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Abstract

In a long-term contract with moral hazard, the liquidation of the firm can arise as the

outcome of the optimal contract. However, if the future production capability or market oppor-

tunities remain unchanged, liquidation may not be free from renegotiation. Will the firm ever be

liquidated if we allow for renegotiation? This paper shows that the firm can still be liquidated

even though liquidation is not free from renegotiation in the long-term contract. In addition

to liquidation, the renegotiation-proof contract generates important features of the investment

behavior and dynamics of firms observed in the data.
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1 Introduction

The performance of any economy reflects the level of national investment, a large portion of which

is decided at the level of the firm. Hence, understanding the factors that affect the investment

decisions of firms and their dissolution has been central to the research agenda in micro and

macroeconomics. Particular attention has been devoted to the importance of financial factors in

the empirical studies of Fazzari, Hubbard, & Petersen (1988), Gertler & Gilchrist (1994), Gilchrist

& Himmelberg (1996, 1998). As summarized by Hubbard (1998), the main findings of these em-

pirical studies are that: (i) all else being equal, the investment of firms is significantly correlated

with proxies for changes in net worth or internal funds; and (ii) this correlation is most impor-

tant for firms likely to face information related, capital-market imperfections. The first finding

suggests the existence of frictions in financial markets that affect the investment decision of firms

independently of their future production capability or market opportunities. The second finding,

instead, underscores the existence of significant heterogeneity in the way in which these frictions

affect the investment behavior of firms. In particular, these frictions are more important for certain

categories of firms, such as smaller and younger firms, as these studies suggest.

Motivated by the above empirical findings, this paper studies an economy in which investment is

financed with optimal contracts between an entrepreneur and an investor in the presence of repeated

moral hazard. Moral hazard derives from the existence of a conflict of interest over how resources

are allocated in the firm, with the investor unable to fully observe this allocation. To prevent the

entrepreneur from implementing a non-cooperative allocation of resources, entrepreneur’s payments

and investments must be conditional on the realization of revenues or cash flows. More specifically,

smaller inputs of capital are financed when current revenues are low, even though these revenues

do not affect the future production capability or market opportunities of the firm. However, as the

firm grows and the entrepreneur’s stake in the firm increases, moral hazard problems become less

stringent and investment becomes dependent only on the future productivity of the firm.

An important assumption in the model, in addition to the information asymmetry, is the limited

liability of the entrepreneur. Assuming that the parties are able to commit to the future terms

of the contract (long-term contract), this assumption makes the liquidation of the firm a possible
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outcome. Liquidation results in the breakdown of the contract, which is not caused by or linked to

the fall in the future productivity or market opportunities of the firm.

Although liquidation can be ex-ante optimal in the sense of improving the expected surplus

of the contract, it can be ex-post inefficient for both the investor and the entrepreneur. This is a

time-consistency problem: in the event in which the execution of the contract implies liquidation,

the parties may find it mutually advantageous to renegotiate ex-post. This observation leads to the

question of whether the liquidation of the firm can arise in a renegotiation-proof contract when liq-

uidation is not free from renegotiation in the long-term contract. An important result of this paper

is to show that, under certain conditions, the firm can still be liquidated in a renegotiation-proof

contract even if liquidation is not free from renegotiation in the long-term contract. Furthermore,

there are conditions for which the firm is liquidated in the renegotiation-proof contract even though

it is never liquidated in the long-term contract.

While in the strictest sense the liquidation of the firm cannot be interpreted as default, it does

share several features of bankruptcy.1 First, if we think of the value of the contract for the investor

as the liability of the firm, the probability of liquidation increases with the firm’s liability relative

to its total value. Second, in the event of liquidation, all the residual assets of the firm are taken

by the investor, which is the usual practice in the bankruptcy procedure. Third, the probability of

liquidation decreases with the firm’s size. Moreover, since the size of the firm is correlated with its

age, liquidation also decreases with age.

The optimal financing of investment with asymmetric information is also studied in Gertler

(1992), but in an environment in which the life span of the firm is finite and known (no advance

liquidation). There are some similarities with the models developed in Atkeson (1991) and Khan

& Revikumar (2001). In these models, however, liquidation cannot be an outcome of the opti-

mal contract. Albuquerque & Hopenhayn (1997) study the optimal contract in an environment

1In a strict sense, liquidation cannot be interpreted as “default” or “repudiation of existing liabilities” because the
optimal contract is state-contingent and internalizes all possible outcomes. However, in a real contract some of the
contingencies—such as those leading to liquidation—may be implicit in the sense that they are not formally stated
in the contract. Consequently, when these contingencies arise, the associated outcomes appear to take the form of
contract repudiation. But in practise, these events are fully anticipated by the contractual parties. Think for example
to a standard debt contract. Although it is not stated explicitly, a debt contract is state-contingent in the sense that
the lender internalizes the possibility of receiving lower repayments in case of default.
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with limited enforceability. With limited enforceability, however, the long-term contract is always

free from renegotiation. Clementi & Hopenhayn (1998) study, independently, the optimal long-

term contract in an environment similar to the one studied here but they do not characterize the

renegotiation-proof contract. Another related paper is DeMarzo & Fishman (2000). They also

consider privately observed revenues but the size of the investment project is fixed.

This study also relates to the literature on optimal insurance contracts with repeated moral

hazard. Most of this literature has analyzed the optimal and incentive-compatible allocation of

consumption among risk averse agents, when privately observed incomes evolve exogenously or

depend on unobservable effort.2 By contrast, the current paper studies a production economy in

which both agents—investors and entrepreneurs—are risk neutral. The problem consists of finding

the optimal and incentive-compatible investment schedule that maximizes the net revenues of the

firm. In spite of these differences, the two problems have some similarities: the contract solves the

trade-off between a higher investment level and a lower investment volatility, that is, investment

insurance as opposed to consumption insurance.

The organization of the paper is as follows. Section 2 describes the model and Section 3 provides

an informal characterization of some of its properties. The technical derivation of these properties

is conducted in Sections 4 and Section 5. After the analysis of the initial stage of contracting

(Section 6), Sections 7 and 8 characterizes the dynamic properties of the firm induced by the

renegotiation-proof contract. Section 9 discusses the extension to persistent shocks and Section 10

concludes.

2 The model

Consider an entrepreneur with initial wealth a0 who maximizes the expected utility E0
∑∞

t=0 βtct,

where ct is consumption and β is the intertemporal discount factor. The entrepreneur has the

managerial skills to run a firm with gross revenue function F (k, η), where k is the input of capital

decided in the current period and η is a shock realized at the beginning of the next period (and

2Examples of these studies include Green (1987), Spear & Srivastava (1987), Thomas & Worrall (1990), Phelan
& Townsend (1991), Atkeson & Lucas (1992, 1995), Phelan (1995), Wang (1997), Cole & Kocherlakota (1997).
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therefore, after the input of capital has been decided). The shock and the revenue function satisfy

the following properties:

Assumption 1 The shock η is independently and identically distributed in the interval N ≡ [η, η̄]

with density function g(η) > 0, ∀ η ∈ N.

Assumption 2 The revenue function takes the form F (k, η) = (1 − δ)k + η · f(k) with f(k)

strictly increasing, strictly concave, differentiable and satisfies f(0) = 0, limk→0 fk(k) = ∞ and

limk→∞ fk(k) = 0.

The gross revenue results from the sum of two components: the cash-flow η · f(k) plus the

undepreciated capital (1 − δ)k. The concavity of F implies that the revenue function displays

decreasing returns to scale and there is an optimal input of capital k̄ that maximizes the expected

revenue net of the opportunity cost of capital. This is implicitly defined by the first order condition

βEFk(k̄, η) = 1. The assumption that the shock is i.i.d. is made to isolate the impact of financial

factors on the investment decision of the firm from the impact of technological or market differences.

Section 9, however, will extend the analysis to the case of persistent shocks.

The creation of a new firm requires an initial fixed investment I0, in addition to the variable

investment k. If the firm is liquidated, the residual value of the initial investment is κ. The fixed

investment satisfies the following conditions:

Assumption 3 The fixed investment I0 and its liquidation value κ satisfy: κ < I0 < βEF (k̄,η)−k̄
1−β .

The first inequality imposes that only part of the initial set-up investment can be recovered in

case of liquidation, that is, part of this investment is sunk. As we will see in Section 6, this condition

plays an important role in the renegotiation of the contract if the entrepreneur is not excluded from

the market. The second inequality insures the existence of a firm. The term (βEF (k̄, η)−k̄)/(1−β)

is the discounted expected lifetime profits when the firm is always operated at the optimal scale.

For the viability of a firm, this value must be greater than the set-up cost I0.

Once a firm has been created, the entrepreneur has the ability to divert some of the firm’s

resources (physical and managerial) to generate a private return additive to consumption. Denote
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by e ∈ [0, 1] the fraction of resources that the entrepreneur uses to generate revenues and by 1− e

the fraction of resources used to generate the private return. Given this allocation of resources, the

firm’s revenues will be e · F (k, η) and the private return h(1 − e) · F (k, η). While the revenue is

public information, the shock η and the private return are observed only by the entrepreneur. The

function h satisfies the following properties:

Assumption 4 The diversion function satisfies h(0) = 0, 0 < h′(.) ≤ 1, h′′(.) ≤ 0.

Condition 0 < h′(.) ≤ 1 implies that the private return increases with the amount of resources

diverted. Condition h′′(.) ≤ 0 imposes the weak concavity of h. This property is convenient for

establishing some basic properties of the contract.

At the moment of starting the project, if the initial entrepreneur’s wealth a0 is not sufficient to

self-finance the optimal input of capital k̄, the entrepreneur will enter into a contractual relationship

with an investor. The discount factor for the investor is also β. For the moment, I assume that

the entrepreneur contributes with all personal wealth to the initial financing of the firm. Section 6

will show that this is not simply an assumption but it is optimal for the entrepreneur.

The final assumption defines the reservation values. We have to distinguish the stage before

and after signing the contract. For the entrepreneur the initial value of the contract cannot be

smaller than his or her wealth a0. In all subsequent periods it cannot be smaller than a minimum

value (limited liability). For simplicity, the lower value is set to zero. For the investor the initial

value of the contract cannot be smaller than zero. However, after signing the contract, the investor

commits to fulfill any future obligation. The assumption of one-side commitment is not important

if we allow for bonding, that is, the ability of the entrepreneur to access a riskless and observable

investment at the market interest rate. See Malcomson & Spinnewyn (1988) for details.

The timing of the events is as follows: Capital investment is chosen one period in advance.

