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Abstract. Problem definition: Most strategies for mitigating supply chain disrup-

tions require upfront, dedicated investments for each supplier, making them impractical

for large, disaggregated supply chains. We study using 3D printing (3DP) as a flex-

ible, backup resource that can support any disrupted supplier. 3DP has traditionally

been rejected as a viable resilience strategy due to high per-unit production costs and

limited capacity. Inspired by the “a little flexibility is enough” literature, however, we

explore when and why 3DP may be a cost-effective resilience strategy and how to

deploy it. Methodology/results: We formulate an optimization model to decide which

suppliers to backup with 3DP, how much 3DP capacity to procure, and how to allo-

cate that capacity in real-time to unmet demand. The resulting mixed-binary, stochastic

optimization problem is computationally challenging, even for moderate sized supply

chains. Hence, we propose a novel algorithmic framework combining supermodular

approximations based on Taylor series and first-order stochastic optimization to com-

pute high-quality feasible solutions. Finally, we conduct an empirical case study based

on bill-of-lading data from toy manufacturer Mattel. With cost estimates based on cur-

rent technology, 3DP offer modest cost savings relative to traditional resilience strate-

gies. However, its principal benefit is a reduction in demand shortfalls. This advan-

tage is especially evident in larger systems with weakly correlated supplier disrup-

tions. Managerial implications: Resonating with the well-known “a little flexibility

is enough” principle, our findings provide both analytical and empirical evidence of

3DP’s transformative potential as a strategic resilience tool for large supply chains. We

also provide concrete guidance on how to introduce 3DP into an existing portfolio of

supply chain resilience strategies to complement existing capabilities.
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1. Introduction
Managing supply chain disruptions has become part of normal operations of a firm (Simchi-Levi

et al. 2015a). Some estimates suggest that poorly managed disruptions can incur up to a 45% loss in

firm’s annual earnings over a decade (McKinsey & Company 2021), prompting most firms to invest

in supply chain resilience strategies. Indeed, in a recent survey, 97% of respondents had implemented

at least one resilience measure following COVID-19 (McKinsey & Company 2023).

Common resilience strategies include inventory buffering (Simchi-Levi et al. 2015b, 2017), dual

sourcing/siting (Tomlin 2006, Dada et al. 2007), and reserving capacity at backup suppliers (Yang

et al. 2009, Demirel et al. 2017). Typically, these strategies are applied in a dedicated, product-

specific manner, requiring separate upfront investments for each protected component before a dis-

ruption occurs. For example, an automotive company might pre-stock separate inventory buffers to

guard against disruptions in its brake and engine parts.

Such dedicated strategies can be cost-prohibitive in large, disaggregated supply chains. For exam-

ple, Simchi-Levi et al. (2015a) reports that Ford’s supply chain involves over 35 billion parts, with

14,000 Tier 1 suppliers across 4,400 sites. Worse, a large fraction of suppliers provide high-volume,

low-cost, low-margin components that are nonetheless critical to the final product. In such settings,

firms are seemingly forced to choose which products merit an expensive dedicated back-up strategy,

and which should be left unprotected.

In this paper, we explore a third, unconventional option: leveraging 3D Printing (3DP) as a “flex-

ible” back-up resource. By building items layer by layer from scratch, a single printer can produce a

wide range of items without incurring the product-specific fixed costs of traditional manufacturing

techniques like injection molding. Thus, although it requires an upfront capital investment before

disruption occurs, 3DP is flexible in the sense that we can strategically choose which components

to print on-demand, after the disruption. Intuition suggests this flexibility might offer significant

value precisely in large, disaggregated supply chains. Moreover, the well-known principle that “a

little flexibility is all you need” from both manufacturing (Jordan and Graves 1995, Simchi-Levi and

Wei 2012) and service systems (Bassamboo et al. 2012, Tsitsiklis and Xu 2013) suggests that even

a small amount of well-used, 3DP capacity might yield substantive savings.

Despite this intuition, 3DP has traditionally not been seen as a viable resilience strategy. It often

incurs high per-unit production costs, slower production speeds, and potentially expensive capital

investments in printers. Research in operations management has largely focused on using 3DP’s in

low-volume manufacturing, such as spare parts inventory (Song and Zhang 2020, Zhang et al. 2022,

Westerweel et al. 2021) and product customization (Chen et al. 2021, Sethuraman et al. 2023).
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Outside academia, however, some firms have started exploring 3DP as a supply chain resilience

measure. For example, during the COVID-19 Pandemic, CNH Industrial, a major farm equipment

manufacturer, experienced a disruption of a small, but vital clamping fixture. Stopping assembly

until the parts arrived would have incurred a loss of e 189,000 (Materialise 2023). Instead, CNH

chose to print missing clamp fixture. Even though printing costs were more than 7 times larger

per part than injection molding, printing costs totaled a mere e 806, the needed parts were ready

in a week, and introduced a minimal delay (Materialise 2023). Implicit in this example is the idea

that despite its criticality, CNH did not backup the clamp fixture, presumably because it was too

expensive to merit doing so in a dedicated fashion. As a second example, in September of 2021,

a change was made to the design of the close-out seal of the spoiler of the 2022 Chevy Tahoe.

Approximately 60,000 new parts were needed in 6 weeks time to avoid delaying the release the

truck. Manufacturing the part via injection molding was estimated to take 12 weeks (McEachern

2022). Instead, General Motors opted to print the requisite parts, meeting its desired time-frame

(Stevens 2022). Again, note the dedicated back-up option was prohibitively expensive (in terms of

set up time), whereas a the 3DP solution was more expensive per part, but faster to bring online.

More broadly, GM has also invested in an additive manufacturing facility (Lopez 2020) to explore

similar uses of 3DP. Anecodotal evidence like this strongly suggests rethinking the potential role of

additive manufacturing in supply chain resilience.

To this end, we propose a novel model of 3DP and supply chain resilience in which a firm sources

multiple products, each from its own primary supplier, and each supplier may suffer a random dis-

ruption (modeled as random yield). Prior to sourcing, the firm can select one of two distinct backup

strategies for each product – dedicated backup or 3DP – that can be utilized to meet unmet demand

due to disruptions. To capture the key trade-offs between the two strategies, we model dedicated

backup as having unlimited capacity and a small per-unit cost of production, but incurring a fixed

cost per product it protects. By contrast, 3DP requires only a single capacity investment to protect

many products, but the per unit cost of production is higher and the total recoverable demand is lim-

ited by this capacity. To facilitate an apples-to-apples comparison, we assume both backup strategies

are make-to-order, i.e., we neglect any potential benefits of 3DP arising from co-locating printers

closer to demand and optimistically assume dedicated back-ups can be brought online instanta-

neously. Both assumptions favor dedicated back-ups over 3DP. Indeed, throughout, we make model-

ing assumptions which favor dedicated back-ups in order to conservatively assess the potential value

of 3DP.
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With this model, we prove certain structural features of the optimal policy after introducing 3DP:

The sets of products backed up by 3DP and by dedicated strategies form a partition, i.e., no product

is unprotected (i.e. not backed up by any resource) nor is any product doubly backed up. Moreover,

the set of products backed up by 3DP is a (potentially strict) superset of those that are unprotected

in the absence of 3DP. With respect to the first stage order quantities, we can upper and lower bound

these quantities by simple, easily computed formulas. These formulas are immediately interpretable

as the first stage order quantities in a proxy system with infinite 3DP printing capacity and a proxy

system with no printing capacity. Finally, we can also bound the optimal printing capacity by an

appropriate quantile of the demand shortfall in those two proxy systems. Overall, these structural

features provide insights into which types of products might benefit from 3DP backup, how much

capital investment might be needed and that systems where suppliers fail independently (or are

uncorrelated) benefit most from 3DP backup.

Moving beyond bounds to precise values, however, requires solving for the firm’s optimal strategy.

We formulate this problem as a mixed-binary, stochastic optimization problem and describe an exact

algorithm for computing an optimal solution based on mixed integer optimization and Bender’s

cuts. Unfortunately, for even moderately sized supply chains, this exact approach is computationally

expensive. Part of the challenge is that the problem is neither submodular nor supermodular in the

set of products backed up by 3DP.

Consequently, we develop an efficient algorithmic approach to find high-quality feasible solutions.

Specifically, because it is so expensive, we might intuit that the optimal amount of 3DP capacity

is small relative to the demand. Inspired by this intuition, we show that replacing the expected

second stage costs by a suitable Taylor series expansion around a printing capacity of zero yields

an approximate objective function that is supermodular, but non-monotonic. While non-monotonic

supermodular minimization is NP-Hard, it admits highly efficient approximation algorithms Feige

et al. (2011). Our procedure combines these approximation algorithms with a polishing step based

on projected stochastic gradient descent and scales easily to very large supply chains.

While our above algorithm computes a near-optimal policy, in practice, a firm not currently engag-

ing in 3DP may be reticent to change their entire resilience strategy. More likely, they might consider

using 3DP to back up otherwise unprotected products, i.e., products not currrently backed up by

a dedicated resource. For such a firm, we provide a necessary and sufficient condition for 3DP to

offer a savings, and show that when there exists a positive savings, any positive, sufficiently small

capacity investment yields a benefit. Hence, a firm might truly benefit from introducing just “a little”

flexibility.
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We conclude with an extensive numerical case study using a combination of real-world bill-of-

lading data, published 3D printing specifications, and web-scraped prices for Mattel, a global leader

in toy manufacturing. Our analysis validates our key theoretical insights. First, our algorithmic

approach provides extremely high-quality solutions, often within a few percent of optimal. Second,

under current estimates of printing costs, 3DP typically covers 40–50% of Mattel’s product portfolio.

This includes all previously unprotected products (approximately 20–40% of the total) and around

20% of the products previously backed-up by dedicated resources. Even marginal investments in

3DP capacity can yield a savings. For example, 3DP achieves a 4% cost savings and reduces demand

shortfalls by 50% relative to relying solely on dedicated backups, even with a capacity investment

of just 5% of total demand. Finally, the most significant benefits of 3DP are in meeting demand

shortfalls. Even small investments can help reduce the probability of large shortfalls signficantly.

We summarize our contributions as follows:

• In Section 2, we propose a model of a firm’s choice of resilience strategies that captures the

essential trade-offs between 3DP and dedicated back-up strategies. We derive certain structural

features of the optimal policy in terms of which products are backed up by 3DP, how primary

order quantities change relative to a system without 3DP, and how large the optimal capacity

investment might be.

• In Section 4 we formulate a mixed-binary stochastic optimization problem for firm’s optimal

policy and describe a solution approach via Bender’s cuts. Since the approach does not scale

effectively for large supply-chains, we propose a heuristic algorithm leveraging a series of approx-

imations, supermodularity, and a polishing step in Section 5. We argue this heuristic approach

provides high-quality solutions when the optimal capacity investment is small.

• In Section 6, we consider a firm that is not currently engaged in 3DP that is only willing to make a

small investment. We provide a necessary and sufficient condition whereby any sufficiently small

investment in 3DP yields a cost-savings.

• Finally, in Section 7, we assess the quality of our proposed heuristic approach and assess the

value of 3DP as a resilience strategy through extensive numerical experiments using real data for

Mattel. We find that our heuristic approach yields solutions within a few percent of optimal for

moderate chains, and that for Mattel’s full chain, even a small investment in 3DP capacity could

yield substantive cost-savings and reduce demand shortfalls.

1.1. Additional Related Literature

As mentioned, much of the existing literature focuses on low-volume manufacturing applications,

such as spare-parts (Song and Zhang 2020, Zhang et al. 2022, Westerweel et al. 2021) and product
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customization (Chen et al. 2021, Sethuraman et al. 2023), possibly because these applications require

only small amounts of 3DP capital investment. By contrast, we study 3DP in supply chain resilience

and quantify the required (possibly large) 3DP capital investment (relative to dedicated strategies).

In context of supply chain, Arbabian and Wagner (2020) consider co-locating printers closer to

demand. Co-location avoids transportation costs and upstream holding costs, and makes the system

more responsive to demand. They quantify these benefits (and how they depend on problem param-

eters) in a one manufacturer/one retailer setting with a single product. In our paper, we explicitly

neglect the benefits of co-location and treat a chain with multiple suppliers to focus exclusively on

the benefits of flexibility from 3DP.

Dong et al. (2022) also study 3DP flexibility, specifically how introducing 3DP affects the optimal

product offering in design-intensive industries (home furnishing, apparel, jewelry). They focus on

three aspects of 3DP printing: i) Design Freedom – 3DP can create products not possible with tra-

ditional techniques ii) Quality – 3DP may produce a higher or lower quality product than traditional

techniques iii) Flexibility – 3DP can print multiple different types of products in a single run. Those

authors develops structural insights on the optimal product offering under a particular choice model

for demand and how the above features affect that assortment. Our work adds to this study of 3DP

flexibility by considering a large, disaggregated supply chain. Motivated by the previous anecdotes,

our primary focus is on low-cost, low-margin components – not design-intensive products. Hence,

issues around customer perceptions of quality and design freedom are arguably second order relative

to quantifying the needed capital investment in 3DP and identifying the “right” products to backup.

We also connect to the broader work studying flexible backup strategies in supply chain includ-

ing Saghafian and Van Oyen (2016, 2012). Saghafian and Van Oyen (2016) study a multi-product,

multi-supplier network with a rich, Markov Chain model of supply chain disruption that can capture

heterogeneous rates of disruption and lengths of disruption. Their focus is on establishing that “a

little flexibility” is sufficient to capture the benefits of a fully-flexible backup system. The model

studied, however, is very general and technically challenging. While it can in principle be solved

via an infinite dimensional Bellman equation, in practice, solving such problems is notoriously chal-

lenging. The authors do not offer a specialized algorithm for this task. Consequently, for the most

part, the work does not study the question of which suppliers to back up with the flexible resource,

which is a key question in our work. Indeed, the only results around choosing suppliers for flexible

backup from Saghafian and Van Oyen (2016) are with respect to a simplified model with only 2 sup-

pliers. Our work on the other hand adopts an admittedly coarser model of disruptions (random yield)
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but seeks to develop a general purpose algorithm for identifying which suppliers to back up with

3DP. We demonstrate empirically that our algorithm scales gracefully to very large supply chains.

Finally, we contrast our work to Wang and Webster (2022). In that work, authors also study backup

flexibility, but consider a flexible backup that might fail. By considering a 2 product system, they

show that flexibility is not always valuable and one must consider whether to invest in flexibility

amongst primary suppliers, or amongst backups. The notion of flexibility in this work is generic,

meant to represent “supplier development efforts.” In our work, we focus explicitly on 3DP, and,

consequently, model it as a reliable but expensive backup strategy. We again focus on a multiproduct

system where the challenge is identifying which products to backup.

2. Model Setup

We consider a firm that sources n products (indexed by j ∈N ≡ {1, . . . , n}), where each product is

sourced from a distinct supplier. In the absence of supply chain disruptions, the firm orders qj units

from the j th primary supplier at a cost of cj per unit and then sees a random demand Dj . Then, the

firm pays holding costs of hj per unit for excess inventory and vj per unit of unmet demand. Thus,

absent disruptions, the firm faces a simple newsvendor problem for the j th product.

We, however, consider a setting with disruptions. Namely, let sj ∈ [0,1] be a random variable

representing the yield of supplier j. After ordering, the firm receives qjsj units, and only pays for

received units. To hedge against this yield uncertainty and the possibility of unmet demand, the firm

can choose to invest in one of two resilience strategies for each product j:

(1) DEDICATED BACKUPS (DB): The firm can order qDB
j units from an expediting supplier at a

per unit cost of cDB
j . Engaging in this strategy also incurs a one-time, upfront fixed cost of

CDB
j , irrespective of the order quantity. This fixed cost implicitly models the cost of reserving

production capacity with this expediting supplier.

