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YUXIN CHEN and SHA YANG*

In this article, the authors propose a Bayesian method for estimating
disaggregate choice models using aggregate data. Compared with
existing methods, the advantage of the proposed method is that it allows
for the analysis of microlevel consumer dynamic behavior, such as the
impact of purchase history on current brand choice, when only
aggregate-level data are available. The essence of this approach is to
simulate latent choice data that are consistent with the observed
aggregate data. When the augmented choice data are made available in
each iteration of the Markov chain Monte Carlo algorithm, the dynamics
of consumer buying behavior can be explicitly modeled. The authors first
demonstrate the validity of the method with a series of simulations and
then apply the method to an actual store-level data set of consumer
purchases of refrigerated orange juice. The authors find a significant
amount of dynamics in consumer buying behavior. The proposed method
is useful for managers to understand better the consumer purchase
dynamics and brand price competition when they have access to 

aggregate data only.

Estimating Disaggregate Models Using
Aggregate Data Through Augmentation of
Individual Choice

Understanding consumer purchase behavior and response
to price and promotion is important to marketing managers.
The past two decades have witnessed numerous applica-
tions of demand models that employ household panel data
and aggregate sales data to fulfill this goal. In comparison
with aggregate data, household panel data facilitate empiri-
cal analysis of individual consumer choice behavior. For
example, household panel data provide rich information on
purchase history that has been shown to affect consumer
current choice decisions significantly (Erdem and Keane

1See http://www.acnielsen.com/products/reports/homescan/panelviews/
(accessed on December 2, 2003).

1996; Feinberg, Kahn, and McAlister 1992; Guadagni and
Little 1983).

Although household panel data are desirable, they are
often available only for a small number of product cate-
gories, stores, regions, and weeks, which limits the decision
maker’s ability to obtain relevant information (Bucklin,
Russell, and Srinivasan 1998; Russell and Kamakura 1994).
For example, ACNielsen Homescan consists of only 61,500
households in the United States.1 With the existence of a
large number of stores, the amount of household data avail-
able at each individual store are extremely limited. There-
fore, aggregate data are used in many situations because
they are more readily available and are often less costly
than household panel data.

Despite the lack of household panel data, store managers
may still want to understand microlevel consumer behavior,
such as purchase dynamics (i.e., the impact of purchase his-
tory on current buying decision), based on store-level
aggregate information. This is challenging in the following
two ways: First, a sales response model may not address
this problem adequately, because it does not have a
microlevel underpinning of modeling individual consumer
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behavior patterns. Second, it is computationally demanding
to recover the purchase dynamics because consumer pur-
chase history information is not directly observable from
the aggregate information. Because of this difficulty, exist-
ing models ignore the purchase dynamics when analyzing
aggregate data, though they are built on the consumer utility
maximization framework and are able to capture consumer
heterogeneity.

In this article, we develop a Bayesian method for model-
ing disaggregate consumer behavior with aggregate data.
The proposed method is especially useful to firms that need
a better understanding of microlevel consumer purchase
dynamics and accurate estimates of brand price competition
at the store level when high-quality panel data are not avail-
able. Our approach retains the benefits of discrete choice
models, which provide a structural and parsimonious way
to model consumer purchase behavior and ensure that the
estimates of own- and cross-elasticities (Kamukura and
Russell 1989; Rossi and Allenby 1993) are of the correct
sign. As do all Bayesian methods, the proposed method
facilitates exact, finite-sample inference and does not rely
on asymptotic results (Bajari 2003; Berry 2003; Rossi and
Allenby 2003).

A key advantage of our method is the ability to model the
impact of purchase history on consumer choice decisions
with aggregate data. This is achieved through data augmen-
tation (Tanner and Wong 1987), in which we simulate a set
of latent choices that are consistent with the observed
aggregate data. Because individual choices are not made
available through existing estimation methods without
using data augmentation, this effect will be difficult to
measure.

To demonstrate the validity of the proposed method, we
first conduct a series of simulations. In the simulation exer-
cises, we generate the aggregate brand shares from individ-
ual consumers’ choices, given the prespecified response
parameters and distribution of heterogeneity. Using the pro-
posed method, we can recover the true model parameters.
We then apply the method to an empirical application based
on store-level data of consumer purchases of refrigerated
orange juice. We find a significant impact of last-period
purchase on current-period purchase.

We organize the remainder of the article as follows: In
the next section, we introduce a Bayesian method for esti-
mating disaggregate choice models based on aggregate
data, which enables us to capture the consumer purchase
dynamics. We then test the validity of the method in a series
of simulations and provide an empirical application based
on store-level refrigerated orange juice data. The final sec-
tion offers some concluding remarks.

