of (SGRO, SINF, OGRO, OINF, SLF9
1 )

implied by model Mus, where SGRO is the model-implied projection of GROt onto the PCs Pt and
OGROt is the residual from this projection.
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Figure 5. Response to growth shock. The left panel plots the impulse responses of the slope
of the forward premium curve, SLF9

1 = FTP9,1 − FTP1,1, to shocks to either (SGRO, OGRO) from
our preferred model with unspanned macro risks (Mus). The right panel compares the responses
of SLF9

1 to innovations in total GRO across our preferred model with unspanned macro risks
(Mus) and the nested model that enforces spanning of expectations of the macro variables by the
yield PCs (Mspan). SGRO, spanned growth, is the projection of GRO onto the PCs; OGRO is the
component of GRO orthogonal to the PCs. FTPp,1 is defined as the difference between the forward
rate that one could lock in today for a one-year loan commencing in p years and the expectation
for p years in the future of the one-year yield.
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Figure 6. Response to inflation shock. Each panel plots the impulse responses of forward
term premiums (FTPs) to shocks to spanned and unspanned inflation (SINF, OINF), implied by
our preferred model with unspanned macro risks (Mus). SINF is the projection of INF onto the
PCs; OINF is the component of INF orthogonal to the PCs. FTPp,1 is defined as the difference
between the forward rate that one could lock in today for a one-year loan commencing in p years
and the expectation for p years in the future of the one-year yield.

uniformly) affect the entire maturity spectrum of yields. While the former
property might lead one to presume that shocks to unspanned inflation (OINF)
have inconsequential effects on risk premiums, this is not the case. These
properties of inflation risk can be seen from the IRs of FTPp,1

t , p = 2, 9, to
shocks to OINF and SINF displayed in Figure 6. The effects of OINF persist
for several years, owing to the near-cointegration of INF with the priced risk
factors (PC1, PC2).
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There is also near-symmetry in the effects of (SINF, OINF) on forward term
premiums. Initially, unspanned inflation shocks lead to lower FTPs, but the
effects turn positive within a year. Innovations in SINF, in contrast, have
large positive impact effects on FTPs that dissipate slowly over a couple of
years. The dominant effect on FTP9,1 at long horizons comes from unspanned
inflation risk.

Returning to the period of the conundrum during 2004 to 2005, notice from
Figure 4 that this was a period when GRO was increasing and long-dated for-
ward term premiums were falling. In speaking about the conundrum, Chair-
man Bernanke asserted that “a substantial portion of the decline in distant-
horizon forward rates of recent quarters can be attributed to a drop in term
premiums. . . . the decline in the premium since June 2004 appears to have
been associated mainly with a drop in the compensation for bearing real in-
terest rate risk.”30 According to our model, the forward term premium FTP9,1

indeed declined by 112 basis points between June 2004 and June 2005,31 but
by June 2006 had retracted to almost exactly its June 2004 level.

As to whether these patterns reflect changing premiums on real interest
rate risk, of the initial decline about 30 basis points can be attributed to or-
thogonal inflation and almost none to orthogonal growth, with the remainder
accounted for by factors spanned by yields. Complementary to this, we find
that the expected excess return on a bond portfolio mimicking the negative of
spanned inflation—an indicator of the compensation required by investors fac-
ing spanned inflation risk—fell by roughly 60 basis points between June 2004
and June 2005. Both findings are indicative of a potentially more significant
role played by inflation risks during the conundrum period than suggested by
Chairman Bernanke.

Symmetric to this discussion is the interesting question of how changes in
term premiums affect real economic activity. Bernanke, in his 2006 speech,
argues that a higher term premium will depress the portion of spending that
depends on long-term interest rates and thereby have a dampening economic
impact. In linearized New Keynesian models in which output is determined by
a forward-looking IS equation (such as the model of Bekaert, Cho, and Moreno
(2010)), current output depends only on the expectation of future short rates,
leaving no role for a term premium effect. Time-varying term premiums do
arise in models that are linearized at least to the third order (e.g., Ravenna
and Seppälä (2008)). We examine the response of real economic activity and
inflation expectations to innovations in FTPp,1 (p = 2, 9) in the context of model
Mus.32

Initially, a one-standard-deviation increase in FTP2,1 has a small negative
impact on OGRO over a period of about 18 months, and has virtually no ef-
fect on SGRO (left panel of Figure 7). Shocks to the long-term premium FTP9,1

30 See his speech before the Economic Club of New York on March 20, 2006 titled “Reflections
on the Yield Curve and Monetary Policy.”

