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We propose a Bayesian framework for assessing the relative strengths of data-driven ambiguity sets in dis-

tributionally robust optimization (DRO) when the underlying distribution is defined by a finite-dimensional

parameter. The key idea is to measure the relative size between a candidate ambiguity set and a specific

asymptotically optimal set. As the amount of data grows large, this asymptotically optimal set is the smallest

convex ambiguity set that satisfies a novel Bayesian robustness guarantee that we introduce. This guarantee

is defined with respect to a given class of constraints and is a Bayesian analog of more common frequentist

feasibility guarantees from the DRO literature. Using this framework, we prove that many popular existing

ambiguity sets are significantly larger than the asymptotically optimal set for constraints that are concave

in the ambiguity. By contrast, we construct new ambiguity sets that are tractable, satisfy our Bayesian

robustness guarantee and are at most a small, constant factor larger than the asymptotically optimal set;

we call these sets Bayesian near-optimal. We further prove that asymptotically, solutions to DRO models

with our Bayesian near-optimal sets enjoy strong frequentist robustness properties, despite their smaller

size. Finally, our framework yields guidelines for practitioners selecting between competing ambiguity set

proposals in DRO. Computational evidence in portfolio allocation using real and simulated data confirms

that our framework, although motivated by asymptotic analysis in a Bayesian setting, provides practical

insight into the performance of various DRO models with finite data under frequentist assumptions.
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1. Introduction10

Many applications in decision-making under uncertainty can be modeled as optimization problems11

where constraints may depend on both the decision variables x and the distribution P⇤ of some12

1
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random variables ⇠̃. For example, in inventory management problems, constraints on the probability1

of stock-outs depend on both the ordering policy (x) and the distribution of future demand (P⇤).2

Generically, we can write such constraints as g(P⇤
,x) 0 for some function g.3

The di�culty is that P⇤ is rarely known in practice. At best, we have a dataset S = {⇠̂
1
, . . . , ⇠̂

N
}4

drawn from P⇤. The distributionally robust optimization (DRO) approach to such problems is to5

construct an ambiguity set P(S) of potential distributions P and replace the constraint g(P⇤
,x) 06

with the robust constraint7

sup
P2P(S)

g(P,x) 0, (1)

which depends on P(S). Despite its seeming complexity, Eq. (1) is computationally tractable for8

many combinations of g and P(S) (Ben-Tal et al. (2015), Wiesemann et al. (2014)).9

Since the seminal work of Scarf (1958) in inventory control, DRO models with di↵erent P(S)10

have been proposed for supply-chain design, revenue management, finance, and other applications11

(see, e.g., Klabjan et al. (2013), Lim and Shanthikumar (2007), Postek et al. (2016)). Empirical12

evidence confirms that DRO o↵ers benefits over methods that neglect ambiguity in the unknown13

P⇤. This combination of tractability and e↵ectiveness has fueled the increasing popularity of DRO14

in operations management. However, empirical evidence also suggests that the performance of DRO15

models crucially depends on the choice of P(S).16

This last observation raises several questions: Is there a “best” possible P(S)? What does “best”17

mean? If we select an alternative, perhaps simpler ambiguity set for numerical tractability, what18

is the loss in performance relative to this “best” possible set? Are there simple guidelines for19

constructing ambiguity sets, selecting between competing proposals and formulating DRO models?20

In this work, we propose a novel Bayesian framework for analyzing ambiguity sets in data-driven21

DRO to answer these questions. Our analysis requires two key assumptions:22

Assumption 1. P⇤
is defined by a finite-dimensional parameter, i.e., P⇤ = P✓⇤ for some ✓⇤

223

⇥✓Rd
.24

Assumption 2. For any fixed x, the function g is closed and concave in ✓.25
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Let G denote the set of functions satisfying A2.1

A1 is su�ciently general to include a number of special cases of DRO, including when P✓⇤2

belongs to a parametric class such as normal distributions; when P✓⇤ is non-parametric but has3

known, finite, discrete support; or when P✓⇤ is a finite mixture model with known components.4

Importantly, A1 allows us to rewrite Eq. (1) (by redefining g and P(S)) as5

g(✓,x) 0 8✓ 2P(S), with P(S)✓Rd
. (2)

A2 is also mild. Practically, many constraints found in DRO applications are concave in ✓ (cf.6

Ex. 1). This observation may not be surprising, as determining the feasibility of a fixed x in Eq. (2)7

for non-concave g requires maximizing a non-concave objective and may be numerically challenging.8

Under A1 and A2, it is possible to meaningfully define a notion of “best” and quantify the9

relative strength of di↵erent sets. The key idea is to identify the smallest convex ambiguity set that10

satisfies a novel Bayesian robustness guarantee (see Def. 2). By smallest, we mean that the set is a11

subset of any other convex set which also satisfies this guarantee. We use this set as a benchmark12

to assess the relative size of other ambiguity sets.13

We define our Bayesian robustness guarantee in Sec. 2. It is defined with respect to a given class14

of functions g and is a Bayesian analogue of a standard (frequentist) guarantee (Def. 1) used to15

measure the robustness of sets in the literature (Ben-Tal et al. 2009, Bertsimas et al. 2017a,b).16

Our use of size to proxy performance, however, is less standard and motivated by Eq. (2). If one17

ambiguity set is a subset of another, the smaller set always yields solutions with better objective18

values. This improvement entails no loss in robustness if both sets satisfy the same robustness19

guarantee over the same class of functions. In this sense, the smallest set that satisfies this guarantee20

is “optimal.” To emphasize our Bayesian robustness guarantee, we call such a set Bayesian optimal.21

We prove that although a Bayesian optimal set for G need not exist for finite N , it always exists22

under mild assumptions as N !1. For many popular ambiguity sets, we can calculate their size23

relative to this asymptotically Bayesian optimal set explicitly. Intuitively, this relative size provides24

a good metric for choosing between competing proposals when N is large.25
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Perhaps surprisingly, we prove that popular proposals for ambiguity sets based upon frequentist1

confidence regions are relatively large. This includes, for example, the �-divergence sets of Ben-2

Tal et al. (2013) and the elliptical set of Zhu et al. (2014). Indeed, the relative ratio of such3

ambiguity set’s size to the asymptotically Bayesian optimal set’s size scales like ⌦(
p

d). (Recall that4

d = dim(✓).) By contrast, we construct novel ambiguity sets that satisfy our Bayesian robustness5

property over G and are at most a small, constant factor (independent of d) larger than the6

asymptotically Bayesian optimal set for G. We call these new sets Bayesian near-optimal for G.7

This distinction in size has an important practical consequence: When d is moderate to large,8

replacing the ambiguity set in many popular DRO models with one of our Bayesian near-optimal9

variants can improve performance while providing a similar robustness guarantee. We say “simi-10

lar” because, strictly speaking, our robustness guarantee holds under Bayesian assumptions, while11

traditional ambiguity sets o↵er a frequentist guarantee.12

Although developing a complete theory that reconciles the Bayesian and frequentist perspectives13

on ambiguity set construction is still open, we provide initial results comparing these viewpoints14

in Sec. 5. We highlight ways in which traditional (frequentist) ambiguity sets provide additional15

protection beyond our near-optimal Bayesian variants and also argue that in practical applications,16

this additional protection may be unnecessary, depending on one’s goals. In particular, we prove17

that as N ! 1, the solutions to DRO models with our Bayesian ambiguity sets often satisfy18

strong frequentist robustness properties, similar to the solutions using frequentist variants, despite19

our sets’ smaller sizes. In Sec. 6, we study this phenomenon numerically and show that even20

for moderate N , solutions to DRO models using our Bayesian near-optimal sets often exhibit21

good frequentist behavior. Collectively, these features suggest Bayesian near-optimal sets may be22

attractive alternatives to traditional ambiguity sets for some applications.23

A key idea in our work is that our near-optimal constructions exploit the concave structure of g.24

By contrast, popular frequentist proposals for ambiguity sets based on confidence regions do not25

exploit any such structure (Bertsimas et al. 2017b). While some authors have exploited concavity26
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to prove certain DRO models are tractable (Postek et al. (2016)), to our knowledge, we are the1

first to exploit concavity in constructing ambiguity sets. This concavity is crucial to our results. We2

prove that any ambiguity set that satisfies our Bayesian robustness property for even one specific3

convex, quadratic function of the uncertainty must be approximately as large as frequentist sets for4

large N . In other words, without concavity, the size advantage of our near-optimal sets disappears.5

6

Our results parallel ideas in traditional robust optimization. In that context, it is well known7

that one can construct uncertainty sets that satisfy a robustness guarantee for concave g and that8

these sets are generally much smaller than frequentist confidence regions (see, e.g., Ben-Tal et al.9

(2009), Chen et al. (2007), Bertsimas et al. (2017a)). There is, however, no notion of an “optimal”10

set and no theoretical quantification of how much smaller these sets may be.11

To the best of our knowledge, this parallel has not been utilized in constructing ambiguity sets12

for DRO. A possible explanation for this gap is that it is mathematically challenging to apply13

techniques from traditional robust optimization to the frequentist framework for DRO. One of our14

contributions is to show that the Bayesian viewpoint overcomes this di�culty.15

Finally, we note that there is a stream of literature relating traditional and distributionally16

robust optimization to regularization in statistics, e.g., Xu and Mannor (2012), Fertis (2009), Xu17

et al. (2012). By convex duality, there is a bijection between ambiguity sets in DRO and positively18

homogenous, convex regularizers (see, e.g., Gotoh et al. (2015), Lam (2016)). Thus, insofar as our19

results concern picking “good” ambiguity sets for DRO, they can also be interpreted as picking20

“good” regularizers via this bijection.21

To summarize our main contributions:22

1. We prove that as N !1, there exists a smallest-possible, convex ambiguity set that satisfies23

a Bayesian analogue of a common frequentist robustness property for all g 2 G. We term this24

set asymptotically Bayesian optimal for G. Such sets need not exist for finite N .25

2. We propose new ambiguity sets that, for finite N , satisfy our Bayesian robustness property26

for all g 2 G and are tractable. Solutions to DRO problems using our new sets converge to27



Gupta: Near-Optimal Bayesian Ambiguity Sets

6 Article submitted to Management Science; manuscript no.

solutions of the full-information stochastic optimization problem (where P✓⇤ is known) as1

N !1. Most importantly, we prove that our new sets are at most a small, explicit, constant2

factor larger than the Bayesian asymptotically optimal set as N ! 1. We term such sets3

Bayesian near-optimal for G.4

3. By contrast, we prove that any ambiguity set that satisfies the frequentist guarantee for all5

g 2 G must be much larger; there exist directions in which these sets are at least ⌦(
p

d) times6

larger than the asymptotically Bayesian optimal set. When P✓⇤ has known, finite, discrete7

support, we strengthen this result, showing that the class of �-divergence ambiguity sets is at8

least ⌦(
p

d) times larger than the Bayesian asymptotically optimal set in every direction.9

4. We prove that under mild assumptions, as N ! 1, solutions to DRO problems with our10

Bayesian sets are feasible with respect to the true (unknown) constraint with high frequentist11

probability. Thus, for large N , Bayesian near-optimal sets may o↵er less conservative solutions12

than frequentist sets while providing solutions with similar frequentist properties.13

5. We prove that concavity is essential to the above size distinction. Specifically, if we require14

that an ambiguity set satisfies our Bayesian robustness guarantee for a particular convex,15

quadratic function, then the set must be comparably large to existing frequentist proposals.16

6. We provide computational evidence in portfolio allocation using real and simulated data, con-17

firming that despite being motivated by Bayesian assumptions and asymptotic analysis, our18

theoretical results give practical insight into the empirical performance of DRO models in fre-19

quentist settings for moderate to large N . In particular, our near-optimal sets can significantly20

outperform existing proposals in this application. We propose general guidelines for selecting21

ambiguity sets in Appendix C.22

1.1. Notations23

Ordinary lowercase letters (e.g., pi, ✓i) denote scalars, boldfaced lowercase letters (e.g., p, ✓) denote24

vectors, boldfaced capital letters denote matrices (e.g., A), and calligraphic capital letters (e.g.,25

X , S) denote sets. A superscript tilde (e.g., ✓̃i, ✓̃, S̃) denotes a random quantity. Let ei denote the26

i-th coordinate vector and e denote a vector of ones.27
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For any P ✓ Rd and ↵ > 0, let P + v ⌘ {p+ v : p 2 P} denote translation and ↵P ⌘ {↵p : p 21

P} denote dilation. Let ri(P) = {✓ 2P : 8z2P,9� > 1 s.t. �✓+ (1��)z2P} denote the relative2

interior of P (cf. Bertsekas 1999). Finally, for any positive definite matrix M, define the norm3

kykM ⌘
p
yTM�1y. When M is positive semidefinite and a generalized inverse M�1 is clear from4

context, let kykM denote the corresponding semi-norm.5

2. Model Setup and Background6

We study a single constraint of the form Eq. (2) (uncertain objectives can be studied via an7

epigraphic formulation). Let X (P) = {x : g(✓,x)  0,8✓ 2 P}. Let ⇠̃ ⇠ P✓⇤ be a random variable,8

where P✓⇤ is defined by a fixed, unknown ✓⇤
2⇥✓Rd.1 Throughout, we assume ⇥ is convex. Let9

S̃ = {⇠̃
1
, . . . , ⇠̃

N
} denote our data, where S̃ ⇠ PS|✓⇤ and PS|✓⇤ is fully defined by ✓⇤. For example,10

when S̃ is drawn i.i.d. from P✓⇤ , PS|✓⇤ =
QN

j=1 P✓⇤ . Since our key results will not require this11

independence, we prefer the notation PS|✓⇤ , and when ✓⇤ clear from context, we write PS .12

As mentioned, we adopt a Bayesian viewpoint of DRO, assuming ✓⇤ is the realization of a13

random variable ✓̃⇠ P✓̃, where P✓̃ is a prior supported on ⇥. For any S, P✓̃|S denotes the posterior14

distribution of ✓̃. Most of our results do not depend on the choice of prior. In practice, one might15

take P✓̃ to be a suitably uninformative prior, such as the uniform distribution if ⇥ is compact.16

Ambiguity sets in data-driven DRO are functions P(·) that send S 7!P(S)✓⇥. Their “robust-17

ness” is typically quantified via a feasibility guarantee. Fix any ✏, 0 < ✏ < 0.5.18

Definition 1 (Frequentist Feasibility). The function P(·) satisfies the frequentist feasi-19

bility guarantee at level ✏ for g 2 G if PS|✓⇤

⇣
g(✓⇤

,x) 0, 8x2X (P(S̃))
⌘
� 1� ✏ for any ✓⇤

2⇥.20

Def. 1 is a key motivation for DRO; it asserts that any x that is robust feasible with respect to21

P(S̃) in Eq. (2) is feasible with respect to the unknown P✓⇤ with probability at least 1� ✏. Ideally,22

this guarantee will hold for a large class of functions g. For example, Ben-Tal et al. (2013) shows23

that �-divergence sets satisfy this property for all measurable g whenever P✓⇤ has known, finite,24

discrete support, while Delage and Ye (2010) shows that a specific ambiguity set based on the first25

1 We briefly discuss extensions of our main results to the case where ✓⇤ is infinite dimensional in Appendix B.
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two moments of a distribution satisfies this property for all measurable g whenever P✓⇤ has bounded1

support. Similarly, Bertsimas et al. (2017b) presents several ambiguity sets based on hypothesis2

tests, with each set satisfying this property for di↵erent classes of g under various assumptions on3

P✓⇤ , including all measurable functions, all separable functions, and certain polynomial functions.4

Next, we introduce a novel Bayesian analogue of Def. 1.5

Definition 2 (Posterior Feasibility). The set P(S) satisfies the posterior feasibility guar-6

antee at level ✏ for g if P✓̃|S

⇣
g(✓̃,x) 0

⌘
� 1� ✏ for all x 2 X (P(S)). The function P(·) satisfies7

the posterior guarantee if P(S) satisfies the posterior guarantee for all S.8

The posterior feasibility guarantee also asserts that any x that is robust feasible with respect to9

P(S) will be feasible with respect to the unknown P✓⇤ with probability at least 1�✏. The di↵erence10

from Def. 1 is the meaning of this probability. The frequentist probability in Def. 1 fixes the11

ground-truth ✓⇤ and considers the probability over repeated (random) draws of potential datasets12

S̃, i.e., PS|✓⇤ . Thus, the frequentist framework is sometimes described as “repeated sampling.” By13

contrast, the posterior probability in Def. 2 fixes the realized S and considers the probability over14

the residual uncertainty in the unknown realization of ✓̃, i.e., P✓̃|S .15

The relative merits of frequentist vs. Bayesian modeling have been fiercely debated in the statis-16

tics literature (see Efron and Hastie (2016, Chapt. 2, 3) for a modern viewpoint and references).17

From a DRO perspective, an example may help to clarify some modeling consequences: Consider18

an inventory manager stocking many similar products based upon historical demand data. Demand19

for product k follows P
✓̃
k , where ✓̃

k
is unknown. The manager’s a priori knowledge about typical20

demand profiles, e.g., that demand for a typical product is between 10 and 20 units per month, is21

accurately encoded by the prior P✓̃, i.e., she assumes ✓̃
k

are realizations of independent draws from22

P✓̃. For each k, the manager has historical data S
k, which she models as a realization of S̃k

⇠ PS|✓̃k .23

Finally, suppose Eq. (2) is a constraint controlling the probability of a stockout. Consequently, for24

each k, she uses data S
k to form P(Sk), solves Eq. (2), and stocks accordingly.25

Fix a ground truth parameter ✓⇤ and only consider products k with ✓̃
k
= ✓⇤. For what proportion26

of these products do we expect her to stock-out? This setup approximately mirrors the frequentist27
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framework; the ground truth ✓⇤ is fixed, and we observe many data draws S
k, each from PS|✓⇤1

(repeated sampling). If P(·) satisfies the frequentist guarantee and there are many products with2

✓̃
k
= ✓⇤, then we expect a stockout on no more than ✏% of these products.3

Now, instead, fix some potential data realization S and only consider products k with S
k = S.4

For what proportion of these products do we expect her to stock-out? This setup approximately5

mirrors the Bayesian framework; the data S are fixed, and we consider residual uncertainty in each6

✓̃
k

as a realization of ✓̃. If P(·) satisfies the posterior feasibility guarantee and there are many7

products with S
k = S, then we expect a stockout on no more than ✏% of these products.8

Arguably, both guarantees have limited relevance since in real world scenarios, few products9

may satisfy ✓̃
k

= ✓⇤ or S
k = S. However, the guarantees are useful insofar as ✓⇤ and S describe10

a product’s specific context. Depending on the application, either guarantee may be of interest.11

Sec. 5 provides a more formal comparison of these two guarantees in context of DRO.12

2.1. Tractability of Robust Constraints13

The tractability of Eq. (2) under A2 is well studied. Ben-Tal et al. (2015) prove that for non-empty,14

convex, compact P(S) satisfying a mild regularity condition2, Eq. (2) is equivalent to15

9v 2Rd s.t. �
⇤(v| P(S))� g⇤(v,x) 0. (3)

Here, g⇤ denotes the partial concave conjugate of g, and �
⇤(v| P) denotes the support function of16

P. These are respectively defined as17

g⇤(v,x)⌘ inf
✓

�
✓Tv� g(✓,x)

 
, �

⇤(v| P)⌘ sup
✓2P

vT✓.