Therefore, at the beginning of each period the firm starts with k units of capital. At this stage

the entrepreneur (but not the investor) observes the shock η and decides how to allocate the firm’s

resources by choosing e. Given the allocation of resources, the investor observes the revenue. At this

point the firm can be liquidated with some probability (randomization). Conditional on liquidation,
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the investor and the entrepreneur each receive a payment. What is left is used to finance the next

period capital (which is zero if the firm is liquidated).3

3 The properties of the contract: an informal characterization

Before turning to the technical characterization of the optimal contract, it will be convenient here

to describe informally some of its properties.

Let’s consider first the optimal long-term contract, that is, the contract that the parties commit

not to renegotiate in future dates. The contractual problem can be formulated recursively using

the value of the contract for the entrepreneur as a state variable. Let’s call this variable q. For any

value of q, the contract generates a surplus S(q) which is the sum of the value for the entrepreneur,

q, and the investor, S(q) − q. The surplus function is plotted in Figure 1. The next section will

show that this function is increasing, concave and converges to βκ as q converges to zero. On

the other hand, the surplus function becomes constant for values of q greater than q̄, and once

the entrepreneur’s value reaches q̄, it never falls below this value. At this stage agency problems

become irrelevant and the firm operates at the optimal scale k̄.

These properties imply that for q sufficiently small, S(q) < κ and the liquidation of the firm is

preferable to its continuation. In fact, if the firm is not liquidated, the investor’s value is S(q)− q.

This is smaller than κ−q, which is the value the investor would receive if the firm is liquidated (the

investor pays q to the entrepreneur and will cash the residual value κ). In Figure 1 the liquidation

of the firm is preferable if q < q̂.

A strategy that liquidates the firm only if q falls below q̂ is preferable to a strategy that never

liquidates the firm. However, the adoption of this strategy would make the surplus of the contract

convex for low value of q. Therefore, the surplus can be improved by making the liquidation

random. More specifically, if q falls below q, the randomization over the points q = 0 (liquidation)

and q = q (continuation) would be the optimal strategy. With this strategy, the pre-randomization

surplus in the interval [0, q] becomes the straight line joining κ and S(q).

3The entrepreneur can use the payments either for consumption purposes or for “observable” investments outside
the firm with return 1/β − 1. Of course, the entrepreneur can also reinvest these payments in the firm, but this is
equivalent to receiving less payments from the contract.
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Figure 1: Surplus of a long-term contract and liquidation strategy.

This liquidation strategy is optimal before the realization of the shock. However, after the shock

has been realized and the revenue has become public information, this strategy may no longer be

optimal and the parties may renegotiate the liquidation of the firm. Whether the liquidation of

the firm is free from renegotiation depends on the value of κ. In particular, liquidation is not

renegotiation-proof if κ is sufficiently small.

To see this consider again Figure 1. As will be shown in the next sections, if κ is not too

large, the slope of the surplus function is greater than 1 for low values of q. In the figure, this is

the case for q < q. However, if the slope of the surplus function is greater than 1, the investor’s

value, S(q) − q, increases with the entrepreneur’s value. This implies that the parties would find

convenient to renegotiate the contract. The renegotiation of the contract is equivalent to restarting

a new long-term contract with initial q = q. Because liquidation takes place only if q falls below q,

which is smaller than q, then the liquidation of the firm is not free from renegotiation.

How can we make the contract renegotiation-proof? This is done by imposing a higher lower

bound to the entrepreneur’s promised value before randomizing on liquidation. A higher lower

bound restricts the set of feasible strategies and, as a result, it reduces the surplus of the optimal

contract. As the surplus declines, its maximum slope (before randomizing) also declines. Figure

2 shows that the imposition of this further constraint reduces the surplus for each value of q < q̄.
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Figure 2: Surplus of a long-term contract after imposing qmin > 0.

This, in turn, reduces the slope of the tangent line departing from κ. The lower bound qmin is

increased until the maximum slope equals 1.

Once the surplus function satisfies these properties, it is easy to see why the liquidation of the

firm is free from renegotiation. If the investor does not renegotiate the contract, he or she will

receive the value κ. If instead the contract is renegotiated, the new contract will restart at q and

the investor’s value is equal to S(q)− q = κ (remember that the slope of S(q) is 1 at q). Therefore,

the investor does not gain from renegotiating the contract, unless he or she receives some transfer

from the entrepreneur. However, the entrepreneur is unable to make any transfer because, in case

of liquidation, his or her wealth is zero.4

Is the firm still liquidated at this point? Proposition 4 establishes that the firm can still

be liquidated with some probability. Moreover, if κ = 0 the firm can also be liquidated in the

renegotiation-proof contract even if it is never liquidated in the long-term contract.

In addition to showing that the renegotiation-proof contract can lead to the liquidation of the

4At this point the optimal contract is renegotiation-proof even if the entrepreneur is allowed to start a new firm
with a new investor (no market exclusion). In fact, the maximum value that the new investor can get from a new
contract is κ. But when the entrepreneur has zero wealth, the initial cost for the investor is the set-up cost I0 which
is bigger than κ. As we will see in Section 6, this implies that only entrepreneurs who have a minimum value of
wealth are able to start a new firm.
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firm, the model also generates important features of the investment behavior and dynamics of

firms. These features can be summarized as follows: (i) The investment of smaller and younger

firms is sensitive to cash flows, even after controlling for its future production capability or market

opportunities. Once the firm reaches the maximum size, however, investment becomes independent

of cash-flows. This also implies that smaller (constrained) firms experience higher volatility of

investment and growth. (ii) If the employment of the firm is related to investment, then the

rate of job reallocation (i.e., job creation and destruction) is also higher for smaller firms. (iii)

The probability of liquidation depends negatively on the size of the firm and the share of external

financing. Moreover, controlling for the current size, this probability decreases with the performance

of the firm. (iv) Constrained entrepreneurs have higher saving rates. This is because the internal

return from savings (by investing in the firm) is greater than the market return. These properties

will be described in more details in Sections 7 and 8.

4 The long-term contract

Appendices A and B provide a formal definition of a long-term contract and the derivations of some

basic properties for the recursive formulation of the optimal contract. Here I start directly with

the recursive formulation of the contracting problem. I define first some variables and functions

that will be use throughout the paper.

Denote by p ∈ [0, 1] the probability of liquidation (randomization). Moreover, define ` ∈ {0, 1}

the dummy variable that takes the value of one if the firm is liquidated and zero if the firm is not

liquidated. I will refer to this variable as the “liquidation outcome”.

Given the true realization of the shock η (unobserved by the investor), the publicly observed rev-

enue is e ·F (k, η). Denote by η̂ the shock that would have generated this revenue if the entrepreneur

had not diverted resources. This is implicitly defined by the condition e · F (k, η) = F (k, η̂). I will

refer to η̂ as the shock announcement. Because F (k, η̂) = e ·F (k, η), we can define e as a function of

k, η and η̂, that is, e(k, η, η̂) = F (k, η̂)/F (k, η). The private return from diversion will be denoted

by D(k, η, η̂) = h(1− e(k, η, η̂)) · F (k, η).

As shown in Appendix B, the contractual problem can be formulated recursively by maximizing
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the surplus of the contract (sum of the values for the investor and the entrepreneur) subject to

the entrepreneur’s promised value q. Given q, the contract will choose the input of capital, k,

the probability of liquidation, p(η), and the next period payments and continuation values for the

entrepreneur, c(η, `) and q(η, `). The liquidation probability is conditional on the announcement

of the shock while the entrepreneur’s payment and continuation value are also conditional on the

liquidation outcome. Notice that the choice variables are functions of the shock announcement

η̂, not the true shock η. However, the imposition of the incentive-compatibility constraints imply

that the shock announcement is always revealed and in equilibrium e = 1. Therefore, I will not

distinguish between η̂ and η, unless explicitly required. The problem can be written as:

S(q) = max
k, p(η)

c(η,`), q(η,`)

∫ η̄

η

[
− k + βF (k, η) + β

(
p(η)κ + (1− p(η))S(q(η, 0))

)]
g(dη) (1)

subject to

p(η)
[
c(η, 1) + q(η, 1)

]
+ (1− p(η))

[
c(η, 0) + q(η, 0)

]
≥ (2)

D(k, η, η̂) + p(η̂)
[
c(η̂, 1) + q(η̂, 1)

]
+ (1− p(η̂))

[
c(η̂, 0) + q(η̂, 0)

]
∀ η, η̂ ∈ N

q = β

∫ η̄

η

(
p(η)

[
c(η, 1) + q(η, 1)

]
+ (1− p(η))

[
c(η, 0) + q(η, 0)

])
g(dη) (3)

p(η)
[
c(η, 1) + q(η, 1)

]
+ (1− p(η))

[
c(η, 0) + q(η, 0)

]
≥ qmin (4)

c(η, `) ≥ 0 , q(η, `) ≥ 0 (5)

The function S is the end-of-period surplus of the contract conditional on the survival of the firm.

Because the firm is liquidated with probability p(η), the expected next period surplus depends

on the liquidation outcome. If the firm is liquidated the residual value is κ. If the firm is not

liquidated, the next period surplus depends on the entrepreneur’s promised value.

Condition (2) is the incentive-compatibility constraint. Given the liquidation probability p(η),

the value that the entrepreneur receives from reporting the true realization of the shock η cannot

be smaller than the value obtained from reporting η̂ 6= η. Condition (3) is the promise-keeping

constraint and (4) imposes a lower bound qmin to the expected value for the entrepreneur before

randomizing on liquidation. Although this lower bound was assumed to be zero, in the analysis that
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follows I will derive all the results for any value of qmin ≥ 0. The formulation of the problem for

any value of qmin will be convenient for the subsequent analysis of the renegotiation-proof contract.

Before characterizing the main properties of this problem, let’s define the function q̃(η) to be the

next period value for the entrepreneur (with the exclusion of the private return) before randomizing

on liquidation, that is, q̃(η) = p(η)[c(η, 1) + q(η, 1)] + (1 − p(η))[c(η, 0) + q(η, 0)]. What matters

for incentive-compatibility is the function q̃(η), not its components p(η), c(η, `) and q(η, `). The

following lemma establishes a property that q̃(η) has to satisfy for the contract to be incentive

compatible.

Lemma 1 Define b(η) = q̃(η) + h′(0)[F (k, η) − F (k, η)], with q̃(η) ≥ qmin. For the contract to be

incentive compatible, q̃(η)− b(η) cannot be decreasing for all η.

Proof: Appendix D.

The proof of this lemma is based on the fact that, if the entrepreneur has no incentive to falsely

report the lowest possible shock η, then he or she will never report any other value different from

the true realization. The concavity of the function h is important to get this result. This lemma

simplifies the characterization of the optimal long-term contract.

Proposition 1 (Long-term contract) There exist q̄ and q with q̄ > q ≥ qmin, such that:

(a) The schedule q̃(η) is equal to b(η) = q̃(η) + h′(0)[F (k, η)− F (k, η)].

(b) S(q) is increasing and concave for q < q̄, constant for q ≥ q̄, and differentiable.

