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Abstract. Problem definition: Most strategies for mitigating supply chain disrup-
tions require upfront, dedicated investments for each supplier, making them impractical
for large, disaggregated supply chains. We study using 3D printing (3DP) as a flex-
ible, backup resource that can support any disrupted supplier. 3DP has traditionally
been rejected as a viable resilience strategy due to high per-unit production costs and
limited capacity. Inspired by the “a little flexibility is enough” literature, however, we
explore when and why 3DP may be a cost-effective resilience strategy and how to
deploy it. Methodology/results: We formulate an optimization model to decide which
suppliers to backup with 3DP, how much 3DP capacity to procure, and how to allo-
cate that capacity in real-time to unmet demand. The resulting mixed-binary, stochastic
optimization problem is computationally challenging, even for moderate sized supply
chains. Hence, we propose a novel algorithmic framework combining supermodular
approximations based on Taylor series and first-order stochastic optimization to com-
pute high-quality feasible solutions. Finally, we conduct an empirical case study based
on bill-of-lading data from toy manufacturer Mattel. With cost estimates based on cur-
rent technology, 3DP offer modest cost savings relative to traditional resilience strate-
gies. However, its principal benefit is a reduction in demand shortfalls. This advan-
tage is especially evident in larger systems with weakly correlated supplier disrup-
tions. Managerial implications: Resonating with the well-known “a little flexibility
is enough” principle, our findings provide both analytical and empirical evidence of
3DP’s transformative potential as a strategic resilience tool for large supply chains. We
also provide concrete guidance on how to introduce 3DP into an existing portfolio of

supply chain resilience strategies to complement existing capabilities.
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1. Introduction

Managing supply chain disruptions has become part of normal operations of a firm (Simchi-Levi
et al.2015a). Some estimates suggest that poorly managed disruptions can incur up to a 45% loss in
firm’s annual earnings over a decade (McKinsey & Company||2021)), prompting most firms to invest
in supply chain resilience strategies. Indeed, in a recent survey, 97% of respondents had implemented
at least one resilience measure following COVID-19 (McKinsey & Company 2023)).

Common resilience strategies include inventory buffering (Simchi-Levi et al.[[2015b} [2017), dual
sourcing/siting (Tomlin/[2006, Dada et al.|2007), and reserving capacity at backup suppliers (Yang
et al.| 2009, Demirel et al. 2017). Typically, these strategies are applied in a dedicated, product-
specific manner, requiring separate upfront investments for each protected component before a dis-
ruption occurs. For example, an automotive company might pre-stock separate inventory buffers to
guard against disruptions in its brake and engine parts.

Such dedicated strategies can be cost-prohibitive in large, disaggregated supply chains. For exam-
ple, Simchi-Levi et al.| (2015a) reports that Ford’s supply chain involves over 35 billion parts, with
14,000 Tier 1 suppliers across 4,400 sites. Worse, a large fraction of suppliers provide high-volume,
low-cost, low-margin components that are nonetheless critical to the final product. In such settings,
firms are seemingly forced to choose which products merit an expensive dedicated back-up strategy,
and which should be left unprotected.

In this paper, we explore a third, unconventional option: leveraging 3D Printing (3DP) as a “flex-
ible” back-up resource. By building items layer by layer from scratch, a single printer can produce a
wide range of items without incurring the product-specific fixed costs of traditional manufacturing
techniques like injection molding. Thus, although it requires an upfront capital investment before
disruption occurs, 3DP is flexible in the sense that we can strategically choose which components
to print on-demand, after the disruption. Intuition suggests this flexibility might offer significant
value precisely in large, disaggregated supply chains. Moreover, the well-known principle that “a
little flexibility is all you need” from both manufacturing (Jordan and Graves|1995, Simchi-Levi and
Wei1/|2012) and service systems (Bassamboo et al.| 2012, Tsitsiklis and Xu 2013) suggests that even
a small amount of well-used, 3DP capacity might yield substantive savings.

Despite this intuition, 3DP has traditionally not been seen as a viable resilience strategy. It often
incurs high per-unit production costs, slower production speeds, and potentially expensive capital
investments in printers. Research in operations management has largely focused on using 3DP’s in
low-volume manufacturing, such as spare parts inventory (Song and Zhang 2020, |[Zhang et al.|2022,

Westerweel et al.[2021)) and product customization (Chen et al. 2021} Sethuraman et al.|2023).
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Outside academia, however, some firms have started exploring 3DP as a supply chain resilience
measure. For example, during the COVID-19 Pandemic, CNH Industrial, a major farm equipment
manufacturer, experienced a disruption of a small, but vital clamping fixture. Stopping assembly
until the parts arrived would have incurred a loss of € 189,000 (Materialise |2023). Instead, CNH
chose to print missing clamp fixture. Even though printing costs were more than 7 times larger
per part than injection molding, printing costs totaled a mere € 806, the needed parts were ready
in a week, and introduced a minimal delay (Materialise|2023)). Implicit in this example is the idea
that despite its criticality, CNH did not backup the clamp fixture, presumably because it was too
expensive to merit doing so in a dedicated fashion. As a second example, in September of 2021,
a change was made to the design of the close-out seal of the spoiler of the 2022 Chevy Tahoe.
Approximately 60,000 new parts were needed in 6 weeks time to avoid delaying the release the
truck. Manufacturing the part via injection molding was estimated to take 12 weeks (McEachern
2022)). Instead, General Motors opted to print the requisite parts, meeting its desired time-frame
(Stevens||2022). Again, note the dedicated back-up option was prohibitively expensive (in terms of
set up time), whereas a the 3DP solution was more expensive per part, but faster to bring online.
More broadly, GM has also invested in an additive manufacturing facility (Lopez 2020) to explore
similar uses of 3DP. Anecodotal evidence like this strongly suggests rethinking the potential role of
additive manufacturing in supply chain resilience.

To this end, we propose a novel model of 3DP and supply chain resilience in which a firm sources
multiple products, each from its own primary supplier, and each supplier may suffer a random dis-
ruption (modeled as random yield). Prior to sourcing, the firm can select one of two distinct backup
strategies for each product — dedicated backup or 3DP — that can be utilized to meet unmet demand
due to disruptions. To capture the key trade-offs between the two strategies, we model dedicated
backup as having unlimited capacity and a small per-unit cost of production, but incurring a fixed
cost per product it protects. By contrast, 3DP requires only a single capacity investment to protect
many products, but the per unit cost of production is higher and the total recoverable demand is lim-
ited by this capacity. To facilitate an apples-to-apples comparison, we assume both backup strategies
are make-to-order, i.e., we neglect any potential benefits of 3DP arising from co-locating printers
closer to demand and optimistically assume dedicated back-ups can be brought online instanta-
neously. Both assumptions favor dedicated back-ups over 3DP. Indeed, throughout, we make model-
ing assumptions which favor dedicated back-ups in order to conservatively assess the potential value

of 3DP.



He, Gupta and Vyas: 3D-Printing for Supply Chain Resilience
4 Article submitted to

With this model, we prove certain structural features of the optimal policy after introducing 3DP:
The sets of products backed up by 3DP and by dedicated strategies form a partition, i.e., no product
is unprotected (i.e. not backed up by any resource) nor is any product doubly backed up. Moreover,
the set of products backed up by 3DP is a (potentially strict) superset of those that are unprotected
in the absence of 3DP. With respect to the first stage order quantities, we can upper and lower bound
these quantities by simple, easily computed formulas. These formulas are immediately interpretable
as the first stage order quantities in a proxy system with infinite 3DP printing capacity and a proxy
system with no printing capacity. Finally, we can also bound the optimal printing capacity by an
appropriate quantile of the demand shortfall in those two proxy systems. Overall, these structural
features provide insights into which types of products might benefit from 3DP backup, how much
capital investment might be needed and that systems where suppliers fail independently (or are
uncorrelated) benefit most from 3DP backup.

Moving beyond bounds to precise values, however, requires solving for the firm’s optimal strategy.
We formulate this problem as a mixed-binary, stochastic optimization problem and describe an exact
algorithm for computing an optimal solution based on mixed integer optimization and Bender’s
cuts. Unfortunately, for even moderately sized supply chains, this exact approach is computationally
expensive. Part of the challenge is that the problem is neither submodular nor supermodular in the
set of products backed up by 3DP.

Consequently, we develop an efficient algorithmic approach to find high-quality feasible solutions.
Specifically, because it is so expensive, we might intuit that the optimal amount of 3DP capacity
is small relative to the demand. Inspired by this intuition, we show that replacing the expected
second stage costs by a suitable Taylor series expansion around a printing capacity of zero yields
an approximate objective function that is supermodular, but non-monotonic. While non-monotonic
supermodular minimization is NP-Hard, it admits highly efficient approximation algorithms Feige
et al.[(2011). Our procedure combines these approximation algorithms with a polishing step based
on projected stochastic gradient descent and scales easily to very large supply chains.

While our above algorithm computes a near-optimal policy, in practice, a firm not currently engag-
ing in 3DP may be reticent to change their entire resilience strategy. More likely, they might consider
using 3DP to back up otherwise unprotected products, i.e., products not currrently backed up by
a dedicated resource. For such a firm, we provide a necessary and sufficient condition for 3DP to
offer a savings, and show that when there exists a positive savings, any positive, sufficiently small
capacity investment yields a benefit. Hence, a firm might truly benefit from introducing just “a little”

flexibility.
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We conclude with an extensive numerical case study using a combination of real-world bill-of-
lading data, published 3D printing specifications, and web-scraped prices for Mattel, a global leader
in toy manufacturing. Our analysis validates our key theoretical insights. First, our algorithmic
approach provides extremely high-quality solutions, often within a few percent of optimal. Second,
under current estimates of printing costs, 3DP typically covers 40—50% of Mattel’s product portfolio.
This includes all previously unprotected products (approximately 20-40% of the total) and around
20% of the products previously backed-up by dedicated resources. Even marginal investments in
3DP capacity can yield a savings. For example, 3DP achieves a 4% cost savings and reduces demand
shortfalls by 50% relative to relying solely on dedicated backups, even with a capacity investment
of just 5% of total demand. Finally, the most significant benefits of 3DP are in meeting demand
shortfalls. Even small investments can help reduce the probability of large shortfalls signficantly.

We summarize our contributions as follows:

* In Section [2, we propose a model of a firm’s choice of resilience strategies that captures the
essential trade-offs between 3DP and dedicated back-up strategies. We derive certain structural
features of the optimal policy in terms of which products are backed up by 3DP, how primary
order quantities change relative to a system without 3DP, and how large the optimal capacity
investment might be.

e In Section 4| we formulate a mixed-binary stochastic optimization problem for firm’s optimal
policy and describe a solution approach via Bender’s cuts. Since the approach does not scale
effectively for large supply-chains, we propose a heuristic algorithm leveraging a series of approx-
imations, supermodularity, and a polishing step in Section [5] We argue this heuristic approach
provides high-quality solutions when the optimal capacity investment is small.

* In Section[6] we consider a firm that is not currently engaged in 3DP that is only willing to make a
small investment. We provide a necessary and sufficient condition whereby any sufficiently small
investment in 3DP yields a cost-savings.

* Finally, in Section [/, we assess the quality of our proposed heuristic approach and assess the
value of 3DP as a resilience strategy through extensive numerical experiments using real data for
Mattel. We find that our heuristic approach yields solutions within a few percent of optimal for
moderate chains, and that for Mattel’s full chain, even a small investment in 3DP capacity could

yield substantive cost-savings and reduce demand shortfalls.

1.1. Additional Related Literature
As mentioned, much of the existing literature focuses on low-volume manufacturing applications,

such as spare-parts (Song and Zhang|2020, Zhang et al.|2022, Westerweel et al.|2021) and product
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customization (Chen et al.[2021},|Sethuraman et al.|2023)), possibly because these applications require
only small amounts of 3DP capital investment. By contrast, we study 3DP in supply chain resilience
and quantify the required (possibly large) 3DP capital investment (relative to dedicated strategies).

In context of supply chain, Arbabian and Wagner (2020) consider co-locating printers closer to
demand. Co-location avoids transportation costs and upstream holding costs, and makes the system
more responsive to demand. They quantify these benefits (and how they depend on problem param-
eters) in a one manufacturer/one retailer setting with a single product. In our paper, we explicitly
neglect the benefits of co-location and treat a chain with multiple suppliers to focus exclusively on
the benefits of flexibility from 3DP.

Dong et al. (2022) also study 3DP flexibility, specifically how introducing 3DP affects the optimal
product offering in design-intensive industries (home furnishing, apparel, jewelry). They focus on
three aspects of 3DP printing: i) Design Freedom — 3DP can create products not possible with tra-
ditional techniques ii) Quality — 3DP may produce a higher or lower quality product than traditional
techniques iii) Flexibility — 3DP can print multiple different types of products in a single run. Those
authors develops structural insights on the optimal product offering under a particular choice model
for demand and how the above features affect that assortment. Our work adds to this study of 3DP
flexibility by considering a large, disaggregated supply chain. Motivated by the previous anecdotes,
our primary focus is on low-cost, low-margin components — not design-intensive products. Hence,
issues around customer perceptions of quality and design freedom are arguably second order relative
to quantifying the needed capital investment in 3DP and identifying the “right” products to backup.

We also connect to the broader work studying flexible backup strategies in supply chain includ-
ing Saghafian and Van Oyen (2016, 2012). Saghafian and Van Oyen (2016) study a multi-product,
multi-supplier network with a rich, Markov Chain model of supply chain disruption that can capture
heterogeneous rates of disruption and lengths of disruption. Their focus is on establishing that “a
little flexibility” is sufficient to capture the benefits of a fully-flexible backup system. The model
studied, however, is very general and technically challenging. While it can in principle be solved
via an infinite dimensional Bellman equation, in practice, solving such problems is notoriously chal-
lenging. The authors do not offer a specialized algorithm for this task. Consequently, for the most
part, the work does not study the question of which suppliers to back up with the flexible resource,
which is a key question in our work. Indeed, the only results around choosing suppliers for flexible
backup from Saghafian and Van Oyen (2016) are with respect to a simplified model with only 2 sup-

pliers. Our work on the other hand adopts an admittedly coarser model of disruptions (random yield)
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but seeks to develop a general purpose algorithm for identifying which suppliers to back up with
3DP. We demonstrate empirically that our algorithm scales gracefully to very large supply chains.
Finally, we contrast our work to Wang and Webster (2022)). In that work, authors also study backup
flexibility, but consider a flexible backup that might fail. By considering a 2 product system, they
show that flexibility is not always valuable and one must consider whether to invest in flexibility
amongst primary suppliers, or amongst backups. The notion of flexibility in this work is generic,
meant to represent “supplier development efforts.” In our work, we focus explicitly on 3DP, and,
consequently, model it as a reliable but expensive backup strategy. We again focus on a multiproduct

system where the challenge is identifying which products to backup.

