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In these pages I extend the model to allow for history dependence. I still assume that the shock

takes values in the set η ∈ [η, η̄] and is observed only by the entrepreneur. However, the probability

density depends on a variable z that follows a finite state Markov chain with transition probabilities

Γ(z/z−1). The density function for the shock is denoted by g(z, η) and it is assumed that g(z, η) is

stochastically dominated by g(ẑ, η) if z < ẑ. I refer to z as the “persistent factor”. Notice here the

notational and timing assumptions. The previous realization of the persistent factor is denoted by

z−1 while its new realization is denoted by z. The previous realization, z−1, affects the probability

distribution for z, and therefore, the density function of the shock g(z, η).

I will consider two cases about the observability of z. In the first case the persistent factor z is

observed by both parties (public information) while in the second case z is observed only by the

entrepreneur (private information).

1 The persistent factor z is public information

When z is public information, the analysis of the previous sections can be easily extended to this

case. The contract determines the sequences of investment, liquidation probabilities and payments

as functions of the history. The history, conditional on survival, is now defined as the sequence

of realizations of z and announcements of η, that is, ht = {z0, z1, η̂1, ..., zt, η̂t}. The contractual

problem is formulated recursively by adding a new state, that is, the previous realization of the

persistent factor, z−1. After allowing the lower bound qmin to depend on z, Proposition 1 becomes:
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Proposition 5 There exists q(z) and q̄(z), with qmin(z) ≤ q(z) < q̄(z), such that:

(a) The schedule q̃(z, η) is equal to q̃(z, η) + h′(0)[F (k, η)− F (k, η)], with q̃(z, η) ≥ qmin(z).

(b) For each z−1, S(z−1, q) is strictly increasing and concave for q < q̄(z−1), constant for q ≥

q̄(z−1), and differentiable.

(c) The input of capital is at the optimal level k̄(z−1) if q ≥ q̄(z−1).

(d) If q̃(z, η) < q(z), then p(z, η) > 0, c(z, η, `) = 0, q(z, η, 1) = 0 and q(z, η, 0) = q(z).

(e) If q(z) ≤ q̃(z, η) < q̄(z), then p(z, η) = 0, c(z, η, 0) = 0 and q(z, η, 0) = q̃(z, η).

(f) If q̃(z, η) ≥ q̄(z), p(z, η) = 0 but there are multiple solutions to c(z, η, 0) and q(z, η, 0) ≥ q̄(z).

Proof: Simple extension of the proof of Proposition 1.

The only difference respect to the case of i.i.d. shocks is that the policy functions are contingent

on z in addition to the shock η. Given the properties of the long-term contract, it is also easy to

show that under certain conditions the long-term contract is not free from renegotiation and that

the renegotiation-proof contract can be defined by imposing lower bounds to the values of q̃(z, η).

The equivalent of Propositions 2 and 3 are:

Proposition 6 Let qmin(z) = 0 for all z. If κ is sufficiently small, there exists q(z) for some

z, for which S̃q̃(z, q) > 1. Moreover, for all q ∈ [q(z), q̄(z)), there is a positive probability that

q̃(z, η) < q(z) at some future date.

Proposition 7 There exists qmin(z) for which the renegotiation-proof contract is derived by im-

posing qmin(z) = qmin(z) for all z in the long-term contract.

Proof: Simple extension of the proofs of Propositions 2 and 3.

The properties of the optimal and renegotiation-proof contract emphasized in Section 7 also

extend to the case of history dependence, albeit with some qualifications.
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Property 1 (Cash-flow sensitivity) Controlling for z, the investment of constrained firms

depends on cash-flows, while the investment of unconstrained firms is independent of cash flows.

Notice that the investment of unconstrained firms still depends on cash-flows if we do not control

for z because the persistent factor affects the next period unconstrained capital, that is, k′ = k̄(z).

With history dependence the Tobin’s q is no longer a sufficient statistic for the investment of

constrained firms. To show this, consider two firms that have the same z−1 and q. This implies

that these two firms employ the same input of capital. Now suppose that in the next period the

first firm gets a high realization of η but a low realization of z. The second firm, instead, gets

a low realization of η and a high realization of z. Therefore, the cash flow of the first firm is

bigger than for the second firm because F (k, η1) > F (k, η2), Furthermore, let’s assume that these

realizations of the shock and persistent factor are such that the two firms have the same Tobin’s q.