31 The model also shows an even larger decline of 175 basis points between July 2003 and June
2005.

32 The ordering of the model-implied VAR is (FTPp,1
, SGRO, SINF, OGRO, OINF).
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Figure 7. Response to term premium shock. Each panel plots the impulse responses of
spanned and unspanned growth (SGRO, OGRO) to shocks in forward term premiums (FTPs)
implied by our preferred model with unspanned macro risks (Mus). SGRO is the projection of
GRO onto the yield PCs; OGRO is the component of GRO orthogonal to the PCs. FTPp,1 is de-
fined as the difference between the forward rate that one could lock in today for a one-year loan
commencing in p years and the expectation for p years in the future of the one-year yield.

induce a short-lived positive effect on unspanned GRO (right panel of Figure 7).
Again the premium shock has no effect on SGRO.33 These responses present
a more differentiated perspective on the economic linkages set forth by Chair-
man Bernanke. A negative impact on economic activity arises from short- to
medium-term risk premiums, not long-dated premiums. Moreover, the effects
are virtually entirely through unspanned real economic activity, a component
of growth that is absent from the models he cites in his analysis.

VII. Extended Sample Analysis

In estimating our macro term structure models, we face a tradeoff between
the potential small-sample bias arising from our selected sample period and
biases that would arise from nonstationarity owing to structural breaks in a
longer sample. The existing literature is divided on how this tradeoff is best
resolved.34 Based on extant research, we argue in Section I that our sample
period (1985 to 2007) is the longest recent sample that can reasonably be clas-
sified as a single regime (free from structural breaks). Small-sample concerns
are mitigated somewhat by sampling at a monthly frequency, and by exploit-
ing information about persistence from the pricing distribution. Though we

33 The absence of effects on SGRO is consistent with the results in Ang, Piazzesi, and Wei
(2006) that term premiums are insignificant in predicting future GDP growth within an MTSM
that enforces spanning of GDP growth by bond yields. What their model does not accommodate is
our finding that term premium shocks do affect growth through their effects on unspanned real
activity.

34 Ang and Piazzesi (2003) and Ang, Dong, and Piazzesi (2007) use relatively long postwar
samples starting in the early 1950s. Bikbov and Chernov (2010) start their sample in 1970 under
the caveat of structural stability concerns. Smith and Taylor (2009) cite evidence of a structural
break in the early 1980s and consequently proceed with a split-sample analysis around that break
point.
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document an economically important link between yields and unspanned macro
risks, such links may well be different in different time periods. Indeed, it is
our prior that unspanned macro risks are qualitatively important across policy
regimes, but likely in quantitatively different ways.

A. Regime-Switching Model

To explore this conjecture jointly with our assumption that the post-1985 pe-
riod is adequately treated as a single regime, we estimate a regime-switching
version of our model, adapting the methodology of Dai, Singleton, and Yang
(2007). Our extended sample starts in November 1971 (the earliest date with
consistent availability of 10-year yield data, as discussed, for example, in
Gürkanyak, Sack, and Wright (2007)) and ends in December 2007. We use
the same cross section of yields, and the same macroeconomic growth indica-
tor (the Chicago Fed National Activity Index) as before, but we can no longer
use Blue Chip inflation forecasts, as these are not available prior to the early
1980s. Instead, we define INF as the 12-month moving average of core CPI
inflation, a measure that is highly correlated (> 90%) with Blue Chip inflation
forecasts over the period for which both inflation measures are available. We
allow for two regimes with time-homogeneous transition matrices πP and πQ.
All parameters except λQ are permitted to depend on the current regime (the
maximally flexible regime-switching specification under which bond prices re-
main exponential-affine). We do not otherwise constrain parameters or perform
a model selection procedure as in Section IV.