For many g, including bi-a�ne and conic quadratic representable functions, g⇤(v,x) admits a18

simple, computationally tractable description. (We refer readers to Ben-Tal et al. (2015), Bertsimas19

et al. (2017a), Postek et al. (2016) for details and examples.) Consequently, under A2, to prove20

that Eq. (2) is computationally tractable for any such g, it su�ces to show that we can solve the21

optimization defining �
⇤(v| P(S)) tractably. This optimization only involves linear functions of ✓.22

In what follows, we will say that P(S) is tractable whenever evaluating �
⇤(v| P(S)) is tractable.23

2 An example of a su�cient regularity condition is that ri(P(S))\ ri(dom(g(·,x))) 6= ; for all x.
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2.2. Examples1

We recast some examples from the DRO literature in our framework by specifying P✓̃ and con-2

firming concavity of ✓ 7! g(✓, ·). In what follows, we utilize our framework to assess the strength3

of various ambiguity sets for these examples.4

Example 1 (Finite, discrete support). Suppose ⇠̃ has known, finite, discrete support, i.e.,5

⇠̃ 2 {a1
, . . . ,ad

}, but that P✓⇤(⇠̃ = ai) is uncertain for i = 1, . . . , d. Suppose also that S̃ is drawn6

i.i.d. from P✓⇤ . Ben-Tal et al. (2013), Klabjan et al. (2013), Postek et al. (2016), Bertsimas et al.7

(2017b) study DRO problems involving these unknown probabilities with applications in portfolio8

allocation and inventory management and propose various ambiguity sets P(S).9

We cast this setting in our framework by letting ✓
⇤
j ⌘ P✓⇤(⇠̃ = aj) for j = 1, . . . , d, and ⇥⌘�d =10

{✓ 2Rd
+ : eT✓ = 1}. We adopt a Dirichlet prior for ✓̃. Recall that ✓̃ follows a Dirichlet distribution11

with parameter ⌧ 0 if it admits the probability density f✓̃(✓) = B(⌧ 0)�1
Qd

i=1 ✓
⌧ 0
i�1

i , where ⌧
0
i > 0 for12

all i and B(⌧ 0) is a normalizing constant. The Dirichlet distribution is a conjugate prior in this13

setting, meaning P✓̃|S̃ is also Dirichlet with updated parameter ⌧ , ⌧i = ⌧
0
i +
PN

j=1 I(⇠̂
j
= ai). When14

⌧ 0 = e, the Dirichlet distribution is a uniform distribution, a common uninformative prior.15

As observed in Postek et al. (2016), most common constraints involve g 2 G:16

Expectation and Chance Constraints: For any function v(⇠̃,x), the constraint EP✓ [v(⇠̃,x)]  0 is17

equivalent to
Pd

j=1 ✓jv(aj
,x)  0, which is linear, and therefore concave, in ✓. Chance con-18

straints are a special case of expectations since P✓(v(⇠̃,x) 0) =EP✓ [I(v(⇠̃,x) 0)].19

Conditional Value at Risk and Spectral Risk Measures: For any function v(⇠̃,x), the con-20

ditional value at risk of v(⇠̃,x) at level � is defined by CVaRP✓
� (v(⇠̃,x)) ⌘21

min�

n
� + 1

�
EP✓ [v(⇠̃,x)��]+

o
. Conditional value at risk is a popular risk measure in financial22

applications. Since expectations are linear in ✓, CVaRP✓
� is the minimum of a set of linear23

functions and, hence, concave in ✓. Spectral risk measures are generalizations of CVaRP✓
� .24

Under suitable regularity conditions, a spectral risk measure ⇢(v(⇠̃,x)) can be rewritten25

as
R 1

0
CVaRP✓

� (v(⇠̃,x))⌫(d�) for some measure ⌫ (Noyan and Rudolf 2014). As a positive26

combination of concave functions of ✓, spectral risk measures are also concave.27
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Mean Absolute Deviation: Certain statistical measures are also concave in ✓. For example, the1

mean absolute deviation from the median, EP✓ [|v(⇠̃,x)�Median(v(⇠̃,x))|], can be rewritten2

as min� EP✓ [|v(⇠̃,x)��|], which is the minimum of linear functions in ✓ and, hence, concave.3

There are examples of natural constraints that are not concave in ✓. For example, bounds on4

coe�cient of variation are generally non-concave, although they can sometimes be reformulated to5

be concave (see Postek et al. (2016)).6

Example 2 (Finite mixtures of known distributions). Suppose instead that ⇠̃ follows a7

mixture distribution, i.e., ⇠̃ ⇠
Pd

i=1 ✓
⇤
i Fi, where each Fi is a known distribution function but ✓⇤

28

�d is unknown. Zhu and Fukushima (2009), Zhu et al. (2014) propose ambiguity sets for ✓⇤9

and formulate DRO problems for particular financial applications. In their applications, each Fi10

represents the distribution of asset returns under a possible future market scenario i.11

This example generalizes Ex. 1 and similarly maps to our framework by taking ⇥ = �d. We again12

propose a Dirichlet prior for ✓̃. In this setting, the posterior distribution is not Dirichlet and must13

be determined numerically, e.g., using MCMC methods (Gelman et al. 2014, Chapt. 11-12). Both14

open-source and commercial implementations of these methods are widely available. All examples15

of concave constraints from Ex. 1 remain concave in this setting.16

Exs. 1 and 2 utilize very flexible classes of distributions and are general purpose. Appendix A17

details several other, more specialized examples leveraging parametric distributions, including18

Gaussian and time-series models, assortment optimization under the multinomial logit model, and19

pricing under generalized linear models.20

3. Constructing Bayesian Ambiguity Sets21

We first use A2 to characterize the Bayesian feasibility guarantee geometrically. This theorem was22

proven in a di↵erent context in Bertsimas et al. (2017a).23

Theorem 1. Fix any S and suppose P(S) is non-empty, closed, and convex. Then, P(S) sat-24

isfies the posterior feasibility guarantee for all g 2 G at level ✏ if, and only if,25

P✓̃|S
�
vT ✓̃ �

⇤(v| P(S))
�
� 1� ✏ 8v 2Rd

. (4)
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Leveraging Thm. 1, we adapt the approach of Bertsimas et al. (2017a) for constructing uncertainty1

sets in traditional robust optimization to construct novel Bayesian ambiguity sets in DRO.2

Define VaR1�✏
✓̃|S (v)⌘ inf{t : P✓̃|S(vT ✓̃  t)� 1� ✏} to be the posterior value at risk of vT ✓̃. From3

Eq. (4), P(S) satisfies the posterior feasibility guarantee for all g 2 G at level ✏ if, and only if,4

VaR1�✏
✓̃|S (v) �

⇤(v| P(S)) 8v 2Rd
. (5)

Thus, to construct an ambiguity set that satisfies the posterior feasibility guarantee, it su�ces to 1)5

compute a closed, convex, positively homogenous upper bound �(v) to VaR1�✏
✓̃|S (v) and 2) identify6

the ambiguity set for which �(v) is the support function.37

Recall from Nedic et al. (2003) that, for any two sets,8

P1 ✓P2 () �
⇤(v| P1) �

⇤(v| P2) 8v 2Rd
. (6)

Thus, tighter upper bounds in Eq. (5) yield smaller ambiguity sets. A “tightest” upper bound9

would yield an “optimal” set.10

Definition 3. We say that a P(·) that satisfies the posterior feasibility guarantee at level ✏ for11

all g 2 G is Bayesian optimal for G if, for any S, P(S) is a subset of any other ambiguity set that12

satisfies the posterior feasibility guarantee at level ✏ for that S and all g 2 G.13

Theorem 2. A Bayesian optimal ambiguity set for G at level ✏ exists if, and only if, VaR
1�✏
✓̃|S (v)14

is convex for all S. When it exists, this set is unique and satisfies Eq. (5) with equality.15

Although it is possible to describe su�cient conditions on {P✓ : ✓ 2⇥} for convexity of VaR1�✏
✓̃|S ,16

in practice, these conditions are too restrictive to be useful.4 Typically, VaR1�✏
✓̃|S (v) is non-convex.17

3 The existence of such a set is guaranteed by the bijection between closed, positively homogenous convex functions

and closed, convex sets in convex analysis. See Nedic et al. (2003).

4 For example, one can show that an optimal set exists if P✓ belongs to an exponential family and is log-concave and

symmetric in ✓.
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3.1. A General Construction1

Fortunately, there is a rich literature on upper-bounding VaR1�✏
✓̃|S (v) when it is non-convex. As2

observed in Bertsimas et al. (2017a), any of these bounds can be used to construct an ambiguity3

set that satisfies the posterior guarantee. We illustrate this idea using a bound proven in El Ghaoui4

et al. (2003). In our Bayesian context, given S, the bound is5

VaR1�✏
✓̃|S (v) vTµN +

r
1� ✏

✏

p
vT⌃Nv 8v 2Rd

, (7)

where µN ,⌃N are the posterior mean and covariance of ✓̃ given S. When ⌃N is invertible, we can6

define for any � > 0,7

P
⇤(S,�)⌘

⇢
✓ 2⇥ :

1
p

N
k✓�µNk⌃N

 �

�
. (8)

We will see shortly that for Exs. 1 and 2, ⌃N is not invertible. Indeed, non-invertibility will8

occur whenever the a�ne dimension ⇥ is less than d. To remedy this, suppose ⇥ belongs to9

an r-dimensional a�ne subspace. By possibly permuting the indices, we assume without loss of10

generality that ✓1, . . . ,✓r span this space, i.e., there exists � 2Rd�r, A2R(d�r)⇥r such that11

✓r+1,d =�+A✓1,r, 8✓ 2⇥, (9)

where ✓1,r are the first r components of ✓ and ✓r+1,d are the remaining components. Define12

⌃�1
N ⌘

0

B@
⌃�1

1,r 0

0T 0

1

CA , (10)

where ⌃1,r is the restriction of ⌃N to its first r rows and columns. By construction, ⌃�1
N inverts ⌃N13

on the space spanned by the first r components. When ⌃N is not invertible, we interpret Eq. (8)14

via this generalized inverse. Then, using Eq. (7) in the previous schema yields the following:15

Theorem 3. P
⇤
⇣
·,

q
1�✏
✏N

⌘
satisfies the posterior feasibility guarantee at level ✏ for all g 2 G.16

Remark 1. P
⇤(S,�) is tractable for any � > 0 whenever we can separate over ⇥ tractably (El17

Ghaoui et al. 2003). For example, when ⇥ is a polyhedron or SOCP representable, �
⇤(v| P⇤(S,�))18

is also SOCP representable. When ⇥ =Rd, �
⇤(v| P⇤(S,�)) equals the righthand side of Eq. (7).19



Gupta: Near-Optimal Bayesian Ambiguity Sets

14 Article submitted to Management Science; manuscript no.

Remark 2. Our definition of ⌃�1
N uses the basis e1, . . . ,er. Other bases yield equivalent represen-1

tations P⇤(S,�). Our choice simplifies exposition. Note that kyk⌃N
and kyk⌃�1

N
define semi-norms2

on Rd, but define true norms on the linear subspace spanned by ⇥�✓⇤.3

Eq. (7) is only one of many possible upper bounds for VaR1�✏
✓̃|S (v) that can be used to create an4

ambiguity set. A computational benefit of P⇤(S,�) is that it only depends on the posterior mean5

and covariance, which are easily calculated by MCMC, rather than the full posterior distribution.6

3.2. Ambiguity Sets for Distributions with Finite, Discrete Support7

Recall Ex. 1, in which P✓̃|S is Dirichlet with parameter ⌧ , and define ⌧0 ⌘
Pd

i=1 ⌧i.8

Theorem 4. Suppose P✓̃|S is a Dirichlet distribution with parameter ⌧ > 0. Then,9

1. For d = 2, VaR1�✏
✓̃|S (v) is convex for all S. The Bayesian optimal ambiguity set for G is10

8
><

>:
�

0

B@
�1�✏(⌧1, ⌧2)

1��1�✏(⌧2, ⌧1)

1

CA+ (1��)

0

B@
1��1�✏(⌧1, ⌧2)

�1�✏(⌧2, ⌧1)

1

CA : 0 � 1

9
>=

>;
,

where �1�✏(⌧1, ⌧2) is the 1� ✏-quantile of a Beta distribution with parameters ⌧1, ⌧2.11

2. For d� 3, there exist S such that VaR
1�✏
✓̃|S (v) is non-convex. Consequently, there does not exist12

an optimal ambiguity set for G.13

Since VaR1�✏
✓̃

(v) may be non-convex, we seek convex upper bounds. Note that

µN,i =
⌧i

⌧0
, ⌃N =

1

⌧0 + 1

�
diag(µN)�µNµT

N

�
, (11)

are the posterior mean and covariance and that ⌃N is singular since ⌃Ne = 0, corresponding to14

the fact that eT ✓̃ = 1 almost surely. Applying Eq. (10) yields15

⌃�1
N ⌘ (1+ ⌧0)

0

B@
diag(µN,�)�1 + µ

�1
N,dee

T 0

0T 0

1

CA , (12)

where µN,� is the restriction of µN to its first d� 1 components. Define16

P
�2

(S,�)⌘

(
✓ 2�d :

dX

i=1

(✓i �µN,i)2

µN,i
 �2

)
. (13)

Substituting Eqs. (11) and (12) into Thm. 3 proves the following:17
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Corollary 1. Under Ex. 1, P
�2
⇣
·,

q
1�✏

✏(⌧0+1)

⌘
satisfies the posterior feasibility guarantee at1

level ✏ for all g 2 G.2

The proposed set resembles the �
2-ambiguity set from Klabjan et al. (2013), Ben-Tal et al.3

(2013), Bertsimas et al. (2017a), etc. An important di↵erence is the radius of the set:
q

1/✏�1
⌧0+1

. In4

each of the previous works, the proposed radius is

q
�2
d�1,1�✏

N
. Here, �

2
d�1,1�✏ is the 1� ✏ quantile5

of a chi-square random variable with d� 1 degrees of freedom. We expect ⌧0 = O(N). Thus, our6

ambiguity set can be much smaller than this existing proposal, especially for large d, and still7

satisfy a posterior feasibility guarantee (see also Fig. 1). This is a first example of the general8

phenomenon that we discuss in detail in Secs. 4.3 and 5.9

Corollary 1 utilizes the general-purpose Thm. 3. Define10

P
KL(S,�)⌘

(
✓ 2�d :

dX

i=1

µN,i log

✓
µN,i

✓i

◆
 �2

)
. (14)

By exploiting specific properties of the Dirichlet distribution, we have the following:11

Theorem 5. Under Ex. 1, P
KL

✓
·,

q
log( 1

✏ )

⌧0

◆
satisfies the posterior guarantee at level ✏ for all g 2 G.12

This set resembles the relative entropy set in Ben-Tal et al. (2013) and Bertsimas et al. (2017b) but13

enjoys a smaller radius:
q

log (1/✏)
⌧0

(cf. Fig. 1). In previous works, the proposed radius is

q
�2
d�1,1�✏

2N
.14

(Again, ⌧0 = O(N).) This is a second example of the aforementioned phenomenon.15

Remark 3. Ben-Tal et al. (2013) establish the tractability of PKL(S,�) using an exponential16

cone optimization problem, which is polynomial-time solvable but numerically challenging. Bert-17

simas et al. (2017a) observe that for N su�ciently large, PKL(S̃,�) ✓ P
�2
⇣
S̃,�+ O(

p
dN

�3/2)
⌘
,18

PS-a.s. This motivates heuristically replacing P
KL
⇣
·,
p

log(1/✏)/⌧0

⌘
with P

�2
⇣
·,
p

log(1/✏)/⌧0

⌘
in19

applications, since the latter can be treated as a simpler second order cone optimization problem.20

4. Asymptotics and Relative Size21

Although optimal sets need not exist for finite N , asymptotically, an essentially optimal set does22

exist. Recall the classical Bernstein-von Mises Theorem (Chen 1985, Van der Vaart 2000).523

5 As stated, the theorem slightly di↵ers from, but is equivalent to, Thm. 10.1 of Van der Vaart (2000). See pg. 144 of

that work for proof of the equivalence.
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Theorem 6 (Bernstein-von Mises Theorem). Suppose ✓⇤
2 ri(⇥) and let the prior be abso-

lutely continuous in a neighborhood of ✓⇤
with continuous, positive density at ✓⇤

. Then, under mild

regularity conditions,

sup
A

���P✓̃|S̃(
p

N(✓̃� µ̃N)2A)�P(⇣̃ 2A)
���!PS 0, as N !1,

where the supremum is taken over all measurable subsets A of ⇥, ⇣̃ ⇠ N (0,I(✓⇤)�1) and I(✓⇤)1

denotes the Fisher information matrix of PS|✓⇤.2

Intuitively, the Bernstein-von Mises Theorem describes the convergence of the random prob-3

ability distribution P✓̃|S̃ to the deterministic probability distribution, i.e., N (0,I(✓⇤)�1). This4

convergence is with respect to the data-generating distribution PS . In particular, recall that S̃ is5

random, drawn according to PS . Since S̃ is random, the posterior distribution P✓̃|S̃ (which depends6

on S̃) is also random. Although analyzing performance with respect to this random measure may7

be challenging, the theorem asserts that P✓̃|S̃ converges to a known normal distribution, enabling8

simple asymptotic approximations.9

The target normal distribution depends on the matrix I(✓⇤). Explicit formulas for I(✓) exist in10

terms of PS|✓. We will not need these formulas and, hence, omit them. We note, however, that if11

the a�ne dimension of ⇥ is less than d, I(✓⇤) is singular, but the theorem is still valid for ✓̃1,r (cf.12

Eq. (9)). Let I(✓⇤)1,r 2Rr⇥r denote the Fisher information matrix of ✓⇤
1,r and define13

I(✓⇤)�1
⌘

0

B@
I(✓⇤)1,r I(✓⇤)1,rAT

AI(✓⇤)1,r AI(✓⇤)1,rAT

1

CA .

