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1 Introduction

The ownership structure of a firm is central to its investment decision and
dynamics. At the same time, the ownership structure is likely to change as the
firm evolves over time. The close connection between the dynamics of the firm
and its ownership is well characterized in newly public firms. As shown by
Mikkelson, Partch, & Shah (1997), the share ownership of “insiders” tends to
decline over time after the firm has become public. Furthermore, the insiders’
ownership declines faster for firms that experience higher growth. Another
finding about the ownership structure of the firm is that countries with higher
degree of investors’ protection are characterized by lower concentration of
ownership as shown by La-Porta, de Silanes, Shleifer, & Vishny (1998). The
question we ask in this paper is whether these patterns are captured by
the properties of optimal contracts between the subjects that control the
resources in the firm—the insiders—and those who provide the funds—the
external investors.

We study the investment and financing problem of a firm in which a risk-
averse entrepreneur (the insider) has an information advantage about the
operation of the firm over external investors. More specifically, the shock
to the firm’s revenues is publicly observed only with some probability. This
information advantage allows the entrepreneur to divert part of the firm
resources and generate a private benefit which is increasing in the invested
capital. Within this framework we characterize the optimal contract, that is,
the contract that maximizes the investors’ wealth subject to promise-keeping
and incentive-compatibility constraints.

Under particular assumptions about the shock to the firm’s revenue, the
optimal contract can be implemented with the entrepreneur’s ownership of
a fraction of the firm’s shares (entrepreneur’s stake in the firm or insider
ownership). The entrepreneur’s ownership evolves over time according to
the performance of the firm and tends to decline as the firm becomes larger
and older. These dynamics features of the ownership structure replicates the
above mentioned empirical findings of Mikkelson et al. (1997).

These results derive from the existence of information asymmetries that
generate moral hazard problems. When the shock is publicly revealed with
probability one and information is symmetric, the optimal contract would
guarantee the efficient production scale at any point in time. Moreover,
the entrepreneur would enjoy a perfect consumption smoothing given that
investors are risk neutral. With information asymmetry, however, this con-
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tract is not incentive-compatible, and the entrepreneur must bear at least
some of the firm’s risk through the ownership of the firm. As the en-
trepreneur’s wealth increases, the contract can be made incentive-compatible
with a smaller insider ownership and the entrepreneur will fully diversify once
his or her wealth is sufficiently large.

The full diversification of portfolio in the limit crucially depends on the
assumption that there is a positive probability with which the shock becomes
public information. In this case, if an entrepreneur is caught diverting, he
or she can be punished with the confiscation of a large portion of wealth.
This assumption implies that the incentive to divert decreases as the en-
trepreneur’s wealth increases. Therefore, for wealthy entrepreneurs the con-
tract can be made incentive-compatible with a smaller insider ownership. By
contrast, when the shock is never publicly revealed, the entrepreneur would
never be able to implement a full diversification of portfolio.

The probability with which the shock gets publicly revealed effectively
determines the degree of investor’s protection. Another result of the paper
is that higher is this probability and lower is the concentration of ownership.
This is consistent with the higher concentration observed in countries with
lower institutional protection of investors. La-Porta et al. (1998) show that
in common law countries there is greater investors’ protection and lower
concentration of ownership.

The result that the optimal contract can be implemented through the
entrepreneur’s ownership of some of the firm’s shares only applies when the
shock takes two values. When the shock takes more than two values, the
optimal contract can be implemented with the additional use of stock options.
The use of stock options as an implementation mechanism is also studied in
Aseff & Santos (2001) but in a different environment.

From a methodological point of view, the paper relates to two branches
of existing literature. The first branch studies the optimal consumption in-
surance among risk-averse agents when individual endowments or efforts are
unobservable.1 The second branch assumes risk-neutral agents and stud-
ies the optimal investment schedule that maximizes the resources generated
by the firm.2 The current paper combines the main features of these two

1Examples of these studies include Atkeson & Lucas (1992, 1995), Clementi & Cooley
(2000), Cole & Kocherlakota (1997), Green (1987), Phelan (1995), Phelan & Townsend
(1991), Spear & Srivastava (1987), Thomas & Worrall (1990), Wang (1995, 1997).

2Examples of these studies include Clementi & Hopenhayn (1998), DeMarzo & Fisher-
man (2000) and Quadrini (1999).
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branches and the contract solves the trade-off between the optimal consump-
tion insurance—as entrepreneurs are risk averse—and the optimal investment
schedule—as resources depend on investment. In this respect the paper is also
related to Atkeson (1991), Marcet & Marimon (1992) and Castro, Clementi,
& MacDonald (2001).

The plan of the paper is as follows. Section 2 describes the basic model
and Section 3 characterizes the optimal contract. Section 4 shows how this
contract can be implemented through the entrepreneur’s ownership of some
of the firm’s shares and Section 5 studies a numerical example. Section 6
extends the basic model along several dimensions and Section 7 concludes.

2 The Model

Consider an entrepreneur-manager with lifetime utility:

E
∞∑

t=0

βtU(ct) (1)

where ct ≥ 0 is consumption and β is the intertemporal discount factor.
The function U is (i) strictly increasing and concave; (ii) limc→∞ U ′(c) >
α > 0; (iii) limc→0 U(c) = −∞. The assumption that the marginal utility
from consumption is bounded away from zero will be motivated below. The
assumption that the utility is unbounded below will be relaxed in Section 6.

The entrepreneur has an investment opportunity that requires an initial
set up investment κ, which is sunk, and generates revenues according to:

y = F (k, z) (2)

Here y is the cash revenue, k is the input of capital, z is an i.i.d. shock with
probability distribution p(z). The function F is strictly increasing, concave,
differentiable and limk→0 Fk(k, z) = ∞. The input of capital is decided one
period in advance before the realization of the shock. The main analysis of
the paper is conducted by assuming that the shock takes only two values,
that is, z ∈ {z1, z2}. Section 6 will extend the model by allowing for more
than two shocks.

The shock is observed with probability one by the entrepreneur. Investors,
instead, observe the shock only with probability η, which is constant in the
model. This information asymmetry allows the entrepreneur to divert part
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of the revenues. Suppose that the entrepreneur observes z = z2. By claiming
that z = z1, he or she can divert the revenue D(k) = F (k, z2)− F (k, z1). If
the shock is not revealed, the publicly observed revenue will be the difference
between the true revenue and the part that is diverted, that is, F (k, z2) −
D(k) = F (k, z1). Notice that the decision to divert revenues is taken before
the shock is publicly revealed with probability η.

The diverted revenue provides utility to the entrepreneur additive to the
utility of consumption. More specifically, if the entrepreneur diverts D(k),
the additional utility from diversion is αD(k) and the current total utility is
U(c) + αD(k). Given this particular specification of the return from diver-
sion, the assumption limc→∞ U ′(c) > α guarantees that diversion is always
inefficient.3 Section 6, however, will discuss the alternative assumption in
which the diverted revenue is additive to consumption and the current util-
ity is U(c + αD(k)). In this case the assumption that the marginal utility
from consumption is bounded away from zero can be relaxed.