Formally, [F (k, η1) + S̃(z1, q̃(η1))]/(I0 + k) = [F (k, η2) + S̃(z2, q̃(η2))]/(I0 + k). Even if they have

the same Tobin’s q, the two firms will choose different investments. Therefore, cash-flows provide

further information about the investment of the firm beyond the Tobin’s q. For unconstrained

firms, instead, the new investment depends only on z and the Tobin’s q is a sufficient statistic.

The reason the Tobin’s q is no longer a sufficient statistic for constrained firms is because they

are now affected by two shocks: z and η. Because these shocks are not perfectly correlated, they

have a differential impact on the investment decision of the firm which cannot be summarized

by a single variable, that is, the Tobin’s q. In this respect the cash-flow sensitivity of investment

resembles the results of Abel & Eberly (2002). In that model, even if there are no financial frictions,

cash-flows have an additional explanatory power because the firm is affected by multiple shocks.

The result of Abel & Eberly (2002) points out that the cash-flow sensitivity of investment is

not necessarily a good proxy for the existence of financial constraints. At the same time, the

absence of cash-flow sensitivity (once we control for the Tobin’s q) does not imply that the firm

is financially unconstrained. In fact, we have seen in Section 7 that the investment of constrained

firms is fully explained by the Tobin’s q when shocks are i.i.d. These remarks about the inability

of the cash-flows sensitivity to signal the presence of financial constraints parallel earlier results by

Gomes (2001).

3



Property 2 (Liquidation pattern) For any value of z−1, constrained firms face a higher prob-

ability of liquidation at some future date than unconstrained firms.

With i.i.d. shocks, unconstrained firms would never be liquidated. With persistent shocks,

however, the expected productivity of the firm may become so low that the expected future profits

are smaller than the liquidation value κ. This would depend not only on the current value of the

persistent factor z−1 but also on its persistence. However, even if the probability of liquidation

for unconstrained firms is positive, this probability is smaller than for constrained firms. More

importantly, if we control for the future production capability and market opportunities of the

firm—that is, the persistent factor z—there are values of z−1 for which unconstrained firms are

never liquidated while constrained firms will be liquidated with positive probability at some future

period. Unconstrained firms will be liquidated only if they experience a large fall in z.

Property 3 (Investor share) For each z−1, the investor’s share of the surplus is strictly de-

creasing in q ∈ (q(z−1), q̄(z−1)).

This is because in a renegotiation-proof contract the slope of S cannot be greater than 1.

Property 4 (Investment volatility) Controlling for z−1, constrained firms face higher volatil-

ity of investment and growth than unconstrained firms.

This property derives directly from the cash-flows sensitivity (property 1): if we control for

z−1, the investment of unconstrained firms remain constant independently of the realization of η.

Therefore, they do not experience any volatility of investment and growth. The investment of

constrained firms, instead, depends on q′ which in turn depends on the realization of the shock.

2 The persistent factor z is private information

The analysis of the previous section can not be easily extended to the case in which the persis-

tent factor z is private information. In this case the contract must be structured such that the

entrepreneur reveals the true realizations of both z and η. The source of complication derives from

the fact that, if the entrepreneur falsely reports z, the probability distribution of the shock believed
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by the investor in the subsequent period differs from the true distribution. To make the contract

incentive-compatible further restrictions need to be imposed.

The history, conditional on survival, is now defined as the sequence of announcements for z

and η, that is, ht = {z0, ẑ1, η̂1, ..., ẑt, η̂t}. The initial z0 is assumed to be public information.

The analysis follows Fernandes & Phelan (2000) who show that the contractual problem can be

formulated recursively by enlarging the set of state variables. To simplify the analysis I assume

that z takes only two values, that is, z ∈ {z1, z2}. However, it can be easily extended to the case

in which z takes more than two values by adding further state variables. (See Fernandes & Phelan

(2000) and Doepke & Townsend (2001)).