Then, the theorem is also valid as stated with ⇣̃ having a degenerate normal distribution.14

Thm. 6 is sometimes called the “Bayesian Central Limit Theorem.” Like the traditional Central15

Limit Theorem, the requisite regularity conditions are very mild but are somewhat technical to16

state formally.6 Under similar mild conditions, the posterior mean and covariance are consistent,17

6 In our setting, one set of su�cient conditions is that the map ✓ 7! PS|✓ be di↵erentiable in quadratic mean at ✓⇤

and that µN be an asymptotically e�cient estimator. For proof, see Thm. 10.1 of Van der Vaart (2000) and the

discussion just preceding the theorem combined with Lemma 10.6 of the same work. See also Chen (1985), Van der

Vaart (2000) for other su�cient conditions.
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i.e., µ̃N !PS ✓⇤, N⌃̃N !PS I(✓⇤)�1 (see, e.g., Diaconis and Freedman (1986) for an even stronger1

result). These regularity conditions do not require i.i.d. data. For example, Thm. 6 applies to2

the auto-regressive, time-series model of Ex. EC.1 (Chatfield 2013). Thus, some authors, such as3

Gelman et al. (2014), advocate that unless the model is one of a few well-known pathological cases,4

it is reasonable to simply assume Thm. 6 and posterior mean consistency hold in practice rather5

explicitly validating the regularity conditions. To avoid unnecessary technicalities, we do the same:6

Assumption 3. The conclusion of Thm. 6 holds, and (µ̃N ,N⌃̃N)!PS (✓⇤
,I(✓⇤)�1).7

For each of Exs. 1 to EC.2, su�cient conditions for A3 to hold can be found in Geyer and Meeden8

(2013), McLachlan and Peel (2004), Chatfield (2013), Gelman et al. (2014), respectively. Finally,9

although A3 describes convergence in probability for the total variation distance and posterior10

mean, for many models both convergences, actually hold almost surely. See Geyer and Meeden11

(2013) for a proof in the case of Ex. 1.12

4.1. Asymptotically Optimal and Near-Optimal Bayesian Ambiguity Sets13

We next use A3 to characterize the asymptotics of ambiguity sets. Since Thm. 6 does not require14

i.i.d. data, our asymptotic results do not require independence, and since the limiting distribution15

in Thm. 6 does not depend on the specific choice of prior, our asymptotic results also do not depend16

on the specific choice of prior. Recall P⇤(·) as defined in Eq. (8).17

Theorem 7. Assuming A3 and ✓⇤
2 ri(⇥), as N !1,18

sup
v2Rd:kvk=1

p

N

���VaR1�✏
✓̃|S̃ (v)�vT µ̃N � z1�✏kvk⌃̃�1

N

���!PS 0, (15)

where z1�✏ is the 1� ✏ quantile of a standard normal distribution. Consequently, for any 0 <  < 1,19

the PS-probability of both of the following events tends to 1 as N !1:20

1. P
⇤(S̃, (1+ )z1�✏/

p
N) satisfies the posterior feasibility guarantee at level ✏ for G.21

2. P
⇤(S̃, (1� )z1�✏/

p
N) is a subset of any other convex ambiguity set P(S̃) that satisfies the22

posterior feasibility guarantee at level ✏ for G.23
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In words, Thm. 7 asserts that as N ! 1, P
⇤(S̃, z1�✏/

p
N) is essentially a Bayesian optimal1

set for G. Any other set that satisfies the posterior feasibility guarantee for all g 2 G eventually2

contains a small contraction of P⇤(S̃, z1�✏/
p

N). Any small inflation of P⇤(S̃, z1�✏/
p

N) eventually3

satisfies the posterior feasibility guarantee for all g 2 G. Observe that the theorem makes no claim4

for finite N ; P⇤(S̃, z1�✏/
p

N) generally will not satisfy the posterior feasibility guarantee for finite5

N . Nonetheless, we can use P
⇤(S̃, z1�✏/

p
N) as a benchmark to measure the relative size of other6

ambiguity sets that do satisfy the posterior guarantee for finite N .7

Definition 4. We say P(·) is ↵-near-optimal for G if there exists a non-random ↵ (not depend-8

ing on N or d, but perhaps depending on ✏) such that as N !1,9

PS

⇣
P(S̃)�µN ✓ ↵

⇣
P

⇤(S̃, z1�✏/

p

N)�µN

⌘⌘
! 1.

If no such ↵ exists, we say P(·) is not near-optimal for G.10

From Thm. 7, with PS-probability tending to 1, an ↵-near-optimal set is asymptotically no11

more than ↵ times larger than any other set that satisfies a posterior guarantee, justifying our12

terminology “near-optimal.” We require that ↵ not depend on d because in many applications, d13

can be large relative to N , causing sets with d dependence to also be large. Perhaps surprisingly,14

our general purpose ambiguity set is near-optimal.15

Theorem 8. The set P
⇤
⇣
·,

q
1�✏
✏N

⌘
is

p
1/✏�1

z1�✏
-near-optimal for G.16

Fig. 1 shows the constant
p

1/✏�1

z1�✏
for some typical values of ✏.17

4.2. Near-Optimal Sets for Distributions with Finite, Discrete Support18

Under Ex. 1, Thm. 8 proves that P
�2
⇣
·,

q
1�✏

✏(⌧0+1)

⌘
is
q

1�✏
✏z1�✏

-near-optimal for G. We prove an19

analogous result for P
KL(·).20

Theorem 9. Under setup of Ex. 1 with ✓⇤
2 ri(⇥), PKL

⇣
·,
p

log(1/✏)/(⌧0 + 2)
⌘

is

p
2 log(1/✏)

z1�✏
-21

near-optimal for G.22

The radius of PKL in Thm. 9 di↵ers from that in Thm. 5 by the asymptotically negligible scaling23
q

⌧0+2
⌧0

= 1+ O(N�1/2). Thus, we consider the sets to be comparable.24

For comparison to Thm. 8, we include the constant of Thm. 9 in Fig. 1. Neither constant25

dominates the other: for ✏ < .219,
p

2 log(1/✏)

z1�✏
<

p
1/✏�1

z1�✏
, and the reverse holds for larger ✏.26
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�2 KL �-Div :

q
�2
d,1�✏

z1�✏

✏
p

1/✏�1

z1�✏

p
2 log(1/✏)

z1�✏
d=3 d=5 d=10 d=20

0.3 2.91 2.96 3.65 4.70 6.55 9.10
0.2 2.38 2.13 2.56 3.21 4.36 5.95
0.1 2.34 1.67 1.95 2.37 3.12 4.16
0.05 2.65 1.49 1.70 2.02 2.60 3.41
0.01 4.28 1.30 1.45 1.67 2.07 2.63
0.001 10.23 1.20 1.31 1.47 1.76 2.18

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
2

3

4

5

0.04 0.08 0.12
ε

● KL

χ2

φ −Div, d=5

φ −Div, d=10

φ −Div, d=20

Figure 1 The table shows the size of various ambiguity sets relative to the asymptotically Bayesian optimal set

for G. The graph plots these relative sizes for varying ✏. Throughout, PKL
⇣
S,

p
log(1/✏)/⌧0

⌘
is denoted “KL”,

P�2
⇣
S,

q
1�✏

✏(⌧0+1)

⌘
is denoted “�2” and P�

✓
S,

q
�00(1)�2

d�1,1�✏

2N

◆
is denoted “�-Div” for d= 5,10,20.

4.3. Sub-optimality of Credible Regions for G1

A common approach to constructing ambiguity sets is to choose P(S) so that it contains the true,2

unknown distribution with high probability. In our Bayesian context, such sets are called credible3

regions, i.e., they satisfy P✓̃|S(✓̃ 2P(S))� 1� ✏ for any S. (The frequentist analogue of a credible4

region is a confidence region and will be discussed in Sec. 5.) Credible regions satisfy the posterior5

feasibility guarantee for all measurable g, not just g 2 G, since x 2 X (P(S)) and ✓̃ 2 P(S) imply6

that g(✓̃,x) 0 for any g.7

Despite the popularity of this approach, credible regions cannot be near-optimal for G.8

Theorem 10. Suppose P(S) is a credible region for all S, ✓⇤
2 ri(⇥). Let r be the a�ne dimen-9

sion of ⇥ and fix ↵ <

q
�2
r,1�✏

z1�✏
. Then, under A3, with PS-probability tending to 1,10

P(S̃)� µ̃N 6✓ ↵

✓
P

⇤(S̃, z1�✏/

p

N)� µ̃N

◆
. (16)

In particular, if r scales with d, P(·) is not near-optimal for G.11

In Exs. 1 and 2, r = d � 1, so credible regions cannot be near-optimal for G. Practically, even12

for relatively small r, the constant in Thm. 10 can be large (c.f. Fig. 1), suggesting near-optimal13

variants may o↵er better performance. We confirm this intuition numerically in Sec. 6.14
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Figure 2 The key intuition behind Thm. 10.

Fig. 2 illustrates the key intuition behind Thm. 10 when g(✓, (v, t))⌘ vT✓� t is a linear function.1

The left panel shows a credible region P(S) and a robust feasible pair (v̂, t̂), i.e., sup✓2P(S) v̂
T✓ t̂.2

The shaded region represents the sub-level set {✓ 2 ⇥ : g(✓, (v̂, t̂))  0}, which contains P(S) and3

some additional volume. Consequently, P✓̃|S(g(✓̃, (v̂, t̂))  0) > P✓̃|S(✓̃ 2 P(S)) = 1 � ✏, and this4

inequality can be very loose depending on how much mass lies in the shaded region outside P(S).5

By contrast, the right panel shows a near-optimal set P(S), with robust feasible pair (v̂, ŝ). By6

construction (cf. Thm. 1), P✓̃|S(g(✓̃, (v̂, ŝ))  0) � 1 � ✏. This probability consists of both P(S)7

and the shaded area outside P(S). Thus, P✓̃|S(✓̃ 2 P(S)) < 1� ✏; we have a set that satisfies the8

posterior feasibility guarantee but is much smaller than a credible region. Thm. 10 asserts that this9

case is in fact typical and that, asymptotically, the ratio of sizes is ⌦(
p

r) in at least one direction.10

11

We next specialize and strengthen Thm. 10 for some of our previous examples.12

4.4. The Size of �-Divergence Ambiguity Sets13

A popular class of ambiguity sets for Ex. 1 is based upon �-divergences (see Ben-Tal et al.14

(2013)). Given a function �(t) such that �(t) is convex for t � 0 and �(1) = 0, the �-divergence15

between two vectors p,q is
Pd

i=1 qi�

⇣
pi
qi

⌘
. Thus, �-divergences resemble distance metrics. Given16

a �-divergence, consider the ambiguity set P�(S,�)⌘
n
✓ 2�d :

Pd
i=1 µN,i�

⇣
✓i

µN,i

⌘
 �2

o
. This set17

generalizes many other popular ambiguity sets. For example, with �(t) = (t � 1)2, P
�(S,�) ⌘18

P
�2

(S,�) and when �(t) = t log t� t+ 1, P�(S,�)⌘P
KL(S,�).19
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Ben-Tal et al. (2013) observes that if �
00(t) exists in a neighborhood of 1,1

PS

✓
✓⇤

2P
�

✓
S̃,

q
�00(1)�2

d�1,1�✏

2N

◆◆
! 1 � ✏.7 Ben-Tal et al. (2013) also proves that �-divergence2

sets are tractable. These two features have made �-divergence sets with this radius very popular.3

One can show that �-divergence sets with this radius are asymptotically Bayesian credible4

regions. By Thm. 10, there exist directions in which the set is ⌦(
p

r) larger than a Bayesian optimal5

set. We prove a stronger result; �-divergence sets are ⌦(
p

r) larger than a Bayesian optimal set in6

all directions simultaneously:7

Theorem 11. Under the setup of Ex. 1, suppose �
00(t) exists in a neighborhood of 1. Fix any8

↵ <

q
�2
d�1,1�✏

z1�✏
. Then, for N su�ciently large,9

↵
�
P

⇤(S, z1�✏/

p

N)�µN

�
✓P

�

 
S,

r
�00(1)�2

d�1,1�✏

2N

!
�µN , 8S.

In other words, P
�

✓
·,

q
�00(1)�2

d�1,1�✏

2N

◆
is not Bayesian near-optimal for G.10

4.5. Sub-Optimality of the Ambiguity Sets of Zhu and Fukushima (2009), Zhu11
et al. (2014).12

Zhu and Fukushima (2009) and Zhu et al. (2014) both propose ambiguity sets for Ex. 2 in slightly13

di↵erent applications. Zhu and Fukushima (2009) considers a non-data-driven setting and proposes14

using P = �d to bound worst-case conditional value at risk for portfolio optimization problems. In15

the absence of any data or probabilistic assumptions, this set is the only ambiguity set that o↵ers16

a feasibility guarantee. When data is available, it is very large relative to the Bayesian optimal set:17

Theorem 12. Under the setup of Ex. 2, for any S,18

✓p
⌧0 + 1

z1�✏
min

i

p
µN,i

◆ ⇣
P

⇤(S, z1�✏/

p

N)�µN

⌘
✓ (�d �µN)

Moreover, under A3, if ✓⇤
2 ri(⇥), �d is not near-optimal for G.19

By contrast, Zhu et al. (2014) proposes the set P
�2

(S,

q
�2

d,1�✏/N) and argues that it is asymp-20

totically a credible region under some regularity conditions on the mixture components. A sub-21

optimality bound for P
�2

(S,

q
�2

d,1�✏/N) follows directly from Thm. 11. Indeed, the proof of22

Thm. 11 does not utilize the support of ⇠̃. Consequently, it also readily applies to Ex. 2.23

7 More precisely, the authors observe this when ⌧ 0 = 0, but the asymptotics are the same for other choices of ⌧ 0.
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4.6. Consistency of Optimal Solutions1

Thus far, we have focused on the geometry of ambiguity sets. We next investigate the asymptotic2

properties of solutions to DRO problems. Our results are closely related to those in Bertsimas et al.3

(2017b) but neither imply nor are implied by those results. Indeed, we treat multiple uncertain4

constraints that are concave in a finite dimensional ✓⇤, while Bertsimas et al. (2017b) focuses on5

an uncertain linear objective in a potentially infinite dimensional parameter.6

To be concrete, consider the following (full-information) optimization problem:

P : z
⇤ = min

x2C
g0(✓

⇤
,x)

s.t. gl(✓
⇤
,x) 0, l = 1, . . . ,L, (17)

where gl 2 G for l = 0, . . . ,L, and C is compact, not depending on ✓⇤. Its robust counterpart is

PN : z̃N = min
x2C

max
✓2P(S̃)

g0(✓,x)

s.t. gl(✓,x) 0, 8✓ 2P(S̃), l = 1, . . . ,L, (18)

where P(S̃) is a non-empty, convex, compact ambiguity set. Let O⇤, ÕN denote the set of optimal7

solutions to each problem. We write ÕN instead of ON to emphasize the randomness of S̃.8

Following Shapiro and Ruszczyński (2003), define the deviation between two sets by d(A,B) ⌘9

supx2A infy2B kx�yk. Recall that g is equicontinuous in ✓ over x2 C if, for any ✓0 2⇥ and ✏ > 0,10

there exists a � such that for any ✓ 2 ⇥ with k✓� ✓0k  �, supx2C |g(✓,x)� g(✓0,x)| ✏. Finally,11

let cl(A) denote the closure of A. The next theorem proves that ÕN “converges” to a subset of O⇤.12

Theorem 13. Suppose13

i) gl is equicontinuous in ✓ over x2 C and continuous in x for every ✓ 2⇥.14

ii) There exists ↵N = o(N 1/2) such that P(S̃)� µ̃N ✓ ↵N

⇣
P

⇤(S̃, z1�✏/
p

N)� µ̃N

⌘
, PS-a.s.15

iii) {x2 C : gl(✓
⇤
,x) 0, l = 1, . . . ,L}= cl({x2 C : gl(✓

⇤
,x) < 0, l = 1, . . . ,L}).16

iv) (µ̃N ,N⌃̃N)! (✓⇤
,I(✓⇤)�1), PS-a.s.17

Then, under A3, z̃N ! z
⇤
and d(ÕN ,O

⇤)! 0, PS-a.s.18
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Condition ii) is strictly weaker than requiring P(S̃) be ↵-near-optimal for G. In particular, near-1

optimal sets satisfy Condition ii) with ↵N = O(1). Moreover, Condition iii) is very mild and is2

satisfied, e.g., if gl(✓⇤
,x) is convex in x for l = 1, . . . ,L, and there exists a Slater point. Finally, as3

mentioned, most models of interest, such as Exs. 1 and EC.1, satisfy Condition iv).4

An important consequence of Thm. 13 is that if Eq. (17) admits a unique optimal solution, any5

sequence of optimal solutions to Eq. (18) converges almost surely to this solution. We leverage this6

property to relate Bayesian and frequentist ambiguity sets in the next section.7

5. Comparing Bayesian and Frequentist Ambiguity Sets8

We next contrast sets that satisfy Def. 1 and Def. 2.9

5.1. Frequentist Feasibility and Confidence Regions10

Bertsimas et al. (2017b) observe that many frequentist proposals for P(·) are confidence regions,11

i.e., they satisfy12

PS(✓⇤
2P(S̃))� 1� ✏. (19)

If P(·) is a confidence region, then it satisfies the frequentist guarantee at level ✏ for all measurable13

g since for any S, x2X (P(S)) and ✓⇤
2P(S) implies g(✓⇤

,x) 0. We improve this result.14

Theorem 14. Suppose P(S) is closed and convex for any S. Then, P(·) is a confidence region15

if, and only if, it satisfies the frequentist guarantee at level ✏ for the function g(✓, (v, t)) = vT✓� t.16

Since the given function is in G, any ambiguity set that satisfies the frequentist guarantee for all17

g 2 G is a confidence region and automatically satisfies the frequentist guarantee for the larger class18

of all measurable g. Thus, loosely speaking, sets that satisfy the frequentist guarantee for all g 2 G19

o↵er “more protection” than those that satisfy a posterior guarantee for all g 2 G.20

This protection comes at a cost. Confidence regions are comparably large to Bayesian credible21

regions and are typically not near-optimal.22
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We prove this claim using the maximum likelihood estimator: ✓̃
MLE

2 argmax✓2⇥ logPS(S̃).1

Under mild regularity conditions,82

p

N(✓̃
MLE

�✓⇤)!d N
�
0,I(✓⇤)�1

�
, (20)

where !d denotes convergence in distribution. Note the similarity between Eq. (20) and Thm. 6.3

Theorem 15. Suppose that both Eq. (20) and A3 hold, P(·) is a confidence region, and k✓̃
MLE

�4

µ̃Nk⌃̃N
!PS 0. Let r be the a�ne dimension of ⇥, and fix any 0 < ↵ <

p
�2

r,1�✏/z1�✏. Then,5

PS

⇣
P(S̃)� µ̃N 6✓ ↵(P⇤(S̃, z1�✏/

p

N)� µ̃N)
⌘

> 0.

for all N su�ciently large. In particular, if r scales with d, P(·) is not near-optimal for G.6

Many models satisfy the assumption on k✓̃
MLE

� µ̃Nk⌃̃N
in the theorem. For example, in Ex. 1, a7

direct computation yields k✓̃
MLE

� µ̃Nk⌃̃N
= OPS (N�1/2). Hence, in this setting, confidence regions8

cannot be near-optimal.9

Thm. 15 is analogous to Thm. 10; both establish that sets which protect against all measurable10

functions are not near-optimal for G and are comparably sized. Said another way, when considering11

all measurable functions, existing frequentist ambiguity sets are essentially the smallest possible12

(in our Bayesian framework). Thus, Thms. 10 and 15 also partially explain the size advantage of13

Bayesian near-optimal sets over confidence regions; unlike confidence regions, near-optimal sets14

only protect against g 2 G and, thus, can be smaller.15

5.2. Critical Role of Concavity16

The class of functions G is such that there exist Bayesian ambiguity sets that satisfy the posterior17

feasibility guarantee for all g 2 G that are smaller than credible regions. We next prove that any18

class of functions with this property cannot contain a specific convex function, defined below. This19

theorem highlights the critical role of concavity to constructing Bayesian ambiguity sets smaller20

than credible regions.21

8 A set of possible su�cient conditions is that ✓ ! PS|✓ is di↵erentiable in quadratic mean at ✓⇤, ✓⇤ 2 ri(⇥),

✓̃
MLE

(S̃) !PS ✓⇤ and that there exists a measurable function ˙̀ with E✓⇤ [ ˙̀
2] < 1 such that for every ✓1,✓2 in a

neighborhood of ✓⇤, | logdPS|✓1(⇠)� logdPS|✓2(⇠)| ˙̀(⇠)k✓1 �✓2k (Van der Vaart 2000, Chapt 5.5).
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Theorem 16. Suppose P(·) satisfies a posterior feasibility guarantee for the function g(✓,x) =1

(✓ � ✓⇤)T
I(✓⇤)�1(✓ � ✓⇤) � x

2
, that A3 holds, and that

p
Nkµ̃� ✓⇤

k !PS 0. Let r be the a�ne2

dimension of ⇥, and fix any ↵ <

q
�2
r,1�✏

z1�✏
. Then, with PS-probability tending to 1, P(S̃) � µ̃N 6✓3

↵

⇣
P

⇤
⇣
S̃, z1�✏/

p
N

⌘
� µ̃N

⌘
. In other words, P(·) is not near-optimal.4

Thm. 16 is analogous to Thm. 14. Both theorems identify a particular test function such that any5

ambiguity set that protects against that test function is necessarily large.6

5.3. Robustness to Solution Method7

Frequentist ambiguity sets also enjoy an added degree of robustness over Bayesian near-optimal sets8

with respect to the algorithm used to compute an optimal solution.9 Specifically, consider fixing9

an algorithm for solving PN (cf. Eq. (18)). Given S̃, this algorithm returns an optimal solution x̃10

of PN, so that x̃ 2 X (P(S̃), PS-a.s. The solution x̃ depends on S̃, but may also depend on other11

sources of randomness, e.g., if the algorithm is randomized or leverages additional data beyond S̃.12

Given our algorithm, a natural frequentist guarantee we might seek for the l
th constraint is13

P (gl(✓
⇤
, x̃) 0)� 1� ✏, 8✓⇤

2⇥, (21)

which guarantees feasibility of x̃ with high probability across multiple draws of the data and any14

additional randomness.10 Notice that if P(·) satisfies the frequentist feasibility guarantee in Def. 1,15

then Eq. (21) holds for any x̃ since x̃2X (P(S̃)) almost surely.16

Now consider the Bayesian perspective. The Bayesian analogue of Eq. (21) is17

P
⇣
gl(✓̃, x̃) 0

⌘
� 1� ✏, (22)

which guarantees feasibility of x̃ with high probability across multiple draws of the data, ✓̃, and18

any other randomness in the algorithm. Unlike the frequentist case, however, P(·) satisfying the19

posterior feasibility guarantee in Def. 2 does not imply that Eq. (22) is satisfied for any x̃. Indeed,20

9 We thank the anonymous Associate Editor for his or her insightful comments and questions, which inspired the

results in this subsection.

