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Managing large-scale systems often involves simultaneously solving thousands of unrelated stochastic opti-

mization problems, each with limited data. Intuition suggests one can decouple these unrelated problems

and solve them separately without loss of generality. We propose a novel data-pooling algorithm called

Shrunken-SAA that disproves this intuition. In particular, we prove that combining data across problems

can outperform decoupling, even when there is no a priori structure linking the problems and data are drawn

independently. Our approach does not require strong distributional assumptions and applies to constrained,

possibly non-convex, non-smooth optimization problems such as vehicle-routing, economic lot-sizing or facil-

ity location. We compare and contrast our results to a similar phenomenon in statistics (Stein’s Phenomenon),

highlighting unique features that arise in the optimization setting that are not present in estimation. We

further prove that as the number of problems grows large, Shrunken-SAA learns if pooling can improve

upon decoupling and the optimal amount to pool, even if the average amount of data per problem is fixed

and bounded. Importantly, we highlight a simple intuition based on stability that highlights when and why

data-pooling o↵ers a benefit, elucidating this perhaps surprising phenomenon. This intuition further suggests

that data-pooling o↵ers the most benefits when there are many problems, each of which has a small amount

of relevant data. Finally, we demonstrate the practical benefits of data-pooling using real data from a chain

of retail drug stores in the context of inventory management.
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1. Introduction

The stochastic optimization problem

min
x2X

EP[c(x,⇠)] (1.1)

is a fundamental model with applications ranging from inventory management to personalized

medicine. In typical data-driven settings, the measure P governing the random variable ⇠ is

unknown. Instead, we have access to a dataset S = {⇠̂1, . . . , ⇠̂N} drawn i.i.d. from P and seek a deci-

sion x2X depending on these data. This model and its data-driven variant have been extensively

studied in the literature (see Shapiro et al. 2009 for an overview).
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Managing real-world, large-scale systems, however, frequently involves solving thousands of

potentially unrelated stochastic optimization problems like Problem (1.1) simultaneously. For

example, inventory management often requires optimizing stocking levels for many distinct prod-

ucts across categories, not just a single product. Firms typically determine sta�ng and capacity

for many warehouses and fulfillment centers across the supply-chain, not just at a single location.

Logistics companies often divide large territories into many small regions and solve separate vehicle

routing problems, one for each region, rather than solving a single monolithic problem. In such

applications, a more natural model than Problem (1.1) might be

1

K

KX

k=1

�k

�avg

min
xk2Xk

EPk [ck(xk,⇠
k)], (1.2)

where we solve a separate subproblem of the form (1.1) for each k, e.g., setting a stocking level

for each product. Here, �k > 0 represents the frequency with which the decision-maker incurs costs

from problems of type k, and �avg =
1

K

PK
k=1

�k. Thus, this formulation captures the fact that our

total costs in such systems are driven by the frequency-weighted average of the costs of many

distinct optimization problems.

Of course, intuition strongly suggests that since there are no coupling constraints across the

feasible regions Xk in Problem (1.2), one can and should decouple the problem into K unrelated

subproblems and solve them separately. Indeed, when the measures Pk are known, this procedure is

optimal. When the Pk are unknown and unrelated, but one has access to a dataset {⇠̂k,1, . . . , ⇠̂k,N̂k
}

drawn i.i.d. from Pk independently across k, intuition still strongly suggests decoupling is without

loss of generality and that data-driven procedures should be applied separately by subproblem.

A key message of this paper is that this intuition is false.

In the data-driven setting, when solving many stochastic optimization problems, we show there

exist algorithms which pool data across sub-problems that outperform decoupling even when the

underlying problems are unrelated, and data are independent. This phenomenon holds despite the

fact that the k
th dataset tells us nothing about Pl for l 6= k, and there is no a priori relationship

between the Pk. We term this phenomenon the data-pooling phenomenon in stochastic optimization.

Figure 1 illustrates the data-pooling phenomenon with a simulated example for emphasis. Here

K = 10,000, and the k
th subproblem is a newsvendor problem with critical quantile 90%, i.e.,

ck(x; ⇠) =max{9(⇠�x), (x� ⇠)}. The measures Pk are fixed and in each run we simulate N̂k = 20

data points per subproblem. For the decoupled benchmark, we use a standard method, Sample

Average Approximation (SAA; Definition 2.1) which is particularly well-suited to the data-driven

newsvendor problem (Levi et al. 2015). For comparison, we use our novel Shrunken-SAA algorithm

which exploits the data-pooling phenomenon. We motivate and formally define Shrunken-SAA
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Figure 1 The Data-Pooling Phenomenon We con-

sider K = 10,000 data-driven newsvendor

problems each with critical fractile 90% and

20 data points per subproblem, drawn inde-

pendently across subproblems. SAA decou-

ples the problems and orders the 90
th
-sample

quantile in each. Shrunken-SAA (cf. Algo-

rithm 1 in Section 3), leverages data-pooling.

Indicated percentages are losses to the full-

information optimum. Additional details in

Appendix E.1.

in Section 3, but, loosely speaking Shrunken-SAA proceeds by replacing the k
th dataset with a

“pooled” dataset which is a weighted average of the original kth dataset and all of the remaining

l 6= k datasets. It then applies SAA to these each of these new pooled datasets. Perhaps surprisingly,

by pooling data across the unrelated subproblems, Shrunken-SAA it reduces by over 80% the loss

to full-information optimum compared to SAA in this example.