USING AGGREGATE DATA TO ESTIMATE
DISAGGREGATE MODELS

We begin by modeling the data-generating process of the
observed aggregate shares. We assume that the observed
aggregate share, Sjt, of brand j (j = 0, …, J) at time t (t = 1,
…, T) is generated by M clusters of consumers in the mar-
ket. Each cluster contains an equal number of consumers,
and we assume that consumers within the same cluster have
the same utility. Because no disaggregate-level information
is observed, to add flexibility to our model setup, we treat a
cluster as the minimum unit of analysis at the disaggregate
level. As with all previous approaches for estimating dis-

crete choice models with aggregate data, we assume that
each consumer purchases, at most, one unit of a product for
each period. The utility of brand j at time t for consumers in
cluster i (i = 1, …, M) can be specified as

where xijt is a vector that includes marketing variables, such
as price, feature, and display (it can also include variables
on consumer purchase history to capture the purchase
dynamics); θi is a vector of corresponding coefficients fol-
lowing a multivariate normal distribution with a mean vec-
tor and a diagonal variance–covariance matrix D (i.e.,

and εijt is the unobserved error term fol-
lowing Type I extreme value distribution. The utility
specification in Equation 1 leads to a discrete choice model
with a standard logit choice probability,

where yijt = 1 if consumers in cluster i choose brand j at
time t and yijt = 0 if otherwise.

Two general approaches are proposed in the literature to
estimate discrete choice models using aggregate data. The
first approach is not likelihood based. In this approach,
model parameters are estimated by either minimizing the
discrepancy between observed market share and predicted
market share (Boyd and Mellman 1980; Cardell and Dunbar
1980; Tardiff 1980) or equating the two by introducing
unobserved product characteristics into the utility function
(Berry 1994; Berry, Levinsohn, and Pakes 1995).

The second approach is to specify a likelihood function
of aggregate data (Bodapati and Gupta 2004; Kim 1995;
Zenor and Srivastava 1993). According to this approach, the
likelihood function based on Equation 1 can be written as

where

is the multinomial coefficient, is the probability
density function of θi, and Οjt is the number of clusters
among M that choose brand j at time t. The term Οjt can be
operationalized as Οjt = int(SjtM + .5), for j = 0, …, J – 1, 
and This likelihood function is based
on the view that the M clusters are exchangeable, because
we observe only aggregate data and each cluster has an
expected brand choice probability .

Although the estimation of the random utility model with
aggregate data is made feasible by the two existing
approaches, it is not straightforward to incorporate the con-
sumer purchase history into the underlying discrete choice
model, because such information is not directly available.
To overcome this difficulty, we propose a hierarchical
Bayesian model to treat individual choices as latent
variables and to augment them from the observed aggregate

s f D dijt i i( , )θ θ θ|∫

O M OJt j
J

jt= − =
−Σ 0

1 .

f Di( , )θ θ|

M

O Ot Jt0 , ...,

⎛

⎝
⎜

⎞

⎠
⎟

( )
, ...,

( , )3
0

L
M

O O
s f D d

t Jt
ijt i i=

⎛

⎝
⎜

⎞

⎠
⎟ ∫ θ θ θ|⎡⎡

⎣⎢
⎤
⎦⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪==
∏∏

Ojt

j

J

t

T

01

,

( ) Pr( )
exp( )

exp( )

2 1y s
x

x

ijt ijt
i ijt

i ikt

= = =
θ

θ

′

′
kk

J

=
∑

0

,

θ θi MVN D~ [ , ]);
θ

( ) ,1 u xijt i ijt ijt= +θ ε′



Estimating Disaggregate Models 615

information. Such an approach will facilitate the study of
microlevel consumer purchase dynamics using store-level
share data.

The basic intuition of our approach is to represent the M
clusters of consumers with a panel of R clusters whose
choices are augmented. The average choice probability of
this panel approximates the expected choice probability of
the remaining M–R clusters. Although the M–R clusters
remain exchangeable, the R clusters are no longer
exchangeable because their choices are augmented. This
feature facilitates the modeling of purchase dynamics with
aggregate data because the augmented purchase history now
enters the utility specification directly when calculating the
choice probability sijt.