2. Model Setup

We consider a firm that sources n products (indexed by j € N ={1,...,n}), where each product is

sourced from a distinct supplier. In the absence of supply chain disruptions, the firm orders ¢; units

from the j™ primary supplier at a cost of ¢; per unit and then sees a random demand D;. Then, the
firm pays holding costs of /1; per unit for excess inventory and v; per unit of unmet demand. Thus,
absent disruptions, the firm faces a simple newsvendor problem for the j® product.

We, however, consider a setting with disruptions. Namely, let s; € [0,1] be a random variable
representing the yield of supplier j. After ordering, the firm receives g;s; units, and only pays for
received units. To hedge against this yield uncertainty and the possibility of unmet demand, the firm
can choose to invest in one of two resilience strategies for each product j:

(1) DEDICATED BACKUPS (DB): The firm can order q}jB units from an expediting supplier at a
per unit cost of c'j)B. Engaging in this strategy also incurs a one-time, upfront fixed cost of
C'JDB, irrespective of the order quantity. This fixed cost implicitly models the cost of reserving
production capacity with this expediting supplier.

(2) 3D PRINTING (3DP): The firm can choose to use a 3D-printer to produce q?-DP units of product
J at a per-unit cost of C?DP. Unlike dedicated backups, 3DP has a finite capacity K across all
products, i.e., we must have > N qj»’DP < K. We model the cost of investing in 3DP capacity by
a non-decreasing, convex function C®PP(K), with C3PP(0) = 0, paid before demand and yield
are realized.

The above choice must be made for each product j. Let A C N denote the set of products backed

up using the 3DP strategy, let 7 C N represent those backed up by DB, and note that a priori these

sets need not be disjoint. We seek to choose .4 and 7 to minimize the total expected costs.

To avoid several trivial scenarios, we will assume throughout that:
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ASSUMPTION 1 (Non-trivial Parameters). For each j € N, ¢; < B® < 3PP <.

DB 3DP)

In particular, v; > max(c; ensures that meeting unmet demand is always preferable to stock-

ing out, while ¢; < mln(cDB,c?DP) ensures that sourcing from primary suppliers is preferable to

expediting or printing. Flnally, 3DP reflects the typical cost relationship between DB and 3DP

given current technology.
In summary, the sequence of events are:

i) The firm chooses sets A and 7 of products backed up by 3DP and DB, respectively, and a
capacity K € [0,00) for the 3D printing resource. These choices induce a total fixed cost of
> ier CF° 4+ CPP(K).

ii) The firm orders g; units from the j™ supplier for each j € N.

iii) The firm observes random yield s; and demands D;. It pays > .\, c;q;s; for all successful
deliveries.

iv) The firm orders ¢7® units from the expedited supplier for each j € 7 and prints ¢3°F units on

3DP 3DP

the 3D printer, subject to y . , ¢;°" < K, inducing a cost of > erc DBgPP + > ieas

v) The firm pays stock-out costs v; per unit of any unfulfilled demand and holding costs /; per unit
of any excess production for each j € N.
Our goal is to minimize the total expected costs, i.e.,

i 3DP DB 3DP DB
TACK K0 CT(K) + ; Cye+ U (A K)+U™(T) (D
j

where UPB(T) and U3PP(A, K) represent the expected operational costs incurred from fiii)| to

These terms are described by optimization problems over ¢;, ¢>°", ¢7°. For completeness, we state

them now, but provide detailed derivations and commentary on these problems in Sections [2.1]

and 2.2l below:

UPR(T)=) UP®, UPP= min D, s [ciajs; 4¢P [D; — qis] +hi[D; —qis]7] ()
JET -

U3PP(A, K)_mln Zc]q] S]]+EDS[V3DP(D gos, A K)| 3)
- jeA

where q o s stands for the component-wise product between vectors q and s, and
V30P(y A, K) = min <C3DP 30P 4y [y — quP} +hy [y — qj:%DP} )

3DP>()
= jEA

<k

jeA

“4)
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Before proceeding, we prove three simple properties of the optimal solution that we use in these
derivations and throughout: First, because c'j)B < v; and the expedited backup is unconstrained,
it is always optimal to expedite all units of unmet demand for j € T, i.e., ¢;® = [D; — ¢;s;]*.

DB < C?DP

Second, since c; and expedited backup is unconstrained, we always prefer to expedite

unmet demand from a supplier j € 7 over printing it. Hence, A N T = (). Finally, since we are
always free to choose q;?DP = ( for any j € A, we can without loss of generality take A = T7°. We

summarize these last two observations in the following proposition:

LEMMA 1 (Backup Strategies Form a Partition). Let T* and A* be optimal for (1). Then,
T*=A“
Thus, in the remainder, we let 7 = A° and work with the set A. Furthermore, when A and K are

fixed and clear from context, we omit them from notation for brevity.

2.1. Dedicated Backups and UPB(.A°)

We next present the derivation of U°® in Problem . By construction, dedicated backups decouple
across products, i.e., UPP(A°) = >°._ ;. UP®, where UP® includes primary ordering, expediting,
and holding costs. Recall, under Assumption |1} any unmet demand [D; — g;s;]T is fully covered by
DB’s unlimited capacity and there are no stock-outs. This gives rise to the newsvendor-type problem

in Problem (2)). We can solve this optimization explicitly:

LEMMA 2 (First-Stage Ordering for DB). The optimal solution of Problem (2)) with the small-

est magnitude is given by:

P8 —¢;
g =infsq¢>0: Ep . [s;I1{D; <gs;}| > jDB—] Es; ¢ . (35)
7 C] + h]
In special cases, g; reduces to the usual newsvendor quantile, e.g., if D; and s; are independent.

Otherwise, one must solve Eq. (5) numerically, e.g., by bisection search on g.

2.2. 3DPand U*P(A,K)

We now present the derivation of U3PP, c.f. Problem . Unlike dedicated strategies, the optimal
3DP backup quantities g3PP lack a simple, closed-form due to the capacity constraint. Instead, /3PP
is defined by a two-stage stochastic optimization problem. The function V37 in Problem @) rep-
resents the second-stage recourse cost that minimizes printing, holding, and stock-out costs with

respect to the printing quantities g3PP

after the realization of q, s, and D. Using standard results
from the stochastic programming literature, we can show that computing ¢; for j € A amounts to

solving a convex optimization problem:
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LEMMA 3 (Convexity of U3PP and V3PP). The following holds for U3P? and V3PP :
(i) The function V3PP (D — q o 8) is convex in q for any given (s, D)
(ii) Problem (3) (which defines U3PP) is convex.
(iii) The function K s U3PP (A, K) is convex in K for any A.

While many algorithms exist for solving convex problems, later in Section we present a
simple approach that leverages the specific structure of V3PP () to efficiently solve Problem (3) and

integrate it into a scalable heuristic framework for optimizing the first-stage decisions .4 and K.

2.3. Additional Model Discussion
We view the 3D printer as a flexible, make-to-order manufacturing resource capable of producing
any product. In reality, some products, however, may not be printable (using current technology)
because of their engineering specifications. We exclude such products from A because they do not
affect the choice of .4, and computing their optimal order quantities and expedited shipping quanti-
ties can be done using simple newsvendor-like calculations, outside of the model, see Section [2.1]
We have made no assumptions on the dependence between D; or s; or across suppliers. Hence, we
may without loss of generality assume a one-to-one correspondence between products and suppliers.
Indeed, if a primary supplier supplies two products j and j', we take s; and s; to be comonotonic.
Finally, while we have described dedicated backup in terms of expediting for ease of exposition,
it can easily represent any dedicated strategy that entails a fixed cost and a cheaper per-unit cost,

including employing dual sites or purchasing buffering inventory.

3. Properties of Optimal 3DP Strategies

In this section we present properties of the firm’s optimal backup strategy by analyzing Problem ().
These properties provide concrete insights into how one should construct and operate a portfolio of
resilience strategies that includes 3DP.

We first define the set Ay of unprotected products in the absence of 3DP, i.e., products that did not
merit a dedicated backup. Unlike the optimal 3DP backup set A* which may be difficult to compute,
Ay is easily identified: Because dedicated backups decouple across products, a product j € N is in
Ay if and only if its costs when protected UP® + CP® are larger than its costs when unprotected.
These unprotected costs are given by solving Problem (2)) after replacing c'j)B by v;, because there
are no associated fixed costs for an unprotected product.

The next proposition relates .4, with the optimal 3DP backup set .A*:

PROPOSITION 1 (Unprotected Products and Optimal Backup). Ay C A* and this contain-

ment can be strict.
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Thus, introducing 3DP backup impacts a firm’s resilience practices in two ways: it covers all previ-
ously unprotected products and it may switch some products from dedicated to 3DP backup.

Proposition [I| has important implications for a firm piloting the use of 3DP as a backup strategy.
Since Aj is easy to compute, such a firm might consider only backing up A, instead of computing
A*. While suboptimal, this strategy avoids the need to renegotiate terms with any existing expediting
suppliers used by dedicated backup while the firm builds internal expertise around 3DP, and func-
tions as a natural stepping stone towards backing up the entire set .A* later. In Section[6] we further
explore the perspective of this firm piloting 3DP as a backup strategy and provide necessary and suf-
ficient conditions for this suboptimal strategy to be profitable with even a small capacity investment.
In the remainder of this section, we develop properties of the optimal solution for a generic A, since
we might be interested in Ay or A*, or some other set between these two.

For any choice of 3DP backups A and 3DP capacity K, we must identify corresponding first-stage
order quantities ¢} = ¢ (A, K) for all j € A. Although computing these quantities exactly requires
solving a two-stage convex optimization problem, Theorem [I| provides bounds that can easily be

computed via simple bisection search.

THEOREM 1 (Bounds on Optimal First-Stage Orders). For any set A and K > 0, let
q* (A, K) be the optimal solution to UPP (A, K) (c.f. Problem ) with minimal El-norm. Then,
forall j € A we have §5° < q]*(A, K)< (j?, where

3 = argiréin E (c;q55; +v;[D; — 55517 + hy[ Dy — q555]7) - ©)
q;Z
q; = arggin E (CjC_Iij + C?DP[DJ' — 555"+ hy[D; - sta‘]_) : )
q;=

When Problem ([6)) or Problem ([7) has multiple optima, we tie break by taking the smallest solution.

Intuitively, q? and g;° are the optimal first-stage orders for a system where K" =0 and a system
where K = o0, i.e., with no (resp. infinite) 3DP capacity. We stress, the bounds hold for each j €
A. (We will use this property later when designing our algorithms.) Finally, we note that while
computing ¢; (A, K) requires knowledge of the full joint-distribution of (D}, s;) across products,
computing the bounds above only requires the marginal distribution of each (D;, s,) pair. Calibrating
such a distribution to data may be substantially easier in practice.

Our above bounds can also be used to estimate the optimal 3DP capacity investment. Specifically,

let K*(A) be the minimizer of Problem (1) for a given A and K*(.A, q) be the optimal capacity

! Break ties arbitrarily.
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for a given A and fixed first-stage order g > 0. In both cases, if the corresponding problem admits

multiple optima, we define K*(.A) or K*(A, q) as the minimum optimal solution.

THEOREM 2 (Bounds on Optimal 3DP Capacity). Let C3PP(K) = P K for some = > 0.

(i) Suppose there exists an v > 0 such that v; — c°% =r for all j € A, then K*(A,q) is the

(1 — @)-quantile szjeA[Dj —q;s5|", for any g > 0.

(ii) Let ™" = minje 4(v; — ¢3°F) and r™* = max;e 4(v; — &°F). Then, K*(A) is bounded below

by the (1 — ff:z ) -quantile of > ie AlDj— (j?sj]+ and bounded above by the (1 — f;aai ) -quantile

of > icalDj — a°s5]™

When v; — C?DP is equal across j € A, the first part of the theorem develops intuition around the

size of the optimal K*(.A,q). Specifically, it is a quantile of the total demand shortfall and thus
depends on the joint distribution of all (D;, s;) for j € A. The second part of the theorem builds on
this intuition, leveraging our previous bounds on the first-stage order quantities and appropriately
rounding v; — ¢3°F to derive bounds on K*(A).

Finally, Theorem 2] also suggests settings where 3DP is likely to be beneficial. Indeed, if demand
shortfalls are independent or anti-correlated, the quantile of the total shortfall tends to be small,
and thus the optimal amount of 3DP capacity required will be small. By contrast, if shortfalls are
highly correlated, a large amount of 3DP capacity may be needed, which is unlikely to be cost-
effective. Leveraging results in the supermodular ordering of random variables, we extend this intu-
ition in Theorem [3] which states that the cost of the 3DP strategy is highest when correlations among
demand shortfalls are strongest. Recall, the random variables X7,..., X,, are comonotonic if and
only there exists non-decreasing functions f; for ¢ = 1...,n and a random variable U such that
(X1, Xp) ~a (f1(U),..., fa(U)). Comonotonicity describes the strongest form of dependence

between random variables.d

THEOREM 3 (Comonotonic Shortfalls Are the Worst). Suppose the marginal distributions of
(D, s) are fixed. Then, the optimal cost of Problem is maximal when the joint distribution of

D, s) is such that the demand shortfalls [D; — q;s;|" are comonotonic across j € N for all g > 0.
74555

Since dedicated backups decouple across backups by construction, the cost of a dedicated strategy
depends only on the marginal distribution of each (D, s;) pair, not their correlation structure. Hence,
fixing marginal distributions, the cost of a dedicated backup is fixed. The theorem observes, however,
that 3DP backups are sensitive to joint dependence, and describes the worst-case dependence. It
provides an additional insight that well-chosen 3DP backups .4 will likely consist of suppliers that

are anti-correlated or independent, not highly dependent.
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4. Optimizing the 3DP Strategy via Mixed-Integer Optimization
In this section, we compute the optimal A*, ¢g* and K* exactly, instead of bounding them, by refor-

mulating (T]) as a mixed-integer optimization (MIO) problem.