Our Contributions: We describe and study the data-pooling phenomenon in stochastic opti-

mization in context of Problem (1.2). Our analysis applies to constrained, potentially non-convex,

non-smooth optimization problems under fairly mild assumptions on the data-generating process.

In particular, we only assume that each Pk has known, finite, discrete support (potentially di↵ering

across k). We contrast the data-pooling phenomenon to a similar phenomenon in statistics (Stein’s

phenomenon), highlighting unique features that arise in the optimization setting (cf. Theorem 2.2

and Example 2.3). In particular, and in contrast to traditional statistical settings, we show that the

potential benefits of data-pooling depend strongly on the structure of the underlying optimization

problems, and, in some cases, data-pooling may o↵er no benefit over decoupling.

This observation raises important questions: Given a particular data-driven instance of Prob-

lem (1.2), should we data-pool, and, if so, how? More generally, does data-pooling typically o↵er a

significant benefit over decoupling, or are instances like Fig. 1 somehow the exception to the rule?

To help resolve these questions, we propose a simple, novel algorithm we call Shrunken Sam-

ple Average Approximation (Shrunken-SAA). Shrunken-SAA generalizes the classical SAA algo-

rithm and, consequently, inherits many of its excellent large-sample asymptotic properties (cf.

Remark 4.1). Moreover, Shrunken-SAA is incredibly versatile and can be tractably applied to a

wide variety of optimization problems with computational requirements similar to traditional SAA

(cf. Remark 3.1). Unlike traditional SAA, however, Shrunken-SAA exploits the data-pooling phe-

nomenon to improve performance over SAA, as seen in Fig. 1. Moreover, Shrunken-SAA exploits
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the structure of the optimization problems and strictly improves upon an estimate-then-optimize

approach using traditional statistical shrinkage estimators (cf. Example 2.3 and Section 6).

Shrunken-SAA data-pools by combining data across subproblems in a particular fashion moti-

vated by an empirical Bayesian argument. We prove that (under frequentist assumptions) for many

classes of optimization problems, as the number of subproblems K grows large, Shrunken-SAA

determines if pooling in this way can improve upon decoupling and, if so, also determines the opti-

mal amount to pool (cf. Theorems 4.2 to 4.5). These theoretical results study Problem Eq. (1.2)

when the amount of data available for the k
th subproblem is, itself, random (see Assumption 3.1

and surrounding discussion), but, numerical experiments suggest this assumption is not crucial.

More interestingly, our theoretical performance guarantees for Shrunken-SAA hold even when

the expected amount of data per subproblem is small and fixed and the number of problems K

is large, as in Fig. 1, i.e., they hold in the so-called small-data, large-scale regime (Gupta and

Rusmevichientong 2017). Indeed, since many traditional data-driven methods (including SAA)

already converge to the full-information optimum in the large-sample regime, the small-data, large-

scale regime is in some ways the more interesting regime in which to study the potential benefits

of data-pooling.

In light of the above results, Shrunken-SAA provides an algorithmic approach to deciding if, and,

by how much to pool. To develop an intuitive understanding of when and why data-pooling might

improve upon decoupling, we also introduce the Sub-Optimality-Instability Tradeo↵, a decompo-

sition of the benefits of data-pooling. We show that the performance of a data-driven solution to

Problem (1.2) (usually called its out-of-sample performance in machine learning settings) can be

decomposed into a sum of two terms: a term that roughly depends on its in-sample sub-optimality,

and a term that depends on its instability, i.e., how much does in-sample performance change when

training with one fewer data points? As we increase the amount of data-pooling, we increase the

in-sample sub-optimality because we “pollute” the k
th subproblem with data from other, unre-

lated subproblems. At the same time, however, we decrease the instability of the k
th subproblem,

because the solution no longer relies on its data so strongly. Shrunken-SAA works by navigating

this tradeo↵ seeking a “sweet spot” to improve performance. (See Section 5 for a fuller discussion.)

In many ways, the Sub-Optimality-Instability Tradeo↵ resembles the classical bias-variance

tradeo↵ from statistics. However, they di↵er in that the Sub-Optimality-Instability tradeo↵ applies

to general optimization problems, while the bias-variance tradeo↵ applies specifically to the case of

mean-squared error. Moreover, even in the special case when Problem (1.2) models mean-squared

error, we prove that these two tradeo↵s are distinct (cf. Lemma D.1 and subsequent remark). In this

sense, the Sub-Optimality-Instability Tradeo↵may be of independent interest outside data-pooling.
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Stepping back, this simple intuition suggests that Shrunken-SAA, and data-pooling more gener-

ally, o↵er significant benefits whenever the decoupled solutions to the subproblems are su�ciently

unstable, which typically happens when there is only a small amount of relevant data per sub-

problem. It is in this sense that the behavior in Fig. 1 is typical and not pathological. Moreover,

this intuition also naturally extends beyond Shrunken-SAA, paving the way to developing and

analyzing new algorithms which also exploit the, hitherto underutilized, data-pooling phenomenon.