The investment project is financed by entering into a contractual rela-
tionship with a risk-neutral investor. The investor can be thought of as a
financial intermediary that discounts future payments at the market interest
rate r. We denote by δ = 1/(1 + r) the discount factor for the investor
and assume that δ ≥ β. This can be considered a general equilibrium prop-
erty which is usually satisfied in models with uninsurable idiosyncratic risks.
Finally, we also assume that the value of the contract for the entrepreneur
cannot be smaller than qR (reservation value). Any value of the contract be-
low qR is not enforceable. The investor, instead, commits to fulfill any future
obligation (one-side commitment). However, the assumption of commitment
from the investor is not important if we allow for bonding.4

3 The optimal contract

With symmetric information, that is, η = 1, the input of capital will be
always at the optimal level k̄. This input of capital is determined by the
first order condition δ

∑
z Fk(k̄, z)p(z) = 1. With information asymmetry,

3As we will see later, this particular specification of the return from diversion guarantees
that the feasible set for the optimal contract is convex which is convenient to establish
some of the basic properties of the contract.

4For bonding we mean the ability of the entrepreneur to access a “riskless” and “publicly
observable” investment at the market interest rate.
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however, the input of capital may be lower than k̄. The goal of this section
is to characterize the optimal contract when the shock is publicly observed
only with probability η < 1 (information asymmetry).

3.1 Recursive formulation of the long-term contract

We start the analysis of the optimal contract by ignoring, for the moment,
the issue of renegotiation. In this contract the parties commit to fulfill the
terms of the contract in all possible contingencies even if ex-post it could
be beneficial for both parties to change these terms. We will refer to this
contract as the “long-term contract”. We will show then in the next section
that this contract is free from renegotiation.

Define ẑ the shock inferred from the observation of the revenue. Of course,
if the entrepreneur does not divert revenues, the inferred shock is the true
realization, that is, ẑ = z. Furthermore, define e the dummy variable that
takes the value of one when the entrepreneur is caught diverting, that is,
when the shock is publicly revealed and ẑ 6= z. The contract can be made
conditional on the whole history of ẑ and e. We denote the history by ht =
{ẑ1, e1, ..., ẑt, et}. The structure of the contract is as follows. At the end
of each period and for each history ht, the investor anticipates the input
of capital k. In the next period, after the observation of the revenue and
the shock if publicly revealed, the revenue will be distributed in part to the
entrepreneur and in part to the investor.

The contractual problem under commitment is formalized as the max-
imization of the investor’s value, subject to the constraint that the en-
trepreneur does not divert revenues and subject to the participation con-
straint. The problem is made stationary by introducing promised utility as a
state variable. Denote the promised utility after current consumption by q.
Then for each q, the contract will choose the input of capital k and the next
period entrepreneur’s consumption and continuation utility. Consumption
and continuation utility are conditional on the shock inferred from the ob-
servation of revenues and on diversion. We will denote by c(ẑ) and q(ẑ) the
current consumption and continuation utility when the entrepreneur is not
caught diverting. This can happen either because the shock is not publicly
revealed or, if revealed, the entrepreneur had not diverted revenues. More-
over, we will denote by cD and qD the consumption and continuation utility
when the entrepreneur is caught diverting. This can happen only if the shock
is publicly revealed.
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Because there is a monotone relation between consumption and the period
utility of the entrepreneur, we will use the period utility as a choice variable of
the contract. We will denote by u(z) = U(c(z)) the period utility conditional
on the shock z. Moreover, we will denote by C(u(z)) the inverse of the utility
function, that is, c(z) = C(u(z)) = U−1(u(z)). The function C returns the
cost of utility u(z). The contractual problem can be written as:

V (q) = max
k,u(z),q(z)

{
− k + δ

∑
z

[
F (k, z)− C(u(z)) + V (q(z))

]
p(z)

}
(3)

subject to

q = β
∑
z

[
u(z) + q(z)

]
p(z) (4)

u(z2) + q(z2) ≥ (1− η) ·
[
u(z1) + q(z1) + αD(k)

]
+ (5)

η ·
[
uD + qD

]
u(z) + q(z) ≥ qR; uD + qD ≥ qR (6)

The function V (q) is the end-of-period value of the contract for the in-
vestor. This value results from the current flow, −k + δE[F (k, z)−C(u(z))],
plus the discounted next period value, δEV (q(z)).

Equation (4) is the promised-keeping constraint and equation (5) is the
incentive-compatibility constraint. The incentive-compatibility constraint
imposes that, when the shock is high, the entrepreneur will get an expected
lifetime utility at least as large as the utility he or she will get if resources are
diverted. When the entrepreneur diverts resources, his or her value depends
on whether the shock gets publicly revealed. If the shock is not revealed, the
utility from consumption is augmented by the utility from the diverted rev-
enue, αD(k). However, if the shock is publicly revealed and the entrepreneur
is caught diverting, the current and continuation utilities are set to uD and
qD. It is trivial to prove that in the long-term contract the optimal strategy
conditional on diversion is uD + qD = qR. This is because this strategy min-
imizes the entrepreneur’s incentive to divert revenues. Therefore, in what
follows we will take this optimal strategy as given. Notice that when the
shock is publicly revealed, the diverted revenue is recovered and does not
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enter the entrepreneur’s utility. The case in which the revenue can not be
recovered will be discussed in Section 6.

Constraints (6) impose limited liability. Here the assumption is that
the entrepreneur can leave the firm and get the reservation value qR at any
point in time. Therefore, u(z) + q(z) ≥ qR and uD + qD ≥ qR.5 In the
contractual problem we should also impose the non-negativity of capital and
consumption, that is, k ≥ 0 and C(u(z)) ≥ 0. However, given the properties
of the revenue and utility functions, these constraints are never binding.

Before establishing the existence of a solution to problem (3), we impose
a further restriction to the revenue function. Let x = D(k) = F (k, z2) −
F (k, z1). We can then define k as a function of x, that is, k = D−1(x) and
the present value of revenues net of the cost of capital can be expressed as:

π(x) = −D−1(x) + δ
∑
z

F (D−1(x), z)p(z) (7)

This is simply the function −k + δ
∑

z F (k, z)p(z) after substituting k with
D−1(x).

Assumption 1 The revenue function F (k, z) is such that π(x) is concave.

An example in which π(x) is concave is when the revenue function takes
the form F (k, z) = (1− ω)k + zf(k), with f strictly increasing and concave.
In this case x = (z2 − z1)f(k) and it can be verified that π(x) is strictly
concave in x. We then have the following proposition.

Proposition 1 (Optimal long-term contract) The contractual problem
(3) is a contraction and there is a unique fixed point V (q). The solution to
problem (3) is unique and V (q) is strictly concave and differentiable. More-
over, there exists q for which V (q) is strictly decreasing for q > q.

5This constraint then implies that q(z) ≥ βqR. To see this, let’s observe that in the next
period u(z′)+ q(z′) ≥ qR for each value of z′, which implies that βE(u(z′)+ q(z′)) ≥ βqR.
Here the prime denotes the next period variable. Given that promise-keeping must also
hold in the next period, that is, q(z) = βE(u(z′) + q(z′)), the last constraint imposes
q(z) ≥ βqR. This constraint, however, is never binding. In fact, if q(z) = βqR, then the
next period promise-keeping constraint implies that u(z1) + q(z1) = u(z2) + q(z2) = qR.
But then the incentive-compatibility constraint (5) requires αD(k′) = 0, which is possible
only if the next period capital is zero. Given the structure of the revenue function this
can not be optimal.
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Proof: Appendix A.

Figure 1 plots the value of the long-term contract for the investor. Ac-
cording to proposition 1 this function is concave. Moreover, the function is
strictly decreasing for q greater than the threshold q.