4.1. Mixed Integer Optimization Reformulation
For any A C N, we define a corresponding binary vector € {0,1}" such that x; =1 if j € A and

x; = 0 otherwise. We can then rewrite U3P” and V3PP as functions in x:

UPP(@,K) = min Y ¢;q;0,E [s;] + Ep,s [V°P(D —gos, 2, K)], (8)
=0 JEN
. - +
VP2, K) = min 3 (PG o [y ) hs [y - g™ ) e )
g’ >0 <
JEN
s.t. Z qj-’DP:L‘j <K.
JEN

This reformulation, although straightforward, introduces bilinear terms like ¢;x; in the objective,
which are notoriously difficult to handle. We prefer a “big M” type formulation in what follows, and

develop bounds to ensure the “M” is not too large.

LEMMA 4 (“Big M”’ Formulation of V/3°7). Assume 0 < D; < Dj and sz»nin <5 < s almost
surely for all j € N'. Then for all x € {0,1}", K >0,andy=D —qo s:

n

3DP _ : 3DP _3DP 3DP7] — 3pp1t+
V> (y,x,K) = S, Zl (cj ¢ iy — 2500 by [y — 20 ) (10a)
J:
st. 0<¢P" < Mla, Vi=1...n, (10b)

- Mf(l —1x;) < z?DP —q?DP < MjQ(l —z;), VYj=1...n, (10c)

— Mx; <y;— 2°° < MPa;, Vi=1...n, (10d)
> ¢ <K, (10¢)
j=1

where for all j € N, we let

M} =D;—qr°s™, M?=D;, M;=max{D;—qgs™, q)s7}. (11)

Js J

Additionally, V3PP is convex jointly in (y,x, K).
It is well-known that the effectiveness of “big M” formulations like Problem hinges on the
choice of ”M”, which in our case correspond to M jl, M jz) and M 13 We have used the bounds from

Theorem [1]to choose these values.

We can now use this reformulation of V3PP (-) to reformulate Problem (1)):
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THEOREM 4 (Big “M” formulation for Optimizing A). Let the assumptions in Lemmald| holds
and let V3PP be as reformulated in Lemma 4, Then, we can determine the optimal backup strategy

A, first-stage ordering quantities q, and 3DP capacity K by solving the two-stage, stochastic MIO:

; 3DP DB 3DP
we{O’{I}lg}QO’q C (K)—I-j;(l—xj)Uj +;chjE [s;]+ Ep,s [V°F (D —qos, z, K)]

Moreover, the objective function of Problem is jointly convex in x € R", K > 0 and q > 0.

4.2. Solving Problem (12) at Scale

In principle, Problem (I2) can be solved using an off-the-shelf solver (e.g., Gurobi) after approxi-
mating the expectation by S scenarios. However, this becomes impractical for large supply chains as
the number of variables scales with n.S, where n is the number of suppliers. While many variables
are expected to be zero when |.A| or K is small, generic branch-and-bound algorithms fail to exploit
this sparsity or other structural properties of /3PP,

An alternate approach frequently used in two-stage stochastic programs is constraint gen-
eration via Bender’s decomposition. The key idea is to replace the second-stage costs with
a new auxiliary variable 6 in the objective and introduce the convex, epigraphic constraint
E [V3PP(D — gos,x, K)] <0, where V3P is reformulated as in (T0). The Benders approach iter-
atively refines the approximation of this constraint by introducing new valid cuts; see | Birge and Lou-
veaux| (2011, Section 5.1) for an overview. Generating valid cuts in the Benders approach amounts
to evaluating the subgradient of V3PP (y, , K'). This subgradient computation can be efficiently per-

formed using a closed-form (c.f. Proposition [5| below). Details of Benders approach are deferred to

Section

5. Approximations and Supermodularity Heuristics for Computing A
Theorem [ and Problem (12)) describe an exact approach for computing the optimal policy .A*. How-
ever, even with Benders decomposition, solving the MIP directly can be prohibitively expensive for
a large supply chain. We next develop an approximation leveraging supermodularity and the intu-
ition that, in an optimal solution, K is likely small relative to demand. We illustrate its computational
effectiveness in Section [7]through our case-study with Mattel’s supply-chain (c.f. Fig. [3).

Recall, a set function f : N 5 Ris supermodular if for all S C T and i ¢ S, it holds that:

ST ud{i}) = f(T) = f(SU{i}) = f(S) (13)
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Similarly, f(-) is submodular if — f is supermodular. Intuitively, supermodularity captures increasing
return to scale. There is a rich literature on optimizing submodular/supermodular functions. See,
e.g., Krause and Golovin| (2014). We would ideally leverage these techniques, but, as we next show,

our problem is neither submodular nor supermodular.

5.1. Supermodularity of U3PF: Positive and Negative Results
We start with a positive result, the objective function in the optimization defining U3PP (K, A) is

supermodular:

PROPOSITION 2. The function A= Y. ciq;E[s;] + E [V3PP(D —qos, A K)]| is super-
modular in A C N for any fixed q € R" and K > 0.

Proposition [2 suggests that under an alternate simplified model, where first-stage order quantities
are specified exogenously in a manner that does not depend on .4, one enjoys supermodularity.
Unfortunately, in our model, first stage costs are chosen endogenously to optimize costs, which

necessarily depends on the set A. As a result, U3PP (K, A) is neither supermodular nor submodular.
PROPOSITION 3. U3PP(K, A) is neither supermodular nor submodular in A C N.

It seems then that optimizing the first stage costs partially drives the computational complexity of

our model. This motivates seeking supermodular approximations.

5.2. A Supermodular Approximation of /3PP

We next propose a supermodular approximation of /3PP based on its Taylor expansion with respect
to K at K = 0. The key intuition is that 3DP essentially serves as “flexibility” in the backup resource,
and a host of operations literature suggests “a little flexibility is enough.” Moreover, given the costli-
ness of printers, we intuit an optimal solution should have small K. Collectively, these observations
suggest studying the Taylor series expansion of UU3PP for small K. The corresponding first order

expansion turns out to be both supermodular and a lower bound:

THEOREM 5 (Supermodular Lower Bound for U3PP (K A)).
i) Let
LPP(AK) =) Ul ~KEp, [f?e% (v; —cPP)I{D; > s | - (14)
jeA
Then, for any A, L3°F(A, K) <U3PP(A, K).

ii) For any A, this bound becomes tight as K becomes small, i.e.,

: 3DP __13DP _
%%(U (A, K)—L*""(AK)) = 0.



He, Gupta and Vyas: 3D-Printing for Supply Chain Resilience
16 Article submitted to

iii) For any fixed K > 0, the function A L3°F (A, K) is supermodular.

Since L3PP(A, K) is supermodular in .4, a natural heuristic might be to minimize this lower bound
(in lieu of U3PP (A, K)), which should perform well if the optimal K is small. We pursue this heuris-
tic in the next section, but first develop two weaker bounds that may be of interest in specialized

settings:

PROPOSITION 4 (Simpler Supermodular Lower Bounds for U3PP). Let

LPPAK)=> U - <maxvj - c3DP> P(3je AstD;>q’s;). (15)
jeA
Then,
i) L3°P(A, K) > L3°P(A, K).
ii) For any fixed K > 0, the function A — Z3DP(A K) is supermodular.
iii) L3°P(A, K) = L3°P(A, K) whenever the per-unit margin v; — 3P is identical across j € N

Similarly, for any fixed A > 0, define

LA KN N=D> U - —log (Z [[@ (D; < @s;) +P (D; > g)s;) ™ C?DP)D (16)
jeA jeA
Then,
iv) L3PP(A, K)> L3°P(A, K, \) for all A > 0.
v) For any fixed K >0, A > 0, the function A+ Z3DP(A, K, \) is supermodular.

In Eq. (I6), A should be interpreted as a hyperparameter that is set exogenously.

In lieu of the expectation, E3DP(A, K) depends on the probability that there is some unmet
demand in A under the naive ordering strategy ¢°. Estimating this probability may be easier in
practice than estimating the expectation in Eq. (I4)). On the other hand, evaluating this probability
still requires the joint distribution of (D;, s;) across j which may be difficult to specify. The looser
bound avoids this and only depends on the distributions of the pair random variables (D;, s;)
for each j € A. This might be substantially easier to estimate in practice. Thus, depending on data
availability, either bound might be preferred to L3°P.

As an aside, we note that replacing the maximum over j € N in Eq. with the maximum over

J € Aalso yields a tighter lower bound than L30P (A, K), but that bound is no longer supermodular.
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5.3. Our Proposed Heuristic for Optimizing .4 and K
Our heuristic for optimizing .4 and K treats Problem as a two-step optimization, and then

replaces U3PP (A, K) by L3P (A, K):

; 3DP : DB DB 3DP
ol © (K”E{gﬁ{zwj +UPP) +U (AK)}? (17)
JEAC
; 3DP : DB DB 3DP
= min G (K”%&{g(@ +UP%)+ L (A,K)} (18)
JEA®

We solve the outer minimization in Problem via grid search over K. For a fixed K, Theo-
rem [5| shows that the inner problem entails minimizing a supermodular function, or, equivalently,
maximizing a positive-valued, non monotone submodular function. (The non-monotonicity arises
because adding products to the 3DP set may not reduce costs when K is fully utilized.) |[Feige et al.
(2011)) proves maximizing such functions is NP-Hard, but also shows that a simple local-search
heuristic attains a % approximation. Inspired by this result, we also use a local search to optimize the
inner problem by iteratively adding or removing a product from .A. With clever bookkeeping, this
can be done efficiently (c.f. Section[B.2).

Once the local search terminates with a candidate ./T(K ), we seek to identify the best K from the
grid. Lemma shows that fixing K and A(K), the optimization problem defining U3PP(A(K), K)
(c.f. Problem (3)) is a convex stochastic optimization problem over g, and hence, well-suited to a
first-order optimization method. Thus, instead of comparing the objective values of the inner prob-
lem of Problem to identify the best K, we run a first order method for each (K, ,AT(K )) pair to
evaluate the inner objective function of Problem and compare these when choosing the best K.
We summarize this heuristic in Algorithm[I] Experiments in Section [7]suggest Algorithm [I] already
achieves near-optimal performance at a fraction of the MIO method’s computational cost.

We next provide some details on how we implement projected stochastic gradient descent.

5.4. Evaluating U3°"( A, K) via a Projected Stochastic Gradient Descent

Evaluating the inner objective function of Problem amounts to computing U3PP (A, K) by solv-
ing Problem with 4 = .,éAl(K ). Projected stochastic gradient descent is a natural approach to
Problem , especially when (D, s) distributions are only accessible through historical data or sim-
ulations (see Bottou et al.|(2018]) for an overview). Additionally, as we will discuss, projected SGD
allows us to leverage the specific structure of V3PP to improve computational efficiency.

Specifically, the two key computational steps for any first-order method are:
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Algorithm 1 SuperMod Approx: A Heuristic for Optimizing A and K

Require: A grid K of K values
1: for each fixed K € K do
2: Obtain .,LT(K ) by solving the innter minimization of Problem using local search (c.f.
Section [B.2)).
3 Compute UP(A(K), K) via Projected Stochastic Gradient Descent.
4: Let F'(K) be the the objective value of the inner problem in of Problem (17).
s: end for

6: return K* = argmingex F/(K)

1) Computing an unbiased estimate of a subgradient (with respect to q) of the objective of Prob-
lem (3)) given a sample of (D, s).
1) Projecting an arbitrary point g to the positive orthant. This projection is given in closed-form
by q* (applied componentwise), see Boyd and Vandenberghe (2004).
Thus, it remains to compute a noisy, unbiased subgradient. To this end, we can reformulate

V3PP (y K (see Problem ) as a linear optimization problem and use duality theory to obtain:

PROPOSITION 5 (Subgradients of V3PF). Let g*°F denote the optimal solution to Problem (@)

under fixed y and K. For j € A, a subgradient n;-/ of V3PP with respect to y; is given by:

—h; ify; <0,
77]!'/: Uj l'fyj>0andcjjz‘.‘DP<yj7
C?DP — ' otherwise.
Here, ' is a subgradient of V3PF with respect to K, defined as
' = —max{v; =0 |y >0, G <y} i Yiead =K.
0 otherwise.

Finally, letting y = D — q o s above, we have that the vector (¢ —nY) o s is an unbiased estimate of

the subgradient of the objective in Problem (3) with respect to q.

In words, the noisy subgradient can be efficiently computed in closed form if we can quickly
identify an optimizer g3PF for V3PP (y, K') given any y and K. Fortunately, this reduces to solving

a fractional-knapsack problem, as shown next:
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PROPOSITION 6 (Solving Problem (@)). Fix some y and K > 0. Then, any solution g*°" to (@)

also solves

Q?DP € argmax Z(vj —c3Dp)q?DP (19)

0<g®P<y® oy !
s.t. Zq?DP <K.
jEA
Problem (19) can be solved very efficiently by sorting v; — ¢3°% (c.f. Algorithm . Combined
with Proposition [5] we can thus construct unbiased estimates of the subgradient very efficiently,
ensuring projected SGD remains highly scalable in Algorithm [I} See Section [B.3] for additional

implementation details.

6. Piloting 3DP as a Backup Strategy

In this section, we consider the perspective a firm not yet engaged in 3DP that is piloting its use
as a backup strategy. Such a firm is likely unwilling to alter its existing dedicated backup strate-
gies, but likely would consider backing up currently unprotected products Ay. Thus, we focus on
understanding the benefits of backing up only A4,. As observed already in Proposition[I] A, C A*.

Specifically, we ask when there exists a 3DP capacity investment K > 0 with positive cost savings,
i.e., a K such that

U Ay, K) = Y U= UP (A4, K) — C*PP(K) > 0. (20)
J€Ao

Here, U™*d( Ay, K) is the total cost we could save on .A,, where U JQ is the operational cost of
product j when unprotected. Since C3PP(K) is convex and increasing and Lemma [3| shows K
U3PP( Ay, K) is convex, we have that U is concave in K.

