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As part of an institutional initiative to differentiate core undergraduate business classes, we have recently
launched a new operations management (OM) course focused on modeling. Whereas the Traditional Opera-
tions Management (TOM) course reviews classical models in inventory, queueing, and supply chains, the new
Operations Modeling with AT (OMAI) course centers on the practice of mathematical modeling, particularly
optimization and simulation. A distinctive element of OMAT is the integration of generative Al-based pair-
programming assistants through what we call Incremental Prompting, which prioritizes learning essential
modeling skills—abstracting real situations and expressing them with mathematical precision—rather than
programming syntax. We evaluated the course through an end-of-term self-assessment survey across both
offerings (N = 250; TOM = 156, OMAI = 94). Results indicate that OMAI students reported greater comfort
and confidence in understanding, valuing, and applying model-based decision-making. Interestingly, these
findings become more pronounced after controlling for prior coding experience, suggesting that OMAI ben-
efits both technically experienced and less experienced learners. In survey responses, students credited the
pair-programming framework with their increased comfort and understanding of modeling. Taken together,
our findings demonstrate how generative Al can be leveraged in OM and OR education to reduce technical

barriers and sharpen focus on core modeling skills.

Key words: Undergraduate business education, Incremental Prompting, Al pair-programming,

optimization and simulation modeling

1. Introduction

In the field of operations research (OR), there has long been a lingering sentiment that “OR has
a PR problem.” This concern has manifested in open reflections on the field’s future (Kan 1989)
and drift (Corbett and Van Wassenhove 1993), as well as in organizationally funded campaigns
to market the profession, such as the clever “Science of Better” tagline (Sodhi and Tang 2008)
and the recent emphasis on analytics (Liberatore and Luo 2010, Mortenson et al. 2015, Gorman
2021). Rarely have these concerns stemmed from the merits of the field itself. Rather, as the very
existence of marketing campaigns suggests, there is a simple but essential need for more people to
learn about OR.

Traditionally, and predominantly in engineering and mathematics programs, the approach to
teaching OR has focused on the combination of models and methods (e.g., Jensen and Bard 2002).

While methods are certainly important and intellectually engaging, it seems likely that, between



the two, models are the gateway to learning the discipline. Both a skillset and a mindset, modeling
teaches students how to reason quantitatively about complex real-world problems in order to solve
them. As the “simple models for complex realities” mantra suggests (e.g., Cai et al. 2019), this
perspective provides a valuable toolkit across contexts.

By comparison, in operations management (OM) courses in business schools, the typical focus
is neither on models nor on methods. Instead, curricula stress common tradeoffs and takeaways,
largely by presenting the results of classical OR/OM models—the economic order quantity formula,
a G/G/c waiting time approximation, etc. While this may be an effective strategy for distilling
managerial insights for future business leaders, it does not teach the core skill of modeling, since
students are given the model “upfront.” Moreover, because these populations often exhibit highly
varied mathematical preparation (and interest), such courses rarely delve deeply into the underlying
OR methods. Thus, traditional OM courses ultimately leave students with a poor grasp of what OR
and OM practitioners actually do. Moreover, the prevailing course’s perspective jumps straight to
the long-run and overlooks the critical initial phases. Particularly in the context of undergraduate
business education, students do not graduate and simply immediately assume senior leadership
roles. On the contrary, in an increasingly data-driven world, more and more entry-level roles have
become increasingly tangential, if not outright reliant, on quantitatively reasoned decision-making.

We claim that Al presents an opportunity to revisit this pedagogical challenge in undergraduate
OM courses. As part of a larger institutional initiative to differentiate undergraduate business
courses, we introduced a version of our core OM course specifically focused on the skill of modeling.
A key element of our course design is leveraging generative-Al-based pair-programming tools (e.g.,
GitHub Copilot) through a prompting strategy we call Incremental Prompting (see Section 1.1).
Importantly, Incremental Prompting circumvents what we see as the major hurdle in teaching
modeling to undergraduates with varied technical backgrounds: for students to appreciate the value
and impact of a model on practice, it must be implemented, and to implement it, they need to
code it in some software. But learning syntax or the idiosyncrasies of a particular platform is
an orthogonal (and often challenging) task that distracts from the primary learning objective of
modeling. Through our Incremental Prompting approach, we move the pedagogical focus back onto
modeling and outsource syntactical issues to the Al

Evidence from the early success of our course suggests that undergraduate business students—
both with and without prior technical backgrounds—report greater comfort with their ability to
model and better understanding of the value of model-based decision-making in the new OMAI

offering.



1.1. Our Approach to Al in the Classroom: Incremental Prompting, Not One-Shot Prompting

A key component of our new modeling-focused OM course is what we call “Incremental Prompting”
for generative Al. Unlike the common approach of posing a single question and receiving a complete
solution from a chatbot, Incremental Prompting breaks the task into a sequence of smaller, more
specific prompts. This granularity serves a dual purpose in our course: improving output accuracy
and reinforcing our pedagogical objective.

First, highly specific prompts for short code fragments reduce opportunities for error in the Al-
generated response, and the brevity of the output makes mistakes easier to detect. Second, and
far more importantly, Incremental Prompting requires students to think through the primitive
“elements” of a model. These elements might be a set of variables representing production, or a
family of constraints capturing flow conservation. They do not necessarily correspond to a single
line of code, but rather to a distinct semantic idea in the model. Experienced modelers often
reason about large models in these kinds of “semantic chunks.” By encouraging students to prompt
syntactically line-by-line, we are implicitly teaching them to decompose and conceptualize models
in this way. We see this as a key learning objective and a foundational skill for modeling.

We stress that Incremental Prompting is distinct from the more common strategy of providing
an entire natural language description to a chatbot and requesting a full mathematical formulation
or implementation. Such an approach is often error-prone (see Sec. 2) and, more importantly,
tends to avoid or even replace the act of modeling. By contrast, Incremental Prompting requires
students to engage directly in the modeling process to construct the relevant, line-by-line prompts
themselves. In our courses, we have students first write out mathematical formulations of models
with “paper and pencil” before beginning to code. In this sense, we view Incremental Prompting as
a pedagogical tool teaching modeling, distinct from approaches that seek to automatically generate
optimization formulations to replace modelers.

Figure 1 shows a pair of screenshots illustrating the Incremental Prompting idea through the
implementation of an optimization model using the Gurobipy library in Python. Both snippets
attempt to implement a budget constraint as the next increment of a model after its decision
variables have been defined above. In both cases, the implementation is assisted by GitHub Copilot,
a generative-Al pair-programming tool within the course’s coding platform (which we will detail
further in Section 3). This assistant is more like an auto-complete than a chatbot: prompting with
Copilot is done through writing comments (which take place on lines with “#” in Python), and
the Al-generated responses then come in the form of coding suggestions output underneath the
comment.

The contrast between these two example screenshots highlights the two purposes of Incremental

Prompting. In the upper screenshot of Figure 1, the prompting comment is described in plain



6 #data

7 months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
8 budgets_vec = [1200, 2000, 1500, 1800, 2200, 2500, 2700, 3000, 3200, 3500, 3700, 4000]

9 budgets = {month: budget for month, budget in zip(months, budgets_vec)}

10 products = ['A*, 'B', 'C', 'D', 'E', 'F', 'G']

11 . .