V (q)

βqR
q q

-

6

Figure 1: Investor’s value as a function of the entrepreneur’s value.

3.2 Renegotiation-proof of the long-term contract

The function V (q) represents the utility frontier of the set of all possible
allocations that can be reached with long-term contracts. The fact that the
function V (q) is not decreasing for q < q implies that the utility frontier

is not downward sloping. Therefore, the optimal contract is not necessarily
free from renegotiation (see, Fudenberg, Holmstrom, & Milgrom (1990)). To
check whether the long-term contract is free from renegotiation, we have to
answer two questions. First, are values of q smaller than q ever reached in the

long-term contract? Second, if the entrepreneur is caught diverting, would
the parties mutually benefit from increasing uD + qD above qR? This is for-
malized in the following definition of renegotiation-proofness for a recursive
contract.

Definition 1 (Renegotiation-profness) A recursive contract is free from
renegotiation if (i) for all z there is not q̂ > q(z) such that V (q̂) ≥ V (q(z));
and (ii) there is not û and q̂, with û + q̂ > qR such that V (q̂) ≥ V (qD).
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Let’s start addressing the first question or point (i) in the above definition.
It is obvious that, if in the execution of the contract future values of q are
smaller than q—that is, q is in the region for which V (q) is increasing—the

parties would both benefit from raising the entrepreneur’s value to q. The

next proposition, however, establishes that for any initial value of q, future
values are never smaller than q.

Proposition 2 For any initial value of q, the solution of the optimal contract
is such that q(z) ≥ q for all z.

Proof: Appendix B.

Regarding the second question, we have to answer whether the strategy
uD +qD = qR is credible. With commitment, it is clearly optimal to set uD +
qD = qR. This strategy is optimal because it acts as a threat to discourage
the entrepreneur from diverting revenues. However, if the entrepreneur is
actually caught diverting, it is not obvious whether ex-post this strategy is
still optimal. The next proposition establishes the renegotiation-proofness of
this strategy.

Proposition 3 The strategy uD + qD = qR is free from renegotiation.

Proof: Appendix C.

The intuition for the result is simple. Given the promised utility qR in
case of diversion, this utility will be delivered in part by paying current
consumption which provides current utility uD and in part with continuation
utility qD. What constrains the new input of capital is the continuation
utility. Because the utility function is unbounded below, we can always set
the continuation utility to qD = q and the current utility to uD = qR − q,

so that the continuation contract is restarted at a point in which the utility
frontier is not upward sloping. A similar intuition applies to proposition 2.

It is important to point out that propositions 2 and 3 depend crucially
on the assumption that the utility from consumption is unbounded below. If
the utility function is bounded below, then it is possible that future values
of q are smaller than q. This case will be studied in Section 6.
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3.3 First order conditions

Given the concavity and differentiability properties established in proposi-
tion 1, the optimal contract can be characterized using first order conditions.
Denote by γ, λ and µ(z) the Lagrange multipliers for the incentive compat-
ibility constraint, the promised-keeping constraint and the limited liability
constraint. The Lagrangian can be written as:

L = π(x) + δ
∑
z

[
− C(u(z)) + V (q(z))

]
p(z) (8)

+ γβ
[
u(z2) + q(z2)− (1− η) ·

(
u(z1) + q(z1) + α x

)
− η · qR

]
+ λ

[
β
∑
z

(
u(z) + q(z)

)
p(z)− q

]
+ δ

∑
z

p(z)µ(z)
[
u(z) + q(z)− qR

]
where the choice variable k has been replaced with the variable x = D(k).
Accordingly, the discounted expected net revenues, −k + δ

∑
z F (k, z)p(z),

has been replaced by the function π(x) = −D−1(x)+ δ
∑

z F (D−1(x), z)p(z).
By assumption 1, π(x) is concave. Therefore, the derivative is decreasing
and it is equal to zero when the firm employs the optimal input of capital k̄.

The first order conditions (after some rearrangement) can be written as:

πx = γ · αβ(1− η) (9)

λ− (δ/β)[C ′(u(z1))− µ(z1)] = γ · (1− η)/p(z1) (10)

λ− (δ/β)[C ′(u(z2))− µ(z2))] = −γ/p(z2) (11)

λ− (δ/β)[λ(z1)− µ(z1)] = γ · (1− η)/p(z1) (12)

λ− (δ/β)[λ(z2)− µ(z2)] = −γ/p(z2) (13)

The Lagrange multiplier µ(z) is greater than zero if u(z)+q(z) = qR while
γ is positive if the incentive-compatibility constraint is satisfied with equality.
Because a positive γ implies a suboptimal input of capital (see condition (9)),
the incentive-compatibility constraint is binding if k < k̄ (which is equivalent
to x < x̄ = D(k̄)).

To understand the importance of the incentive-compatibility constraint,
we have rearranged the first order conditions so that the Lagrange multi-
plier γ is only on the right-hand side of equations (9)-(13). If the incentive-
compatibility constraint is not binding, γ = 0 and all the right-hand-side
terms of equations (9)-(13) are zero. This will be the case when η = 1 and
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the shock is public information. In this case equation (9) tells us that the
input of capital will be at the optimal level and the subsequent equations
(10)-(13) will take a standard format. On the other hand, if the incentive-
compatibility constraint is binding, the Lagrange multiplier γ is positive and
the input of capital will be at a suboptimal level.

Together with the incentive-compatibility, promise-keeping and limited
liability constraints, conditions (9)-(13) characterize the properties of the
optimal contract. The next proposition summarizes some of these properties.

Proposition 4 There exits q̄ > βqR, such that:

(a) If q < q̄, then k < k̄, u(z1) < u(z2) and q(z1) < q(z2).

(b) If q ≥ q̄, then k = k̄, u(z1) = u(z2) and q(z1) = q(z2).

Proof: Appendix D.

According to the proposition, when the promised utility q is low, con-
sumption and continuation utility depend on the realization of the shock.
As the promised utility becomes sufficiently large, however, the incentive
compatibility constraint is no longer binding and the entrepreneur enjoys a
perfect consumption smoothing, as long as q remains above q̄.

The intuition for this result is straightforward. If the entrepreneur is
caught diverting when q is large, the punishment for diverting resources is
very high because he or she will get the reservation value qR and loose a large
portion of the lifetime utility accumulated until that point. On the other
hand, when q ≈ qR, the expected punishment cannot be large, which makes
difficult to provide full insurance and make the contract incentive-compatible.
It is important to emphasize that full insurance is possible—as long as q
remains above the threshold q̄—only if the probability η is positive. If the
shock is never publicly revealed, the only way to punish the entrepreneur
from diversion is by making consumption and next period promised utility
conditional on the performance of the firm also for large values of q. In
Section 4 these properties of the optimal contract will be interpreted as an
optimal portfolio allocation for the entrepreneur.
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3.4 Initial stage of the contract

The initial condition of the contract is given by a promised utility q0 which
depends on the initial wealth of the entrepreneur. To simplify the analysis we
assume that the entrepreneur’s wealth is initially zero, which approximates
the fact that new firms have limited internal funds relative to their financial
needs. Moreover, assuming that the entrepreneur has all the bargaining
power, the value of q0 is determined as the solution to the following problem:

q0 = arg max {q} (14)

s.t. V (q) ≥ κ

where κ is the fixed set up investment which is sunk. Because the function
V (q) is decreasing above the threshold q (see proposition 1), the problem has

a unique solution. The determination of q0 is shown in Figure 2.