Moreover, since C3PP(0) = 0, we have U*'( A4y, 0) = 0, i.e., for j € Ay, investing in no
3DP capacity is tantamount to leaving j unprotected. Thus, as K increases, U™=*( 4, K) either
decreases monotonically from 0 or initially increases before decreasing. In the second case, there
is a positive cost saving for any small enough value of K. We can distinguish these two cases by

examining the derivative of U2 at K = (.

THEOREM 6 (Necessary and Sufficient Conditions for 3DP Cost Savings under A;). Let
C®°® be increasing, convex, differentiable at 0 and q)) as defined in (G). Then there exists K > 0
such that U*( Ay, K') > 0 if and only if

0<Epgs [max(vj — 3PP { [D; — cj?sjr > O}} — . (21)

jE€Ao J

If such K exists, then U***%( Ay, K') > 0 for all K’ € [0, K].
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Notice that Eq. as written depends on the joint distribution of all pairs (D, s;). This aligns
with the insight of Theorem 3] that 3DP costs savings depends on the correlations between suppliers.
The conclusion that U*"**4( Ay, K') > 0 for all sufficiently small K’ is crucial; it indicates that
for a firm piloting 3DP, if Eq. (21)) holds, then any small investment in 3DP capacity yields cost
savings. This provides a natural way for a firm to scale-up the use of 3DP in their operations as they

build internal expertise and experience.

7. Empirical Case Study
In this section, we conduct a case study inspired by Mattel, a major toy company. Mattel’s products
are primarily plastic with a density similar to common 3DP materials like resin and PLA, making
them ideal candidates for printing. To better align our model with the case study, we make one
technical adjustment; we replace the capacity constraint in Problem (#)) with a “weighted” analogue:
> e qu;.’DP < K. Here wj is the material weight (in grams) required to print one unit of product
j. This technical change requires minimal adjustments to our algorithms, but reflects the fact that
different products may require different amounts of time to print (based on their weight). In the same
spirit, we model the sourcing cost from the primary supplier as a proportional to the weight of a
product, specifically at $0.006 per gram, incorporating both the raw plastic cost and a 20% markup.
Finally, as is standard in the literature, we interpret our objective in Problem (I as regret relative
to an oracle seller who knew demand rather than realized costs. Hence, the back-order cost v; is the
lost profit on a unit not sold, A; is unit cost of sourcing from the primary supplier, *®F (resp. cPB)
is the additional cost printing (resp. expediting) relative to sourcing from the primary supplier, and

c; = 0. We assume a zero salvage value for all products throughout.

7.1. Calibration to Real-World Data

Since detailed supply chain data on Mattel’s operations is not available, we calibrate our model to
several sources of public data, including i) engineering specifications of state of the art printers,
i1) scraped data from Mattel’s website and the Mattel Store on Amazon.com, and iii) bill-of-lading
(BOL) data on imports. We summarize the overall calibration process in Fig.[I], and describe in detail

below. Additional details available in Section

7.1.1. 3DP Costs. We model unit 3DP production cost as twice the unit production cost from
the primary supplier, and provide sensitivity analysis to this parameter below, letting it range from
1 to 4 times unit production cost at the primary supplier. We choose the baseline factor of *“2”
by considering the per gram cost of non-metal printing materials like resin and PLA, and an infill

density of 50%.
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Figure 1 Overview of our calibration procedure.

A list of product categories Average weight, price and keywords Distribution of product categories
Category 1: Dolls
ProductName Price Weight Decription Category Ave. Weight Ave. Price Keywords Supplier 1 I I I
Feslortas Dol $10.97 20878 | Gemmemoniy Dolls 347.23 2423 Barbie, Dolls, Princesses
Barbie 2022 Dia De $48.00 1029.66 The Barbie® D
2 Dinosaurs | 497.58 33.2 Jurassic, World, Dinosat Supplier 2 I
Category 2: Dinosaur I I
ProductName Price Weight Decription Cars and Truc 430.61 24.59 Hot Wheels, Diecast, Ca
IO Attack Tyran $49.99 498.95  This Al-Out At q
Hammond Collctor $14.99 9978 Be s partofthe Supplier 1 Supplier 2 Supplier 3 Supplier 3 I I 1

Category 3: Cars and Trucks

ProductName  Prica Weiaht Decrintion
#2 | ToysDi

ec | #3 | Super Friends Bat

Synthetic Products

e — Keyword matching for BOL raw descriptions Supplier Ave. Weight Ave. Price
- ]E- @ # 402.81 24.93
T & 1 . #2 775.83 2958
o E * #3 1601.65 4053

E-commerce data Synthesized products

Note. We use e-commerce data from the Mattel Store on | Amazon.com and Mattel.com to learn major product categories and
identify products in those categories, their weights, and sales prices. We then use natural language processing on bill-of-lading (BOL)
data from suppliers importing to Mattel to construct synthetic products — one per supplier — that we use as the primitives in our model.

Finally, we calibrate printing costs to publicly available technical specifications and quotes from |Sintratec| (2024).

. . . . . . 3DP
We also assume that cost of printing capacity is linear, i.e., C3DP(K ) =c*PK, and let ¢ = %,

where Q3PP and M3PP represent the monthly per printer depreciation cost (in $) and the monthly
material output per printer (in grams). At present, industrial 3DPs typically range from $5,000 to
$50,000, with higher-end models offering larger build volumes and advanced material capabilities
rather than superior speed. For Mattel, which prints small plastic toys, a $5,000 printer provides
sufficient speed and material compatibility without excess cost. Thus, we set $5,000 per printer as
our baseline which, assuming a 10-year lifespan, yields (Q°°P = $41.67 per month (AlI3DP|2024,
Fusion3 Design 2024). We approximate the monthly material output //3PF using published technical
specifications of common printers (nozzle width, layer thickness, nozzle movement speed, infill
density, and working hours in a month.) See Section [C] for details. Overall, this yields an estimate of

¢ = $.0023 per gram. Again, we provide sensitivity to this value below.

7.1.2. Learning Product Categories. As will be seen, we heavily rely on BOL data to infer
a supply chain that approximates Mattel’s chain. Unfortunately, BOL data is incomplete in some
respects. This necesitates some approximations based on product categories. Hence, as a first step,
we discuss learning these categories.

We scrape public websites including Mattel . com and the Mattel Store on Amazon.com to
retrieve a list of Mattel’s product categories (dolls, dinosaurs, cars and trucks, etc.) (Prices and
descriptions in both settings are determined by Mattel, not by third party sellers.) Overall, we find

seven, and within each category, we identify a constituent list of products. For each product, we


Amazon.com
Mattel.com
Mattel.com
Amazon.com
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identify the products weight (in grams), sales price, and a text description. For each category ¢, we
then calculate the average unit weight wj" and average sales price xj* within the category. Finally,
using TF-IDF scoring, we generate a keyword list from the product descriptions meant to describe
the category. We will use these average weights and keyword list in our next step of generating

synthetic products.

Bill of Lading Carrier SCAC / Vessel Code (Name) Voyage / Container Size / Type
XXXX333333333333 Eglv, Eagle Van Lines Inc / 3333333 (Ever Envoy) 3333x /3000%333*333 / 33X3
Destination Port Name / Code Company Name / Address Arrival Date

Mattel Import Services Corp / 333 Continental Blvd,

Los Angeles / 2704 El Segundo, CA, 90245, USA XX/XX/20XX

Departure Port Name / Code Supplier Name / Address

Yantian / 7078 Shenzhen Hutchison Inland / Contair_ler Depots Co Ltd Xintian Hutchison Warehouse Distripark
Huanguan Rd Sth Gl Town Baoan Disct Sz O/B

HS Code / Full Description Product Description Quantity (Unit) / TEU / Weight

e o™ P 353 €T 13/ 353 g

Table 1 Sample bill of lading. One such report is submitted to the Federal Customs and Border Protection
Agency for every import by a US Firm. As highlighted, these forms provide partial information about Tier 1
suppliers, types of goods imported, and, demand for that supplier.

7.1.3. Identify Suppliers and Constructing Synthetic Products from Bill of Lading Data.
A bill of lading (BOL) is a report submitted by U.S. firms to the Federal Customs and Border
Protection Agency, detailing shippers, consignees, goods, quantities, weights, and other specifics of
every international maritime shipment (see Table [I| for a portion of a sample report). We obtained
BOLs from ImportYeti.com, a third-party service that compiles BOL data across companies,
including Mattel, for over the past decade. In what follows, we limit attention to the 55 suppliers with
over 100 maritime shipments to Mattel in the past decade and neglect smaller, “one-off” suppliers.
Suppliers are identified by the “Supplier Name” field in the BOLs.

In principle, BOLs might provide sufficient details to identify Mattel’s primary suppliers and their
respective demands, but, as can be seen from the example, the reports are often vague in places:

1. The firm typically sources multiple products from each supplier, but BOLs provide only generic
descriptions like “plastic toys”, with no specific product names or their respective quantities.

2.  For each shipment, only the total weight is provided, while total unit counts are either missing
or recorded in broad terms (e.g., “CTN” for cartons).

Hence, we will create a single “synthetic” product for each supplier and calibrate this synthetic

product to the observed BOL data. Implicitly, this construction assumes that if a supplier is disrupted,


ImportYeti.com
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all of its products are disrupted (proportionately), and that products provided by different suppliers
are not substitutable.

More specifically, we leverage our learned keywords for product categories. For each supplier j,
let bg denote the proportion of bills containing at least one keyword from category ¢. These values
approximate the proportion of different product categories in a typical shipment from supplier j.
Finally, we construct a synthetic product for supplier j with a per-unit weight of equal to w; =
0 >

synthetic product, we compute the total weight of a shipment each month and convert them to unit

wg*® and a per-unit sales price of x5 =

k3", To compute a demand distribution for this
counts by dividing by w;. To simplify our analysis, we then bin this discrete distribution using /-
means clustering into a three point distribution for each product. Demand is assumed independent
across suppliers, so with 55 suppliers, there are already 3°> > 102° possible demand realizations.
Although somewhat involved, we do believe this procedure yields a reasonable approximation to
the supply chain for a company like Mattel. Figure [2] gives an overview of the demand and price of

these synthetic products.

Figure 2  Synthetic Products Calibrated to BOL Data.
40.0 Q 14%1 m 15%
- 37.5 129% | 1% ‘
§ 330 10% 10% | ‘
£3251  ag 8% M
= i It 8%
£300] @ ’3 o Q@ 6% l‘ ‘ ‘ ‘
N 4% - - 5%
27.5 :ﬁ. S 2o [ l EF 2% [ ‘1 ‘ ‘ ‘ ‘
25.0 8§ = . 0% | HD Jj O%\H\ HHMHI
0 2 4 6 8 500 1000 1500 2 4 6
Avg. Demand(g)/Month 1e8 Unit Weight(g) Total Demand(g)/Month 1e9
(a) Sales price vs. demand (b) Histogram of w; (c) Total demand/month
Note. Our calibration procedure results in 55 synthetic products, one per supplier. Panel (a) shows that there is a correlation between

product price and demand (maker size proportional to per-unit weight), with many low-volume, low-cost products. Panel (b) shows
a fair amount of heterogeneity in weight (and hence cost) among products. Panel (c) presents aggregate demand for our firm, which

exhibits significant variability.

To complete our calibration, we require yield data for each of these 55 suppliers. Yield data are
rarely shared externally due to their proprietary nature. Thus, we model random yield explicitly
(07 1) and p; = ]P(Sj =1-

a; = 0.05, p; = 0.05 and s;’s are independent, unless specified otherwise.

as s; € {aj, 1}, where 1 — a; € a;) are assumed known. By default,
7.2. How Accurate is the SuperMod Approx Heuristic?
As a first step, we study how suboptimal solutions obtained from the SuperMod Approx method

(c.f. Algorithm[I)) are relative to the full-information optimum obtained by solving the mixed-binary

optimization problem of Theorem
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Figure 3  Comparison of supermodular approximation and MIO for optimizating A
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As mentioned, solving this mixed-binary problem is challenging at scale, so in Fig. [3| we study
the scalability of SuperMod Approx as n grows. For benchmarking, we compare to the solution time
to solving the mixed-binary problem in Theorem ] using Bender’s cuts. Unfortunately, as n grows,
the number of scenarios in each of the expectations grows exponentially fast. Hence, we replace
these expectations by sample average approximations computed using 5% of the possible scenarios.
We call this heuristic MIO-SAA and cap its run time at 598 seconds, matching the total computation
time of SuperMod Approx across all cases forn =1...55.

From Fig. at n = 10, the MIO-SAA approach already hits the time limit, whereas the Super-
Mod Approx scales very gradually with increasing suppliers. This highlights its usefulness for large,
disaggregated chains.

Furthermore, Fig. [3b|attempts to compare the suboptimality gap of SuperMod Approx and MIO-
SAA for these larger chains. Since the full-information optimum is unavailable, we present the gap to
best lower bound computed in the course of the Bender’s algorithm. (This is the traditional stopping
criteria for Benders.) One can see that across n, SuperMod Approx finds a solution which is no

worse than the MIO-SAA approach at a much smalller computational cost.

7.3. How much value does 3DP offer?
Of course, a key question is if 3DP provides any cost savings over traditional back up strategies. In
Panels (a) and (b) of Fig. ] we plot the cost savings relative to a system without 3DP as a function
of the amount of capacity K purchased. As our theory suggests, the optimal K is a relatively small
fraction of the maximum demand, but the savings are modest. For our baseline parameters, at the
optimal K, we see a savings of just under 4%, but, at larger costs of capacity or costs of printing,
this benefit quickly disappears.

Perhaps more striking are panels (c) and (d) of Fig. 4] Here we plot the distribution of the demand
shortfall, i.e., the total unmet demand after utilizing the received primary orders and backup pro-

ductions. Note, this quantity is random depending on the random realizations of D; and s; for all j.
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We compute these boxplots using 10° random samples of the vector ((D;,s;):j=1,...,55). Here
we see that although cost improvements are modest, 3DP effectively reduces the amount of unmet
demand, particularly in tail scenarios. This benefit persists even for large costs of capacity or print-
ing. In many ways we see this as the primary argument for 3DP as a resilience strategy; although

average benefits are small, the additional flexibility helps guard against large vales of unmet demand.

