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Utility maximizing solutions to economic models of choice for goods with either discrete quantities or non-
linear prices cannot always be obtained using standard first-order conditions such as Kuhn-Tucker and

Roy’s identity. When quantities are discrete, there is no guarantee that derivatives of the utility function are
equal to derivatives of the budget constraint. Moreover, when prices are nonlinear, as in the case of quantity
discounts, first-order conditions can be associated with the minimum rather than the maximum value of utility.
In these cases, the utility function must be directly evaluated to determine its maximum. This evaluation can
be computationally challenging when there exist many offerings and when stochastic elements are introduced
into the utility function. In this paper, we provide an economic model of demand for substitute brands that is
flexible, parsimonious, and easy to implement. The methodology is demonstrated with a scanner panel data set
of light-beer purchases. The model is used to explore the effects of price promotions on primary and secondary
demand, and the utility of product assortment.
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1. Introduction
Economic models of brand choice must deal with two
complexities when applied to the study of packaged
goods. First, consumers are restricted to purchasing
discrete quantities of brands. Demand for brands is
defined on a grid of available brand-pack combi-
nation and not on the entire set of real numbers.
Second, the unit price of a brand often depends on
the quantity purchased. Quantity discounts are typi-
cally available where the per-unit price declines with
the size of the package. These two complexities inva-
lidate the use of first-order conditions to identify uti-
lity maximizing solutions. First-order conditions may
not hold at the available package sizes. Furthermore,
constraints imposed by the nonlinear budgetary allot-
ment can lead to first-order conditions that iden-
tify the minimum rather than the maximum utility.
In this paper, we propose a random utility choice
model capable of dealing with discrete quantities and
quantity discounts.

Quantity discounts are common in marketing. They
occur with packaged goods when the unit price
declines with larger quantities, and with services
when the price declines as usage increases (e.g., cell
phones). Quantity discounts afford manufacturers the
ability to price discriminate between high-volume
and low-volume users (see Dolan 1987). The depth of
price promotions for a particular quantity results in
temporary substitution away from other brands and
an increase in demand for the product category. An
important issue in managing discounts is in deter-
mining the expected increase in sales from increased
product usage versus substitution from competitive
brands. This requires a comprehensive model that can
handle a large number of distinct brand-pack combi-
nations that are typically available in many product
categories.
Researchers in marketing who are studying con-

sumer demand for packaged goods have tended to
ignore the complexities associated with quantity dis-
counts, and have used one of three strategies for deal-
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Table 1 Approaches to Dealing with Nonlinear Prices

Treat Different Brand/Size Combinations as Different Choice Alternatives
Guadagni and Little (1983)
Chintagunta (1992)
Fader and Hardie (1996)
Montgomery (1997)
Kalyanam and Putler (1997)
Bell and Lattin (1998)
Chintagunta (1998)
Silva-Risso et al. (1999)
Chang et al. (1999)
Andrews and Manrai (1999)

Focus Analysis on One Package Size per Brand
Allenby (1989)
Blattberg and Wisniewski (1989)
Allenby and Rossi (1991)
Bucklin and Lattin (1991)
Fader et al. (1992)
Chintagunta (1993)
Allenby and Lenk (1994)
Rossi et al. (1996)
Kamakura et al. (1996)
Ainslie and Rossi (1998)
Allenby and Rossi (1999)
Kim et al. (2002)

Employ Average Per-Unit Pricing
Neslin et al. (1985)
Bolton (1989)
Chiang (1991)
Pedrick and Zufryden (1991)
Jain and Vilcassim (1991)
Chiang (1995)
Erdem (1996)
Papatla (1996)
Dillon and Gupta (1996)
Manchanda et al. (1999)
Kadiyali et al. (2000)

ing with unit prices that depend on the purchase
quantity. Table 1 provides a selective review of the lit-
erature. The first approach to dealing with nonlinear
prices is to explode the number of choice alterna-
tives and model each brand-size combination as a dis-
tinct choice alternative. In this approach, consumers
are assumed to derive utility from having the brand
bundled into different quantities. Although various
parameters and constraints could, in theory, be intro-
duced into the analysis so that the estimated param-
eters exhibit desirable properties (e.g., diminishing
returns to quantity), a drawback is that it condi-
tions on the product class expenditure and therefore
does not provide insight into the trade-off between
the product class and other goods. This approach
confounds the expenditure decision for the prod-
uct category and utility for the brand. A consumer
who regularly purchases a particular quantity will be
seen as having low utility for larger quantities. How-
ever, this may be because of the consumer’s budget
constraint and not because of a lack of preference
for larger quantities. The second approach to dealing

with nonlinear prices has been to restrict analysis to
a particular package size. Whereas such analysis pro-
vides valid measures of brand preference, it usually
rules out the study of purchase quantity and cate-
gory expenditure. The third approach uses an average
per-unit pricing variable in the analysis. The valid-
ity of this approach depends on the degree to which
the actual price schedule is linear, which is often not
the case.
In this paper, we propose a random utility model

for consumer choice that deals with discrete quanti-
ties and quantity discounts. The model does not treat
different brand-size combinations as different multi-
nomial choice alternatives. Instead, we derive the like-
lihood specification for the observed demand data
from more fundamental assumptions about random
utility. This approach results in a parsimonious like-
lihood specification that facilitates the study of con-
sumer demand across package sizes and does not
assume that prices are linearly related to quantity.
Our model is not affected by the presence of quantity
discounts that are frequently encountered with pack-
aged goods data and deals directly with constraints
imposed by discrete package sizes.
In §2, we discuss problems encountered with

discrete quantities and quantity discounts encoun-
tered in the study of packaged goods. Our approach
to dealing with these issues in the context of a brand-
choice model is discussed in §3. We note that our
model can accommodate the presence of quantity dis-
counts, discrete quantities, or both, and therefore has
wide application. Furthermore, both standard linear
utility and nonhomothetic utility structures (Allenby
and Rossi 1991) can be incorporated into the frame-
work. In §4, we describe a scanner panel data set
of light-beer purchases in which there are more than
80 brand-pack combinations available to consumers in
the market. Parameter estimates of our parsimonious
demand model are discussed in §5. Pricing implica-
tions are explored in §6, and conclusions are offered
in §7.