(c) The input of capital is at the optimal level k̄ if q ≥ q̄.

(d) If q̃(η) < q, then p(η) > 0, c(η, `) = 0, q(η, 1) = 0 and q(η, 0) = q.

(e) If q ≤ q̃(η) < q̄, then p(η) = 0, c(η, 0) = 0 and q(η, 0) = q̃(η).

(f) If q̃(η) ≥ q̄, then p(η) = 0 but there are multiple solutions to c(η, 0) and q(η, 0) ≥ q̄.
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Proof: Appendix E.

The properties of the optimal long-term contract summarized in the above proposition are

also derived, independently, in Clementi & Hopenhayn (1998). Their analysis, however, do not

characterize the renegotiation-proof contract as done in the next section. The proof of Proposition

1 is somewhat involved and thus is relegated to the appendix. Despite the complexity of the proof,

however, the properties of the long-term contract have simple intuitions as described below. The

reader not interested in these intuitions can skip the remaining part of this section and turn directly

to the analysis of renegotiation-proof contract.

Point (a) defines the structure of the schedule q̃(η) which takes a simple form. From this schedule

we can see that the value promised to the entrepreneur, q, limits the input of capital. In fact, from

the promised-keeping constraint we have q = βEq̃(η) = βq̃(η)+βh′(0)(EF (k, η)−F (k, η)). Because

q̃(η) cannot be smaller than qmin, higher values of q allows for higher inputs of capital. Therefore,

higher values of q relaxes the constraints in the problem and allows for higher surpluses. Also notice

that, for each q, higher values of qmin restrict the inputs of capital. Therefore, we would expect

that the surplus function is decreasing in qmin. The concavity of the surplus function derives from

the concavity of F (k, η). When the value of q has reached q̄, moral hazard problems disappear

and the input of capital is always at the optimal level k̄. At this point the entrepreneur’s wealth

is sufficiently large to self-insure the possible losses generated by the firm when operated at the

optimal scale k̄. The value promised to the entrepreneur can be larger than q̄. However, increasing

the entrepreneur’s value above q̄ implies a simple redistribution of wealth from the investor to the

entrepreneur without affecting the surplus.

The same considerations explain the postponement of payments to the entrepreneur before q

reaches the upper bound q̄ (see points (d) and (e)). Given the constraint on the input of capital

imposed by q, it is preferable to increase the entrepreneur’s promised value (future consumption),

rather than making payments to the entrepreneur (current consumption). This implies that en-

trepreneurs have high saving rates motivated by the incentive to self-finance their business. Of

course, the incentive to increase q vanishes if the firm is liquidated. In this case it is optimal to

minimize the entrepreneur’s value, that is q(η, 1) = 0, in order to increase the future values of q
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when the firm is not liquidated. This implies that the whole gross revenue F (k, η) = (1−δ)k+η·f(k)

plus the residual κ is distributed to the investor in case of liquidation.

The result that the probability of liquidation is positive only if q̃(η) < q can be explained as

follows. Let’s observe first that this is possible only if q is strictly greater than qmin, which in

turn is possible if qmin is sufficiently small. Consider the extreme case in which qmin = 0. The

surplus function S(q) converges to βκ as q converges to zero. This implies that, for low values of

q, S(q) is smaller than κ. It is then preferable for the investor to pay q to the entrepreneur and

liquidate the firm (and claim the residual value κ). Moreover, randomizing over the liquidation

choice improves the surplus because liquidation makes the surplus function convex. Given two

values of q̃(η) for which it is optimal to set positive probabilities of liquidation, it is optimal in both

cases to set the continuation value to q. This implies that the probability of liquidation is simply

equal to p(η) = 1− q̃(η)/q. Because q̃(η) is increasing in η, the probability of liquidation is higher

for smaller realization of η.

5 Renegotiation-proof contract

The optimal contract characterized in the previous section assumes that the parties commit not

to renegotiate in future periods, even if renegotiation is ex-post beneficial for both parties. The

goal of this section is to show first that the long-term contract is not free from renegotiation

(subsection 5.1), and then to characterize the renegotiation-proof contract (subsection 5.2). The

formal definition of renegotiation-proof is provided in Appendix C.

5.1 Is the long-term contract free from renegotiation?

To show that the long-term contract is not free from renegotiation, it would be convenient to rewrite

the contractual problem (1) by separating the choice of the input of capital and schedule q̃(η), from

the choice of the liquidation probability. First notice that, using point (a) of Proposition 1, the

promise-keeping constraint can be written as q = βEq̃(η) = βq̃(η) + βh′(0)[EF (k, η) − F (k, η)].

If we use this equation to eliminate q̃(η) in the schedule q̃(η) = q̃(η) + βh′(0)[F (k, η) − F (k, η)],

we obtain q̃(η) = h′(0)[F (k, η) − EF (k, η)] + q/β. Therefore, the choice of k fully determines the
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schedule q̃(η). Because the entrepreneur’s payments are zero before reaching q̄ and they are not

determined for q > q̄, the contractual problem can be decomposed as follows:

S(q) = max
k

{
− k + βE

[
F (k, η) + S̃(q̃(η))

]}
(6)

subject to

q̃(η) = h′(0)[F (k, η)− EF (k, η)] +
q

β

q ≥ βqmin + βh′(0)[EF (k, η)− F (k, η)]

S̃(q̃) = max
p

{
pκ + (1− p) S

(
q̃

1− p

)}
(7)

The first optimization stage consists of the choice of the input of capital. The first constraint

has been derived above while the second is simply the promise-keeping constraint with the term

q̃(η) replaced by qmin. Because q̃(η) ≥ qmin, the constraint can be satisfied with the inequality

sign.

The second optimization stage, represented by (7), consists of the choice of the liquidation

probability. The variable q̃ = q̃(η) is the promised value after the announcement of the shock but

before randomizing on liquidation. Since there are no payments to the entrepreneur and in case of

liquidation q = 0, the next period value when the firm is not liquidated must be q′ = q̃/(1 − p).

The following corollary to Proposition 1 characterizes the function S̃(q̃).

Corollary 1 The function S̃(q̃) is continuous, concave and differentiable for all q̃ > qmin. Fur-

thermore, it is linearly increasing in q̃ ∈ (qmin, q) and satisfies S̃(q̃) = S(q̃) for q̃ ≥ q.

Proof: It follows from the optimal contract characterized in Proposition 1.

From the above formulation it is easy to see that the problem of renegotiation arises in the

second stage, that is, after the observation of the revenue. In the first stage the schedule q̃(η) is

chosen optimally to induce the entrepreneur to reveal the true value of the shock (and no diversion).

However, once the entrepreneur action has been taken and the shock is revealed, the parties may

have an incentive to change, ex-post, the value of q̃ delivered by this schedule. In particular, if the
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slope of S̃(q̃) is greater than 1 for some values of q̃ and the delivered value of q̃ is in this range, the

parties will have a mutual advantage to change (increase) this value. This is better understood by

looking at Figure 3 that plots the function S̃(q̃). In this figure the contract is renegotiated if q̃ < q.

-

6

q̄qq

S̃(q̃)

κ

45 degree line

�
�

�
�

�
�

�
�

•

Figure 3: Pre-randomization surplus of the optimal long-term contract.

To prove that the long-term contract is not free from renegotiation we have to show that: (i)

there is a region of q̃ for which the slope of S̃(q̃) is greater than 1, that is, q > 0; and (ii) this

region could be reached with positive probability at some future date.5 This is established in the

next proposition.

Proposition 2 Let qmin = 0. If κ is sufficiently small, there exists q ∈ [q, q̄) for which S̃′(q) > 1.

Moreover, for all q ∈ [q, q̄), there is a positive probability that q̃ < q at some future date.

Proof: Appendix F.

To understand the intuition behind this proposition, consider the case in which κ = 0. In this

case the firm will never be liquidated in the long-term contract, that is, q = 0. This implies that

5Fudenberg, Holmstrom, & Milgrom (1990) have shown that a sufficient condition for the renegotiation-proof of
the long-term contract is that the utility frontier is downward sloping. In the model this would be the case if the
slope of S̃(q̃) is not greater than 1. The downward property of the utility frontier, however, is only a sufficient
condition: even if the utility frontier in not downward sloping, the optimal long-term contract may still be free from
renegotiation if the upward region is never reached, that is, q̃ never falls below q.
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q′ = q̃ and S̃(q) = S(q) for all q. The proof shows that for any q > 0, there is some η for which

q′ < q. This implies that after a sequence of bad shocks, q gets arbitrarily close to zero. As q gets

close to zero, the promise-keeping constraint implies that k must converge to zero and the marginal

revenue to infinity. As a result of this, the marginal increase in the surplus with respect to q must

be large. Now consider the case in which κ > 0, which implies q > 0. As κ converges to zero, q

also converges to zero. Therefore, q can take relatively small values after a sequence of bad shocks.

High values of Fk then imply that S̃′(q̃) is large. When κ is large, however, the constraint on the

input of capital is not too tight and the slope of the surplus function is always smaller than 1. In

this case the long-term contract is free from renegotiation.

5.2 Derivation of the renegotiation-proof contract

Appendix C provides a formal definition of a renegotiation-proofness. Using the recursive formu-

lation of the contracting problem and Proposition 1, this definition can be written as:

Definition 1 A contract is renegotiation-proof if for all q̃ ≥ qmin there is no q̂ > q̃ such that

S̃(q̂)− q̂ > S̃(q̃)− q̃.

This says that, in a renegotiation-proof contract it is not possible to increase the value of the

contract for both the entrepreneur and the investor, before randomizing on liquidation. If this

condition is satisfied, the contract is also free from renegotiation after randomization. This is

obvious given Proposition 1 and Corollary 1.

The renegotiation-proof contract is derived by making endogenous the lower bound qmin which,

up until this point, has been treated parametrically. The role of qmin in characterizing the

renegotiation-proof contract is established in the next proposition.

Proposition 3 (Renegotiation-proof contract) There exists qmin for which the optimal

and renegotiation-proof contract is derived by imposing qmin = qmin in the long-term contract.

The value of qmin is smaller than q̄ if βF (k̄, η) < k̄.

Proof: Appendix G.

16



Therefore, the renegotiation-proof contract can be derived as an optimal long-term contract

by imposing the proper lower bound qmin = qmin. Thomas & Worrall (1994) and Wang (2000)

use a similar procedure to derive the renegotiation-proof contract. The first in a model without

information asymmetries while the second in a model with finite horizon. Notice that, if qmin < q̄,

renegotiation-proofness does not require that the firm is in the unconstrained status. For this to

be the case, it is sufficient that S(q̄) < q̄, that is, the total surplus when the firm is unconstrained

is smaller than the entrepreneur’s value. This will be the case if βF (k̄, η) < k̄, that is, if the worst

realization of the shock implies negative profits.