Figure 4  Cost savings and demand shortfalls: varying ¢ and ¢*°°
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Note. Panels (a) and (b): Cost savings (%) relative to a system with dedicated backup but no 3DP. Savings are modest, and the
optimal K is a relatively small fraction of demand. Panels (c) and (d) display box plots of demand shortfalls. Here we see a more
striking reduction in the tails of the distribution. The x-axes indicate multiples of the baseline ¢" and c?DP. Box plots labeled “No

3DP” correspond to the system with dedicated backups only and no 3DP.

Fig. [5] ablates this improvement by comparing the optimal strategy to the “piloting” strategy of
only backing up Ay with 3DP. We sample 100 subsets of size n € {15,30,45} and also include the
full supply chain (n = 55) without sampling. The left panel shows the percentage of suppliers backed
up by dedicated resources under: i) “No 3DP”: the traditional system with no 3DP ii) “Piloting
3DP”: the traditional system where we additionally back up all unprotected products by 3DP iii)
“Full 3DP”: the optimal policy. We see that at our baseline values, a substantive number of suppliers
switch from dedicated backups to the flexible 3DP backup. In the middle panel, we see that a little
over half of the cost savings comes from backing up the unprotected items. Finally, the right panel
shows that nearly all reductions in average unmet demand result from the piloting 3DP strategy.

Thus, the piloting 3DP strategy — i.e. covering unprotected products — already seems to capture

the principal benefits of reducing shortfalls, and captures most (but not all) of the cost benefits.

7.4. What kinds of products are the best candidates for 3DP backup?

As discussed, in our model, any product that is unprotected when only considering dedicated back-
ups (i.e. Ag) should be backed up by 3DP if possible. What is less clear is which products previously
backed up by a dedicated resource should switch to a 3DP backup in an optimal policy .4*. To better
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Figure 5 Backup switch after introducing 3DP.
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Note. From left to right: percentage of n assigned to dedicated backups, cost savings (relative to the cost without 3DP) and mean
demand shortfall (relative to max demand) for n € {15,30,45,55}. We compare the dedicated backup-only strategy (blue), the
piloting 3DP strategy (red, backing up only unprotected products), and the full 3DP strategy (yellow, potentially switching dedicated
backups).

Figure 6  Key factors driving product switching.
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Note. We fit a Decision tree to identify key drivers that govern which products will switch from dedicated to 3DP backup at the

optimal capacity. The most likely products to switch have a moderate demand shortfall and a favorable 3DP Profit-to-Cost ratio.

understand the characteristics of products that switch, we sample 1,000 sets of n = 10 products, and
simulate heterogeneity in the s distributions by randomly assigning «; € (0, 0.75] and p; € (0, 0.5].
We also randomly assign the ratio ¢}®/c3P" within (0,1). We then use a CART decision tree to
predict if a product will switch based on several, normalized features:

E[(D; — q}s;)"] (v; = 2°F) Jw;

Mean Shortfall = E[D, ,  3DP Profit-to-Cost = Cjcap
DB Critical Quantile = e Primary Critical Quantile = —.— (22)
_CJDB‘i‘hj’ y _U]+hj

where cjg’ is the optimal first-stage order without any backup (see (6))), and w; is the unit weight.
In essence, “Mean Shortfall” quantifies the unmet demand that backup needs to cover, while “3DP
Profit-to-Cost” captures the profitability of a product (when 3D-printed) relative to 3DP unit capac-

ity cost.The terms “DB-" and “Primary Critical Quantile” represent the critical quantiles in the
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newsvendor calculation for a product when it is backed up by the dedicated strategy and when it is
unprotected, respectively. All hyperparameters are tuned with 5-fold cross-validation.

The resulting decision tree is shown in Fig. [0 In each leaf node the first row is the majority label,
the second row is the proportion of products in this leaf that “switch” from dedicated to flexible
backup, and the third row shows the leaf’s proportion of the total data.

Figure [6] suggests that products with very high demand shortfall (> 0.34) or very low shortfall
(£ 0.031) do not switch; these products should either use a dedicated backup or none at all. But
products with moderate shortfalls and a good 3DP Profit-to-Cost ratio are more likely to switch.
While clearly only a heuristic model, this tree nonetheless provides some managerial insight into

which products to consider switching.

7.5. Correlated Disruptions
Theorem [3] shows that 3DP will perform worst (relative to dedicated backups) when demand short-
falls are comonotonic. In this section, we further explore this phenomenon by considering a sequence
of models where disruptions become more correlated and assess the drop in value of 3DP.
Specifically, we introduce a latent factor X, ~ Bernoulli(pg) with py < 0.05 representing a global
failure that affects all suppliers. We then take X; ~ Bernoulli(%) independently. Finally, we let
s; =1 —amax(Xj, Xy). Thus, each supplier fails with probability P (s; =1 — o) = p = 0.05. How-
ever, by adjusting the ratio po/p from 0 to 1, we can control the correlation between failures via
the common factor. Specificaly, when p/p = 0, the s; are independent. When p,/p = 1, the s; are
comonotonic. In what follows, we also consider two values of « € {.05,1} to contrast the case of

small and large disruptions.

Figure 7  Cost savings and demand shortfalls: varying correlations among disruptions
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Note. Panel (a): Cost savings (relative to no 3DP) as po /p increases from 0 (independent s) to 1 (comonotonic s). Panel (b): Demand

shortfall (relative to total demand) vs. po /p. Both panels compare 5% (“Small”’) and 100% (“Large”) yield loss disruption regimes.
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From the blue curve in Fig. for small disruption levels, as correlation increases, cost savings
decrease by only 0.2%. This decrease is larger for the large disruption case, but even at comonotonic
failures, 3DP offers some cost savings. From the left panel in Fig. 3DP consistently reduces
demand shortfalls across all correlation levels considered, and for small disruptions, the magnitude
of this reduction is relatively stable. For larger disruptions, however, the benefit from reducing short-
falls wanes as correlation increases. At very large correlations, if many suppliers fail (entirely) and
simultaneously, the shortfalls significantly exceed the 3DP capacity, and the no 3DP system may
perform better on average.

Altogether, these observations provide evidence that stronger disruption correlations weaken the
3DP resilience strategy’s effectiveness in cost savings and demand shortfall reduction, particularly
when disruption-induced yield losses are large, but that there still may be some value for high-values

of correlation.

8. Conclusion
In this paper we explore the possibility of using 3DP a flexible backup resource as part of a larger
portfolio of supply chain resilience strategies. Doing so requires solving a host of operational prob-
lems around which products to backup with 3DP, how much 3DP capacity to acquire, and how to
structure both primary orders from suppliers and recourse printing actions. To that end, we formulate
a mixed-binary stochastic optimization problem describing the setting, and derive several properties
of its optimal solution that help assess the potential value and costs of adopting a 3DP strategy.
We also provide a scalable heuristic for solving this problem based on constructing a supermodular
approximation. Through an empirical case study inspired by Mattel, we establish that with current
technology, 3DP offers only a modest savings over dedicated backup (3-4%), but that it offers a much
more significant reduction in the amount of unmet demand in the system. For risk-sensitive firms or
settings where qualitative branding risks are serious, such benefits might justify the investment.
There are a number of interesting direction for extension. We have considered a single firm and
its Tier 1 suppliers. One could study other supply chain networks, such as an assembly network,
and ask where topologically on the network 3DP might be most valuable. Moreover, we have taken
a deliberately conservative viewpoint, neglecting potential benefits of 3DP from co-location with
demand or faster lead times. Modeling these features appropriately might reveal additional benefits.
Overall, 3DP and additive manufacturing have long been considered inviable for large-scale man-
ufacturing and supply chain, and relegated to low-volume applications like prototyping. While there

are very real practical challenges to widespread 3DP adoption including quality assurance, upskilling
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a workforce, and navigating regulatory requirements, there are also very real advantages ot incopro-
rating flexible back-up strategies in a firm’s supply-chain resilience plan. We hope our work inspires

academics to think more broadly about the potential of this technology.

9. Data Availability and Reproducibility

All code for reproducing our experiments can be found at https://github.com/ziyuhe/

3DP_resilience_experiments/. In the spirit of reproducibility of research, we also provide

the complete dataset of 55 suppliers with details on their synthetic products within this repository.
Data obtained from ImportYeti.com is proprietary and available for purchase. We cannot

share this data directly. Interested researchers should contact this firm.
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Appendix A: Omitted Proofs
In this section, we present the proofs of the key results discussed in this paper.
A.1. Background Results

First, we present several background results that will be used later in the proof of our main results:
1. We first reformulate V3°F (defined in Problem ) as a fractional knapsack problem in Eq. .

2. We use this reformulation to provide an efficient subroutine (Algorithm for evaluating V3PP,
3. We use this reformulation and subroutine to provide subgradients of V°° in closed-form (see Lemma|5)).

4. We establish Lemmal6] a technical lemma that characterizes the minimal-magnitude optimal solution of a univari-
ate convex problem. This result will later be used to analyze the optimal 3DP capacity and first-stage order.
We begin with a reformulation of V3" (y, K):
VP (y, K) =Y vyl +hy; + Py K), (23)
JEA
where y™ is the vector consists of demand shortfall y;’s, and function f3PP is defined by

F0 (2 ) = i S (o, =g
jEA
st 0<gPP <z, Vjed and Y ¢ <K.

jeEA

(24)

This reformulation results from the following manipulations:
* For all j € A such that y; < 0, there is no demand shortfall to handle, hence the corresponding qj.’DP =0 in
Problem . Thus, [y; — ¢;°F]~ equals y; at optimality.
* For all j € A such that y; > 0, it is never optimal to use 3DP to back up more than the demand shortfall y;.
Therefore, 0 < ¢2°° <y, and [y; — ¢;°7]* equals ] — ¢;°".
The first two terms of the summand in Eq. do not depend on @°°F. This decision variable only occurs in Prob-
lem , which is a fractional knapsack problem. Therefore, the optimal g*°" for Problem (4) can be obtained using

the standard solution procedure for fractional knapsack problems, as summarized in the following algorithm. For con-

venience, we assume that the indices in A are sorted in descending order of v; — ¢3°" for the remainder of this section.

Algorithm 2 Optimal ¢°°" for V3PP

Require: Demand gap y; for all j € A and capacity K. The remaining capacity K is initially set to K.
1: forj=1...|A| do
2: Set ¢3°° = min{ K", y; }, and update K" as K’ — q;°".

3: end for

4: return @*°" as the optimal solution for Problem (4) which defines V3PP (y, K)

In other words, the optimal fulfillment (jf.DP of demand shortfalls ¢ is obtained by iteratively filling ;" in descending

order of the per unit fulfillment reward v, — chP, until all shortfalls are addressed or the capacity K is exhausted.

Next, we use the structure of g*°P

, output from Algorithm to derive a closed-form expression for the subgradients of
V3PP This result enables efficient implementation of the first-order method discussed in Section and plays a crucial

role in subsequent proofs, where it is applied to characterize the optimal first stage order q and capacity K.
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LEMMA 5 (Convexity and Subgradients of V3°F). The following properties hold for V3°F:
(i) V3PP (y, K) is jointly convex in y and K.
(ii) Let @°°F be the output of Algorithm for given y and K, and define j* = min{j € A:y; >0,¢°" <y;} as the
first positive shortfall that is not fully filled. Then, a subgradient X of V3°F (y, K) with respect to K is given by

o —(vje =27 WYy > K 25)
0 otherwise.

Moreover, a subgradient pi; of V3PP (y, K') with respect to y; is given by

7]7’]' lfyj S 07
Hj =Y, if y; >0 and G°° <y;, (26)
PP — X otherwise.

Proof of Lemma This proof relies on an epigraphical reformulation of V3PP (y, K):

S (P 0 A

min
@3PP>0,¢t ¢~

jeA
st. Y g* <K, (27a)
jEA
Yy —qPP <0<, Vi A, (27b)
-y +¢<¢, 0<¢, Vj e A. (27¢)
where we have replaced [y; — ¢;°°]* and [y; — ¢;°"]~ in the objective of Problem (4) with nonnegative variables ¢;"

and ;, subject to constraints y; — ¢3°° < (" and y; — ¢3°" > —(; . The dual of this optimization problem is:

max  KA+y'(u” —pt)

A<O,pt, pu—
st. A—pf4p; <SP, Vi€ A, (28a)
—v; <pf <0, VjEA, (28b)
—hy < <0, Vje A (28¢)

Thus, V3PP (y, K) is the maximum of linear functions and jointly convex in y, K, proving statement (i).

To prove statement (ii), we will apply Danskin’s theorem (Proposition 4.5.1 inBertsekas et al.|(2003)), which provides
the subgradients of V3PP in terms of an optimal solution to Problem . Hence, we first construct a primal and dual
pair of optimal solutions to Problems [27] and 28] Namely,

* Let ¢°°" = g*°® where g*°" is the output of Algorithm 2}

« Let ¢ =[y; — """ and ; = [y, —¢°"] ", forall j € A.

Let \ be defined as in Eq. (23).
* Forall j € Asuchthaty; <0,set ] =0and pu; =—h;.
* Forall j € Asuch that y; >0 and §°° = y;, set u = A —c3° and p; =0.

* Forall j € A such that ; > 0 and 7°° < y;, set ) = —v; and p; =0.
Since @*°F is optimal for Problem @), it follows that (g*°", ¢, ¢ ™) are optimal to Problem .

To check dual feasibility, we consider each j € A following the cases outlined above:
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* Forall j € Asuchthat y; <0: ) and p; satisfy Egs. (28b) and (28c) by construction. They also satisfy Eq. (28a)),
because A < 0, and hence, the left side of Eq. (28a) is non-positive while the right side is non-negative.

* Forall j € A such that y; > 0 and ¢;°° = y;: Eq. (28c) is satisfied by construction. Since 7;°" = y;, product j
cannot have been added to the knapsack after j* in Algorithm Hence, v, — c?DP > Vjx — c;.?P > —\. Rearranging
shows that —v; < A —¢3P, which implies the left inequality in Eq. (28b). The right inequality follows immediately
because A <0 and ¢3°" > 0. Finally, by substitution, the Eq. (28a) holds with equality.

* Forall j € Asuch that y; > 0and ¢°" < y;: Eqgs. and hold by construction. Moreover, because 7;°" <
y;, we have j could not have been added to the knapsack before j* in Algorithm and 50 v; — " < v —32F,
which proves the Eq. (28a) holds.
Thus, our constructed dual solution is dual feasible.