2. Problems Encountered with
Discrete Quantities and
Quantity Discounts

Consider a brand-choice model arising from a linear
utility structure (u�x� = �′x), where the price of the
brand depends on quantity. In this case, the vector of
marginal utility, �, is constant, and utility, u, is maxi-
mized subject to the budget constraint

∑k
k=1 pk�xk� < y,

where pk�xk� is the price of xk units of brand k.
Assume that the price function pk�xk� reflects quantity
discounts. For example, the price schedule could be a
marginally decreasing function of quantity:

p�xk�= x1/ak � a > 1� x≥ 0� (1)
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The identification of the utility maximizing solution
using first-order conditions typically proceeds by dif-
ferentiating the auxiliary function:

L= �′x−�

( k∑
k=1

pk�xk�− y

)
� (2)

setting first derivatives to zero, and solving for the
values of xk, at which the vector of marginal utility
is tangent to the budget curve. We note immediately
that, if demand is restricted to available pack sizes,
first-order conditions will not necessarily apply at the
observed quantity demanded. However, even when
quantity is not restricted to a fixed number of values,
the use of first-order conditions can lead to a solution
identifying a point of utility minimization, not utility
maximization. As illustrated in Figure 1 for the case of
linear utility and price quantity discounts, the point of
tangency is not associated with the utility maximizing
solution. Utility is greater at the intersection of the
budget curve and either axis.
The reason that first-order conditions are associ-

ated with a point of utility minimization rather than
utility maximization is because the auxiliary function
in Equation (2) is convex, or has a positive second
derivative. The second derivative of Equation (2),
when prices follow Equation (1), can be shown to be
equal to:

�2L

�x2i
=−�

(
1
a

)(
1− a

a

)
x
�1−2a�/a
i � (3)

which is positive for a > 1 and x > 0. More gener-
ally, whereas the concavity of the auxiliary function is
guaranteed when the utility function is concave and
the budget constraint is linear, this property is not
necessarily present when prices are nonlinear. It is
certainly not true when the utility function is linear
and the budget constraint is convex. The concavity of

Figure 1 Illustration of First-Order Conditions and Utility Minimization
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the auxiliary function is needed for many identities in
economics to be associated with utility maximization,
including the Envelope Theorem and Roy’s Identity
(see Sydsaeter et al. 1999).
In the next section, we outline an approach to mod-

eling consumer brand choice for packaged goods that
do not rely on first-order conditions. Our approach
involves the direct evaluation of the utility function.
We show that this evaluation can be efficiently car-
ried out for near-perfect substitute goods when non-
linear pricing takes the form of quantity discounts.
When this condition does not strictly hold, the accu-
racy of our method will depend on the proportion
of observations for which multiple brands are jointly
purchased.

3. Proposed Model
We use a utility function that links the product class
under consideration to an outside good. This allows
us to model the trade-off in expenditure between
the product class and other relevant products. More
specifically, we use the Cobb-Douglas utility function

lnu�x�z�= �0+�x lnu�x�+�z ln�z�� (4)

where x = �x1� � � � � xK� is the vector of the amount
of each brand purchased, K represents the number
of brands available in the product class, z represents
the amount of the outside good purchased, and u�x�
denotes a subutility function. We consider two sub-
utility structures with linear indifference curves to
represent the near-perfect substitute nature of brands
within a product class. The simplest structure is the
linear utility model:

u�x�= �′x� (5)

where �k is the marginal utility for Brand k, ln��k�=
�k + �k, and �k is a stochastic element. This struc-
ture results in indifference curves that are linear and
parallel. Alternatively, one could adopt the nonhomo-
thetic structure of Allenby and Rossi (1991):

u�x� =
K∑

k=1
�k�ū�xk�

ln�k�ū� = �k −�kū�x� z�+ �k� (6)

in which the deterministic part of marginal utility, ū,
is implicitly defined. We note that Equation (6) dif-
fers from the nonhomothetic structure of Allenby and
Rossi (1991) by including the outside good z. If the
coefficient vector � is strictly positive, this implic-
itly defined utility function results in linear indiffer-
ence curves that fan out but do not intersect in the
positive orthant. The ratio of the expectation of the
marginal utility of two brands, E��i�ū��/E��j�ū�� =
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exp���i −�j�− ū�x� z���i −�j�� indicates that if �i < �j ,
then Brand i is relatively superior to Brand j . As
utility increases, the ratio of marginal utility for Brand
i increases relative to Brand j . Thus, the � parameters
govern the relative rates of rotation of the indiffer-
ence curses. Equation (6) is therefore a generalization
of Equation (5) in which the marginal utility is related
to expenditure. In a standard choice model, both the
linear and nonhomothetic utility specification results
in corner solutions in which only one of the available
brands is selected.
The consumer determines his/her expenditure on

the K brands and the outside good by maximizing the
utility function in (4) subject to the budget constraint

K∑
k=1

pk�xk�+ z= T � (7)

where pk�xk� is the price of xk units of Brand k, and
the price of the outside good is one. The price func-
tion pk�xk� allows for the possibility of price discounts.
Note that, if pk�xk� = qkxk for each k, where qk is a
constant, then the budget constraint reduces to the
standard linear budget constraint.
In contrast to approaches that rely on first-order

conditions to relate model parameters to the data,
our approach is to directly evaluate the above expres-
sion at all feasible solution points. At first glance,
this appears to be a formidable task because of the
stochastic elements in the utility specification. How-
ever, if the utility maximizing solution is restricted to
corner solutions, in which only one element of x is
nonzero, we obtain a solution that is easy to evaluate.
We first outline our solution strategy and result-
ing likelihood, and then prove our proposition that
the utility maximizing solution to the Cobb-Douglas
function (Equation (4)) coupled with either linear
subutility (Equation (5)) or nonhomothetic subutil-
ity (Equation (6)) subject to the budget constraint
(Equation (7)) is at a corner.