Figure 8 shows that the maximum-likelihood-based regime classification35 is
indicative of a structural break in our data occurring in the mid-1980s, broadly
consistent with the consensus in the literature. To a first approximation, the
sample is divided into an early (pre-1985) and late (post-1985) regime. In partic-
ular, with the exception of the first year and three isolated months, the sample
period we use in our main analysis is contained within a single regime. Con-
versely, the pre-1985 period is predominantly classified as a different regime.
This finding supports our claim that the 1985 to 2007 period is adequately
treated as a single regime, while this would not be the case for a longer sample.

The two regimes differ in economically meaningful ways, and consistent
with the findings in previous research. In regime 2 (the “late” regime), the
long-term mean of the short rate under the risk-neutral measure is lower,
the system of yields and macro variables is more persistent and has lower
conditional volatility (reflecting the “Great Moderation” analyzed by Stock and
Watson (2002)), and the regime is more stable. While GRO affects level and
slope risk premiums comparably across regimes, not surprisingly, given the
high inflation in the first regime, INF has a much larger effect on level risk in
regime 1 than regime 2 (for exact parameter estimates, see Appendix F). These

35 As is standard, we classify an observation as belonging to the regime with the highest ex post
(smoothed) probability.
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Figure 8. Regime classification. This figure shows the regime classification from a two-regime
model with unspanned macro risks. The hatched area represents the first regime, while shaded
areas indicate NBER recession periods.

differentiated results would be obscured if we estimated a single-regime model
over the longer sample period.

B. Out-of-Sample Analysis

Also of interest are the properties of our model’s implied risk premiums
during the post-2007 crisis period. Up to this point we have excluded this
period due to concerns not only about another structure break, but also about
the ability of a Gaussian term structure model to adequately capture yield
dynamics near the zero lower bound. With this cautionary observation in
mind, we briefly examine the out-of-sample differences between our preferred
model with unspanned macro variables, Mus, and the alternative model
with spanned macro factors, Mspan. For this purpose, we compute fitted
risk premiums (based on model estimates for the 1985 to 2007 sample)
starting from the end of our estimation sample and continuing through
July 2012.

Figure 9 plots the in-two-for-one forward term premiums implied by mod-
els Mus and Mspan. As we discuss in Section V, these forward term premi-
ums bear limited resemblance in sample. Out of sample, the differences are
even more pronounced, particularly in the 2008 to 2010 period. The term pre-
mium implied by model Mus initially increases sharply in 2008 with a rapidly
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Figure 9. Out-of-sample forward term premiums. This figure depicts out-of-sample forward
term premiums FTP2,1 for our preferred model with unspanned macro risks (Mus), and the nested
model that enforces spanning of expectations of the macro variables by the yield PCs (Mspan).
FTP2,1 is defined as the difference between the forward rate that one could lock in today for a
one-year loan commencing in two years and the expectation for two years in the future of the
one-year yield.

deteriorating economic outlook. It rebounds later that year, and declines by a
similar magnitude in late 2010 to early 2011. The declines roughly coincide
with the Federal Reserve’s first two quantitative easing programs (QE1 and
QE2), a stated objective of which was to lower forward term premiums. The
movements in the Mspan-implied forward term premium are much more sub-
dued, and harder to reconcile with economic events. For instance, the forward
term premium increases around QE1.

VIII. Elaborations and Extensions

Our framework can be applied in any Gaussian pricing setting in which se-
curity prices or yields are affine functions of a set of pricing factors Pt and
risk premiums depend on a richer set of state variables that have predictive
power for Pt under the physical measure P. Accordingly, it is well suited to
addressing a variety of economic questions about risk premiums in bond and
currency markets, as well as in equity markets when the latter pricing prob-
lems map into an affine pricing model (e.g., Bansal, Kiku, and Yaron (2012b)).
Though neither the state variables nor the pricing factors exhibit time-varying
volatility in the settings examined in this paper, our basic framework and
its computational advantages are likely to extend to affine models with time-
varying volatility. Incorporating time-varying volatility would allow for the
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possibility of volatility factors that are unspanned by bond prices or macro
variables, thereby generalizing Collin-Dufresne and Goldstein (2002). As in
our setting, such unspanned volatility factors may also drive expected returns
(as in Joslin (2013b)). Exploration of this extension is deferred to future re-
search.