12 ## Model Building Student writes Copilot suggests
13 m = Model("production_planning") com ment (L|ne 18) Python Wlth error

(Line 19)

15 # create variables x[p, m] for p in products and m in months
16 x = m.addVars(products, months, vtype=GRB.CONTINUOUS, name="prod")

18 #add a constraint that the premium producipre +en.in each month for is at most the budget
19 -l [n addConstrs((quicksum(x[p, m] for p 1/7 <= budgets[m] for m in months), name="budget_constraints")

12 ## Model Building
13 m = Model("production_planning")

15 # create variables x[p, m] for p in products and m in months More eXpllClt comment
16 x = m.addVars(products, months, vtype=GRB.CONTINUOUS, name="prod") (Line 19)

Higher quality

18 for m in months:

19 ‘ #add a constraint that sum of x[p, m] for p in products is at most budgets[m] SuggeStion (Line 20)
20 | |n.addConstr(qulcksum(x[p, m] for p in products) <= budgets[m], name=f"budget_{m}")

Figure 1 Incremental Prompting. Students write short, explicit comments describing self-contained modeling
steps. They proceed incrementally to build up an executable model. In the first example, a very generic
prompt leads to a hallucination - referencing an undefined variable “premium_products.” In the second

example, the explicit, mathematical form of the prompt elicits a higher quality suggestion.

language and not mathematically precise: the idea of the constraint is described rather than the
constraint itself. By comparison, in the lower screenshot, the prompting comment actually describes
the constraint in terms of the data and decision variables, and it even does so within a for loop to
further reduce input uncertainty. In result, the loose language of the upper screenshot produces an
error, with the Al-generated code using a hallucinated data variable in the suggested constraint,
whereas, in the lower screenshot, the specific mathematical language correctly yields the desired
constraint.

Notice that the resulting Incremental Prompting workflow is to interpret a problem, develop a
model, and then implement and solve it by describing it incrementally and precisely. This approach
keeps the focus and primary responsibility of students on modeling, i.e. translating reality to math.
The goal is not to teach students to code, nor is it to teach them to prompt AI about a problem
in one-shot fashion to receive a wholesale model. Hence, our approach to Al in this course keeps

students’ hands and eyes on the modeling concepts at the course’s core.

1.2. Organization of Paper

In the remainder of this paper, we will provide further details on our approach to teaching modeling
in undergraduate OM courses with Al, including the results of a modeling self-assessment survey
of students from both the new course and the traditional OM offering at our institution. First, in
Section 2, we survey related literature, including on generative Al use in optimization formulation

and generative Al in education. In Section 3, we describe our new course in greater depth, including



content, delivery, and assessment, and we also provide background context for the traditional OM
course. In Section 4, we analyze the results of the student survey, where we find that both students
with strong technical backgrounds and those without prior technical experience seem to be well-
served by the new course, with AT assistance reported as a key component of student success (with
important caveats). Finally, in Section 5, we provide additional details of the course and reflections
for possible improvements in future semesters. The full results of the survey are available in the

appendix, as is the complete collection of survey questions.

2. Related Work
2.1. Using Generative Al to Formulate Mathematical Optimization Problems

We contrast our work with recent attempts to use generative Al to translate natural language
descriptions of optimization problems into executable code or mathematical formulations. This
task was the subject of the recent NL4Opt Competition (Ramamonjison et al. 2023). Various
approaches have emerged for the problem. AhmadiTeshnizi et al. (2025) develops a system that
takes in the natural language description of an optimization problem and attempts to formulate
it, code it for a solver, call the solver, and debug its own errors. Xiao et al. (2024) proposes an
alternate “chain of experts” strategy that links together different LLMs with prescribed subtasks to
achieve a similar goal. Other authors have looked at more specialized tasks. For example, Lawless
et al. (2024) use natural language descriptions of constraints to formulate and solve a constraint
programming problem for meeting scheduling. Importantly, all of these approaches are not aimed
at students. They are meant to fully replace the need for an expert modeler, and are perhaps
best suited to application contexts where established models exist, but are hard to tailor to an
organization’s specific needs.

By contrast, we are interested in teaching modeling as a skill and hence use a less “black-box”
approach in our classroom. In the context of optimization, this involves i) developing a paper-and-
pencil model formulation (similar to a traditional optimization classes) and interactively ii) writing
very explicit code comments to Github Copilot to describe the variables and constraints while iii)
reviewing the few lines of code generated by Copilot as it “translates” that comment. Steps ii)
and iii) are done interactively and a single comment at a time, so that the student can see the
model organically come together, as according to the Incremental Prompting framework given in
Section 1.1. Overall, students must still think through a problem context to identify variables and
constraints, themselves, and thus they engage in modeling in the same way a mature operations
researcher might. We think this approach is critical to learning fundamental modeling skills and

hence also design our assessments around it.



2.2. Generative Al in Higher Education

The use of Al, generally, and generative Al, more specifically, in education is an active subject of
ongoing research with studies across educational levels investigating different aspects of education,
from different stakeholder viewpoints, and with respect to different Al tools. An exhaustive sum-
mary is impossible. We focus our literature review primarily on the use of generative Al tools in
higher education.

Yan et al. (2024) surveys different use cases of LLMs in education, focusing on practical obsta-
cles to adoption and ethical issues around transparency, privacy, equality, and beneficence. They
identified 53 use cases under 9 main categories: profiling/labelling, detection, grading, teaching
support, prediction, knowledge representation, feedback, content generation, and recommendation.
Our work — leveraging GitHub Copilot for code generation — falls under “content generation.”
Similarly, Belkina et al. (2025) surveys case studies, discussing the challenges of “ensuring that
educational technologies are used effectively, ethically, and inclusively.” Bien et al. (2024) is another
notable survey centering on use cases specifically in the business (both undergraduate and gradu-
ate) curriculum.

Perhaps closer to our focus is the growing literature on whether generative Al tools improve
student learning in higher education. Dong et al. (2025) provide a recent survey. They note that
past research has a varied focus, some authors studying the effects of a particular tool on stu-
dent achievement (as measured by a standardized assessment) and others on educational learning
experiences. Moreover, this research is inconclusive: in some contexts, Al tools improve student
achievement, while in others they have little or even negative effect. These past works span educa-
tional contexts from nurse training (Chang et al. 2022) to massive open online courses (MOOCs)
for elementary school students (Bachiri et al. 2023). Dong et al. (2025) consequently perform a
meta-analysis of past work (spanning generative Al and other AI tools across multiple education
levels) and overall find that the introduction of AI tools improves student achievement. Wang and
Zhao (2024) and Zheng et al. (2023) also perform similar meta-analyses (again across all Al tools
and educational contexts) finding positive effects of introducing Al tools on student achievement,
although Zheng et al. (2023) surprisingly finds smaller effects on self-perception of learning and
experience. We stress, however, there is far from a consensus on the benefits of generative Al tools.
Bastani et al. (2025) conducts a large RCT with high school math students and argues that LLM
tutors can hurt long-term learning when students can no longer access the tutor.

Our study differs from these previous works in an important respect: In most studies, Al tools
are used to help assist in achieving the primary learning objective. For example, in Bastani et al.

(2025), tutors aim to teach students mathematics, and, later, students are assessed via an exam on



mathematics. By contrast, in our work, pair programming is used to help students translate code
comments into executable code, but our primary learning objective is not teaching students to code.
Rather, it is teaching students how to model, and the relevant modeling steps are still performed
by hand and assessed with “paper and pencil.” (See Section 3 for further course details.) The use
of pair-programming tools like Github Copilot is to develop code that augments understanding of
the model and connects material to real-world applications. Thus, while one might plausibly argue
that Copilot hinders students’ learning of Python, it is less clear how it affects their learning of
modeling skills.