Solution Procedure and Likelihood Specification
The likelihood function is derived from assumptions
about stochastic elements in the utility function. In
the standard random utility model (McFadden 1986)
leading to the logit or probit likelihood, the vector of
log-marginal utility (ln�) is assumed to be stochastic
with an additive error, ln�k = �k + �k. Assumptions
about the random utility error are used to derive the
likelihood of observed demand. In the case of a linear
utility model, U�x� = �′x, discrete choice probabili-
ties are derived from the utility maximizing solution
(choose xk if �k/pk is maximum) that links observed
demand to the latent utility parameters.
In our model of demand, the likelihood for the

observed demand is derived for offerings in the

product category x = �x1�x2� � � � � xK�
′ and the outside

good (z) from distributional assumptions of random
utility. We note that the budget restriction in Equation
(7) imposes an “adding-up” constraint that induces
a singularity in the distribution of observed, util-
ity maximizing demand (x�z) (see Kim et al. 2002).
Therefore, only K error terms—one for each brand—
are needed to derive the likelihood of observed
demand, and we substitute z = T − ∑

k pk�xk� for
the outside good. We follow standard convention by
assuming that the vector of log-marginal utility is
stochastic with an additive error.
The solution strategy when only one element of x

is nonzero involves two steps. In the first step, the
optimal product quantity is determined for each
brand separately. For the linear utility structure with
ln�k = �k+�k, the maximization occurs over all possi-
ble combinations of the available pack sizes, including
multiple packs, (a):

Max
a

{
�0+�x ln�kxka +�z ln�T − pk�xka��

}
=Max

a

{
�x ln xka +�z ln�T − pk�xka��

}
� (8)

where T is the budgetary allotment for the product
and outside good, and pk�xka� denotes the price of
Brand k with packsize xka. We note that, if a retailer
offers only a limited selection of package sizes, the
consumer can consider alternative combinations of
the available offerings. For example, if a retailer only
offers six-packs of a beverage, the consumer can con-
sider 6-, 12-, 18-, 24-, � � �package bundles. The stochas-
tic element, �k, is the same for each of the package
bundles in Equation (8) and cancels from the expres-
sion. That is, because the same good is contained in
each of the possible package bundles, the determina-
tion of the utility maximizing quantity is determinis-
tic. Furthermore, by substituting the expression T −
pk�xka� for z, we ensure that the evaluated solution
points correspond to the budget restriction.
When the available quantities are continuous rather

than discrete, as in the case of the purchase of tele-
phone services, the use of a grid search procedure will
work well because it is one dimensional. As shown
in Figure 2, the indifference curves associated with
the Cobb-Douglas function do not intersect the axes,
and, in principal, first-order conditions can be used
to identify the point of tangency between the indif-
ference curve and the budget line in the (xk� z) plane.
However, when the price schedule is piecewise linear,
with price discounts beginning at specific values,

pk�xk�=




pk�Mk+1xk = pk�Lowxk for xk ≥ xk�CutMk

pkMk
xk for xk�CutMk

−1 ≤ xk < xk�CutMk

���

pk1xk = pk�Hixk for xk < xk�Cut1
�

(9)
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Figure 2 Utility Maximization in the �x� z� Plane for Continuous Non-
linear Prices
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then the utility maximizing point in the (xk� z) may be
at the point of discontinuity of the budget line, and
the identification becomes more complicated. Figure 3
illustrates that the utility maximizing value need not
be at a point of tangency, but can be located at a point
of discontinuity, in a price schedule. When using a
grid search procedure to identify the point of utility
maximization, it is therefore important to include the
points of discontinuity in the grid.
A limitation of using a linear utility structure

u�x�= �′x is that the optimal quantity for each brand
depends only on the prices for the brand, not on the
quality of the brand (�k). The terms �0 and ln� are
constant over the alternative bundles in Equation (8),
shifting the intercept of utility but not affecting the

Figure 3 Utility Maximization in the �x� z� Plane for a Price Schedule
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optimal allocation of the budget between alternatives
in the product class (x) and the outside good (z).
This limitation of the Cobb-Douglas utility function
can be overcome by using the nonhomothetic function
in Equation (6). For the nonhomothetic function, the
optimal quantity for each brand proceeds by solving
for the package size that maximizes the expression:

Max
a

{
�0+�x ln�k�ū�xka +�z ln�T − pk�xka��

}
=Max

a

{
�x ln�k�ū�+�x ln xka +�z ln�T − pk�xka��

}
�

(10)

where ln�k�ū� = �k + �k = �k − �kū�x� z� + �k. As
with the linear utility structure, determination of the
optimal quantity for Brand k is deterministic because
�k is the same for each package size. The quantity
depends on the brand because �k does not cancel
from the evaluation. The optimal quantity of the prod-
uct demanded therefore depends on the brand under
consideration.
The first step of the solution procedure, outlined

here, identifies the optimal quantity given that
Brand k is purchased. The second step of our method
involves determining the probability that Brand k is
purchased. In this second step, the stochastic element
of marginal utility takes on a traditional role of gen-
erating a choice probability. We have:

Max
ka

{
lnu�xka� T − pk�xka��

}

=Max
k

[
Max
a�k

(lnu�xka� T − pk�xka��)
]

=Max
k

[
�0+�x lnu�x

∗
k�+�z ln�T − pk�x

∗
k��

]
� (11)

where x∗
k indicates the optimal quantity for Brand k

that is identified in the first step. Substituting the
linear subutility expressions in Equation (10) results
in the expression:

= Max
k

[
�0+�x��k + �k�+�x ln�x

∗
k�

+�z ln�T − p�x∗
k��

]
� (12)

and assuming that �k ∼ EV�0�1� results in the choice
probability:

Pr�xi�=
exp��i+ln�xi�+��z/�x�ln�T −pi�xi���∑K

k=1exp��k+ln�x∗
k�+��z/�x�ln�T −pk�x

∗
k���

�

(13)
where xi is the observed demand. In the estimation
procedure, the observed xi is used for the selected
brand, whereas x∗

k is used for the brands not selected.
Alternatively, assuming nonhomothetic subutility in
Equation (10) results in the expression:

Pr�xi�=
exp��i−�iū

i+ln�xi�+��z/�x�ln�T −pi�xi���∑K
k=1exp��k−�kū

k+ln�x∗
k�+��z/�x�ln�T −pk�x

∗
k���

�

(14)
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where ūi = ū�x∗
i � T −pi�x

∗
i �� is the deterministic part of

the utility derived from the consumption of x∗
i units

of Brand i, with the remainder of the budget alloca-
tion, T − pi�x

∗
i ), devoted to the outside good. From

Equation (6), we see that ūi solves the equation:

ln ūi = �i −�iū
i + ln�x∗

i �+ ��z/�x� ln�T − pi�x
∗
i ��� (15)

Details of the properties of the nonhomothetic func-
tion and its estimation can be found in Allenby and
Rossi (1991).
We note that not all parameters of the Cobb-

Douglas specification are theoretically identified. In
particular, because an arbitrary rescaling of utility by
a constant and multiplicative factor can represent the
same preference ordering, we set �0 to zero, �x to one,
and estimate �∗

z = �z/�x subject to the constraint that
it takes on a positive value.
This strategy is dependent on conducting an ini-

tial search along each of the axes of demand. We next
provide a proof that corner solutions are consistent
with utility maximization when indifference curves
are linear and prices are either constant or monotoni-
cally decreasing with quantity.