The next proposition relates some of the properties of the renegotiation-proof contract to the

properties of the long-term contract when qmin = 0.

Proposition 4 There exists κ̄ > 0 such that for q < q̄:

(a) If κ < κ̄ the long-term contract is not free from renegotiation.

(b) If κ > 0 the firm is liquidated with positive probability in both the long-term-contract and the

renegotiation-proof contract.

(c) If κ = 0 the firm is never liquidated in the long-term contract but could be liquidated in the

renegotiation-proof contract.

Proof: Appendix H.

Therefore, liquidation does not require commitment. In fact, the renegotiation-proof contract

always leads to liquidation (with some probability) if the firm is liquidated in the long-term contract.

The reverse, however, is not necessarily true. When κ = 0, the renegotiation-proof contract may

lead to liquidation even if the firm is never liquidated in the long-term contract.

It is important to point out that the breakdown of the contract does not derive from the

fall in the future production capability or market opportunities of the firm. It is determined by

the inability to finance any input of capital for which the investor’s value is positive. Using the

terminology of Aghion & Bolton (1992) and Hart & Moore (1994), the entrepreneur would not have

enough resources to bribe the creditor not to liquidate the firm.

17



6 Initial conditions and existence of a contract

A new contract generates a surplus that will be shared between the two parties according to their

bargaining power. Assuming competition in financial markets, the initial value of the contract for

the entrepreneur is the maximum value of q that satisfied the participation constraints:

S(q)− q ≥ I0 − a0 (8)

q ≥ a0 (9)

The first constraints imposes that the value of the contract for the investor, S(q) − q, cannot be

smaller than its costs I0−a0 (remember that the initial fixed investment is I0 and the entrepreneur

contributes a0 to the financing of the contract). The second constraint imposes that the value of

the contract for the entrepreneur cannot be smaller than his or her initial wealth.

The initial wealth of the entrepreneur—the variable a0—plays a crucial role in determining the

existence of a renegotiation-proof contract. Because in a renegotiation-proof contract S(q)− q ≤ κ

for all q, condition (8) is not satisfied when a0 = 0 (remember that I0 > κ). Therefore, if the

entrepreneur has zero wealth, the value of the contract for the investor is negative and the project

will not be financed. For the existence of a contract the initial entrepreneur’s wealth must be

sufficiently large. More specifically, because in a renegotiation-proof contract the maximum value

for the investor is S(q)− q = κ, the entrepreneur must be able to self-finance the part of the set-up

investment that is sunk, that is, a0 ≥ I0 − κ. Moreover, even if a0 ≥ I0 − κ and the investor is

willing to finance the firm, it may be that the initial q is smaller than a0, that is, the participation

constraint for the entrepreneur (9) is not satisfied. Notice that Assumption 3 guarantees that

constraint (9) is satisfied for sufficiently large values of a0 but not for all a0 ≥ I0 − κ. This is

another dimension in which the personal wealth of potential entrepreneurs affects the formation

of a new businesses. The importance of wealth for entrepreneurial start up is supported by the

empirical studies of Evans & Jovanovic (1989), Evans & Leighton (1989), Holtz-Eakin, Joulfaian,

& Rosen (1994) and Quadrini (1999).

There is also another feature of the model that should be emphasized. Because S(q) is strictly
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increasing in q < q̄, the marginal increase in the initial value of the contract for the entrepreneur

with respect to a0 is greater than 1. It would be 1 if S(q) is constant. This feature implies that it is

optimal for the entrepreneur to contribute with the whole personal wealth to the initial financing

of the project.

Finally, it should be noted that in this model renegotiation-proofness also holds if entrepreneurs

are not excluded from the market, that is, they are able to start a new firm by signing a new contract

with a different investor. To see this let’s observe that in case of liquidation the entrepreneur ends

up with zero wealth (see Proposition 1). With zero wealth there is no contract that allows the

investor to break even. Therefore, the entrepreneur will not be able to start a new firm. Also

notice that this conclusion does not hold when I0 = κ, that is, when the set up investment is not

sunk. Because in this case S(q)− q = κ, a new investor will break even by starting the contract at

q = q. However, it is unlikely that the set up investment can be fully recovered when the firm is

liquidated.

7 Properties of the optimal and renegotiation-proof contract

This section describes the dynamics properties of the firm induced by a renegotiation-proof contract.

Although some of these properties where implicitly derived in the previous sections, it would be

useful to restate them here.

Property 1 (Cash-flow sensitivity) The investment of constrained (small) firms depends on

cash-flows, while the investment of unconstrained (large) firms is independent of cash flows.

This follows directly from Proposition 1. When q′ < q̄, the next period input of capital is

smaller than the optimal level k̄ and depends on q′. Because q′ depends on F (k, η), then k′

depends on current cash-flows. Once q ≥ q̄, the input of capital is always kept at the optimal level

k̄ independently of F (k, η).6 Therefore, the model seems to generate the heterogeneous cash flows

6Although cash flows have on average a positive effect on investment when q < q, their impact is not necessarily
monotone. The cash-flows sensitivity would be monotone if k is strictly increasing in q ∈ [q, q̄), but in general this

does not have to be the case.
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sensitivity of investment emphasized in empirical papers. We should observe, however, that once

we control for the Tobin’s q—defined as the ratio [F (k, η) + S̃(q̃(η))]/(I0 + k)—cash-flows have no

explanatory power.

There are two points that need to be clarified regarding this observation. The first point is that

the result that the Tobin’s q is a sufficient statistic for investment applies only when the shock is

i.i.d. As will be argued in Section 9, cash-flows have an explanatory power beyond the Tobin’s q

when the shock is persistent. In this sense the model seems to be consistent with the empirical

studies about the cash flow sensitivity of investment.

The second point is that, with i.i.d. shocks, the Tobin’s q is a sufficient statistic for the financial

status of the firm. This implies that the use of this variable to isolate the future production

capability or market opportunities of the firm may give misleading answers about the importance

of financial constraints. More specifically, even though cash-flows are not statistically significant

(once we control for the Tobin’s q), this does not mean that firms are financially unconstrained

or that financial factors are not important for investment. The main problem is that the Tobin’s

q reflects both the technology or market opportunities of the firm as well as its financial status.

In the analysis conducted so far—based on i.i.d. shocks—the Tobin’s q reflects only the financial

condition of the firm. In the case of persistent shocks it reflects both its financial status as well as

its technology or market opportunities.

Property 2 (Liquidation pattern) Small (constrained) firms face a positive probability of liq-

uidation at some future date, while large (unconstrained) firms are never liquidated.

This property follows directly from Propositions 1, 2 and 4. As for the previous property, there

is no guarantee that the liquidation probability is monotonically decreasing in q. This will be the

case if k and the term h′(0)[F (k, η)−EF (k, η)]+q/β are increasing in q. In the numerical example

studied in the next section, this probability decreases monotonically with q.

Property 3 (Investor share) The investor’s share of the surplus is decreasing in q ∈ (q, q̄).
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Proposition 1 has shown that S(q) is strictly increasing for q ∈ (q, q̄). Moreover, for a

renegotiation-proof contract the slope of S(q) is not greater than 1, which implies that S(q) − q

is not increasing. Therefore, (S(q)− q)/S(q) is strictly decreasing. Notice that this property does

not necessarily hold for an optimal long-term contract. This is because the slope of S(q) is not

necessarily smaller than 1.

Properties 2 and 3 imply that the probability of liquidation is positive when the entrepreneur’s

share of the firm is low. Therefore, the liquidation of the firm has several features that resemble a

firm’s bankruptcy. First, the firm faces a high probability of liquidation when the share value of

external investors (relative to the total value of the firm) is high. Second, the external investors

have the priority in the assets of the firm in case of liquidation (see Proposition 1). Third, the

probability of liquidation is positive for small firms, a feature which is also seen in the data.

Property 4 (Investment volatility) Small (constrained) firms face higher volatility of invest-

ment and growth than large (unconstrained) firms.

This is obvious given that the investment of small firms depends on cash-flows while it is constant

for large firms. If we assume that the firm’s employment depends on the input of capital, then

small firms also experience higher rates of job turnover (creation and destruction). Because small

firms are on average younger (assuming that when they enter they have limited internal funds),

it also follows that the job turnover in younger firms is greater than in older firms. This is also

another feature of the data as shown in Davis, Haltiwanger, & Schuh (1996).

Property 5 (Savings) Entrepreneurs in small (constrained) firms have higher rates of savings.

We have seen in Proposition 1 that the entrepreneur’s consumption is zero before the firm

reaches the unconstrained status. This is motivated by the higher internal return before the en-

trepreneur’s wealth reaches q̄. The higher incentive to save should also hold if the entrepreneur is

risk averse, although in this case consumption would be positive before reaching the unconstrained

status. This property is consistent with the evidence of higher entrepreneurial savings as shown in

Quadrini (1999, 2000) and Gentry & Hubbard (2000).
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8 Other properties of the optimal contract: a numerical analysis

This section characterizes some other properties of the optimal contract, using a parameterized

version of the model. The period in the model is one year and the discount factor is 0.95. The

gross revenue function takes the form F (k, η) = ηAkν +(1−δ)k, with η uniformly distributed in the

interval [0, 2], ν = 0.85, δ = 0.25 and A = 0.356. The parameter ν determines the rents of the firm

generated by decreasing returns to scale and/or monopolistic power. Atkeson, Khan, & Ohanian

(1996) provide some arguments suggesting that ν = 0.85 is a reasonable parameterization of this

parameter. The term δk is interpreted as the sum of capital depreciation and labor costs. The

value of 0.25 is consistent with the standard depreciation rate and the labor income share used in

calibrated macro models. The parameter A is such that the optimal input of capital is normalized

to k̄ = 1. With respect to the volatility of η I will conduct a sensitivity analysis.

The diversion function takes the form h(1− e) = α · (1− e). In the baseline model α = 1 which

implies that the entrepreneur is able to consumes all the hidden cash-flow.

To allow for industry dynamics, that is, entrance and exit, I make an additional assumption.

In each period there is the entrance of a fixed mass of new firms with initial q = q. Therefore, new

firms are small initially which is consistent with the data. To generate an invariant distribution of

firms I also need to allow for some exogenous exit. Otherwise, for each cohort of new entrants there

will be some firms that reach the unconstrained status and never exit. This would imply that the

total mass of firms grows over time without bound. Exogenous exit is obtained by assuming that in

each period the firm faces a probability φ of becoming unproductive and is liquidated. Technically

this is obtained by replacing the constraint p(η) ∈ [0, 1] with the constraint p(η) ∈ [φ, 1]. Obviously,

this does not change the analytical structure and properties of the model we have studied in the

previous sections. The exogenous probability is set to φ = 0.04. Together with the endogenous

probability, the average exit rate is about 5 percent. This is consistent with the empirical numbers

found in industry dynamics studies such as Evans (1987).