In this respect, our use of pair-programming more closely resembles the use of software tools
throughout STEM education. Recently, generative Al tools have been used in introductory statistics
and data science courses (Bien and Mukherjee 2025, Bray 2025). Within OR, there is a long history
of using spreadsheets (i.e., Microsoft Excel) for teaching both simulation (Evans 2000, Hill 2002,
Eckstein and Riedmueller 2002) and optimization (Pachamanova 2006, Mason 2012, Martin 2010).
Web-based tools for simulation (Dobson and Shumsky 2006, Snider and Balakrishnan 2013) and
interactive games (Chen and Samroengraja 2000, Pasin and Giroux 2011, Griffin 2007) are also
common, particularly in supply-chain. For optimization problems, specifically, authors have also
advocated for various mathematical modeling languages (Mason 2013, Dunning et al. 2017, Bynum
et al. 2020, Dunning et al. 2015, Lofberg 2004, Grant et al. 2006, Fourer et al. 1990, Chen and Xiong
2023). The plethora of such software tools and best practice articles for them is strong evidence
that there is wide agreement across the field that these types of tools support and promote student
learning.

We see our use of GitHub Copilot to translate code comments to executable Python code as
philosophically similar to these existing use cases, but also note a few advantages. Relative to Excel,
coding in Python allows one to more easily represent large and complex optimization problems
and simulation contexts. For example, when using Excel’s Solver to model a linear optimization
problem, one is essentially forced to set up individual linear constraints in matrix form. It is
difficult, if not impossible, to represent the iteration concepts so often encountered in real-world
constraints: “for every arc in the network, inflow equals outflow” or “every job should be assigned
to one worker.” Often, this makes it difficult for students to appreciate this level of abstraction
when thinking about families of “related” constraints in large-scale applications. By contrast, these
iteration concepts are naturally described with for loops and iterable collections (e.g., Python
dictionaries). And, while one could, in principle, model them using a proprietary language like
AMPL or JMP, doing so requires students to learn the programming syntax of that language
while they are simultaneously struggling to learn underlying optimization concepts. By leveraging

generative Al’s ability to parse natural language text, students can focus on concepts and avoid



syntax entirely. Finally, once students understand iteration over constraints and variables, they
can easily model large, real-world scale optimization problems that can motivate and inspire them.
Similar arguments can be made with respect to creating discrete event simulations. Indeed, writing
such simulations using Crystal Ball or @Risk can be notoriously finicky, requiring a great deal of
“spreadsheet planning” to layout data and computations that obscures the fundamental concepts
in simulation, while working directly in a programming language like Python requires a detailed
discussion of syntax. In these various respects, we see our use of GitHub Copilot with Incremental

Prompting as a potential improvement on existing software tools supporting OR/OM education.

2.3. Student Achievement vs. Student Self Assessment

We conclude by noting that, unlike some previous work which measures student achievement via
standardized testing, our primary survey endpoint is a self-assessment of learned modeling skills.
Indeed, given the practical constraints of our teaching environment — two, tracked core classes with
overlapping, but distinct course topics and a need for consistency across sections and semesters
— administering an appropriate standardized test across both groups and incentivizing them to
perform well was logistically impossible. Admittedly, our survey results might have little infor-
mation about actual cognitive learning, as Falchikov and Boud (1989) has shown at best a weak
correlation between self-assessment and actual skills, with a wide variability across settings and
contexts. Worse, when a correlation does exist, the seminal work from Dunning & Kruger shows
that less-skilled people tend to systematically overestimate their abilities, while those more-skilled
tend to underestimate (Kruger and Dunning 1999). Finally, there is a known strong confounding
between instructional methods and the relationship between self-assessment and ability. For exam-
ple, Deslauriers et al. (2019) show that under active learning, students tend to learn more, but
perceive that they have learned less because of the additional cognitive effort required.

All that said, we still believe that our survey endpoint is useful to educators. Sitzmann et al.
(2010) shows that self-assessment is a good predictor of self-motivation and satisfaction, while
Duckworth and Yeager (2015) shows that, as a measurement, it is sensitive to experiential aspects
of learning (like belonging and confidence) in a way that traditional standardized testing is not.
Chemers et al. (2001), Multon et al. (1991) show a link between self-efficacy — a student’s belief
in their own ability to successfully perform a task — and academic persistence and academic per-
formance. In these respects, while fully recognizing a rigorous assessment of differences in student
achievement is still needed, we do believe our survey results are informative for educators experi-

menting with this style of course in their classrooms.



3. Curricular Context and Overview of OM Courses at Our Institution

As framed in Section 1, the motivation behind this article’s focal course creation is essentially
thus: there is a large and untapped market of learners receptive to OR models (i.e., undergraduate
business students), and nascent leaps in technology (i.e., generative-Al-based pair-programming
tools) make the present the perfect moment to meet this demand. Even if these learners do not
go on to be professional modelers or OR practitioners themselves, they will be the next generation
of team members and leaders in the workforce, not to mention a sizable portion of the general
public. In fact, according to the National Center for Education Statistics, business constitutes the
largest single category in terms of bachelor’s degrees granted, with 375,418 degrees awarded in
business majors (18.6% of all bachelor’s degrees nationwide) relative to 123,017 degrees (6.1%)
conferred across all engineering disciplines (Irwin et al. 2023). Moreover, the data from Irwin et al.
(2023) also shows that undergraduate business students are broadly representative and reflective
of the overall population across demographics. Hence, a course that advances the teaching of
modeling and quantitative reasoning within undergraduate business education can pay dividends
to the understanding, support, and adoption of these methods across a variety of workplaces and
dimensions of society, which has been a long-running goal for our field.

In this section, we provide an overview of undergraduate operations management education at
our institution and context for the two core classes: Traditional Operations Management (TOM)
and Operations Modeling with AT (OMAI). TOM is a long-standing core course required of all
undergraduate business majors, typically taken in the sophomore or junior year. It is considered
one of the more quantitatively demanding courses in the curriculum. OMAI, first launched in
Fall 2023, is the focus of this paper. Both courses fulfill the same core requirement, share the
same prerequisites, and students are free to choose between them. As previously noted, the two
courses differ significantly in content, pedagogical orientation, and assessment design. Informally,
TOM aims to educate future managers on the processes and tradeoffs commonly encountered in

operations, whereas OMAI emphasizes modeling and model-based decision-making.

3.1. The Traditional Operations Management (TOM) Course

TOM is likely a familiar course to anyone who has taught OM in undergraduate business educa-
tion. As a core course, it aims to provide future managers with a foundational understanding of
the processes and tradeoffs that typify operational contexts. Its primary objective is not to develop
students as modelers or technical specialists, but rather to equip them with an operational mind-
set: to understand how decisions about things like capacity, inventory, quality, and pricing affect
organizational performance, broadly speaking. Designed for undergraduate business majors, TOM

emphasizes breadth over depth, with a focus on conveying managerial insights.
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At this introductory, overview level, the OM canon is well-represented in TOM. The subjects cov-
ered include process analysis (e.g., bottlenecks and throughput), waiting and service management
(e.g., Little’s Law, psychology of wait, and an average wait approximation formula), optimization
(e.g., small LP’s and IP’s, Excel Solver, sensitivity analysis through Solver, and decision trees),
revenue management (e.g., linear demand models, price differentiation), and inventory and supply
chain (e.g., EOQ, Newsvendor, reorder point policies). Additional topics like forecasting may be
included by instructor interest, as can interactive game sessions, such as the beer game (Chen
and Samroengraja 2000). Like most core courses at our institution, TOM is delivered in-person
twice a week using a primarily lecture-based format. Though the inclusion of any resources is
up to instructor preference, the class typically draws on classic OM textbooks (e.g., Cachon and
Terwiesch 2008).

Learning assessment in TOM is primarily exam-based, with quizzes and tests being primarily
quantitative in nature, as based on application of the formulas introduced in the various topics
covered in class. Although questions may introduce slight twists or modified scenarios, students are
not asked to model a problem from scratch. As aligned with the managerial focus of the course,

many examples and assessments are case-based.