Proof of Corner Solution
Assume that the amount of expenditure for the prod-
uct is fixed at T ∗. The proof holds for any value of T ∗,
and this assumption therefore does not restrict the
generality of the proof. For any continuous convex
budget set defined as

∑
k p�xk� < T ∗, there exists a

less restrictive linear set
∑

k p̂kxk < T ∗ that contains the
convex set, where p̂k = T ∗/x∗

k is the per-unit price of
allocating all the expenditure to Brand k (i.e., x∗

k s.t.
p�x∗

k� = T ∗). As shown in Figure 4, the dominating
linear budget set is equal to the convex budget set at
each axis and is greater than the convex set at all inte-
rior points. For the price schedule with discounts at
specific quantities (Equation (9)), a dominating linear

Figure 4 Continuous Convex Budget Set and Dominating Linear Set

x
i

x
k

Actual budget constraint

Less restrictive budget 

constraint *ˆ Txp
j jj

=∑

Figure 5 Piecewise Linear Budget Set and Dominating Linear Set

x
1

x
2

Lowp
y

,1

~

Hip
y

,1

~

Hip

y

,2

~

Lowp
y

,2

~

x
1,Cut

x
2,Cut 

Actual budget set  

p
1
(x

1
) + p

2
(x

2
) = y~

is represented by

 the solid lines 

p
1, Low

x
1 + p2, Low

x
2 = y

~ is the less 

restrictive budget set that 

contains the actual budget set 

budget set also exists that is equal to the actual set
at each axis and is greater than or equal to the actual
set in the interior. Figure 5 illustrates such a budget
set when one price cut exists. Because the dominating
linear budget set is less restrictive than the convex set,
the maximum utility in the linear set is greater than
or equal to the maximum utility in the convex set. We
note that the utility maximizing solution for the linear
budget set is a corner solution when the indifference
curves are linear (e.g., Equations (8) and (10)). There-
fore, the utility maximizing solution for any convex
budget set contained by the linear set must also be at
the same corner.

4. Data
Our model is illustrated with a scanner panel data
of light-beer purchases. We study the three dominant
brands in the domestic product category—Miller Lite,
Bud Light, and Coors Light. The data set is com-
prised of 20,914 purchase occasions for 2,282 house-
holds making beer purchases at grocery stores. Table 2
reports the packages sizes and package types under
study. Our analysis includes beer packaged in non-
returnable bottles and cans, for which there are 84 dif-
ferent varieties for the three brands. Table 2 also
reports the choice shares, average prices, and the
frequency of merchandising activity for each of the
choice alternatives.
Inspection of Table 2 reveals the following data

characteristics. Bud Light has the highest overall
choice share at 0.43, followed by Miller Lite at
0.35 and Coors Light at 0.22. The choice shares for
the smaller package sizes are approximately equal,
whereas the choice share for larger package sizes
(e.g., 12-packs) favors Bud Light. For example, the
choice share of Miller Lite 6-packs of 12 oz. bottles
and cans (Items 14 and 15) is equal to 0.0494, Bud
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Table 2 Description of the Data

Average Average
Unit Price Choice

No. of Package Volume/ Price/ Display Feature Choice ($) by Share by
Item ID Brand ID Oz./Unit Units/Pack Form Pack Oz. ($) Frequency Frequency Share Trademark Trademark

1 1 7 1 2 7 0�0967 0�0000 0�0000 0�0000 0�0536 0�3504
2 1 12 1 2 12 0�0649 0�0000 0�0000 0�0014
3 1 16 1 2 16 0�0564 0�0000 0�0000 0�0002
4 1 22 1 2 22 0�0483 0�0000 0�0000 0�0019
5 1 24 1 1 24 0�0482 0�0004 0�0007 0�0003
6 1 32 1 2 32 0�0495 0�0001 0�0000 0�0041
7 1 32 1 1 32 0�0393 0�0000 0�0004 0�0031
8 1 40 1 2 40 0�0511 0�0000 0�0000 0�0002
9 1 7 6 2 42 0�0706 0�0000 0�0000 0�0009
10 1 8 6 1 48 0�0550 0�0000 0�0000 0�0000
11 1 10 6 1 60 0�0641 0�0000 0�0000 0�0001
12 1 16 4 2 64 0�0544 0�0000 0�0000 0�0008
13 1 16 4 1 64 0�0526 0�0000 0�0000 0�0000
14 1 12 6 1 72 0�0587 0�0011 0�0011 0�0166
15 1 12 6 2 72 0�0588 0�0028 0�0007 0�0328
16 1 16 6 1 96 0�0525 0�0014 0�0002 0�0036
17 1 10 12 1 120 0�0603 0�0016 0�0000 0�0000
18 1 12 12 1 144 0�0538 0�1355 0�1016 0�0951
19 1 12 12 2 144 0�0541 0�0897 0�0743 0�0553
20 1 12 15 1 180 0�0420 0�0242 0�0070 0�0085
21 1 16 12 1 192 0�0428 0�0015 0�0003 0�0002
22 1 12 18 1 216 0�0497 0�0735 0�0281 0�0272
23 1 12 18 2 216 0�0475 0�0005 0�0000 0�0000
24 1 10 24 1 240 0�0559 0�0039 0�0006 0�0000
25 1 12 24 1 288 0�0493 0�1318 0�0784 0�0788
26 1 12 24 2 288 0�0485 0�0001 0�0000 0�0002
27 1 12 30 1 360 0�0396 0�0922 0�0305 0�0191
28 1 16 24 2 384 0�0427 0�0000 0�0000 0�0000
29 1 16 24 1 384 0�0474 0�0000 0�0000 0�0000
30 2 12 1 2 12 0�0591 0�0000 0�0000 0�0006 0�0548 0�4327
31 2 16 1 2 16 0�0610 0�0000 0�0000 0�0000
32 2 22 1 2 22 0�0521 0�0000 0�0000 0�0044
33 2 24 1 1 24 0�0539 0�0008 0�0002 0�0052
34 2 32 1 2 32 0�0565 0�0000 0�0000 0�0040
35 2 40 1 2 40 0�0507 0�0009 0�0000 0�0020
36 2 7 6 2 42 0�0724 0�0001 0�0000 0�0051
37 2 8 6 2 48 0�0632 0�0000 0�0000 0�0005
38 2 7 8 2 56 0�0744 0�0000 0�0000 0�0000
39 2 10 6 1 60 0�0642 0�0002 0�0000 0�0000
40 2 16 4 2 64 0�0561 0�0029 0�0000 0�0011
41 2 8 8 1 64 0�0541 0�0000 0�0000 0�0011
42 2 12 6 1 72 0�0591 0�0015 0�0015 0�0302
43 2 12 6 2 72 0�0594 0�0031 0�0004 0�0328
44 2 16 6 1 96 0�0536 0�0121 0�0000 0�0048
45 2 16 6 2 96 0�0549 0�0000 0�0000 0�0000
46 2 10 12 1 120 0�0633 0�0009 0�0001 0�0002