It remains to show complementary slackness:

(Z " - K) A=0,

JjEA

(=" = +y)uf =0, (=" +¢ +y;)uy =0, VieA, (29)
A =nf g =) g™ =0, (=p —0;) ¢f =0, (—py —hy) ¢ =0, VjcA

These constraints can again be checked by cases in exactly the same manner as above for dual feasibility, which in turn
confirms that uj, i, A, constitute a dual optimal solution.

Hence, by Danskin’s theorem, subgradients with respect to y; and K are given by p; = pu; — uj and ), respectively,
concluding the proof. |

REMARK 1. We note that the subgradient of V3°P is unique except when (y, K) falls into one of the following
scenarios: (1) 3.,y > K and @32F = y;+; or (ii) 3. ,y; = K. In these cases, the optimal \ for the dual problem
Problem forms an interval, and we choose its upper bound as the A presented in Lemma[5] Accordingly, in the third
case of Eq. , this choice of A\ makes c?DP — A the smallest 1; under this scenario.

This choice of A and p; allows us to directly apply Eq. and Eq. to derive the right derivatives of K —
V3PP(D — g o s,K) and ¢; — V3PP(D — q o s, K), which we use in the proofs of Theorem [1| and Theorem [2| to
characterize the optimal 3DP capacity and first-stage order. (]

Recall that in Theorem [T] and Theorem [2} ties among multiple optima are resolved by selecting the one with the
smallest /;-norm. When the decision variable is a positive scalar, the following lemma characterizes the least ¢,-norm

solution using only the right derivative of the objective function.

LEMMA 6 (Minimal Solution of Univariate Convex Function). Let f : R — R be convex and let T = min{z > 0:

Ji(x) >0}, where f’ (x) denotes the right derivative of f. Then, T is the smallest optimal solution to min, >, f(x).

Proof of Lemmal6] We first note that 7 is well-defined since f’ (z) is right-continuous by Bertsekas et al.| (2003}
Proposition 4.1.1(e)). Consequently, the set {x > 0: f’ () > 0} attains a minimum.

Next, we observe that any optimal solution must be at least as large as . Indeed, by the first order optimality condition,
any optimal solution 2 must satisfy f’ (x) > 0, and since Z is the minimal such value, it is less than or equal to any

optimal solution. Thus, it only remains to show Z is, itself, optimal.
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We consider two cases: First suppose that £ = 0. Then, since it is on the boundary, the first order optimality condition
directly gives the optimality of Z.

Now suppose Z > 0. Then, it suffices to show that f’ (z) < 0, where f’ () denotes the left derivative. Suppose by
contradiction f” (Z) > 0. By Bertsekas et al.[ (2003} Proposition 4.1.1. e), f’ (x) is left continuous. Hence, there exists
0 < xo <z with f’ (zo) > 0. Bertsekas et al.| (2003} Proposition 4.1.1. a) further gives f’ (xo) > f’ (xo), which, together,
imply f’ (o) > 0. But Z was the minimal value such that f’ (x) > 0, a contradiction. Thus, Z must be an optimal

solution. O

A.2. Proofs from Section 2]
Proof of Lemma[2]  First, note that the objective function of Problem , which defines U ]'.DB, is given by:

E [¢;q;8; 4 ¢2P[D; — q;8,]" + hy[D; — ¢555]7] (30)

This function is convex since both [D; — ¢;s,]" and [D; — ¢;s;]~ are convex in g;, and expectation preserves convexity.
Lemmal6|thus implies that g; is the smallest g; for which the right derivative of the function in (30) is nonnegative. This
right derivative is given by:

iE [C. 5;+c28[D; — q;85]" + hyla;s; vaﬁ] — E {d
dqj— ]q]SJ C] J qJ J J q] J J dq+
E [(c;s; — 7%, 1{D; > q;8;} + hys;1{D; < q;5;})] ,

(c;ais; +SP(D; — qis;]" + hyla;s; — Dy

where we can reverse the derivative and integration in the first equality because the integrand is uniformly Lipschitz in
q; with parameter at most ¢; + c5® + h;. Simplifying shows that the right derivative is nonnegative if and only if
cP® —¢;
Bls 4D, a5} > (Fepyt ) Bl

Therefore, the optimal g; is the smallest g; that satisfies this inequality, which completes the proof. |

Proof of Lemma Throughout this proof, we assume that .4 is fixed.

To prove part (i), note that we have already shown in Lemma that V3PP (y, K) is jointly convex in y and K. Since
composition with affine functions preserves convexity, it follows that the mapping q — V3°P(D — g o s, K) is convex.

To prove part (ii), note that expectation preserves convexity (Shapiro et al.|2021, Theorem 7.46), hence the objective
function of Problem (3) is convex. Since the feasible region of this problem is also convex, the proof is complete.

Finally, for part (iii), note that by establishing part (i), we have shown that g — V3P?(D — g o s, K), and thus the
objective function of Problem ), is jointly convex in q and K. Since U°P" is derived from partial minimization over
g > 0, and partial minimization preserves convexity (see Proposition 2.3.6 from [Bertsekas et al.|(2003))), it follows that

K — U®"P(A, K) is convex. O

A.3. Proofs from Section[3|

Proof of Proposition|[l] To establish A, C A*, it suffices to show that the optimal A for any fixed K > 0 includes
Ay. This holds because adding an unprotected product to A and choosing to never print it in the second stage is costless.
To show that the inclusion can be strict, it suffices to construct an example where A = N is strictly better than
A= Ay. Then, A, cannot be optimal. To that end, consider a setting where 0 < D, < Dj almost surely for all j € N,
and C®PP(K') = 0. In this case, we effectively have infinite 3DP capacity for any 4, since it is always optimal to set

K= ZJ. cA D;. Recall that Problem (@) and Problem define the optimal operational costs for product j when K
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is zero and infinite, respectively. We denote these costs as U]Q and U3°. The total cost under A = N is thus given by
> ien UPT, while the total cost under A = A, is:

Y e Y ),

j€Ag JEAG
where U JDB (as defined in Problem ) and C’J'.D B represent the operational and fixed costs of dedicated backup, respec-
tively. Comparing the costs for A=A and A = A, and simplifying, we find that A = N yields a lower cost if:

D UF<Y (UPP+CPE).

JEAG JEAG
We can force this inequality to be true by taking C]DB to be sufficiently large. Fix any such sufficiently large value for

the remainder of the proof. The only remaining challenge is to assert that A, # N, which will occur if
DB DB 0
U;”+C7° <U;

holds for some j. Notice, that neither of U ]'.DB nor U b depend on v; (the stock out cost), because DB is uncapacitated
and we effectively have infinite 3DP capacity. Hence, by increasing v; we can increase U ]O and ensure that A, # N
Thus, we have constructed an example where A = A, is not optimal, hence the optimal A can strictly include A,,.
O
Proof of Theorem Recall that g* (A, K) is an optimal solution to Problem (3)) (which defines U*PF (A, K')) with
the minimal /; -norm. We first note that ¢ (A, K) is the smallest optimal solution to Problem (3) when minimizing only
over g; > 0, while keeping ¢; = ¢; (A, K) fixed for all i # j, i.e., ¢} (A, K) solves the following univariate optimization
problem:

rggl c;qE [s;] + Z aq;(K)E[s;]+E [V**(D —qos, A K)|,

iI€EA,i#]
which is equivalent to
min E [¢;qs; + V" (D —qos, A k). 31
q>0
In both problems, we let
. F(AK) i,
qi:{q (A K) #J (32)
q otherwise.

Moreover, q; (A, K) is the minimal solution this univariate problem. Indeed, if this were not the case, we could use it to
construct an optimal solution to Problem (3) with a smaller ¢, -norm than g* (A, K), contradicting its definition.
Note that Problem 1i is a univariate convex optimization problem. Thus, by Lemma @, qj*.(.A, K) is the smallest

g > 0 for which the right derivative of its objective function is nonnegative. This right derivative is given by:

d R d .
dq—Jr]E [c;jqs; +V*PP(D —qos, A k)| =E |¢;s; + dq—JrVwP(D —qos, A K) (33a)
=Ele;s; —s;1;(D, 8,9)] (33b)
=Ele;s; +h;s;1{D; <qs;} —s;1,(D, s,¢)I{D; > g;5;}], (33¢)

where y;(D, s, q) denotes the ji; from Eq. after setting y = D — g o s in Lemma 3] Specifically, Eq. (33a) swaps

differentiation and integration since the integrand is uniformly Lipschitz in ¢ with parameter at most ¢; + v; + h;.
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Eq. applies Proposition 4.2.2 of |Bertsekas et al.| (2003), which states that the right derivative of g — V3PP(D —
gos, A K) is its largest subgradient. By the chain rule, this subgradient is given by —s; 4, (D, s, q), since u;(D, s,q)
is constructed as the smallest possible subgradient of y; — V3PP (y, A, K) at y = D — g o s (see Remark . Finally,
Eq. follows from the specific construction of u,;(D, s, q) shown in Eq. .

In summary, we derive that
4} (A, K) =min{q>0: H(q, 4,(D,5,0)) >0} (34)
where
H(q,z)=c¢js; + h;js;I1{D; <gqs;} —s;21{D; > q;s;} (35)
Using an argument similar to the proof of Lemma 2} we characterize ¢;° and g}, the smallest optimal solutions to

Problem (6) and Problem (7)), respectively, as follows:

g =min{g>0: H(q, ") >0} and ¢)=min{g>0: H(q,v;)>0.} (36)

J

Thus, to establish 5° < qj?DP(A, K) <), it suffices to show that for all D,s and ¢ > 0 such that D; > gs;, the
following inequalities hold:
CiDP <p;(D,s,q) <v;. 37

To see why Eq. is sufficient, observe that H (g, z) is non-increasing in z, thus Eq. yields:
H(g,v;) < H(q, p; (D, s, q)) < H(q, ). (38)
Consequently, we obtain
0< H(g(AK), p(D.s,q" (A K))) < H(g; (A K). ),

where the first inequality follows from Eq. , and the second follows from Eq. . In other words, ¢ = ¢} (A, K)
satisfies the inequality H (g, c}°") > 0. Since ¢:° is the smallest such ¢ (cf. Eq. ), it follows that ¢7° < ¢} (A, K). By
a similar argument, we also obtain ¢} (A K) < (jf

Thus, the proof is complete once we establish Eq. @ forall D, s and ¢ > 0 with D; > gs;. We consider the following
cases, setting y = D — q o s for simplicity, where g°°" and j* are defined as in Lemmaunder this y:

i) If §°° <y;, then from Eq. , w; (D, s,q) = v;, satistying Eq. .

ii) If $°" =y, and 3.,y < K, then from Eq. , i (D, s,q) = c3°, satisfying Eq. .

iii) Finally, when ¢}°" =y, and 3 ._,y; > K, Eq. (20) gives y;(D,s,q) = ¢° + (v;+ — c}27), hence we have

J

wi(D,s,q) > c?DP since v« — c;‘.?" > 0. Moreover, in this scenario, shortfall j is fully filled, so by construction,
j* > j. Since v; — 37 <wje — R, it follows that y1;(D, s, q) < v; after rearranging terms.
In summary, we have shown that Eq. holds in all cases, therefore proving ¢;° < ¢ (A, K) < ;. ]

Proof of Theorem 2] For ease of reference, let r; = v; — ¢°" and denote the objective function of Problem
(which defines U3PF) as F3PP(K). We begin by characterizing K*(.A, q), which is key to proving statements (i) and (ii).
Recall that K*(A, q) is the smallest optimal capacity for a given A and a fixed first-stage order g > 0, making it
the smallest minimizer of C*°P(K') 4+ F?*°P(K) for K > 0, where C°°?(K) = ¢*P K. Since this is a univariate convex

problem, it follows from Lemma|§| that

K*(A,q)=min{K >0: H*(K,q) >0}, (39)
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where H* (K, q) is the right derivative of ¢c*P K + F*PP(K'). We derive H*(K, q) in closed form as follows:

* _ d ca; 3DP __ ca d 3DP
H (K,q)_dK+ (K + F**"(K)) =c¢ "+ B [V3PP(D —qos,K)] (40a)
__ .ca [ d 3DP
=cC p+E _WV (D—qOS,K):| (40b)
= L E[\(D,s,K)| (40¢)
=% _ T]*H{Z[D] —quj}+ > K}] . (40d)
L JEA

In @0B), A(D, s, K) is the A from Eq. (25), defined under y = D — g o s; the index j* in is defined in Lemmal]
under the same setting. Equation holds because V3PP is the only term in F°" that depends on K. In Eq. (40b),
differentiation and integration are interchanged, which is valid since the integrand is uniformly Lipschitz in ¢ with a
parameter at most max, ¢ (v; — c?DP). Next, Eq. applies Proposition 4.2.2 of Bertsekas et al.|(2003), which states
that the right derivative of K — V3?(D — q o s, K) is its largest subgradient. By construction (see Remark [I), this
subgradient is precisely A(D, s, K), as given by A in Eq. , whose explicit form yields Eq. .

To prove part (i) of the theorem, we substitute v; — ¢; = r for all j € A into Eq. @), which simplifies Eq. @) to

K*(A,q) = inf {K >0: =P pminp <Z[Dj — gt > K) > o} @1)
jEA
cap
r
JjEA

By the definition, K* (A, g) is thus the (1 — Sl )-quantile of > iealDj —q;s;]*, thereby proving part (i).

r

We now prove part (ii) of the theorem, where r; values are heterogeneous. Recall that K *(A) is the smallest optimal
capacity under A, so we have K*(A) = K*(A,g*(A)), where g*(A) is the optimal first-stage order with the minimal

£,-norm. For convenience, we define the following functions

H™™(K,q) = ¢ — p™inp (Z[Dj — g8, > K) and H™(K,q) =™ — p™>P <Z[Dj —q;s,]t > K) .

jEA jEA

Since r™in < 7+ < 7™ almost surely, it follows that
H™"(K,q) <H*(K,q) < H"(K,q). (43)

The proof of part (ii) is completed as follows:

(1 - C::x> -quantile of Z[Dj — st < (1 - c;i) -quantile of Z[Dj —q;(A)s;]* (44a)
r jeA " jeA
) N P
1nf{K20: P(Z[quj(A)sj]+>K> < rmax} (44b)
JEA
=inf{K >0: H™>(K,q*(A)) >0} (44c)
<inf{K>0:H*(K,q"(A)) >0} (44d)
<inf {K >0: H""(K,q"(A)) >0} (44e)

B . . " ceap
_mf{K >0: P (Z[D] g (A)s;] >K> < Tmin} (441)

JjEA
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P
= (1 - ) -quantile of Z —q;(A)s;]" (44g)
JEA
P . ,
< (1 — ,,mm> -quantile of » [D, —?s;]*. (44h)
JEA
Specifically, Eq and Eq . ) follow from the fact that the quantiles of ZJ calD; —q;s;]" are non-increasing

in g;, and from the bounds 47 <q; (A < qj given in Theoreml

Eq. (#4b) and Eq. (#4g) arise from the definitions of their respective quantiles, while Eq. and Eq. {@4f) follow
from the definitions of H™™ and H™* with some rearrangement.