(2) 3D PRINTING (3DP): The firm can choose to use a 3D-printer to produce q3DP
j units of product

j at a per-unit cost of c3DP
j . Unlike dedicated backups, 3DP has a finite capacity K across all

products, i.e., we must have
∑

j∈N q3DP
j ≤K. We model the cost of investing in 3DP capacity by

a non-decreasing, convex function C3DP(K), with C3DP(0) = 0, paid before demand and yield

are realized.

The above choice must be made for each product j. Let A⊆N denote the set of products backed

up using the 3DP strategy, let T ⊆N represent those backed up by DB, and note that a priori these

sets need not be disjoint. We seek to choose A and T to minimize the total expected costs.

To avoid several trivial scenarios, we will assume throughout that:
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ASSUMPTION 1 (Non-trivial Parameters). For each j ∈N , cj < cDB
j < c3DP

j < vj .

In particular, vj ≥max(cDB
j , c3DP

j ) ensures that meeting unmet demand is always preferable to stock-

ing out, while cj < min(cDB
j , c3DP

j ) ensures that sourcing from primary suppliers is preferable to

expediting or printing. Finally, cDB
j < c3DP

j reflects the typical cost relationship between DB and 3DP

given current technology.

In summary, the sequence of events are:

i) The firm chooses sets A and T of products backed up by 3DP and DB, respectively, and a

capacity K ∈ [0,∞) for the 3D printing resource. These choices induce a total fixed cost of∑
j∈T C

DB
j +C3DP(K).

ii) The firm orders qj units from the j th supplier for each j ∈N .

iii) The firm observes random yield sj and demands Dj . It pays
∑

j∈N cjqjsj for all successful

deliveries.

iv) The firm orders qDB
j units from the expedited supplier for each j ∈ T and prints q3DP

j units on

the 3D printer, subject to
∑

j∈A q
3DP
j ≤K, inducing a cost of

∑
j∈T c

DB
j qDB

j +
∑

j∈A c
3DP
j q3DP

j .

v) The firm pays stock-out costs vj per unit of any unfulfilled demand and holding costs hj per unit

of any excess production for each j ∈N .

Our goal is to minimize the total expected costs, i.e.,

min
T ,A⊆N ,K≥0

C3DP(K)+
∑
j∈T

CDB
j +U3DP(A,K)+UDB(T ) (1)

where UDB(T ) and U3DP(A,K) represent the expected operational costs incurred from iii) to v).

These terms are described by optimization problems over qj, q3DP
j , qDB

j . For completeness, we state

them now, but provide detailed derivations and commentary on these problems in Sections 2.1

and 2.2 below:

UDB(T )≡
∑
j∈T

UDB
j , UDB

j ≡min
qj≥0

EDj ,sj

[
cjqjsj + cDB

j [Dj − qjsj]
++hj[Dj − qjsj]

−] (2)

U3DP(A,K) ≡ min
q≥0

∑
j∈A

cjqjE[sj] +ED,s

[
V 3DP(D− q ◦ s, A, K)

]
(3)

where q ◦ s stands for the component-wise product between vectors q and s, and

V 3DP(y, A, K) ≡ min
q3DP≥0

∑
j∈A

(
c3DP
j q3DP

j + vj
[
yj − q3DP

j

]+
+hj

[
yj − q3DP

j

]−)
s.t.

∑
j∈A

q3DP
j ≤K

(4)
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Before proceeding, we prove three simple properties of the optimal solution that we use in these

derivations and throughout: First, because cDB
j < vj and the expedited backup is unconstrained,

it is always optimal to expedite all units of unmet demand for j ∈ T , i.e., qDB
j = [Dj − qjsj]

+.

Second, since cDB
j < c3DP

j and expedited backup is unconstrained, we always prefer to expedite

unmet demand from a supplier j ∈ T over printing it. Hence, A ∩ T = ∅. Finally, since we are

always free to choose q3DP
j = 0 for any j ∈ A, we can without loss of generality take A = T c. We

summarize these last two observations in the following proposition:

LEMMA 1 (Backup Strategies Form a Partition). Let T ⋆ and A⋆ be optimal for (1). Then,

T ∗ =Ac.

Thus, in the remainder, we let T =Ac and work with the set A. Furthermore, when A and K are

fixed and clear from context, we omit them from notation for brevity.

2.1. Dedicated Backups and UDB(Ac)

We next present the derivation of UDB in Problem (2). By construction, dedicated backups decouple

across products, i.e., UDB(Ac) =
∑

j∈Ac UDB
j , where UDB

j includes primary ordering, expediting,

and holding costs. Recall, under Assumption 1, any unmet demand [Dj − qjsj]
+ is fully covered by

DB’s unlimited capacity and there are no stock-outs. This gives rise to the newsvendor-type problem

in Problem (2). We can solve this optimization explicitly:

LEMMA 2 (First-Stage Ordering for DB). The optimal solution of Problem (2) with the small-

est magnitude is given by:

q̄j ≡ inf

{
q≥ 0 : EDj ,sj [sjI{Dj ≤ qsj}]≥

(
cDB
j − cj

cDB
j +hj

)
Esj

}
. (5)

In special cases, q̄j reduces to the usual newsvendor quantile, e.g., if Dj and sj are independent.

Otherwise, one must solve Eq. (5) numerically, e.g., by bisection search on q.

2.2. 3DP and U 3DP(A,K)

We now present the derivation of U3DP, c.f. Problem (3). Unlike dedicated strategies, the optimal

3DP backup quantities q3DP lack a simple, closed-form due to the capacity constraint. Instead, U3DP

is defined by a two-stage stochastic optimization problem. The function V 3DP in Problem (4) rep-

resents the second-stage recourse cost that minimizes printing, holding, and stock-out costs with

respect to the printing quantities q3DP after the realization of q, s, and D. Using standard results

from the stochastic programming literature, we can show that computing qj for j ∈ A amounts to

solving a convex optimization problem:
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LEMMA 3 (Convexity of U3DP and V 3DP). The following holds for U3DP and V 3DP:

(i) The function V 3DP(D− q ◦ s) is convex in q for any given (s,D)

(ii) Problem (3) (which defines U3DP) is convex.

(iii) The function K 7→U3DP(A,K) is convex in K for any A.

While many algorithms exist for solving convex problems, later in Section 5.4, we present a

simple approach that leverages the specific structure of V 3DP(·) to efficiently solve Problem (3) and

integrate it into a scalable heuristic framework for optimizing the first-stage decisions A and K.

2.3. Additional Model Discussion

We view the 3D printer as a flexible, make-to-order manufacturing resource capable of producing

any product. In reality, some products, however, may not be printable (using current technology)

because of their engineering specifications. We exclude such products from N because they do not

affect the choice of A, and computing their optimal order quantities and expedited shipping quanti-

ties can be done using simple newsvendor-like calculations, outside of the model, see Section 2.1.

We have made no assumptions on the dependence between Dj or sj or across suppliers. Hence, we

may without loss of generality assume a one-to-one correspondence between products and suppliers.

Indeed, if a primary supplier supplies two products j and j′, we take sj and sj′ to be comonotonic.

Finally, while we have described dedicated backup in terms of expediting for ease of exposition,

it can easily represent any dedicated strategy that entails a fixed cost and a cheaper per-unit cost,

including employing dual sites or purchasing buffering inventory.

3. Properties of Optimal 3DP Strategies
In this section we present properties of the firm’s optimal backup strategy by analyzing Problem (1).

These properties provide concrete insights into how one should construct and operate a portfolio of

resilience strategies that includes 3DP.

We first define the setA0 of unprotected products in the absence of 3DP, i.e., products that did not

merit a dedicated backup. Unlike the optimal 3DP backup setA⋆ which may be difficult to compute,

A0 is easily identified: Because dedicated backups decouple across products, a product j ∈N is in

A0 if and only if its costs when protected UDB
j + CDB

j are larger than its costs when unprotected.

These unprotected costs are given by solving Problem (2) after replacing cDB
j by vj , because there

are no associated fixed costs for an unprotected product.

The next proposition relates A0 with the optimal 3DP backup set A⋆:

PROPOSITION 1 (Unprotected Products and Optimal Backup). A0 ⊆ A⋆ and this contain-

ment can be strict.
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Thus, introducing 3DP backup impacts a firm’s resilience practices in two ways: it covers all previ-

ously unprotected products and it may switch some products from dedicated to 3DP backup.

Proposition 1 has important implications for a firm piloting the use of 3DP as a backup strategy.

Since A0 is easy to compute, such a firm might consider only backing up A0 instead of computing

A⋆. While suboptimal, this strategy avoids the need to renegotiate terms with any existing expediting

suppliers used by dedicated backup while the firm builds internal expertise around 3DP, and func-

tions as a natural stepping stone towards backing up the entire set A⋆ later. In Section 6, we further

explore the perspective of this firm piloting 3DP as a backup strategy and provide necessary and suf-

ficient conditions for this suboptimal strategy to be profitable with even a small capacity investment.

In the remainder of this section, we develop properties of the optimal solution for a genericA, since

we might be interested in A0 or A⋆, or some other set between these two.

For any choice of 3DP backupsA and 3DP capacity K, we must identify corresponding first-stage

order quantities q⋆j = q⋆j (A,K) for all j ∈A. Although computing these quantities exactly requires

solving a two-stage convex optimization problem, Theorem 1 provides bounds that can easily be

computed via simple bisection search.

THEOREM 1 (Bounds on Optimal First-Stage Orders). For any set A and K ≥ 0, let

q⋆(A,K) be the optimal solution to U3DP(A,K) (c.f. Problem (3)) with minimal ℓ1-norm.1 Then,

for all j ∈A, we have q̄∞j ≤ q⋆j (A,K)≤ q̄0j , where

q̄0j = argmin
qj≥0

E
(
cjqjsj + vj[Dj − qjsj]

++hj[Dj − qjsj]
−) . (6)

q̄∞j = argmin
qj≥0

E
(
cjqjsj + c3DP

j [Dj − qjsj]
+ +hj[Dj − qjsj]

−) . (7)

When Problem (6) or Problem (7) has multiple optima, we tie break by taking the smallest solution.

Intuitively, q̄0j and q̄∞j are the optimal first-stage orders for a system where K = 0 and a system

where K =∞, i.e., with no (resp. infinite) 3DP capacity. We stress, the bounds hold for each j ∈

A. (We will use this property later when designing our algorithms.) Finally, we note that while

computing q∗j (A,K) requires knowledge of the full joint-distribution of (Dj, sj) across products,

computing the bounds above only requires the marginal distribution of each (Dj, sj) pair. Calibrating

such a distribution to data may be substantially easier in practice.

Our above bounds can also be used to estimate the optimal 3DP capacity investment. Specifically,

let K⋆(A) be the minimizer of Problem (1) for a given A and K⋆(A,q) be the optimal capacity

1 Break ties arbitrarily.
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for a given A and fixed first-stage order q ≥ 0. In both cases, if the corresponding problem admits

multiple optima, we define K⋆(A) or K⋆(A,q) as the minimum optimal solution.

THEOREM 2 (Bounds on Optimal 3DP Capacity). Let C3DP(K) = ccapK for some ccap > 0.

(i) Suppose there exists an r > 0 such that vj − c3DP
j = r for all j ∈ A, then K⋆(A,q) is the(

1− ccap

r

)
-quantile of

∑
j∈A[Dj − qjsj]

+, for any q≥ 0.

(ii) Let rmin ≡minj∈A(vj − c3DP
j ) and rmax ≡maxj∈A(vj − c3DP

j ). Then, K⋆(A) is bounded below

by the
(
1− ccap

rmin

)
-quantile of

∑
j∈A[Dj− q̄0j sj]

+ and bounded above by the
(
1− ccap

rmax

)
-quantile

of
∑

j∈A[Dj − q̄∞j sj]
+.

When vj − c3DP
j is equal across j ∈A, the first part of the theorem develops intuition around the

size of the optimal K⋆(A,q). Specifically, it is a quantile of the total demand shortfall and thus

depends on the joint distribution of all (Dj, sj) for j ∈A. The second part of the theorem builds on

this intuition, leveraging our previous bounds on the first-stage order quantities and appropriately

rounding vj − c3DP
j to derive bounds on K⋆(A).

Finally, Theorem 2 also suggests settings where 3DP is likely to be beneficial. Indeed, if demand

shortfalls are independent or anti-correlated, the quantile of the total shortfall tends to be small,

and thus the optimal amount of 3DP capacity required will be small. By contrast, if shortfalls are

highly correlated, a large amount of 3DP capacity may be needed, which is unlikely to be cost-

effective. Leveraging results in the supermodular ordering of random variables, we extend this intu-

ition in Theorem 3 which states that the cost of the 3DP strategy is highest when correlations among

demand shortfalls are strongest. Recall, the random variables X1, . . . ,Xn are comonotonic if and

only there exists non-decreasing functions fi for i = 1 . . . , n and a random variable U such that

(X1, . . . ,Xn) ∼d (f1(U), . . . , fn(U)). Comonotonicity describes the strongest form of dependence

between random variables.d

THEOREM 3 (Comonotonic Shortfalls Are the Worst). Suppose the marginal distributions of

(D,s) are fixed. Then, the optimal cost of Problem (1) is maximal when the joint distribution of

(D,s) is such that the demand shortfalls [Dj − qjsj]
+ are comonotonic across j ∈N for all q≥ 0.

Since dedicated backups decouple across backups by construction, the cost of a dedicated strategy

depends only on the marginal distribution of each (Dj, sj) pair, not their correlation structure. Hence,

fixing marginal distributions, the cost of a dedicated backup is fixed. The theorem observes, however,

that 3DP backups are sensitive to joint dependence, and describes the worst-case dependence. It

provides an additional insight that well-chosen 3DP backups A will likely consist of suppliers that

are anti-correlated or independent, not highly dependent.
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4. Optimizing the 3DP Strategy via Mixed-Integer Optimization
In this section, we compute the optimal A∗, q∗ and K∗ exactly, instead of bounding them, by refor-

mulating (1) as a mixed-integer optimization (MIO) problem.

4.1. Mixed Integer Optimization Reformulation

For any A⊆N , we define a corresponding binary vector x ∈ {0,1}n such that xj = 1 if j ∈A and

xj = 0 otherwise. We can then rewrite U3DP and V 3DP as functions in x:

U3DP(x,K) ≡ min
q≥0

∑
j∈N

cjqjxjE [sj] +ED,s

[
V 3DP(D− q ◦ s,x,K)

]
, (8)

V 3DP(y,x,K) ≡ min
q3DP≥0

∑
j∈N

(
c3DP
j q3DP

j + vj
[
yj − q3DP

j

]−
+hj

[
yj − q3DP

j

]+)
xj (9)

s.t.
∑
j∈N

q3DP
j xj ≤K.

This reformulation, although straightforward, introduces bilinear terms like qjxj in the objective,

which are notoriously difficult to handle. We prefer a “big M” type formulation in what follows, and

develop bounds to ensure the “M” is not too large.

LEMMA 4 (“Big M” Formulation of V 3DP). Assume 0≤Dj ≤ D̄j and smin
j ≤ sj ≤ smax

j almost

surely for all j ∈N . Then for all x∈ {0,1}n, K ≥ 0, and y =D− q ◦ s:

V 3DP(y,x,K) = min
q3DP,z3DP

n∑
j=1

(
c3DP
j q3DP

j + vj
[
yj − z3DP

j

]−
+hj

[
yj − z3DP

j

]+)
(10a)

s.t. 0≤ q3DP
j ≤M1

j xj, ∀j = 1 . . . n, (10b)

−M2
j (1−xj)≤ z3DP

j − q3DP
j ≤M2

j (1−xj), ∀j = 1 . . . n, (10c)

−M3
j xj ≤ yj − z3DP

j ≤M3
j xj, ∀j = 1 . . . n, (10d)

n∑
j=1

q3DP
j ≤K, (10e)

where for all j ∈N , we let

M1
j = D̄j − q̄∞j smin

j , M2
j = D̄j, M3

j =max{D̄j − q̄∞j smin
j , q̄0j s

max
j }. (11)

Additionally, V 3DP is convex jointly in (y,x,K).