Finally, the liquidation value κ is set so that the initial size of new firms (which is equal to the

minimum size in the model) is 25 percent the size of incumbent firms. This is consistent with the

numbers reported in OECD (2001). The required value is κ = 0.4. The initial set-up investment I0
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does not need to be specified. The only requirement is that it cannot be too large (see Assumption

3). Given I0, the initial assets of the entrepreneur must be a0 = I0 − κ. With respect to the

parameters κ and a0 I will conduct a sensitivity analysis.

Properties of the contract and firm dynamics: Panel a of Figure 4 plots the minimum and

maximum values of q̃(η), that is, q̃(η) and q̃(η̄), as functions of the entrepreneur’s value q. These

values are both increasing in q with the exception of q̃(η) when q is very small. This is because

for small values of q the optimal policy is binding, that is, q̃(η) = qmin. The value of qmin that

makes the optimal contract renegotiation-proof is qmin = 0.111. The other relevant thresholds are

q = 0.172 and q̄ = 3.69.

The minimum value of q̃(η) is always below the 45 degree line before q reaches q̄. Notice that

the plots are constructed only for values of q ≤ 1.5, which is smaller than q̄ = 3.69. This is because

for q > 1.5, the investment behavior of the firm is already very close to the investment behavior of

unconstrained firms as will be shown in the next panel. The fact that q̃(η) is below the 45 degree

line implies that there is a positive probability that the next period value of q is smaller than the

current value. This was formally established in Proposition 2. Because qmin < q, this also implies

that some firms will be “endogenously” liquidated in the model before they reach q = q̄ (remember

that the probability of liquidation at some future date is positive if q̃(η) ∈ [qmin, q)).

The second panel plots the current input of capital k and the minimum and maximum values

for the next period capital, conditional on survival. Because k is monotonically increasing in q,

the relation between investment and cash-flows is also monotone, that is, higher cash-flows are

associated with higher investments. The monotonicity of q̃(η) and k implies that the probability

that the firm is liquidated at some future date is strictly decreasing in q. Although the monotonicity

cannot be generalized for all parameterizations, it holds for a large range of parameters.

Panel c of Figure 4 plots the standard deviation of capital growth as a function of the current

size of the firm, k, conditional on survival. As the firm expands and becomes larger, the volatility

of investment falls. Finally, panel d plots the invariant distribution given the continuous entrance

of new firms with initial q = q. Eventually, some firms will reach the unconstrained status with

k̄ = 1, which explains the concentration in the largest class.
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Figure 4: Properties of the contract and invariant distribution

Figure 5 provides information about the age dynamics of firms. After the initial entrance with

q = q, the firm will expand if it realizes a good shock and contracts if it realizes a bad shock. Because

new entrants start with q = q, for new firms is more likely to have q̃(η) < q. This implies that

they face higher probability of exit. This is shown in panel a, where the exit rate for newly created

firms (firms that are one year old) is more than 10 percent. Because the exogenous probability

of exit is 4 percent, for these firms the endogenous exit probability is about 7 percent. After the

first period of life, firms that obtain a good shock will have q > q and face a lower probability

of liquidation. This explains why the average exit probability decreases with age. It is important

to point out, however, that age is not an additional explanatory variable for the dynamics of the

firms beyond their size. The reason younger firms face lower survival rates is because they are on

average smaller. The average size of firms for different age cohort is plotted in panel b.

Panel c plots the fraction of surviving firms that are “unconstrained”. In this graph uncon-

strained firms are defined as those for which the input of capital is at least 99 percent the optimal
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Figure 5: Age dependence.

level k̄ = 1. The fraction of these firms grows over time and converges to 1. After 20 years,

about half of the surviving firms operate at or are close to the optimal scale. This figure provides

information about the average time necessary to reach or being close to the optimal scale.

The last panel plots the standard deviation of capital growth. As more and more firms approach

the unconstrained status, the volatility of investment declines. This pattern also shows that the

sensitivity of investment to cash flows tends to decline for older firms.

Commitment versus renegotiation-proof contracts: Although long-term contracts that are

not free from renegotiation cannot be used as a positive theory of actual behavior, it would be

interesting to know how the equilibrium would change if commitment were possible.

Figure 7 plots several variables capturing the dynamics of firms for different age cohorts. Two

cases are considered: when agents are able to commit to long-term contracts and when contracts

are renegotiation-proofs. In the case of renegotiation-proof contracts new firms enter with initial
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q = q. This implies that, at the moment of signing a new contract, the personal wealth of the

entrepreneur is a0 = I0 − κ. In the case of commitment it is assumed that new entrepreneurs have

the same initial wealth a0 = I0−κ. The initial entrepreneur’s value is then determined as described

in Section 6, that is, as the maximum value of q that does not violate the participation constraint

for the investor. Because with commitment the surplus of the contract is higher for any q ∈ [q, q̄),

the initial q is larger than in the case of renegotiation-proof contracts. The initial determination of

q is shown in Figure 6. The figure plots the value of the contract for the investor, S(q)−q, with and

without commitment. In the figure, qRP is the initial q in the environment with renegotiation-proof

contracts and qCO is the initial q in the environment with commitment.

S(q)− q

κ

q
qRP qCO

r r
-

6

Figure 6: Initial conditions of the optimal contract.

As shown in Figure 7, in the environment with long-term contracts firms experience lower

exit rates initially (panel a). This is because the initial q is larger than q. Of the initial cohort,

some firms experience low realizations of η and they get close to q. This will increase the average

probability of exit. Over time, however, fewer firms will have values of q that are close to q and

the average exit rate is approximately equal to the exogenous rate φ.

As a result of the higher initial q, firms reach the optimal scale faster and for each age cohort

there is a larger fraction of firms operating at the optimal scale (see panel b). Panel c shows that

the average firm size is larger for each age cohort and panel d shows that the volatility of growth

is smaller. Therefore, the ability to commit reduces the tightness of financial constraints for the

whole economy and reduces the firm level volatility.
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Figure 7: Equilibrium with and without commitment.

Sensitivity analysis: Figure 7 conducts a sensitivity analysis with respect to several parameters.

The first two panels plot the average capital and the fraction of unconstrained firms for different

values of the repudiation parameter α. Lower values of α means that the entrepreneur gets lower

utility from diversion. This relaxes the tightness of the agency problems and, as a result, the average

size of firms and the fraction of unconstrained firms increase. This parameter can be interpreted

as an index of investor protection. The model would then predicts that higher investor protection

increases capital investment. In this sense the paper is related to the literature in law and finance.

See Demirguc-Kunt & Levine (2001) for a comprehensive review of the main empirical findings.

Panels b.1 and b.2 shows the sensitivity with respect to the variability of the shock. Lower

variability reduces the severity of agency problems and allows for higher investment. This is because

it is more difficult to divert a large fraction of resources when there is lower uncertainty at the firm

level. In the extreme case in which the range of the shock is zero and there is not uncertainty, the

firm will be unconstrained from the beginning.
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Figure 8: Sensitivity analysis.

Panels c.1 and c.2 show the sensitivity with respect to the liquidation value κ. Lower values

of κ are associated with higher values of qmin, that is, the lower bond that makes the contract free

from renegotiation. This will also increase the value of q. Because the initial size of new firms is

assumed to be q, this implies that new entrants are initially larger. The larger size of new entrants

associated with smaller values of κ tends to persist for several age cohorts of firms.

The last two panels show what happens if we increase the initial wealth of the entrepreneur

a0. In the baseline model we assumed that the initial wealth is just enough to pay for the sunk

part of the set-up investment I0 − κ. This implies that the initial state of the firm is q = q. If we
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increase a0, the initial q will also increase. Therefore, if potential entrepreneurs are endowed with

higher values of wealth, the initial size of firms is larger. The larger size of firms tend to persist

for several age cohorts as shown in panel d.1. This also explains why the fraction of unconstrained

firms increases (see panel d.2 ).

9 History dependence

In this section I briefly describe how the analysis of the previous sections can be extended to the

case in which there is history dependence. For economy of space, the technical analysis is contained

in a supplemental appendix available upon request from the author. Here I simply describe the

details of the model and summarize the main properties.

Assume that the shock still takes values in the set η ∈ [η, η̄] and is observed only by the

entrepreneur. However, the probability density depends on a variable z that follows a finite state

Markov chain with transition probabilities Γ(z/z−1). The density function for the shock is denoted

by g(z, η) and it is assumed that g(z, η) is stochastically dominated by g(ẑ, η) if z < ẑ. I refer to

z as the “persistent factor”.

In the supplemental appendix I study two cases. In the first case z is observed by both parties

(public information) while in the second case z is observed only by the entrepreneur (private

information). Although the analysis of these two cases require different tools, the qualitative

properties of the optimal and renegotiation-proof are similar. These properties are also similar to

the properties emphasized in Section 7 for the case of i.i.d. shocks, albeit with some qualifications.

Property 1 (Cash-flow sensitivity) Controlling for z, the investment of constrained firms

depends on cash-flows, while the investment of unconstrained firms is independent of cash flows.

Notice that the investment of unconstrained firms still depends on cash-flows if we do not control

for z because the persistent factor affects the next period unconstrained capital, that is, k′ = k̄(z).

With history dependence the Tobin’s q is no longer a sufficient statistic for the investment of

constrained firms. The reason is because firms are now affected by two shocks: z and η. Because

these shocks are not perfectly correlated, they have a differential impact on the investment decision
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of the firm which cannot be summarized by a single variable, that is, the Tobin’s q. In this respect

the cash-flow sensitivity of investment resembles the results of Abel & Eberly (2002). In their model

cash-flows have an additional explanatory power even if there are no financial frictions because the

firm is affected by multiple shocks.

The result of Abel & Eberly (2002) points out that the cash-flow sensitivity of investment may

not be a good proxy for the existence of financial constraints. At the same time, the absence of cash-

flow sensitivity (once we control for the Tobin’s q) does not imply that the firm is unconstrained.

In fact, we have seen in Section 7 that with i.i.d. shocks the investment of constrained firms is fully

explained by the Tobin’s q. These remarks parallel earlier results by Gomes (2001).

Property 2 (Liquidation pattern) For any value of z−1, constrained firms face a higher prob-

ability of liquidation at some future date than unconstrained firms.

With i.i.d. shocks, unconstrained firms would never be liquidated. With persistent shocks,

however, the expected productivity of the firm may become so low that the expected future profits

are smaller than the liquidation value κ. This would depend not only on the current value of the

persistent factor z−1 but also on its persistence. However, even if the probability of liquidation

for unconstrained firms is positive, this probability is smaller than for constrained firms. More

importantly, if we control for the future production capability and market opportunities of the

firm—that is, the persistent factor z—there are values of z−1 for which unconstrained firms are

never liquidated while constrained firms will be liquidated with positive probability at some future

date. Unconstrained firms will be liquidated only if they experience a large fall in z.