Moreover, the right-hand sides of Eq. (#4d) and Eq. represent two optimization problems with the same objec-
tive. By Eq. (3), we have H*(K, ¢*(A)) < H™>(K, g*(A)), so the feasible region in Eq. is larger, yielding a
smaller optimal value. Hence, the inequality in Eq. holds. The same argument applies to Eq. {@4¢).

Finally, noting that the right-hand side of Eq. is K*(A, q*(A)), and using K*(A) = K*(A,q*(A)), we con-
clude that statement (ii) is proven. O

Proof of Theorem[3] In this proof, we fix the marginal distributions of (D, s) as well as A, K, and g, omitting them
from the notation. Without loss of generality, we assume the indices in .4 are ordered in descending r; = v; — C3DP

The key idea of the proof is to show that f*°"(z) in Problem (24) is supermodular on R7". Recall, this function is

submodular if for all z,z >0,

fPP(2) + 27 (2) < £ (minfz, 2}) + £ (max{z, 2}),

where min{z, z} and max{z, z} denote the elementwise minimum and maximum, respectively.

To see why it is sufficient to show that this function is supermodular, note that by|Goovaerts and Dhaene|(1999, Theo-
rem 6), among all random vectors y* = [D — g o s]™ with fixed marginal distributions, the comonotonic y* dominates
all others in the supermodular order. Thus, if f3°P(z) is supermodular, then from the definition of supermodular order,
it holds that E[f3PP(y™)] is maximized when y* is comonotonic. Since this result holds for any A C N, K > 0, and
g > 0, and since E [f*°P(y™)] is the only term in the objective function of Problem (3) (and thus Problem (1J)) that
depends on the correlation structure of y*, it follows that the optimal value of Problem (1)) is maximized when y™ is
comonotonic.

Hence, for the remainder of this proof, we focus on establishing the supermodularity of f3°P(z). By Corollary 2.6.1 in
Topkis|(1998), it suffices to show that f3PP(z) satisfies the increasing differences property. Specifically, for any 7, j € A,

fix z, forall £ € A\ {i,j} and express f*"" solely as a function of z; and z;, i.e., f*°"(z;, z;), then

PPz 2+ A) = PPz, 25) > PP (2], 25 4+ A) — 7 (20, 7)), 45)

iy %5 i %j

for all nonnegative scalars z;, z;, z; and A with 2] < z;.
We first prove Eq. [@#3) for sufficiently small A > 0 such that A(2], 2}) = A(2}, 2} + A), where A(2;, z;) is the optimal

(R}

A in the following dual reformulation of f3PP(z;, z;), with z, fixed for all £ & {7, 5}

P ) = s B B p = KA et AT 4
e (46)
S.t. ﬂgé*)\*T{,ﬂgSO,VﬂGA

The second equality in Problem follows from the dual constraint p, < min{0, —A — r,} = —[r, + A]*, hence

maximizing the dual objective yields p, = —[r, + ] at optimality.
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By the same argument in Lemma after replacing y;” with z,, the X defined in Eq. remains optimal for Prob-
lem . Thus, applying Danskin’s theorem, the subgradient of z; — 3" (z;, z;) is given by —[r; + A(z:, 2;)] T, and:

FPOP (2l 25+ A) = FPOP (21, 20) < —Alrs + Mzl 2h + A)] " = —Alr; + A2, 2)] 7, 47
FPOP (20,2, + A) = POP (2, 20) > —Ar; + Mz, 2)] T (48)

The inequalities in Eq. and Eq. follow from subgradient inequlaity of convex function f3PP, while the
equality in Eq. (47) holds due to the A(2/, 2}) = A(2/, 2} + A) assumption. Since ¢ — [t]* is non-decreasing, for Eq.

1%
to hold, it suffices to show that \(Z;, z}) < A(z], 2}).

Recall that the optimal \ for Problem (@6) (as given in Eq. (23)) is either —r;., where j* is the first positive shortfall
that is not fully filled, or 0 when all shortfalls are fully filled. To unify these two scenarios, we introduce an artificial
shortfall z,,.; = K with reward r,,,.; = 0, so that we can always write the optimal X as —r;+. Under this framework,
the index j* is smaller in the z; = Z; case since it requires filling more shortfalls than z; = z;. Consequently, —r;« is
smaller for z; = z;, leading to A(%;, 2}) < A(z], z;). Therefore, Eq. holds under A(z], 2}) = A(2], 2 + A).

To extend this result to general A > 0, note that z; — f3°"(z) is convex piecewise affine from Problem (46)). Thus,
the interval [z}, 2 + A] can be partitioned into subintervals [z + A,_y, 27 + A] for £ =1,..., L, where A, = 0 and
Ap = A, such that within the interior of each subinterval, A(z/, z;) remains constant and takes a unique value \}.

Although A(z], 2} + A,_1) and A(z], 2} + A,) are not unique, Bertsekas et al.| (2003)[Proposition 4.2.3 (b)] ensures

that both can take the value ;. Thus, when restricted to each subinterval [z} + A,_y, 2 + A,], we may assume without

loss of generality that A(2/, 2} + A1) = A(2], 2} + A,) and apply Eq. under this condition to conclude that

17 7g
PP 25+ D) = PP (2 25+ Do) < P75, 25+ D) — 777 (Z0, 25 + D). (49)
Finally, summing Eq. @9) over all /=1, ..., L establishes Eq. (@3] for any A > 0, thus completing the proof. O

A.4. Proofs from Section[d|

Proof of Lemmal|  First, recall that y = D — q o s for some fixed D,s, and ¢ > 0. We can without loss of
generality assume ¢; = 0 for all j € A such that z; = 0, since all terms indexed by such j in Problem (9) and (8) are
effectively eliminated. On the other hand, we can assume that 77 <q; < q;’ for all 5 € N where x; = 1, as the optimal
solution lies within this range (see Theorem [I)).

For convenience, we denote the right hand side of (T0) as V3PP, so verifying V3% = V%P establishes the equivalence
in (I0). It suffices to show that setting M jl, M ].2, and M f’ as in Eq. ensures Problem includes the optimal

~3DP

solution g*>°" of Problem @I) and that their objective functions simplify to the same expression.

Specifically, for all j € A such that z; = 1, inequality (10b), (TOC), and (T0d) in V*°P simplify to:
@B =0< g™ <M}, (0= z"" =g, (0d)= | —y;| <M. (50)

To show that ¢3°" satisfies (50, it suffices to verify that M and M? bound |¢3°"| and | D; — g;5,; — ;"7 |, respectively.

Indeed, note that g

PP < [D; —q;s;]*, our boundedness assumptions on D; and s; ensures that 0 < 7:°F < D; —g3°sT™,
which justifies M. Similarly, we derive —) s < D; — q;8,;, — ¢;°° < D; — ¢;°s™, justifying M.

On the other hand, for j € A such that z:; = 0, inequality (10b), and (T0d) in V*® can be simplified as

(OB) = ¢;** =0, (O = |2°"| < M7, ([0d) = 2> —y; =0. 51)
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Note that when z; = 0, the optimal ¢:°" for V* " is arbitrary and can be set to 0, trivially satisfying (ST). It remains to
verify that |23P7| < M?. Since 23°" = y; = D; — q;s5; = D;, where the last equality follows from ¢; = 0 in this case,
choosing M? = D; is sufficient for |23°"| < M? to hold.

Combining (50) and (51)) simplifies in /3PP 1o 2 jena o1 @ < K, which is equivalent to 3\ ¢3°"x; < K
in V3PP, Thus, we have shown that any vector g3°7 optimal for V3P satisfies all the constraints in /3PP,

Finally, substituting (30) and (51) into the objective of Problem (I0) confirms its equivalence to the objective of
Problem @), thereby establishing that 1/3°P = 1/30P

The convexity of 173Dp(y, x) then follows by penalizing the constraints in Problem with an indicator function
and applying Proposition 2.3.6 from Bertsekas et al.|(2003). ]

Proof of Theorem By Lemma ] and Theorem[] it holds that:
U*P(z, K) = min Z ¢;4E[s;]+Ep s [V3DP(D —qos,, K)} (52)
q
j=1

where V3PP (y, x, K) is given by Problem . Note that this is sufficient to establish the equivalence between Prob-
lem and Problem . The convexity of the objective function in Problem follows from the convexity of V3PP

(as established in Lemmafd)) and the fact that the expectation operator preserves convexity. ]

A.5. Proofs from Section

Proof of Proposition[2].  First, note that Z]. .4 ¢;4;E[s;] is modular in A, and since expectation preserves super-
modularity, it suffices to show that V3°" is supermodular in 4. Using the reformulation in Eq. , this reduces to
proving that f*°"(z, A, K) is supermodular in A for any z € R" and K > 0, where f*°" is given in Problem and
explicitly written here as a function of A. Specifically, for all S, 7 C N with S C 7 and i ¢ T, we aim to show that:

P (z,8U{i},K) — f°°(2,8,K) < f*°°(2, TU{i}, K) — f*°"(2, T, K). (53)

Note that by the construction of f3P” in Problem (24)), we have f*°F(z, A, K) = f3°"(2(A),N, K), where

Z(A)E{Zj ifjeA,

0, otherwise.

Substituting this identity into Eq. (53),, it suffices to prove the equivalent inequality:
PSS U{i}) = 77 (2(8) < £227(2(T U {i}) — 77 (=(T)). (54)
From the proof of Theorem we know that f3PP satisfies the increasing differences property:
FP(CH Ber) = [P7(Q) < [P (CH e+ Bee) — [P (C + aey), (55)

for any ¢ € R% and «, 8 > 0, where e, and e, denote the k™ and ¢® coordinate vectors.
We now apply this increasing differences property of f3°F to prove Eq. by induction. Reordering the indices so
that S\ 7T ={1,..., L} with L =|S\ T, the base case follows as:

FPP2(SULa}) — PP (2(8)) = FP7(2(S) + zier) — 27 (2(S))
< P(2(8) + zier + zies) — £ (2(S) + z11), (56)
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where the equality follows from the definition of z(S), and the inequality follows by applying Eq. with ¢ = z(S),

o =z, B = z;, and setting k = 1, £ = i. Now, assume that for some j’ < L, the following holds:
jl j/
f3DP(Z(S U {Z})) — f3DP(z(S)) S f3DP <z(8) + Z Zjej + Zi6i> — f3DP (Z(S) + Z Z]€J> . (57)
j=1 j=1

Applying Eq. 1j with ¢ = 2(S) + Z;;l zje;, 0=z 41, B = z;, and setting k = 5/ + 1, £ = i, we obtain:

i’ 3’ i1 i'+1
FoF <z(5) + Z z;e; + ziei> — fF (z(S) + sze]) < frP <z(8) + Z zie; + zl—ei> — 3PP (z(S) + Z z]-ej> .

Jj=1 Jj=1

Combining this with Eq. (57), we establish:

PP RS VL) = 27 (2(8) < <z<8> +D_ et ) - <z<8> +> zjej> .

Thus, by induction, Eq. holds for all 1 < j7 < L. In particular, substituting the constructions

L L
2(T)=2(8)+Y ze;, 2(TU{i})=2(S)+ > ze; +ze, (58)
j=1 Jj=1
into Eq. with j' = L, we establish Eq. (54), hence completing the proof. O

Proof of Proposition This result is proven by counterexample. Let n = 3 with s; ~ Bernoulli(0.9) (all-or-nothing
disruptions), assuming all uncertainties are independent across suppliers and let D follow a two-point distribution. The

table below presents the scenarios and probabilities of D;, along with the cost parameters.

Cj c?DP vj h; Djscenariol Dj probability 1 D;j scenario2 D; probability 2
j=1 04 01 1 0.1 150 0.2 340 0.8
j=2 03 02 06 02 140 0.1 150 0.9
j=3 06 05 1 0S5 70 0.1 140 0.9

Under this setting, we have U®°F({1,2,3}) — U®PP({1,2}) = 89.47 and U>""({1,3}) — U**P({1}) = 91.07, vio-
lating the supermodularity condition in (I3). Similarly, U®*°"({1,2,3}) — U®"F({2,3}) = 150.44 and U®*""({1,2}) —
U3PP({1}) = 149.52, contradicting submodularity. O

Proof of Theorem[5|  For simplicity, we will occasionally express U>P” and L3°" only as functions of K, with the
understanding that A is fixed.