Light (Items 42 and 43) is equal to 0.0630, and Coors
Light (Items 72 and 73) is 0.0521, whereas the choice
shares of 12-packs is equal to 0.1504 for Miller Lite
(Items 18 and 19), 0.2188 for Bud Light (Items 47
and 48), and 0.1280 for Coors Light (Items 77 and 78).
Data also indicate that bottles are somewhat more
preferred to cans for 6-packs (e.g., Items 14 vs. 15,
42 vs. 43, and 72 vs. 73), but that cans are preferred
to bottles when consumers purchase larger quantities
of beer (e.g., Items 18 vs. 19, 47 vs. 48, and 77 vs. 78).

These results indicate that the nonhomothetic specifi-
cation (Equation (6)) may fit the data better because
the marginal utility for the brands depends on the
level of expenditure. However, the shift in brand and
package preferences could also be attributed to differ-
ences in consumer tastes (e.g., households that con-
sume large quantities of beer may simply prefer Bud
Light). Therefore, we fit both the linear subutility
model (Equation (5)) and the nonhomothetic subutil-
ity model (Equation (6)).
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Table 2 (Cont’d.)

Average Average
Unit Price Choice

No. of Package Volume/ Price/ Display Feature Choice ($) by Share by
Item ID Brand ID Oz./Unit Units/Pack Form Pack Oz. ($) Frequency Frequency Share Trademark Trademark

47 2 12 12 1 144 0�0541 0�1984 0�1236 0�1589
48 2 12 12 2 144 0�0547 0�1392 0�0696 0�0599
49 2 7 24 2 168 0�0597 0�0000 0�0000 0�0000
50 2 12 15 1 180 0�0431 0�0083 0�0018 0�0065
51 2 12 18 1 216 0�0512 0�0989 0�0310 0�0273
52 2 10 24 1 240 0�0567 0�0032 0�0006 0�0011
53 2 12 20 2 240 0�0441 0�0138 0�0018 0�0024
54 2 12 24 1 288 0�0502 0�2091 0�0948 0�0740
55 2 12 24 2 288 0�0475 0�0044 0�0008 0�0005
56 2 24 12 1 288 0�0439 0�0005 0�0000 0�0000
57 2 22 15 2 330 0�0438 0�0000 0�0000 0�0000
58 2 12 30 1 360 0�0405 0�0390 0�0164 0�0100
59 2 16 24 1 384 0�0468 0�0000 0�0000 0�0000
60 3 7 1 2 7 0�0732 0�0000 0�0000 0�0000 0�0593 0�2170
61 3 12 1 2 12 0�0604 0�0000 0�0000 0�0007
62 3 16 1 2 16 0�0609 0�0000 0�0000 0�0003
63 3 18 1 2 18 0�0732 0�0018 0�0000 0�0001
64 3 22 1 2 22 0�0496 0�0000 0�0000 0�0006
65 3 24 1 1 24 0�0501 0�0002 0�0000 0�0007
66 3 32 1 2 32 0�0557 0�0000 0�0000 0�0019
67 3 40 1 2 40 0�0511 0�0000 0�0000 0�0011
68 3 7 6 2 42 0�0712 0�0000 0�0000 0�0019
69 3 8 6 1 48 0�0904 0�0000 0�0000 0�0000
70 3 10 6 1 60 0�0646 0�0000 0�0000 0�0000
71 3 16 4 2 64 0�0597 0�0003 0�0000 0�0009
72 3 12 6 1 72 0�0589 0�0043 0�0026 0�0294
73 3 12 6 2 72 0�0593 0�0008 0�0002 0�0227
74 3 18 4 2 72 0�0748 0�0125 0�0000 0�0006
75 3 16 6 1 96 0�0533 0�0001 0�0001 0�0007
76 3 10 12 1 120 0�0633 0�0006 0�0000 0�0004
77 3 12 12 1 144 0�0540 0�1255 0�1041 0�0966
78 3 12 12 2 144 0�0540 0�0575 0�0460 0�0314
79 3 7 24 2 168 0�0773 0�0000 0�0000 0�0000
80 3 12 18 1 216 0�0499 0�0695 0�0243 0�0183
81 3 18 12 2 216 0�0358 0�0000 0�0000 0�0000
82 3 10 24 1 240 0�0560 0�0018 0�0005 0�0001
83 3 12 24 2 288 0�0477 0�0003 0�0000 0�0000
84 3 12 30 1 360 0�0392 0�0395 0�0165 0�0085

Note:

Variable Description

Brand ID 1=Miller Lite, 2= Bud Light, 3= Coors Light
Oz./unit Oz. per bottle or can
No. of units/pack No. of units of cans or bottles included in the pack
Package form 1= cans, 2= nonreturnable bottles
Volume/pack Total volume contained in the pack