3.2. The New Modeling-Focused Alternative: Operations Modeling with Al (OMAI)

Given the sheer size of and variety of interests within the population of undergraduate business
students at our institution, there has been a recognition over the last few years that our core
courses could benefit from product differentiation. Following a precedent set in statistics, OMAI
was developed to offer an alternative path to operations education for students interested in getting
their hands dirty with modeling, data, and analytical tools. Whereas TOM emphasizes operational
reasoning, OMALI focuses on the technical formulation and computational solving of quantitative
decision problems. However, by comparison to OR courses as found in engineering programs, OMAI
does not include algorithmic specifics, and it certainly does not present proofs. Its central aim is to
build students’ capabilities as modelers and quantitative reasoners — individuals who can abstract
real-world systems into formal mathematical representations, apply algorithmic tools to obtain
solutions, and, critically, translate those solutions back to decisions in practice. At its core, OMAI
is a class about mathematical modeling.

The course remains targeted at business majors and requires no prerequisites beyond those for
TOM, but it presumes an interest in — or willingness to engage with — technical material. Students
must choose to take either TOM or OMAI in order to satisfy the requirements of the degree.
Though OMAI has grown in each of the four semesters in which it has existed so far, TOM is

indisputably the larger course. In the most recent semester, Spring 2025, there were three sections
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of OMALI and nine of TOM. OMALI sections are also smaller by design, capped at approximately
40 students each, by comparison to TOM, which has 70 seats per section.

OMALI covers two common types of OM models: optimization and simulation. A brief opening
unit on process analysis introduces essential tradeoffs in resource allocation and throughput, but
the bulk of the semester is split between the two modeling approaches. The optimization half of the
semester covers LPs and IPs (specifically, mixed integer linear programs) with a range of complex-
ity. Topics covered include tightness of constraints and sensitivity analysis, variable indexing and
constraint enumeration for large scale problems, logical constraints in binary optimization models,
and linearization of problems through the addition of new decision variables or constraints. By
comparison to the Excel-based optimization models covered in TOM, a central theme in OMAI
is the translation of operational situations into a general mathematical form, which often involves
construction of scalable models that are both not well-handled by the rigidity of a spreadsheet
and not likely to satisfy the limitations on problem size as set by the default Solver limitations.
Then, in the second half of the semester, OMAI focuses on Monte Carlo simulation. With the
course being in its relative infancy, the simulation modeling material has varied across semesters,
but each iteration has begun with a review of probability distributions as models of randomness,
an introduction of decision trees for an initial manner of making decisions under uncertainty, and
a primer on the essentials of discrete event simulation. Then, in the advanced topics that follow,
queueing models have been covered every semester, whereas Markov chains, stochastic optimiza-
tion, and dynamic programming have each been among the rotation in special topics of instructor
interest.

Like TOM, OMALI also meets twice-per-week, and class sessions are a mix of lecture content and
interactive problem solving sessions. However, unlike TOM, it does not adhere to a single textbook.
Instead, instructional materials are drawn from a range of sources, including business-oriented texts
(e.g. Bertsimas and Freund 2004) and methodologically focused references (e.g. Rardin 1998).

Instead, the most essential resource of OMAI has been the introduction of pair-programming
assistants, such as GitHub Copilot. These generative-Al tools are based upon the same technology
as well-known large language models like ChatGPT, but they have a crucial difference in interface.
Rather than functioning like a chatbot, a pair-programming assistant is more like an auto-complete.
It operates inside of an integrated development environment (IDE), such as Visual Studio (VS)
or VS Code, rather than within its own interface. Similarly, instead of producing a full response
to a prompt, it offers a single line (or, in some cases, a small number of lines) of code based
on a comment. That is, a modeler using a pair-programming assistant to solve an optimization
model would not submit the full model or problem scenario and expect a full implementation of

the formulation in one fell swoop. Instead, as aligned with the Incremental Prompting philosophy,
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they would enter the decision variables, objective function, and constraints in line-by-line fashion,
successively describing each model element in plain (but mathematically precise) language and
receiving an output line that translates that math to code.

As we outlined for the Incremental Prompting philosophy in Section 1.1, we believe this granular
approach to model implementation with generative Al assistance helps new learners avoid pitfalls
from LLM hallucination or other AI errors. Moreover, and perhaps even more importantly, the
line-by-line interactions in pair-programming keeps the pedagogical focus on modeling. In this
arrangement, the first-order task a student faces on any problem is to model. Once they fully
conceive the model, they can then relay it piece-by-piece to the pair-programming assistant in
order to implement and solve it.

Critically for the undergraduate business student population, this approach does not require any
prior coding experience. In OMAI, we teach students how to use pair-programming assistants to
solve their optimization models in Gurobipy and implement their simulation models with Scipy
and Numpy. However, we do not require that students know how to code, let alone code in Python,
before enrolling in the course. Of course, it is reasonable to expect that a self-selection effect might
imply that there are many OMAI enrollees who are already strong coders (see Sec. 4), but it is
certainly not the case that all OMAI students know how to code. (We have had students ask what
a for loop is!) For those students with less coding experience, we believe that pair-programming is
especially appropriate. Rather than receiving a chatbot’s full implementation that is effectively a
black box, obfuscating the model details at scale, the intimacy of line-by-line prompting essentially
implies that students will build familiarity with individual functions and arguments as they work
through a variety of examples. Thus, we choose to use only pair-programming Al assistance in
OMALI to both keep modeling as the primary learning objective and help new coders learn relevant
language details in a bite-sized fashion.

Both the model-first philosophy and the incorporation of pair-programming are reflected in the
assessments and exercises in OMAI Because practical implementation is a core value for a business
education context, students are given several project-based assignments throughout the semester
in which they must work through the full cycle of model formulation (in many cases, based on
real-world data), implementation to code, and interpretation of the solution. On the assignments,
students will be assessed on each of these fronts, and they have all resources available to them.
On the exams (typically one for optimization and one for simulation), modeling and solving are
decoupled and assessed separately through two different exam segments. One in-class segment
asks students to develop a model for a specific scenario in pencil-and-paper fashion, without any
resources. Then, a second at-home segment asks students to implement and solve a different specific
model and then obtain insights from it. All resources, including pair-programming assistants, are

available to students on the solving segment.



13

4. Insights From a Modeling Self-Assessment Survey of OM Students

In the four semesters that we have taught OMAI at our institution, we have observed anecdotally
through learning evaluations and student interactions that the course has had impact: students
have told us that the class has influenced their career paths and expanded their academic interests,
and the growing enrollment suggests that the course has a positive reputation among students. We
are encouraged by its success so far. (See Sec. 5 for our ideas on how we might improve the course
in future semesters.) Nevertheless, this feedback is informal and not actually measured relative to
its predecessor and parallel option, TOM. After all, students only take one course, and we have
also received positive feedback from students who have taken TOM.

To measure the success of the course on its goals of expanding understanding, adoption, and
advocacy of modeling, and moreover, to understand how the use of generative Al impacts these
goals, we administered a survey to students in both TOM and OMALI at the end of the Spring 2025
semester. This study was reviewed by the University of Southern California Institutional Review
Board and determined to be exempt from further review under Section: 46.104(d) (1) (Study ID
UP-25-00209). The survey was entirely anonymous in both response and record of completion,
students’ participation was entirely voluntary, and, to prevent any potential conflict of interest
among active instructors in that semester, only the first author was involved in constructing the
survey, collecting the responses, and analyzing the data. Participants were recruited both in person
during class time and via email to course rosters. A total of 250 respondents participated, with 156
from TOM and 94 from OMALI

The survey contained four main sections of student self-assessment questions: three background
questions on the students’ experience prior to taking either TOM or OMAI, six questions on
students’ comfort and confidence for general modeling content in the overlap of the two courses,
five questions on the effects of pair programming asked only to OMAI students, and two questions
on students’ comfort and confidence in the use of modeling concepts in a particular example. All of

the survey questions were on a Likert-scale: on each question, respondents were presented with a
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statement and asked to select the option among “strongly disagree,” “somewhat disagree,” “neither

EE Y

agree nor disagree,” “somewhat agree,” and “strongly agree” that best described their agreement
with the statement.