A distinct, though complementary, question is: what are the structural eco-
nomic underpinnings of the substantial effects of unspanned macro variables
on risk premiums that we document in our empirical analysis? At this junc-
ture, we comment briefly on the insights that our reduced-form model reveals
about the nature of risk premiums in the U.S. Treasury market, again leav-
ing the task of developing a structural model with these features to future
research.

Many of the extant structural models of term premiums in bond markets
rule out by construction any link between unspanned macro risks and term
premiums. This is trivially the case in the model of Bekaert, Cho, and Moreno
(2010), because they assume constant risk premiums. Gallmeyer et al. (2007)
add preferences with habit shocks (as in Abel (1990)) to a policy rule to obtain
a setting with time-varying risk premiums. However, their models also imply
that real economic activity (in their case consumption growth) and inflation are
fully spanned by the current yield curve. Indeed, all of the equilibrium models
of bond yields that fall within the family of affine pricing models that we are
aware of implicitly impose macro-spanning conditions (see Le and Singleton
(2013)).

We can imagine how unspanned macro risks could arise through additional
constraints on agents’ preferences, policy rules, and exogenous sources of un-
certainty. For instance, in a model with preferences of the habit type, if the
short rate is affine in growth and one component of growth has the same mean-
reversion as the habit variable (for example, as growth decreases, risk aversion
increases according to such a rule), then there may be unspanned growth risk.
Within an affine pricing setting, such unspanned growth could be allowed to
impact policy rules and the inflation process. Whether this avenue for accom-
modating unspanned risks is fruitful is ultimately a quantitative question that
warrants further exploration. A primary take-away from our findings is that
this or some other complementary economic mechanism seems needed to ra-
tionalize our core empirical findings.

Our findings also speak to the policy conclusions drawn from struc-
tural models. A standard framework for policy analysis within a struc-
tural term structure model is the New Keynesian model, as in Clar-
ida, Gali, and Gertler (1999). For example, Gallmeyer, Hollifield, and Zin
(2005) and Gallmeyer et al. (2007) examine affine term structure models
that embed Taylor- or McCallum-style monetary policy rules and (implic-
itly) enforce spanning of all macro variables by bond yields. Our results
suggest that a monetary authority may affect the output gap and infla-
tion through channels that leave bond yields unaffected, by having a si-
multaneous effect on expectations about the future short rates and risk
premiums.
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IX. Conclusion

This paper explores the effects of unspanned macro risks on risk premiums
in bond markets. We find that shocks to unspanned real economic activity and
inflation have large effects on term premiums in U.S. Treasury markets and,
symmetrically, shocks to forward term premiums have substantial effects on
real economic activity primarily through their effects on unspanned real output
growth. Moreover, we document an important role for unspanned inflation risks
in shaping term premiums, despite the fact that a large portion of the variation
in inflation is spanned by bonds.

To assess the role of unspanned macro risks, we develop a canonical
arbitrage-free Gaussian MTSM in which the state vector includes macroe-
conomic variables that are not perfectly spanned by contemporaneous bond
yields, and in which these macro variables can have significant predictive con-
tent for excess returns on bonds over and above the information in bond yields.
We show that this canonical representation of the model lends itself to easy
interpretation and attains the global maximum of the likelihood function es-
sentially instantaneously.

Properties of the fitted historical distributions of bonds and pricing factors in
our MTSM are very different from what is implied by both a factor-VAR model
or an unconstrained version of our canonical model. Owing to the constraints
suggested by our model selection criteria, the persistence properties of bond
yields, and hence the relative importance of expected future spot rates versus
forward term premiums, are very different in our preferred model compared to
its unconstrained counterpart. This suggests that, when estimating MTSMs,
one should undertake similar model selection exercises to systematically reduce
the dimension of the parameter space, as this might similarly mitigate small-
sample bias problems.