Finally, we present numerical evidence in an inventory management context using real-data from

a chain of European Drug Stores showing that Shrunken-SAA can o↵er significant benefits over

decoupling when the amount of data per subproblem is small to moderate. These experiments also

suggest that Shrunken-SAA’s ability to identify an optimal amount of pooling and improve upon

decoupling are relatively robust to violations of our assumptions on the data-generating process.

Connections to Prior Work: As shown in Section 3, our proposed algorithm Shrunken-SAA

generalizes SAA. In many ways, SAA is the most fundamental approach to solving Problem (1.1)

in a data-driven setting. SAA proxies P in (1.1) by the empirical distribution P̂ on the data and

optimizes against P̂. It enjoys strong theoretical and practical performance in the large-sample

limit, i.e., when N is large (Kleywegt et al. 2002, Shapiro et al. 2009). For data-driven newsvendor

problems, specifically – an example we use throughout our work – SAA is the maximum likelihood

estimate of the optimal solution and at the same time is the distributionally robust optimal solution

when using a Wasserstein ambiguity set (Esfahani and Kuhn 2018, pg. 151). SAA is incredibly

versatile and applicable to a wide-variety of classes of optimization problems. This combination of

strong performance and versatility has fueled SAA’s use in practice.

When applied to Problem (1.2), SAA (by construction) decouples the problem into its K sub-

problems. Moreover, Shrunken-SAA recovers SAA when no pooling is optimal. For these reasons,

and its aforementioned strong theoretical and practical performance, we use SAA throughout as the

natural, “apples-to-apples” decoupled benchmark to which to compare our data-pooling procedure.

More generally, the data-pooling phenomenon for stochastic optimization is closely related to

Stein’s phenomenon in statistics (Stein 1956; see also Efron and Hastie 2016 for a modern overview).

Stein (1956) considered estimating the mean of K normal distributions, each with known variance

�
2, from K datasets. The k

th dataset is drawn i.i.d. from the k
th normal distribution and draws

are independent across k. The natural decoupled solution to the problem (and the maximum like-

lihood estimate) is to use the kth sample mean as an estimate for the kth distribution. Surprisingly,

while this estimate is optimal for each problem separately in a very strong sense (uniformly min-

imum variance unbiased and admissible), Stein (1956) describes a pooled procedure that always

outperforms this decoupled procedure with respect to total mean-squared error whenever K � 3.
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The proof of Stein’s landmark result is remarkably short, but arguably opaque. Indeed, many

textbooks refer to it as “Stein’s Paradox,” perhaps because it is not immediately clear what drives

the result. Why does it always improve upon decoupling, and what is special about K = 3? Is this a

feature of normal distributions? The known variance assumption? The structure of mean-squared

error loss? All of the above?

Many authors have tried to develop simple intuition for Stein’s result (e.g., Efron and Morris

1977, Stigler 1990, Brown et al. 2012, Brown 1971, Beran 1996) with mixed success. As a conse-

quence, although Stein’s phenomenon has had tremendous impact in statistics, it has, in our humble

opinion, had fairly limited impact on data-driven optimization. It is simply not clear how to gener-

alize Stein’s original algorithm to optimization problems di↵erent from minimizing mean-squared

error. Indeed, the few data-driven optimization methods that attempt to leverage shrinkage apply

either to quadratic optimization (e.g., Davarnia and Cornuéjols 2017, Jorion 1986, DeMiguel et al.

2013) or else under Gaussian or near-Gaussian assumptions (Gupta and Rusmevichientong 2017,

Mukherjee et al. 2015), both of which are very close to Stein’s original setting.

By contrast, our analysis of the data-pooling phenomenon does not require strong distributional

assumptions and applies to constrained, potentially non-convex, non-smooth optimization prob-

lems. Numerical experiments in Section 6 further suggest that even our few assumptions are not

crucial to the data-pooling phenomenon. Moreover, our proposed algorithm, Shrunken-SAA, is

extremely versatile, and can be applied in essentially any optimization in which traditional SAA

can be applied.

Finally, we note that (in)stability has been well-studied in the machine-learning community (see,

e.g., Bousquet and Elissee↵ 2002, Shalev-Shwartz et al. 2010, Yu 2013 and references therein).

Shalev-Shwartz et al. (2010), in particular, argues that stability is the fundamental feature of

data-driven algorithms that enables learning. Our Sub-Optimality-Instability Tradeo↵ connects

the data-pooling phenomenon in stochastic optimization to this larger statistical concept. To the

best of our knowledge, however, existing theoretical analyses of stability focus on the large-sample

regime. Ours is the first work to leverage stability concepts in the small-data, large-scale regime.

From a technical perspective, this analysis requires somewhat di↵erent tools.

Notation: Throughout the document, we use boldfaced letters (p,m, . . .) to denote vectors and

matrices, and ordinary type to denote scalars. We use “hat” notation (p̂,m̂, . . .) to denote observed

data, i.e., an observed realization of a random variable. We reserve the index k to denote parameters

for the k
th subproblem.
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2. Model Setup and the Data-Pooling Phenomenon

As discussed in the introduction, we assume throughout that Pk has finite, discrete support, i.e.,

⇠k 2 {ak1, . . . ,akd} with d � 2. Notice that while the support may in general be distinct across

subproblems, without loss of generality d is common. To streamline the notation, we write

pki ⌘ Pk(⇠k = aki) and cki(x)⌘ ck(x,aki), i= 1 . . . , d.