V (q)

κ

q0 q
-

6

Figure 2: Determination of the initial promised utility q0.

The initial set up cost κ plays an important role in determining the initial
size of the firm: larger is κ and smaller is the initial entrepreneur’s value.
The smaller value of q, then, implies a smaller initial size of the firm.

4 Optimal dynamic shareholder contract

The goal of this section is to show how the optimal contract can be imple-
mented as a dynamic shareholder contract in which the entrepreneur owns
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part of the firm’s shares and this ownership evolves over time with the en-
trepreneur’s wealth. Let’s first define some new variables.

The optimal contract defines a sequence of state contingent payments
to the entrepreneur, ct = C(u(zt)), and to the investor, τt = F (kt−1, zt) −
C(u(zt)) − kt. The sum of payments to the entrepreneur and the investor
is equal to the dividends distributed by the firm, that is, dt = ct + τt =
F (kt−1, zt) − kt. Given the sequence of dividends and payments, we can
determine the firm’s value, P , the entrepreneur wealth, WE, and the investor’
wealth in the firm, W I . The firm’s value (stock market value) is given by:

P (qt−1, zt) = Et

∞∑
j=t

δj−tdj = Et

∞∑
j=t

δj−t
(
F (kj−1, zj)− kj

)
(15)

The notation makes explicit the dependence of the firm’s value from the
previous continuation utility qt−1 and the current realization of the shock zt.
As we have seen in the previous section, the entrepreneur’s promised utility
is the sufficient state of the contract before the realization of the shock. After
the realization of the shock the sufficient states also include the shock zt. The
entrepreneur’s and investor’s wealth are defined as:

WE(qt−1, zt) = Et

∞∑
j=t

δj−tcj (16)

W I(qt−1, zt) = Et

∞∑
j=t

δj−tτj = P (qt−1, zt)−WE(qt−1, zt) (17)

We can think of the entrepreneur’s wealth as being invested in two types
of assets: firm’s shares and investments outside the firm. Because we are
abstracting from the market risk, the investment outside the firm is equivalent
to investing in a “riskless bond”, although we should interpret it more broadly
as an investment which is not correlated with the firm’s idiosyncratic risk.

In this environment the entrepreneur starts period t with st−1 shares (the
shares owned by the investors are 1−st−1). In addition he or she owns assets
bt−1 outside the firm with return 1/δ−1. The subscript t−1 derives from the
fact that the number of shares and the wealth invested outside the firm were
decided in the previous period. Therefore, conditional on the two values of
the shock, the entrepreneur’s wealth can be written as:

WE(qt−1, z1) = bt−1 + st−1 · P (qt−1, z1) (18)

WE(qt−1, z2) = bt−1 + st−1 · P (qt−1, z2) (19)
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Given the value of WE(qt−1, zt) defined in (16), these two conditions al-
low us to determine the values of bt−1 and st−1. In particular, subtracting
equation (18) from (19) and rearranging we get:

st−1 =
WE(qt−1, z2)−WE(qt−1, z1)

P (qt−1, z2)− P (qt−1, z1)
(20)

Therefore, using the values of WE(qt−1, z1) and WE(qt−1, z2) found in the
solution of the optimal contract, we are able to derive the portfolio compo-
sition of the entrepreneur, the ownership structure of the firm and how this
evolves over time. We then have the following proposition.

Proposition 5 (Portfolio diversification) Let EWE = δ
∑

z WE(qt, z)p(z)
be the wealth of the entrepreneur after current consumption. If 0 < η < 1,
there exists a wealth threshold W for which s > 0 only if EWE < W . If
η = 0, s > 0 for any value of EWE. If η = 1, s = 0 for any value of EWE.

Proof: Let’s observe first that the entrepreneur’s wealth must be an increas-
ing function of q. Therefore, the threshold W corresponds, in utility terms,
to the threshold q̄ defined in proposition 4. According to this proposition, for
q < q̄ (which is equivalent to EWE < W ), we have that c(z1) < c(z2) and
q(z1) < q(z2). This implies that the entrepreneur’s wealth depends on the
shock z defined in (16). Equation (20) then implies that s > 0. The same
proposition also establishes that for q ≥ q̄ (which is equivalent to EWE ≥ W ),
c(z1) = c(z2) and q(z1) = q(z2). If next period consumption and continuation
utility do not depend on z, the entrepreneur’s wealth must also be independent
of z. Equation (20) then implies that s = 0. If η = 0, however, it is obvi-
ous that the entrepreneur’s wealth must be conditional on z for every level
of EWE. Finally, if η = 1, the incentive-compatibility constraint is never
binding. Consequently, consumption and continuation utility do not depend
on z for any q, and s = 0. Q.E.D.

The above proposition establishes that the entrepreneur will fully diver-
sify his or her portfolio only if the entrepreneur is sufficiently wealthy. Before
reaching W , the entrepreneur invests part of the wealth in the shares of the
firm. The intuition behind this result is related to the intuition of Propo-
sition 4 we have seen in the previous section. If the entrepreneur is caught
diverting when EWE (or q) is large, the punishment for diverting resources
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is very high because he or she will loose a large portion of the wealth accu-
mulated until that point. In fact, the entrepreneur utility in case of diversion
will be the minimum value qR which corresponds to a low level of wealth.
On the other hand, when q ≈ qR, the expected punishment cannot be large,
which makes difficult for the contract to insure incentive-compatibility and
provide full insurance.

It is important to emphasize that a positive value of the probability η
is crucial to get this result. If η = 0, the entrepreneur will never fully
diversify as stated in the proposition. This can be easily seen by using the first
order conditions derived before. When the entrepreneur’s portfolio is fully
diversified, c(z1) = c(z2) and q(z1) = q(z2). Moreover, full diversification can
only be reached if capital is at the optimal level k̄. Otherwise, γ > 0 and
consumption must depend on the shock. Assuming that u(z1) = u(z2) and
q(z1) = q(z2), and using the promised-keeping constraint q = βE[u(z)+q(z)],
the incentive-compatibility constraint can be written as:

q

β
≥
(

1− η

η

)
α D(k̄) + qR (21)

This expression is satisfied only if q is sufficiently large which implies that full
diversification can be obtained only if the entrepreneur is sufficiently wealthy.
However, if η = 0, this condition will never be satisfied, and the entrepreneur
will never fully diversify his or her portfolio. On the other hand, when η = 1,
condition (21) is always satisfied. In this case there is no asymmetry in
information and the contract would guarantee the optimal input of capital
and provide a perfect consumption smoothing to the entrepreneur. More in
general, the threshold W above which s = 0 decreases with η. It is important
to observe that the threshold W will be reached only if δ = β. When δ > β,
even if we start from EWE > W , the entrepreneur’s wealth will fall below
W with probability 1 in a finite number of periods.

Given the above results, we would infer that larger is η, and smaller
is the entrepreneur’s stake in the firm. This is clearly shown in Section 5
with a numerical example. If we interpret η as an index of the investors’
protection which in turn depends on the type of existing institutions, then
countries with institutions more protective of investors’ rights should have a
lower concentration of ownership. This finding is supported by the empirical
study of La-Porta et al. (1998).
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Remark: The above contractual problem can be reinterpreted as the opti-
mal portfolio problem solved by an entrepreneur who internalizes the impact
of the ownership structure on the firm’s value. At the end of each period,
after the payments of dividends, the entrepreneur decides how to allocate
his or her wealth between the firm’s shares and the market portfolio. Be-
cause the entrepreneur is risk averse, he or she would prefer to invest only
in the market portfolio. However, the entrepreneur also realizes that the
ownership structure has an impact on the firm’s value (the price at which he
or she can sell the shares). Consequently, the optimal portfolio choice op-
timizes this trade-off and in each period the optimal number of shares that
the entrepreneur decides to own is given by (20).