Our findings raise several intriguing questions for future research. Un-
spanned macro risks, particularly real economic risks, have large effects on for-
ward term premiums over short- to intermediate-term horizons. What are the
economic sources of these unspanned risks? On the other hand, a substantial
portion of the variation in long-dated forward term premiums is attributable
to economic factors that are orthogonal to both spanned and unspanned output
and inflation. What is the nature of these macro risks that are so important in
Treasury markets and yet are orthogonal to output growth and inflation? Since
the onset of the financial crisis, there has been considerable discussion about
the roles of global imbalances and disruptions in the financial intermediation
sectors. Our modeling framework provides a means to systematically examine
these possibilities within arbitrage-free dynamic term structure models.

Initial submission: October 7, 2010; Final version received: October 20, 2013
Editor: Campbell Harvey
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Appendix A: Bond Pricing in GDTMs

The price of an m-month zero-coupon bond is given by

Dt,m = EQ
t
[
e− ∑m−1

i=0 rt+i
] = eAm+Bm·Pt , (A1)

where (Am,Bm) solve the first-order difference equations

Am+1 − Am = (
KQ

0

)′Bm + 1
2
B′

m�PPBm − ρ0 (A2)

Bm+1 − Bm = (
KQ

1

)′Bm − ρ1 (A3)

subject to the initial conditions A0 = 0,B0 = 0. See, for example, Dai and Sin-
gleton (2003). The loadings for the corresponding bond yield are Am = −Am/m
and Bm = −Bm/m.

Appendix B: Conditions for Unspanned Risks

In this appendix, we derive the nominal pricing kernel (equivalently, risk-
neutral distribution of the N risk factors Zt) in order to have a model with
unspanned macro risks. We begin with the general specification of the nominal
pricing kernel in (1) with short rate given in (3) and dynamics of the state
variable Zt given by (2). Macro variables are added to the system through

Mt = γ0Z + γ1Z · Zt. (B1)

Notice that this specification is the most general affine Gaussian model. In
particular, it subsumes the case in which some elements of Zt are themselves
macro variables by assuming that rows of γ1Z are standard basis vectors (with
corresponding entries in γ0Z set to zero).

From the pricing kernel, we derive the risk-neutral distribution of Zt through

dQ

dP

∣∣∣∣∣
t

= e− ∑t
s=1

[
1
2 �′

Z,s�Z,s−�′
Z,sη

P
s

]
.

Our assumption is that the market prices of risk are affine so that, following
the notation of Section IV, we have

�Z,t = �
−1/2
ZZ (�0 + �1 Zt)

and the risk-neutral distribution is given by

Zt = KQ

0Z + KQ

1ZZt−1 +
√

�ZηP
t ηP

t ∼ N(0, I). (B2)

Here (KQ

0Z, KQ

1Z) are given through the market prices of risk:

KQ

0Z = KP
0Z − �0, (B3)

KQ

1Z = KP
1Z − �1. (B4)
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Following Joslin (2013a), we see that the macro risks are unspanned macro
risks if there are (N − R) vectors {v1, v2, . . . , vN−R} so that for each i:

(1) vi · ρ1Z = 0.
(2) v′

i K
Q

1Z is a multiple of KQ

1Z (i.e., vi is a left eigenvector of KQ

1Z).
(3) γ1 · vi 	= 0.

The first condition ensures that the factor vi · Zt does not affect the short
rate while the second condition ensures that vi · Zt does not affect risk-neutral
expectations of the short rate (for any horizon). The final condition ensures
that the factor vi · Zt has an effect on the macro variables. We can relax this
condition so that, if vi · Zt = 0, there can be a factor that is not identified by the
joint cross section of bond prices and Mt.