10 Since the probability is with respect to all sources of randomness, we drop the subscript on P.
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if x̃ depends on information about ✓̃ not present in S̃, Eq. (22) may not hold. The key requirement1

is that x̃ be conditionally independent of ✓̃ given S̃.2

Theorem 17. Suppose P(·) satisfies a posterior feasibility guarantee for all g 2 G, and let x̃ be a3

solution PN (cf. Eq. (18)) given data S̃. Then, if x̃?? ✓̃ | S̃, then Eq. (22) holds. Furthermore, there4

exist instances of PN with P(·) that are near-optimal for G and solutions x̃ such that x̃ 6?? ✓̃ | S̃5

such that Eq. (22) does not hold.6

Conditional independence of x̃ and ✓̃ often holds in practice. For example, if S̃ is the sole source7

of randomness in x̃, then x̃ is conditionally constant and, hence, conditionally independent of ✓̃.8

Similarly, if solutions to PN are unique PS-a.s., x̃ is constant given S̃, and, hence, conditionally9

independent of ✓̃. A case where conditional independence will not hold may be when PN admits10

multiple optima and an independent hold-out data set S
0 whose distribution depends on the real-11

ization of ✓̃ is used to choose between optima.12

In any case, Thm. 17 also partially explains the size di↵erence between confidence regions and13

our Bayesian near-optimal sets; unlike Bayesian near-optimal sets, frequentist confidence regions14

are completely robust to the choice of solution method, and, hence, necessarily larger.15

5.4. Frequentist Properties of Solutions with Bayesian Ambiguity Sets16

In summary, the frequentist feasibility guarantee is arguably a stronger property than the posterior17

feasibility guarantee; it guarantees feasibility for all measurable functions g for any solution method18

and, hence, requires larger sets. If, however, one is only interested in the (frequentist) guarantee19

Eq. (21), for a specific instance of Problem P (c.f. Eq. (17)), we argue that this additional strength20

may be unnecessary for large N . Indeed, near-optimal Bayesian ambiguity sets can sometimes21

asymptotically achieve Eq. (21), the desired frequentist outcome, despite their smaller size. We22

study this claim empirically in Sec. 6 and prove it formally for a special case:23

Theorem 18. Suppose that24

i) P(·) satisfies a posterior feasibility guarantee for G.25

ii) A3 and Eq. (20) hold.26
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iii) k✓̃
MLE

� µ̃Nk⌃̃N
!PS 0.1

iv) The assumptions of Thm. 13 hold.2

v) Problem P has a unique optimal solution.3

vi) Each constraint gl(✓,x) 0, l = 0, . . . ,L, in P is linear in ✓.4

Let x̃N be a robust optimal solution to P̃N, where we have suppressed the dependence of x̃N on S̃.5

Then, limsupPS(gl(✓
⇤
, x̃N)� 0) ✏, for l = 1, . . . ,L.6

Comparing to Eq. (21), the theorem asserts that DRO problems with Bayesian ambiguity sets that7

satisfy a posterior feasibility guarantee yield solutions that asymptotically achieve Eq. (21). The8

theorem assumes the full-information problem P has a unique solution; this assumption ensures9

that asymptotically x̃N is conditionally independent of ✓̃ given S̃.10

The remaining regularity conditions in the theorem are not as restrictive as they perhaps seem.11

Previously, we argued that Conditions ii), iii), and iv) are satisfied by many statistical models.12

Condition vi) is seemingly most stringent. However, in applications such as Exs. 1 and 2, all13

expectation and chance constraints are linear and, hence, satisfy the assumption. Outside these14

particular settings, for any g 2 G,15

g(✓⇤
,x) 0 () inf

v
vT✓⇤

� g⇤(v,x) 0 () 9(v, t) s.t. vT✓⇤
 t, t� g⇤(v,x).

Thus, given an instance of P, by i) rewriting the objective epigraphically, ii) introducing auxiliary16

variables (vl, tl) for l = 0, . . . ,L, iii) replacing each constraint with vT
l ✓

⇤
 tl and iv) augmenting17

C with the new constraint tl  gl⇤(vl,x), we almost obtain an instance of the requisite form. We18

write “almost” because we must verify that we can restrict the new auxiliary variables (vl, tl) to a19

compact set. This restriction can often be argued via ad hoc bounds on the subgradients of gl.20

Overall, we believe Thm. 18 to be a compelling argument to consider Bayesian ambiguity sets21

as alternatives to frequentist sets for g 2 G, especially for moderate to large N . We propose some22

general guidelines for practitioners choosing among ambiguity sets in Appendix C.23
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6. Computational Experiments1

We now present numerical experiments based on synthetic and real data.11 We are interested in the2

following questions: Do DRO solutions using Bayesian near-optimal sets exhibit good frequentist3

properties for finite N? Does our theoretical analysis of size yield useful insight into the performance4

of DRO solutions? How sensitive are our results to misspecification of the Bayesian model?5

We focus on portfolio allocation. Portfolio allocation has been widely studied in the data-driven

DRO literature (see, e.g., Delage and Ye (2010), Postek et al. (2016), Wozabal (2014), Bertsimas

et al. (2017b), Rujeerapaiboon et al. (2016)) because it is well known that methods that neglect

ambiguity in ✓⇤ can perform poorly (see, e.g., Michaud (1989), DeMiguel et al. (2009a,b), Lim

et al. (2011), El Karoui et al. (2011)). Specifically, we consider the nominal optimization problem

max
x2Rn

+:eT x1

n
EP✓⇤ [xT ⇠̃] : CVaRP✓⇤

✏ (xT ⇠̃) �
o

(23)

and its robust counterpart

max
x2Rn

+:eT x1
min

✓2P(S)
EP✓ [xT ⇠̃]

s.t. CVaRP✓
✏ (xT ⇠̃) �, 8✓ 2P(S) (24)

for various ambiguity sets. We fix ✏ = 10% throughout.6

To facilitate comparisons to existing methods, we adopt the setup of Ex. 1. In particular,7

we consider P
KL(S,

p
log(1/✏)/⌧0) (denoted “KL”), P

KL(S,

q
�2

d,1�✏/(2N)) (denoted “KLC”),8

P
�2

(S,

q
1�✏

✏(⌧0+1)
) (denoted “�

2”), and P
�2

(S,

q
�2

d,1�✏/N) (denoted “�
2
C”). In each case, the sub-9

script C indicates the confidence-region variant of the set, instead of the Bayesian near-optimal10

one. Unless otherwise specified, we adopt the uninformative prior ⌧
0 = e. For comparison, we also11

consider three non-DRO approaches to portfolio allocation:12

• The sample average approximation (SAA) of Eq. (23), which replaces P✓⇤ with the empirical13

distribution of the data: P̂(A) = 1
N

PN
j=1 I(⇠̂

j
2A) for all measurable sets A.14

11 Julia code for running each of the following experiments is available at https://github.com/vgupta1/

AmbiguitySets.
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Table 1 Summary statistics for individual industry portfolios.

Dec. 2008 - Dec. 2014 Mar. 1998 - Dec 2014

Mean Std CVaR Mean Std CVaR

Business Equipment 1.74 4.74 6.78 0.72 7.71 13.55
Chemicals 1.38 4.41 6.65 0.77 4.26 7.54

Consumer Durables 2.29 8.80 11.21 0.62 7.82 12.65
Energy 0.78 5.62 10.10 0.98 5.93 9.50

Healthcare 1.68 3.80 4.96 0.72 4.00 6.92
Manufacturing 1.73 6.07 9.51 0.98 5.82 10.01

Finance 1.38 6.33 11.17 0.56 5.78 10.37
Consumer Non-Durables 1.48 3.41 4.83 0.77 3.54 6.26

Other 1.53 5.48 8.83 0.54 5.21 9.60
Wholesale/Retail 1.70 3.99 5.47 0.77 4.52 7.75

Telecom 1.70 4.22 6.17 0.44 5.59 10.05
Utilities 1.14 3.57 6.06 0.81 4.36 7.58

• The “naive” diversification portfolio (Naive), which invests 1/d in each asset. DeMiguel et al.1

(2009b), Wozabal (2014) shows that this portfolio performs surprisingly well and enjoys strong2

robustness properties. Since this portfolio is typically infeasible in Eq. (23) for reasonable3

values of �, we implement xnaive = emin(1/d,�/CVaRP̂
✏ (e

T⇠)) in what follows, i.e., we scale4

down the Naive portfolio if necessary to make it feasible for the empirical distribution.5

• The minimum-variance portfolio (MinVar), which solves minx2Rn
+:eT x=1 VarP̂(xT ⇠̃), where6

VarP̂(·) denotes the empirical variance (see DeMiguel et al. (2009b)). Since this portfolio is7

also typically infeasible in Eq. (23), we scale it similarly to the Naive portfolio.8

Our data are based upon the historical returns of 12 industry portfolios available from French9

(2015). These 12 portfolios can be seen as proxies for index funds, and we will refer to them10

loosely as indices. Table 1 provides some summary statistics for each index over the two time11

periods most relevant for our analysis. We remark that the covariance matrix for these 12 indices12

is approximately low-rank; the first eigenvalue accounts for 63% of the total eigenspectrum. The13

first three eigenvalues account for approximately 80%. These features are typical of financial data.14

Before presenting the details of our experiments, we summarize our main findings:15

• Portfolios constructed from our Bayesian near-optimal sets are feasible with frequentist prob-16

ability approximately 1� ✏ in this application. The approximation error shrinks rapidly as N17

grows large and is negligibly small for moderate N .18
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• As predicted, sets with smaller asymptotic size tend to yield better optimization solutions.1

In particular, our Bayesian near-optimal sets significantly outperform their confidence-region2

variants in this application for both synthetic and real data, with similar robustness properties.3

• These features do not strongly depend on the choice of prior. Specifically, for small N , priors4

that assign a small probability mass to the true distribution but a large probability mass to5

an incorrect distribution may yield sets with poor frequentist performance. However, in this6

particular application, we find that the strength in such a prior belief must be very large before7

the loss in performance makes traditional variants a preferable choice. Moreover, the loss in8

performance is attenuated in N . For large N , most priors yield sets with good performance.9

6.1. Dependence on N10

We first study the dependence on N under frequentist assumptions with synthetic data. Specifically,11

we take the true distribution to be uniformly distributed on the 72 points described by the monthly12

returns of our indices from Dec. 2008 to Dec. 2014. Then, for varying N , we simulate N data13

points from this distribution, use these data to construct one of our ambiguity sets, and solve14

Eq. (24) with � = 3%. We repeat this procedure 1000 times, each time using the true distribution15

to compute the true expected return and CVaR of a portfolio. Notice that this repeated sampling16

setup accords precisely with the frequentist viewpoint; ✓⇤ is fixed, but the data S̃ change between17

simulations.18

Fig. 3 displays the expected returns and CVaRs over repeated random draws of the data along19

with error bars at the 90% and 10% quantiles. We draw attention to several features:20

• The SAA, Naive, and MinVar portfolios frequently incur more than allocated 3% risk. Indeed,21

even for very large N , these portfolios exceed the threshold approximately 50% of the time.22

For smaller N , the returns are also highly unstable, i.e., the error bars are very large. These23

are well-documented drawbacks of SAA (see, e.g., Bertsimas et al. (2017b)) and are inherited24

by the Naive and MinVar portfolios because of the need to respect the constraint in Eq. (23).25

• By contrast, the data-driven DRO models with the confidence-region-based ambiguity sets26

safely maintain a risk below 3% but are very conservative. The very large error bars for N27
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Figure 3 Return and risk for increasing data N from Sec. 6.1.

near 250 occur because, for some data realizations, the only portfolio that the model can safely1

guarantee will be feasible is x= 0, i.e., to not invest. Table EC.1 in Appendix E.2 details the2

percentage of runs that return the zero portfolio and the standard deviation of kxk for each3

method. One can confirm that both correlate strongly with the error bars in Fig. 3.4

• Finally, our Bayesian near-optimal sets perform much more strongly. They maintain a risk5

below 3% at least 1� ✏ = 90% of the time (under frequentist sampling), but the top error bars6

are fairly close to the budget, i.e., they are not overly conservative. As a consequence, their7

expected return is also much higher and reasonably close to the SAA and MinVar returns.8

Unlike SAA and MinVar, however, the returns are very stable as seen by the small error bars.9

These findings suggest our Bayesian sets have good frequentist performance for moderate N .10

6.2. Non-Uniform ✓⇤11

A possible criticism of the previous simulations is that ✓⇤ = 1
d
e is uniform, which may be unrealistic12

in some applications. Thus, we repeat the above experiments for a non-uniform ✓⇤ formed by13

clustering the historical data to form “typical” market scenarios. The results of these experiments14

agree qualitatively with the above. See Appendix E.1 for details.15
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Figure 4 Return and risk for increasing support size d from Sec. 6.3.

6.3. Dependence on d1

An important implication of our theoretical results is that DRO models using credible or confidence2

regions may not perform well if d is large. We next study the dependence on d for synthetic data.3

Specifically, we take the true distribution to be supported on the most recent d monthly returns4

of our 12 indices and repeatedly sample N = 300 data points from this distribution. We form5

portfolios from this sample and repeat the entire procedure 1000 times, each time recording each6

portfolio’s performance with respect to the true underlying distribution. Fig. 4 presents summary7

statistics for various d. The Naive and MinVar portfolios perform similarly to the SAA portfolio8

and are omitted for clarity. Fig. EC.4 in Appendix E.2 shows all portfolios.9

As expected, as d increases for a fixed N , all methods perform worse; there is relatively less10

data to learn a more complicated distribution. More interestingly, the performance degrades more11

quickly for some methods. Namely, as d increases, the DRO models with confidence-region-based12

uncertainty sets quickly degrade. For d near 100, they converge to investing in the most-conservative13

x = 0 portfolio. Similarly, although the SAA portfolio maintains a reasonably good return, as d14

grows, it violates the risk bound more frequently. By contrast, our Bayesian near-optimal ambiguity15

sets maintain a return fairly close to the SAA return and safely maintain a risk below 3%. These16
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observations are fairly robust to the choice of N . See Fig. EC.5 in Appendix E.2 for a similar1

experiment with N = 700 data points.2

These experiments confirm the theoretically predicted behavior and are a strong argument for3

preferring Bayesian near-optimal sets over frequentist confidence regions when d is large.4

6.4. Prior Specification5

We next study the sensitivity to the choice of prior. Thm. 6 ensures that as N !1, this choice6

becomes irrelevant, but it is less clear what the e↵ect is for finite N . Intuitively, an “ideal” prior7

would place most of its mass in a neighborhood of the true, unknown ✓⇤, causing the posterior8

distribution to concentrate at the true value. For example, in the model of Sec. 6.1, the “ideal”9

prior is ⌧ 0 = ⌧̂0e with ⌧̂0 !1. The uninformative prior ⌧ 0 = e is less ideal since it puts equal weight10

on the true ✓⇤ and other incorrect models. Even less ideal priors might weigh incorrect models11

more heavily than the true model, e.g., the prior (⌧̂0,1, . . . ,1) with ⌧
0
0 very large.12

As a first test, we fix N = 300 and take the true distribution to be as in Sec. 6.1. We consider13

various priors of this last form (⌧̂0,1, . . . ,1) as ⌧̂0 increases. We stress that for large ⌧̂0, this is14

a highly informative prior that places relatively small weight on the true distribution and most15

of its weight on incorrect distributions. We choose to scale the first component instead of some16

other component since in the limit, as ⌧̂0 !1, robust portfolios built with our sets and this prior17

converge to the zero portfolio, which has the worst possible (true) return of any portfolio under18

the true distribution. Thus, this is a very poor choice of prior.19

Fig. 5 shows the return and CVaR with respect to the true distribution over 1000 draws of the20

data for the portfolio built with P
KL(S,

p
log(1/✏)/⌧0). Clearly, as ⌧̂0 increases, the prior weight21

on the true ✓⇤ decreases, and the performance su↵ers. It is not until ⌧̂0 = 175, however, that the22

portfolio incurs more than 3% risk for more than an ✏ fraction of sample paths. In other words, for23

⌧̂0  175, despite the choice of prior, the portfolio is still feasible with high frequentist probability.24

We can interpret the value ⌧̂0 = 175 via pseudocounts (Gelman et al. 2014); it would take 175�1 =25

174 data points for a Bayesian starting from an uninformative, uniform prior to update her belief26
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Figure 5 Return and risk of the “KL” portfolio with an increasingly strong, misinformed prior from Sec. 6.4.

to the given prior. Compared to N = 300, this value suggests we have 174/300 = 58% as much1

confidence in our prior as we do in our data. Similarly, at ⌧̂0 = 300, the average return falls below2

the average return of the corresponding confidence-region-based set (cf. Fig. 3). A value of ⌧̂0 = 3003

suggests having 299/300 ⇡ 100% as much confidence in our prior distribution as we do in our4

data. Thus, both metrics require very strong prior beliefs on a very poor choice of prior before5

performance degrades significantly.6

These e↵ects are attenuated as N increases. In Fig. 6, we consider the performance of7

P
KL(S,

p
log(1/✏)/⌧0) with the above informative prior with ⌧̂0 = 175 as we increase N . As pre-8

dicted by Thms. 13 and 18, the performance improves steadily despite the poor choice of prior.9

10

Finally, as a more global assessment of prior sensitivity, we consider the performance of our port-11

folios for randomly generated priors of various strengths. Specifically, we take the true distribution12

to be as in Sec. 6.1 with N = 300. We consider sequentially ⌧
0
0 2 [102,147,222,297,372,447,522]13

(corresponding to priors with strengths [10%,25%, . . . ,150%] of our data). For each value of ⌧
0
0,14

we generate 100 random priors such that (⌧ 0
1/⌧

0
0, . . . , ⌧

0
d/⌧

0
0) are uniformly distributed on the sim-15

plex. For each prior, we then compute the performance of our portfolios using sets built from that16

prior over 1000 repeated samples of data. We consider the average return and CVaR of the port-17

folio (computed with respect to the true distribution) over these 1000 repeated samples as a good18
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Figure 6 Return and risk of the “KL” portfolio using prior (175,1, . . . ,1) as N increases from Sec. 6.4.

proxy for the performance of the method with respect to that prior.12 Table EC.2 in Appendix E.21

presents summary statistics for this performance across the various priors. As can be seen, although2

our portfolios can perform poorly for a pathologically bad prior, as in Fig. 5, for most priors, the3

(frequentist) performance is still relatively good; our portfolios outperform DRO portfolios built4

with traditional confidence regions even if the strength of the prior belief is large.5

6.5. Historical Case Study6

Finally, we consider back-testing portfolios built from our sets using real data from Mar. 1998 to7

Dec. 2014. For each month, we construct portfolios assuming (potentially incorrectly) that the true8

distribution is supported on the most recent 36 monthly returns and that these returns represent9

i.i.d. draws from this distribution. We form portfolios using each of our sets and record the realized10

return from these portfolios using the upcoming month’s return. We set � = 6%, since lower values11

cause the confidence-region sets to uniformly invest in the portfolio x= 0.12

In reality, the true distribution is unlikely to have our assumed support, and the data are unlikely13

to be independent. Thus, this experiment is a strong test of our methods under model misspecifi-14

cation. Table 2 shows summary statistics for each method over the entire data window.15

12 With 1000 samples, the standard error on the average return and average CVaR is smaller than the last significant

digit shown in Table EC.2.
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Table 2 Realized performance from Mar. 1998 to Dec. 2014 from Sec. 6.5. Target CVaR is 6%.