Formally, our approach uses the likelihood specification
in Equation 3 as the starting point but departs from it by
assuming that there are R representative clusters among M
whose choices, which are denoted as yrjt, where r ∈ R and
R ≤ M, are to be augmented. Given the observed aggregate
data, a permissible purchase history, h, on R is a set of yrjt
(r = 1, …, R, j = 0, …, J, and t = 1, …, T) such that the
condition

holds for all j = 0, …, J and t = 1, …T. The condition
imposed in Equation 4 is the result of R being a subset of
M. In our proposed estimation approach, yrjt and, conse-
quently, h are augmented. Let H be the collection of all h.
We can write the likelihood of the observed aggregate share
data as

In Equation 5, LR|h is the likelihood of a permissible pur-
chase history, h, of the panel of R representative clusters,

Note that the likelihood specified in Equation 6 implies that
the R representative clusters are no longer treated as
exchangeable. This is because we augment the purchase
history of the R clusters. The remaining M–R clusters are
still viewed as exchangeable because their purchase history
is not augmented. Therefore, analogous to Equation 3,

where

is the multinomial coefficient.
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2In a previous version of this article, we developed the estimation algo-
rithm under R = M, which is less efficient than the one presented herein.

Because the R clusters are assumed to be representative,
we can approximate the brand choice probability in Equa-
tion 7, , with the average brand choice
probability of the R clusters; that is,

With LR|h and LM−R|h, the likelihood of purchases made
by the M clusters given a permissible purchase history, h,
on the R clusters is LR|h × LM−R|h. Summing over all h gives
the likelihood on the aggregate data, as we show in
Equation 5.

A few comments on our model setup are in order. First, a
key feature of the proposed approach is that the choices of
the panel of R clusters are augmented. This facilitates the
modeling of consumer purchase dynamics with aggregate
data because the augmented purchase history can now enter
the utility specification directly to calculate sijt on the right-
hand side of Equation 8. Without augmentation of the
choices made by R clusters, when sijt is a function of pur-
chase history, it would be necessary to integrate over all
possible paths of purchase history to evaluate ∫sijt(θi| ,
D)dθi on the left-hand side of Equation 8, which is
impractical.

Second, we want to emphasize that the heterogeneity dis-
tribution in our model is assumed over M clusters and
applies to both the R and the M–R clusters. That is, we
assume that the multinomial choice probability of the M–R
clusters resulting from integration over the heterogeneity
distribution can be approximated by the average choice
probability from the augmented panel of R clusters. Essen-
tially, the heterogeneity distribution over R clusters can rep-
resent the heterogeneity distribution over M clusters.

Third, we can let R = M in principle. In this case, the
likelihood in Equation 5 becomes the same as the likelihood
function of a discrete choice model with panel data. How-
ever, the drawback of setting R = M is that Equation 4 is
always binding. Consequently, the algorithm of augmenting
yrjt becomes inefficient because the exact constraint implied
by Equation 4 must apply.2 If we let R < M, Equation 4
does not need to be binding. As a result, the estimation
algorithm becomes efficient because we can now use the
standard logit probability to generate candidates of yrjt with
a high acceptance rate.

Finally, the choices of M and R are important to our
model. Theoretically speaking, a large R relative to M
reduces the acceptance rate in generating augmented
choices and makes the algorithm less efficient. In contrast, a
small R relative to M makes the algorithm more efficient,
but such an R may not represent M well. In practice, our
simulation results suggest that when M is close to its true
value, the results are not sensitive to the choice of R. How-
ever, if M is far from its true value, the algorithm fails to
converge for some values of R within a reasonable number
of iterations. Therefore, in an empirical application in
which the value of M is unknown, if the estimation results
are robust when varying R for a chosen M, it suggests that
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the chosen M is reasonable. In the next section, we provide
more guidance on the choice of M when it is unknown.

We now discuss how to estimate the model as given in
Equations 5–8. The likelihood specification in Equation 5 is
cumbersome because of the high dimensions of integration
due to the consumer heterogeneity distribution of θi and,
more important, the large number of combinations of per-
missible purchase history (h) that are consistent with the
aggregate shares. Because a direct evaluation of the likeli-
hood is costly, we proceed with Bayesian analysis using
data augmentation (Albert and Chib 1993; Tanner and
Wong 1987). In other words, rather than integrating out
individual choices and response parameters, we treat them
as any other unobserved model parameters and use them as
conditioning arguments in hierarchical Bayesian analysis.
This leads to a substantial simplification in estimation.