5 Numerical example

This section studies a parameterized version of the model. The model is
solved numerically and the computational procedure is described in Appendix
G. The goal of this example is not to provide a quantitative evaluation of
the model but to illustrates some of its qualitative properties.

The market discount factor is set to δ = 0.94 and the subjective discount
factor to β = 0.939. The utility function is specified as u(c) = c + log(c) and
the diversion parameter α is set to 1. The revenue function is specified as
F (k, z) = (1 − ω)k + A + zkθ. The parameter θ determines the return to
scale and we set it to 0.99 so that the production function is close to constant
return to scale. This model is very similar to a model in which θ = 1 and
the scale of the firm is subject to an upper bound. The parameter ω is the
cost of production per unit of capital and it is equal to 0.25. Assuming that
the input of labor is proportional to the input of capital, ωk is interpreted
as the cost of labor plus capital depreciation. The shock takes the values
z1 = 0.5 z̄ and z2 = 1.5 z̄ with equal probability. The value of z̄ is such that
the unconstrained input of capital is 100. The shock gets publicly revealed
with probability η = 0.1. The initial set up cost κ is assumed to be zero and
the initial size of firms is controlled by choosing A. We choose A such that
the initial size of new firms is about half the optimal size. The reservation
value is set to zero. The full set of parameter values are reported in Table 1.

Ownership dynamics: Panel (a) of Figure 3 plots the input of capital as
a function of the entrepreneur’s total wealth. This plot shows that the size
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Table 1: Parameter values.

Market discount rate δ = 0.94
Intertemporal discount factor β = 0.939
Revenue function F (k, z) = (1− ω)k + A + zkθ ω = 0.25, A = 1, θ = 0.99
Revenue shock z ∈ {0.166, 0.498}
Probability that the shock is publicly revealed η = 0.1
Diversion value αD(k) α = 1
Reservation value qR qR = 0

of the firm is increasing in the entrepreneur’s wealth. As the entrepreneur
becomes wealthier, the incentive-compatibility constraints are relaxed and
the firm expands in size.

The second panel of Figure 3 plots the next period wealth as a function
of current wealth, for each realization of the shock. The 45 degree line is also
plotted. Before the entrepreneur’s wealth reaches a certain level, the next
period wealth increases when the shock is high and decreases when the shock
is low. Because the size of the firm is correlated with the entrepreneur’s
wealth, this property implies that the firm expands when the current cash
flow is high and contracts when the current cash flow is low.

As discussed in Section 4, the entrepreneur’s wealth is in part invested in
the firm’s shares and in part invested outside the firm. Panel (c) of Figure 3
plots the fraction of the entrepreneur’s wealth invested in the firm and panel
(d) the shares of the firm directly owned by the entrepreneur. These two
graphs show that the entrepreneur diversifies his or her portfolio as the wealth
increases above a certain threshold. In particular, the entrepreneur invests
a smaller fraction of wealth in the firm and owns a smaller number of firm’s
shares once his or her wealth is sufficiently large. When the entrepreneur’s
wealth is very small, however, the diversification of the entrepreneur’s port-
folio decreases as the wealth increases. The reason is because for low levels of
wealth the input of capital is also low. At this production scale the marginal
productivity of capital is very sensitive to changes in k. Consequently, high
fluctuations of capital are inefficient. Because the input of capital depends
on the entrepreneur’s wealth, in order to reduce the volatility of capital we
have to reduce the volatility of the entrepreneur’s wealth. This is obtained
by reducing the insider ownership.

The next step is to relate the ownership structure to the size and the age
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of the firm. This is shown in Figure 4. As can be seen from the first panel,
the shares owned by the entrepreneur decline once the firm has reached a
certain size. This derives directly from the properties of the model shown in
Figure 3: the fact that the input of capital is increasing in the entrepreneur’s
wealth (panel (a)) and the fact that the entrepreneur’s shares are decreasing
in wealth above a certain threshold (panel (d)).

The bottom panel plots the entrepreneur’s shares as a function of the
firm’s age. To generate this graph we simulate an initial mass of entrant
firms over time. More specifically, we assume that at time zero there is a
large mass (infinite number) of entrants with the same initial size. This
initial size is about half the optimal size. Although all firms have the same
initial size, over time they become heterogeneous. The data reported in the
bottom panel of Figure 4 is the average over all firms of the same age.

As can be seen from the graph, the entrepreneur’s shares (stake in the
firm) decreases with the age of the firm. This follows from the assumption
that new entrant firms are initially small and because small they tend to
grow on average.

The pattern of the shares owned by the entrepreneur is sensitive to the
probability η with which the shock is publicly revealed. Figure 5 shows
the shares owned by the entrepreneur as a function of wealth and age for
different values of η. Panel (a) shows that the entrepreneur owns less share
(for each level of wealth) when η is larger. Panel (b) also shows that the
insider ownership is lower for each age class of firms when η is larger.

To understand these properties let’s notice first that the cost of being
caught diverting is higher when the entrepreneur’s wealth is higher. This
cost is given by the loss of wealth accumulated up to that point. Conse-
quently, when the entrepreneur is wealthier, the contract can be made in-
centive compatible with the entrepreneur facing a lower risk—that is, better
consumption smoothing. This is accomplished by reducing the ownership of
the firm’s shares. Now if we increase η, we also increase the expected cost of
being caught diverting for each level of wealth. Therefore, the increase in η
further reduces the incentive of the entrepreneur to divert resources and the
contract can be made constrained efficient with a lower insider ownership.

The parameter η can be interpreted as an index of the investors’ pro-
tection determined by the institutional environment. For example, we can
think of higher values of η as characterizing the institutional environment of
countries in which firms have more demanding obligations in the disclosure
of information. If we take this interpretation of the parameter η, we should
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observe lower ownership concentration in countries with better institutional
protection of investors. This finds empirical support in the work of La-Porta
et al. (1998).

Other dynamics properties: The properties of the optimal contract em-
phasized above imply other properties of the investment behavior and dy-
namics of firms which are summarized below.

• The expected productivity of capital (return on assets) and the Tobin’s
q are decreasing in the firm’s size and age.

• The investment rate (ratio between expected next period capital and
current capital) is decreasing in size and age.

• The growth rate of the firm as well as the variability of growth are both
decreasing in size and age.

These properties have simply intuitions. The marginal productivity of
capital and the Tobin’s q are decreasing in size because the revenue func-
tion displays decreasing returns to scale. As a result of the high marginal
productivity of capital, small firms have high investment rates and growth
faster. At the same time, however, they also experience greater variability
of growth. The age dependence derives from the fact that younger firms are
smaller.

6 Extensions

This section considers several extensions of the model. Subsection 6.1 ex-
tends the analysis to the case in which the shock takes more than two values.
Subsection 6.2 studies the case in which the utility function is bounded be-
low. Subsection 6.3 discusses the case in which the diverted revenue cannot
be recovered if the entrepreneur is caught diverting. Subsection 6.4 consid-
ers the alternative assumption in which the diverted revenue is additive to
consumption.