Property 3 (Investment volatility) Controlling for z−1, constrained firms face higher volatil-

ity of investment and growth than unconstrained firms.

This property derives directly from the cash-flows sensitivity (property 1): if we control for

z−1, the investment of unconstrained firms remain constant independently of the realization of η.

Therefore, they do not experience any volatility of investment and growth. The investment of

constrained firms, instead, depends on q′ which in turn depends on the realization of the shock.
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10 Conclusion

The study of financially distressed firms has always received special attention due to the concern

that, in case of liquidation, viable productive units would be inefficiently destroyed. However, if

the liquidation of the firm is decided within optimal arrangements, it seems counterintuitive that

these arrangements would allow for the liquidation of viable projects. Is it possible that in optimal

contracts firms with good technologies and market opportunities are liquidated? The answer is yes

if there are agency problems induced by information asymmetry and if the contractual parties are

able to commit to the initial terms of the contract (long-term contract). In order to induce the

desired action from the entrepreneur, it is optimal to make the liquidation of the firm conditional

on its performance. However, once the entrepreneur has taken his or her action and the investor has

observed the firm’s performance, liquidation may be inefficient and the parties have an incentive

to renegotiate. This conclusion may lead to the conjecture that liquidation is never observed in

a renegotiation-proof contract, unless driven by a deterioration of the firm technology or market

opportunities. One of the results of this paper is to invalidate this conjecture. More specifically,

this paper shows that a firm can be liquidated in the renegotiation-proof contract even if liquidation

is not free from renegotiation in the long-term contract.

In addition to providing a positive theory of the firm’s liquidation based on financial factors,

this paper also shows that the renegotiation-proof contract can generate several features of the

firms’ investment behavior and dynamics observed in the data. Thus, financial market frictions, in

addition to technological factors, are important for understanding the life-cycle dynamics of a firm

as well as its investment behavior.
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Appendix

A Definition of a Long-term contract and recursive formulation

Denote by ht the history of shock announcements conditional on the survival of the firm, that is, ht ≡

{η̂1, ..., η̂t}. Denote by Ht the collection of all possible histories up to time t. Conditional on survival, a

contract specifies an input of capital k used in period t as a function of ht−1, a liquidation probability p as

a function of (ht−1, η̂t) and a payment to the entrepreneur c as a function of (ht−1, η̂t, `t). The payments

to the investor are determined residually from the budget constraint. Henceforth, I will use the following

notational convention: (ht−1, η̂t) refers to the history up to time t, conditional on the survival of the firm to

t, but before randomizing on liquidation. Instead, ht refers to the history up to time t after randomizing,

conditional on the survival of the firm to t + 1. Therefore, the difference between (ht−1, η̂t) and ht is that

in the former the uncertainty about the survival of the firm to the next period has not been resolved yet,

while in the latter it has been resolved in favor of continuation. A formal definition of the contract follows:

Definition 2 (Contract) A contract σ = (σk, σp, σc) consists of a sequence of functions {σt}∞t=0 =

{σk
t , σp

t , σc
t}∞t=0, with σk

t : Ht → R+, σp
t : Ht ×N → [0, 1], σc

t : Ht ×N× {0, 1} → [0, c̄].

Implicit in the definition of the contract is its feasibility which requires that the inputs of capital and

the payments to the entrepreneur are non-negative. In addition, I have imposed that the payments to the

entrepreneur take values in the compact set C = [0, c̄]. The upper bound c̄ is sufficiently large that it is

never binding in the model.

To simplify the notation, I first define the following functions:

σ̄c(ht−1, η̂t) = σp(ht−1, η̂t) · σc(ht−1, η̂t, 1) + (1− σp(ht−1, η̂t)) · σc(ht−1, η̂t, 0) (10)

π(ht−1, η̂t) = −σk(ht−1) + β
[
F (σk(ht−1), η̂t) + σp(ht−1, η̂t) · κ− σ̄c(ht−1, η̂t)

]
(11)

The first function is the expected payment to the entrepreneur, given the strategies σp(ht−1, η̂t) and

σc(ht−1, η̂t, `t). The second can be interpreted as the flow return for the investor given the strategies

σk(ht−1), σp(ht−1, η̂t) and σc(ht−1, η̂t, `t): the investor anticipates σk(ht−1) at t − 1 and for each η̂t an-

nounced in the next period, he or she expects to receive F (σk(ht−1), η̂t) + σp(ht−1, η̂t) · κ− σ̄c(ht−1, η̂t).

A contract must be individually rational and incentive compatible. Acceptability or individual rationality

requires that the expected benefits for both parties are non smaller than their reservation values. At the

moment of signing the contract, the reservation value for the investor is zero while for the entrepreneur
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is the value of his or her wealth a0. After signing the contract, the investor commits to fulfill any future

obligation while the reservation value for the entrepreneur, conditional on continuation, cannot be smaller

than qmin ≥ 0. The definition of individual rationality follows.

Definition 3 (Individual rationality) A contract σ is individually rational if:

E0

∞∑
t=1

βt−1π(ht−1, η̂t) ≥ I0 − a0 (12)

E0

∞∑
t=1

βtσ̄c(ht−1, η̂t) ≥ a0 (13)

Et

∞∑
s=t

βs−tσ̄c(hs−1, η̂s) ≥ qmin ∀ ht−1 ∈ Ht−1, t ≥ 1 (14)

Conditions (12) and (13) are the participation constraints for the investor and the entrepreneur at

the moment of signing the contract, while (14) is the acceptability condition for the entrepreneur at each

subsequent history in which the firm is not liquidated. Given the assumption of commitment, for the investor

there is no other acceptability constraint beyond the first period. Notice that the expectation is conditional

on ht−1 (which is conditional on survival) and η̂t.

Definition 4 (Incentive-compatibility) A contract σ is incentive compatible if for all ht−1 ∈ Ht−1,

ηt, η̂t ∈ N, t ≥ 1,

Et

∞∑
s=t

βs−tσ̄c(hs−1, ηs) ≥ D(σk(ht−1), ηt, η̂t) + σ̄c(ht−1, η̂t) + Et

∞∑
s=t+1

βs−tσ̄c(ĥs−1, ηs)

where ĥt = {ht−1, η̂t} and ĥs = {ĥs−1, ηs} for s > t.

Incentive-compatibility requires that, for each history of shocks and conditional on the survival of the

firm, the entrepreneur has no incentive to misreport the shock and divert resources, assuming that the en-

trepreneur follows the truth-telling strategy in all future periods. The return from announcing a smaller shock

(and diverting resources) is given by the unobservable private return D(k, η, η̂) = h(1 − e(k, η, η̂))F (k, η),

plus the expected payment received with the announcement of η̂t and the continuation value following the

history ĥt. If incentive-compatibility for one-shot deviation is satisfied, it will be satisfied for any finite

number of deviations. (See theorem 4.2 in Fudenberg & Tirole (1993).)
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To use a more compact notation, denote by U I(σ) the expected value of the contract σ for the investor

and UE(σ) the expected value for the entrepreneur. They are defined as:

U I(σ) = E0

∞∑
t=1

βt−1π(ht−1, η̂t) (15)

UE(σ) = E0

∞∑
t=1

βtσ̄c(ht−1, η̂t) (16)

The properties of individual rationality and incentive-compatibility are:

U I(σ) ≥ I0 − a0 (17)

UE(σ) ≥ a0 (18)

UE(σ|ht−1, η̂t) ≥ qmin, ∀ ht−1 ∈ Ht−1, η̂t ∈ N, t ≥ 1 (19)

UE(σ|ht−1, ηt) ≥ UE(σ|ht−1, η̂t), ∀ ht−1 ∈ Ht−1, ηt, η̂t ∈ N, t ≥ 1 (20)

While conditions (19) and (20) have to be satisfied at each point in time and for each history, conditions

(17) and (18) have to be satisfied only at the moment of signing the contract. It would be convenient then to

characterize implementable contracts disregarding, for the moment, conditions (17) and (18). Henceforth, I

will refer to a contract that satisfies conditions (19) and (20) simply as “long-term contract”.

B Set of implementable contracts and recursive formulation

Define V the set of values achievable by the investor and the entrepreneur with long-term contracts.

V =
{

(U I(σ), UE(σ)) ∈ R2
∣∣∣ σ satisfies (19)-(20)

}

The next proposition establishes an important property of this set.

Proposition 5 The set V is not empty and compact.

Proof: See Abreu, Pearce, & Stacchetti (1990).

The fact that the set V is not empty is easy to prove. Consider the contract in which the investor makes

a fixed payment to the entrepreneur in every period and the entrepreneur retains and reinvests optimally all

the profits. Of course, this contract is incentive compatible. It may violate the initial acceptability condition

34



but, for the moment, the definition of a long-term contract does not take into account this constraint. The

compactness proof is more complex and can be obtained by following the steps used by Abreu et al. (1990).

Define SE the set of values achievable by the entrepreneur with long-term contracts, that is,

SE =
{

q ∈ R
∣∣∣ ∃ u ∈ R s.t. (u, q) ∈ V

}
(21)

Moreover, define SI(q) the set of values achievable by the investor with long-term contracts, conditional

on the entrepreneur receiving the value q ∈ SE . Formally, for all q ∈ SE ,

SI(q) =
{

u ∈ R
∣∣∣ (u, q) ∈ V

}
(22)

The utility frontier, defined over q ∈ SE , is given by the function:

UF (q) = max u ∈ SI(q) (23)

Even if a contract delivers initially values that are located on the utility frontier, the continuation values

at some future history may be interior to the set V. In the remaining part of this section, I will show that

future values delivered by an optimal long-term contract are always located on the frontier. This result

allows me to characterize the optimal contract recursively using a Bellman’s equation.

In defining the recursive problem, it is convenient to work with the total surplus generated by a long-term

contract, that is, the sum of values for the investor and the entrepreneur. Therefore, instead of working

with the function UF (q), I will use the function S∗(q) = UF (q) + q. Of course, if the surplus of a long-term

contract satisfies this function, then the contract values are located on the utility frontier.