Define w the value of the contract for the entrepreneur when he or she has reported a value of the

persistent factor different from the true realization. Because the shock can take only two values, the

misreported value of the persistent factor is the complement of the true z. The complement value

will be denoted by zc. The variable w is conditional on the survival of the firm, after the current

payment to the entrepreneur. This is the “threat value”. The long-term contractual problem is

represented by the following mapping:

T (S)(z−1, q, w) = max
k,q̃(z,η),w̃(z,η)

{
− k + βEz−1F (k, η) + βEz−1S̃

(
z, q̃(z, η), w̃(z, η)

)}
(1)

subject to

q̃(z, η) ≥ D(k, η, η̂) + q̃(z, η̂) , for all η, η̂, z (2)

q̃(z, η) ≥ w̃(zc, η) , for all η, z, zc (3)

q = βEz−1 q̃(z, η) (4)

w = βEzc
−1
q̃(z, η) (5)

q̃(z, η) ≥ qmin(z), w̃(z, η) ≥ 0 (6)
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S̃(z, q̃, w̃) = max
p,c0,c1,q′,w′

{
p · κ+ (1− p) · S

(
z, q′, w′) }

(7)

subject to

q̃ = p · c1 + (1− p) · (c0 + q′) (8)

w̃ = p · c1 + (1− p) · (c0 + w′) (9)

The contractual problem is divided in two sub-problems. The first sub-problem is solved before

the realization of the shock and before randomizing on liquidation. The decision variables are the

input of capital k, the next period promised value q̃(z, η) and the next period threat value w̃(z, η),

which are conditional on the announcement of z and η.

Constraints (2) and (3) impose incentive-compatibility: the first insures that there is not diver-

sion of resources while the second insures that the true value of z is reported: if the entrepreneur

reports the false value zc 6= z, the value of the contract will be w̃(zc, η) and this must be smaller

than the value received by truthfully reporting z, that is, q̃(z, η). Constraints (4) and (5) are the

promised-keeping constraints for q and w. Notice that the expectation in equation (5) is condi-

tional on the complement value of the persistent factor zc
−1. This is because w is the value of the

contract for the entrepreneur if the reported z−1 is different from the true value. Given the schedule

q̃(z, η), if the value reported by the entrepreneur z−1 is false, then his or her value will be equal to

w = βEzc
−1
q̃(z, η).

The second sub-problem is solved after the announcement of z and η. It chooses the probability

of liquidation, p, consumption if the firm is liquidated, c1, consumption and continuation values if

the firm is not liquidated, that is, c0, q′ and w′. I have implicitly assumed that in case of liquidation

the promised value to the entrepreneur is zero. Of course, given a certain value promised in case

of liquidation, it becomes indifferent whether this value is paid immediately or in future periods.

The following proposition establishes some properties of the long-term contract.

Proposition 8 (Long-term contract) There exist q(z−1, w) and q̄(z−1, w) such that:

(a) S(z−1, q, w) is strictly concave in q, w for q < q̄(z−1, w) and constant for q ≥ q̄(z−1, w).

(b) For q ≥ q̄(z−1, w), the input of capital is always at the optimal level k̄(z−1).
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(c) If q̃(z, η) < q(z, w̃), then p(z, η) > 0 and q′ = q(z, w̃).

(d) If q(z, w̃) ≤ q̃(z, η) < q̄(z, w), then p(z, η) = 0.

(e) If q̃(z, η) ≥ q̄(z, w), then p(z, η) = 0 and q′ ≥ q̄(z, w). However, c0 and q′ are not determined.

Proof: See appendix A.

Several properties of the optimal long-term (commitment) contract are maintained within this

framework. In particular, it is still the case that the firm is constrained when the promised value

q is small and it becomes unconstrained once q is sufficiently large. Moreover, the firm faces

a probability of liquidation if the promised value q̃(z, η) falls below a certain threshold. This

threshold, however, depends also on the threat value w̃, in addition to z.

For each value of z−1, the optimal contract is now characterized by two state variables: the

promised value q and the threat value w. An “efficient” long-term contract generates an initial

surplus given by SEff (z−1, q) = maxw S(z−1, q, w). The properties of the S function guarantee

that SEff (z−1, q) is increasing, concave and there is some q(z−1) for which the slope of SEff is

equal to 1 for q = q(z−1) and strictly smaller than 1 for q > q(z−1). Therefore, optimal long-term

contracts are initially defined for q ≥ q(z−1).