We note that Budweiser engages in significantly
more display and feature activity than either Miller
or Coors. A summation of the display and feature
frequencies reported in Table 2 reveals that some
package of Bud Light is on display in 74% of the
purchases, compared with 56% for Miller Lite and
31% for Coors Light. Feature activity is approximately
equal for Bud Light and Miller Lite (33% of the time),
but lower for Coors Light (19%). An interesting issue
to investigate is whether the superior performance of

Bud Light in large package sizes is because of it being
a superior product offering, as measured by the non-
homothetic coefficients in Equation (6), versus engag-
ing in more frequent merchandising activity.
There exists large intrahousehold variation in gro-

cery expenditures, with many shopping trips totaling
more than $200, whereas others are much less. Across
these purchase occasions, the nonbeer expenditures
take on a varied meaning. For small shopping trips,
the outside good includes snacks and a few miscella-
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neous items, whereas for the larger shopping trips the
outside good is comprised of a much broader array
of items. Rather than equating the observed grocery
expenditure to the budgetary allotment (T ) in Equa-
tions (13) and (14), we treat the budgetary allotment
as an unknown parameter and estimate it from the
data. In our analysis, we specify a prior distribution
for T and derive posterior estimates. The prior specifi-
cation reflects managerial judgment about the amount
of money consumers allocate to beer and substitutable
goods. Markov chain Monte Carlo for estimating the
budgetary allotment and other model parameters are
provided in the Appendix.

5. Results
The linear (Equation (5)) and nonhomothetic (Equa-
tion (6)) subutility structures were imbedded to the
Cobb-Douglas function (Equation (4)) and estimated
as hierarchical Bayes models (Gelfand and Smith
1990). As discussed previously, some parameters
require restriction to ensure algebraic signs that con-
form to economic theory. In the Cobb-Douglas model,
we set �x = 1 and �z = exp��∗

z� and estimate �∗
z unre-

stricted. In the linear subutility function, we follow
standard convention and set one of the brand inter-
cepts (Miller Lite) to zero. In the nonhomothetic subu-
tility function, we restrict � to be positive by estimat-
ing �∗ = ln� with �∗ unrestricted, and set �∗ for Miller
Lite to zero.
The deterministic portion of log marginal utility for

the linear model is specified as:

�i = *0i +*b�bottlei�+*d�displayi�+*f �featurei�� (16)

where *0i is the preference coefficient for Brand i. The
covariates “bottle,” “display,” and “feature” are coded
as dummy variables for each brand. This specifica-
tion assumes that the marginal utility of a brand can
be influenced by the package type and merchandising
activity of the retailer. The nonhomothetic model
specification is:

�i = �i −�iū�x� z��

�i = *0i +*d�displayi�+*f �featurei�� (17)

�i = exp��0i +*b�bottlei���

As reported in Allenby and Rossi (1991), the *0i
intercept parameters are redundant if the �i param-
eters take on nonzero values, and are therefore set
to zero. Alternative model specifications were inves-
tigated (e.g., bottlei related to �i instead of �i�, but
did not result in better fit relative to Equation (15).
Household heterogeneity was allowed for all param-
eters . = ��′, �, *′�′ and specified as a multivariate
normal distribution:

.∼Normal�.̄�V �� (18)

Table 3 Model Fit

Subutility Model Log-Marginal Density

Linear −4864�99
Nonhomothetic −4859�79

A total of 50,000 iterations of the Markov chain were
executed, with the last 25,000 iterations used to esti-
mate model parameters. Convergence was checked by
starting the chain from multiple start points and not-
ing common convergence, and through inspection of
time-series plots.
Table 3 reports the log-marginal density of the

linear and nonhomothetic models. The marginal
density was estimated using the importance sam-
pling procedure of Newton and Raftery (1994). The
marginal densities are high and translate to an
in-sample hit probability of approximately 0.75 across
the 20,914 observations. A reason for the exceptional
model fit, in the presence of more than 80 choice alter-
natives, is that there are only three error terms in the
model—one for each brand.
The model fit statistics indicate that the nonhomo-

thetic subutility model fits the data better than the
linear subutility model. This implies that the shift in
brand preference to Bud Light, and package prefer-
ence to bottles, reported in Table 2 cannot be solely
attributed to differences in household tastes. Bottles
weigh more than cans, which may partially explain
the shift in preference to cans during grocery trips
with larger beer expenditures. Bud Light is the market
share leader and has a less bitter composition than
Miller Lite. Having a less bitter composition decreases
the likelihood of satiation when larger quantities are
consumed.
Table 4 reports aggregate parameter estimates for

the nonhomothetic subutility model. Bud Light has
the smallest aggregate estimate of �, indicating that
at higher levels of utility (u�x�z�), it is preferred
to Miller Lite and Coors Light. Coors Light has
the largest aggregate estimate of �, indicating that
it is the least-preferred brand when total utility is
high. The aggregate estimate of �∗

z = ln�z = −0�548
translates to an estimate of �z equal to 0.578. Recall
that we have restricted our analysis to household

Table 4 Aggregate Coefficient Estimates (Posterior
Standard Deviations)

Parameter Estimate

Bud Light �∗ −1�230 �0�228�
Coors Light �∗ 3�006 �0�322�
�∗ = ln��z/�x� −0�548 �0�068�
Bottle 0�233 �0�032�
Feature 1�026 �0�131�
Display 0�766 �0�090�
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Table 5 Covariance/Correlation Matrix of Random Effects (Posterior Standard Deviations)