Method Avg. Return Std. Dev VaR CVaR Turnover

�2 0.40 2.98 2.40 4.93 0.23
KL 0.41 3.39 3.19 5.95 0.26
�2
C (0.02) 0.76 - 0.09 0.06

KLC (0.04) 0.53 - 0.05 0.03
SAA 0.52 4.79 4.97 8.72 0.34
Naive 0.59 4.28 4.06 7.94 0.03
MinVar 0.77 5.65 5.82 10.85 0.19
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Figure 7 The left panel shows rolling estimate CVaR using a trailing window of 72 months. The right panel

shows the cumulative wealth of each portfolio from Mar. 1998 through Dec. 2014.

As with our synthetic data, although SAA, MinVar and Naive yield high returns, they exceed1

the budget for CVaR significantly. By contrast, the confidence-region-based sets maintain a very2

low CVaR but are so conservative that they frequently do not invest at all, yielding an overall3

negative return. Our Bayesian near-optimal sets strike a reasonable compromise; they are below4

the risk threshold and earn a positive return. These observations accord with our synthetic data.5

To better understand the portfolio’s risk profiles, we plot in the left panel of Fig. 7 an estimate6

of the CVaR of each portfolio using a trailing window of 72 months. For clarity, we only plot a7

subset of portfolios; Fig. EC.7 in Sec. E.2 displays all portfolios. The CVaR of the SAA, MinVaR,8

and Naive portfolios incur much more than the target 6% risk, and the confidence-region variants9

occur far less.10

In the right panel of Fig. 7, we plot the cumulative wealth of an investor who follows each11

strategy from Mar. 1998 through Dec. 2014 (see also Fig. EC.6 in Sec. E.2). In highly volatile12
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markets, our near-optimal sets recognize the potential risk and choose not to invest (see, e.g., the1

large flat regions between 2002 and 2005 or around 2010). Consequently, in down-markets, such as2

between 2002 and 2005, they outperform SAA. In very strong up-markets, though, they are not as3

aggressive and, hence, underperform relative to SAA (see the peaks in the graph).4

Finally, although our optimization problem Eq. (24) does not explicitly control for multi-period5

transaction costs, we note that the average monthly turnover for the Bayesian near-optimal sets6

is much smaller than that for the SAA portfolio in Table 2. Practically, this corresponds to lower7

transaction costs.8

7. Conclusion9

In this paper, we introduced a novel Bayesian framework to study the relative strengths of ambi-10

guity sets in data-driven robust optimization. We propose a new class of ambiguity sets that enjoy11

the usual tractability and asymptotic convergence guarantees but are ⌦(
p

d) smaller than existing12

proposals while satisfying a Bayesian analogue of a typical robustness property. These results have13

important implications for using DRO models in practice. Namely, replacing traditional ambiguity14

sets with our new Bayesian variants may yield significantly better performance with little loss in15

robustness, especially when d and N are moderate to large.16
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1
Online Appendix: Near-Optimal Bayesian Ambiguity Sets for2

Distributionally Robust Optimization3
Appendix A: Additional Parametric Examples of Our Framework4

In this appendix, we describe additional examples from the DRO literature that can be recast in our frame-5

work by using parametric distributions.6

Example EC.1 (Gaussian and Time-Series Models). Suppose ⇠̃ ⇠ N (µ⇤
,⌃⇤) is normally dis-7

tributed, but µ⇤
,⌃⇤ are unknown and estimated from data. Linear chance constraints can be cast in our8

framework by noting that P✓⇤(a(x)T ⇠̃ > b(x))  () a(x)Tµ⇤ + z1�

p
a(x)T⌃⇤a(x)�b(x) 0, which is9

concave in ✓⇤ = (µ⇤
,⌃⇤) for any functions a(x),b(x). Here, ⇥ = Rd

⇥ Sd
+, where Sd

+ is the cone of positive10

semidefinite matrices. A typical prior for ✓̃ is the normal-inverse-Wishart prior since if S̃ is drawn i.i.d., the11

posterior is also a normal-inverse-Wishart distribution (see Gelman et al. (2014)).12

Similarly, expected quadratic constraints can be cast in our framework by noting that E✓⇤ [a(x)T ⇠̃⇠̃
T
a(x)+13

b(x)T ⇠̃]  () a(x)T (⌃⇤ +µ⇤µ⇤T )a(x)+b(x)Tµ⇤
� 0, which is concave in the transformed parameter14

✓⇤ = (µ⇤
,⌃⇤ +µ⇤µ⇤T ) for any a(x),b(x). Again, we take ⇥ = Rd

⇥ Sd
+. Many choices of prior are possible,15

including specifying that ✓̃
0
= (µ,⌃) follows a normal-inverse-Wishart prior and computing the posterior of16

✓̃ by MCMC.17

Although multivariate normality may seem contrived, it frequently occurs in time series and forecasting18

applications. For example, consider an autoregressive process, ⇠̃t =
Pp

i=1 ✓
⇤
i ⇠̃t�i + ⌘t, for t = 1, . . . , and where19

⌘t represents a random shock at time t. Various authors have used autoregressive processes to model demand20

and sales (Lee et al. (2000), Luong (2007) and references therein), typically assuming ⌘t are i.i.d., mean-zero,21

Gaussian random variables with variance �
⇤2. Under these assumptions, ⇠̃t|⇠̃1, . . . , ⇠̃t�1 ⇠N (

Pp

i=1 ✓
⇤
i ⇠̃t�i,�

⇤2).22

Similar results hold for other time-series models, such as the ARIMA process of Graves (1999),; vector23

autoregressive processes; and some linear-state models that occur frequently in econometrics, control, and24

finance.25

We stress that in the autoregressive case and most forecasting applications, the data S are not drawn26

i.i.d. from P✓⇤ ; future realizations depend on the past. Nonetheless, this case can be analyzed within our27

framework (see Sec. 4.1).28
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Example EC.2 (Multinomial Logit Model). In the assortment optimization problem, a retailer can1

o↵er any subset of d products to consumers. Each consumer purchases at most one item from the assortment.2

If she purchases item i, the retailer earns revenue ri, i = 1, . . . , d; otherwise, the retailer earns nothing (the3

“no-purchase” option). The retailer may strategically choose to not o↵er certain low-revenue products to4

induce consumers to purchase higher revenue substitutes. The assortment optimization problem seeks a5

revenue-maximizing assortment for a given model of consumer choice behavior.6

A common behavioral choice model in the operations management literature is the multinomial logit model7

(Talluri and Van Ryzin 2004), which posits that a consumer assigns utility log(✓⇤
i )+ ⌘̃i to item i and utility8

⌘̃0 to the no-purchase option. The ⌘̃i are independent Gumbel random variables with mean 0 and scale 1.9

After assigning utilities, the consumer chooses the item (or no-purchase option) corresponding to the highest10

utility. The parameters ✓⇤
2 Rd

++ represent preference weights. Under this model the expected revenue for11

o↵ering assortment A✓ {1, . . . , d} is
P

i2A ri✓
⇤
i

1+
P

j2A ✓⇤j
(Ben-Akiva and Lerman (1985)).12

Rusmevichientong and Topaloglu (2012) proposes and studies the corresponding DRO formulation13

max
A✓{1,...d}

min
✓2P

P
i2A ri✓i

1 +
P

j2A ✓j

, (EC.1)

where P is one of several non data-driven ambiguity sets. We can cast this problem in our framework by

letting ⇥ = Rd
++ and adopting any prior on ✓̃ (the posterior will be computed by MCMC). We need only

show Eq. (EC.1) can be written in the form of Eq. (2). This is readily accomplished by first writing the

problem epigraphically as

max
t,A✓{1,...d}

(
t :

P
i2A ri✓i

1 +
P

j2A ✓j

� t, 8✓ 2P

)
,

and then rewriting the constraint as
P

j2A(rj � t)✓j � t, which is concave in ✓. As an aside, it is not14

immediately obvious that Eq. (EC.1) is tractable since it involves optimizing over the 2d subsets A, but15

Rusmevichientong and Topaloglu (2012) proves this problem can be solved e�ciently by restricting attention16

to so-called revenue-ordered assortments.17

Example EC.3 (Pricing under Generalized Linear Models). Parametric demand modeling is18

commonplace in pricing and revenue management applications (see (Phillips 2005, Chapt. 3)). Many typical19

demand functions are special cases of generalized linear models (GLMs), possibly after a transformation20

of variables. GLMs are popular since they can be fit e�ciently using maximum likelihood estimation or21
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Bayesian methods and often give rise to tractable optimization models. (See Gelman et al. (2014) for a1

Bayesian overview of GLM theory.)2

Recall that demand D̃ follows a GLM if the distribution of D̃ belongs to a pre-specified family parametrized3

by its mean and there exists a set of explanatory variables f and a link function h(·) such that h(E[D̃]) =�T f4

for some weights �. As an example, if we take f = (p,1), h(·) = log(·) and assume D̃ follows a Poisson distri-5

bution, we arrive at the log-linear demand model: E[D̃] = exp(�1p+�0). For the same link and distribution, if6

we take f = (log p,1), we obtain the log-log or constant elasticity demand model E[D̃] = e
�0p

�1 . Alternatively,7

if we take f = (p,1), h(·) = logit(·) and assume D̃ follows a Bernoulli distribution, i.e., customers either buy8

the product or do not, then we obtain the logit-price demand model E[D̃] = 1/(1 + exp(��1p� �0)). Other9

examples can be constructed similarly.10

We next show how certain DRO problems with GLMs can be analyzed in our framework. To be concrete,11

consider the revenue optimization problem12

max
x2C

nX

k=1

xkh
�1
k (�kT

x+ �
k
0), (EC.2)

where xk is the price of the k-th product, and the demand D̃k for product k is assumed to follow a GLM13

with link hk and explanatory variables (x,1). This model allows for the possibility of both complements14

and substitutes. The set C encodes business constraints on possible prices and any transformations of the15

decision variables necessary to create the explanatory variables. Since the parameters ✓⇤ = (�k
,�

k
0)k=1,...,n16

are estimated from data, we model them via DRO. Rewrite Eq. (EC.2) as17

max
x2C,t1,...,tK

nX

k=1

tk s.t. hk(tk/xk)�kT
x+ �

k
0 , k = 1, . . . , n.

The robust counterpart is18

max
x2C,t1,...,tK

nX

k=1

tk s.t. hk(tk/xk)�Tx+ �0 8(�,�0)2Pk, k = 1 . . . , n, (EC.3)

where the k-th constraint is of the form Eq. (2) with ✓ = (�,�0).19

Appendix B: Extension to Infinite Dimensional Parameter ✓20

In some applications, it may be more natural to work with an infinite dimensional parameter ✓ directly. Such21

a parameter might be used, e.g., to represent the density of a continuous random variable. In particular,22

infinite dimensional parameters occur frequently in Bayesian nonparametric methods, and, intuitively, we23



e-companion to Gupta: Near-Optimal Bayesian Ambiguity Sets ec5

might conjecture that since many of our results are dimension independent, they may also hold in these1

settings. Making this intuition rigorous involves some technical di�culties, although many key elements of2

our framework pass through untouched.3

Specifically, Thms. 1 and 2 hold in the infinite dimensional setting essentially unchanged; the key elements4

of the proof are concavity and the separating hyperplane theorem, both of which still apply. Thus, we can5

still use the described approach to construct new Bayesian ambiguity sets.6

Unfortunately, however, posterior consistency of the mean and the Bernstein-von Mises Theorem generally7

do not hold in infinite dimensions, at least not in the form described in Thm. 6. Indeed, even for seemingly8

well-behaved problems, Bayesian estimates may either not converge or else converge to an incorrect parameter9

as the amount of data grows large (see Freedman (1999), Ghosal et al. (2000), and references therein). As10

discussed in Castillo and Nickl (2014), even identifying su�cient conditions under which posterior consistency11

and the Bernstein-von Mises Theorem hold is non-trivial. For example, it is not immediately clear what12

should replace the normal distribution in Thm. 6; a Gaussian distribution over infinite dimensional ⇥ will13

depend subtly on the topology of ⇥. Castillo and Nickl (2014, 2013), Kim and Lee (2004), Rivoirard and14

Rousseau (2012), Lo (1983), Bickel and Kleijn (2012) each prove a Bernstein-von-Mises-type result under15

di↵erent technical assumptions on the prior with di↵erent modes of convergence to slightly di↵erent Gaussian16

objects. In other words, simple, general-purpose, su�cient conditions for a Bernstein-von Mises phenomenon17

in infinite dimension arguably have yet to be found, and research is ongoing. Thus, while it seems plausible18

that an analogue of Thm. 7 exists, analyzing this limiting Gaussian object to establish that the posterior19

Value-at-Risk converges uniformly remains technically challenging. This di�culty is the root of the challenge20

in extending the subsequent asymptotic analysis to the infinite dimensional case.21

Similar comments apply to analyzing moment-based ambiguity sets. Bayesian methods require complete22

specification of the likelihood PS|✓, but without additional assumptions, specifying a few moments, such23

as the mean and covariance, will not uniquely define this distribution. In our opinion, the most natural24

approach in this case is to model the unknown distribution of ⇠ semi-parametrically, i.e., let ✓ be composed25

of a finite dimensional component (corresponding to the unknown moments) and an infinite dimensional26

nuisance component, which completes the specification (see Van der Vaart (2000, Chapt. 25) for an overview27

of semi-parametric methods). Within this model, Bayesian inference is possible, but similar technical issues28

around specifying an appropriate prior and asymptotic analysis arise.29
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Appendix C: Guidelines for Practitioners1

Our results have a number of practical implications for using DRO models.2

First, in applications where an approximate feasibility guarantee is su�cient, tuning the radius of the3

uncertainty set via cross-validation to ensure that the set approximately satisfies the posterior feasibility4

guarantee should perform very well. Our results suggest that a good radius exists of size O(N�1/2), inde-5

pendently of d.6

Second, in applications that require a provable (Bayesian) feasibility guarantee at level ✏, constants like7

those in Thms. 8 to 12 can provide guidelines for choosing between competing ambiguity sets when N8

is large. For example, in the finite, discrete model of Ex. 1, when computational resources permit using9

P
KL

✓
S,

p
log(1/✏)

⌧0

◆
, Fig. 1 suggests that this set should be preferred to P

�

✓
S,

q
�00(1)�2

d�1,1�✏

2N

◆
for any10

�-divergence, especially when d is large. If, however, computational resources are too limited to use this set,11

one might prefer a simpler �-divergence set if ✏ and d are small, and P
�2
⇣
S,

q
1�✏

✏(⌧0+1)

⌘
, otherwise. The exact12

notion of “small,” here, depends on how much sub-optimality the application can permit. What is important13

is that these constants allow us to partially quantify this sub-optimality and provide a clear rule for choosing14

a set. Developing similar constants for other models involves straightforward computations with Gaussian15

distributions via Thm. 7. Moreover, developing new ambiguity sets for custom applications is possible by16

directly applying the approach of Sec. 3.17

Admittedly, for small N , these constants are less informative. The left panel of Fig. EC.1 shows the ratios18

�
⇤(v| P)/VaR1�✏

✓̃|S (v) for randomly chosen directions v on a single sample path varying N and sets19

P
�2

 
S,

s
1� ✏

✏(⌧0 + 1)

!
, P

KL
⇣
S,

p
log(1/✏)/⌧0

⌘
, P

�2
⇣
S,

q
�2

d�1,1�✏/N

⌘
, P

KL

 
S,

r
�2

d�1,1�✏

2N

!
.

These last two sets are confidence regions as N !1. We have set ✓⇤ = 1
15e, ✏ = .1, and ⌧ 0 = 0. We draw20

attention to the following features:21

• The finite ratio can be above or below the asymptotic ratio.22

• For small N , the ordering between sets may change. For example, although P
KL
⇣
S,
p

log(1/✏)/⌧0

⌘
is23

asymptotically smaller than P
�2
⇣
S,

q
�2

d�1,1�✏/N

⌘
, for N < 20, it is larger in certain directions.24

• The empirical rate of convergence di↵ers by set and by its size. For example, P�2
⇣
S,

q
�2

d�1,1�✏/N

⌘
,25

converges almost immediately; P
KL
⇣
S,
p

log(1/✏)/⌧0

⌘
converges more slowly, and26

P
KL

✓
S,

q
�2
d�1,1�✏

2N

◆
converges even more slowly.27



e-companion to Gupta: Near-Optimal Bayesian Ambiguity Sets ec7

●
●●●●●●●●
● ●

●●●●●●●●●
●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

2

3

4

5

6

7

10 100 1000
N

●

KL

χ2
KLC
χC
2

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●0.00

0.01

0.02

0.00 0.05 0.10 0.15
Desired ε

A
ch

ie
ve

d 
ε ●

KL

χ2

d=5

d=10

Figure EC.1 The lefthand panel shows the ratio �⇤(v| P)/VaR1�✏

✓̃|S (v) for P equal to PKL
⇣
S,

p
log(1/✏)/⌧0

⌘

(denoted “KL”), P�2
⇣
S,

q
1�✏

✏(⌧0+1)

⌘
(denoted“�2”), PKL

✓
S,

q
�2
d�1,1�✏

2N

◆
(denoted“KLC”), or

P�2
⇣
S,

q
�2
d�1,1�✏/N

⌘
(denoted “�2

C”). We take ✓⇤ = 1
15e, d= 15, and ✏= .1. The righthand panel compares the

desired robustness level ✏ with the asymptotically achieved robustness level ✏0 for PKL
⇣
S,

p
log(1/✏)/⌧0

⌘
,

P�2
⇣
S,

q
1�✏

✏(⌧0+1)

⌘
, and several �-divergence sets for d= 5,7,10. Closer to the dotted line ✏= ✏0 is “better.”