For each k, we let ⇠kj ⇠ Pk, j = 1, . . . , N̂k, denote the N̂k i.i.d. data draws. Since Pk is discrete, we

summarize these data via counts, m̂k = (m̂k1, . . . , m̂kd), where m̂ki denotes the number of times

that aki was observed in subproblem k, and e>m̂k = N̂k. More precisely, we have

m̂k | N̂k ⇠Multinomial(N̂k,pk), k= 1, . . .K. (2.1)

Let m̂ = (m̂1, . . . ,m̂K) denote all the data across all K subproblems, and let N̂ = (N̂1, . . . , N̂K)

denote the total observation counts. Again, for convenience, we let N̂max =maxk N̂k. Finally, let

p̂k ⌘ m̂k/N̂k denote the empirical distribution of data for the k
th subproblem.

Notice we have used ·̂ notation when denoting N̂k and conditioned on its value in specifying the

distribution of m̂k. This is because in our subsequent analysis, we will sometimes view the amount

of data available for each problem as random (see Sec. 3.1 below). When the amount of data is

fixed and non-random, we condition on N̂k explicitly to emphasize this fact.

With this notation, we can rewrite our target optimization problem:

Z
⇤
⌘ min

x1,...,xK

1

K

KX

k=1

�k

�avg

pk
>ck(xk) (2.2)

s.t. xk 2Xk k= 1, . . . ,K.

Our goal is to identify a data-driven policy, i.e., a function x(m̂) = (x1(m̂), . . . ,xK(m̂)) that

maps the data m̂ to X1 ⇥ · · ·⇥XK which has good performance in Problem (2.2), i.e., for which
1

K

PK
k=1

�k
�avg

pk
>ck(xk(m̂)) is small. We stress, the performance of a data-driven policy is random

because it depends on the data.

As mentioned with full information of pk, Problem (2.2) decouples across k, and, after decoupling,

no longer depends on the frequency weights �k
K�avg

. Our proposed algorithms will also not require

knowledge of the weights �k. For convenience we let �min =mink �k and �max =maxk �k.

A canonical policy to which we will compare is the Sample Average Approximation (SAA) policy

which proxies the solution of these de-coupled problems by replacing pk with p̂k:

Definition 2.1 (Sample Average Approximation). Let xSAA

k (m̂k) 2 argminx2Xk
p̂>
k ck(xk)

denote the SAA policy for the k
th problem and let xSAA(m̂) = (xSAA

1
(m̂1), . . . ,xSAA

K (m̂K)).

As we will see, SAA is closely related to our proposed algorithm Shrunken-SAA, and hence provides

a natural (decoupled) benchmark when assessing the value of data-pooling.
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2.1. A Bayesian Perspective of Data-Pooling

To begin to motivate the Shrunken-SAA algorithm, we first consider a Bayesian approximation to

our problem. Specifically, suppose that each pk were independently drawn from a common Dirichlet

prior, i.e.,

pk ⇠Dir(p0,↵0), k= 1, . . . ,K,

with ↵0 > 0 and p0 2�d, the d-dimensional simplex. The Bayes-optimal decision minimizes the pos-

terior risk, which is E
h

1

K

PK
k=1

�k
�avg

pk
>ck(xk) | m̂

i
= 1

K

PK
k=1

�k
�avg

E [pk | m̂]> ck(xk), by linearity.

Furthermore, by independence and conjugacy, respectively,

E [pk | m̂] = E [pk | m̂k] =
↵0

N̂k +↵0

p0 +
N̂k

N̂k +↵0

p̂k.

Hence, a Bayes-optimal solution is x(↵0,p0,m̂k) = (x1(↵0,p0,m̂1), . . . ,xK(↵0,p0,m̂K)), where

p̂k(↵) =

 
↵

N̂k +↵
p0 +

N̂k

N̂k +↵
p̂k

!
, k= 1, . . . ,K (2.3)

xk(↵,p0,m̂k)2 arg min
xk2Xk

p̂k(↵)
>ck(xk), k= 1, . . . ,K. (2.4)

For any fixed (non-data-driven) ↵ and p0, xk(↵,p0,m̂k) only depends on the data through m̂k,

but not on m̂l for l 6= k.

This policy has an appealing, intuitive structure. Notice p̂k(↵) is a convex combination between

p̂k, a data-based estimated of pk, and p0, an a priori estimate of pk. In traditional statistical par-

lance, we say p̂k(↵) shrinks the empirical distribution p̂k toward the anchor p0. The Bayes-optimal

solution is the plug-in solution when using this shrunken empirical measure, i.e., it optimizes xk as

though that were the known true measure. Note in particular, this di↵ers from the SAA solution,

which is the plug-in solution when using the “unshrunken” p̂k.

The parameter ↵ controls the degree of shrinkage. As ↵! 0, xk(↵,p0,m̂) converges to an SAA

solution, and as ↵!1, xk(↵,p0,m̂) converges to the (non-random) solution to the fully-shrunken

k
th subproblem. In this sense the Bayes-optimal solution “interpolates” between the SAA solution

and the fully-shrunken solution. The amount of data N̂k attenuates the amount of shrinkage, i.e.,

subproblems with more data are shrunk less aggressively for the same ↵.