6.1 More than two shocks

Assume that the shock takes N values, that is, z ∈ {z1, ..., zN}. Denote
by D(k, zi, zj) = F (k, zj) − F (k, zi) the revenue diverted if the shock is zj
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and the entrepreneur announces zi, with j ≥ i. The incentive-compatibility
constraints are:

u(zj) + q(zj) ≥ (1− η) ·
[
u(zi) + q(zi) + αD(k, zi, zj)

]
+ η · qR (22)

with j = 2, ..., N and i = 1, ..., j − 1.
The contractual problem is still (3) but the incentive-compatibility con-

straint (5) is replaced by this new set of constraints. To simplify the analysis,
we now assume that the revenue function takes a particular form:

Assumption 2 The revenue function is F (k, z) = (1−ω)k + z ·f(k), where
ω ≥ 0 is constant and f is strictly increasing, concave and differentiable.

This assumption is convenient to establish the uniqueness of the solution
to the optimal contract as stated in the next proposition.

Proposition 6 (Optimal long-term contract) Under assumption 2, the
contractual problem is a contraction and there is a unique fixed point V (q).
The solution is unique and V (q) is strictly concave and differentiable. More-
over, there exists q for which V (q) is strictly decreasing for q > q and the

long-term contract is free from renegotiation.

Proof: Appendix E.

This proposition is the equivalent of propositions 1, 2 and 3 for the case
in which the shock takes only two values. Furthermore, a similar version of
proposition 4 holds. Therefore, the optimal contract maintains the proper-
ties we have seen before. However, now the simple share ownership of the
entrepreneur is no longer sufficient to implement the optimal contract. A
more complex managerial compensation is required. The remaining part of
this section will show how the use of stock options can implement the optimal
contract.

Consider the simplest case in which the shock takes only three values.
We then have the following proposition.

Proposition 7 (Stock options) Assume that z ∈ {z1, z2, z3} and denote
by P (q, z) the market price of the firm’s shares in the optimal contract when
the pre-shock promised utility is q and the realization of the shock is z. Then
the optimal contract can be implemented with the entrepreneur ownership of
s(q) shares and the option to buy so(q) shares at some price P o(q) ≥ P (q, z1).

20



The proof of the proposition is simple and it is illustrated in Figure 7.
In the optimal contract, the entrepreneur’s wealth after the realization of z
is WE(q, z). Because the shock takes only three values, the entrepreneur’s
wealth also takes three values (for given q). These values are plotted in Figure
7 and they are denoted by W1, W2 and W3. Two cases are considered: in
the first case WE(q, z) is a convex function of z while in the second case it
is concave.

Let’s consider first the case plotted in panel (a). With the simple own-
ership of shares, we can replicate only two of the three values that WE(q, z)
should take. Suppose that the entrepreneur’s allocation of wealth is such that
b+s(q) ·P (q, z1) = WE(q, z1) = W1 and b+s(q) ·P (q, z2) = WE(q, z2) = W2.
The values of b and s(q) are determined as in Section 4. Although this
composition of the entrepreneur’s portfolio replicates W1 and W2 as re-
quired by the optimal contract, it does not replicate WE(q, z3) = W3. Let
Ŵ3 = b + s(q) · P (q, z3) be the entrepreneur’s wealth generated by this port-
folio composition when the shock is z3 and let’s assume that Ŵ3 < W3 as
plotted in the graph. To make sure that the entrepreneur’s wealth is W3 when
the shock is z3 the entrepreneur could be offered the option to buy so(q) at
the price P o(q), where the price satisfies P (q, z2) < P o(q) < P (q, z3). The
number of option shares offered to the entrepreneur is determined by the
condition so(q)[P (q, z3) − P o(q)] = W3 − Ŵ3. Notice that the market price
P (q, z) is the price after the entrepreneur has exercised the option. Because
the share price is increasing in z, the option will be exercised only if z = z3

and the entrepreneur’s wealth will evolve according to the recommendation
of the optimal contract.

Let’s consider now the second case plotted in panel (b) of Figure 7. In
this case we have to change the structure of the option. Here b and s(q) are
chosen to replicate only W1, that is, W1 = b + s(q) · P (q, z1). The values of
Ŵ2 = b + s(q) · P (q, z2) and Ŵ3 = b + s(q) · P (q, z3) are smaller than W2

and W3, that is, Ŵ2 < W2 and Ŵ3 < W3. By adding an option to purchase
so(q) shares at the price P o(q) which satisfies P (q, z1) < P o(q) < P (q, z2), we
can replicate the points W2 and W3. Here we need the right combination of
share ownership s(q), option shares so(q) and option price P o(q). Notice that,
after exercising the option, the entrepreneur is not constrained to keep the
previous holding of shares. Therefore, after trading, the new shares holding is
not necessarily s(q)+so(q). Also notice that there are many share ownership
and option schemes that implement the optimal contract.

When the shock takes more than three values, the implementation of
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Figure 7: Contract implementation with stock options.

the optimal contract requires more complex option schemes. For example, it
could be implemented by giving the option to purchase different sets of shares
at different prices. However, independently of how the optimal contract is
implemented, the general properties do not change and the entrepreneur will
eventually reduce the wealth dependence from the performance of the firm as
his or her wealth increases. Broadly interpreted this means that the insider
ownership tends to decline and the entrepreneur’s portfolio becomes more
diversified on average over time.

6.2 Utility is bounded below

A key assumption for the renegotiation-proofness of the long-term contract
established in Section 3.2 was that the utility function is unbounded below.
We now relax this assumption and we assume that U(0) = u > −∞. The
most important consequence of making this alternative assumption is that
the long-term contract—that is, the contract that the parties commit not to
renegotiate in future periods—may not be free from renegotiation.

To see why the contract may not be free from renegotiation, consider
the event in which the entrepreneur is caught diverting. According to the
optimal long-term contract, the entrepreneur value will be uD + qD = qR. If

22



the utility function were unbounded below, qD could be set to q—which is

the value of q above which the investor’s value is decreasing—and there is no
gain for the investor from renegotiating the contract. However, if the utility
function is bounded below, this may not be feasible. In fact, in order to set
qD = q, the current utility should be set to uD = qR − q. But qR − q may be

smaller than u, and therefore, it would not be feasible to set qD = q. In this

case the investor would gain from renegotiating the contract. In particular,
the value of the contract for the entrepreneur will be increased to u+ q > qR

and the threat of uD + qD = qR in case of diversion is not credible.
A similar argument shows that the contract could be renegotiated also in

contingencies in which the entrepreneur is not caught diverting. More specif-
ically, let’s assume that along the execution of the contract, the promised
value conditional on z1 is binding, that is, q̃(z1) = u(z1) + q(z1) = qR. After
the announcement of the shock in this contingency, the optimal policy is to
set q(z1) ≥ q and u(z1) = qR − q. If however qR − q < u, this is not feasible

and the contract will be renegotiated.
The derivation of the renegotiation-proof contract is based on the fol-

lowing idea. In those contingencies in which the contract is renegotiated,
renegotiation implies an increase in the continuation value. Anticipating
this, there is not reason to set in advance a low promised value when this
value will be increased ex-post. Therefore, we can impose an additional con-
straint for which u(z) + q(z) must always be greater than some lower bound
qmin ≥ qR. This constraint is in addition to the lower bound for the current
utility, that is, u(z) ≥ u. The contractual problem can been written as:

V (q) = max
k,u(z),q(z)

{
− k + δ

∑
z

[
F (k, z)− C(u(z)) + V (q(z))

]
p(z)

}
(23)

subject to

q = β
∑
z

[
u(z) + q(z)

]
p(z) (24)

u(z2) + q(z2) ≥ (1− η) ·
[
u(z1) + q(z1) + αD(k)

]
+ (25)

η ·
[
uD + qD

]
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u(z) + q(z) ≥ qmin; uD + qD ≥ qmin (26)

u(z) ≥ u; uD ≥ u (27)

The following proposition defines the renegotiation-proof contract.