Bud Light �∗ 72�52 �6�74� −0 �03 −0 �02 −0 �03 −0 �14 0 �04
Coors Light �∗ −2�34 �2�60� 84�38 �4�01� 0 �03 0 �02 0 �29 0 �10
�∗ −0�11 �0�70� 0�18 �0�60� 0�49 �0�05� 0 �00 0 �03 0 �07
Bottle −0�11 �0�32� 0�08 �0�32� 0�00 �0�03� 0�24 �0�02� 0 �02 −0 �03
Feature −1�13 �1�72� 2�46 �1�57� 0�02 �0�05� 0�01 �0�03� 0�85 �0�18� 0 �01
Display 0�25 �0�89� 0�72 �0�80� 0�04 �0�04� −0�01 �0�02� 0�01 �0�06� 0�61 �0�07�

shopping trips in which beer is purchased, which
accounts for the large amount of utility derived from
the beer category (�x = 1�00) relative to the outside
good (�z = 0�578). We discuss the implications of
the Cobb-Douglas estimates here. On average, we
find that households prefer cans when the grocery
trip involves large expenditures, and bottles when
the total expenditure is smaller. Finally, the feature
and display coefficients have positive algebraic signs,
as expected, with the effect of feature advertisement
larger than the effect of a display.
The covariance matrix of the distribution of hetero-

geneity is reported in Table 5. Variances and covari-
ances are reported in the lower left of the table, and
the associated correlations are reported in the upper
right portion of the table. The diagonal entries for
the brands are large, indicating that there is a wide
dispersion of preferences for the brands. In addition,
we find that the off-diagonal entries are small in
magnitude, indicating that brand preferences are not
strongly associated with feature and display sensitiv-
ity, preference for bottle versus can, or preference for
the outside good, z.
Posterior estimates of household expenditures

(T ) are displayed in Figure 6. The mean of the
distribution is equal to $12.86, the interquartile range
is ($10.97, $14.98), and the distribution is bimodal. The
correlation between the posterior estimates and the
Cobb-Douglas parameter �∗

z is approximately zero,
implying that there is little evidence in the data of

Figure 6 Posterior Estimates of Household Expenditure �T �
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an association between the amount of budget alloca-
tion and price sensitivity. Hence, retailers and man-
ufacturers have little ability to price discriminate
between high-volume and low-volume users. Addi-
tional implications of the parameter estimates are
explored later.

6. Implications
We investigate three issues related to pricing and
product assortment. The first is the effect of a price
reduction for a package size (12-pack) for a particular
brand (Miller Lite) in terms of substitution of demand
across brands and with the outside good. Of partic-
ular interest is the extent to which the increase in
demand caused by a price reduction can be attributed
to brand switching versus an increase in primary
demand in the product category. The second issue
relates to the expected demand for a particular pack-
age size. Manufacturers often speculate about the
existence of price points, or threshold values at which
individual households become willing to consider a
given package size. Our economic model is capable
of identifying the price at which a particular package
size becomes the most-preferred quantity for a house-
hold. Finally, our model provides a valid measure of
utility that can be used to assess the change in con-
sumer welfare by computing the compensating value
associated with changes in the assortment of package
sizes. We use the model to measure the utility con-
sumers derive from the various package sizes by con-
sidering the impact of removing alternative package
sizes from the current mix of offerings.
The derivation of model implications is a function

of the model parameters, the available offerings, and
current pricing policies of the retailers. In the anal-
ysis presented here, we do not attempt to explore
supply-side implications of our model by identifying
the optimal number and size of a brand’s offerings
(see Villas-Boas and Winer 1999, Chintagunta 2000).
In addition, because our analysis conditions on light-
beer purchases, the pricing implications do not inves-
tigate issues, such as purchase timing, stockpiling,
and substitution from the regular beer category. We
leave these issues as extensions for future work that
extend our basic model.
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Table 6 Expected Demand

Brand Current Prices Miller 12-Pack on Sale (20% Off)

Miller Lite 67�41 oz� 77�95 oz�
Bud Light 75�72 oz� 75�64 oz�
Coors Light 34�24 oz� 34�19 oz�
Outside good 5�46 units 5�36 units

The Effect of a Price Reduction on Primary and
Secondary Demand
Table 6 reports the expected demand for the three
brands and the outside good under two conditions:
(1) when prices are distributed as in the data set; and
(2) when the Miller 12-pack items (Items 18 and 19
in Table 2) are reduced by 20%. Expected demand
for a brand is computed as the product of the opti-
mal quantity for each brand, x∗

i , and the probabil-
ity of purchasing this quantity Pr�x∗

i � in Equation
(13), integrated over the empirical distribution of the
explanatory data.
The estimates of expected demand indicate that a

price reduction by Miller Lite has little effect on the
demand for Bud Light and Coors Light. The demand
for Miller Lite increases from 67.41 oz. per purchase
to 77.95 oz. per purchase, whereas demand for the
other brands is nearly constant. Figure 7 decomposes
the change in demand for Miller Lite into the change
in the brand-choice probability and the change in the
expected purchase quantity for each observation in
the data set. The top panel shows that the choice prob-
ability does not change and is nearly identical for the
regular and discounted prices. The purchase quantity,
however, is substantially different, with demand shift-
ing to the two horizontal lines at 144 oz. (a 12-pack
of 12-oz. bottles) and 288 oz. (two 12-packs). At the
reduced price, the increase in demand is obtained
from Miller drinkers who allocate greater expenditure
from the outside good to the product category (i.e., an
increase in primary demand), with the brand-choice
probabilities nearly unchanged (i.e., no change in
secondary demand).

Price Points
Changes in price result in a redistribution of the
quantity demand. The demand for a specific quantity
(package size) is a function of the prices of the other
alternatives and household parameters. Our model
permits calculation of the price at which a particu-
lar package size is most preferred by a household
by identifying the highest price at which a particular
quantity (x∗) yields maximum utility in Equation (8)
or (10). Figure 8 displays the cumulative distribution
of prices at which the 12-pack of Miller Lite is the
most preferred Miller offering. When priced at $10,
the 12-pack is the most-preferred package size for 2%
of the population, and at $5 it is the most preferred

Figure 7 Effect of Price Reduction on Choice Probability and Quantity
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package size for 49% of the population. Even at very
low prices, not everyone is willing to purchase a
12-pack. The reason is that many households are esti-
mated to have high utility for the other brands. When
coupled with low utility for the outside good (�z),
it is not possible to reduce the price of Miller Lite
low enough to induce these individuals to purchase a
12-pack.