Moreover, our results help to quantify the level of conservatism in solutions to DRO problems as N !1 in1

a frequentist setting. To be precise, although an ambiguity set might be constructed to ensure that a solution2

is infeasible with (frequentist) probability at most ✏ (the desired level), in reality, we expect the solution3

will be infeasible with probability of at most ✏
0
< ✏ (the achieved level) because of various conservative4

bounds in the set’s construction. By Thm. 18, however, under mild assumptions, P⇤(·, z1�✏/
p

N) satisfies5

the frequentist guarantee at level ✏ asymptotically. Thus, for a candidate ambiguity set, we can compute the6

smallest ✏
0 such that the asymptotically Bayesian optimal set at level ✏

0 is still a subset of the candidate set7

as N !1. The gap between ✏ (desired) and ✏
0 (achieved) indicates the over-conservatism in the solution.8

We illustrate this idea in the case of our sets for finite, discrete support. Consider P
�2

(S,

q
1�✏

✏(⌧0+1) ). A9

comparison of the radii shows ✏
0 should be 1 � �(

p
1/✏� 1). Similar computations can be made for the10

�-divergence sets and our near-optimal variants. We plot these asymptotically achieved robustness levels in11

the righthand panel of Fig. EC.1. The di↵erences between the desired robustness and actual robustness can12

be striking, especially for large d. This plot illustrates that P
�2

(S,

q
1�✏

✏(⌧0+1) ) is unsuitable for small ✏.13

Finally, Thm. 16 also has modeling implications. For a given application, there are often multiple possible14

formulations of the underlying optimization problem, all equally valid approximations of the real, physical15
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system. Our results suggest favoring formulations in which g(✓,x) is concave in ✓, enabling us to use our new,1

smaller ambiguity sets instead of larger confidence or credible regions. If such a reformulation is impossible,2

we should at least favor formulations in which d is small, using feature reduction techniques if necessary to3

pre-process the data.4

Appendix D: Proofs5

Proof Thm. 1. Our proof is nearly identical to Bertsimas et al. (2017a) with notation altered for the6

Bayesian setting. We include it for completeness.7

First, suppose P(S) satisfies the posterior feasibility guarantee for G. For any v 2 Rd, consider g(✓, x) =8

vT✓�x. Then, �
⇤(v| P(S))2X (P(S)), whereby from the feasibility guarantee, P✓̃|S(vT ✓̃ �

⇤(v| P(S)))� 1� ✏.9

For the converse, consider any g 2 G and some x2X (P(S)). For any t > 0, the set {✓ 2⇥ : g(✓,x)� t} is10

disjoint from P(S) because x is robust feasible. Since g 2 G, the first set is convex. Meanwhile, the second is11

convex by assumption. Thus, there exists a strict separating hyperplane vT✓ = v0 such that ✓ 2 P(S) =)12

vT✓ < v0 and ✓ 2 {✓ 2⇥ : g(✓,x)� t} =) vT✓ > v0. Thus, v0 � sup✓2P(S) v
T✓ = �

⇤(v| P(S)), and13

P✓̃|S

⇣
g(✓̃,x)� t

⌘
 P✓̃|S(vT ✓̃ > v0) P✓̃|S

⇣
vT ✓̃ > �

⇤(v| P(S))
⌘
 ✏,

where the last inequality follows by assumption. Taking the limit as t! 0 yields the result. ⇤14

Proof of Thm. 2 (“If” direction) By continuity of probability, VaR1�✏

✓̃|S (v) is a closed function. It is15

positively homogenous by construction and convex by assumption. Consequently, there exists a unique,16

closed, and convex P
⇤ such that �

⇤(v| P⇤) = VaR1�✏

✓̃|S (v) (Nedic et al. 2003). Notice that P
⇤ satisfies Eq. (5)17

with equality. By Thm. 1, P⇤ satisfies the posterior feasibility guarantee, and, by Eq. (6), P⇤ is a subset of18

any other convex set that also satisfies this guarantee.19

(“Only if” direction) Since VaR1�✏

✓̃|S (v) is non-convex, there exists v1,v2 and 0 < � < 1 such that20

VaR1�✏

✓̃|S (�v1 + (1��)v2) > �VaR1�✏

✓̃|S (v1) + (1��)VaR1�✏

✓̃|S (v2). (EC.4)

Since VaR1�✏

✓̃|S (v) is positively homogenous, it cannot be that v1 = ↵v2 for some ↵ � 0. For k = 1,2, define21

Pk = {✓ 2Rd : vT
k ✓VaR1�✏

✓̃|S (vk)}. A direct computation yields22

�
⇤(v| Pk) =

8
>>><

>>>:

↵VaR1�✏

✓̃|S (vk) if v = ↵vk for some ↵� 0

1 otherwise.

(EC.5)
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Notice that �
⇤(v| Pk) upper bounds VaR1�✏

✓̃|S (v) so that by (5), both P1,P2 satisfy the posterior feasibility1

guarantee.2

Now, by contradiction, suppose that there exists a Bayesian optimal ambiguity set P
⇤. From above,

P
⇤
✓P1 \P2. Let v⌘ �v1 + (1��)v2. Then, since P

⇤ satisfies a posterior guarantee,

VaR1�✏

✓̃|S (v) �
⇤(v| P⇤) (by Thm. 1)

 �
⇤(v| P1 \P2) (by Eq. (6) and P

⇤
✓P1 \P2).

From Ben-Tal et al. (2015), �
⇤(v| P1 \P2) = miny �

⇤(y| P1) + �
⇤(v�y| P2). Since y 7! �v1 is feasible,

VaR1�✏

✓̃|S (v) �
⇤(�v1| P1) + �

⇤(v��v1| P2) = �VaR1�✏

✓̃|S (v1) + (1��)VaR1�✏

✓̃|S (v2)

by Eq. (EC.5) and definition of v. This contradicts Eq. (EC.4).3

⇤4

The following lemma will prove useful in the remainder:5

Lemma EC.1. Fix any S and suppose VaR
1�✏

✓̃|S (v)  �
⇤(v| P(S)), ri(P(S)\⇥) 6= ;. Then, VaR

1�✏

✓̃|S (v) 6

�
⇤(v| P(S)\⇥).7

Proof of Lemma. Recall that ⇥ is convex by assumption. From Ben-Tal et al. (2015), �
⇤(v| P(S)\⇥) =

miny �
⇤(v�y| P(S)) + �

⇤(y| ⇥). Then, letting y⇤ be an optimizer of this minimization,

P✓̃|S(vT ✓̃ > �
⇤(v| P(S)\⇥) = P✓̃|S

⇣
vT ✓̃ > �

⇤ (v�y⇤
| P(S)) + �

⇤ (y⇤
| ⇥)

⌘

 P✓̃|S

⇣
(v�y⇤)T ✓̃ > �

⇤(v�y⇤
| P(S))

⌘
+P✓̃|S

⇣
y⇤T ✓̃ > �

⇤(y⇤
| ⇥)

⌘

 ✏ + 0,

where the last line follows because ✓̃ 2⇥, P✓̃|S-a.s.8

Proof of Thm. 3. Let r be the a�ne dimension of ⇥. Using Eq. (9),

VaR1�✏

✓̃|S (v) = vT
r+1,d�+ VaR1�✏

✓̃1,r|S
(v1,r +ATvr+1,d)

 vT
r+1,d�+ (v1,r +ATvr+1,d)

Tµ1,r +

r
1

✏
� 1
q

(v1,r +ATvr+1,d)T⌃
�1
1,r(v1,r +ATvr+1,d)

= vT
r+1,d�+ max

✓1,r:(✓1,r�µ1,r)T⌃�1
1,r(✓1,r�µ1,r) 1

✏�1
(v1,r +ATvr+1,d)

T✓1,r,



ec10 e-companion to Gupta: Near-Optimal Bayesian Ambiguity Sets

where the inequality follows from Eq. (7) and the last equality follows from a standard formula for the

support function of an ellipse. Next, this last optimization is equivalent to

max
✓

vT✓

s.t. k✓�µNk⌃N


r
1

✏
� 1

✓r+1,d =�+A✓1,r

by definition of ⌃�1
N in Eq. (10). Combining Lemma EC.1 with Thm. 1 proves the result. ⇤1

Proof of Thm. 4. For the first part of the theorem, we show first that VaR1�✏

✓̃|S (v) is convex. Note2

VaR1�✏

✓̃|S (0) = 0. Furthermore, since ✓̃1 + ✓̃2 = 1 almost surely, VaR1�✏

✓̃|S (e) = 1, VaR1�✏

✓̃|S (�e) = �1, and3

VaR1�✏

✓̃|S (ve) = |v|sign(v) = v by positive homogeneity. Next, assuming v 6= 0, v1 6= v2, we have two cases.4

First, suppose v1 > v2. Then, P✓̃|S(v1✓̃1 + v2✓̃2  t) = P✓̃|S(✓̃1 
t�v2
v1�v2

) since ✓̃1 + ✓̃2 = 1. Since P✓̃|S is5

Dirichlet with parameters (⌧1, ⌧2), ✓̃1|S follows a Beta distribution with parameter (⌧1, ⌧2). Setting this6

probability equal to 1� ✏ and solving for t yields VaR1�✏

✓̃|S (v) = v2 + (v1 � v2)�1�✏(⌧1, ⌧2).7

Next, suppose v1 < v2. By symmetry, VaR1�✏

✓̃|S (v) = v1+(v2�v1)�1�✏(⌧2, ⌧1). We will rewrite this expression8

slightly so that it can easily be combined with the previous case. We claim that for 0 < ✏ < 0.5,9

�1�✏(⌧1, ⌧2) + �1�✏(⌧2, ⌧1)� 1. (EC.6)

Indeed, if this were not true, then, since ✓̃1 + ✓̃2 = 1,

1 = P✓̃|S

⇣
✓̃1 + ✓̃2 > �1�✏(⌧1, ⌧2) + �1�✏(⌧2, ⌧1)

⌘
 P✓̃|S

⇣
✓̃1 > �1�✏(⌧1, ⌧2)

⌘
+P✓̃|S

⇣
✓̃2 > �1�✏(⌧2, ⌧1)

⌘
 2✏,

which is a contradiction since ✏ < 0.5.10

Multiplying Eq. (EC.6) by (v1 � v2) and rearranging terms, we obtain11

v1 > v2 () v2 + (v1 � v2)�1�✏(⌧1, ⌧2) > v1 + (v2 � v1)�1�✏(⌧2, ⌧1).

Comparing this to our above two expressions for VaR1�✏

✓̃|S (v) shows that12

VaR1�✏

✓̃|S (v) = max
�
�1�✏(⌧1, ⌧2)v1 + (1��1�✏(⌧1, ⌧2))v2, (1��1�✏(⌧2, ⌧1))v1 + �1�✏(⌧2, ⌧1)v2

�
. (EC.7)

This formula is also accurate when v = 0 and v1 = v2 and is convex. To complete the first part of the proof,13

observe that the support function of the set defined in the theorem is Eq. (EC.7).14

The second part of the theorem can be validated numerically. For most examples, one can observe non-15

convexity along the line � 7! VaR1�✏

✓̃|S (1� �,1 + �,0, . . . ,0) for � slightly positive and slightly negative. We16
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prove this formally in the special case when S is such that ⌧ = (1,1,1,0, . . . ,0). Note that this posterior1

requires that we take an improper prior ⌧ 0 = 0.2

By the merging property of the Dirichlet distribution, (✓̃1, ✓̃2,
Pd

i=3 ✓̃i) also has a Dirichlet distribution3

with parameter (1,1,1), i.e., it is uniform over the simplex. By integrating,4

P✓̃|S(v1✓1 + v2✓2  t) =
t
2
� 2tv2 + v1v2

v2(v1 � v2)
if 0 < v1 < t < v2.

By setting this probability equal to 1� ✏ and solving for t, we obtain two roots, only the smaller of which sat-5

isfies 0 < v1 < t < v2. Thus, we conclude that when 0 < v1 < v2, VaR1�✏

✓̃|S (v1, v2,0) = v2�
p

✏
p

v2(v2 � v1). This6

computation is symmetric in v1, v2, so that when 0 < v2 < v1, we have VaR1�✏

✓̃|S (v1, v2,0) = VaR1�✏

✓̃|S (v2, v1,0).7

For � su�ciently small, VaR1�✏

✓̃|S (1� �,1+ �,0) = 1+ |�|�
p

2✏
p

(1 + |�|)|�|, which one can verify directly is8

non-convex at � = 0. Thus, VaR1�✏

✓̃|S (v) is non-convex. ⇤9

Proof of Thm. 5. We require the following well-known result (see, e.g., Gelman et al. (2014)):10

Let Ỹ1, . . . , Ỹd be independent Gamma random variables with Ỹi ⇠ Gamma(⌧i,1). Then,11

(Ỹ1/
Pd

i=1 Ỹi, . . . , Ỹd/
Pd

i=1 Ỹi) follows a Dirichlet distribution with parameter ⌧ .12

We can now bound VaR1�✏

✓̃|S (v) using a technique similar to that of Nemirovski and Shapiro (2006):

P✓̃|S(vT ✓̃� t) = P✓̃|S

 
dX

i=1

viỸi � t

dX

i=1

Ỹi

!

= P✓̃|S

 
dX

i=1

(vi � t)Ỹi � 0

!

 inf
�>�

dY

i=1

E[e
vi�t

� Ỹi ]

= inf
�>�

dY

i=1

✓
1�

vi � t

�

◆�⌧i

.

The inequality follows from Markov’s inequality and the independence of the Ỹi, and the last equality follows13

from the moment-generating function of a Gamma random variable. Throughout, �⌘maxj(vj � t)+.14

Thus, VaR1�✏

✓̃|S (v) t if there exists � > � such that
Qd

i=1

�
1� vi�t

�

��⌧i
 ✏, or, equivalently,15

inf
�>�

�
log(1/✏)

⌧0
��

dX

i=1

µN,i log

✓
1�

vi � t

�

◆
 0.

Using Theorem 1 of Ben-Tal et al. (2013), we recognize the lefthand side as �
⇤(v � te| Q)  0 for Q =

n
✓� 0 :

Pd

i=1 µN,i log
⇣

µN,i

✓i

⌘


log(1/✏)
⌧0

o
. Since ✓� 0 for all ✓ 2Q, by rescaling,

(v� te)T✓ 0 8✓ 2Q () (v� te)T✓ 0 8✓ 2Q\ {✓ : eT✓ = 1}, () vT✓ t 8✓ 2Q\ {✓ : eT✓ = 1}.
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This last set is PKL(S,

q
log(1/✏)

⌧0
). Since this inequality holds for arbitrary (v, t), we have shown VaR1�✏

✓̃|S (v)1

�
⇤
⇣
v| PKL(S,

q
log(1/✏)

⌧0
)
⌘
, completing the proof. ⇤2

The following lemma will be used repeatedly in what follows. Let k · kF denote the Frobenius norm.3

Lemma EC.2. For any positive semidefinite matrices A,B, and any v,4

|kvkA�1 �kvkB�1 |

p
|vT (A�B)v| kvkA�1

p
kA�BkF .

Proof. For non-negative a, b, we have the identity |
p

a�
p

b|
p
|a� b|. Thus,5

|kvkA�1 �kvkB�1 |

p
|vTAv�vTBv|=

p
|vT (A�B)v|,

proving the first inequality. For the second, let CTC=A be a Cholesky decomposition of A and C�1 be a6

corresponding pseudoinverse. Then,7

p
|vT (A�B)v| =

p
|vTCT (C�T (A�B)C�1)Cv| 

p
vTCTCv · kC�T (A�B)C�1k2 = kvkA�1

p
kA�Bk2

because kC�T (A �B)C�1
k2 = kA �Bk2 by definition of the spectral norm. Note that k · k2  k · kF to8

complete the proof. ⇤9

10

Proof of Thm. 7 We first prove Eq. (15). Let RN(S) = supA

���P✓̃|S

⇣p
N(✓̃�µN)2A

⌘
�P(⇣̃ 2A)

���

denote the total variation distance from Thm. 6 for realization S. For any v 2Rd and any � > 0,

1� ✏ P✓̃|S

⇣
vT ✓̃VaR1�✏

✓̃|S (v) + �

⌘

= P✓̃|S(vT (✓̃�µN)
p

N  (VaR1�✏

✓̃|S (v) + ��vTµN)
p

N)

 P(vT ⇣̃  (VaR1�✏

✓̃|S (v) + ��vTµN)
p

N) + RN(S)

= �

 
(VaR1�✏

✓̃|S (v) + ��vTµN)
p

N

kvkI(✓⇤)

!
+ RN(S),

where �(·) is the standard normal cumulative distribution function. Rearranging terms yields11

VaR1�✏

✓̃|S (v)��� +vTµN +
z1�✏�RN (S)

p
N

kvkI(✓⇤). (EC.8)

(If 1� ✏�R(S) < 0, interpret the righthand side as �1.) Taking the limit as � ! 0 yields a lower-bound.12

A similar argument starting from the identity 1 � ✏ � P✓̃|S

⇣
vT ✓̃VaR1�✏

✓̃|S (v)� �

⌘
yields a corresponding13

upper-bound:14

VaR1�✏

✓̃|S (v) vTµN +
z1�✏+RN (S)

p
N

kvkI(✓⇤). (EC.9)
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(If 1� ✏ + RN(S) > 1, interpret the righthand side as 1.) Combining yields

sup
v2Rd:kvk=1

p

N

����VaR1�✏

✓̃|S (v)�vTµN �
z1�✏
p

N
kvkI(✓⇤)

���� sup
v2Rd:kvk=1

kvkI(✓⇤)

�
z1�✏+RN (S) � z1�✏�RN (S)

�



p
kI(✓⇤)�1kF

�
z1�✏+RN (S) � z1�✏�RN (S)

�
,

where the last line follows from the Cauchy-Schwarz inequality vT
I(✓⇤)�1v  kvvT

kFkI(✓⇤)�1
kF . Now1

reinterpret this last inequality for the random draw S̃. Since the normal quantile is continuous in its argument2

and RN(S̃)!PS 0 by A3, we conclude3

sup
v2Rd:kvk=1

p

N

����VaR1�✏

✓̃|S̃ (v)�vT µ̃N �
z1�✏
p

N
kvkI(✓⇤)

����!PS 0.