Proposition 8 The optimal and renegotiation-proof contract is character-
ized by some lower bound qmin.

Proof: Appendix F.

A similar result is derived by Wang (2000) in a finite horizon model and
by Quadrini (1999) in a model with risk neutral agents.

The imposition of the lower bound qmin does not change the main prop-
erties of the optimal contract. Therefore, all the previous results apply. In
particular, if the shock takes only two values, the optimal contract can be
implemented with the entrepreneur’s ownership of some of the firm’s shares.
With more than two shocks, the basic shares ownership could be comple-
mented with stock options. Moreover, if the probability η is positive, the
entrepreneur’s stake in the firm will converge to zero (full diversification)
once the entrepreneur’s wealth has reached a certain level.

6.3 Diverted revenues cannot be recovered

In the analysis conducted so far, we have assumed that in the case in which
the entrepreneur is caught diverting, the diverted revenues is recovered.
Given this assumption, the incentive-compatibility constraint was:

u(z2) + q(z2) ≥ (1− η) ·
[
u(z1) + q(z1) + αD(k)

]
+ η · qR (28)

From this equation we can see that if the shock is public information, that
is, η = 1, this constraint simply imposes that u(z2) + q(z2) ≥ qR. Assuming
that the surplus that a firm can generate is sufficiently large, this constraint
is never binding and the firm will be always operated at the optimal scale k̄
(frictionless economy).
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Let’s consider now the case in which the revenues can not be recovered.
The incentive-compatibility constraint becomes:

u(z2) + q(z2) ≥ (1− η) ·
[
u(z1) + q(z1)

]
+ αD(k) + η · qR (29)

If η < 1, it is easy to show that the properties of the model do not change
qualitatively. However, if η = 1 and there is no asymmetry in information,
the firm is not necessarily operated at the optimal scale k̄ as in the case in
which the diverted revenue can be recovered. In fact, if we set η = 1, the
incentive-compatibility constraint becomes:

u(z2) + q(z2) ≥ αD(k) + η · qR (30)

Therefore, even if the shock is public information, the capital invested in the
firm constraints the feasibility of the values promised to the entrepreneur.
In this respect the model resembles a limited enforceability model in which
diversion is perfectly observable but can not be prevented. Therefore, when
η < 1 the model combines some features of the limited enforceability model
with some features of the pure moral hazard model. The general properties,
however, remain unaffected.

6.4 Diverted revenues additive to consumption

An alternative formulation of the benefit from diversion is to assume that
the diverted revenues are additive to consumption. Denote by c(z1) the
consumption recommended by the contract when the shock is z = z1. If
the shock is z = z2 and the entrepreneur diverts revenues, the current util-
ity is U(c(z1) + D(k)). With this alternative assumption, the incentive-
compatibility constraint becomes:

U(c(z2)) + q(z2) ≥ (1− η) ·
[
U
(
c(z1) + D(k)

)
+ q(z1)

]
+ η · qR (31)

The contractual problem is still given by (3) but with this new incentive-
compatibility constraint. Notice that now we do not need to impose that the
marginal utility of consumption is bounded away from zero.

With this alternative formulation of the benefits from diversion, it is
more difficult to prove the concavity of the function V (q). This is because
the feasible set is not convex. However, if this function is concave, then all
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the results proved in the previous sections hold and the optimal contract
displays the same qualitative properties.

In the remaining part of this section we will show a numerical example
in which this property is satisfied. In addition to assuming that the diverted
revenues are additive to consumption, we also assume that the utility function
is U(c) = log(c). With the exception of the utility function, we use the same
parametrization of Section 5.

Figure 8 plots the entrepreneur’s shares as a function of wealth and age,
for different values of the probability η. As can be seen from this figure,
the properties of the model are very similar to the properties of the model
analyzed in the previous sections.

7 Conclusion

This paper studies the optimal contract between risk-averse entrepreneurs
and risk-neutral investors in a model with repeated moral hazard. When the
shock to the firm’s revenues takes only two values, the optimal contract can
be implemented with the entrepreneur’s ownership of a fraction of the firm’s
shares. This ownership, then, evolves over time according to the performance
of the firm. Initially, the entrepreneur’s wealth is small and the optimal
contract requires that the entrepreneur faces part of the firm’s risk by holding
a large stake in the firm. When the entrepreneur’s wealth is sufficiently large,
however, the insider ownership declines. This follows from the fact that it is
easier to make the contract incentive compatible as the entrepreneur’s wealth
increases. Because the entrepreneur’s wealth increases on average over time,
it is shown that the insider ownership tends to decline with the age of the
firm. The paper also shows that higher is the degree of investors’ protection—
as measured by the ability of investors to extract information about the
performance of the firm—and lower is the concentration of ownership. These
results are consistent with the ownership dynamics observed in cross-section
and cross-country empirical studies.

When the shock takes more than two values, the optimal contract can
not be implemented with the simple ownership of the firm’s shares. In this
case, the implementation of the optimal contract can be obtained with the
addition of stock options. This is consistent with the growing practise of
using stock options for managerial compensation.
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A Proof of proposition 1

Let’s rewrite first the contractual problem by using x = D(k) as a choice variable.

T (V )(q) = max
x,u(z),q(z)

{
π(x) + δ

∑
z

[
− C(u(z)) + V (q(z))

]
p(z)

}
(32)

subject to

q = β
∑
z

[(
u(z) + q(z)

)]
p(z) (33)

u(z2) + q(z2) ≥ (1− η) ·
[
u(z1) + q(z1) + αx

]
+ η · qR (34)

u(z) + q(z) ≥ qR (35)

All the constraints are linear functions of the states and choice variables. This
insures that the feasible set is convex. The verification of the Blackwell conditions
then shows that the mapping T is a contraction and there is a unique function V .

The concavity of V derives from the concavity of π(x) and from the fact that
the mapping T preserves concavity. The concavity of π(x) and V (q) then implies
that the solution is unique. The differentiability can be proved by verifying the
conditions of Theorem 9.10 in Stokey, Lucas, & Prescott (1989).

Let’s prove now that there is some q ≥ βqR for which V is decreasing in q ≥ q.
It is sufficient to prove that there are two points qa and qb, with qa < qb, for which
V (qa) > V (qb). Associated with qa and qb there are solutions (xa, ua(z), qa(z)) and
(xb, ub(z), qb(z)) respectively. We want to show that V (qa) cannot be smaller
than V (qb). In fact with q = qa there is a feasible solution, different from
(xa, ua(z), qa(z)), for which V (qa) > V (qb). Consider the solution (x̃a, ũa(z), q̃a(z))
constructed as follows: x̃a = xb, q̃a(z) = qb(z), ũa(z2) = ub(z2) and ũa(z1) is de-
termined by the equation:

qa = β
∑
z

[(
ũa(z) + q̃a(z)

)]
p(z) (36)

This is the promised-keeping constraint. It is easy to verify that the solution
(x̃a, ũa(z), q̃a(z)) also satisfies the incentive compatibility constraint:

ũa(z2) + q̃a(z2) ≥ (1− η) ·
[
ũa(z1) + q̃a(z1) + αx̃a

]
+ η · qR (37)

Moreover, if qa is sufficiently large and qb is sufficiently close to qa, the limited
liability constraint ũa(z1) + q̃a(z1) > qR is also satisfied. Therefore, this solution
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is feasible. Because EC(ũa(z)) < EC(ub(z)), the value of V associated with this
solution must be greater than V (qb). Finally notice that this result assumes that
qa and qb are sufficiently large. Therefore, we can not conclude that the function
V (q) is decreasing for all feasible values of q. Q.E.D.