Our Bayesian analysis of the observed aggregate data
proceeds by specifying the joint distribution of all model
parameters. Estimation is carried out by setting up a
Markov chain and iteratively sampling from the conditional
distributions of model parameters. The joint posterior distri-
bution can be written as

where yt is the vector of yrjt, f(St|yt, θ1, …, θR) = LM−R|h,t,

is the choice probability at
time t of cluster r whose choices are augmented, 
is the heterogeneity distribution, and is the prior
distribution. The Markov chain involves a sequence of
draws from the full conditional distributions of the model
(see Gelfand and Smith 1990). We describe a Markov chain
Monte Carlo (MCMC) algorithm for generating draws of
the model parameters next (for details, see the Appendix).

The key to our algorithm is to augment individual
choices by generating yt conditional on other parameters in
the model. From Equation 9, the conditional distribution
of yt is proportional to 
xrt). Because we can generate
the candidate draws of yrt (r = 1, …, R) from a discrete dis-
tribution with J + 1 outcomes. Each outcome is a vector
with only one element being 1 to indicate the chosen alter-
native; the rest are 0. The probability of each outcome is
srjt(j = 0, …, J), which is the logit probability. The candidate
draws of yrt are qualified if the resultant Zjt is nonnegative
for all j (i.e., Equation 4 holds). Otherwise, another set of
draws of yrt is generated. After a qualified draw of yt is
obtained, the acceptance probability of this candidate draw
is given by the ratio of f(St|yt, θ1, …, θR) calculated from
the current draw and the one calculated from the yt of the
previous iteration. This is the third family of Metropolis–
Hasting algorithms, as described in the work of Chib and
Greenberg (1995, p. 330).

After yt is generated, θr can be generated using a random
walk chain Metropolis–Hastings algorithm. Routines for
generating the hyperparameters ( ) are similar to thatθ, D
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3An alternative way to model the no-purchase option is through a nested
logit setup. This results in a different model structure from the one we
present here. Our simulation results show that the proposed method also
applies to the nested logit model. We include the results in the Web Appen-
dix (see http://www.marketingpower.com/content84060.php).

which Allenby and Rossi (1999) describe for standard ran-
dom coefficients models. In the next section, we test the
proposed method in simulations and discuss the implemen-
tation issues.

SIMULATION STUDIES

To test whether the proposed method can recover the
true model parameters in different situations, we simulated
aggregate shares on the basis of individual consumer
choices that are generated from prespecified parameters. We
conducted simulations on models with and without pur-
chase dynamics. Given the space limitations, we report only
the results from the model with purchase dynamics. The
random coefficient logit model without purchase dynamics
is widely used in the empirical industrial organization
research on aggregate data. Readers who are interested in
such a model can access the Web Appendix (see http://
www.marketingpower.com/content84060.php) for the cor-
responding simulation results.

In the simulation study with purchase dynamics, we
include two brands and a no-purchase option. The no-
purchase option is denoted as j = 0, and the associated util-
ity is specified as3

The simulation is carried out in the following context: We
simulate share data for two brands and a no-purchase option
in 100 periods aggregated from choices based on 5000 θi’s.
The vector x is composed of two brand intercepts (x1 and
x2), the price (x3) generated from a normal distribution with
mean equal to 0 and standard deviation equal to 1, and the
dynamic covariate denoted as LAST (x4), which is meas-
ured on the basis of whether there is a purchase of any of
the brands in the last period (x4 = 1 if there was a purchase
of any of the brands in the last period, and x4 = 0 if other-
wise). For convenience, x4 = 0 for the first period across all
consumers. The true mean preference parameter and
heterogeneity matrix D take the following values:

Choices (yijt) are simulated with the latent brand utility, as
we specify in Equation 1. Aggregate brand shares are
formed by

The estimation task is to estimate and D on the basis of
the simulated share Sjt. If the method is valid, we should get
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4Simulation results related to the discussion in the remainder of this sec-
tion are in the Web Appendix (see http://www.marketingpower.com/
content84060.php).

the estimated parameter values close to the true ones set in
the simulation.

The estimation is based on M = 5000 and R = 100. We
ran the Markov chains for 50,000 iterations and saved every
tenth draw for the parameters of interest. We set the starting
value for as (0, 0, 0, 0) and for the four diagonal elements
in D as .1. The starting values for yrt are randomly gener-
ated with an equal choice probability of the three alterna-
tives at the individual level, given the consistency condition
( for all j and t). The last 25,000 draws are
used to calculate the posterior means and standard devia-
tions of the parameters.

Table 1 reports the results. The table shows that the true
values of all parameters lie within the 95% confidence
intervals of their posterior mean estimates. Our additional
simulations also show that the results are not sensitive to the
choice of starting values. These results provide evidence for
the validity of the proposed method.