In the background section, respondents were asked to self-assess their experience with cod-
ing prior to taking TOM or OMAI, their prior experience with Python specifically, and their
prior experience with pair-programming Al assistants such as GitHub Copilot. Then, the gen-

eral course content section asked respondents to self-assess their comfort implementing LPs and

IPs, their understanding of how LPs and IPs are used in decision-making, their comfort in using
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LPs and IPs at work, their comfort incorporating uncertainty in business analysis and decision-
making, their understanding of how mathematical models can be valuable for decision-making,
and their confidence in developing a new model when faced with a new problem. In the pair-
programming section of questions that was shown only to OMAI participants, respondents were
asked to self-assess whether pair-programming assistants made it easier to implement and solve
LPs and IPs, whether pair-programming assistants made it easier to incorporate uncertainty into
decision-making, whether pair-programming helped them understand how they can use modeling
to drive decision-making, whether pair-programming assistants expanded their comfort zone in
implementing mathematical models, and whether pair-programming increased their confidence in
solving new and complex business problems. Finally, the last section of the survey presented a
specific problem scenario and asked respondents (from both courses) to self-assess their comfort in
formulating an optimization model for that problem and their comfort in implementing and solving
a model for that problem. The full statements of all 16 questions on the survey are available in
Section A of the appendix, and Table 1 in the appendix contains the full distribution of response
selections for each question in each of the two course populations.

Given that the survey focuses on modeling and emphasizes LPs, IPs, and Monte Carlo simulation,
it should not be surprising for OMALI students to express higher comfort and confidence with this
technical material. Indeed, this is what the survey results immediately reveal, and the contrast
between TOM and OMAI can be striking. For instance, in the question on whether respondents
report that they understand how LPs and IPs are used to make decisions and solve real-world
problems (row Q5 of Table 1), 99% of OMALI respondents indicated agreement, with the majority
showing strong agreement, and none indicated disagreement: 1 out of 94 respondents chose neither
agree nor disagree (1.1%), 36 chose somewhat agree (38.3%), and 57 chose strongly agree (60.6%).
By comparison, the TOM responses were dense across the spectrum of options: 28 out of 156
respondents chose strongly disagree (18.0%), 18 chose somewhat disagree (11.5%), 23 chose neither
agree nor disagree (14.7%), 56 chose agree (35.9%), and 31 chose strongly agree (19.9%). The stark
differences in response distributions from each course population are also apparent in the specific
scenario questions. For instance, when asked about their comfort implementing and solving a given
optimization model for the example problem (row Q16 of Table 1), TOM responses contained 7
strongly disagree (4.5%), 22 somewhat disagree (14.1%), 39 neither agree nor disagree (25.0%),
66 agree (42.3%), and 22 strongly agree (14.1%), whereas OMALI responses contained no strongly
disagree (0%), 4 somewhat disagree (4.3%), 7 neither agree nor disagree (7.4%), 44 somewhat agree
(46.8%), and 39 strongly agree (41.5%) selections.

Though there is the potential for Dunning-Kruger effects in self-reporting that could blur the

distinction between the two groups, we believe these immediate results are not surprising for two
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main reasons. First, OMAI is essentially entirely focused on these topics, and thus students have
had ample practice and experience to build the comfort and confidence that these questions ask
about — that is essentially the goal of the course, and thus what we hoped to see in the survey results.
Second, as we have mentioned in the contrast of TOM and OMAI in Section 3, there is an inherent
self-selection effect to this pair of courses: students with stronger prior technical background may
be more inclined to enroll in the more technical course. By comparison to the first reason, the prior
experience of OMALI students is not what we hope to be driving the successful outcomes of the
course. With that in mind, let us take a closer look at the responses to the background questions

in each course.

4.1. Stratifying Student Responses by Prior Coding Experience
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Figure 2  Left: Histogram of respondents’ reported confidence with coding prior to taking the course.
Right: Histogram of respondents’ reported confidence with coding prior to taking the course, conditioned

on not reporting strong confidence.

Recall that there were three background questions on the survey: prior coding experience, prior
Python experience, and prior use of pair-programming Al assistants. In left-hand side of Figure 2,
we plot histograms for the distribution of responses to the prior coding question in each of the
courses (which is also available in row Q1 of Table 1). As one might expect, these distributions are
quite different: notably, the OMAI population has a majority of respondents indicating that they
had strong prior coding experience (53.2%). By comparison, barely a quarter of TOM respondents
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reported strong prior coding experience (25.6%), and a plurality of TOM respondents selected
strongly disagree for the question (30.1%).

However, one may also notice in the left-hand side of Figure 2 that the relative proportions
of the bars for strongly disagree, somewhat disagree, neither, and somewhat agree are not so
dissimilar across the TOM and OMALI distributions. This observation brings us to the right-hand
side of Figure 2. This plot shows the histograms of the survey responses when removing those
that indicated strong prior coding experience, meaning the conditional distributions given that the
respondent’s self-reported prior coding experience was less than strong. When controlling for prior
coding experience in this way, a likeness of subpopulations emerges. In fact, the four conditional
fractions of responses (from strongly disagree to somewhat agree) have an absolute difference of less
than 0.05 in each selection ([.364,.182,.045,.409] for OMAI and [.405,.164, .069, .362] for TOM).

Interestingly, this split on strong coders finds that the course subpopulations also look
more alike in the other background questions. For instance, the conditional distributions (from
strongly disagree to strongly agree) of prior Python experience for non-strong-coders are
[.523,.001,.045,.227,0.114] for OMAI and [.517,.095,.043,.267,.078] for TOM, and, among these
two groups of non-strong-coders, a very similar majority of respondents selected strongly disagree
for prior pair-programming use (72.7% for OMAI and 70.7% for TOM). Then, similarities also
appear among the strong-coder subpopulations. For instance, the prior Python distributions once
again look quite similar, with [.040,.020,.020,.140,.780] for OMAI and [.077,.051,.000,.128, .744]
for TOM, though, interestingly, a higher fraction of TOM strong coders indicate prior use of pair-
programming assistants, with [.380,.200,.020,.160,0.240] for OMAI and [.325,.100,.050,.125,0.400]
for TOM.

Following the recognition of these similar subpopulations of differing sizes within the OMAI and
TOM groups, let us review the distributions of responses to the background questions conditioned
on either being from strong coders or non-strong coders (i.e., somewhat agree or lower). The full
conditional distributions for all questions can be found in Tables 2 and 3 in the appendix for
without strong coders and for exclusively strong coders, respectively. As these tables show, both
the more and less technical subpopulations appear to be better served in the new class, with
OMALI respondents reporting higher comfort and confidence across the board. Let us highlight
these findings in a few example questions.

First, let us return to the question regarding the use of LPs and IPs for decision-making which we
summarized for the full population level at the start of this section (row Q5 in Tables 2 and 3). We
now plot the distribution of responses in each subpopulation across each course in Figure 3, with
non-strong coders on the left plot and strong coders on the right. Among non-strong coders in TOM,

the responses are fairly uniform across the options ([.233,.147,.147,.328,.147]), whereas among
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Figure 3 Left: Histogram of reported understanding use of LPs and IPs among non-strong coders.

Right: Histogram of reported understanding use of LPs and IPs among strong coders.

non-strong coders in OMAI, a majority of respondents report strong confidence in understanding
how LPs and IPs are used to solve real-world problems, with no respondents disagreeing with the
statement ([.000,.000,.023,.409,.568]). For the strong coders, a majority of respondents in both
courses report agreement, but in TOM the mode of selections is somewhat agree, with 20% of
respondents not selecting either agree option. By comparison, all strong coders in OMAI agreed
with the LP and IP usage statement, and 64% did so strongly.