Alternatively, we can give a data-pooling interpretation of xk(↵,p0,m̂k) via the Bayesian notion

of pseudocounts. Observe xk(↵,p0,m̂k)2 argminxk2Xk

⇣
↵p0+m̂k
N̂k+↵

⌘>
ck(xk) and that ↵p0+m̂k

N̂k+↵
is a dis-

tribution on {ak1, . . . ,akd}. In other words, we can interpret xk(↵,p0,m̂k) as the solution obtained

when we augment each of our original K datasets with ↵ additional “synthetic” data points with

counts ↵p0. As we increase ↵, we add more synthetic data.
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For completeness in what follows, we also define xk(0,p0,0) = lim↵!0xk(↵,p0,0), so that

xk(↵,p0, ·) is continuous in ↵. Observe xk(0,p0,m̂k) is not continuous in m̂k at N̂k = 0. Further-

more, for ↵ > 0, xk(↵,p0,0) is the (non-random) solution to the fully shrunken k
th subproblem.

To emphasize this non-randomness, let

xk(1,p0)2 arg min
xk2Xk

dX

i=1

p0icki(xk),

so that xk(↵,p0,0) =xk(1,p0) for all ↵> 0.

In summary, xk(↵,p0,m̂k) has an intuitive structure that is well-defined regardless of the precise

structure of the cost functions ck(·) or feasible region X . Importantly, this analysis shows that when

the pk follow a Dirichlet prior, data-pooling by ↵ is never worse than decoupling, and will be strictly

better whenever xSAA

k (m̂k) is not an optimal solution to the problem defining xk(↵,p0,m̂k).

2.2. Data-Pooling in a Frequentist Setting

It is perhaps not surprising that data-pooling (or shrinkage) improves upon the decoupled SAA

solution in the Bayesian setting because problems l 6= k contain information about ↵ and p0 which

in turn contain information about pk. What may be surprising is that even in frequentist settings,

i.e., when the pk are fixed constants that may have no relationship to one another and there is no

“ground-truth” values for ↵ or p0, policies like x(↵,p0,m̂) can still improve upon the decoupled

SAA solution through a careful choice of ↵ and p0 that depend on all the data. Indeed, this is the

heart of Stein’s result for Gaussian random variables and mean-squared error.

To build intuition, we first study the specific case of minimizing mean-squared error and show

that data-pooling can improve upon the decoupled SAA solution in the frequentist framework

of Eq. (2.1). This result is thus reminiscent of Stein’s classical result, but does not require the

Gaussian assumptions. Consider the following example:

Example 2.1 (A Priori-Pooling for Mean-Squared Error). Consider a special case of

Problem (2.2) such that for all k that �k = �avg, N̂k = N̂ � 2, pk is supported on {ak1, . . . , akd}✓R,
Xk = R and cki(x) = (x� aki)2. In words, the k

th subproblem estimates the unknown mean µk =

p>
k ak by minimizing the mean-squared error. Let �2

k = p>
k (ak�µk)2.

Fix any p0 2�d and ↵� 0 (not depending on the data). A direct computation shows that

xk(↵,p0,m̂k) ⌘ µ̂k(↵) ⌘
N̂

N̂ +↵
µ̂k +

↵

N̂ +↵
µk0,

where µ̂k =
1

N̂

PN̂
i=1

⇠
k
i is the usual sample mean, and µk0 = p>

0
ak. Notice in particular that the

decoupled SAA solution is xSAA = (µ̂1, . . . , µ̂K), corresponding to ↵= 0.
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For any p0 and ↵, the objective value of x(↵,p0,m̂) is

1

K

KX

k=1

p>
k ck(xk(↵,p0,m̂k)) =

1

K

KX

k=1

E
⇥
(µ̂k(↵)� ⇠k)

2
| m̂

⇤
=

1

K

KX

k=1

�
�
2

k +(µk� µ̂k(↵))
2
�
,

by the usual bias-variance decomposition of mean-squared error (MSE). This objective is the aver-

age of K independent random variables. Hence, we might intuit that under appropriate regularity

conditions (see Theorem 2.1 below) that as K!1,

1

K

KX

k=1

�
�
2

k +(µk� µ̂k(↵))
2
�
!p

1

K

 
KX

k=1

�
2

k +E
⇥
(µk� µ̂k(↵))

2
⇤
!

=
1

K

KX

k=1

0

@�
2

k +

✓
↵

N̂ +↵

◆2

(µk�µk0)
2 +

 
N̂

N̂ +↵

!2

�
2

k

N̂

1

A , (2.5)

again using the bias-variance decomposition of MSE. We can minimize the righthand side of

Eq. (2.5) over ↵ explicitly, yielding the value

↵
AP

p0
=

PK
k=1

�
2

kPK
k=1

(µk�µk0)2
> 0,

where AP stands for a priori, meaning ↵
AP

p0
is the on-average-best a priori choice of shrinkage before

observing any data. In particular, comparing the value of Eq. (2.5) at ↵= 0 and at ↵= ↵
AP

p0
suggests

that for large K, data-pooling can (in principle) decrease the MSE by approximately

 
1

K

KX

k=1

�
2

k

N̂

!
↵

AP

p0

N̂ +↵AP
p0

=

⇣
1

KN̂

PK
k=1

�
2

k

⌘2

1

KN̂

PK
k=1

�
2

k +
1

K

PK
k=1

(µk�µk0)2
> 0. (2.6)

Notice this value is strictly positive for any values of pk and p0 and increasing in ↵
AP

p0
.