It is well-known that the effectiveness of “big M” formulations like Problem (10) hinges on the

choice of ”M”, which in our case correspond to M1
j ,M

2
j , and M3

j . We have used the bounds from

Theorem 1 to choose these values.

We can now use this reformulation of V 3DP(·) to reformulate Problem (1):
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THEOREM 4 (Big “M” formulation for Optimizing A). Let the assumptions in Lemma 4 holds

and let V 3DP be as reformulated in Lemma 4. Then, we can determine the optimal backup strategy

A, first-stage ordering quantities q, and 3DP capacity K by solving the two-stage, stochastic MIO:

min
x∈{0,1}n,K≥0,q

C3DP(K)+
n∑

j=1

(1−xj)U
DB
j +

n∑
j=1

cjqjE [sj] +ED,s

[
V 3DP(D− q ◦ s, x, K)

]
s.t. q̄∞j xj ≤ qj ≤ q̄0jxj, ∀j = 1 . . . n. (12)

Moreover, the objective function of Problem (12) is jointly convex in x∈Rn,K ≥ 0 and q≥ 0.

4.2. Solving Problem (12) at Scale

In principle, Problem (12) can be solved using an off-the-shelf solver (e.g., Gurobi) after approxi-

mating the expectation by S scenarios. However, this becomes impractical for large supply chains as

the number of variables scales with nS, where n is the number of suppliers. While many variables

are expected to be zero when |A| or K is small, generic branch-and-bound algorithms fail to exploit

this sparsity or other structural properties of V 3DP.

An alternate approach frequently used in two-stage stochastic programs is constraint gen-

eration via Bender’s decomposition. The key idea is to replace the second-stage costs with

a new auxiliary variable θ in the objective and introduce the convex, epigraphic constraint

E
[
V 3DP(D− q ◦ s,x,K)

]
≤ θ, where V 3DP is reformulated as in (10). The Benders approach iter-

atively refines the approximation of this constraint by introducing new valid cuts; see Birge and Lou-

veaux (2011, Section 5.1) for an overview. Generating valid cuts in the Benders approach amounts

to evaluating the subgradient of V 3DP(y,x,K). This subgradient computation can be efficiently per-

formed using a closed-form (c.f. Proposition 5 below). Details of Benders approach are deferred to

Section B.1.

5. Approximations and Supermodularity Heuristics for Computing A

Theorem 4 and Problem (12) describe an exact approach for computing the optimal policyA∗. How-

ever, even with Benders decomposition, solving the MIP directly can be prohibitively expensive for

a large supply chain. We next develop an approximation leveraging supermodularity and the intu-

ition that, in an optimal solution, K is likely small relative to demand. We illustrate its computational

effectiveness in Section 7 through our case-study with Mattel’s supply-chain (c.f. Fig. 3).

Recall, a set function f : 2N 7→R is supermodular if for all S ⊆ T and i ̸∈ S, it holds that:

f(T ∪{i})− f(T ) ≥ f(S ∪{i})− f(S) (13)
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Similarly, f(·) is submodular if−f is supermodular. Intuitively, supermodularity captures increasing

return to scale. There is a rich literature on optimizing submodular/supermodular functions. See,

e.g., Krause and Golovin (2014). We would ideally leverage these techniques, but, as we next show,

our problem is neither submodular nor supermodular.

5.1. Supermodularity of U 3DP: Positive and Negative Results

We start with a positive result, the objective function in the optimization defining U3DP(K,A) is

supermodular:

PROPOSITION 2. The function A 7→
∑

j∈A cjqjE [sj] + E
[
V 3DP(D− q ◦ s,A,K)

]
is super-

modular in A⊆N for any fixed q ∈Rn and K ≥ 0.

Proposition 2 suggests that under an alternate simplified model, where first-stage order quantities

are specified exogenously in a manner that does not depend on A, one enjoys supermodularity.

Unfortunately, in our model, first stage costs are chosen endogenously to optimize costs, which

necessarily depends on the set A. As a result, U3DP(K,A) is neither supermodular nor submodular.

PROPOSITION 3. U3DP(K,A) is neither supermodular nor submodular in A⊆N .

It seems then that optimizing the first stage costs partially drives the computational complexity of

our model. This motivates seeking supermodular approximations.

5.2. A Supermodular Approximation of U 3DP

We next propose a supermodular approximation of U3DP based on its Taylor expansion with respect

to K at K = 0. The key intuition is that 3DP essentially serves as “flexibility” in the backup resource,

and a host of operations literature suggests “a little flexibility is enough.” Moreover, given the costli-

ness of printers, we intuit an optimal solution should have small K. Collectively, these observations

suggest studying the Taylor series expansion of U3DP for small K. The corresponding first order

expansion turns out to be both supermodular and a lower bound:

THEOREM 5 (Supermodular Lower Bound for U3DP(K,A)).
i) Let

L3DP(A,K) ≡
∑
j∈A

U0
j −KED,s

[
max
j∈A

(vj − c3DP
j )I

{
Dj > q̄0j sj

}]
. (14)

Then, for any A, L3DP(A, K)≤U3DP(A, K).

ii) For any A, this bound becomes tight as K becomes small, i.e.,

lim
K↓0

(
U3DP(A,K)−L3DP(A,K)

)
= 0.
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iii) For any fixed K ≥ 0, the function A 7→L3DP(A,K) is supermodular.

Since L3DP(A,K) is supermodular in A, a natural heuristic might be to minimize this lower bound

(in lieu of U3DP(A,K)), which should perform well if the optimal K is small. We pursue this heuris-

tic in the next section, but first develop two weaker bounds that may be of interest in specialized

settings:

PROPOSITION 4 (Simpler Supermodular Lower Bounds for U3DP). Let

L̂3DP(A,K)≡
∑
j∈A

U0
j −K

(
max
j∈N

vj − c3DP
j

)
P
(
∃j ∈A s.t Dj > q̄0j sj

)
. (15)

Then,

i) L3DP(A, K)≥ L̂3DP(A, K).

ii) For any fixed K ≥ 0, the function A 7→ L̂3DP(A,K) is supermodular.

iii) L̂3DP(A,K) =L3DP(A,K) whenever the per-unit margin vj − c3DP
j is identical across j ∈N .

Similarly, for any fixed λ> 0, define

L̃3DP(A,K,λ)≡
∑
j∈A

U0
j −

K

λ
log

(∑
j∈A

[
P
(
Dj ≤ q̄0j sj

)
+P

(
Dj > q̄0j sj

)
eλ(vj−c

3DP
j )
])

(16)

Then,

iv) L3DP(A,K)≥ L̃3DP(A,K,λ) for all λ> 0.

v) For any fixed K ≥ 0, λ≥ 0, the function A 7→ L̃3DP(A,K,λ) is supermodular.

In Eq. (16), λ should be interpreted as a hyperparameter that is set exogenously.

In lieu of the expectation, L̂3DP(A,K) depends on the probability that there is some unmet

demand in A under the naive ordering strategy q̄0. Estimating this probability may be easier in

practice than estimating the expectation in Eq. (14). On the other hand, evaluating this probability

still requires the joint distribution of (Dj, sj) across j which may be difficult to specify. The looser

bound (16) avoids this and only depends on the distributions of the pair random variables (Dj, sj)

for each j ∈ A. This might be substantially easier to estimate in practice. Thus, depending on data

availability, either bound might be preferred to L̂3DP.

As an aside, we note that replacing the maximum over j ∈N in Eq. (15) with the maximum over

j ∈A also yields a tighter lower bound than L̂3DP(A,K), but that bound is no longer supermodular.
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5.3. Our Proposed Heuristic for Optimizing A and K

Our heuristic for optimizing A and K treats Problem (1) as a two-step optimization, and then

replaces U3DP(A,K) by L3DP(A,K):

min
K≥0

C3DP(K)+ min
A⊆N

{∑
j∈Ac

(CDB
j +UDB

j )+U3DP(A,K)

}
, (17)

=⇒ min
K≥0

C3DP(K)+ min
A⊆N

{∑
j∈Ac

(CDB
j +UDB

j )+L3DP(A,K)

}
(18)

We solve the outer minimization in Problem (18) via grid search over K. For a fixed K, Theo-

rem 5 shows that the inner problem entails minimizing a supermodular function, or, equivalently,

maximizing a positive-valued, non monotone submodular function. (The non-monotonicity arises

because adding products to the 3DP set may not reduce costs when K is fully utilized.) Feige et al.

(2011) proves maximizing such functions is NP-Hard, but also shows that a simple local-search

heuristic attains a 1
3

approximation. Inspired by this result, we also use a local search to optimize the

inner problem by iteratively adding or removing a product from A. With clever bookkeeping, this

can be done efficiently (c.f. Section B.2).

Once the local search terminates with a candidate Â(K), we seek to identify the best K from the

grid. Lemma 3 shows that fixing K and Â(K), the optimization problem defining U3DP(Â(K),K)

(c.f. Problem (3)) is a convex stochastic optimization problem over q, and hence, well-suited to a

first-order optimization method. Thus, instead of comparing the objective values of the inner prob-

lem of Problem (18) to identify the best K, we run a first order method for each (K, Â(K)) pair to

evaluate the inner objective function of Problem (17) and compare these when choosing the best K.

We summarize this heuristic in Algorithm 1. Experiments in Section 7 suggest Algorithm 1 already

achieves near-optimal performance at a fraction of the MIO method’s computational cost.

We next provide some details on how we implement projected stochastic gradient descent.

5.4. Evaluating U 3DP(A,K) via a Projected Stochastic Gradient Descent

Evaluating the inner objective function of Problem (17) amounts to computing U3DP(A,K) by solv-

ing Problem (3) with A = Â(K). Projected stochastic gradient descent is a natural approach to

Problem (3), especially when (D,s) distributions are only accessible through historical data or sim-

ulations (see Bottou et al. (2018) for an overview). Additionally, as we will discuss, projected SGD

allows us to leverage the specific structure of V 3DP to improve computational efficiency.

Specifically, the two key computational steps for any first-order method are:
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Algorithm 1 SuperMod Approx: A Heuristic for Optimizing A and K

Require: A grid K of K values

1: for each fixed K ∈K do

2: Obtain Â(K) by solving the innter minimization of Problem (18) using local search (c.f.

Section B.2).

3: Compute U3DP(Â(K),K) via Projected Stochastic Gradient Descent.

4: Let F (K) be the the objective value of the inner problem in of Problem (17).

5: end for

6: return K⋆ = argminK∈KF (K)

i) Computing an unbiased estimate of a subgradient (with respect to q) of the objective of Prob-

lem (3) given a sample of (D,s).

ii) Projecting an arbitrary point q to the positive orthant. This projection is given in closed-form

by q+ (applied componentwise), see Boyd and Vandenberghe (2004).

Thus, it remains to compute a noisy, unbiased subgradient. To this end, we can reformulate

V 3DP(y,K) (see Problem (4)) as a linear optimization problem and use duality theory to obtain:

PROPOSITION 5 (Subgradients of V 3DP). Let q̄3DP denote the optimal solution to Problem (4)

under fixed y and K. For j ∈A, a subgradient ηyj of V 3DP with respect to yj is given by:

ηyj =


−hj if yj ≤ 0,

vj if yj > 0 and q̄3DP
j < yj,

c3DP
j − ηK otherwise.

Here, ηK is a subgradient of V 3DP with respect to K, defined as

ηK =

−max
{
vj − c3DP

j | yj > 0, q̄3DP
j < yj

}
if
∑

j∈A q̄
3DP
j =K,

0 otherwise.

Finally, letting y =D−q ◦s above, we have that the vector (c−ηy)◦s is an unbiased estimate of

the subgradient of the objective in Problem (3) with respect to q.

In words, the noisy subgradient can be efficiently computed in closed form if we can quickly

identify an optimizer q̄3DP for V 3DP(y,K) given any y and K. Fortunately, this reduces to solving

a fractional-knapsack problem, as shown next:
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PROPOSITION 6 (Solving Problem (4)). Fix some y and K ≥ 0. Then, any solution q̄3DP to (4)

also solves

q̄3DP
j ∈ argmax

0≤q3DP≤y+

∑
j∈A

(vj − c3DP
j )q3DP

j (19)

s.t.
∑
j∈A

q3DP
j ≤K.

Problem (19) can be solved very efficiently by sorting vj − c3DP
j (c.f. Algorithm 2). Combined

with Proposition 5, we can thus construct unbiased estimates of the subgradient very efficiently,

ensuring projected SGD remains highly scalable in Algorithm 1. See Section B.3 for additional

implementation details.

6. Piloting 3DP as a Backup Strategy
In this section, we consider the perspective a firm not yet engaged in 3DP that is piloting its use

as a backup strategy. Such a firm is likely unwilling to alter its existing dedicated backup strate-

gies, but likely would consider backing up currently unprotected products A0. Thus, we focus on

understanding the benefits of backing up only A0. As observed already in Proposition 1, A0 ⊆A∗.
Specifically, we ask when there exists a 3DP capacity investment K > 0 with positive cost savings,

i.e., a K such that

U tot-saved(A0,K) ≡
∑
j∈A0

U0
j −U3DP(A0,K)−C3DP(K) > 0. (20)

Here, U tot-saved(A0,K) is the total cost we could save on A0, where U0
j is the operational cost of

product j when unprotected. Since C3DP(K) is convex and increasing and Lemma 3 shows K 7→
U3DP(A0,K) is convex, we have that U tot-saved is concave in K.

Moreover, since C3DP(0) = 0, we have U tot-saved(A0,0) = 0, i.e., for j ∈ A0, investing in no

3DP capacity is tantamount to leaving j unprotected. Thus, as K increases, U tot-saved(A0,K) either

decreases monotonically from 0 or initially increases before decreasing. In the second case, there

is a positive cost saving for any small enough value of K. We can distinguish these two cases by

examining the derivative of U tot-saved at K = 0.

THEOREM 6 (Necessary and Sufficient Conditions for 3DP Cost Savings under A0). Let

C3DP be increasing, convex, differentiable at 0 and q̄0j as defined in (6). Then there exists K > 0

such that U tot-saved(A0,K)> 0 if and only if

0 < ED,s

[
max
j∈A0

(vj − c3DP
j )I

{[
Dj − q̄0j sj

]+
> 0
}]
− ccap. (21)

If such K exists, then U tot-saved(A0,K
′)> 0 for all K ′ ∈ [0,K].
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Notice that Eq. (21) as written depends on the joint distribution of all pairs (Dj, sj). This aligns

with the insight of Theorem 3, that 3DP costs savings depends on the correlations between suppliers.

The conclusion that U tot-saved(A0,K
′) > 0 for all sufficiently small K ′ is crucial; it indicates that

for a firm piloting 3DP, if Eq. (21) holds, then any small investment in 3DP capacity yields cost

savings. This provides a natural way for a firm to scale-up the use of 3DP in their operations as they

build internal expertise and experience.

7. Empirical Case Study
In this section, we conduct a case study inspired by Mattel, a major toy company. Mattel’s products

are primarily plastic with a density similar to common 3DP materials like resin and PLA, making

them ideal candidates for printing. To better align our model with the case study, we make one

technical adjustment; we replace the capacity constraint in Problem (4) with a “weighted” analogue:∑
j∈Awjq

3DP
j ≤K. Here wj is the material weight (in grams) required to print one unit of product

j. This technical change requires minimal adjustments to our algorithms, but reflects the fact that

different products may require different amounts of time to print (based on their weight). In the same

spirit, we model the sourcing cost from the primary supplier as a proportional to the weight of a

product, specifically at $0.006 per gram, incorporating both the raw plastic cost and a 20% markup.