We examined the sensitivity of our estimation results
with respect to the two control variables in the experiment,
T (the length of the purchase history) and R.4 We find that
the true values are all covered in the 95% confidence inter-
val of their posterior mean estimates. As we expected, when
T or R increases, the posterior standard deviations of the
parameter estimates tend to decrease gradually. The pro-
posed method achieves reasonable accuracy even with
small T (T = 50) and R (R = 50).

We now provide some discussion and cautionary notes on
the model and simulation exercises. All the results we
obtained here assume that M is known. However, this is
often not true in an empirical application. Therefore, it is
important to test the sensitivity of the estimation results to
M. For the simulated data generated from 5000 θi’s, we can
recover the true values of all the parameters when M is rea-
sonably close to its true value. However, the MCMC fails to
converge within a reasonable number of iterations if we
choose an M that is far different from the true value of
5000. For example, this happens when M = 50,000 or M =
200. In general, our simulation studies for models either
with or without purchase dynamics suggest that when M is
reasonably close to its true value, the results are not sensi-

Σr
R

rjt jty O= ≤1

θ

tive to the choice of R. However, if M is far from its true
value, the MCMC fails to converge within a reasonable
number of runs for some values of R. This approach offers
some guidelines for applying the model in an empirical
application in which M is often unknown. Under such a cir-
cumstance, we suggest a two-step procedure to select a rea-
sonable M. The first step is to find an M under which the
MCMC converges. We can do so by starting from an M that
is close to a reasonable value of R (e.g., R = 100) and
increasing the value of M subsequently. The second step is
to vary R to check whether the estimation results are sensi-
tive to the choice of R, given the M chosen in the first step.
If the results are not sensitive to R, the chosen M is reason-
able. Otherwise, we need to go back to the first step and
find a new candidate of M.

Next, we acknowledge some limitations in our model
setup. First, we assume a diagonal heterogeneity covariance
matrix that is not as general as a full covariance matrix. Our
simulation results indicate that the accuracy of the off-
diagonal elements in a full covariance heterogeneity matrix
cannot be fully guaranteed. It is possibly because of this
identification difficulty that all the previous studies have
also adopted the assumption of a diagonal heterogeneity
covariance matrix.

Second, the model we propose assumes that consumer
heterogeneity follows a normal distribution as in a standard
random-coefficients framework. A concern is that if the
market is composed of distinct consumer segments (e.g.,
heterogeneity being specified as a mixture of widely sepa-
rated multivariate normal distributions), distortion will
occur when we proceed with the unimodal assumption on
the heterogeneity distribution in estimation. We conduct a
simulation by assuming a unimodal distribution for con-
sumer heterogeneity with the true distribution being a mix-
ture of two widely separated normal distributions. Our
results indicate that estimates for the preference parameters
all converge to the average parameter values of the two seg-
ments. However, there is a significance bias for the hetero-
geneity distribution. This is consistent with previous find-
ings with panel data (Allenby, Arora, and Ginter 1998).
Misspecification of the heterogeneity distribution can lead
to biased inferences. Therefore, researchers should take
caution when using the proposed method.

AN EMPIRICAL APPLICATION

In this section, we illustrate our model and estimation
approach with an empirical application that achieves the
following three objectives: First, we further demonstrate the
ability of this method in estimating the impact of purchase
history on consumer brand choices. Specifically, we allow
consumer brand choices to be a function of the last-period
purchase information. Second, we estimate the brand price
competition structure at the store level, using the proposed
data augmentation method. As we discussed previously,
firms often have access to high-quality store-level data but
limited household-level information. Therefore, the pro-
posed method will be attractive to firms in understanding
brand competition and setting optimal category prices at the
store level. Third, we compare two alternative approaches
of modeling the no-purchase option. The first approach is to
treat the no-purchase option as another choice alternative

Table 1
SIMULATION WITH PURCHASE DYNAMICS: POSTERIOR

MEANS AND STANDARD DEVIATIONS FOR THE ESTIMATES

OF AND D

True Values Estimates

(Brand 1) 1.0 1.06 (.12)
(Brand 2) 1.0 1.06 (.12)

(Price) –1.0 –1.03 (.11)
(LAST) .5 .48 (.11)

D1,1 1.0 1.02 (.30)
D2,2 1.0 1.14 (.37)
D3,3 1.0 1.06 (.19)
D4,4 .5 .64 (.16)

θ4

θ3

θ2

θ1

θ

http://www.marketingpower.com/content84060.php
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5Given the assumption that each consumer buys, at most, one unit of the
product, the potential weekly sales volume is equal to the number of con-
sumers in the market. Because the average consumer purchase cycle is 3.6
weeks, this implies that 1/3.6 proportion of consumers in the market is
expected to purchase in a given week.