Thus, to prove Eq. (15), it remains to show that4

sup
v2Rd:kvk=1

���kvkI(✓⇤) �

p

Nkvk⌃̃�1
N

���!PS 0. (EC.10)

Note
p

Nkvk⌃̃�1
N

= kvkN�1⌃̃�1
N

. Then, by Lemma EC.2,5

sup
v2Rd:kvk=1

���kvkI(✓⇤) �

p

Nkvk⌃̃�1
N

��� sup
v2Rd:kvk=1

r���vT (I(✓⇤)�1 �N⌃̃N)v
���
r���I(✓⇤)�1 �N⌃̃N

���
F

,

where the last inequality follows from the Cauchy-Schwarz inequality. By A3,
���I(✓⇤)�1

�N⌃̃N

���
F
!PS 0,6

which completes the proof of Eq. (15).7

We next prove that P⇤(S̃, (1+)z1�✏/
p

N) satisfies the posterior guarantee with PS-probability tending to8

1. Since ✓⇤
2 ri(⇥) and µ̃N !PS ✓⇤ by A3, with PS-probability tending to 1, P⇤(S̃, z1�✏(1+)/

p
N)⇢ ri(⇥).9

It follows that for any v 2Rd, �
⇤(v| P⇤(S̃, z1�✏(1+)/

p
N)!PS vT µ̃N +(1+)z1�✏kvk⌃̃�1

N
. Thus, from the10

previous part, with PS-probability tending to 1, �
⇤(v| P⇤(S̃, z1�✏(1+)/

p
N)) upper bounds VaR1�✏

✓̃|S̃ (v) for11

all v 2Rd : kvk= 1, whereby from Eq. (5), P⇤(S̃, z1�✏(1 + )/
p

N) satisfies the posterior guarantee.12

Finally, for the last statement, notice that �
⇤(v| P⇤(S̃, z1�✏(1 � )/

p
N))  vT µ̃N + (1 � )z1�✏kvk⌃̃�1

N
.13

Consequently, with PS-probability tending to 1, �
⇤(v| P⇤(S̃, z1�✏(1�)/

p
N))VaR1�✏

✓̃|S̃ (v). Using (6), this14

implies P
⇤(S̃, z1�✏(1�)/

p
N) is a subset of any ambiguity set that satisfies the posterior guarantee. ⇤15

Proof of Thm. 8 The proof is immediate from the definitions. ⇤16

Proof of Thm. 9. To show that P
KL
⇣
S̃,

q
log(1/✏)
⌧0+2

⌘
is

✓p
2 log(1/✏)

z1�✏

◆
near-optimal, it su�ces to17

show that, with PS-probability tending to 1, any ✓ 2 P
KL
⇣
S̃,

q
log(1/✏)
⌧0+2

⌘
also satisfies ✓ � µ̃N 218

✓p
2 log(1/✏)

z1�✏

◆⇣
P

⇤(S̃, z1�✏/
p

N)� µ̃N

⌘
. This last requirement is equivalent to19

dX

i=1

(µ̃N,i � ✓i)2

2µ̃N,i


1

2

z
2
1�✏

⌧0 + 1
·
2 log(1/✏)

z2
1�✏

=
log(1/✏)

⌧0 + 1
. (EC.11)



ec14 e-companion to Gupta: Near-Optimal Bayesian Ambiguity Sets

To this end, fix some ✓ 2P
KL
⇣
S̃,

q
log(1/✏)
⌧0+2

⌘
. Observe,

log(1/✏)

⌧0 + 2
�

dX

i=1

µ̃N,i log(µ̃N,i/✓i) (definition of PKL)

=
dX

i=1

µ̃N,i log(µ̃N,i/✓i)� µ̃N,i + ✓i (since
dX

i=1

µ̃N,i =
dX

i=1

✓i = 1)

=
dX

i=1

(µ̃N,i � ✓i)2

2µ̃N,i

�
(µ̃N,i � qi)3

3µ̃2
N,i

, (EC.12)

where the last line follows the multivariate mean-value theorem with q= �µ̃N +(1��)✓ for some �, 0 � 1.

Since P
KL
⇣
S̃,

q
log(1/✏)
⌧0+2

⌘
is convex and µ̃N 2P

KL
⇣
S̃,

q
log(1/✏)
⌧0+2

⌘
, q2P

KL
⇣
S̃,

q
log(1/✏)
⌧0+2

⌘
. Consequently,

kµ̃N �qk3  kµ̃N �qk1 (Monotonicity of norms)



vuut
dX

i=1

µ̃N,i log(µ̃N,i/qi)� µ̃N,i + qi (Plinsker’s inequality)



s
log(1/✏)

⌧0 + 2
,

0

@since q2P
KL

0

@S̃,

s
log(1/✏)

⌧0 + 2

1

A

1

A . (EC.13)

Combining this last inequality with Eq. (EC.12), we have thus shown that1

dX

i=1

(µ̃N,i � ✓i)2

2µ̃N,i


log(1/✏)

⌧0 + 2
+

1

3µ̃2
N,min

✓
log(1/✏)

⌧0 + 2

◆3/2

, (EC.14)

where µ̃N,min ⌘mini=1,...,d µ̃N,i.2

Comparing to Eq. (EC.11), it thus su�ces to show that with PS-probability tending to 1,

log(1/✏)

⌧0 + 2
+

1

3µ̃N,min

✓
log(1/✏)

⌧0 + 2

◆3/2


log(1/✏)

⌧0 + 1
() 3

s
⌧0 + 2

log(1/✏)

✓
⌧0 + 2

⌧0 + 1
� 1

◆
�

1

µ̃N,min

.

By the Law of Large Numbers, µ̃N !PS ✓⇤
> 0 since ✓⇤

2 ri(⇥). Note that ⌧0 = O(N) and take limits to3

complete the proof. ⇤4

Proof of Thm. 10 Consider any S such that P(S)�µN ✓ ↵

⇣
P

⇤(S,
z1�✏p

N
)�µN

⌘
. Since P(S) is a cred-

ible region,

1� ✏ P✓̃|S(✓̃�µN 2P(S)�µN)

 P✓̃|S

✓
✓̃�µN 2 ↵

✓
P

⇤
✓
S,

z1�✏
p

N

◆
�µN

◆◆

= P✓̃|S

✓
N

�1(✓̃�µN)T⌃�1
N (✓̃�µN)

↵
2
z
2
1�✏

N

◆
.
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Since ↵ <

p
�2
r,1�✏

z1�✏
, there exists � > 0 such that ↵

2
z
2
1�✏  �

2
r,1�✏�� � �. Fix such a �. Then,

P✓̃|S

✓
N

�1(✓̃�µN)T⌃�1
N (✓̃�µN)

↵
2
z
2
1�✏

N

◆
 P✓̃|S

✓
N

�1(✓̃�µN)T⌃�1
N (✓̃�µN)

�
2
r,1�✏�� � �

N

◆

 P✓̃|S

✓
(✓̃�µN)TI(✓⇤)(✓̃�µN)

�
2
r,1�✏��

N

◆

+P✓̃|S

✓
(✓̃�µN)T (N�1⌃�1

N � I(✓⇤))(✓̃�µN)�
�

N

◆

 P✓̃|S(k
p

N(✓̃�µN)k2I(✓⇤)�1  �
2
r,1�✏��) + Z(S)

 P(k⇣̃k2I(✓⇤)�1  �
2
r,1�✏��) + RN(S) + Z(S),

where ⇣̃ ⇠ N (0,I(✓⇤)�1), RN(S) = supA

���P✓̃|S

⇣p
N(✓̃�µN)2A

⌘
�P(⇣̃ 2A)

��� denotes the total variation1

distance from Thm. 6 for the realization S and Z(S)⌘ P✓̃|S

⇣���(✓̃�µN)T (N�1⌃�1
N � I(✓⇤))(✓̃�µN)

���> �
N

⌘
.2

The first probability is at most 1�✏��. Thus, for any S such that Eq. (16) does not hold, RN(S)+Z(S) > �.3

Fix t > 0 such that P(k⇣̃kI(✓⇤)�1 > t) �/2. From the second inequality in Lemma EC.2,

Z(S) P✓̃|S

 
k✓̃�µNkI(✓⇤)�1 ·

q
kN�1⌃�1

N � I(✓⇤)kF >

r
�

N

!

 P✓̃|S

✓
k✓̃�µNkI(✓⇤)�1 >

t
p

N

◆
+ I
✓q

kN�1⌃�1
N � I(✓⇤)kF >

p

�/t

◆

 P
⇣
k⇣̃kI(✓⇤)�1 > t

⌘
+ R(S) + I

✓q
kN�1⌃�1

N � I(✓⇤)kF >

p

�/t

◆

 �/2 + RN(S) + I
✓q

kN�1⌃�1
N � I(✓⇤)kF >

p

�/t

◆
.

Thus, for a randomly drawn S̃,

PS(Eq. (16) does not hold) PS

⇣
RN(S̃) + Z(S̃) > �

⌘

 PS

✓
2RN(S̃) + I

✓q
kN�1⌃̃

�1

N � I(✓⇤)kF >

p

�/t

◆
> �/2

◆

 PS

⇣
2RN(S̃) > �/4

⌘
+PS

✓
I
✓q

kN�1⌃̃
�1

N � I(✓⇤)kF >

p

�/t

◆
> �/4

◆
.

By A3, the first probability tends to zero, and since N⌃̃N !PS I(✓⇤)�1, the second probability tends to zero4

as well. This proves the first statement.5

For the second statement, a standard Cherno↵ bound shows that
p

�2
r,1�✏

z1�✏
= ⌦(

p
r) as r !1. Thus, the6

size of P(·) relative to P
⇤(·, z1�✏/

p
N) must grow with d, and P(·) is not near-optimal. ⇤7

Proof of Thm. 11. Consider µN +y 2 P
⇤(S, z1�✏/

p
N). For ↵ <

p
�2
d�1,1�✏

z1�✏
, we must show that µN +8

↵y 2P
�

✓
S,

q
�00(1)�2

d�1,1�✏

2N

◆
for su�ciently large N . Note that µN +y 2P

⇤(S, z1�✏/
p

N) implies that9

z
2
1�✏

⌧0 + 1
�

dX

i=1

y
2
i

µN,i

=
dX

i=1

✓
yi

p
µN,i

◆2

� max
i=1,...,d

✓
yi

p
µN,i

◆2

. (EC.15)
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By Taylor’s Theorem, there exists a function r(t) such that limt!0 r(t) = 0 and �(1 + t) = �(1) + �
0(1)t +

1
2�

00(1)t2 + r(t)t2. Recall �(1) = 0, and write

dX

i=1

µN,i�(
µN,i + ↵yi

µN,i

) =
dX

i=1

µN,i�

✓
1 +

↵yi

µN,i

◆

=
dX

i=1

µN,i ·�
0(1) ·

↵yi

µN,i

+
dX

i=1

µN,i ·
1

2
�
00(1)

↵
2
y
2
i

µ2
N,i

+
dX

i=1

µN,i · r

✓
↵yi

µN,i

◆
·
↵
2
y
2
i

µ2
N,i

= ↵�
0(1)

dX

i=1

yi +
↵
2

2
�
00(1)

dX

i=1

y
2
i

µN,i

+ ↵
2

dX

i=1

r

✓
↵yi

µN,i

◆
y
2
i

µN,i

.

The first summation disappears since µN + y 2 P
⇤(S, z1�✏/

p
N) implies that eTy = 0. We use the first

inequality of Eq. (EC.15) to bound the second summation and the last inequality of Eq. (EC.15) to bound

each term of the third summation, yielding

dX

i=1

µN,i�(
µN,i + ↵yi

µN,i

) 
↵
2

2
�
00(1)

z
2
1�✏

⌧0 + 1
+ ↵

2 z
2
1�✏

⌧0 + 1

dX

i=1

r

✓
↵yi

µN,i

◆
=

�
00(1)↵2

z
2
1�✏

2(⌧0 + 1)

 
1 +

2

�00(1)

dX

i=1

r

✓
↵yi

µN,i

◆!
.

Thus, to complete the proof, it remains to show that for N su�ciently large,

�
00(1)↵2

z
2
1�✏

2(⌧0 + 1)

 
1 +

2

�00(1)

dX

i=1

r

✓
↵yi

µN,i

◆!


�
00(1)�2

d�1,1�✏

2N
()

N

(⌧0 + 1)

 
1 +

2

�00(1)

dX

i=1

r

✓
↵yi

µN,i

◆!


�
2
d�1,1�✏

↵2z2
1�✏

.

As N !1, ↵yi
µN,i

! 0 for each i by Eq. (EC.15), and ⌧0 �N . Consequently, N
(⌧0+1)

⇣
1 + 2

�00(1)

Pd

i=1 r

⇣
↵yi
µN,i

⌘⌘
1

is less than 1 for N su�ciently large, and the result follows from the condition on ↵. ⇤2

Proof of Thm. 12 Suppose µN +y 2P
⇤(S, z1�✏/

p
N). To prove the first statement, it su�ces to prove3

that µN +�y 2�d for any � with 0 �

p
⌧0+1

z1�✏
mini

p
µN,i. Note µN +y 2P

⇤(S, z1�✏/
p

N) implies eTy = 0,4

so it remains to prove µN + �y � 0. For any i such that yi � 0, this is immediate. For i such that yi < 0,5

note that as in the proof of Thm. 11, from the last inequality of Eq. (EC.15), |yi|
z1�✏

pµN,ip
⌧0+1

. Then, from6

the definition of �,7

µN,i+�yi � µN,i� |yi|

p
⌧0 + 1

z1�✏

min
j

p
µN,j � µN,i

✓
1�

z1�✏
p

⌧0 + 1

p
⌧0 + 1

z1�✏

·
minj

p
µN,j

p
µN,i

◆
� µN,i

✓
1�

minj
p

µN,j
p

µN,i

◆
� 0,

proving the first statement. The second follows since µ̃N !PS ✓⇤
> 0 implies that mini

p
µ̃N,i > 0 with8

PS-probability tending to 1. ⇤9

We present the following lemma, which is interesting in its own right. It establishes that the worst-case10

performance over certain ambiguity sets converges to the full-information performance uniformly over x.11

Uniform approximation is the key property for establishing asymptotic consistency of optimization solutions.12
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Lemma EC.3. Suppose g 2 G is equicontinuous in ✓ for x 2 C. Fix any sample path of S such that1

(µN ,N⌃N) ! (✓⇤
, I(✓⇤)�1) as N ! 1. Let ↵N such that P(S) � µN ✓ ↵N

⇣
P

⇤(S, z1�✏/
p

N)�µN

⌘
and2

↵N = o(
p

N). Then,3

sup
x2C

����� sup
✓2P(S)

g(✓,x)� g(✓⇤
,x)

�����! 0.

Proof of Lemma. By definition of the supremum, for any ✏ > 0, there exists a ✓N 2P(S) such that4

sup
x2C

����� sup
✓2P(S)

g(✓,x)� g(✓⇤
,x)

����� � + sup
x2C

|g(✓N ,x)� g(✓⇤
,x)| . (EC.16)

Next, k✓N � ✓⇤
k  k✓N � µNk + kµN � ✓⇤

k. Using ✓N 2 P(S) and the assumption on ↵N , N
�1/2

k✓N �5

µNk⌃N
! 0, and since N⌃N ! I(✓⇤), this implies that k✓N �µNkI(✓⇤)�1 ! 0. Since, µN ! ✓⇤, we conclude6

that ✓N ! ✓⇤. It follows from the equicontinuity of g that for N su�ciently large, the supremum on the7

righthand side of Eq. (EC.16) is at most �, and the requisite supremum is at most 2�. Taking the limit as8

� ! 0 completes the proof. ⇤9

Proof of Thm. 13. We use Thms. 5.3 and 5.5 of Shapiro et al. (2014). Although these two theorems10

are proven for SAA, a careful reading shows that their proofs do not leverage the particular structure of11

SAA, but rather just the explicit conditions listed in the two theorems. In other words, it su�ces to show12

that P and PN satisfy the conditions of these two theorems to prove the result.13

For Thm. 5.3, first note that C is compact by assumption and necessarily contains O
⇤ and ÕN . The14

objective of P is finite since g0(✓
⇤
, ·) is continuous in x, and C is compact. That sup✓2P(S) g0(✓,x) converges15

to g0(✓
⇤
,x) uniformly in x follows from Lemma EC.3. We next show that ÕN is non-empty. By assumption,16

there exists x0 2 {x 2 C : gl(✓
⇤
,x) < 0, l = 1, . . . ,L}. By Lemma EC.3, for N su�ciently large, x0 will be17

feasible in PN, whereby ÕN is non-empty. All the conditions of Thm. 5.3 are met.18

For the remaining conditions for Thm 5.5, fix a sample path where (µN ,N⌃N)! (✓⇤
,I(✓⇤)�1). We argue

along this path. For Thm 5.5 condition a), let xN be feasible in PN and suppose xN ! x1. By compactness,

x1 2 C. We claim x1 is feasible in P. Fix any � > 0. For N su�ciently large, continuity of gl in x implies

|gl(✓
⇤
,x1)� gl(✓

⇤
,xN)| �. Then,

gl(✓
⇤
,x1) = (gl(✓

⇤
,x1)� gl(✓

⇤
,xN)) +

 
gl(✓

⇤
,xN)� sup

✓2P(S̃)

g(✓,xN)

!
+ sup

✓2P(S)
g(✓,xN)

 � + sup
x2C

�����gl(✓
⇤
,x)� sup

✓2P(S)
g(✓,x)

����� ,
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where we have bound the last term by 0 since xN is feasible in PN. By Lemma EC.3, for N su�ciently large,1

the supremum is at most �. Taking the limit as � ! 0 proves x1 is feasible in P.2

For Thm 5.5 condition b), let x⇤ be optimal for P. Suppose by contradiction that there exists ✏ > 0 such3

that every convergent sequence of robust feasible solutions converges to a point more than ✏ far away from4

x⇤. By Condition iii) (from the statement of this theorem) there exists an x0 such that kx0 � x⇤
k < ✏ and5

x0 2 {x2 C : gl(✓
⇤
,x) < 0, l = 1, . . . ,L}. As above, for all N su�ciently large, x0 is feasible in PN. This yields6

a contradiction.7

The result now follows from Thm 5.5 of Shapiro et al. (2014).8

⇤9

Proof of Thm. 14. The “only if” direction is immediate since confidence regions satisfy the frequentist10

guarantee for all measurable g. For the “if” direction, note that for this choice of g, the set {(v, �
⇤(v| P(S))) :11

v 2 Rd
}✓ X (P(S)) for all S, whereby from the frequentist guarantee, PS(vT✓⇤

 �
⇤(v| P(S̃)) 8v 2 Rd) �12

1 � ✏. Meanwhile, since for any S, P(S) is closed and convex, vT✓⇤
 �

⇤(v| P(S),8v 2 Rd if and only if13

✓⇤
2P(S). Combining yields the theorem. ⇤14

Proof of Thm. 15. Let ⌘ denote a chi-squared random variable with r degrees of freedom. From the15

condition on ↵, P(
p

⌘  ↵z1�✏) < 1� ✏. Thus, there exists � > 0, such that P(
p

⌘  ↵z1�✏ + �) 1� ✏� �. Fix16

such a �.17

For any S such that P(S)�µN ✓ ↵(P⇤(S, z1�✏/
p

N)�µN), ✓⇤
2P(S) implies18

↵z1�✏ � k✓⇤
�µNk⌃N

� k✓⇤
�✓MLE

k⌃N
�k✓MLE

�µNk⌃N

by the triangle inequality. Hence,

PS

⇣
✓⇤

2P(S̃) and P(S̃)� µ̃N ✓ ↵(P⇤(S̃, z1�✏/

p

N)� µ̃N)
⌘
 PS

⇣
k✓⇤

� ✓̃
MLE

k⌃̃N
�k✓̃

MLE
� µ̃Nk⌃̃N

 ↵z1�✏

⌘

 PS

⇣
k✓⇤

� ✓̃
MLE

k⌃̃N
 ↵z1�✏ + �

⌘
+PS(k✓̃

MLE
� µ̃Nk⌃̃N

> �).