Finally, as is standard in the literature, we interpret our objective in Problem (1) as regret relative

to an oracle seller who knew demand rather than realized costs. Hence, the back-order cost vj is the

lost profit on a unit not sold, hj is unit cost of sourcing from the primary supplier, c3DP (resp. cDB)

is the additional cost printing (resp. expediting) relative to sourcing from the primary supplier, and

cj = 0. We assume a zero salvage value for all products throughout.

7.1. Calibration to Real-World Data

Since detailed supply chain data on Mattel’s operations is not available, we calibrate our model to

several sources of public data, including i) engineering specifications of state of the art printers,

ii) scraped data from Mattel’s website and the Mattel Store on Amazon.com, and iii) bill-of-lading

(BOL) data on imports. We summarize the overall calibration process in Fig. 1, and describe in detail

below. Additional details available in Section C.

7.1.1. 3DP Costs. We model unit 3DP production cost as twice the unit production cost from

the primary supplier, and provide sensitivity analysis to this parameter below, letting it range from

1 to 4 times unit production cost at the primary supplier. We choose the baseline factor of “2”

by considering the per gram cost of non-metal printing materials like resin and PLA, and an infill

density of 50%.
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Figure 1 Overview of our calibration procedure.

A list of product categories Average weight, price and keywords

Keyword matching for BOL raw descriptions

Supplier 1 

Supplier 2 

Supplier 3 

Distribution of product categories

E-commerce data Synthesized products

Note. We use e-commerce data from the Mattel Store on Amazon.com and Mattel.com to learn major product categories and

identify products in those categories, their weights, and sales prices. We then use natural language processing on bill-of-lading (BOL)

data from suppliers importing to Mattel to construct synthetic products – one per supplier – that we use as the primitives in our model.

Finally, we calibrate printing costs to publicly available technical specifications and quotes from Sintratec (2024).

We also assume that cost of printing capacity is linear, i.e., C3DP(K) = ccapK, and let ccap = Q3DP

M3DP ,

where Q3DP and M3DP represent the monthly per printer depreciation cost (in $) and the monthly

material output per printer (in grams). At present, industrial 3DPs typically range from $5,000 to

$50,000, with higher-end models offering larger build volumes and advanced material capabilities

rather than superior speed. For Mattel, which prints small plastic toys, a $5,000 printer provides

sufficient speed and material compatibility without excess cost. Thus, we set $5,000 per printer as

our baseline which, assuming a 10-year lifespan, yields Q3DP = $41.67 per month (All3DP 2024,

Fusion3 Design 2024). We approximate the monthly material output M3DP using published technical

specifications of common printers (nozzle width, layer thickness, nozzle movement speed, infill

density, and working hours in a month.) See Section C for details. Overall, this yields an estimate of

ccap = $.0023 per gram. Again, we provide sensitivity to this value below.

7.1.2. Learning Product Categories. As will be seen, we heavily rely on BOL data to infer

a supply chain that approximates Mattel’s chain. Unfortunately, BOL data is incomplete in some

respects. This necesitates some approximations based on product categories. Hence, as a first step,

we discuss learning these categories.

We scrape public websites including Mattel.com and the Mattel Store on Amazon.com to

retrieve a list of Mattel’s product categories (dolls, dinosaurs, cars and trucks, etc.) (Prices and

descriptions in both settings are determined by Mattel, not by third party sellers.) Overall, we find

seven, and within each category, we identify a constituent list of products. For each product, we

Amazon.com
Mattel.com
Mattel.com
Amazon.com
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identify the products weight (in grams), sales price, and a text description. For each category ℓ, we

then calculate the average unit weight wave
ℓ and average sales price κave

ℓ within the category. Finally,

using TF-IDF scoring, we generate a keyword list from the product descriptions meant to describe

the category. We will use these average weights and keyword list in our next step of generating

synthetic products.

Bill of Lading Carrier SCAC / Vessel Code (Name) Voyage / Container Size / Type
XXXX333333333333 Eglv, Eagle Van Lines Inc / 3333333 (Ever Envoy) 3333x / 3000*333*333 / 33X3

Destination Port Name / Code Company Name / Address Arrival Date

Los Angeles / 2704
Mattel Import Services Corp / 333 Continental Blvd,
El Segundo, CA, 90245, USA XX/XX/20XX

Departure Port Name / Code Supplier Name / Address

Yantian / 57078
Shenzhen Hutchison Inland / Container Depots Co Ltd Xintian Hutchison Warehouse Distripark
Huanguan Rd Sth Gl Town Baoan Disct Sz O/B

HS Code / Full Description Product Description Quantity (Unit) / TEU / Weight
950611 / Toys, games and sports
requisites; parts and accessories ...

American Girl Dolls Plastic Toys Dinotrux Diecast
Hot Wheels Heavy Etc Market Mdm 333 (CTN) / 33 / 3333 kilogram

Table 1 Sample bill of lading. One such report is submitted to the Federal Customs and Border Protection

Agency for every import by a US Firm. As highlighted, these forms provide partial information about Tier 1

suppliers, types of goods imported, and, demand for that supplier.

7.1.3. Identify Suppliers and Constructing Synthetic Products from Bill of Lading Data.

A bill of lading (BOL) is a report submitted by U.S. firms to the Federal Customs and Border

Protection Agency, detailing shippers, consignees, goods, quantities, weights, and other specifics of

every international maritime shipment (see Table 1 for a portion of a sample report). We obtained

BOLs from ImportYeti.com, a third-party service that compiles BOL data across companies,

including Mattel, for over the past decade. In what follows, we limit attention to the 55 suppliers with

over 100 maritime shipments to Mattel in the past decade and neglect smaller, “one-off” suppliers.

Suppliers are identified by the “Supplier Name” field in the BOLs.

In principle, BOLs might provide sufficient details to identify Mattel’s primary suppliers and their

respective demands, but, as can be seen from the example, the reports are often vague in places:

1. The firm typically sources multiple products from each supplier, but BOLs provide only generic

descriptions like “plastic toys”, with no specific product names or their respective quantities.

2. For each shipment, only the total weight is provided, while total unit counts are either missing

or recorded in broad terms (e.g., “CTN” for cartons).

Hence, we will create a single “synthetic” product for each supplier and calibrate this synthetic

product to the observed BOL data. Implicitly, this construction assumes that if a supplier is disrupted,

ImportYeti.com
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all of its products are disrupted (proportionately), and that products provided by different suppliers

are not substitutable.

More specifically, we leverage our learned keywords for product categories. For each supplier j,

let bℓj denote the proportion of bills containing at least one keyword from category ℓ. These values

approximate the proportion of different product categories in a typical shipment from supplier j.

Finally, we construct a synthetic product for supplier j with a per-unit weight of equal to wj =∑
ℓ b

ℓ
jw

ave
ℓ and a per-unit sales price of κsell

j =
∑

ℓ b
ℓ
jκ

ave
ℓ . To compute a demand distribution for this

synthetic product, we compute the total weight of a shipment each month and convert them to unit

counts by dividing by wj . To simplify our analysis, we then bin this discrete distribution using K-

means clustering into a three point distribution for each product. Demand is assumed independent

across suppliers, so with 55 suppliers, there are already 355 > 1026 possible demand realizations.

Although somewhat involved, we do believe this procedure yields a reasonable approximation to

the supply chain for a company like Mattel. Figure 2 gives an overview of the demand and price of

these synthetic products.

Figure 2 Synthetic Products Calibrated to BOL Data.
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Note. Our calibration procedure results in 55 synthetic products, one per supplier. Panel (a) shows that there is a correlation between

product price and demand (maker size proportional to per-unit weight), with many low-volume, low-cost products. Panel (b) shows

a fair amount of heterogeneity in weight (and hence cost) among products. Panel (c) presents aggregate demand for our firm, which

exhibits significant variability.

To complete our calibration, we require yield data for each of these 55 suppliers. Yield data are

rarely shared externally due to their proprietary nature. Thus, we model random yield explicitly

as sj ∈ {αj,1}, where 1 − αj ∈ (0,1) and pj = P(sj = 1 − αj) are assumed known. By default,

αj = 0.05, pj = 0.05 and sj’s are independent, unless specified otherwise.

7.2. How Accurate is the SuperMod Approx Heuristic?

As a first step, we study how suboptimal solutions obtained from the SuperMod Approx method

(c.f. Algorithm 1) are relative to the full-information optimum obtained by solving the mixed-binary

optimization problem of Theorem 4.
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Figure 3 Comparison of supermodular approximation and MIO for optimizating A
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(b) Optimality gap vs. n

As mentioned, solving this mixed-binary problem is challenging at scale, so in Fig. 3, we study

the scalability of SuperMod Approx as n grows. For benchmarking, we compare to the solution time

to solving the mixed-binary problem in Theorem 4 using Bender’s cuts. Unfortunately, as n grows,

the number of scenarios in each of the expectations grows exponentially fast. Hence, we replace

these expectations by sample average approximations computed using 5% of the possible scenarios.

We call this heuristic MIO-SAA and cap its run time at 598 seconds, matching the total computation

time of SuperMod Approx across all cases for n= 1 . . .55.

From Fig. 3a, at n= 10, the MIO-SAA approach already hits the time limit, whereas the Super-

Mod Approx scales very gradually with increasing suppliers. This highlights its usefulness for large,

disaggregated chains.

Furthermore, Fig. 3b attempts to compare the suboptimality gap of SuperMod Approx and MIO-

SAA for these larger chains. Since the full-information optimum is unavailable, we present the gap to

best lower bound computed in the course of the Bender’s algorithm. (This is the traditional stopping

criteria for Benders.) One can see that across n, SuperMod Approx finds a solution which is no

worse than the MIO-SAA approach at a much smalller computational cost.

7.3. How much value does 3DP offer?

Of course, a key question is if 3DP provides any cost savings over traditional back up strategies. In

Panels (a) and (b) of Fig. 4 we plot the cost savings relative to a system without 3DP as a function

of the amount of capacity K purchased. As our theory suggests, the optimal K is a relatively small

fraction of the maximum demand, but the savings are modest. For our baseline parameters, at the

optimal K, we see a savings of just under 4%, but, at larger costs of capacity or costs of printing,

this benefit quickly disappears.

Perhaps more striking are panels (c) and (d) of Fig. 4. Here we plot the distribution of the demand

shortfall, i.e., the total unmet demand after utilizing the received primary orders and backup pro-

ductions. Note, this quantity is random depending on the random realizations of Dj and sj for all j.
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We compute these boxplots using 105 random samples of the vector ((Dj, sj) : j = 1, . . . ,55). Here

we see that although cost improvements are modest, 3DP effectively reduces the amount of unmet

demand, particularly in tail scenarios. This benefit persists even for large costs of capacity or print-

ing. In many ways we see this as the primary argument for 3DP as a resilience strategy; although

average benefits are small, the additional flexibility helps guard against large vales of unmet demand.

Figure 4 Cost savings and demand shortfalls: varying ccap and c3DP
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Note. Panels (a) and (b): Cost savings (%) relative to a system with dedicated backup but no 3DP. Savings are modest, and the

optimal K is a relatively small fraction of demand. Panels (c) and (d) display box plots of demand shortfalls. Here we see a more

striking reduction in the tails of the distribution. The x-axes indicate multiples of the baseline ccap and c3DP
j . Box plots labeled “No

3DP” correspond to the system with dedicated backups only and no 3DP.

Fig. 5 ablates this improvement by comparing the optimal strategy to the “piloting” strategy of

only backing up A0 with 3DP. We sample 100 subsets of size n ∈ {15,30,45} and also include the

full supply chain (n= 55) without sampling. The left panel shows the percentage of suppliers backed

up by dedicated resources under: i) “No 3DP”: the traditional system with no 3DP ii) “Piloting

3DP”: the traditional system where we additionally back up all unprotected products by 3DP iii)

“Full 3DP”: the optimal policy. We see that at our baseline values, a substantive number of suppliers

switch from dedicated backups to the flexible 3DP backup. In the middle panel, we see that a little

over half of the cost savings comes from backing up the unprotected items. Finally, the right panel

shows that nearly all reductions in average unmet demand result from the piloting 3DP strategy.

Thus, the piloting 3DP strategy – i.e. covering unprotected products – already seems to capture

the principal benefits of reducing shortfalls, and captures most (but not all) of the cost benefits.

7.4. What kinds of products are the best candidates for 3DP backup?

As discussed, in our model, any product that is unprotected when only considering dedicated back-

ups (i.e.A0) should be backed up by 3DP if possible. What is less clear is which products previously

backed up by a dedicated resource should switch to a 3DP backup in an optimal policyA∗. To better
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Figure 5 Backup switch after introducing 3DP.
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Note. From left to right: percentage of n assigned to dedicated backups, cost savings (relative to the cost without 3DP) and mean

demand shortfall (relative to max demand) for n ∈ {15,30,45,55}. We compare the dedicated backup-only strategy (blue), the

piloting 3DP strategy (red, backing up only unprotected products), and the full 3DP strategy (yellow, potentially switching dedicated

backups).

Figure 6 Key factors driving product switching.
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Note. We fit a Decision tree to identify key drivers that govern which products will switch from dedicated to 3DP backup at the

optimal capacity. The most likely products to switch have a moderate demand shortfall and a favorable 3DP Profit-to-Cost ratio.

understand the characteristics of products that switch, we sample 1,000 sets of n= 10 products, and

simulate heterogeneity in the s distributions by randomly assigning αj ∈ (0, 0.75] and pj ∈ (0, 0.5].
We also randomly assign the ratio cDB

j /c3DP
j within (0,1). We then use a CART decision tree to

predict if a product will switch based on several, normalized features:

Mean Shortfall ≡
E[(Dj − q̄0j sj)

+]

E [Dj]
, 3DP Profit-to-Cost ≡

(vj − c3DP
j )/wj

ccap

DB Critical Quantile≡
cDB
j − cj

cDB
j +hj

, Primary Critical Quantile≡ vj − cj
vj +hj

. (22)

where q̄0j is the optimal first-stage order without any backup (see (6)), and wj is the unit weight.

In essence, “Mean Shortfall” quantifies the unmet demand that backup needs to cover, while “3DP

Profit-to-Cost” captures the profitability of a product (when 3D-printed) relative to 3DP unit capac-

ity cost.The terms “DB-” and “Primary Critical Quantile” represent the critical quantiles in the



He, Gupta and Vyas: 3D-Printing for Supply Chain Resilience
Article submitted to 27

newsvendor calculation for a product when it is backed up by the dedicated strategy and when it is

unprotected, respectively. All hyperparameters are tuned with 5-fold cross-validation.

The resulting decision tree is shown in Fig. 6. In each leaf node the first row is the majority label,

the second row is the proportion of products in this leaf that “switch” from dedicated to flexible

backup, and the third row shows the leaf’s proportion of the total data.

Figure 6 suggests that products with very high demand shortfall (≥ 0.34) or very low shortfall

(≤ 0.031) do not switch; these products should either use a dedicated backup or none at all. But

products with moderate shortfalls and a good 3DP Profit-to-Cost ratio are more likely to switch.

While clearly only a heuristic model, this tree nonetheless provides some managerial insight into

which products to consider switching.

7.5. Correlated Disruptions

Theorem 3 shows that 3DP will perform worst (relative to dedicated backups) when demand short-

falls are comonotonic. In this section, we further explore this phenomenon by considering a sequence

of models where disruptions become more correlated and assess the drop in value of 3DP.

Specifically, we introduce a latent factor X0 ∼Bernoulli(p0) with p0 ≤ 0.05 representing a global

failure that affects all suppliers. We then take Xj ∼ Bernoulli(p−p0
1−p0 ) independently. Finally, we let

sj = 1−αmax(Xj,X0). Thus, each supplier fails with probability P (sj = 1−α) = p= 0.05. How-

ever, by adjusting the ratio p0/p from 0 to 1, we can control the correlation between failures via

the common factor. Specificaly, when p0/p= 0, the sj are independent. When p0/p= 1, the sj are

comonotonic. In what follows, we also consider two values of α ∈ {.05,1} to contrast the case of

small and large disruptions.