6When M was assumed to be 200, we found similar results for different
values of R. We also obtained similar results for M ≤ 1000. For larger M,

and to set its mean utility to zero (Chintagunta 2002; Sudhir
2001). The second approach is to adopt a nested logit
specification (Bucklin and Lattin 1991). In this approach,
we model the purchase/no-purchase decision as a binary
choice with the following purchase probability:

where CVit is the category value, which takes the form of
ln[Σjexp(Vijt)], and LAST refers to whether there is a pur-
chase of any of the brands in the last period. For identifica-
tion purposes, we fix γi0 to be zero.

We use store-level data from the Dominick’s Finer Foods
chains based in the Chicago market to demonstrate the pro-
posed Bayesian method of estimation. The Dominick’s
Finer Foods database contains detailed information on Uni-
versal Product Code–level (UPC-level) and store-level sales
volume, price, and promotion activity on a weekly basis.
We analyze the refrigerated orange juice category in one
store. Our data span from June 1991 to May 1993, for a
total of 104 weeks. Descriptive statistics appear in Table 2.
Note that price and promotion frequency for each brand are
calculated as weighted averages across different UPCs
under that brand by UPC-level sales volume. To calculate
the outside good share, we first obtain the total inside good
share (based on volume measured in ounces) and then sub-
tract it from 1. The inside good share can be estimated by
dividing the actual weekly sales volume by the potential
weekly sales volume. The potential weekly sales volume is
calculated by multiplying the average weekly sales by the
average buying cycle (approximately 3.6 weeks in the
Chicago area, according to ACNielsen Homescan
Consumer*Facts).5

We focus our analysis on the top three brands: Minute
Maid, Dominick’s store brand, and Tropicana. The data
reveal that the store brand achieves a higher market share
than both national brands, has a lower unit price, and has a
moderate deal frequency. Comparing the two national
brands, we observe that Tropicana has a premium price,
engages in more promotion activities, and achieves a higher
market share than Minute Maid.

We calibrate three models. We ran the Markov chain for
500,000 iterations (M = 200, R = 100).6 The last 250,000

( ) ( )
exp(

14 0 1 2pr purchase
CV LAST

it
i i it i i=
+ +γ γ γ tt

i i it i itCV LAST

)

exp( )
,

1 0 1 2+ + +γ γ γ

the MCMC failed to converge for some values of R. From our discussion
in the simulation study, the choice of M = 200 is reasonable.

7We measured model fit as the log-marginal density, which we calcu-
lated using Newton and Raftery’s (1994, p. 21) importance sampling
method.

iterations were saved to compute the estimation results.
Specifically, Model 1 is a standard random coefficients logit
model, with the mean utility of the no-purchase option set
to zero. Model 2 adopts the same structure as Model 1 but
adds an additional explanatory variable to capture the effect
of last purchase information (measured as whether there is a
purchase of the three brands in the last period). Model 3
jointly models the purchase/no-purchase decision and the
brand choice decision conditional on purchase, as in a
nested logit model. The utility function in Model 3 is speci-
fied to be the same as that in Model 1. The purchase/no-
purchase decision is modeled as a binary choice with the
purchase probability specified in Equation 14. Fit statistics
indicate the following:7 We find that the in-sample model 
fit of Model 1 (–9260.75) is smaller than both Model 2
(–8407.33) and Model 3 (–8628.40), suggesting the impor-
tance of capturing the effect of last-period purchase. In
addition, the higher fit statistics for Model 2 than Model 3
indicate that it is better to model the no-choice option sim-
ply as another choice alternative for this data set.

Estimates of the preference parameters for all three mod-
els appear in Table 3. Because Model 2 is the best-fitting
one, our discussion is based on the results from that model.
Overall, the estimates have strong face validity. The two
national brands have larger intercept estimates than the
store brand. For the two national brands, Tropicana has a

Table 2
SAMPLE STATISTICS FOR REFRIGERATED ORANGE JUICE

DATA (SAMPLE MEANS AND STANDARD DEVIATIONS)

Choice Average Price Promotion
Brands Share (cents/ounce) Frequency

Minute Maid .07 (.08) 3.35 (.40) .33 (.37)
Dominick’s .11 (.07) 2.39 (.28) .38 (.37)
Tropicana .10 (.07) 3.75 (.42) .41 (.33)
Outside good .72 (.10) N.A. N.A.