Notice that the conditions above are all specified directly in terms of the
risk-neutral parameters. Alternatively, one could use (B3) and (B4) to express
the conditions for unspanned macro risk in terms of the market prices of risk
and P parameters.

Appendix C: A Canonical Model with Unspanned Macro Risks

In this section, we prove that our form of MTSM with unspanned macro
risks is canonical in the following sense. Consider the family of MTSMs with
nominal pricing kernel given in (1), with short rate given in (3), with dynamics
of the state variable Zt given by (2), and with macro variables given in (B1). For
Zt of dimension N and Mt of dimension R, we denote UMAR

0 (N) to be this family
when the macro risks are unspanned. To prove that our family is canonical, we
show that every such MTSM is observationally equivalent (given data on the
macro variables and the cross section of all yields) to exactly one model with
the specification given in Section II.

To prove the existence of such a representation, we begin with a generic
model with a latent Zt driving yields and macro factors and apply the affine
rotations as in Dai and Singleton (2000). Taking the loadings from (9) we may
write [

Pt

Mt

]
=

[
W A

γ0

]
+

[
W B

γ1

]
Zt, (C1)

where W are the weights in the principal components and (A, B) are the stacked
loadings for the corresponding maturities. The matrix [WB; γ1] is invertible by
the spanning assumptions in the previous section. Thus, after we apply the
affine transformation of (C1) to our parameters, we obtain a model with (Pt, Mt)
as the state variable. The spanning assumptions in the previous section show
that Pt is Q Markov and that the short rate must depend only on Pt (and not
Mt). The results of Joslin, Singleton, and Zhu (2011) then allow us to uniquely
parameterize the Q-distribution of Pt through (�PP , λQ, rQ

∞). The Q-distribution
of Mt is not identified in our specification without further data. In the presence
of securities with payoffs directly tied to Mt, the risk-neutral dynamics could
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be fully specified (equivalently, the entire pricing kernel rather than just the
projection onto bond returns could be identified).

Appendix D: Returns on Generalized Mimicking Portfolios

Consider a collection of N yields, {yn1
t , . . . , ynN

t }, and a given linear combina-
tion ya

t = ∑N
i=1 ai y

ni
t of these yields (ya

t could be a principal component, or the
projection of a macro variable onto the yields). Our first goal is to find weights
{wi}N

i=1 such that value Pw
t = ∑N

i=1 wi Pni
t of a portfolio of zero-coupon bonds

locally tracks changes in ya
t ; that is,

dPw
t

dya
t

=
N∑

i=1

dPw
t

dyni
t

dyni
t

dya
t

= 1. (D1)

Since, by definition, Pni
t = exp(−ni y

ni
t ), we have dPni

t /dyni
t = −ni Pni

t . Therefore,
(D1) can be rewritten as

−
N∑

i=1

wini Pni
t

1
ai

= 1,

which will hold for weights

wi = − ai

Nni Pni
t

.

Next, consider the one-period excess return on portfolio Pw
t :

∑
i

wi
(
Pni−1

t+1 − ert Pni
t

)
∣∣∣∑

i

wi Pni
t

∣∣∣ =
−

∑
i

ai/ni
(
Pni−1

t+1

/
Pni

t − ert
)

∣∣∣ ∑
i

ai/ni

∣∣∣ .

This is a weighted average of the returns on the individual zero-coupon bonds.
Now, it follows from Le, Singleton, and Dai (2010) that Pni

t = exp(−Ani − BniPt),
and further that

EP
[
Pni−1

t+1 /Pni
t

] = exp
{
Bni−1

[(
KQ

0 − KP
0

) + (
KQ

P − KP
P
)
Zt

] + rt
}
.