Figure 7 Cost savings and demand shortfalls: varying correlations among disruptions
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Note. Panel (a): Cost savings (relative to no 3DP) as p0/p increases from 0 (independent s) to 1 (comonotonic s). Panel (b): Demand

shortfall (relative to total demand) vs. p0/p. Both panels compare 5% (“Small”) and 100% (“Large”) yield loss disruption regimes.
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From the blue curve in Fig. 7a, for small disruption levels, as correlation increases, cost savings

decrease by only 0.2%. This decrease is larger for the large disruption case, but even at comonotonic

failures, 3DP offers some cost savings. From the left panel in Fig. 7b, 3DP consistently reduces

demand shortfalls across all correlation levels considered, and for small disruptions, the magnitude

of this reduction is relatively stable. For larger disruptions, however, the benefit from reducing short-

falls wanes as correlation increases. At very large correlations, if many suppliers fail (entirely) and

simultaneously, the shortfalls significantly exceed the 3DP capacity, and the no 3DP system may

perform better on average.

Altogether, these observations provide evidence that stronger disruption correlations weaken the

3DP resilience strategy’s effectiveness in cost savings and demand shortfall reduction, particularly

when disruption-induced yield losses are large, but that there still may be some value for high-values

of correlation.

8. Conclusion

In this paper we explore the possibility of using 3DP a flexible backup resource as part of a larger

portfolio of supply chain resilience strategies. Doing so requires solving a host of operational prob-

lems around which products to backup with 3DP, how much 3DP capacity to acquire, and how to

structure both primary orders from suppliers and recourse printing actions. To that end, we formulate

a mixed-binary stochastic optimization problem describing the setting, and derive several properties

of its optimal solution that help assess the potential value and costs of adopting a 3DP strategy.

We also provide a scalable heuristic for solving this problem based on constructing a supermodular

approximation. Through an empirical case study inspired by Mattel, we establish that with current

technology, 3DP offers only a modest savings over dedicated backup (3-4%), but that it offers a much

more significant reduction in the amount of unmet demand in the system. For risk-sensitive firms or

settings where qualitative branding risks are serious, such benefits might justify the investment.

There are a number of interesting direction for extension. We have considered a single firm and

its Tier 1 suppliers. One could study other supply chain networks, such as an assembly network,

and ask where topologically on the network 3DP might be most valuable. Moreover, we have taken

a deliberately conservative viewpoint, neglecting potential benefits of 3DP from co-location with

demand or faster lead times. Modeling these features appropriately might reveal additional benefits.

Overall, 3DP and additive manufacturing have long been considered inviable for large-scale man-

ufacturing and supply chain, and relegated to low-volume applications like prototyping. While there

are very real practical challenges to widespread 3DP adoption including quality assurance, upskilling
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a workforce, and navigating regulatory requirements, there are also very real advantages ot incopro-

rating flexible back-up strategies in a firm’s supply-chain resilience plan. We hope our work inspires

academics to think more broadly about the potential of this technology.

9. Data Availability and Reproducibility

All code for reproducing our experiments can be found at https://github.com/ziyuhe/

3DP_resilience_experiments/. In the spirit of reproducibility of research, we also provide

the complete dataset of 55 suppliers with details on their synthetic products within this repository.

Data obtained from ImportYeti.com is proprietary and available for purchase. We cannot

share this data directly. Interested researchers should contact this firm.
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Appendix A: Omitted Proofs

In this section, we present the proofs of the key results discussed in this paper.

A.1. Background Results

First, we present several background results that will be used later in the proof of our main results:

1. We first reformulate V 3DP (defined in Problem (4)) as a fractional knapsack problem in Eq. (23).

2. We use this reformulation to provide an efficient subroutine (Algorithm 2) for evaluating V 3DP.

3. We use this reformulation and subroutine to provide subgradients of V 3DP in closed-form (see Lemma 5).

4. We establish Lemma 6, a technical lemma that characterizes the minimal-magnitude optimal solution of a univari-

ate convex problem. This result will later be used to analyze the optimal 3DP capacity and first-stage order.

We begin with a reformulation of V 3DP(y,K):

V 3DP(y,K) =
∑
j∈A

vjy
+
j +hjy

−
j + f 3DP(y+,K), (23)

where y+ is the vector consists of demand shortfall y+
j ’s, and function f 3DP is defined by

f 3DP(z, K) ≡ min
q3DP

∑
j∈A

−(vj − c3DP
j )q3DP

j

s.t. 0≤ q3DP
j ≤ zj , ∀j ∈A and

∑
j∈A

q3DP
j ≤K.

(24)

This reformulation results from the following manipulations:

• For all j ∈ A such that yj < 0, there is no demand shortfall to handle, hence the corresponding q3DP
j = 0 in

Problem (4). Thus, [yj − q3DP
j ]− equals y−

j at optimality.

• For all j ∈ A such that yj ≥ 0, it is never optimal to use 3DP to back up more than the demand shortfall yj .

Therefore, 0≤ q3DP
j ≤ y+

j , and [yj − q3DP
j ]+ equals y+

j − q3DP
j .

The first two terms of the summand in Eq. (23) do not depend on q3DP. This decision variable only occurs in Prob-

lem (24), which is a fractional knapsack problem. Therefore, the optimal q3DP for Problem (4) can be obtained using

the standard solution procedure for fractional knapsack problems, as summarized in the following algorithm. For con-

venience, we assume that the indices in A are sorted in descending order of vj − c3DP
j for the remainder of this section.

Algorithm 2 Optimal q3DP for V 3DP

Require: Demand gap yj for all j ∈A and capacity K. The remaining capacity K ′ is initially set to K.

1: for j = 1 . . . |A| do

2: Set q̄3DP
j =min{K ′, y+

j }, and update K ′ as K ′− q̄3DP
j .

3: end for

4: return q̄3DP as the optimal solution for Problem (4) which defines V 3DP(y,K)

In other words, the optimal fulfillment q̄3DP
j of demand shortfalls y+

j is obtained by iteratively filling y+
j in descending

order of the per unit fulfillment reward vj − c3DP
j , until all shortfalls are addressed or the capacity K is exhausted.

Next, we use the structure of q̄3DP, output from Algorithm 2, to derive a closed-form expression for the subgradients of

V 3DP. This result enables efficient implementation of the first-order method discussed in Section 5.4 and plays a crucial

role in subsequent proofs, where it is applied to characterize the optimal first stage order q and capacity K.
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LEMMA 5 (Convexity and Subgradients of V 3DP). The following properties hold for V 3DP:

(i) V 3DP(y,K) is jointly convex in y and K.

(ii) Let q̄3DP be the output of Algorithm 2 for given y and K, and define j⋆ ≡min{j ∈A : yj > 0, q̄3DP
j < yj} as the

first positive shortfall that is not fully filled. Then, a subgradient λ of V 3DP(y,K) with respect to K is given by

λ=

{
−(vj⋆ − c3DP

j⋆ ) if
∑

j∈A y+
j >K

0 otherwise.
(25)

Moreover, a subgradient µj of V 3DP(y,K) with respect to yj is given by

µj =


−hj if yj ≤ 0,

vj if yj > 0 and q̄3DP
j < yj ,

c3DP
j −λ otherwise.

(26)

Proof of Lemma 5 This proof relies on an epigraphical reformulation of V 3DP(y,K):

min
q3DP≥0,ζ+,ζ−

∑
j∈A

(
c3DP
j q3DP

j + vjζ
+
j +hjζ

−
j

)
s.t.

∑
j∈A

q3DP
j ≤K, (27a)

yj − q3DP
j ≤ ζ+

j , 0≤ ζ+
j , ∀j ∈A, (27b)

− yj + q3DP
j ≤ ζ−

j , 0≤ ζ−
j , ∀j ∈A. (27c)

where we have replaced [yj − q3DP
j ]+ and [yj − q3DP

j ]− in the objective of Problem (4) with nonnegative variables ζ+
j

and ζ−
j , subject to constraints yj − q3DP

j ≤ ζ+
j and yj − q3DP

j ≥−ζ−
j . The dual of this optimization problem is:

max
λ≤0,µ+,µ−

Kλ+y⊤(µ−−µ+)

s.t. λ−µ+
j +µ−

j ≤ c3DP
j , ∀j ∈A, (28a)

− vj ≤ µ+
j ≤ 0, ∀j ∈A, (28b)

−hj ≤ µ−
j ≤ 0, ∀j ∈A. (28c)

Thus, V 3DP(y,K) is the maximum of linear functions and jointly convex in y,K, proving statement (i).

To prove statement (ii), we will apply Danskin’s theorem (Proposition 4.5.1 in Bertsekas et al. (2003)), which provides

the subgradients of V 3DP in terms of an optimal solution to Problem (28). Hence, we first construct a primal and dual

pair of optimal solutions to Problems 27 and 28. Namely,

• Let q3DP = q̄3DP where q̄3DP is the output of Algorithm 2.

• Let ζ+
j = [yj − q̄3DP

j ]+ and ζ−
j = [yj − q̄3DP

j ]−, for all j ∈A.

• Let λ be defined as in Eq. (25).

• For all j ∈A such that yj ≤ 0, set µ+
j = 0 and µ−

j =−hj .

• For all j ∈A such that yj > 0 and q̄3DP
j = yj , set µ+

j = λ− c3DP
j and µ−

j = 0.

• For all j ∈A such that yj > 0 and q̄3DP
j < yj , set µ+

j =−vj and µ−
j = 0.

Since q̄3DP is optimal for Problem (4), it follows that (q3DP,ζ+,ζ−) are optimal to Problem (27).

To check dual feasibility, we consider each j ∈A following the cases outlined above:
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• For all j ∈A such that yj ≤ 0: µ+
j and µ−

j satisfy Eqs. (28b) and (28c) by construction. They also satisfy Eq. (28a),

because λ≤ 0, and hence, the left side of Eq. (28a) is non-positive while the right side is non-negative.

• For all j ∈ A such that yj > 0 and q̄3DP
j = yj : Eq. (28c) is satisfied by construction. Since q̄3DP

j = yj , product j

cannot have been added to the knapsack after j⋆ in Algorithm 2. Hence, vj−c3DP
j ≥ vj⋆−c3DP

j⋆ ≥−λ. Rearranging

shows that−vj ≤ λ−c3DP
j , which implies the left inequality in Eq. (28b). The right inequality follows immediately

because λ≤ 0 and c3DP
j ≥ 0. Finally, by substitution, the Eq. (28a) holds with equality.

• For all j ∈A such that yj > 0 and q̄3DP
j < yj : Eqs. (28b) and (28c) hold by construction. Moreover, because q̄3DP

j <

yj , we have j could not have been added to the knapsack before j⋆ in Algorithm 2, and so vj − c3DP
j ≤ vj⋆ − c3DP

j⋆ ,

which proves the Eq. (28a) holds.

Thus, our constructed dual solution is dual feasible.

It remains to show complementary slackness:(∑
j∈A

q3DP
j −K

)
λ= 0,

(
−q3DP

j − ζ+
j + yj

)
µ+

j = 0,
(
−q3DP

j + ζ−
j + yj

)
µ−

j = 0, ∀j ∈A, (29)(
λ−µ+

j +µ−
j − c3DP

j

)
q3DP
j = 0,

(
−µ+

j − vj
)
ζ+
j = 0,

(
−µ−

j −hj

)
ζ−
j = 0, ∀j ∈A.

These constraints can again be checked by cases in exactly the same manner as above for dual feasibility, which in turn

confirms that µ+
j , µ

−
j , λ, constitute a dual optimal solution.

Hence, by Danskin’s theorem, subgradients with respect to yj and K are given by µj = µ−
j −µ+

j and λ, respectively,

concluding the proof. □

REMARK 1. We note that the subgradient of V 3DP is unique except when (y,K) falls into one of the following

scenarios: (i)
∑

j∈A y+
j >K and q̄3DP

j⋆ = yj⋆ ; or (ii)
∑

j∈A y+
j =K. In these cases, the optimal λ for the dual problem

Problem (28) forms an interval, and we choose its upper bound as the λ presented in Lemma 5. Accordingly, in the third

case of Eq. (26), this choice of λ makes c3DP
j −λ the smallest µj under this scenario.

This choice of λ and µj allows us to directly apply Eq. (26) and Eq. (25) to derive the right derivatives of K 7→

V 3DP(D − q ◦ s,K) and qj 7→ V 3DP(D − q ◦ s,K), which we use in the proofs of Theorem 1 and Theorem 2 to

characterize the optimal 3DP capacity and first-stage order. □

Recall that in Theorem 1 and Theorem 2, ties among multiple optima are resolved by selecting the one with the

smallest ℓ1-norm. When the decision variable is a positive scalar, the following lemma characterizes the least ℓ1-norm

solution using only the right derivative of the objective function.

LEMMA 6 (Minimal Solution of Univariate Convex Function). Let f :R 7→R be convex and let x̄≡min{x≥ 0 :

f ′
+(x)≥ 0}, where f ′

+(x) denotes the right derivative of f . Then, x̄ is the smallest optimal solution to minx≥0 f(x).

Proof of Lemma 6 We first note that x̄ is well-defined since f ′
+(x) is right-continuous by Bertsekas et al. (2003,

Proposition 4.1.1(e)). Consequently, the set {x≥ 0 : f ′
+(x)≥ 0} attains a minimum.

Next, we observe that any optimal solution must be at least as large as x̄. Indeed, by the first order optimality condition,

any optimal solution x must satisfy f ′
+(x) ≥ 0, and since x̄ is the minimal such value, it is less than or equal to any

optimal solution. Thus, it only remains to show x̄ is, itself, optimal.
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We consider two cases: First suppose that x̄= 0. Then, since it is on the boundary, the first order optimality condition

directly gives the optimality of x̄.

Now suppose x̄ > 0. Then, it suffices to show that f ′
−(x̄) ≤ 0, where f ′

−(·) denotes the left derivative. Suppose by

contradiction f ′
−(x̄)> 0. By Bertsekas et al. (2003, Proposition 4.1.1. e), f ′

−(x) is left continuous. Hence, there exists

0<x0 < x̄ with f ′
−(x0)> 0. Bertsekas et al. (2003, Proposition 4.1.1. a) further gives f ′

+(x0)≥ f ′
−(x0), which, together,

imply f ′
+(x0) > 0. But x̄ was the minimal value such that f ′

+(x) ≥ 0, a contradiction. Thus, x̄ must be an optimal

solution. □

A.2. Proofs from Section 2

Proof of Lemma 2. First, note that the objective function of Problem (2), which defines UDB
j , is given by:

E
[
cjqjsj + cDB

j [Dj − qjsj ]
+ +hj [Dj − qjsj ]

−] (30)

This function is convex since both [Dj− qjsj ]
+ and [Dj− qjsj ]

− are convex in qj , and expectation preserves convexity.

Lemma 6 thus implies that q̄j is the smallest qj for which the right derivative of the function in (30) is nonnegative. This

right derivative is given by:

d

dq+j
E
[
cjqjsj + cDB

j [Dj − qjsj ]
+ +hj [qjsj −Dj ]

+
]
= E

[
d

dq+
(
cjqjsj + cDB

j [Dj − qjsj ]
+ +hj [qjsj −Dj ]

+
)]

= E
[(
cjsj − cDB

j sjI{Dj > qjsj}+hjsjI{Dj ≤ qjsj}
)]

,

where we can reverse the derivative and integration in the first equality because the integrand is uniformly Lipschitz in

qj with parameter at most cj + cDB
j +hj . Simplifying shows that the right derivative is nonnegative if and only if

E [sjI{Dj ≤ qjsj}]≥
(
cDB
j − cj

cDB
j +hj

)
E [sj ] .