Unfortunately, we cannot implement x(↵AP

p0
,p0,m̂) in practice because ↵

AP

p0
is not computable

from the data; it depends on the unknown µk and �
2

k. The next theorem shows that we can,

however, estimate ↵
AP

p0
from the data in a way that achieves the same benefit as K!1, even if N̂

is fixed and small. See Appendix A for proof.

Theorem 2.1 (Data-Pooling for MSE). Consider a sequence of subproblems, indexed by k =

1,2, . . . . Suppose for each k, the k
th
subproblem minimizes mean-squared error, i.e., pk is supported

on {ak1, . . . , akd}✓R, Xk =R and cki(x) = (x�aki)2. Suppose further that there exists �avg, N̂ � 2

and amax <1 such that �k = �avg, N̂k = N̂ , and kakk1  amax for all k. Fix any p0 2�d, and let

↵
JS

p0
=

1

K

PK
k=1

1

N̂�1

PN̂
i=1

(⇠̂ki� µ̂k)2

1

K

PK
k=1

(µk0� µ̂k)2�
1

KN̂

PK
k=1

1

N̂�1

PN̂
i=1

(⇠̂ki� µ̂k)2
.
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Then, as K!1,

1

K

KX

k=1

p>
k ck(x

SAA

k )�
1

K

KX

k=1

p>
k ck(xk(↵

JS

p0
,p0,m̂k))

| {z }
Benefit over decoupling of ↵= ↵JS

p0

�

⇣
1

K

PK
k=1

�
2

k/N̂

⌘2

1

K

PK
k=1

�
2

k/N̂ + 1

K

PK
k=1

(µk�µk0)2| {z }
Expected benefit over decoupling of ↵= ↵AP

p0

!p 0.

Note that xk(↵JS

p0
,p0,m̂) = (1� ✓)µ̂k + ✓µ̂k0 where

✓ =
1

N̂

1

K

PK
k=1

1

N̂�1

PN̂
i=1

(⇠̂ki� µ̂k)2

1

K

PK
k=1

(µk0� µ̂k)2
.

In this form, we can see that the resulting estimator with pooling ↵
JS

p0
strongly resembles the

classical James-Stein mean estimator (cf. Efron and Hastie 2016, Eq. 7.51), with the exception

that we have replaced the variance �
2

k, which is assumed to be 1 in Stein’s setting, with the usual,

unbiased estimator of that variance. This resemblance motivates our “JS” notation. Theorem 2.1

is neither stronger nor weaker that the James-Stein theorem. our result applies to non-gaussian

random variables and holds in probability, but is asymptotic; the James-Stein theorem requires

Gaussian distributions and holds in expectation, but applies to any fixed K � 3.

Theorem 2.1 shows that data-pooling for mean-squared error always o↵ers a benefit over decou-

pling for su�ciently large K, no matter what the pk may be. Data-pooling for general optimization

problems, however, exhibits more subtle behavior. In particular, as shown in the following exam-

ple and theorem, there exist instances where data-pooling o↵ers no benefit over decoupling, and

instances where data-pooling may be worse than decoupling.

Example 2.2 (Data-Pooling for Simple Newsvendor). Consider a special case of Prob-

lem (2.2) such that for all k, �k = �avg, pk is supported on {1,0}, Xk = [0,1] and ck(x, ⇠k) = |x� ⇠k|

so that p>
k ck(x) = pk1 + x(1 � 2pk1). In words, the k

th subproblem estimates the median of a

Bernoulli random variable by minimizing mean absolute deviation, or, equivalently, is a newsven-

dor problem with symmetric holding and back-ordering costs for Bernoulli demand. We order the

support so that pk1 = P(⇠k = 1), as is typical for a Bernoulli random variable. Suppose further for

each k, pk1 >
1

2
, and fix any p01 <

1

2
.

Note xk(↵,p0,m̂k) = I
h
p̂k1 �

1

2
+ ↵

N̂k
( 1
2
� p01)

i
.1 Further, for any ↵ (possibly depending on m̂),

p>
k (ck(xk(↵,p0,m̂k))� ck(xk(0,p0,m̂k))) = (2pk1� 1)

✓
I [p̂k1 � 1/2]� I


p̂k1 �

1

2
+

↵

N̂k

✓
1

2
� p01

◆�◆

= (2pk1� 1)I

1/2  p̂k1 <

1

2
+

↵

N̂k

✓
1

2
� p01

◆�
,

1
This solution is non-unique, and the solution I

h
p̂k1 >

1
2 +

↵
N̂k

(
1
2 � p01)

i
is also valid. We adopt the former solution

in what follows, but our comments apply to either solution.
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where the last equality follows since p̂k1 < 1/2 =) p̂k1 <
1

2
+ ↵

2
( 1
2
�p01). Notice pk1 >

1

2
=) (2pk1�

1)> 0, so this last expression is nonnegative. It follows that path by path, shrinkage by any ↵> 0

cannot improve upon the decoupled solution (↵ = 0). Moreover, if xk(↵,p0,m̂k) 6= xk(0,p0,m̂k),

the performance is strictly worse.