Even if we start with q ≥ q(z−1), there is no guarantee that q̃(z, η) will be above q(z), which may

lead to renegotiation. This possibility of renegotiation is similar to the case of i.i.d. shocks. With

history dependence, however, there is also another source of renegotiation. Even if q̃ = q̃(z, η) will

be above q(z), w̃ may be different from arg maxw̃ S̃(z, q̃, w̃). To make the contract renegotiation-

proof, it is not sufficient to impose lower bounds to q̃(z, η) as done in the case in which z is public

information. The values of w̃(z, η) also need to be constrained for each value of z and q̃. More

specifically, the constraint w̃(z, η) ≥ 0 must be replaced by

w̃(z, η) ≥ wmin(z, q̃) (10)

If a renegotiation-proof contract exists, this contract will be characterized by lower bound

functions qmin(z) and wmin(z, q̃). After imposing these constraints, there will be a correspondence
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that relates values of w to values of q at any history contingency. This correspondence is given

by ψ(z−1, q) = arg maxw S(z−1, q, w). By the definition of a renegotiation-proof contract, future

values of w are always in the set ψ(z−1, q).

In this paper I do not establish the existence of the renegotiation-proof, that is, I do not establish

the existence of the lower bound functions qmin(z) and wmin(z, q̃). However, if this contract exists,

it is easy to show that the properties of such contract are similar to the properties established in

the previous subsection for the case in which the persistent factor is public information.
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Appendix

A Proof of Proposition 8

First notice that in sub-problem (7) there is an indeterminacy in the choice of consumption conditional on

liquidation. To show this, suppose that the solution is p, c1 and c0. Now consider ĉ1 6= c1 and ĉ0 6= c0 that

satisfy pc1 + (1 − p)c0 = pĉ1 + (1 − p)ĉ0. Obviously this is also a solution. What matters is the expected

consumption. Therefore, instead of maximizing over c1 and c0, we maximize over the expected value of

consumption c = pc1 + (1− p)c0, and without loss of generality the last two constraints of sub-problem (7)

can be replaced by:

q̃ = c+ (1− p)q′ (11)

w̃ = c+ (1− p)w′ (12)

It can be verified that the mapping T satisfies the Blackwell conditions for a contraction. Therefore,

there is a unique fixed point S. Now let’s show that there is q̄(z−1, w) for which, once the firm reaches this

value, capital is always at the optimal level k̄(z−1). Consider the following contract. In every period the

investor pays to the entrepreneur the transfer maxz−1{k̄(z−1)}−minz−1{F (k̄(z−1), η)} and the entrepreneur

retains all the revenues. Basically, the entrepreneur gets paid the maximum possible losses that the firm can

realize independently of whether these losses are effectively realized. Because the transfers are independent

of the shock and, once added to the revenues, they are sufficient to finance the optimal input of capital,

the contract that invests k̄(z−1) in all periods is incentive compatible. The value of this contract for the

entrepreneur depends on z−1 and w and it is denoted by q̄(z−1, w). If q is bigger than this upper bound, the

surplus does not change. It simply entitles the entrepreneur to higher transfers from the investor. Therefore,

for q > q(z−1, w), the surplus only depends on z−1 and w.

I show now that T maps concave functions of q, w into concave functions and the fixed point S is concave.

To see this, consider first sub-problem (7). If S is concave in q′, w′ for each value of z, then S̃ is also concave

in q̃, w̃.

Take (q̃1, w̃1) and (q̃2, w̃2) and assume that the respective solutions are p1, c1, and p2, c2. Denote by q̃θ,

w̃θ, pθ and cθ the linear combinations of these points. Because S is concave, there exists a linear function

H(z, q̃, w̃) such that S(z, q̃, w̃) = H(z, q̃, w̃) for q̃ = (q̃θ − cθ)/(1 − pθ) and w̃ = (w̃θ − cθ)/(1 − pθ) but

S(z, q̃, w̃) ≤ H(z, q̃, w̃) for q̃ 6= (q̃θ − cθ)/(1−pθ) and/or w̃ 6= (w̃θ − cθ)/(1−pθ). In other words, the function
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H is the hyperplane above S. Then,

S̃(z, q̃θ, w̃θ) ≥ pθκ+ (1− pθ)S(z, (q̃θ − cθ)/(1− pθ), (w̃θ − cθ)/(1− pθ))

= pθκ+ θ(1− p1)H(z, (q̃θ − cθ)/(1− pθ), (w̃θ − cθ)/(1− pθ)) +

(1− θ)(1− p2)H(z, (q̃θ − cθ)/(1− pθ), (w̃θ − cθ)/(1− pθ))