Therefore, the optimal q̄j is the smallest qj that satisfies this inequality, which completes the proof. □

Proof of Lemma 3. Throughout this proof, we assume that A is fixed.

To prove part (i), note that we have already shown in Lemma 5 that V 3DP(y,K) is jointly convex in y and K. Since

composition with affine functions preserves convexity, it follows that the mapping q 7→ V 3DP(D− q ◦ s,K) is convex.

To prove part (ii), note that expectation preserves convexity (Shapiro et al. 2021, Theorem 7.46), hence the objective

function of Problem (3) is convex. Since the feasible region of this problem is also convex, the proof is complete.

Finally, for part (iii), note that by establishing part (i), we have shown that q 7→ V 3DP(D − q ◦ s,K), and thus the

objective function of Problem (3)), is jointly convex in q and K. Since U 3DP is derived from partial minimization over

q ≥ 0, and partial minimization preserves convexity (see Proposition 2.3.6 from Bertsekas et al. (2003)), it follows that

K 7→U 3DP(A,K) is convex. □

A.3. Proofs from Section 3

Proof of Proposition 1 To establish A0 ⊆A⋆, it suffices to show that the optimal A for any fixed K ≥ 0 includes

A0. This holds because adding an unprotected product toA and choosing to never print it in the second stage is costless.

To show that the inclusion can be strict, it suffices to construct an example where A = N is strictly better than

A=A0. Then, A0 cannot be optimal. To that end, consider a setting where 0≤Dj ≤ D̄j almost surely for all j ∈N ,

and C3DP(K) = 0. In this case, we effectively have infinite 3DP capacity for any A, since it is always optimal to set

K =
∑

j∈A D̄j . Recall that Problem (6) and Problem (7) define the optimal operational costs for product j when K
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is zero and infinite, respectively. We denote these costs as U0
j and U∞

j . The total cost under A =N is thus given by∑
j∈N U 3DP

j , while the total cost under A=A0 is:∑
j∈A0

U0
j +

∑
j∈Ac

0

(
UDB

j +CDB
j

)
,

where UDB
j (as defined in Problem (2)) and CDB

j represent the operational and fixed costs of dedicated backup, respec-

tively. Comparing the costs for A=N and A=A0, and simplifying, we find that A=N yields a lower cost if:∑
j∈Ac

0

U∞
j <

∑
j∈Ac

0

(
UDB

j +CDB
j

)
.

We can force this inequality to be true by taking CDB
j to be sufficiently large. Fix any such sufficiently large value for

the remainder of the proof. The only remaining challenge is to assert that A0 ̸=N , which will occur if

UDB
j +CDB

j <U0
j

holds for some j. Notice, that neither of UDB
j nor U∞

j depend on vj (the stock out cost), because DB is uncapacitated

and we effectively have infinite 3DP capacity. Hence, by increasing vj we can increase U0
j and ensure that A0 ̸=N .

Thus, we have constructed an example where A =A0 is not optimal, hence the optimal A can strictly include A0.

□

Proof of Theorem 1 Recall that q⋆(A,K) is an optimal solution to Problem (3) (which defines U 3DP(A,K)) with

the minimal ℓ1-norm. We first note that q⋆j (A,K) is the smallest optimal solution to Problem (3) when minimizing only

over qj ≥ 0, while keeping qi = q⋆i (A,K) fixed for all i ̸= j, i.e., q⋆j (A,K) solves the following univariate optimization

problem:

min
q≥0

cjqE [sj ] +
∑

i∈A,i ̸=j

ciq
⋆
i (K)E [si] +E

[
V 3DP(D− q̂ ◦ s,A,K)

]
,

which is equivalent to

min
q≥0

E
[
cjqsj +V 3DP(D− q̂ ◦ s,A, κ)

]
. (31)

In both problems, we let

q̂i =

{
q⋆i (A,K) if i ̸= j,

q otherwise.
(32)

Moreover, q⋆j (A,K) is the minimal solution this univariate problem. Indeed, if this were not the case, we could use it to

construct an optimal solution to Problem (3) with a smaller ℓ1-norm than q⋆(A,K), contradicting its definition.

Note that Problem (31) is a univariate convex optimization problem. Thus, by Lemma 6, q⋆j (A,K) is the smallest

q≥ 0 for which the right derivative of its objective function is nonnegative. This right derivative is given by:

d

dq+
E
[
cjqsj +V 3DP(D− q̂ ◦ s,A, κ)

]
=E

[
cjsj +

d

dq+
V 3DP(D− q̂ ◦ s,A,K)

]
(33a)

=E [cjsj − sjµj(D,s, q)] (33b)

=E [cjsj +hjsjI{Dj ≤ qsj}− sjµj(D,s, q)I{Dj > qjsj}] , (33c)

where µj(D,s, q) denotes the µj from Eq. (26) after setting y =D− q̂ ◦ s in Lemma 5. Specifically, Eq. (33a) swaps

differentiation and integration since the integrand is uniformly Lipschitz in q with parameter at most cj + vj + hj .
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Eq. (33b) applies Proposition 4.2.2 of Bertsekas et al. (2003), which states that the right derivative of q 7→ V 3DP(D −
q̂ ◦ s,A,K) is its largest subgradient. By the chain rule, this subgradient is given by −sjµj(D,s, q), since µj(D,s, q)

is constructed as the smallest possible subgradient of yj 7→ V 3DP(y,A,K) at y =D − q̂ ◦ s (see Remark 1). Finally,

Eq. (33c) follows from the specific construction of µj(D,s, q) shown in Eq. (26).

In summary, we derive that

q⋆j (A,K) =min
{
q≥ 0 : H

(
q, µj(D,s, q)

)
≥ 0
}

(34)

where

H(q, z)≡ cjsj +hjsjI{Dj ≤ qsj}− sjzI{Dj > qjsj} (35)

Using an argument similar to the proof of Lemma 2, we characterize q̄∞j and q̄0j , the smallest optimal solutions to

Problem (6) and Problem (7), respectively, as follows:

q̄∞j =min{q≥ 0 : H(q, c3DP
j )≥ 0} and q̄0j =min{q≥ 0 : H(q, vj)≥ 0.} (36)

Thus, to establish q̄∞j ≤ q3DP
j (A,K) ≤ q̄0j , it suffices to show that for all D,s and q ≥ 0 such that Dj > qsj , the

following inequalities hold:

c3DP
j ≤ µj(D,s, q)≤ vj . (37)

To see why Eq. (37) is sufficient, observe that H(q, z) is non-increasing in z, thus Eq. (37) yields:

H(q, vj)≤H
(
q,µj(D,s, q)

)
≤H(q, c3DP

j ). (38)

Consequently, we obtain

0≤H
(
q⋆j (A,K), µ

(
D,s, q⋆(A,K)

))
≤H(q⋆j (A,K), c3DP

j ),

where the first inequality follows from Eq. (34), and the second follows from Eq. (38). In other words, q = q⋆j (A,K)

satisfies the inequality H(q, c3DP
j )≥ 0. Since q̄∞j is the smallest such q (cf. Eq. (36)), it follows that q̄∞j ≤ q⋆j (A,K). By

a similar argument, we also obtain q⋆j (A,K)≤ q̄0j .

Thus, the proof is complete once we establish Eq. (37) for all D,s and q≥ 0 with Dj > qsj . We consider the following

cases, setting y=D− q̂ ◦ s for simplicity, where q̄3DP and j⋆ are defined as in Lemma 5 under this y:

i) If q̄3DP
j < yj , then from Eq. (26), µj(D,s, q) = vj , satisfying Eq. (37).

ii) If q̄3DP
j = yj and

∑
j∈A y+

j ≤K, then from Eq. (26), µj(D,s, q) = c3DP
j , satisfying Eq. (37).

iii) Finally, when q̄3DP
j = yj and

∑
j∈A y+

j > K, Eq. (26) gives µj(D,s, q) = c3DP
j + (vj⋆ − c3DP

j⋆ ), hence we have

µj(D,s, q)≥ c3DP
j since vj⋆ − c3DP

j⋆ ≥ 0. Moreover, in this scenario, shortfall j is fully filled, so by construction,

j⋆ > j. Since vj − c3DP
j ≤ vj⋆ − c3DP

j⋆ , it follows that µj(D,s, q)≤ vj after rearranging terms.

In summary, we have shown that Eq. (37) holds in all cases, therefore proving q̄∞j ≤ q⋆j (A,K)≤ q̄0j . □

Proof of Theorem 2 For ease of reference, let rj ≡ vj − c3DP
j and denote the objective function of Problem (3)

(which defines U 3DP) as F 3DP(K). We begin by characterizing K⋆(A,q), which is key to proving statements (i) and (ii).

Recall that K⋆(A,q) is the smallest optimal capacity for a given A and a fixed first-stage order q ≥ 0, making it

the smallest minimizer of C3DP(K) + F 3DP(K) for K ≥ 0, where C3DP(K) = ccapK. Since this is a univariate convex

problem, it follows from Lemma 6 that

K⋆(A,q) =min{K ≥ 0 : H⋆(K,q)≥ 0} , (39)
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where H⋆(K,q) is the right derivative of ccapK +F 3DP(K). We derive H⋆(K,q) in closed form as follows:

H⋆(K,q) =
d

dK+

(
ccapK +F 3DP(K)

)
= ccap +

d

dK+
E
[
V 3DP(D− q ◦ s,K)

]
(40a)

= ccap +E
[

d

dK+
V 3DP(D− q ◦ s,K)

]
(40b)

= ccap +E [λ(D,s,K)] (40c)

= ccap−E

[
rj⋆I

{∑
j∈A

[Dj − qjsj ]
+ >K

}]
. (40d)

In (40b), λ(D,s,K) is the λ from Eq. (25), defined under y=D−q ◦s; the index j⋆ in (40d) is defined in Lemma 5

under the same setting. Equation (40a) holds because V 3DP is the only term in F 3DP that depends on K. In Eq. (40b),

differentiation and integration are interchanged, which is valid since the integrand is uniformly Lipschitz in q with a

parameter at most maxj∈N (vj− c3DP
j ). Next, Eq. (40b) applies Proposition 4.2.2 of Bertsekas et al. (2003), which states

that the right derivative of K 7→ V 3DP(D − q ◦ s,K) is its largest subgradient. By construction (see Remark 1), this

subgradient is precisely λ(D,s,K), as given by λ in Eq. (26), whose explicit form yields Eq. (40d).

To prove part (i) of the theorem, we substitute vj − cj = r for all j ∈A into Eq. (40), which simplifies Eq. (39) to

K⋆(A,q) = inf

{
K ≥ 0 : ccap− rminP

(∑
j∈A

[Dj − qjsj ]
+ >K

)
≥ 0

}
(41)

= inf

{
K ≥ 0 : P

(∑
j∈A

[Dj − qjsj ]
+ >K

)
≤ ccap

r

}
. (42)

By the definition, K⋆(A,q) is thus the
(
1− ccap

r

)
-quantile of

∑
j∈A[Dj − qjsj ]

+, thereby proving part (i).

We now prove part (ii) of the theorem, where rj values are heterogeneous. Recall that K⋆(A) is the smallest optimal

capacity under A, so we have K⋆(A) =K⋆(A,q⋆(A)), where q⋆(A) is the optimal first-stage order with the minimal

ℓ1-norm. For convenience, we define the following functions

Hmin(K,q)≡ ccap− rminP

(∑
j∈A

[Dj − qjsj ]
+ >K

)
and Hmax(K,q)≡ ccap− rmaxP

(∑
j∈A

[Dj − qjsj ]
+ >K

)
.

Since rmin ≤ rj⋆ ≤ rmax almost surely, it follows that

Hmin(K,q)≤H⋆(K,q)≤Hmax(K,q). (43)

The proof of part (ii) is completed as follows:(
1− ccap

rmax

)
-quantile of

∑
j∈A

[Dj − q̄∞j sj ]
+ ≤

(
1− ccap

rmax

)
-quantile of

∑
j∈A

[Dj − q⋆j (A)sj ]+ (44a)

= inf

{
K ≥ 0 : P

(∑
j∈A

[Dj − q⋆j (A)sj ]+ >K

)
≤ ccap

rmax

}
(44b)

= inf {K ≥ 0 :Hmax(K,q⋆(A))≥ 0} (44c)

≤ inf {K ≥ 0 :H⋆(K,q⋆(A))≥ 0} (44d)

≤ inf
{
K ≥ 0 :Hmin(K,q⋆(A))≥ 0

}
(44e)

= inf

{
K ≥ 0 : P

(∑
j∈A

[Dj − q⋆j (A)sj ]+ >K

)
≤ ccap

rmin

}
(44f)
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=

(
1− ccap

rmin

)
-quantile of

∑
j∈A

[Dj − q⋆j (A)sj ]+ (44g)

≤
(
1− ccap

rmin

)
-quantile of

∑
j∈A

[Dj − q̄0j sj ]
+. (44h)

Specifically, Eq. (44a) and Eq. (44h) follow from the fact that the quantiles of
∑

j∈A[Dj − qjsj ]
+ are non-increasing

in qj , and from the bounds q̄∞j ≤ q⋆j (A)≤ q̄0j given in Theorem 1.

Eq. (44b) and Eq. (44g) arise from the definitions of their respective quantiles, while Eq. (44c) and Eq. (44f) follow

from the definitions of Hmin and Hmax with some rearrangement.

Moreover, the right-hand sides of Eq. (44d) and Eq. (44e) represent two optimization problems with the same objec-

tive. By Eq. (43), we have H⋆(K,q⋆(A))≤Hmax(K,q⋆(A)), so the feasible region in Eq. (44d) is larger, yielding a

smaller optimal value. Hence, the inequality in Eq. (44d) holds. The same argument applies to Eq. (44e).

Finally, noting that the right-hand side of Eq. (44d) is K⋆(A,q⋆(A)), and using K⋆(A) =K⋆(A,q⋆(A)), we con-

clude that statement (ii) is proven. □

Proof of Theorem 3 In this proof, we fix the marginal distributions of (D,s) as well asA,K, and q, omitting them

from the notation. Without loss of generality, we assume the indices in A are ordered in descending rj ≡ vj − c3DP
j .

The key idea of the proof is to show that f 3DP(z) in Problem (24) is supermodular on Rm
+ . Recall, this function is

submodular if for all z, z̄ ≥ 0,

f 3DP(z)+ f 3DP(z̄)≤ f 3DP(min{z, z̄})+ f 3DP(max{z, z̄}),

where min{z, z̄} and max{z, z̄} denote the elementwise minimum and maximum, respectively.

To see why it is sufficient to show that this function is supermodular, note that by Goovaerts and Dhaene (1999, Theo-

rem 6), among all random vectors y+ ≡ [D− q ◦ s]+ with fixed marginal distributions, the comonotonic y+ dominates

all others in the supermodular order. Thus, if f 3DP(z) is supermodular, then from the definition of supermodular order,

it holds that E [f 3DP(y+)] is maximized when y+ is comonotonic. Since this result holds for any A⊆N , K ≥ 0, and

q ≥ 0, and since E [f 3DP(y+)] is the only term in the objective function of Problem (3) (and thus Problem (1)) that

depends on the correlation structure of y+, it follows that the optimal value of Problem (1) is maximized when y+ is

comonotonic.

Hence, for the remainder of this proof, we focus on establishing the supermodularity of f 3DP(z). By Corollary 2.6.1 in

Topkis (1998), it suffices to show that f 3DP(z) satisfies the increasing differences property. Specifically, for any i, j ∈A,

fix zℓ for all ℓ∈A\{i, j} and express f 3DP solely as a function of zi and zj , i.e., f 3DP(zi, zj), then

f 3DP(z̄i, z
′
j +∆)− f 3DP(z̄i, z

′
j)≥ f 3DP(z′

i, z
′
j +∆)− f 3DP(z′

i, z
′
j), (45)

for all nonnegative scalars z′
i, z̄i, z

′
j and ∆ with z′

i ≤ z̄i.