These conditional distributions can also reveal dimensions on which the less technically expe-
rienced students particularly benefit. For example, consider the question on general appreciation
of modeling as a decision-making framework (row Q8 in Tables 2 and 3), which we plot for each
subpopulation in Figure 4. As one may notice on the right, the distribution of responses for strong
coders is very similar across the two courses, suggesting that perhaps students with high levels
of prior coding experience already appreciated the value of modeling before taking either course.
However, on the left, we see that 82% of non-strong coders in OMATI reported strong agreement
with the statement that they “understand how mathematical models can be valuable for decision
making in real-world problems.” Moreover, all OMAI respondents reported at least some form of
agreement. By comparison, strong agreement has a plurality but not quite a majority among non-
strong coders in TOM (47.4%), with 18% of respondents not selecting either agreement option.
Thus, these survey results suggest that the new course may be more effective at conveying the
value of mathematical modeling to students who had not been particularly familiar with models

before the class.
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Figure 4 Left: Histogram of reported understanding of the value of mathematical models among non-strong
coders.

Right: Histogram of reported understanding of the value of mathematical models among strong coders.
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As a final example of the differences in conditional response distributions, let us return to the
question on student’s comfort implementing and solving a given optimization model for a specific
example problem (row Q16 in Tables 2 and 3). These distributions are shown now in Figure 5. On
the left, we see that 80% of non-strong coders in OMALI indicate some level of agreement that they
could implement and solve a given model, with 39% indicating strong confidence in their ability to
implement and solve. Though a similar fraction of TOM non-strong coders somewhat agree with
the statement, only 10% feel strongly that they could, and 41% did not select either agreement
option. Among strong coders, there is a similar pattern of nearly equivalent amounts of respondents
somewhat agreeing across the two courses (52% for OMAI and 50% for TOM), with more OMAI
strong coders strongly agreeing (44% versus 25%) and far fewer not selecting an agreement option
at all (4% versus 25%). Hence, these survey results suggest that the new course is more effective in
the delivery of OM modeling skills for students at both the less or the more technically experienced

levels.

4.2. OMAI Students Report Increased Confidence from Al Pair-Programming
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Figure 6  Left: Histogram of reported higher ease of model-driven decision making with Copilot.
Middle: Histogram of reported higher ease in translating models to code with Copilot.
Right: Histogram of reported higher problem solving confidence with Copilot.

As a final set of takeaways from these survey results, let us now consider the distributions of
selections on the questions about the use of the pair-programming assistant GitHub Copilot in
class, which were only asked to OMAI students (rows Q10 through Q14 in Tables 1, 2, and 3).
Whether viewed at the full population or subpopulation levels, the majority of responses are
positive on each of the five questions: students overall feel that pair-programming makes it easier
to implement and solve LLPs and IPs and easier to build simulations, pair-programming has helped

them understand how to apply modeling to drive decision making and translate models into code,
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and pair-programming has increased their confidence in solving new problems. We highlight three
of these questions in Figure 6. In general, we interpret these survey results to mean that pair-
programming is a beneficial use of Al for students learning modeling in undergraduate business
education.

However, these responses do also suggest interesting sub-trends for the student subpopulations.
In particular, agreement with the statements is not universal, and as can be seen through either
Figure 6 or in Tables 1, 2, and 3, the strong coders consistently out-number the non-strong coders
in disagreement to these questions. Though the sample size of this survey is too small to draw any
strong conclusions away from this, these observations may at least suggest some hypotheses. For
instance, it is well known that generative Al is prone to errors and hallucinations, and so it is not a
guarantee that the code produced by a pair-programming assistant will be correct. In general, we
feel that Incremental Prompting may be better equipped to manage this risk of error by comparison
to wholesale code produced through one-shot chatbot prompting, but some risk exists regardless.
Hence, some strong coders may be recognizing the potential flaws of over-reliance on generative
AT here, and some may believe they are better off without it. Furthermore, as aligned with the
findings in Bastani et al. (2025), students who have strong prior technical experience may also be
recognizing that they could become overly dependent on the assistance generative Al and not fully
learning how to implement and solve models on their own. That hypothesis is of particular concern
to us, and the balance of class time, exercises, and assessments spent with and without Al is a key

focus of our reflections from teaching this course so far.

5. Further Course Details, Best Practices, and Future Directions

In this final section of the paper, let us close with best practices, caveats, and future directions for
using Al in undergraduate business classrooms to help with developing large-scale optimization and
simulation models. To best facilitate adoption by other instructors, we organize these reflections
as a series of topics.

Continual Emphasis on Critical Thinking: When using Al technology like GitHub Copilot in a
classroom, a common phenomenon that we observed is that students sometimes abandon critical
thinking and blindly accept the solution/code produced by Copilot, without checking whether the
answer is correct. During the class, we continually emphasize to our students the importance of
critical thinking and of continually assessing the code produced by Al technology. We repeatedly
tell our students that they should never merely accept the solution offered by Al technology without
scrutinizing it first. While the code produced by Copilot is correct most of the time; in many cases,
the code is too complicated and lacks interpretability, and a simpler solution exists. As part of the

Incremental Prompting framework, we always encourage our students to critique and assess the
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quality of the solution produced by Al. In addition to continual emphasis on critical thinking, we
found three helpful tactics, which are discussed in the next three topics below.

Focus on Model Development and Understanding Before Using any AI Technology: We structured
OMALI so that, in every class session, we spent the first 60 minutes (in a 110-minute class) discussing
the optimization/simulation models. During these 60 minutes, we do not use any Al technology.
The time is focused exclusively on lecture, working on the whiteboard or on paper, and interactive
discussion with students. We would discuss the underlying business problem with the students and
engage with them via the Socratic method to identify relevant decision variables and constraints.
Then, we would write out the entire optimization formulation on the whiteboard. Only after the
students thoroughly understand the underlying optimization/simulation model will we then start
implementing it in Python.

Continual Student Engagement While Using AI: When we implement optimization/simulation
models in Python with GitHub Copilot, students are expected to work alongside us on their laptops,
and we make sure to engage with students continually. After writing out each prompt and observing
the code produced by Copilot, we would pause and engage with the students. Typical questions
that we would ask students are “does this code make sense?”, “how does this code match with the
model we wrote up in the white board earlier?”, and “how can we improve the code produced by
Copilot?” If the code produced by Copilot is incorrect or a more elegant solution exists, we would
use this as a teaching opportunity and show the students how to change the prompt so that Copilot
would provide a different solution. Through this Incremental Prompting process, we encourage our
students to think critically about the answer produced by Copilot, and we are confident that this
process will ultimately enhance their understanding of the underlying model.

Teaching Students About Prompt Engineering and Error Correction: Providing precise and
detailed prompts (aka prompt engineering) is extremely important. So, for each lesson, we spent
a lot of time teaching students how to provide good prompts for Copilot and gave examples of
good versus bad prompts (e.g., Figure 1). In our experience, Copilot works best with line-by-line
prompting. So, rather than teaching students to ask the Copilot to “implement” the model, we
teach them to provide Incremental Prompts. In particular, after we have developed the model on
the whiteboard, we encourage the students to first write out the description of all the decision
variables in plain but mathematically precise language, and prompt the Copilot to define these
decision variables in Python with Gurobi.

After all the decision variables have been defined, we would then ask students to write out each
constraint in plain language but with mathematically precise terms, and then prompt Copilot to
translate the constraint into Python. Of course, we always check to make sure that the resulting

constraint is consistent with the mathematical model that we have developed. During this process,
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we also encouraged students to interact with Copilot through its chat feature, which allows students
to ask more open-ended coding questions.