= pθκ+ θ(1− p1)H(z, (q̃1 − c1)/(1− p1), (w̃1 − c1)/(1− p1)) +

(1− θ)(1− p2)H(z, (q̃2 − c2)/(1− p2), (w̃2 − c2)/(1− p2))

≥ pθκ+ θ(1− p1)S(z, (q̃1 − c1)/(1− p1), (w̃1 − c1)/(1− p1)) +

(1− θ)(1− p2)S(z, (q̃2 − c2)/(1− p2), (w̃2 − c2)/(1− p2))

= θS̃(z, q̃1 − c1, w̃1 − c1) + (1− θ)S̃(z, q̃2, w̃2)

To show the third step, notice that the function H is linear. Therefore, we can always write

H

(
z,
q̃θ − cθ
1− pθ

,
w̃θ − cθ
1− pθ

)
= H

(
z,
q̃ − c

1− p
,
w̃ − c

1− p

)
+ αq

[
q̃θ − cθ
1− pθ

− q̃ − c

1− p

]
+ αw

[
w̃θ − cθ
1− pθ

− w̃ − c

1− p

]

where αq and αw are the slopes of the hyperplane H in the direction of q and w. The equivalence, then,

follows trivially after some rearrangement. Therefore, S̃ is concave if S is concave.

Given the concavity of S̃, from the first part of the mapping—sub-problem (1)—we can also verify

that T (S) is strictly concave in q < q̄(z−1, w). In fact, take two points (q1, w1) and (q2, w2). Associated

with (q1, w1) there are solutions x1, q̃1(η, z) and w̃1(η, z) and with (q2, w2) there are solutions x2, q̃2(η, z)

and w̃2(η, z). Notice that as in the proof of Proposition 1, I used the change of variable for the optimal

investment: Instead of maximizing with respect to k, the maximization is over the variable x = f(k). With

this change of variable, the function F (f−1(x), η)− F (f−1(x), η) = (η − η)x is linear in x.

I want to show now that if we take a convex combination of (q1, w1) and (q2, w2), that is, qθ = θq1 +

(1 − θ)q2 and wθ = θw1 + (1 − θ)w2, the convex combination of the two solutions is feasible when q = qθ

and w = wθ. Let’s prove first that constraint (2) is satisfied by the convex combination. Define b(z, η) =

q̃(z, η)+h′(0)[F (f−1(x), η)−F (f−1(x), η)] = q̃(z, η)+h′(0)(η−η)x, with q̃(η) ≥ qmin(z). Following the same

steps of Lemma 1 in the proof of Proposition 1, we can show that constraint (2) is satisfied if q̃(η, z)− b(η, z)

is not decreasing for all η and for each value of z. Therefore, what I need to show is that q̃θ(z, η)− bθ(z, η)
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is not decreasing in η. Take two values of the shock, ηa < ηb. We know that:

q̃1(z, ηa)− b1(z, ηa) ≤ q̃1(z, ηb)− b1(z, ηb) (13)

q̃2(z, ηa)− b2(z, ηa) ≤ q̃2(z, ηb)− b2(z, ηb) (14)

From this it must also be the case that:

q̃θ(z, ηa)− θb1(z, ηa)− (1− θ)b2(z, ηa) ≤ q̃θ(z, ηb)− θb1(z, ηb)− (1− θ)b2(z, ηb) (15)

Because b(z, η) is linear in x, then θb1(z, ηa) + (1− θ)b2(z, ηa) = bθ(z, ηa) and θb1(z, ηb) + (1− θ)b2(z, ηb) =

bθ(z, ηb). Therefore,

q̃θ(z, ηa)− bθ(z, ηa) ≤ q̃θ(z, ηb)− bθ(z, ηb) (16)

Because this holds for any values of ηa and ηb, the incentive-compatibility constraint (2) is also satisfied for

the convex combination of the solutions.

The other constraints (3)-(6) are obviously satisfied at q = qθ and w = wθ by the convex combinations

xθ, q̃θ(z, η) and w̃θ(z, η). Therefore, the convex combination of the solution is feasible. We can then show

that T (S)(z−1, qθ, wθ) > θT (S)(z−1, q1, w1) + (1 − θ)T (S)(z−1, q2, w2). Therefore, the fix point of T is

concave in (q, w). Given the properties of the surplus function, it is then easy to prove the other points of

the proposition. Q.E.D.
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