We first prove Eq. (45) for sufficiently small ∆> 0 such that λ(z′
i, z

′
j) = λ(z′

i, z
′
j +∆), where λ(zi, zj) is the optimal

λ in the following dual reformulation of f 3DP(zi, zj), with zℓ fixed for all ℓ ̸∈ {i, j}:

f 3DP(zi, zj) = max
λ≤0,µ

Kλ+
∑

ℓ∈A µℓzℓ = max
λ≤0

Kλ−
∑
ℓ∈A

[rℓ +λ]+zℓ.

s.t. µℓ ≤−λ− rℓ, µℓ ≤ 0, ∀ℓ∈A
(46)

The second equality in Problem (46) follows from the dual constraint µℓ ≤ min{0,−λ − rℓ} = −[rℓ + λ]+, hence

maximizing the dual objective yields µℓ =−[rℓ +λ]+ at optimality.
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By the same argument in Lemma 5, after replacing y+
ℓ with zℓ, the λ defined in Eq. (25) remains optimal for Prob-

lem (46). Thus, applying Danskin’s theorem, the subgradient of zj 7→ f 3DP(zi, zj) is given by −[rj +λ(zi, zj)]
+, and:

f 3DP(z′
i, z

′
j +∆)− f 3DP(z′

i, z
′
j)≤−∆

[
rj +λ(z′

i, z
′
j +∆)

]+
=−∆

[
rj +λ(z′

i, z
′
j)
]+

, (47)

f 3DP(z̄i, z
′
j +∆)− f 3DP(z̄i, z

′
j)≥−∆

[
rj +λ(z̄i, z

′
j)
]+

. (48)

The inequalities in Eq. (47) and Eq. (48) follow from subgradient inequlaity of convex function f 3DP, while the

equality in Eq. (47) holds due to the λ(z′
i, z

′
j) = λ(z′

i, z
′
j +∆) assumption. Since t 7→ [t]+ is non-decreasing, for Eq. (45)

to hold, it suffices to show that λ(z̄i, z′
j)≤ λ(z′

i, z
′
j).

Recall that the optimal λ for Problem (46) (as given in Eq. (25)) is either −rj⋆ , where j⋆ is the first positive shortfall

that is not fully filled, or 0 when all shortfalls are fully filled. To unify these two scenarios, we introduce an artificial

shortfall zm+1 =K with reward rm+1 = 0, so that we can always write the optimal λ as −rj⋆ . Under this framework,

the index j⋆ is smaller in the zi = z̄i case since it requires filling more shortfalls than zi = z′
i. Consequently, −rj⋆ is

smaller for zi = z̄i, leading to λ(z̄i, z
′
j)≤ λ(z′

i, z
′
j). Therefore, Eq. (45) holds under λ(z′

i, z
′
j) = λ(z′

i, z
′
j +∆).

To extend this result to general ∆> 0, note that zj 7→ f 3DP(z) is convex piecewise affine from Problem (46). Thus,

the interval [z′
j , z

′
j +∆] can be partitioned into subintervals [z′

j +∆ℓ−1, z
′
j +∆ℓ] for ℓ = 1, . . . ,L, where ∆0 = 0 and

∆L =∆, such that within the interior of each subinterval, λ(z′
i, zj) remains constant and takes a unique value λ⋆

ℓ .

Although λ(z′
i, z

′
j +∆ℓ−1) and λ(z′

i, z
′
j +∆ℓ) are not unique, Bertsekas et al. (2003)[Proposition 4.2.3 (b)] ensures

that both can take the value λ⋆
ℓ . Thus, when restricted to each subinterval [z′

j +∆ℓ−1, z
′
j +∆ℓ], we may assume without

loss of generality that λ(z′
i, z

′
j +∆ℓ−1) = λ(z′

i, z
′
j +∆ℓ) and apply Eq. (45) under this condition to conclude that

f 3DP(z′
i, z

′
j +∆ℓ)− f 3DP(z′

i, z
′
j +∆ℓ−1)≤ f 3DP(z̄i, z

′
j +∆ℓ)− f 3DP(z̄i, z

′
j +∆ℓ−1). (49)

Finally, summing Eq. (49) over all ℓ= 1, . . . ,L establishes Eq. (45) for any ∆> 0, thus completing the proof. □

A.4. Proofs from Section 4

Proof of Lemma 4 First, recall that y = D − q ◦ s for some fixed D,s, and q ≥ 0. We can without loss of

generality assume qj = 0 for all j ∈ N such that xj = 0, since all terms indexed by such j in Problem (9) and (8) are

effectively eliminated. On the other hand, we can assume that q̄∞j ≤ qj ≤ q̄0j for all j ∈N where xj = 1, as the optimal

solution lies within this range (see Theorem 1).

For convenience, we denote the right hand side of (10) as V̂ 3DP, so verifying V 3DP = V̂ 3DP establishes the equivalence

in (10). It suffices to show that setting M1
j ,M

2
j , and M3

j as in Eq. (11) ensures Problem (10) includes the optimal

solution q̄3DP of Problem (9) and that their objective functions simplify to the same expression.

Specifically, for all j ∈N such that xj = 1, inequality (10b), (10c), and (10d) in V̂ 3DP simplify to:

(10b)⇒ 0≤ q3DP
j ≤M1

j , (10c)⇒ z3DP
j = q3DP

j , (10d)⇒ |z3DP
j − yj | ≤M3

j . (50)

To show that q̄3DP
j satisfies (50), it suffices to verify that M1

j and M3
j bound |q̄3DP

j | and |Dj−qjsj− q̄3DP
j |, respectively.

Indeed, note that q̄3DP
j ≤ [Dj−qjsj ]

+, our boundedness assumptions on Dj and sj ensures that 0≤ q̄3DP
j ≤ D̄j− q̄∞j smin

j ,

which justifies M1
j . Similarly, we derive −q̄0j smax

j ≤Dj − qjsj − q̄3DP
j ≤ D̄j − q̄∞j smin

j , justifying M3
j .

On the other hand, for j ∈N such that xj = 0, inequality (10b), (10c) and (10d) in V̂ 3DP can be simplified as

(10b)⇒ q3DP
j = 0, (10c)⇒ |z3DP

j | ≤M2
j , (10d)⇒ z3DP

j − yj = 0. (51)
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Note that when xj = 0, the optimal q̄3DP
j for V 3DP is arbitrary and can be set to 0, trivially satisfying (51). It remains to

verify that |z3DP
j | ≤M2

j . Since z3DP
j = yj =Dj − qjsj =Dj , where the last equality follows from qj = 0 in this case,

choosing M2
j = D̄j is sufficient for |z3DP

j | ≤M2
j to hold.

Combining (50) and (51) simplifies (10e) in V̂ 3DP to
∑

j∈N :xj=1
q3DP
j ≤K, which is equivalent to

∑
j∈N q3DP

j xj ≤K

in V 3DP. Thus, we have shown that any vector q̄3DP optimal for V 3DP satisfies all the constraints in V̂ 3DP.

Finally, substituting (50) and (51) into the objective of Problem (10) confirms its equivalence to the objective of

Problem (9), thereby establishing that V̂ 3DP = V 3DP.

The convexity of V̂ 3DP(y,x) then follows by penalizing the constraints in Problem (10) with an indicator function

and applying Proposition 2.3.6 from Bertsekas et al. (2003). □

Proof of Theorem 4 By Lemma 4 and Theorem 1, it holds that:

U 3DP(x,K) =min
q

n∑
j=1

cjqjE [sj ] +ED,s

[
V 3DP(D− q ◦ s, x, K)

]
(52)

s.t. q̄∞j xj ≤ qj ≤ q̄0jxj , ∀j = 1 . . . n.

where V 3DP(y,x,K) is given by Problem (10). Note that this is sufficient to establish the equivalence between Prob-

lem (12) and Problem (1). The convexity of the objective function in Problem (12) follows from the convexity of V 3DP

(as established in Lemma 4) and the fact that the expectation operator preserves convexity. □

A.5. Proofs from Section 5

Proof of Proposition 2 . First, note that
∑

j∈A cjqjE [sj ] is modular in A, and since expectation preserves super-

modularity, it suffices to show that V 3DP is supermodular in A. Using the reformulation in Eq. (23), this reduces to

proving that f 3DP(z,A,K) is supermodular in A for any z ∈Rn
+ and K ≥ 0, where f 3DP is given in Problem (24) and

explicitly written here as a function of A. Specifically, for all S,T ⊆N with S ⊂ T and i /∈ T , we aim to show that:

f 3DP(z,S ∪{i},K)− f 3DP(z,S,K)≤ f 3DP(z,T ∪ {i},K)− f 3DP(z,T ,K). (53)

Note that by the construction of f 3DP in Problem (24), we have f 3DP(z,A,K) = f 3DP(z(A),N ,K), where

z(A)≡

{
zj , if j ∈A,
0, otherwise.

Substituting this identity into Eq. (53), it suffices to prove the equivalent inequality:

f 3DP(z(S ∪{i}))− f 3DP(z(S))≤ f 3DP(z(T ∪ {i}))− f 3DP(z(T )). (54)

From the proof of Theorem 3, we know that f 3DP satisfies the increasing differences property:

f 3DP(ζ+βeℓ)− f 3DP(ζ)≤ f 3DP(ζ+αek +βeℓ)− f 3DP(ζ+αek), (55)

for any ζ ∈Rn
+ and α,β > 0, where ek and eℓ denote the kth and ℓth coordinate vectors.

We now apply this increasing differences property of f 3DP to prove Eq. (54) by induction. Reordering the indices so

that S \ T = {1, . . . ,L} with L= |S \ T |, the base case follows as:

f 3DP(z(S ∪{i}))− f 3DP(z(S)) = f 3DP(z(S)+ ziei)− f 3DP(z(S))

≤ f 3DP(z(S)+ z1e1 + ziei)− f 3DP(z(S)+ z1e1), (56)
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where the equality follows from the definition of z(S), and the inequality follows by applying Eq. (55) with ζ = z(S),
α= z1, β = zi, and setting k= 1, ℓ= i. Now, assume that for some j′ <L, the following holds:

f 3DP(z(S ∪{i}))− f 3DP(z(S))≤ f 3DP

(
z(S)+

j′∑
j=1

zjej + ziei

)
− f 3DP

(
z(S)+

j′∑
j=1

zjej

)
. (57)

Applying Eq. (55) with ζ = z(S)+
∑j′

j=1
zjej , α= zj′+1, β = zi, and setting k= j′ +1, ℓ= i, we obtain:

f 3DP

(
z(S)+

j′∑
j=1

zjej + ziei

)
−f 3DP

(
z(S)+

j′∑
j=1

zjej

)
≤ f 3DP

(
z(S)+

j′+1∑
j=1

zjej + ziei

)
−f 3DP

(
z(S)+

j′+1∑
j=1

zjej

)
.

Combining this with Eq. (57), we establish:

f 3DP(z(S ∪{i}))− f 3DP(z(S))≤ f 3DP

(
z(S)+

j′+1∑
j=1

zjej + ziei

)
− f 3DP

(
z(S)+

j′+1∑
j=1

zjej

)
.

Thus, by induction, Eq. (57) holds for all 1≤ j′ ≤L. In particular, substituting the constructions

z(T ) = z(S)+
L∑

j=1

zjej , z(T ∪ {i}) = z(S)+
L∑

j=1

zjej + ziei, (58)

into Eq. (57) with j′ =L, we establish Eq. (54), hence completing the proof. □

Proof of Proposition 3 This result is proven by counterexample. Let n= 3 with sj ∼Bernoulli(0.9) (all-or-nothing

disruptions), assuming all uncertainties are independent across suppliers and let D follow a two-point distribution. The

table below presents the scenarios and probabilities of Dj , along with the cost parameters.

cj c3DP
j vj hj Dj scenario 1 Dj probability 1 Dj scenario 2 Dj probability 2

j = 1 0.4 0.1 1 0.1 150 0.2 340 0.8
j = 2 0.3 0.2 0.6 0.2 140 0.1 150 0.9
j = 3 0.6 0.5 1 0.5 70 0.1 140 0.9

Under this setting, we have U 3DP({1,2,3}) − U 3DP({1,2}) = 89.47 and U 3DP({1,3}) − U 3DP({1}) = 91.07, vio-

lating the supermodularity condition in (13). Similarly, U 3DP({1,2,3})− U 3DP({2,3}) = 150.44 and U 3DP({1,2})−
U 3DP({1}) = 149.52, contradicting submodularity. □

Proof of Theorem 5 For simplicity, we will occasionally express U 3DP and L3DP only as functions of K, with the

understanding that A is fixed.

Part i) and ii) With the convexity of U 3DP in K established in Lemma 3, we derive a lower bound on U 3DP as follows:

U 3DP(K) ≥ U 3DP(0)+Kη=
∑
j∈A

U0
j +K E [λ(D,s,0)] (59a)

=
∑
j∈A

U0
j −K ED,s

[
max
j∈A

(
vj − c3DP

j

)
I
{
[Dj − q̄0j sj ]

+ > 0
}]

. (59b)

Here, η in Eq. (59a) is the largest subgradient of κ 7→U 3DP(κ) at κ= 0, and the inequality in Eq. (59a) follows from

the subgradient inequality of U 3DP. Meanwhile, λ(D,s,0) in Eq. (59a) corresponds to the λ from Eq. (25), defined

under y =D− q̄0 ◦ s and K = 0 for some D and s, making it the largest subgradient of κ 7→ V 3DP(D− q̄0 ◦ s, κ) at

κ = 0 by construction (see Remark 1). Applying Danskin’s theorem to U 3DP, we obtain η = E [λ(D,s,0)], validating

the equality in Eq. (59a), while Eq. (59b) follows directly from the construction of λ(D,s,0) in Eq. (25).
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Finally, defining the right-hand side of (59b) as L3DP(K) completes the proof of part (i). Part (ii) then follows taking

the limit K→ 0 on both sides of Eq. (59b).