B Proof of proposition 2

Let (x, u(z), q(z)) be a solution of problem (32) for some q and assume that q(z1) <
q. We want to show that this cannot be the optimal solution.

Consider the alternative solution (x̃, ũ(z), q̃(z)), where x̃ = x, ũ(z2) = u(z2)
and q̃(z2) = q(z2), q̃(z1) = q and ũ(z1) satisfies u(z1) + q(z1) = ũ(z1) + q̃(z1). In
this alternative solution we only change the current and continuation utilities when
the shock is low. This alternative solution is obviously feasible. At the same time
it satisfies C(ũ(z1) < C(u(z1)) and V (q̃(z1)) > V (q(z1)). Therefore, the solution
q(z1) < q cannot be optimal. Notice that finding the value of ũ(z1) that satisfies
u(z1)+q(z1) = ũ(z1)+q is always possible because the function U(c) is unbounded
below. Q.E.D.

C Proof of proposition 3

Suppose that the entrepreneur is caught diverting. In this case the promise utility
is uD + qD = qR. Because U(c) is not bounded below, we can set qD = q and
uD = qR−qD. Therefore, we are able to deliver the promised value qR by choosing
a continuation utility at least as big as q and the investor would not gain by
increasing the promised value uD + qD above qR.

D Proof of proposition 4

Let’s observe first that the incentive-compatibility constraint u(z2) + q(z2) ≥ (1−
η) · [u(z1)+ q(z1)+α x]+ η · qR implies that u(z2)+ q(z2) > u(z1)+ q(z1). Because
u(z1) + q(z1) ≥ qR, it is obvious that u(z2) + q(z2) is always greater than qR as
long as x > 0. Let’s also observe that λ is increasing in q. In fact, from the
envelope condition we have λ = −Vq. Because V is concave, −Vq is increasing in
q. Therefore, λ must also be increasing in q. Finally, because q constraints the set
of feasible choices, the Lagrange multiplier µ(z1) can not be increasing in q (and
λ). At some point, when q is above some threshold q̄, the incentive-compatibility
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constraint is no longer binding. At this point γ = 0 and it can be verified from (9)
that k = k̄, and from (10)-(13) that u(z1) = u(z2) and q(z1) = q(z2).

When q < q̄, it must be that λ(z1) < λ(z2), which in turn implies that u(z1) <
u(z2) and q(z1) < q(z2). This can be shown by contradiction. Suppose that
λ(z1) > λ(z2). Then q(z1) > q(z2). Furthermore, conditions (10)-(13) imply
C ′(u(z1)) = λ(z1) and C ′(u(z2)) = λ(z2) and u(z1) > u(z2). Therefore, u(z1) +
q(z1) > u(z2) + q(z2). But then we could improve the contract by decreasing
u(z1) and increasing u(z2). In fact, the convexity of C(u) makes the expected cost
of the current promised utility smaller and, as can be seen from the incentive-
compatibility constraint, allows us to increase x. Therefore, the solution must be
λ(z1) < λ(z2), which in turn implies u(z1) < u(z2) and q(z1) < q(z2). At the same
time, λ(z1) < λ(z2) is possible only if γ > 0. From condition (9) we then see that
k < k̄. Q.E.D.

E Proof of proposition 6

Define x = f(k). Therefore, D(k, zj , zi) = α(zj − zi)x and π(x) = −f−1(x) +
δ
∑

z F (f−1(x), z)p(z). The contractual problem can be written as:

T (V )(q) = max
x,u(z),q(z)

{
π(x) + δ

∑
z

[
− C(u(z)) + V (q(z))

]
p(z)

}
(38)

subject to

q = β
∑
z

[(
u(z) + q(z)

)]
p(z) (39)

u(zj) + q(zj) ≥ (1− η) ·
[
u(zi) + q(zi) + α(zj − zi)x

]
+ η · qR(40)

u(z) + q(z) ≥ qR (41)

with j = 2, ..., N and i = 1, ..., j − 1. All the constraints are linear functions
of the states and choice variables. This insures that the feasible set is convex.
The verification of the Blackwell conditions then shows that the mapping T is a
contraction and there is a unique function V .

The concavity of V derives from the concavity of π(x) and from the fact that
the mapping T preserves concavity. The concavity of π(x) and V (q) then implies
that the solution is unique. The differentiability can be proved by verifying the
conditions of Theorem 9.10 in Stokey et al. (1989). The rest of the proof is as in
the proof of propositions 1, 2 and 3. Q.E.D.
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F Proof of proposition 8

For any qmin, the problem is well defined and it has the same properties estab-
lished in proposition A. For a value of qmin sufficiently large, V ′(q) < 0. To
see this, consider the incentive-compatibility constraints u2 + q2 ≥ (1 − η)(u1 +
q1 +αx̄)+ηqmin. Substituting this constraint on the promised-keeping constraints
q = β

∑
z p(z)(u(z) + q(z)) we get:

q ≥ βp(z1)(u(z1) + q(z1)) + βp(z2)(1− η)(u(z1) + q(z1) + αx̄) + βp(z2)ηqmin (42)

Let’s set u(z1) + q(z1) = qmin. The above equation becomes:

q ≥ βqmin + βp(z2)αx̄ (43)

Of course q ≥ qmin − u. Therefore, substituting q we get:

qmin(1− β) ≥ u + βp(z2)αx̄ (44)

If qmin is sufficiently large, this constraint is always satisfied and the production
scale will always be at the optimal level x̄. Therefore, V ′(q) can not be positive.

Consider now the extreme case in which qmin = qR. We distinguish two cases.
In the first case u+q < qR and the long-term contract is free from renegotiation. In
the second case u+q > qR which allows for q(z1) to be smaller than q. Because we
know that for qmin sufficiently large V ′(qmin) < 0, there must be some qmin > qR

such that V ′(qmin) = 0. We may have more than two values of qmin that satisfy
this. We then take the lowest value. Q.E.D.

G Numerical solution

Let’s notice first that there is a unique correspondence between q and the Lagrange
multiplier λ. If we knew the function relating these two variables, the first order
conditions would be sufficient to solve the model. Denote this function by g(q) = λ.
The computation procedure consists of the iteration over this function.

We discretize the state space of q and we guess the values of the function g(q) at
each grid point. The guessed points are then joined with step-wise linear functions.
Equations (9)-(13) together with the promised-keeping, incentive compatibility
and limited liability constraints provides nine conditions. With the addition of
λ(z1) = g(q(z1)) and λ(z2) = g(q(z2)), we have eleven conditions. These allow
us to solve—at each grid point of q—for the following eleven unknowns: x, u(z1),
u(z2), q(z1), q(z2), γ, λ, λ(z1), λ(z2), µ(z1), µ(z2). The value of λ can then be
used to update the guessed value of the function g(q) at the particular grid point.
The procedure is repeated until convergence in the function g(q).
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