Notes: N.A. = not applicable.

Table 3
POSTERIOR MEANS (POSTERIOR STANDARD DEVIATIONS)

OF PREFERENCE PARAMETER ESTIMATES FOR

REFRIGERATED ORANGE JUICE DATA

Model 1 Model 2 Model 3
(Logit Model (Logit Model (Nested Logit

Without with Model with
Coefficients for Dynamics) Dynamics) Dynamics)

Brand Choice Model
Minute Maid .92 1.15 .83

(.16) (.19) (.28)
Dominick’s .31 .44 –.04

(.15) (.15) (.24)
Tropicana 1.63 1.83 1.61

(.18) (.20) (.29)
Price –1.19 –1.29 –1.49

(.06) (.07) (.08)
Promotion .69 .69 .85

(.15) (.11) (.19)
Last N.A. –1.54 N.A.

(.43)

Purchase/No-Purchase Model
Category value N.A. N.A. .54

(.04)
Last N.A. N.A. –1.64

(.49)

Notes: CV = Last = 1 if the consumer bought one of the
three focal brands last week, and Last = 0 if otherwise. N.A. = not
applicable.

ln[ exp( )].Σ j jV
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Table 5
PRICE ELASTICITY MATRIX FOR REFRIGERATED ORANGE

JUICE DATA

Effect of Effect of Effect of 
Minute Maid’s Dominick’s Tropicana’s 

Products Price on … Price on ... Price on …

Minute Maid –4.40 .42 .62
Dominick’s .39 –3.18 .59
Tropicana .40 .43 –4.68

larger intercept estimate. The price and promotion coeffi-
cient estimates are significant and have the expected signs.
A notable finding is the effect of last purchase. As we dis-
cussed previously, the ability to model such an effect is an
advantage of the proposed method. The coefficient estimate
for the last purchase is significantly negative, indicating that
a consumer is less likely to purchase from the three brands
again if he or she purchased any of them the previous week.

Table 4 reports the heterogeneity estimates. We find sig-
nificant estimates for the consumer heterogeneity of all
parameters across the three models. There is also a signifi-
cant difference in the heterogeneity estimate of promotion
sensitivity across the three models. In addition, we find a
significant difference in the heterogeneity estimates in the
model that does not account for consumer purchase dynam-
ics (Model 1) compared with the model that captures the
impact of purchase history and achieves the best fit (Model
2). Notably, the heterogeneity estimate of the last-purchase
coefficient is large. This may reflect a large difference in
consumption patterns among consumers. For example,
some households may consume refrigerated orange juice
more frequently and purchase every week, and others may
consume and purchase less frequently. Such variation can
be captured in the heterogeneity of the last-purchase
coefficient.

Price elasticity provides important information in helping
firms better understand market competition and design opti-
mal prices. We report the estimated price elasticity matrices
in Table 5. The elasticity matrix from Model 2 displays the
following patterns: First, the two national brands have
larger own–price elasticities than the store brand. Second,
the price change of Tropicana affects the shares of the other

two brands more than the other way around. The impact of
a price change of Tropicana on the share of Minute Maid is
.62 (Minute Maid’s effect on Tropicana is .40). The impact
of a price change of Tropicana on the share of Dominick’s
store brand is .59 (the store brand’s effect on Tropicana is
.43). This finding is consistent with the asymmetric price
competition pattern that Blattberg and Wisniewski (1989)
document.

SUMMARY AND CONCLUDING REMARKS

In this article, we develop a Bayesian method for estimat-
ing disaggregate choice models using aggregate data. Our
approach takes advantage of the low cost and easy accessi-
bility of aggregate data and enjoys the desirable features of
discrete choice modeling with household scanner panel
data, such as being parsimonious, structural, and often
devoid of the wrong-sign problem. Compared with other
existing methods, the unique advantage of the proposed
method is that it allows for the analysis of microlevel con-
sumer behavior, such as the impact of purchase history,
when only aggregate-level data are available. Our simula-
tion experiments and empirical application establish the
validity of the proposed estimation approach under our
model specification. This method is especially attractive to
managers in better understanding microlevel consumer pur-
chase dynamics and store-level brand competition when
household panel data are not available.