We want to emphasize that the process of building a good optimization or simulation model with
Copilot is more than a single query or prompt. Instead, it is an iterative process, where the students
need to know how to precisely describe their model and to understand the code suggested by
Copilot, even though they do not need to remember syntax details of Python. When combined with
instruction and guidance in the classroom, the use of Copilot enhances the students’ understanding
of the optimization/simulation models because they need to describe the models in detail and with
precision.

Separation of Learning Objectives and Incorporation of Al Assistance: As we have discussed, a
core component of the Incremental Prompting approach in OMAT is that modeling is an action of
the student, and the output of their modeling becomes the granular input that they give to the
pair-programming assistant. In this way, the learning objective of the course, modeling, is separated
from what Al is used to do, coding and implementing. Because the nascent literature on Al usage
has already documented skill regression in settings as diverse as high school students learning math
(Bastani et al. 2025) and expert endoscopists conducting colonoscopies Budzyni et al. (2025), we
feel that this separation is critical. The goal of the course is to teach students to model, not to
teach students to code, thus we keep the Al usage focused on coding.

Teaching Math Concepts in Degree Programs That Are Not Math-Oriented: Even though the
survey results discussed in Section 4 suggest that the modeling-focused class has been well-received
across the population of students, we believe that it is important to remember that business stu-
dents may not select their major consciously seeking math, and thus there are many students
who greet these topics with some degree of math anxiety, perhaps more so than in engineering
or other openly STEM degree programs. The education literature has shown that is important in
such settings to encourage students to maintain a growth mindset (e.g., Boaler et al. 2021, Bui
et al. 2023). Thus, we believe it is particularly important to structure the course in an interactive
manner. This naturally includes the Incremental Prompting approach to AI, but it should also
underlie the basic approach to modeling in class activities. Optimization and simulation are cer-
tainly rich topics mathematically, but their roots are in broadly accessible concepts. For example,
in optimization, the linear functions that make up the LP’s and IP’s covered in OMAI are not
only the friendliest function class for solvers, but also, in many aspects, the friendliest for new
modelers. By consistently scaffolding from such familiar starting points throughout the semester,
one can design the instruction of advanced use and combination of these elementary concepts into

complex models to be both inviting and enticing across backgrounds.
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Determining Daily Flow of Class Sessions and Fraction of Time Spent on Coding: Typically,
the class flow for exercises and cases in the OMAI courses has been that, roughly speaking, we
first we all model together as a class, and then we all implement together as a class. This has
worked well overall, but as evidenced from the survey results in Section 4, there is a wide variety of
student backgrounds, and different degrees of technical experience may be better suited to different
amounts of in-class implementation time. For instance, if the students already all have a strong
coding background, then instructors can perhaps focus nearly exclusively on modeling in class and
leave implementation as an at-home task that is then recapped at the start of the next day. For this
group, too much focus on pair-programming assistance could actually be counterproductive. By
comparison, if only a few students have a strong prior coding background, then instructors might
instead devote significant class time to teaching Copilot and the ideas of Incremental Prompting;
this is largely how we have approached the course so far. Then, if population has a variety of
backgrounds (which our survey results suggest may be most likely), then it may actually work best
to have some Copilot demonstrations in class and some others in attendance-optional formats like
recitations or in asynchronous material like flipped-classroom videos. Indeed, after reviewing the
survey results from our own students, this is a format with which we intend to experiment in the
coming semesters.

Teaching Model Validation As an Essential Skill: As a final reflection, let us note that perhaps our
foremost focus for improvement in current and future iterations of the course is to further develop
the course’s content on model validation. On a fundamental level, we feel that knowing how to
audit a model for actually representing reality as the modeler intended is a critical skill for mature
modelers and an essential one for true practitioners. Given that our students are also drawing upon
AT to implement their models, even if they do so incrementally, it only becomes more important
that they can evaluate whether the end result functions as desired. Model validation exists in the
class to some degree through topics like scrutinizing pair-programming output, sensitivity analysis,
robustness checks, and reductions to edge cases or special settings, but it is the educational aspect
we are most focused on developing further as the course matures. To that end, we welcome any
feedback or suggestions from the community on how to do this well, and we are generally eager
to collaborate and exchange ideas for ways to better teach modeling in undergraduate business

education in the future.
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Appendix

A. Survey Questions

A.1. Background and Prior Technical Experience

All students were asked to rate their agreement the following statements regarding their background

prior to taking the OM course:

Q1:
Q2:

Q3:

“I had prior experience with coding before taking BUAD 311 or BUAD 313.”

“I had prior experience with coding specifically in Python before taking BUAD 311 or BUAD
313

“I had prior experience with using pair-programming generative Al assistants (i.e., GitHub

Copilot) for coding before taking BUAD 311 or BUAD 313.”

A.2. Self-Assessment of General Course Content

Additionally, all students were asked to rate their agreement with the following statements regard-

ing their general comfort the mathematical modeling concepts common in both course:

Q4:

Q5:

QG6:

Q7:

Q8:

Q9:

“I feel comfortable implementing optimization models such as linear programs (LPs) and
integer programs (IPs).”

“T understand how optimization models such as linear programs (LPs) and integer programs
(IPs) are used to make decisions and solve real-world problems.”

“I would feel comfortable using optimization models such as linear programs (LPs) and integer
programs (IPs) in projects during an internship or full-time employment, either individually
or as part of a team.”

“I feel comfortable incorporating uncertainty in my analysis of business problems and evalu-
ating the impact of the uncertainty on my decisions.”

“I understand how mathematical models can be valuable for decision making in real-world
problems.”

“When faced with a business problem that does not fit with a standard formula, I feel
confident that I can think through the problem, develop a mathematical model, and derive

an effective decision for the underlying problem.”

A.3. Self-Assessment of Pair Programming Usage

Students in the advanced course (BUAD 313) were asked to rate their agreement with the following

statements regarding their experience with pair-programming generative Al assistants (i.e., GitHub

Copilot) in the context of the course:
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Q10:

Q11:

Q12:

Q13:

Q14:

“Pair-programming generative Al assistants (i.e., GitHub Copilot) make it easier for me to
implement and solve optimization models such as linear programs (LPs) and integer programs
(IPs).”

“Pair-programming generative Al assistants (i.e., GitHub Copilot) make it easier for me to
incorporate uncertainty into decision making through simulation.”

“Pair-programming generative Al assistants (i.e., GitHub Copilot) have helped me understand
how I can apply mathematical modeling to drive decision-making for real-world problems.”
“Pair-programming generative Al assistants (i.e., GitHub Copilot) have expanded my comfort
zone for translating mathematical models into scientific computing languages and libraries.”
“Pair-programming generative Al assistants (i.e., GitHub Copilot) have increased my

confidence in solving complex business problems that I have never seen before.”

A.4. Self-Assessment of Specific Course Content and Usage

Finally, all students were asked to rate their agreement with two statements regarding their comfort

with developing a model and implementing it for the following specific scenario regarding school

transportation planning:

“The Santa Barbara Unified School District (SBUSD) manages 4 elementary schools collectively

serving 12 distinct neighborhoods. Each elementary school offers 6 grade levels, from kindergarten

to fifth grade.

In anticipation of the next academic year, SBUSD has compiled the following information:

e The number of students each elementary school can support at each grade level,

e The actual number of students at each grade level from each neighborhood,

e The distance from each neighborhood to each school.”

The survey then presented the two following questions about this scenario:

Q15:

Q1le6:

“Given exact numbers for the information described above and ample time to think, I feel
comfortable formulating an optimization model (i.e., identifying decision variables, objective
function, and constraints) to assign elementary-age students in Santa Barbara to schools in
order to minimize the total distance traveled by students to school each day.”