One can check directly that if we had instead chosen p01 �
1

2
and pk1 <

1

2
, a similar result holds.

We summarize this example in the following theorem:

Theorem 2.2 (Data-Pooling Does Not Always O↵er Benefit). Given any p0, there exist

instances of Problem (2.2) such that for every data realization, shrinkage by any ↵ > 0 cannot

improve upon the decoupled SAA solution. Moreover, if shrinking by ↵ performs comparably to

the SAA solution, x(↵,p0,m̂) is, itself, a solution to the decoupled problem. In other words, the

shrunken solution either performs strictly worse than decoupling, or is, itself, an SAA solution.

On the other hand, there exist examples where the traditional James-Stein estimator might

suggest the benefits of pooling are marginal, but, by data-pooling in way that exploits the opti-

mization structure, we can achieve significant benefits. Indeed, Theorem 2.1 and Efron and Morris

(1977) both suggest that data-pooling is most useful when the pk are clustered near each other,

i.e., all close to a single anchor in `2-norm. When they are dispersed, the benefits of pooling over

decoupling might appear marginal (cf. Eq. (2.6)). However, for general optimization problems, this

is not always true. Consider the following example.

Example 2.3 (Pooling Can Offer Benefit Even When pk are Dispersed). Let d > 3

and fix some 0 < s < 1. Suppose the k
th subproblem is a newsvendor problem with critical frac-

tile f
⇤
k > s and demand distribution supported on the integers 1, . . . , d. For each k, let pk1 = 0 ,

pkd = 1� s, and pkjk = s for some 1< jk < d. Consider the fixed anchor p01 = s, p0d = 1� s, and

p0j = 0 for 1< j < d. Notice typical pk’s are very far from p0 since kpk � p0k2 =
p
2s. For s su�-

ciently close to 1, this value is close to
p
2, which is the maximal distance between two points on

the simplex. In other words, the pk are not very similar.

The James-Stein estimator does not shrink very much in this example. A straightforward com-

putation shows that for K su�ciently large, ↵JS

p0


(1�s)d2

s
with high probability, which is close to

0 for s close to 1. However, the full-information solution for the k
th problem is x⇤

k = d, which also

equals the fully-pooled (↵=1) solution, xk(1,p0). Hence, pooling in an optimization-aware way

can achieve full-information performance, while both decoupling and an “estimate-then-optimize”

approach using James-Stein shrinkage necessarily perform worse. In other words, pooling o↵ers sig-

nificant benefits despite the pk being as dispersed as possible, because of the optimization structure,

and leveraging this structure is necessary to obtain the best shrinkage.
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Algorithm 1 The Shrunken-SAA Algorithm. Input: data m̂, anchor h(m̂)

Fix a grid of ↵2A✓ [0,1)

for all ↵2A, k= 1, . . . ,K, i= 1, . . . , d do

xk(↵, h(m̂),m̂k� ei)  argminxk2Xk
(m̂k� ei +↵h(m̂))>ck(xk) // Compute LOO solutions

end for

↵
S-SAA

h  argmin↵2A
PN̂k

i=1

PK

k=1 m̂kicki(xk(↵, h(m̂),m̂k� ei)) // Modified LOO-Cross-Validation

for all k= 1, . . . ,K do

xk(↵S-SAA
, h(m̂),m̂k)  argminxk2Xk

(m̂k +↵
S-SAA

h h(m̂))>ck(xk) // Compute solutions with ↵
S-SAA

h

end for

return
�
x1(↵S-SAA

, h(m̂),m̂1), . . . ,xK(↵S-SAA
, h(m̂),m̂K)

�

Theorems 2.1 and 2.2 and Examples 2.2 and 2.3 highlight the fact that data-pooling for general

optimization is more complex than Stein’s phenomenon. In particular, in Stein’s classical result for

mean-squared error and Gaussian data, data-pooling always o↵ers a benefit for K � 3. For other

optimization problems and data distributions, data-pooling may not o↵er a benefit, or may o↵er a

benefit but requires a new way of choosing the pooling amount. An interplay between p0, pk and

ck determines if data-pooling can improve upon decoupling and how much pooling is best.

This raises two important questions: First, how do we identify if an instance of Problem (2.2)

would benefit from data-pooling? Second, if it does, how do we compute the “optimal” amount of

pooling? In the next sections, we show how our Shrunken-SAA algorithm can be used to address

both questions in the relevant regime, where K is large but the average amount of data per

subproblem remains small. Indeed, we will show that Shrunken-SAA always the best-possible

shrinkage in an optimization-aware fashion for many types of problems.