There are a few caveats of the model and the proposed
estimation approach that we want to address. As with previ-
ous methods for estimating choice models with aggregate
data, we cannot identify well the off-diagonal elements in a
full heterogeneity covariance matrix. Our simulation results
also indicate that accurate estimates on the heterogeneity
distribution estimates rely on the unimodal assumption, vio-
lation of which leads to biased inferences on the hetero-
geneity though not on the grand mean of the preference
parameters. Finally, the implementation of our proposed
estimation approach requires choosing a value of M, and
therefore some sensitivity analysis on M is necessary.

The proposed method opens up new opportunities for
researchers interested in estimating microlevel models with
aggregate data. First, various purchase history–related
effects, such as consumer loyalty (Guadagni and Little
1983) and variety seeking (Feinberg, Kahn, and McAlister
1992), can potentially be incorporated into the microlevel
model specification and estimated with aggregate data
using the proposed framework. Second, the method can be
extended to combining aggregate and disaggregate data
sources (Berry, Levinsohn, and Pakes 2004; Bucklin, Rus-
sell, and Srinivasan 1998; Chintagunta and Dubé 2005;
Russell and Kamakura 1994; Swait and Andrews 2003)

Table 4
POSTERIOR MEANS (POSTERIOR STANDARD DEVIATIONS)

OF HETEROGENEITY PARAMETER ESTIMATES FOR

REFRIGERATED ORANGE JUICE DATA

Model 1 Model 2 Model 3
(Logit Model (Logit Model (Nested Logit

Without with Model with
Coefficients for Dynamics) Dynamics) Dynamics)

Brand Choice Model
Minute Maid .48 .35 .41

(.13) (.11) (.14)
Dominick’s .69 .42 .63

(.22) (.13) (.22)
Tropicana .54 .49 .60

(.15) (.18) (.22)
Price .18 .14 .22

(.03) (.03) (.05)
Promotion 1.71 .80 2.70

(.42) (.23) (.77)
Last N.A. 13.51 N.A.

(2.83)

Purchase/No-Purchase Model
Category value N.A. N.A. .09

(.01)
Last N.A. N.A. 8.40

(2.03)

Notes: CV = Last = 1 if the consumer bought one of the
three focal brands last week, and Last = 0 if otherwise. N.A. = not
applicable.

ln[ exp( )].Σ j jV
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because of the unique advantages of using each of the two
types of data. Finally, the method can be applied to estimat-
ing simultaneous demand and supply models with aggre-
gate data, coupled with the approach that Yang, Chen, and
Allenby (2003) propose for estimating such models with
scanner panel data, which can potentially contribute to the
empirical industrial organization literature.

APPENDIX: MCMC ESTIMATION

Estimation is carried out by sequentially generating
draws from the following distributions:

1. Generate (yt, t = 1, …, T).

We use the Metropolis–Hastings algorithm to generate yt.
The posterior distribution of yt conditional on all other
parameters is proportional to

where

and t + 1, …, t′ are the periods in which consumer utility is
affected by choice yt. If there is no dynamic effect, t′ = t. If
the dynamic effect carries over for only one period, as in the
model we specified, t′ = t + 1.

We generate the candidate draws of yrt, r = 1, …, R, from
a discrete distribution with J + 1 outcomes. Each outcome is
a vector with only one element being 1 to indicate the cho-
sen alternative; the rest are 0. The probability of each out-
come is srjt(j = 0, …, J), which is the logit probability. The
candidate draw of yrt qualifies if the resultant Zjt is nonneg-
ative for all j. Otherwise, a new set of yrt, r = 1, …, R, is
generated until the resultant yrt qualifies. Let yt

(p) denote the
previous draw; the next draw, yt

(n), is accepted with proba-
bility α given by

2. Generate ( r = 1, …, R).θr ,

min
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The likelihood function is

and the posterior distribution is

assuming that the prior distribution of θr is multivariate nor-
mal with mean and covariance matrix D. We use the
Metropolis–Hastings algorithm with a random walk chain
to generate draws of θγ (see Chib and Greenberg 1995, p.
330, Method 1). Let θr

(p) denote the previous draw; then,
the next draw θr

(n) is given by

with the accepting probability α given by

and Δ is a draw from the density Normal(0, .015I), where I
is the identity matrix.

3. Generate the diagonal elements of D, Dk,k(k = 1, …, K,
where K is the dimension of θr).

The posterior distribution of Dk,k is inverted gamma

Inverted gamma (a, b),

where

4. Generate 

where

Ψ = (D0
–1 + RD–1)–1,

θ0 = (0, 0, …, 0)′, and
D0 = 100I.
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