Define C(q) = {k(q), p(q)(η̂), c(q)(η̂, `), v(q)(η̂, `)} the functions that, for each state q ∈ SE , give the

invested capital k ∈ K, the liquidation probability p ∈ [0, 1], the payment to the entrepreneur c ∈ C and the

next period value for the entrepreneur q′ ∈ SE . Moreover, for any bounded function S : R+ → R, define
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the mapping T as:

T (S)(q) = max
C(q)

∫ η̄

η

[
− k + β[F (k, η) + p(η)κ + (1− p(η))S(v(η, 0))]

]
g(dη) (24)

subject to

p(η)[c(η, 1) + v(η, 1)] + (1− p(η))[c(η, 0) + v(η, 0)] ≥ (25)

D(k, η, η̂) + p(η̂)[c(η̂, 1) + v(η̂, 1)] + (1− p(η̂))[c(η̂, 0) + v(η̂, 0)] ∀ η, η̂ ∈ N

q = β

∫ η̄

η

(
p(η)[c(η, 1) + v(η, 1)] + (1− p(η))[c(η, 0) + v(η, 0)]

)
g(dη) (26)

p(η)[c(η, 1) + v(η, 1)] + (1− p(η))[c(η, 0) + v(η, 0)] ≥ qmin (27)

The function S is the surplus generated by the contract if the firm is not liquidated. In defining the above

mapping, I have dropped the dependence of the policy functions from q to simplify the notation. Observe

that, by imposing the incentive-compatibility constraints (25), the entrepreneur will never divert resources.

Consequently, the contractual problem is specified assuming η̂ = η. Also observe that k denotes the capital

invested today which will give the revenue F (k, η) in the next period, after the realization of the next period

shock η. Therefore, the current net value of revenues is −k + βEF (k, η).

Proposition 6 The surplus function S∗(q) is the fixed point of the mapping T , that is, S∗(q) = T (S∗)(q),

for all q ∈ SE.

Proof:To prove that S∗ = T (S∗), I show that both S∗ ≥ T (S∗) and S∗ ≤ T (S∗) hold. To show that

S∗ ≥ T (S∗), it is enough to prove that there exists a long-term contract σ such that UE(σ) = q and

U I(σ) + UE(σ) = T (S∗). Consider the contract σ = {σk(h0), σp(h0, η), σc(h0, η, `), σ|h1} where the first

components are defined as:

σk(h0) = k(q0)

σp(h0, η) = p(q0)(η)

σc(h0, η, `) = c(q0)(η, `)

and the continuation satisfies:

U I(σ|h1) = S∗(v(q0)(η, 0))− v(q0)(η, 0)

UE(σ|h1) = v(q0)(η, 0)
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Notice that this is possible because S∗
(
v(q0)(η, 0)

)
−v(q0)(η, 0) ∈ VI and v(q0)(η, 0) ∈ VE. By construction

the above contract satisfies U I(σ) + UE(σ) = T (S∗). Because U I(σ) + UE(σ) cannot be bigger than S∗, I

have proved that S∗ ≥ T (S∗).

I show now that S∗ ≤ T (S∗). For any contract σ for which (U I(σ|q), UE(σ|q)) ∈ V(q), we have:

U I(σ|q) + UE(σ|q) ≤ T (S∗)(q) (28)

This must also hold for the contract that maximizes U I(σ|q) + UE(σ|q), which is S∗(q). Because this holds

for all q, then S∗ ≤ T (S∗). Q.E.D.

C Definition of renegotiation-proof contract

Definition 5 (Renegotiation-proof contract) A contract σ is renegotiation-proof if there is no other

implementable (feasible, individually rational and incentive-compatible) contract σ̂ for which

UE(σ̂|ht−1, ηt) > UE(σ|ht−1, ηt) and U I(σ̂|ht−1, ηt) > U I(σ|ht−1, ηt),

UE(σ̂|ht) > UE(σ|ht) and U I(σ̂|ht) > U I(σ|ht)

for any ht ∈ Ht, ηt ∈ N, and t ≥ 1.

The two conditions impose renegotiation-proofness in the two stages of the contract: before and after ran-

domization. This definition is consistent with several definitions adopted in the literature. See Bergin &

MacLeod (1993) for a review.

D Proof of Lemma D

Let D(k, η, η̂) = h(1− e(k, η, η̂))F (k, η) the private return from diverting resources when the true shock is η

and the announcement is η̂. The marginal gain in private return from decreasing the shock announcement

from η̂ is equal to the negative of the derivative of D(k, η, η̂) with respect to η̂. Because e(k, η, η̂) =

F (k, η̂)/F (k, η), the marginal gain is −Rη̂(k, η, η̂) = h′(1− e(k, η, η̂))Fη(k, η̂).

Incentive-compatibility requires that the marginal gain from diverting is not larger than the marginal

loss in promised value from the schedule q̃(η̂). In particular, this must be satisfied at η̂ = η. When

η̂ = η, e(k, η, η) = 1 and the marginal gain from diversion is h′(0)Fη(k, η). Now consider the function
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b(η̂) = q̃(η) +
∫ η̂

η
h′(0)Fη(k, η) = q̃(η) + h′(0)[F (k, η̂) − F (k, η)]. This is the integral from η to η̂ of the

marginal gain from diverting at the true shock, added to the term q̃(η). If the schedule q̃(η̂) is equal to b(η̂),

then the entrepreneur does not have an incentive to marginally divert resources from the true realization of

the shock η. However, this does not exclude that the entrepreneur has an incentive to announce a value of

η̂ smaller than η. The next step is to show that under the schedule q̃(η̂) = b(η̂), the entrepreneur has no

incentive to announce any η̂ < η. It is enough to show that the marginal gain evaluated at η̂ is (weakly)

decreasing in the true realization of the shock η. This simply means that the marginal gain from further

decreasing η̂ is smaller the farther is η̂ from the true shock η. Let η1 and η2 be two different true realizations

of the shock and η̂ a possible shock announcement. They satisfy η̂ ≤ η1 < η2. The marginal gains evaluated

at η when the true shock is respectively η1 and η2 are:

h′(1− e(k, η1, η̂))Fη(k, η̂) if η = η1 (29)

h′(1− e(k, η2, η̂))Fη(k, η̂) if η = η2 (30)

Because e(k, η1, η̂) > e(k, η2, η̂) and h(.) is concave, we have that h′(1 − e(k, η1, η̂))Fη(k, η̂) ≥ h′(1 −

e(k, η2, η̂))Fη(k, η̂). This means that the entrepreneur gains less in private return from marginally decreasing

η̂, when the true shock η is higher. Because the schedule b(η̂) guarantees that the gain in promised value from

not diverting at η̂ = η is equal to the gain from marginally diverting, it must still be true that the marginal

gain in private return is not larger than the marginal loss in promised value from marginally decreasing η̂

when η̂ < η.

The function b(η̂) is not the only incentive-compatible schedule. It only sets lower bounds to its slope.

Therefore, any schedule q̃(η̂) such that q̃(η̂)−b(η̂) is not decreasing in η̂, is also incentive compatible.Q.E.D..

E Proof of Proposition 1

Let’s assume that b(η) is the optimal schedule, that is, q̃(η) = q̃(η) = q̃(η) + h′(0)[F (k, η)− F (k, η)]. I will

show later that this is not only an assumption but it is optimal.

In addition to incentive-compatibility, the entrepreneur must also get the promised value, that is,

q = βEq̃(η). Substituting the optimal schedule in the promised keeping constraint, we get q = βq̃(η) +

βh′(0)[EF (k, η) − F (k, η)]. Because q̃(η) cannot be smaller than qmin, this constraint imposes an upper

bound to k. This constraint also makes clear that smaller is q, and smaller is the upper bound on k. Using
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this equation to eliminate q̃(η) in q̃(η) = q̃(η) + h′(0)[F (k, η)− F (k, η)] we get:

q̃(η) = h′(0)[F (k, η)− EF (k, η)] +
q

β
(31)

Equation (31) defines the schedule for the next period promised value q̃(η) (before randomization), given

the input of capital. Notice that q̃(η) is fully determined by the choice of k.

Consider now the following mapping:

T (S)(q) = max
k≥0,p(η),c(η,`),q(η,`)

{
− k + βE [F (k, η) + p(η)κ + (1− p(η))S (q(η, 0))]

}
(32)

subject to

q̃(η) = h′(0)[F (k, η)− EF (k, η)] +
q

β

q̃(η) = p(η)[c(η, 1) + q(η, 1)] + (1− p(η))[c(η, 0) + q(η, 0)]

q ≥ βqmin + βh′(0)[EF (k, η)− F (k, η)]

The last constraint is the promised-keeping constraint after replacing q̃(η) with qmin. Because q̃(η) ≥

qmin, the equality sign has been replaced with the inequality sign. The above mapping satisfies the Blackwell

conditions for a contraction. Therefore, there is a unique fixed point S∗. In addition, this mapping preserves

monotonicity (increasing) and concavity. To show this, separate the choice of k from the choice of p(η),

c(η, `) and q(η, `) and rewrite the mapping as follows:

T (S)(q) = max
x

{
− f−1(x)[1− β(1− δ)] + βEηx + βES̃(q̃(η))

}
(33)

subject to

q̃(η) = h′(0)(η − Eη)x +
q

β

q ≥ βqmin + βh′(0)(Eη − η)x

S̃(q̃) = max
p,c(`),q(`)

{
p · κ + (1− p) · S (q(0))

}
(34)

subject to

q̃ = p(η)[c(1) + q(1)] + (1− p)[c(0) + q(0)]

Notice that I have made a change of variables in the first part of the problem. Instead of maximizing k, I

maximize x = f(k). Because the function f(k) is monotonically increasing, there is a unique correspondence
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between x and k. The advantage of this change of variable is that the schedule q̃(η) is linear in x.

Consider first problem (34). This is the problem after the announcement of the shock but before ran-

domizing on liquidation. I will show now that if S is increasing and concave, S̃ is also increasing and concave

in q̃. To see this, observe first that if S is increasing and concave, then for any liquidation probability p, an

optimal solution is c(0) = c(1) = q(1) = 0 and q(0) = q̃/(1−p) (although not necessarily unique). Therefore,

I can write the objective function as:

S̃(q̃) = max
p

{
p · κ + (1− p) · S

(
q̃

1− p

)}
(35)

From this formulation is easy to see that S̃ is concave. Take q̃1 and q̃2 and assume that the optimal solutions

are respectively p1 and p2. Denote by q̃θ and pθ the linear combinations of these points. Because S is

concave, there exists a linear function H(q̃) such that S(q̃) ≤ H(q̃) for q̃ 6= q̃θ/(1− pθ) and S(q̃) = H(q̃) for

q̃ = q̃θ/(1− pθ). Then,

S̃(q̃θ) ≥ pθκ + (1− pθ)S(q̃θ/(1− pθ))

= pθκ + θ(1− p1)H(q̃θ/(1− pθ)) + (1− θ)(1− p2)H(q̃θ/(1− pθ))

= pθκ + θ(1− p1)H(q̃1/(1− p1)) + (1− θ)(1− p2)H(q̃2/(1− p2))

≥ pθκ + θ(1− p1)S(q̃1/(1− p1)) + (1− θ)(1− p2)S(q̃2/(1− p2))

= θS̃(q̃1) + (1− θ)S̃(q̃2)

To show the third step, notice that the function H is linear. Therefore, we can always write H(q̃θ/(1−pθ)) =

H(q̃/(1− p)) + α[q̃θ/(1− pθ)− q̃/(1− p)] where α is the slope of H. The equivalence, then, trivially follows.