Utility of an Assortment
A common problem in retailing is determining the
variety provided by alternative packages and vari-
ants of an offering. The depth and breadth of an
assortment is not well reflected by the total number
of stock keeping units (SKUs) in a product category
because many of the offerings are nearly identical to
each other. Because our model is derived from an
economic model, we can use utility as a scalar mea-
sure in assessing the value of specific offerings. That
is, we can compute the average consumer utility for
the current set of offerings across the purchases and
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Figure 8 Cumulative Distribution of 12-Pack Price Points for
Miller Lite
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investigate the decrease in utility as specific offerings
are removed. These differences in utility can be trans-
lated into a dollar metric by computing the compen-
sating value, defined as the increase in the budget (T )
needed to return to the original level of utility.
Table 7 reports on the change in utility and asso-

ciated compensating value of removing alternative
package sizes across all brands. The current utility
(per purchase) of 3.35, for example, declines to
3.05 when 12-packs are no longer made available
to consumers. This translates to a compensating
value of 30 cents per purchase, indicating a substan-
tial decrease in consumer utility. Our analysis indi-
cates that consumers would be least affected by the
removal of six-packs from the shelves.

7. Conclusion
The analysis of demand for packaged goods requires
models that reflect both the brand and the quantity
contained in the package. The discreteness of pack-
age sizes and the nonlinearity of package prices pro-
duce complexities in the analysis of demand data with
economic models. Standard first-order conditions and
identities used with continuous quantity and fixed
price models do not hold, resulting in the need for
models of utility maximization that involve the direct
evaluation of the utility function. This evaluation is
potentially difficult because of the stochastic elements

Table 7 The Utility of Alternative Assortments

Assortment Utility Per Purchase Compensating Value ($)

Current offerings 3�3516 0�000
Remove 6-packs 3�3434 0�005
Remove 12-packs 3�0477 0�300
Remove 18-packs 3�3161 0�026
Remove 24-packs 3�3094 0�033

of the demand function. However, we show that,
when the brands under study are near-perfect substi-
tutes and prices reflect quantity discounts, the evalu-
ation is easy to perform.
Our approach to deriving the likelihood function

for the utility maximizing solution is to split the task
of utility maximization into two steps. In the first
step, the best package size is identified for each brand
under study. The identification involves a determin-
istic search whenever error terms in the model are
brand specific and not specific to brand-pack combi-
nations. The error term cancels for the different pack-
age sizes. The second step involves a comparison
of the brand-specific maximum utilities. The pro-
posed approach can accommodate a variety of mod-
els, including linear and nonhomothetic subutility
specifications, and more descriptive models of choice,
such as ordered logit and probit models.
The advantages of using an economic specification

are that the model becomes very parsimonious and
the outside good (z) can be reasonably incorporated
into the model specification. The use of either a multi-
nomial or ordered-choice model to analyze the beer
data would require an order of magnitude increase in
the number of parameters to account for the many dif-
ferent package sizes. Furthermore, the outside good
is required when deriving realistic pricing policies.
Without its presence, the prices of all offerings can
be raised, and demand for the product category
remains constant. Substitution into and away from
the category ensures that optimal prices are identi-
fied as not being too excessive. Although our Cobb-
Douglas specification of utility for the product and
outside good (Equation (10)) is somewhat restrictive
when coupled with a linear subutility function, we
argue that the use of a richer subutility specifica-
tion for the offerings within the product class (e.g.,
a nonhomothetic specification) provides a flexible
model structure that allows us to exploit the compu-
tational benefits of the two-step estimation approach.
Future research will allow us to examine the ben-

efits of alternative utility functions and stochastic
specifications. We derive our demand specification
by assuming that the log-marginal utility for each
brand is stochastic, and noting that the “adding-up”
constraint imposes a singularity that alleviates the
need to specify an additional stochastic element for
the outside good. Alternative error specifications may
be preferable. In particular, specifying the utility for
the outside good as stochastic would lead to a solu-
tion procedure in which the first-stage maximiza-
tion would not be deterministic. However, this would
increase the complexity of computing estimates of
utility function parameters, but may lead to a less
restrictive specification in some instances.
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Our model assumes that the price schedule is
strictly concave with respect to quantity. There may
be situations and instances when this is not true. For
example, a retailer may deeply discount an interme-
diate package size (e.g., a 12-pack) such that the per-
unit price is less than a larger package size (e.g., a
24-pack). In cases such as this, the utility maximizing
solution need not exist at a corner, but instead may
be associated with an interior point where consumers
purchase more than one brand. The extent to which
this creates a problem is directly revealed by the data
by noting the proportion of occurrences where multi-
ple brands are simultaneously purchased. If the pro-
portion is large, then our proposed model is not valid
for the data and a more flexible model specification
is required, such as the nonlinear model of Kim et al.
(2002) that leads to interior solutions.
Despite these limitations, the proposed model can

serve as the kernel for many extensions. Examples
include models of cross-category demand (Ainslie
and Rossi 1998), purchase incidence (Chiang 1991,
Chintagunta 1993, Arora et al. 1998), and the incor-
poration of supply-side issues (Yang et al., 2003). Dis-
crete package sizes and nonlinear prices are com-
monly found in marketing and applied demand anal-
ysis. Our model of demand for near-perfect substi-
tutes can accommodate these data characteristics, and
is parsimonious, flexible, and easy to implement. We
are, therefore, hopeful that many of these extensions
will be realized.
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Appendix: Markov Chain Monte Carlo Estimation
Estimation is carried out by sequentially generating draws
from the following distributions:
1. Generate {.′

h� Th) = (�′
h��h�*

′
h� Th} for h = 1� � � � �H

households

1�.h�Th�∗�∝2j Pr�xij � .′
h� Th�×1�.h � .̄�V �×1�Th � a� b�

Pr�xij � .′
h� Th� is the likelihood given by Equation (13) or

(14), where “j” indexes the choice occasions and “i” denotes
the brand selected on occasion j . The first-stage search in
Equation (8) or (10) is conducted at each iteration of the
Markov chain, for each observation, to arrive at the optimal
quantity, x∗

i , for each choice alternative.
1�.h � .̄�V � is the distribution of heterogeneity (Equation

(16)).
1�Th � a� b� is the prior distribution for the budget limit,

assumed normal.

a = 10

b = 100�

Draws of the conditional distribution are obtained with the
Metropolis-Hastings algorithm with a random walk chain.
2. Generate .̄

1�.̄ � (.h)�V � = Normal
(∑

h .h/H�V /H
)

H = number of households= 2�282�
3. Generate V

1�V � (.h)� .̄� = Inverted Wishart

· (g0+H�G0+
∑

h�.h − .̄��.h − .̄�′
)

g0 = prior degrees of freedom= 50
G0 = prior sum of squares and cross-products

= 50I�
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