Part iii) The first term in (14) is trivially modular in A, therefore to prove supermodularity of L3DP in A, it is suffice

to show that the following function is submodular in A:

E(A) ≡ ED,s

[
max
j∈A

r3DP
j I

{
D̄⋆

j > 0
}]

(60)

where r3DP
j ≡ vj − c3DP

j and D̄⋆
j ≡ [Dj − q̄0j sj ]

+. Note that:

E(A) = ED,s

[∑
A′⊆A

I

{
D̄⋆

j > 0,∀j ∈A′,

D̄⋆
j = 0,∀j ∈A\A′

}(
max
j∈A′

r3DP
j

)]
=
∑
A′⊆A

P

(
D̄⋆

j > 0,∀j ∈A′,

D̄⋆
j = 0,∀j ∈A\A′

)(
max
j∈A′

r3DP
j

)
Let B ⊆N be an arbitrary set that A⊆B, and let i∈N \B, first we have

E(A) =
∑
A′⊆A

[
P

(
D̄⋆

j > 0,∀j ∈A′ ∪{i},

D̄⋆
j = 0,∀j ∈A\A′

)
+P

(
D̄⋆

j > 0,∀j ∈A′,

D̄⋆
j = 0,∀j ∈ (A\A′)∪{i}

)](
max
j∈A′

r3DP
j

)
Note that

E(A∪{i}) =
∑
A′⊆A

P

(
D̄⋆

j > 0,∀j ∈A′ ∪{i},

D̄⋆
j = 0,∀j ∈A\A′

)
max

{
r3DP
i , max

j∈A′
r3DP
j

}

+
∑
A′⊆A

P

(
D̄⋆

j > 0,∀j ∈A′,

D̄⋆
j = 0,∀j ∈ (A\A′)∪{i}

)(
max
j∈A′

r3DP
j

)
Hence

E(A∪{i})−E(A) =
∑
A′⊆A

P

(
D̄⋆

j > 0,∀j ∈A′ ∪{i},

D̄⋆
j = 0,∀j ∈A\A′

)
max

{
0, r3DP

i −max
j∈A′

r3DP
j

}
≥ 0 (61)

We can similarly obtain

E(B∪{i})−E(B) =
∑
B′⊆B

P

(
D̄⋆

j > 0,∀j ∈B′ ∪{i},

D̄⋆
j = 0,∀j ∈B \B′

)
max

{
0, r3DP

i −max
j∈B′

r3DP
j

}
≥ 0 (62)

To show the submodularity of H , we need to prove that

E(A∪{i})−E(A) ≥ E(B∪{i})−E(B)

Notice that from (61) we have

E(A∪{i})−E(A)

=
∑
A′⊆A

∑
E⊆B\A

P

(
D̄⋆

j > 0, ∀j ∈A′ ∪E ∪{i},

D̄⋆
j = 0, ∀j ∈ (A\A′)∪ [(B \A) \ E ]

)
max

{
0, r3DP

i −max
j∈A′

r3DP
j

}

=
∑
B′⊆B

P

(
D̄⋆

j > 0,∀j ∈B′ ∪{i},

D̄⋆
j = 0,∀j ∈B \B′

)
max

{
0, r3DP

i − max
j∈B′∩A

r3DP
j

}
where the second equality follows from the fact that any B′ ⊆ B can be uniquely decomposed into two subsets, one

contained in A and the other in B \A. Combine this result with (62), we obtain

E(A∪{i})−E(A)− [E(B∪{i})−E(B)]

=
∑
B′⊆B

P

(
D̄⋆

j > 0,∀j ∈B′ ∪{i},

D̄⋆
j = 0,∀j ∈B \B′

)max

{
0, r3DP

i − max
j∈B′∩A

r3DP
j

}
−max

{
0, r3DP

i −max
j∈B′

r3DP
j

}
︸ ︷︷ ︸

≥0, since B′ ∩A⊆B′

 ≥ 0

Thus we have proven the submodularity of E(A) hence the supermodularity of L3DP in A. □
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Proof of Proposition 4 For convenience, throughout this proof, we use the following notations:

r3DP
j ≡ vj − c3DP

j , D̄⋆
j ≡ [Dj − q̄0j sj ]

+, E(A)≡ED,s

[
max
j∈A

r3DP
j I

{
D̄⋆

j > 0
}]

. Part i) Let A⊆N and K ≥ 0 be given, then

E(A) ≤
(
max
j∈N

r3DP
j

)
ED,s

[
max
j∈A

I
{
D̄⋆

j > 0
}]

=

(
max
j∈N

r3DP
j

)
P
(
∃j ∈A : D̄⋆

j > 0
)
, (63)

which show that L̂3DP(A,K) is a lower bound of L3DP(A,K).

Part ii) Denote the right-hand-side of (63) as Ê(A), then to show the supermodularity of L̂3DP(A,K), it suffices to

prove that Ê(A) is submodular. Let A and B be subsets of N so that A⊆B and let i∈N \B, then

Ê(A∪{i})− Ê(A)−
[
Ê(B∪{i})− Ê(B)

]
=

(
max
j∈N

r3DP
j

)
P
({

D̄⋆
j = 0,∀j ∈A

} ⋂ {
D̄⋆

i = 0
} ⋂ {

∃j ∈B \A s.t. D̄⋆
j > 0

})
≥ 0

This verifies that Ê is submodular, hence L̂3DP is supermodular in A.

Part iii) From (63), it is trivial to show that L3DP = L̂3DP if r3DP
j are identical across j ∈N .

Part iv For ease of notation, we define:

Ẽ(A, λ) ≡ 1

λ
log

(∑
j∈A

[
P
(
D̄⋆

j = 0
)
+P

(
D̄⋆

j > 0
)
eλrj

])
(64)

To prove that L3DP(A,K)≥ L̃3DP(A,K,λ) for all A⊆N ,K ≥ 0 and λ > 0, it suffices to show that Ẽ(A, λ)≥E(A)
for all λ> 0. Specifically, first note that for any collection of random variables {Xj : j ∈A}, it holds that:

exp

(
λE
[
max
j∈A

Xj

])
≤ E

[
exp

(
λmax

j∈A
Xj

)]
= E

[
max
j∈A

eλXi

]
≤
∑
j∈A

E
[
eλXj

]
Applying logarithm for both sides gives us:

E
[
max
j∈A

Xj

]
≤ 1

λ
log

(∑
j∈A

E
[
eλXj

])
(65)

Substituting Xj in Eq. (65) with r3DP
j I

{
D̄⋆

j > 0
}

, the left-hand side becomes E(A) as defined in Eq. (60), while the

right-hand side corresponds to Ẽ(A, λ). Therefore, we have shown that Ẽ(A, λ)≥E(A).
Part v) To prove that L̃3DP(A,K,λ) is supermodular in A, it suffices to show that Ẽ(A, λ) defined in Eq. (64) is

submodular in A. Note that for arbitrary S ⊆N and i ̸∈ S , it holds that:

Ẽ(S ∪{i}, λ)− Ẽ(S, λ) = 1

λ
log

(
1+

P
(
D̄⋆

i = 0
)
+P

(
D̄⋆

i > 0
)
eλr

3DP
i∑

j∈S [P
(
D̄⋆

j = 0
)
+P

(
D̄⋆

j > 0
)
eλr

3DP
j ]

)
. (66)

It follows that the right-hand side of Eq. (66) decreases with |S|, implying that Ẽ(A, λ) is submodular in A. □

Proof of Proposition 5 and Proposition 6. Proposition 5 has already been established in Lemma 5, while Propo-

sition 6 directly follows from the reformulation of V 3DP in Lemma 5. □

Appendix B: Implementation Details

In this section, we provide the following algorithms whose main steps are omitted:

• Benders decomposition for solving MIO (12), introduced in Section 4.2.

• Local search algorithm for the heuristic scheme Algorithm 1 outlined in Section 5.2.

• Projected SGD for U 3DP under fixed A, introduced in Section 5.4).
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Algorithm 3 Benders Cut Generation for Algorithm 4

Require: From Algorithm 4, inputA(t),K(t),x(t),q3DP(t, i), D̄ti and (Di,si) for all i= 1 . . . S.
1: for i=1,. . . , S do

γti =

{
−max

{
vj − c3DP

j | D̄ti
j > 0, q3DP

j (t, i)< D̄ti
j , xj(t) = 1

}
if

∑
j∈A(t)

q3DP
j (t, i) =K(t)

0 otherwise.

2: for j = 1, . . . , |A| do

(
αti

j , βti
j , σti

j

)

=



(0, 0, 0) if xj(t) = 0

(hjM, hjsij , −hj(Di
j +M)) if xj(t) = 1, D̄ti

j ≤ 0

(vjM, −vjsij , vj(Di
j −M)) if xj(t) = 1, D̄ti

j > 0, q3DP
j (t, i)< D̄ti

j

(−(γti− c3DP
j )M, (γti− c3DP

j )sij , −(γti− c3DP
j )(Di

j −M)) otherwise.

3: end for
4: end for
5: return (γti,αti,βti,σti) for i= 1, . . . , S.

Algorithm 4 Benders Decomposition for MIO (12)
Require: A collection of scenarios {(si,Di) : i= 1 . . . S} each assigned with probability Pi. Stopping criteria ε > 0.
1: Initialize with some K(0)≥ 0,x(0)∈ {0,1}n and q(0)≥ 0. Set UB(0) =∞ and LB(0) =−∞.
2: for t= 0,1, . . . do

/— — — Solve Master Problem — — — /

3: Let {(γτ ,ατ ,βτ , στ ) : τ ≤ t− 1} be given so that we can solve the master problem

min
x∈{0,1}n,K≥0,q,θ

C3DP(K)+
n∑

j=1

(1−xj)U
DB
j +

n∑
j=1

cjqjEsj + θ

s.t. 0≤ qj ≤Mxj , ∀j ∈N

στ + γτK+x⊤ατ + q⊤βτ ≤ θ, ∀τ = 1 . . . t− 1

(67)

4: Denote its optimal solution as (K(t),x(t),q(t), θ(t)) and its optimal value as LB(t).

/— — — Update Global Upper Bound UB(t) — — — /

5: LetA(t)≡ {j ∈N : xj(t) = 1} and denote D̄ti
j ≡Di

j − qj(t)sij .
6: for i= 1, . . . , S do
7: Apply Algorithm 2 with inputA=A(t),K =K(t) and yj = D̄ti

j .
8: Denote the output q̄3DP as q3DP(t, i) and the output V 3DP value as V 3DP

ti .
9: end for

10: Update UB(t) =min
{
UB(t− 1),C3DP(K(t))+

∑n
j=1

[
(1−xj(t))UDB

j + cjEsjqj(t)
]
+

∑S
i=1

PiV 3DP
ti

}
.

/— — — Check Termination — — — /

11: if UB(t)− LB(t)< ε then
12: Terminate the algorithm.
13: else

/— — — Add a New Benders Cut — — — /
14: Apply Algorithm 3 to compute (γti,αti,βti,σti) for i= 1, . . . , S and denote

γt ≡
S∑

i=1

Piγ
ti, αt ≡

S∑
i=1

Piα
ti, βt ≡

S∑
i=1

Piβ
ti, σt ≡

S∑
i=1

n∑
j=1

Piσ
ti
j .

15: end if
16: end for
17: return The latest K(t),q(t),x(t) at termination.
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B.1. Benders Methods in Section 4.2

We outline the Benders decomposition for the mixed-integer program (12), beginning with a subroutine to generate

Benders cuts for the main algorithm.

B.2. Local Search Algorithm in Section 5.2

In our heuristic framework for optimizing A and K (Algorithm 1), one of the two key steps is approximating the

“inner-min” problem in Problem (18) by replacing U 3DP with L3DP:

min
A⊆N

{
L3DP(A,K)+

∑
j∈Ac

(CDB
j +UDB

j )

}
. (68)

Here, we detail an efficient solution approach, starting with a reformulation of Problem (68). This reformulation

interprets the objective as the firm’s total profit, which we reasonably assume to be positive—a common requirement

for approximation guarantees in combinatorial optimization. Specifically, we obtain it with the following steps:

−L3DP(A,K)−
∑
j∈Ac

(CDB
j +UDB

j )+
∑
j∈N

vjE [Dj ] ←− Reverse the sign and add term
∑
j∈N

vjE [Dj ]

= −
∑
j∈A

U0
j +E(A)K −

∑
j∈N

(CDB
j +UDB

j )+
∑
j∈A

(CDB
j +UDB

j )+
∑
j∈N

vjE [Dj ] ←− Apply the specific form of L3DP

=
∑
j∈N

(vjEDj −CDB
j −UDB

j )+
∑
j∈A

(CDB
j +UDB

j −U0
j )+E(A)K ←− Re-arrange terms (69)

where we let E(A) to be defined as follows (recall that this is submodular in A from our analysis of Theorem 5)

E(A) ≡ ED,s

[
max
j∈A

(vj − c3DP
j )I

{
[Dj − q̄0j sj ]

+ > 0
}]

.

Additionally, denote:

I ≡
∑
j∈N

(
vjEDj −UDB

j −CDB
j

)
−C3DP(K), ∆j ≡UDB

j +CDB
j −U0

j . (70)

Finally, we arrive at the following reformulation of Problem (68), which maximizes a non-monotone positive-valued

submodular function:

max
A⊆N

I +
∑
j∈A

∆j +E(A)K (71)

The algorithm shown below is known to terminate with a solution Â whose objective value is at least 1
3

of the optimal

value of Problem (71) (see (Feige et al. 2011)).

Algorithm 5 Approximate Optimal Policy A under Fixed K > 0

Require: K > 0, {∆j}nj=1 (from Eq. (70)), initialA0, and stopping criterion ϵ > 0. Initialize with t= 0.
1: while true do
2: If there exists i∈N \At such that

K [E(At ∪{i})−E(At)]+∆i >
ϵ

n2

I +
∑
j∈At

∆j +E(At)K


then updateAt+1 =At ∪{i} and repeat this step with t← t+1. Otherwise, proceed to what follows.

3: If there exists i∈At such that:

K [E(At \ {i})−E(At)]−∆i >
ϵ

n2

I +
∑
j∈At

∆j +E(At)K


then updateAt+1 =At \ {i}, set t← t+1, and continue the loop. Otherwise, exit.

4: end while
5: return The latestAt at termination.



He, Gupta and Vyas: 3D-Printing for Supply Chain Resilience
Article submitted to 47

B.3. Projected SGD in Section 5.4

We present the pseudo-code for the projected SGD method outlined in Section 5.4. For generality, the algorithm we

choose to present here also optimizes K for Problem (1). If only U 3DP(A,K) under a fixed K is of interest, this can be

achieved by setting K(t)≡K in the pseudo-code.

Throughout the algorithm, we assume access to a data sequence {(st,Dt) : t ≥ 0}, either sampled offline from the

known distribution of (s,D) or collected in real-time. Additionally, C3DP is assumed convex with subdifferential ∂C3DP.

Algorithm 6 Projected SGD: evaluating U 3DP and optimizing K under fixed A
Require: Initialize q(0)≥ 0 and K(0)≥ 0, with step size ρt > 0 at step t. Set t= 0.
1: while true do
2: Compute q3DP(t) as the output q̄3DP of Algorithm 2 with input y=Dt = q(t) ◦ st.
3: Compute ηy(t) and ηK(t) as the ηy and ηK defined in Proposition 5 under q̄3DP = q3DP(t), y=Dt− q(t) ◦ st, and K =K(t).
4: for j = 1, . . . , |A| do
5: Update qj(t+1) =

[
qj(t)− ρt

(
cjEsj − ηy

j (t)s
t
j

) ]+ .
6: end for
7: Update K(t+1) = [K(t)− ρt (γt + gt)]+ where gt ∈ ∂C3DP(K(t)) is a subgradient of C3DP.
8: Terminate when a stopping rule is met at step t, otherwise proceed to step t← t+1.
9: end while

10: return The latest q(t) and K(t) at termination.

Appendix C: Numerical Experiment Details

C.1. Additional Calibration Details

C.1.1. 3DP Costs. The unit sourcing cost for product j is estimated as κj = 0.006wj , where wj is the weight in

grams. This calculation assumes a plastic material cost of $0.005/gram, marked up by 1.2 to account for additional costs.

As mentioned in the main text, we let ccap = Q3DP

M3DP , where Q3DP and M 3DP represent the monthly per printer deprecia-

tion cost (in $) and the monthly material output per printer (in grams). Based on a 10-year life-span and current printer

costs, we let Q = $41.67. The monthly material output M 3DP is calculated as M 3DP = δ3DPS3DPW 3DPH3DPT/ρ3DP,

where W 3DP is the nozzle width (typically 0.4 cm), H3DP is the layer thickness (set to 0.01 cm), S3DP is the nozzle

movement speed (in cm/s), T is the total number of seconds in a month, and δ3DP is the density of the non-metal printing

material (typically 1 gram/cm3). This formula computes the total weight of material a printer can output during contin-

uous operation for a month, adjusted by the infill density ρ3DP = 0.5, to account for the fact that 3D-printed objects are

typically not solid.

C.1.2. Dedicated Backup Costs. We assume the sourcing cost from a dedicated backup is 1.5× the unit sourcing

cost from a primary supplier, ensuring it is a) cheaper than printing and b) more expensive than primary sourcing.

We similarly let CDB
j be 75% of the primary sourcing cost times the expected demand. The choice of 75% reflects

conversations with industry professoinals that reserving capacity in high-volume, low-margin products usually entails a

large retainer fee to offset the lost revenue the backup supplier could have earned by serving another firm.
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