I can show now that if S̃ is concave, then S is strictly concave. This follows from the fact that in problem

(33) the law of motion q̃(η) is linear in x and q, for each η, and the return function−f−1(x)[1−β(1−δ)]+βEηx

is strictly concave in x. Therefore, the surplus function is strictly concave. We can also show that S(q)

converges to βκ as q converges to zero. In fact, in the limit case in which q = 0, the incentive-compatibility

constraint is satisfied only if x = k = 0. Moreover, because q′ = q, this must be the case also in future

periods. If there is no possibility of production, the best strategy is to liquidate the firm. Because this will

be done in the next period, the liquidation value is discounted by β. The differentiability of S can be proved

by verifying the conditions of Theorem 9.10 in Stokey, Lucas, & Prescott (1989).

The concavity of F implies that there exists a maximum amount of capital k̄ which is optimal. Define

q̄ as the value of q that satisfies q̄ = h′(0)[F (k̄, η) − EF (k̄, η)] + q̄/β. This is the incentive-compatibility
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constraint after imposing k = k̄ and η = η. If q = q̄, then the next period value of q cannot be smaller than

q̄ even if k = k̄. Consequently, once q has reached q̄, the optimal input of capital will always be k̄. This is

the unconstrained status for the firm. Further increases in q cannot change the surplus because k is already

at the optimal level. On the other hand, if q < q̄ and k = k̄, q′ can be smaller than q̄. After a sequence of

small realizations of η, the value of q will be sufficiently small that the firm can be either liquidated and/or

is unable to use k = k̄. Therefore, if q is smaller than q̄, the firm is dynamically constrained.

To show that there is some q for which q(0) = q when q̃ < q and q(0) = q̃ when q̃ ≥ q, consider again

problem (34). We have already seen that this problem can be simplified as in (35). Given the strict concavity

of S, it is easy to verify that the solution is unique. Moreover, if the solution is interior (0 < p < 1), this

solution is characterized by the first order condition:

κ + S′
(

q̃

1− p

)
·
(

q̃

1− p

)
− S

(
q̃

1− p

)
= 0 (36)

Consider the points q̃1 and q̃2 for which the solutions are interior. Let p1 and p2 be the solutions. Because

there is a unique value of q̃/(1− p) that satisfies the first order condition, we must have that q̃2/(1− p2) =

q̃1/(1−p1). Because q̃/(1−p) = q(0), this implies that q(0) is the same for all q̃ having interior solutions. This

point is denoted by q. This also shows that, for q̃ ≥ q, the solution cannot be interior and q(0) = q̃. Given

this result, it can be verified that the maximum slope of S̃ is (S̃(q)− κ)/q and (S̃(q)− κ)/q ≤ (S̃(q)− κ)/q

for all q. This property will be useful in the proofs of later propositions.

The previous proofs assumed that q̃(η) = b(η). In general, however, the incentive-compatible schedule

can be written as q̃(η) = b(η) + m(η) where m(η) is not decreasing and satisfies Em(η) = 0. Now consider

a possible deviation from m(η) = 0. Keeping constant the input of capital, the volatility of next period q

increases. Given the concavity of S, this cannot be optimal. Q.E.D.

F Proof of Proposition 2

Consider problem (6) and define λ the Lagrange multiplier associated with the promised keeping constraint

(second constraint). The envelope condition is Sq = λ + ES̃q̃. If λ > 0, then q̃(η) = qmin = 0 and clearly

q̃(η) < q for some η, unless q = qmin = 0. If λ = 0, then Sq = ES̃q̃. Remember that q ≥ q and for q ≥ q,

S̃(q) = S(q). Because S is strictly concave in q ∈ (q, q̄), Sq = ES̃q̃ cannot be satisfied if q̃(η) ≥ q for all η.

Now consider the case in which κ = 0. In this case the firm is never liquidated. Consequently q = qmin = 0

and q̃(η) = q′. Given the previous result, if q < q̄, there is always the probability that future values of q get

arbitrarily close to zero. From the promised-keeping constraint, this also implies that the input of capital
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gets arbitrarily close to zero and Fk converges to infinity. From the first order conditions we can derive

[1− h′(0)Sq]βEFk + βh′(0)ESq̃Fk = 1. Because h′(0) ≤ 1, if Sq ≤ 1, this cannot be satisfied as k converges

to zero. By continuity this result applies to sufficiently small values of κ. Q.E.D.

G Proof of Proposition 3

It is enough to show that: i) the maximum value of S̃q (the derivative of the function S̃) is not increasing

in qmin; and ii) there exists some qmin < q̄ for which the maximum value of S̃q < 1. I prove first that the

maximum value of S̃q is decreasing in qmin.

Consider a value of qmin for which the contract is not renegotiation-proof. Denote this value by q1
min

and let’s use the superscript 1 to denote all functions and values associated with q1
min. The maximum value

of S̃1
q is equal to (S1(q1)−κ)/q1 > 1. Now consider q2

min > q1
min. The maximum value of S̃2

q associated with

q2
min will be (S2(q2)− κ)/q2. We have the following inequality:

S1(q1)− κ

q1
≥

S1(q2)− κ

q2
≥

S2(q2)− κ

q2
(37)

The first inequality derives from the fact that, for any value of qmin, (S(q) − κ)/q < (S(q) − κ)/q for all

q 6= q. This in turn derives from the definition of q (the randomizing point) and the strict concavity of

S(q). The second inequality derives from the fact that S2(q) cannot be bigger than S1(q) for any value of q

(remember that by increasing qmin we restrict the feasible values of k). Therefore, the maximum slope of S̃

cannot increase in qmin.

I now show that there is some qmin < q̄ for which the maximum value of S̃q is smaller than 1. Consider

a point q̂ ∈ (q, q̄) for which S(q̂) < κ + q̂. It can be verified that S(q) < κ + q for all q ≥ q̂. I show now that

if we impose qmin = q̂, S̃q < 1. The function S̃(q̃) is defined as:

S̃(q̃) = max
p

{
p · κ + (1− p) · S

(
q̃

1− p

)}
(38)

and the first order conditions are:

κ +
(

q̃

1− p

)
· Sq

(
q̃

1− p

)
− S

(
q̃

1− p

)
≤ 0, (< if p = 0) (39)

Notice that q̃/(1 − p) = q′ and the first order conditions can be written as q′ · Sq(q′) ≤ S(q′) − κ. After

imposing qmin = q̂, we know that S(q − κ) < q for all q. This is because, with the initial qmin, S(q)− κ < q

for all q ≥ q̂ and S(q) cannot increase with a higher value of qmin. Together with the first order conditions
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this implies that q′ · Sq(q′) < q′, which is satisfied only if Sq(q′) < 1. Because q′ ≥ q and for q′ ≥ q, we have

that S̃(q′) = S(q′) (see Corollary 1). Therefore, we also have that S̃q < 1.

Because the maximum value of Sq is not increasing in qmin and there is a value of qmin for which it

becomes smaller than 1, there must be some qmin ∈ (0, q̄) for which the maximum value is exactly 1. This

is the value of qmin that defines the renegotiation-proof contract. Q.E.D.

H Proof of Proposition 4

I prove first that the maximum slope of S̃—which is equal to (S(q) − κ)/q—is decreasing in κ. Consider

κ1 and κ2, with κ1 < κ2. The superscript will also be used to differentiate the variables and functions

associated with the two values of κ. We have the following inequalities:

S̃1(q1)− κ1

q1
≥

S̃1(q2)− κ1

q2
>

S̃2(q2)− κ2

q2
(40)

The first inequality was explained in the proof of Proposition 3. The second derives from the fact that, for

each q < q̄, κ2 − κ1 > S̃2(q) − S̃1(q). This means that an increase in κ increases the pre-randomization

surplus less than the increase in κ. Therefore, S̃q is decreasing in κ.

A contract is renegotiable if the slope of S̃ is greater than 1. As shown above, the maximum slope of S̃

is decreasing in κ and obviously converges to zero as κ converges to κ̄ = S(q̄). Therefore, there is some κ for

which S̃q ≤ 1, which is the condition for renegotiation-proof. This value of κ is denoted by κ̄.

To show that there is a positive probability of liquidation when κ > 0, it is enough to show that the

contract can be improved by allowing for liquidation. Assume that the firm is never liquidated, that is,

q = qmin = 0. Under this assumption limq→0 S(q) = βκ. Therefore, there is some q̂ for which S(q) < κ and

the contract can be improved by liquidating the firm when q ≤ q̂.

To show that the contract can also be liquidated in the renegotiation-proof contract when κ ∈ (0, κ̄)

it is enough to show that q cannot decrease in qmin and it is strictly greater if we set qmin equal to the

previous q (the one associated with the previous smaller value of qmin). A higher value of qmin makes the

constraints on k tighter for each value of q. In fact, combining the incentive-compatibility constraints with

the promised-keeping constraint, the input of capital is constrained by q ≥ βqmin+βh′(0)[EF (k, η)−F (k, η)]

(see problem (6)). Therefore, the marginal impact of q on S(q) cannot be smaller for higher values of qmin,

that is, S1
q (q) ≤ S2

q (q) for all q. Because condition (37) implies that S1
q (q1) ≥ S2

q (q2) (remember that Sq(q)

is equal to the maximum slope of S̃), then we must have that q2 ≥ q1. What is left to prove is that if

we set q2
min = q1, then q2 > q1. If we set qmin = q1, the input of capital has to decrease (strictly) at
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q = qmin. Therefore, S2(q1) < S1(q1). This implies that (S2(q1) − κ)/q1 < (S1(q1) − κ)/q1. Because

Sq(q) = (S(q)− κ)/q, if q2 = q1 we would have:

S2
q (q1) =

S2(q1)− κ

q1
<

S1(q1)− κ

q1
= S1

q (q1) (41)

which violates the condition S2
q (q1) ≥ S1

q (q1). Therefore, q2 must be strictly greater than q1.

What is left to prove is that for κ = 0 the firm can be liquidated in the renegotiation-proof contract

but not in the long-term contract. Consider the long-term contract. Obviously, for q > 0 the surplus

function is strictly greater than zero. Therefore, the firm is never liquidated. The only case in which the

firm is liquidated is when q = 0. In this case, in fact, the surplus is zero because k must be zero. Because

q′ = q̃(η) = q̃(η) + h′(0)[F (k, η)− F (k, η)], the probability that q′ = 0 is zero almost surely for any q > 0.

In the renegotiation-proof contract randomization is still possible. This is because the restriction q̃(η) ≥

qmin reduces the surplus S(q) and increases its slope. Therefore, by increasing qmin we may reach a point

in which the randomization over the liquidation of the firm my become optimal. However, this cannot be

generalized and depends on the parametrization of the model. Q.E.D.
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