Part i) and ii) With the convexity of U3°" in K established in Lemma we derive a lower bound on U3PP as follows:

UPP(K) > UP(0)+ Kn=> U+ KE[\D,s,0)] (59a)
JjeEA

= Z U)—KEp, {r}lezﬁc (v; =PV I{[D; — q)s;]" >0} . (59b)
jeA

Here, 1 in Eq. is the largest subgradient of x +— U3PF (k) at x = 0, and the inequality in Eq. follows from
the subgradient inequality of U3PF. Meanwhile, A(D, s,0) in Egq. corresponds to the A from Eq. , defined
under y = D — @° o s and K =0 for some D and s, making it the largest subgradient of x — V3PP (D — g° o s,k) at
x = 0 by construction (see Remark . Applying Danskin’s theorem to U®P?, we obtain = E[A\(D, s,0)], validating
the equality in Eq. , while Eq. follows directly from the construction of A(D, s,0) in Eq. .
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Finally, defining the right-hand side of (39b) as L* " (K) completes the proof of part (i). Part (ii) then follows taking
the limit & — 0 on both sides of Eq. (59b).
Part iii) The first term in (T4) is trivially modular in A, therefore to prove supermodularity of L°" in A, it is suffice

to show that the following function is submodular in .A:
E(A) =Ep, {r]ng r°PI{D; > 0}} (60)
where 3% = v; — 3" and D} = [D; — ¢)s,]*. Note that:
D*>0,Vj €A, D*>0,Yj€ A,
Z I _] (r_nax T;DP> = Z P _J (r_nax ’/‘;DP>
aca (Dj=0,¥je ANA" | \ied aca \Dj=0Vje A\A ] \ed

Let B C N be an arbitrary set that A C B, and let i € A\ B, first we have

D*>0,Vj € A U{i}, Dr>0Vje A,
E(A) = Z Pl ’ ! i +P( ] ’ (max rfDP>
ol \Dr=ovjea Dr=0,¥je(A\A) Ui} ) | \aea

E(A) - ]ED,S

Note that D> 0.j € AU i)
;>0,Vj e A/U{i},
E(AU{i}) = Z P’ max{rfDP, maxr?DP}
aca \D;=0,vje A\A jea’
D*>0,Vje A,
+ Z P’ (max r?DP>
aca \Dj=0Vje(A\A)U{i} ) e
Hence D >0.j € AU}
*50,Vj € A Ui},
E(AU{i}) - E(A) = Z P _’ max{O, 7r3oP —maxr?DP} >0 61)
i \Dj=0vjeA\A e
We can similarly obtain
Dr >0,Vj € B U{i},
E(BU{i})—E(B) = Z i max < 0, 72°% —max73®F 5 > 0 (62)
iy \D;=0VjeB\B boges

To show the submodularity of H, we need to prove that
E(Au{i})-E(A) > EBU{i})—-E(B)

Notice that from (61)) we have
E(AU{i}) - E(A)

Dy >0,Vje AUEU{i},
Z Z Pl _ . max {0, PP — magr?DP}
A'CAECB\A Dy =0,Vje (A\A)U[(B\A)\£] jed

Dr>0,Vj € B'U{i},
Z Pl max {0, PP — max T;DP}
B'CB D;:O,VjEB\B' JEBNA

where the second equality follows from the fact that any B’ C B can be uniquely decomposed into two subsets, one

contained in A and the other in B\ A. Combine this result with (62)), we obtain
E(AU{i}) - E(A) - [E(BU{i}) — E(B)]

D >0,Vj € B U{i},
= Z P = max 0, TgDP — max T3DP — max 07 TSDP _ maxr3,DP Z 0
scs \D;=0,VjeB\B ¢ jesnA J i maxT;

>0, since B’ N.AC B’

Thus we have proven the submodularity of F(.A) hence the supermodularity of L3°" in A. ]
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Proof of Proposition For convenience, throughout this proof, we use the following notations:

Ty i G

=0, =", Di=[D;—qs;]*, E(A)=Ep. h?} rPPI{D; >0}
.Parti) Let A C N and K > 0 be given, then
E(A) < (rjré%( TjDP> Ep.s [Ijneaﬁdl {D; > 0}] = (rfé%( r?DP) P(3jeA: D;>0), (63)
which show that L3°° (A, K) is a lower bound of L*®P(A, K).
Part ii) Denote the right-hand-side of (63) as E(A), then to show the supermodularity of Z3°® (A, K), it suffices to
prove that E(A) is submodular. Let .A and B be subsets of A so that A C B and let i € '\ B, then

E(AU{i}) ~ B(A) — [E(BU{i}) - E(B)]

~ (max TJ;DP) P ({D; =0,Vje A} ({D;=0} () {IjeB\ AstD; >0}) > 0
This verifies that E is submodular, hence L3P is supermodular in A.
Part iii) From (63),, it is trivial to show that L*°" = L3P if T?DP are identical across j € N.
Part iv For ease of notation, we define:
BE(AN) = % log (Z [P(D;=0)+P(D;>0) e”a']> (64)
JjEA
To prove that L**P(A, K) > L*®P(A, K, \) for all AC N, K >0 and A > 0, it suffices to show that E(A, \) > E(A)
for all A > 0. Specifically, first note that for any collection of random variables {X; : j € A}, it holds that:
exp ()\E [I}leaj(Xj:|) <E [exp ()\I]I'IEE%L)\(X]-):| =F b?j{e”{i} < ZIE [e*Xi]
jeA
Applying logarithm for both sides gives us:
E {rjnezﬁ(Xj] < %10g (Z]E [eAXJ']> (65)
jeEA
Substituting X; in Eq. with 72PPT{D* > 0}, the left-hand side becomes E(A) as defined in Eq. , while the
right-hand side corresponds to E(A, A). Therefore, we have shown that E(A, \) > E(A).
Part v) To prove that L*®P(A, K, \) is supermodular in A, it suffices to show that E(A, ) defined in Eq. is
submodular in A. Note that for arbitrary S C A and ¢ € S, it holds that:

- ~ 1 P(D; =0) +P (D >0) e
E(SU{i},\)—E(S,\) = Xlog <1+ (D: — ) +P(D; — ) ~—oF (66)
ZjeS[P (D; = 0) +P (D; > 0) ot
It follows that the right-hand side of Eq. decreases with |S|, implying that E(.A, A) is submodular in A. O

Proof of Proposition [5|and Proposition|6]  Proposition 5] has already been established in Lemma 5] while Propo-

sition[6] directly follows from the reformulation of V*° in Lemmal3] O
Appendix B: Implementation Details

In this section, we provide the following algorithms whose main steps are omitted:

* Benders decomposition for solving MIO (I2)), introduced in Section .2}
* Local search algorithm for the heuristic scheme Algorithm [I]outlined in Section

* Projected SGD for U3P? under fixed A, introduced in Section .
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Algorithm 3 Benders Cut Generation for Algorithm 4]

Require: From AlgorithmE input A(t), K (t), 2(t), g*°"(t,4), D" and (D?,s") foralli=1...85.
1: fori=1,..., S do

i —max {v; =" | D >0, ¢ (t,i) < DY, 2;(t) =1} if 30, 4,y O (8,0) = K(2)
0 otherwise.

2: forj=1,...,|A| do

(ati ti a,ti)

AR B
(0, 0, 0) if z;(t) =0
(hiM,  hysj,  —h;(Dj+ M)) ifz;(t)=1, DY <0
T @ —usi, (05— ) if 2;(t) = 1, Dt >0, ¢°°(t,i) < D

(=(v" =EPP)M,  (v"" = cPP)sh,  —(y" = cPP)(Di — M))  otherwise.
3: end for

4: end for

5: return (v, at?, 8%, 0t) fori=1,...,S.

Algorithm 4 Benders Decomposition for MIO (12)

Require: A collection of scenarios {(s?, D*) :4=1...S} each assigned with probability P;. Stopping criteria & > 0.
1: Initialize with some K (0) > 0,x(0) € {0,1}™ and g(0) > 0. Set UB(0) = oo and LB(0) = —oo.
2: fort=0,1,...do

/— — — Solve Master Problem — — — /

3: Let {(y",a™,87,07): 7 <t— 1} be given so that we can solve the master problem

min
z€{0,1}",K>0,q,0

CSDP(K)-‘FZ(l —IJ)U;:)B-‘FZCJQJ]ESJ +9
j=1 j=1

(67)
s.t. OSQjSijv VJEN

0T+ K+zxzTa"+q"'B7 <0, Vr=1...t—1

4: Denote its optimal solution as (K (t), z(t), q(t),0(¢)) and its optimal value as LB(¢).

/— — — Update Global Upper Bound UB(t) — — —/
5 Let A(t) = {j € N': @;(t) =1} and denote DI’ = D — q; (t)si.
6 fori=1,...,Sdo ~
T Apply Algorithmwith input A = A(t), K = K (t) and y; = D¥".
8: Denote the output g*°" as g*°" (¢, ) and the output V*°F value as V,3PP.
9: end for
10: Update UB(t) = min {UB(t — 1), C*" (K (1)) + 27, [(1 = 2, (1)U + ¢, Es50,(8)] + 05, PV }.

/— — — Check Termination — — —/
11: if UB(t) — LB(¢) < ¢ then
12: Terminate the algorithm.
13: else

/—— —Add a New Benders Cut — — —/
14: Apply Algorithmto compute (v', att, B ot?) fori=1,...,S and denote
s s s s n
Y=Y PAY, a'=> Pa', B'=) PAY, o'=> Y Pol
i=1 i=1 i=1 i=1j5=1

15: end if
16: end for

17: return The latest K (t), g(t),a(t) at termination.
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B.1. Benders Methods in Section [4.2]

We outline the Benders decomposition for the mixed-integer program (12), beginning with a subroutine to generate

Benders cuts for the main algorithm.
B.2. Local Search Algorithm in Section
In our heuristic framework for optimizing A and K (Algorithm [I)), one of the two key steps is approximating the
“inner-min” problem in Problem by replacing U3P” with L3PP:
: 3DP DB DB
%%{L (AK)+ ) (CP+US )}. (68)

jeAe
Here, we detail an efficient solution approach, starting with a reformulation of Problem (68). This reformulation

interprets the objective as the firm’s total profit, which we reasonably assume to be positive—a common requirement

for approximation guarantees in combinatorial optimization. Specifically, we obtain it with the following steps:

— L*P(A,K) — Z (CPP+U®) + Z v,E[D;] +— Reverse the sign and add term Z v,E (D]

JjEA® JEN JEN
=— Z U+ E(AK — Z(CJDB +U®) + Z(C]DB +U®)+ Z v,E[D;] <+— Apply the specific form of L*°"
jeEA JEN jEA JEN
= Z(vj]EDj - CP-U®)+ Z(C’JDB + U —U))+ E(A)K  <— Re-arrange terms (69)
JEN jeA

where we let F(A) to be defined as follows (recall that this is submodular in A from our analysis of Theorem
E(A) =Ep., [I}lea}(vj —P){[D; - @js;)" > 0}} :
Additionally, denote:
I1=> " (;ED; - UP® - CP®) —C*™"(K), A;=UP+CP*-U.. (70)
JEN
Finally, we arrive at the following reformulation of Problem (68)), which maximizes a non-monotone positive-valued

submodular function:

max I+.€ZAAj +E(AK (71)
J

The algorithm shown below is known to terminate with a solution A whose objective value is at least % of the optimal
value of Problem (see (Feige et al|201T)).

Algorithm 5 Approximate Optimal Policy A under Fixed K > 0

Require: K >0, {A;}7_, (from Eq. ), initial Ao, and stopping criterion € > 0. Initialize with t = 0.
1: while true do
2: If there exists : € N\ A, such that

JEAL

K[E(AU{i}) — B(A)]+ A, > % (1+ 3 Aj-i-E(At)K)

then update A; 1 = A U {¢} and repeat this step with ¢ <— ¢ + 1. Otherwise, proceed to what follows.
3: If there exists ¢ € A; such that:

K [B(AN{i}) — B(A)] - A, > % (1+ 3 A_7»+E(At)K)

JEAL

then update A1 = A, \ {¢}, set t < ¢ + 1, and continue the loop. Otherwise, exit.
4: end while
5: return The latest A, at termination.
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B.3. Projected SGD in Section [5.4]
We present the pseudo-code for the projected SGD method outlined in Section For generality, the algorithm we
choose to present here also optimizes K for Problem . If only U3PP (A, K) under a fixed K is of interest, this can be
achieved by setting K (t) = K in the pseudo-code.

Throughout the algorithm, we assume access to a data sequence {(s*, D) : t > 0}, either sampled offline from the

known distribution of (s, D) or collected in real-time. Additionally, C*° is assumed convex with subdifferential 9C*PP.

Algorithm 6 Projected SGD: evaluating U*F and optimizing K under fixed .A

Require: Initialize g(0) > 0 and K (0) > 0, with step size p, > 0 at step ¢. Set ¢t = 0.
1: while true do
Compute g°°F (¢) as the output g°°F of Algorithm[2]with input y = D* = q(t) o s*.
Compute 17¥(t) and 5% (t) as the ¥ and 7 defined in Proposition[§|under g*°" = g*°F(t), y = D* — q(t) o s*, and K = K (t).
forj=1,...,|A| do
Update q; (t + 1) = [q;(t) — pe (c;Es; —n? (t)st) ] .

end for
Update K (t+1) = [K(t) — p: (v* + g*)]" where g* € C®PP (K (¢)) is a subgradient of C3PP.
Terminate when a stopping rule is met at step ¢, otherwise proceed to step ¢ <— ¢ + 1.

9: end while
10: return The latest g(t) and K (t) at termination.

Appendix C: Numerical Experiment Details
C.1. Additional Calibration Details
C.1.1. 3DP Costs. The unit sourcing cost for product j is estimated as x; = 0.006w;, where w; is the weight in
grams. This calculation assumes a plastic material cost of $0.005/gram, marked up by 1.2 to account for additional costs.
As mentioned in the main text, we let ¢*P = %, where QPP and M®P" represent the monthly per printer deprecia-
tion cost (in $) and the monthly material output per printer (in grams). Based on a 10-year life-span and current printer
costs, we let @ = $41.67. The monthly material output M3P is calculated as M3PF = §3PP §3PPYy/30P F3DPT / 530P
where W3PF is the nozzle width (typically 0.4 cm), H3° is the layer thickness (set to 0.01 cm), S°PF is the nozzle
movement speed (in cm/s), T is the total number of seconds in a month, and §°P" is the density of the non-metal printing
material (typically 1 gram/cm?®). This formula computes the total weight of material a printer can output during contin-
uous operation for a month, adjusted by the infill density pP” = 0.5, to account for the fact that 3D-printed objects are

typically not solid.

C.1.2. Dedicated Backup Costs. We assume the sourcing cost from a dedicated backup is 1.5 the unit sourcing
cost from a primary supplier, ensuring it is a) cheaper than printing and b) more expensive than primary sourcing.
We similarly let CJ'?B be 75% of the primary sourcing cost times the expected demand. The choice of 75% reflects
conversations with industry professoinals that reserving capacity in high-volume, low-margin products usually entails a

large retainer fee to offset the lost revenue the backup supplier could have earned by serving another firm.
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