By A3, N⌃̃N !PS I(✓⇤)�1, and by Eq. (20),
p

N(✓⇤
� ✓̃

MLE
) converges in distribution to N (0,I(✓⇤)�1).19

By the continuous mapping theorem,20

PS

⇣
k✓⇤

� ✓̃
MLE

k⌃̃N
 ↵z1�✏ + �

⌘
! P(

p
⌘  ↵z1�✏ + �) 1� ✏� �.

Thus,

PS

⇣
✓⇤

2P(S̃) and P(S̃)� µ̃N ✓ ↵(P⇤(S̃, z1�✏/

p

N)� µ̃N)
⌘

 1� ✏� � +PS(k✓̃
MLE

� µ̃Nk⌃̃N
> �).
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1

Now, since P(·) is a confidence region,

1� ✏ PS(✓⇤
2P(S̃))

= PS(✓⇤
2P(S̃), and P(S̃)� µ̃N ✓ ↵(P⇤(S̃, z1�✏/

p

N)� µ̃N))

+PS(✓⇤
2P(S̃) and P(S̃)� µ̃N 6✓ ↵(P⇤(S̃, z1�✏/

p

N)� µ̃N)

 1� ✏� � +PS(k✓̃
MLE

� µ̃Nk⌃̃N
> �) +PS

⇣
✓⇤

2P(S̃), P(S̃)� µ̃N 6✓ ↵(P⇤(S̃, z1�✏/

p

N)� µ̃N)
⌘

.

 1� ✏� � +PS(k✓̃
MLE

� µ̃Nk⌃̃N
> �) +PS

⇣
P(S̃)� µ̃N 6✓ ↵(P⇤(S̃, z1�✏/

p

N)� µ̃N)
⌘

.

Rearranging shows that2

PS

⇣
P(S̃)� µ̃N 6✓ ↵(P⇤(S̃, z1�✏/

p

N)� µ̃N)
⌘
� ��PS(k✓̃

MLE
� µ̃Nk⌃̃N

> �).

By assumption, k✓̃
MLE

� µ̃Nk⌃̃N
!PS 0. Thus, taking the limit as N !1 proves the theorem. ⇤3

Proof of Thm. 16 Define xN ⌘ sup✓2P(S) k✓�✓⇤
kI(✓⇤)�1 . Consider any S such that4

P(S)�µN ✓ ↵

⇣
P

⇤
⇣
S, z1�✏/

p

N

⌘
�µN

⌘
. (EC.17)

We will bound xN for such S. In particular, for ✓ 2P(S),

k✓�✓⇤
kI(✓⇤)�1  k✓�µNkI(✓⇤)�1 + kµN �✓⇤

kI(✓⇤)�1

= k✓�µNkN⌃N
+
�
k✓�µNkI(✓⇤)�1 �k✓�µNkN⌃N

�
+ kµN �✓⇤

kI(✓⇤)�1

 k✓�µNkN⌃N
+ k✓�µNkN⌃N

q
kI(✓⇤)�N�1⌃�1

N kF + kµN �✓⇤
kI(✓⇤)�1 ,

where we have used Lemma EC.2. Note that5

k✓�µNkN⌃N
= N

�1/2
k✓�µNk⌃N

N
�1/2

↵z1�✏

by Eq. (EC.17). Combining with the above yields,6

xN = sup
✓2P(S)

k✓�✓⇤
kI(✓⇤)�1 

↵z1�✏
p

N

✓
1 +

q
kI(✓⇤)�N�1⌃�1

N kF

◆
+ kµN �✓⇤

kI(✓⇤)�1

whenever Eq. (EC.17) holds.7

By construction, xN is robust feasible and, hence, satisfies the posterior guarantee for any S. By the

triangle inequality, k✓� ✓⇤
kI(✓⇤)�1 � k✓�µNkI(✓⇤)�1 � kµN � ✓⇤

kI(✓⇤)�1 . Substituting this inequality and

our bound xN into the posterior guarantee yields for any S satisfying Eq. (EC.17),

1� ✏ P✓̃|S

⇣
k✓̃�✓⇤

kI(✓⇤)�1  xN

⌘
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 P✓̃|S

✓
k✓̃�µNkI(✓⇤)�1 �kµN �✓⇤

kI(✓⇤)�1 
↵z1�✏
p

N

✓
1 +

q
kI(✓⇤)�N�1⌃�1

N kF

◆
+ kµN �✓⇤

kI(✓⇤)�1

◆

= P✓̃|S

 
p

Nk✓̃�µNkI(✓⇤)�1  ↵z1�✏

 
1 +

q
kI(✓⇤)�N�1⌃�1

N kF +
2
p

N

↵z1�✏

kµN �✓⇤
kI(✓⇤)�1

!!
.

Since ↵z1�✏ <

q
�2

r,1�✏, there exists � > 0 such that (1 + 2�)↵z1�✏ 

q
�2

r,1�✏��. Fix such a �. Then, write

P✓̃|S

 
p

Nk✓̃�µNkI(✓⇤)�1  ↵z1�✏

 
1 +

q
kI(✓⇤)�N�1⌃�1

N kF +
2
p

N

↵z1�✏

kµN �✓⇤
kI(✓⇤)�1

!!

 P✓̃|S

⇣p
Nk✓̃�µNkI(✓⇤)�1 

q
�2

r,1�✏��

⌘
+ I

0

@1 +
q

kI(✓⇤)�N�1⌃�1
N kF +

2
p

N

↵z1�✏

kµN �✓⇤
kI(✓⇤)�1 �

q
�2

r,1�✏��

↵z1�✏

1

A

 P✓̃|S

⇣p
Nk✓̃�µNkI(✓⇤)�1 

q
�2

r,1�✏��

⌘
+ I
 q

kI(✓⇤)�N�1⌃�1
N kF +

2
p

N

↵z1�✏

kµN �✓⇤
kI(✓⇤)�1 � 2�

!

 P(k⇣̃kI(✓⇤)�1 

q
�2

r,1�✏��) + R(S) + I
✓q

kI(✓⇤)�N�1⌃�1
N kF � �

◆
+ I
 

2
p

N

↵z1�✏

kµN �✓⇤
kI(✓⇤)�1 � �

!

 1� ✏� � + R(S) + I
✓q

kI(✓⇤)�N�1⌃�1
N kF � �

◆
+ I
✓
p

NkµN �✓⇤
kI(✓⇤)�1 �

�↵z1�✏

2

◆
,

where ⇣̃ ⇠N (0,I(✓⇤)�1) and R(S) is the total variation distance from Thm. 6. Thus, we have shown that1

for any S that satisfies Eq. (EC.17),2

� R(S) + I
✓q

kI(✓⇤)�N�1⌃�1
N kF � �

◆
+ I
✓
p

NkµN �✓⇤
kI(✓⇤)�1 �

�↵z1�✏

2

◆
.

This implies for a random S̃,

PS

⇣
S̃ satisfies Eq. (EC.17)

⌘

 PS

✓
R(S̃) + I

✓q
kI(✓⇤)�N�1⌃̃

�1

N kF � �

◆
+ I
✓
p

Nkµ̃N �✓⇤
kI(✓⇤)�1 �

�↵z1�✏

2

◆
� �

◆

 PS

✓
R(S̃) >

�

2

◆
+PS

✓q
kI(✓⇤)�N�1⌃̃

�1

N kF � �

◆
+PS

✓
p

Nkµ̃N �✓⇤
kI(✓⇤)�1 �

�↵z1�✏

2

◆
.

By A3, the first two probabilities tend to zero, and the third probability tends to zero by assumption. This3

completes the proof. ⇤4

Proof of Thm. 17 For the first part, note that x̃2X (P(S̃)), P-a.s. Fix any x2X (P(S)). Then,

P
⇣
g(✓̃, x̃) 0 | S̃ = S, x̃= x

⌘
= P

⇣
g(✓̃,x) 0 | S̃ = S, x̃= x

⌘

= P
⇣
g(✓̃,x) 0 | S̃ = S

⌘
(since x̃?? ✓̃|S̃)

� 1� ✏,

where the last line follows because x 2 X (P(S)) and P(·) satisfies the posterior feasibility guarantee. Now5

take expectations of both sides, first with respect to x̃ and then with respect to S̃ to prove the claim.6
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For the second part, we construct an instance explicitly. Suppose that the prior distribution of ✓̃ is1

N (0,1/2), and we observe a single observation S̃ = {⇠̃} where ⇠̃|✓̃ ⇠ N (✓̃,1/2). A standard computation2

shows that under the posterior distribution P✓̃|S̃ , ✓̃|S̃ ⇠N (⇠̃/2,1). In particular, VaR1�✏
P✓̃|S̃

(v) = v⇠̃/2+ z1�✏|v|3

is convex and the set P
⇤(S, z1�✏) = {✓̃ : |✓̃ � ⇠̃/2|  z1�✏} is the optimal Bayesian set, for any finite N . In4

particular, �
⇤ (v|P⇤(S, z1�✏)) = v⇠̃/2 + z1�✏|v|.5

Now let g(✓, (v, t)) = v✓� t. Consider the instance of PN for data S̃,

min
v,t

0

s.t. g(✓, (v, t)) 0, 8✓ 2P
⇤(S̃, z1�✏)

� 1 v  1.

Notice this problem admits multiple solutions. Let ṽ = sgn(✓̃ � ⇠̃/2), and consider the solution x̃ =6
⇣
ṽ, �

⇤
⇣
ṽ |P

⇤(S̃, z1�✏)
⌘⌘

, which by construction is feasible, and hence optimal for the above problem. Notice,7

x̃ 6?? ✓̃ | S̃ since it explicitly depends on the value of ✓̃.8

Finally, compute directly,

P
⇣
g(✓̃, x̃) 0

⌘
= P

⇣
ṽ✓̃  ṽ⇠̃/2 + z1�✏|ṽ|

⌘

= P
⇣
|✓̃� ⇠̃/2| z1�✏

⌘
(by definition of |ṽ|)

=E
h
P
⇣
|✓̃� ⇠̃/2| z1�✏ | ⇠̃

⌘i

= 1� 2✏,

where we have used the fact that ✓̃|⇠̃ ⇠ N (⇠̃/2,1) to evaluate the inner probability. Note this quantity is9

strictly less than 1� ✏ to complete the proof.10

⇤11

Proof of Thm. 18. Restrict attention to the l
th constraint, and, without loss of generality, write12

gl(✓,x) = vT✓� t, where (v, t) are deterministic functions of x. Let vN , tN be these deterministic functions13

evaluated at xN and ṽN , t̃N , x̃N be their random counterparts . Thus, we must bound limsupPS(ṽT
N✓

⇤
> t̃N).14

Intuitively, since P(S) satisfies a posterior guarantee, it eventually contains a small contraction of15

the asymptotically optimal set. To this end, fix any � > 0, let ✏
0 = ✏ + �, and consider the contraction16

P
⇤(S, z1�✏0/

p
N). Decompose17

PS(ṽT
N✓

⇤
> t̃N) = PS

⇣
ṽT

N✓
⇤
> t̃N , P

⇤(S̃, z1�✏0/

p

N) 6✓P(S̃)
⌘

+PS

⇣
ṽT

N✓
⇤
> t̃N , P

⇤(S̃, z1�✏0/

p

N)✓P(S̃)
⌘

.
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By Thm. 7, the first probability tends to zero since P(·) satisfies a posterior feasibility guarantee. Thus, we1

focus on the second probability.2

If P⇤(S, z1�✏0/
p

N)✓P(S) and xN is robust feasible, then

tN � sup
✓2P(S)

vT
N✓ � sup

✓2P⇤(S,z1�✏0/
p
N)

vT
N✓ = µT

NvN + z1�✏0kvNk⌃�1
N

.

In particular,

vT
N✓

⇤
> tN =) vT

NµN +vT
N(✓⇤

�µN) > tN =) vT
N(✓⇤

�µN) > z1�✏0kvNk⌃�1
N

.

Thus, PS

⇣
ṽT

N✓
⇤
> t̃N , P

⇤(S̃, z1�✏0/
p

N)✓P(S̃)
⌘
 PS(ṽT

N(✓⇤
� µ̃N) > z1�✏0kṽNk⌃�1

N
). Decomposing ✓⇤

�3

µ̃N = ✓⇤
� ✓̃

MLE
+ ✓̃

MLE
� µ̃N , write, for � > 0,4

PS(ṽT
N(✓⇤

� µ̃N) > z1�✏0kṽNk⌃�1
N

) PS

 
ṽT

N(✓̃
MLE

� µ̃N)

kṽNk⌃̃�1
N

> �

!
+PS

 
ṽT

N(✓⇤
� ✓̃

MLE
)

kṽNk⌃̃�1
N

> z1�✏0 � �

!
.

(EC.18)

By the Cauchy-Schwarz inequality, the first probability is bounded by PS(k✓̃
MLE

� µ̃Nk⌃̃N
> �), which5

tends to zero by Condition iii) of the theorem.6

Finally, for the remaining probability, by Thm. 13 and Condition v), (ṽN , t̃N) !PS (v⇤
, t

⇤) for some con-7

stants (v⇤
, t

⇤). Moreover, N⌃̃N !PS I(✓⇤)�1. Thus, ṽNp
NkṽNk

⌃̃�1
N

!PS
v⇤

kv⇤kI(✓⇤)
by the continuous mapping8

theorem. Combine this observation with Eq. (20) to conclude that9

ṽT
N(✓⇤

� ✓̃
MLE

)

kṽNk⌃̃�1
N

=
ṽT

N
p

NkṽNk⌃̃�1
N

p

N(✓⇤
� ✓̃

MLE
)

converges in distribution to a N (0,1) random variable.10

In summary, we have shown that for N su�ciently large and ỹ a standard normal random variable,11

PS(ṽT
N✓

⇤
> t̃N) P(ỹ > z1�✏�� � �) + 3�.

Taking � ! 0, the righthand side can be made arbitrarily close to P(ỹ > z1�✏) = ✏, proving the theorem. ⇤12

Appendix E: Additional Tables and Plots13

E.1. Non-Uniform ✓⇤14

In this appendix we study the performance of our sets when the true distribution is non-uniform. Specifically,15

we cluster the 10 most recent years of data (Jan. 2005 to Dec. 2014, 120 observations) into 36 clusters using16

hierarchical clustering (Friedman et al. 2001). We take the true distribution to be supported on the centroid17

of each cluster with probability equal to the proportion of observations in that cluster. Intuitively, these18
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clusters represent typical market environments over this time frame. Since some clusters are much larger than1

others, the resulting probabilities are non-uniform, ranging from 0.1 to 0.008 (see left panel of Fig. EC.2).2

Many of the small clusters correspond to large returns (or losses) in some of the asset classes (see right panel3

of Fig. EC.2). These rare scenarios with large losses/gains create a particularly challenging environment for4

data-driven portfolio allocation.
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Figure EC.2 The left panel shows the proportion of observations in each cluster, i.e., ✓⇤. The dotted line

corresponds to 1/36, i.e., the uniform distribution. The right panel shows the centroids of some of the smallest

clusters.

5

We repeat the experiment of Sec. 6.1 with this distribution, i.e., we repeatedly draw N data points from6

this distribution, form each of our portfolios from these data, and then record the performance with respect7

to the true distribution. Fig. EC.3 displays the results, which are largely similar to those of Sec. 6.1.8

E.2. Auxiliary Results from Secs. 6.1 and 6.3 to 6.59

This section contains a number of additional plots for experiments run in Sections Secs. 6.1 and 6.3 to 6.5.10

Unless otherwise specified, experimental conditions are as described in the corresponding section.11
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Figure EC.3 The return and risk for portfolios corresponding to various ambiguity sets from Sec. 6.2.

kxk= 0 St. Dev. of kxk

N �
2
C KLC �

2
�

2
C KL KLC MinVar Naive SAA

100 1.00 1.00 0.04 0.00 0.04 0.00 0.10 0.02 0.12
200 0.91 0.99 0.05 0.08 0.05 0.03 0.07 0.01 0.10
300 0.51 0.81 0.03 0.13 0.03 0.11 0.04 0.01 0.06
400 0.13 0.27 0.04 0.10 0.04 0.13 0.04 0.01 0.06
500 0.03 0.06 0.04 0.06 0.04 0.08 0.04 0.01 0.06
600 0.00 0.01 0.04 0.04 0.04 0.05 0.03 0.01 0.05
700 0.00 0.00 0.03 0.03 0.04 0.03 0.03 0.01 0.05
800 0.00 0.00 0.04 0.03 0.04 0.03 0.03 0.01 0.06
900 0.00 0.00 0.04 0.03 0.04 0.03 0.03 0.01 0.05
1000 0.00 0.00 0.04 0.03 0.04 0.03 0.02 0.01 0.04

Table EC.1 Fraction of runs that return the zero portfolio, i.e., kxk= 0 by method and variability of portfolios

by method. Methods that never return the zero portfolio are omitted. Based on the experiment in Sec. 6.1.
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Figure EC.4 The return and risk for all tested portfolios from Sec. 6.3.



ec26 e-companion to Gupta: Near-Optimal Bayesian Ambiguity Sets

●

●

●

●
●

● ● ● ●

0

1

2

3

25 50 75 100 125
d

R
et

ur
n 

(%
)

●KL χ2 KLC χC
2 SAA Naive MinVar

●
●

●

●

●
● ● ●

●

0

1

2

3

25 50 75 100 125
d

C
Va

R
 (%

)

●KL χ2 KLC χC
2 SAA Naive MinVar

Figure EC.5 The return and risk for all tested portfolios from Sec. 6.3 but with N = 700.
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Table EC.2 Summary statistics of out-of-sample portfolio performance for various randomly generated priors

from Sec. 6.4. The columns 10% and 90% refer the sample quantiles of corresponding statistics.

Return CVaR

Method Strength (%) Avg. 10% 90% Avg. 10% 90%

ChiSq 10 0.90 0.85 0.96 2.65 2.51 2.79
25 0.91 0.85 0.97 2.66 2.52 2.81
50 0.92 0.86 0.99 2.69 2.54 2.83
75 0.92 0.85 0.99 2.71 2.56 2.88
100 0.94 0.86 1.02 2.76 2.57 2.96
125 0.93 0.85 1.03 2.75 2.57 2.95
150 0.94 0.85 1.03 2.78 2.59 2.98

KL 10 0.92 0.87 0.98 2.69 2.55 2.83
25 0.93 0.87 0.99 2.70 2.56 2.85
50 0.94 0.87 1.01 2.73 2.58 2.88
75 0.94 0.86 1.01 2.75 2.59 2.93
100 0.96 0.87 1.05 2.81 2.61 3.01
125 0.95 0.86 1.06 2.80 2.61 3.01
150 0.96 0.86 1.06 2.83 2.62 3.05
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Figure EC.6 Realized performance of each portfolio from Sec. 6.5 from Mar. 1998 through Dec. 2014.
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Figure EC.7 Rolling CVaR of each portfolio from Sec. 6.5 using a trailing 72-month window from Mar. 2004

through Dec. 2014.