“Given an optimization problem formulation that is based on the information described
above, I feel comfortable implementing the model and solving for the school assignment

which minimizes SBUSD student travel.”
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Table 1 Summary statistics of selected survey responses for the two course populations.
OMAI TOM
S.D. D. N. A. SA. |SD. D. N. A, SA.| x* p-value
Q1 0.170 0.085 0.021 0.191 0.532]0.301 0.122 0.051 0.269 0.256|19.894 0.001
Q2 0.266 0.053 0.032 0.181 0.468 |0.406 0.084 0.032 0.232 0.245|13.587 0.009
Q3 0.543 0.149 0.043 0.128 0.138 | 0.609 0.147 0.077 0.064 0.103 | 4.865 0.301
Q4 0.011 0.064 0.117 0.585 0.223|0.244 0.212 0.199 0.263 0.083 | 55.266 0.000
Q5 0.000 0.000 0.011 0.383 0.606|0.179 0.115 0.147 0.359 0.199 |66.937 0.000
Q6 0.000 0.117 0.170 0.489 0.223|0.218 0.205 0.192 0.276 0.109 | 35.869 0.000
Q7 0.011 0.128 0.191 0.468 0.202]0.083 0.173 0.256 0.359 0.128 |11.177 0.025
Q8 0.000 0.000 0.000 0.234 0.766|0.019 0.032 0.090 0.333 0.526 | 20.709 0.000
Q9 0.011 0.096 0.181 0.436 0.277|0.071 0.269 0.167 0.346 0.147|19.347 0.001
Q10 | 0.000 0.000 0.032 0.202 0.766 - - - - - - -
Q11 | 0.000 0.021 0.053 0.362 0.564 - - - - - - -
Q12 |0.011 0.053 0.043 0.372 0.521 - - - - - - -
Q13 | 0.000 0.011 0.064 0.287 0.638 - - - - - - -
Q14 | 0.000 0.032 0.053 0.340 0.574 - - - - - -
Q15 | 0.000 0.043 0.032 0.521 0.404 |0.045 0.097 0.200 0.516 0.142135.319 0.000
Q16 | 0.000 0.043 0.074 0.468 0.415|0.045 0.141 0.250 0.423 0.141|37.810 0.000

B. Tables of Survey Results
B.1. Full Course Populations

Table 1 provides the distributions of response selections from all respondents within both course
populations across all 16 questions. For each question that was asked to all respondents (Q1
through Q9, Q15, and Q16), the statistic and p-value for a chi-squared test across the two course
distribution are reported. Please note Q2 and Q15 each received 155 responses from TOM, whereas
all other questions were answered by all 156 respondents from TOM. All 94 respondents from

OMALI answered all 16 questions.

B.2. Stratified by Prior Coding Experience

Then, Table 2 provides the distributions of response selections from the non-strong coder respon-
dents within both course populations across all 16 questions. That is, the distributions shown here
are calculated by removing responses that selected “Strong Agree” for Q1. For each question that
was asked to all respondents (Q1 through Q9, Q15, and Q16), the statistic and p-value for a chi-
squared test across the two course distribution are reported. All questions received 44 responses
from the OMAI respondents without strong coders and 116 responses from the TOM respondents
without strong coders, except for Q2, which received 115 responses from TOM without strong
coders.

Finally, Table 3 provides the distributions of response selections from the exclusively strong
coder respondents within both course populations across all 16 questions. That is, the distributions

shown here are calculated by including only the responses that selected “Strong Agree” for Q1.
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Table 2

Summary statistics of selected survey responses for the two course populations without respondents

with a strong prior coding background.

OMALI w/o Strong Coders

TOM w/o Strong Coders

S.D. D. N. A. SA |SD. D. N. A, SA. | x* p-value
Q1 [0.364 0.182 0.045 0.409 - 0.405 0.164 0.069 0.362 - 0.671  0.880
Q2 |0.523 0.091 0.045 0.227 0.114|0.517 0.095 0.043 0.267 0.078| 0.684 0.953
Q3 | 0.727 0.091 0.068 0.091 0.023|0.707 0.164 0.086 0.043 0.000| 5.257  0.262
Q4 |0.023 0.045 0.227 0.545 0.159|0.302 0.224 0.198 0.233 0.043|32.493 0.000
Q5 |0.000 0.000 0.023 0.409 0.568 |0.233 0.147 0.147 0.328 0.147|43.246 0.000
Q6 | 0.000 0.045 0.295 0.545 0.114|0.284 0.224 0.181 0.241 0.069 | 30.161 0.000
Q7 10.023 0.114 0.227 0.477 0.159|0.112 0.190 0.267 0.362 0.069 | 8.040  0.090
Q8 |0.000 0.000 0.000 0.182 0.818|0.026 0.043 0.112 0.345 0.474|17.430 0.002
Q9 |0.000 0.136 0.182 0.432 0.250|0.086 0.293 0.198 0.328 0.095|13.532 0.009
Q10| 0.000 0.000 0.045 0.250 0.705 - - - - - - -
Q11| 0.000 0.023 0.068 0.341 0.568 | - - - - - - -
Q12| 0.000 0.045 0.045 0.341 0.568 - - - - - - -
Q13| 0.000 0.000 0.114 0.295 0.591 - - - - - - -
Q14 | 0.000 0.023 0.091 0.341 0.545 - - - - - - -
Q15| 0.000 0.068 0.068 0.477 0.386|0.052 0.104 0.243 0.522 0.078|26.350 0.000
Q16 | 0.000 0.068 0.136 0.409 0.386|0.060 0.164 0.276 0.397 0.103|21.490 0.000
Table 3 Summary statistics of selected survey responses for the two course populations for only respondents
with a strong prior coding background.
OMALI Strong Coders TOM Strong Coders
S.D. D. N. A. SA |SD. D. N. A, SA. x?  p-value
Q1 - - - - 1.000 - - - - 1.000 | 0.000  1.000
Q2 |0.040 0.020 0.020 0.140 0.7801{0.077 0.051 0.000 0.128 0.744| 2.008 0.734
Q3 |0.380 0.200 0.020 0.160 0.240|0.325 0.100 0.050 0.125 0.400| 4.235 0.375
Q4 |0.000 0.080 0.020 0.620 0.280|0.075 0.175 0.200 0.350 0.200|16.413 0.003
Q5 |0.000 0.000 0.000 0.360 0.640{0.025 0.025 0.150 0.450 0.350|14.107 0.007
Q6 |0.000 0.180 0.060 0.440 0.320{0.025 0.150 0.225 0.375 0.225| 6.858 0.144
Q7 10.000 0.140 0.160 0.460 0.240|0.000 0.125 0.225 0.350 0.300| 1.489 0.685
Q8 10.000 0.000 0.000 0.280 0.720|0.000 0.000 0.025 0.300 0.675| 1.345 0.510
Q9 |0.020 0.060 0.180 0.440 0.300|0.025 0.200 0.075 0.400 0.300| 5.510 0.239
Q10| 0.000 0.000 0.020 0.160 0.820| - - - - - - -
Q11 |0.000 0.020 0.040 0.380 0.560 - - - - - - -
Q12| 0.020 0.060 0.040 0.400 0.480| - - - - - - -
Q13| 0.000 0.020 0.020 0.280 0.680 - - - - - - -
Q14 | 0.000 0.040 0.020 0.340 0.600| - - - - - - -
Q15| 0.000 0.020 0.000 0.560 0.420|0.025 0.075 0.075 0.500 0.325| 7.193 0.126
Q16 | 0.000 0.020 0.020 0.520 0.440|0.000 0.075 0.175 0.500 0.250| 9.792  0.020

For each question that was asked to all respondents (Q1 through Q9, Q15, and Q16), the statistic

and p-value for a chi-squared test across the two course distribution are reported. All questions

received 50 responses from OMALI strong coders and 40 responses from TOM strong coders, except

for Q2, which received 39 responses from TOM strong coders.
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