Therefore, to a first-order approximation, the expected excess return on port-
folio Pw

t is given by

∑
i

ai/ni Bni−1
[(

KP
0 − KQ

0

) + (KP
P − KQ

P )Zt
]

∣∣∣∑
i

ai/ni

∣∣∣ .
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Since we rotate our model such that the first R elements of Zt correspond to
the first R principal components of yields, and since by definition

PCjt =
N∑

i=1

�
j
i yni

t =
N∑

i=1

�
j
i (Ani /ni + Bni /niPt),

it follows that
∑

i �
j
i Bni /ni is the selection vector for the jth element, j ∈

{1, . . . , R}. Thus, under the further approximation that Bni−1 ≈ Bni , the ex-
pected excess return on the portfolio mimicking PCj, xPCj, is given by the jth

row of (
KP

0 − KQ

0

) + (
KP
P − KQ

P
)
Zt

scaled by |∑i �
j
i /ni|. While an approximation for the one-period expected excess

return in discrete time, this relationship is exact for the instantaneous expected
excess return in the continuous-time limit.

Appendix E: Details on Model Selection

As discussed in Section IV.A, we select among a total of 219 model specifica-
tions distinguished by different sets of restrictions on the market price of risk
parameters, and the maximum eigenvalue of KP

Z. In estimating the baseline
(unrestricted) version of our model, we reduce the computational burden by

Figure E1. Model selection. Each of the 219 model specifications we consider corresponds to
a point on the graph. The likelihood frontiers “Without EV” and “With EV” trace out the models
with the highest likelihood for a given number of restrictions, without and with the maximum
eigenvalue constraint on the feedback matrix KP

Z imposed. The straight lines are “indifference
curves” for each of the three information criteria, Akaike (1973, AIC), Hannan and Quinn (1979,
HQIC), and the Bayesian criterion proposed by Schwarz (1978, SBIC). The marked tangency points
correspond to the models selected under each criterion.



1230 The Journal of Finance R©

taking advantage of the likelihood function factorization (13). Given
(rQ

∞, λQ, LZ), the remaining parameter estimates can be computed in closed
form as the solution to a standard OLS problem. Thus, we only need to opti-
mize numerically over (rQ

∞, λQ, LZ).
Estimators for the restricted versions of our models can be computed almost

equally efficiently. First, given (rQ
∞, λQ, LZ), the zero restrictions on the market

price of risk parameters can be expressed as linear restrictions on (KP
0 , KP

Z). In
the likelihood factorization (13), the first term is unaffected by these restric-
tions. Maximizing the second term with respect to (KP

0 , KP
Z) amounts to estimat-

ing a restricted seemingly unrelated regression problem, which has a known
closed-form solution. Therefore, the computational complexity of the overall
maximization problem is unchanged. Similarly, the eigenvalue constraint on
KP

Z can also be expressed as a linear restriction given λQ: the restriction can be
written as det(KP

Z − λ
Q
max I) = 0 ⇒ (KP

Z − λ
Q
max I)b = 0 for some vector b. Hence,

this amounts to additional linear restrictions on KP
Z, given b. However, the pa-

rameters in vector b must now be included in the set of parameters over which
we optimize numerically. This makes the optimization problem somewhat more
complex, although in practice we find convergence is still rapid.

The outcome of our model selection procedure can be summarized graphically
as a “likelihood frontier,” as in Figure E1.

Appendix F: Parameter Estimates for Regime-Switching Model
Table FI

Regime-Switching Model Parameters
This table presents maximum likelihood estimates of selected parameters for the regime-switching
model based on an extended sample period 1971 to 2007. Asymptotic standard errors are given in
parentheses.

Panel A: Regime-dependent parameters

Param Regime 1 Regime 2

rQ
∞ 0.0889 0.0773

(0.0196) (0.0189)

|λP
1 | 0.9751 0.9904

(0.0265) (0.0138)

KP
PM 0.0998 0.0538 0.1253 0.0121

(0.0579) (0.0263) (0.0284) (0.0166)

−0.0853 −0.0303 −0.1006 0.0445
(0.0521) (0.0237) (0.0274) (0.0045)

0.0822 0.0004 −0.0532 0.0188
(0.0401) (0.0182) (0.0247) (0.0152)√

diag(�Z) 0.0061 0.0025
0.0054 0.0024
0.0041 0.0021
0.0041 0.0020
0.0040 0.0014

Panel B: Transition Probabilities πP

0.9301 0.0699
0.0352 0.9648
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