3. Motivating the Shrunken SAA Algorithm

Algorithm 1 formally defines Shrunken-SAA. For clarity, xk(↵,p0,m̂k) and xk(↵,p0,m̂k�ei) agree

with the definition in Eq. (2.4); we have simply scaled by N̂k + ↵ and N̂k � 1 + ↵. Consequently,

Shrunken-SAA retains the particular pooling structure suggested by our previous Bayesian argu-

ment, but allows for an arbitrary user-defined anchor and chooses the amount of pooling via a

particular cross-validation scheme. The user-defined anchor may depend on the data. To emphasize

this dependence, we denote the anchor by h(m̂) 2�d in what follows. Two choices we will often

use are a fixed (non-data-driven) anchor, i.e., h(m̂) = p0, and the grand-mean of the empirical

distributions, i.e., h(m̂) = p̂GM
⌘

1

K

PK
k=1

m̂k/N̂k. Moreover, note that we presented Algorithm 1

as it may be implemented in practice, using a grid of ↵2A, but our theory will study the idealized

Shrunken-SAA algorithm with A= [0,1).
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Remark 3.1 (Computational Complexity of Shrunken-SAA). The computational bottle-

neck in Algorithm 1 is computing xk(↵,p0,m̂k � ei). This step is computationally equivalent to

solving the k
th subproblem by SAA. In this sense, we consider Shrunken-SAA to be roughly as

tractable as SAA. We say “roughly” because, in the worst-case, one must solve |A|
PK

k=1
min(N̂k, d)

such problems in the LOO-cross-validation step. Fortunately, we can parallelize these problems

distributed computing environments and use previous iterations to “warm-start” solvers.

To motivate the choice of ↵S-SAA

h in Algorithm 1, we first define an “ideal” amount of pooling.

From Theorem 2.2, it need not be the case (for h(m̂)) that data-pooling improves upon decoupling.

Hence, to establish an appropriate benchmark, we define the oracle pooling amount for h(m̂), i.e.,

↵
OR

h 2 argmin
↵�0

ZK(↵, h(m̂)), where ZK(↵,q) =
1

K

KX

k=1

Zk(↵,q), (3.1)

Zk(↵,q) =
�k

�avg

pk
>ck(xk(↵,q,m̂k)).

Notice ↵
OR

h is random, depending on the entire data-sequence. By construction, ZK(↵OR

h , h(m̂))

upper bounds the performance of any other data-driven pooling policy with anchor h(m̂) path-

by-path. Hence, it serves as a strong performance benchmark. However, ↵OR

h also depends on the

unknown pk and �k, and hence, is not implementable in practice. In this sense, it is an oracle.

Given any ↵ (possibly depending on the data), we measure the sub-optimality of pooling by ↵

relative to the oracle on a particular data-realization by

SubOptK(↵, h) =ZK(↵, h(m̂))�ZK(↵
OR

h , h(m̂)).

Good pooling procedures will have small sub-optimality with high-probability with respect to the

data. Note we allow for the possibility that ↵OR

h = 0, as is the case in Example 2.2. Thus, procedures

that have small sub-optimality will still have good performance in instances where data-pooling is

not beneficial. Moreover, studying when ↵
OR

h > 0 gives intuition into when and why data-pooling

is helpful, a task we take up in Section 5.

In motivating ↵
S-SAA, it will simplify the exposition considerably to first consider the special

case of non-data-driven anchors, i.e. when h(m̂) = p0 is a constant function. This special case is

interesting in its own right. It generalizes Theorem 2.1 and might be appropriate in applications

where one can identify a canonical measure a priori, e.g., p0i = 1/d. In this special case, we abuse

notation slightly, replacing the map m̂ 7! p0 with the constant p0 when it is clear from context. In

particular, we define

↵
OR

p0
2 argmin

↵�0

ZK(↵,p0). (3.2)
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3.1. Motivating ↵
S-SAA through Unbiased Estimation

We first consider the case of a non-data-driven anchor h(m̂) = p0. One approach to choosing ↵p0

might be to construct a suitable proxy for ZK(↵,p0) in Eq. (3.2) based only on the data, and then

choose the ↵p0 that optimizes this proxy.

If we knew the values of �k, a natural proxy might be to replace the unknown pk with p̂k,

i.e., optimize 1

K

PK
k=1

�k
�avg

p̂>
k ck(xk(↵,q,m̂k)). Unfortunately, even for a fixed, non-data-driven ↵,

this proxy is biased, i.e. E
h

1

K

PK
k=1

�k
�avg

p̂>
k ck(xk(↵,q,m̂k))

i
6= E

⇥
ZK(↵,p0)

⇤
, since both p̂k and

xk(↵,p0,m̂k) depend on the data m̂k. Worse, this bias wrongly suggests ↵ = 0, i.e. decoupling,

is always a good policy, because xk(0,p0,m̂k) always optimizes the proxy by construction. By

contrast, Theorem 2.1 shows data-pooling can o↵er significant benefits. This type of bias and its

consequences are well-known in other contexts, and often termed termed the “optimizer’s curse”

– in-sample costs are always optimistically biased and may not generalize well.

These features motivate us to seek an unbiased estimate of ZK(↵,p0). At first glance, however,

ZK(↵,p0), which depends on both the unknown pk and unknown �k, seems particularly intractable

unless xk(↵,p0,m̂k) admits a closed-form solution as in Example 2.1. A key observation is that, in

fact, ZK(↵,p0) does more generally admit an unbiased estimator, if we also introduce an additional

assumption on our data-generating mechanism, i.e., that the amount of data is random.

Assumption 3.1 (Randomizing Amount of Data). There exists an N such that N̂k ⇠

Poisson(N�k) for each k= 1, . . . ,K.

Under Assumption 3.1, (unconditional) expectations and probabilities should be interpreted as

over both the random draw of N̂k and the counts m̂k. For convenience, define N̂max ⌘maxk N̂k.

From an analytical point of view, the benefit of Assumption 3.1 is that it allows us to employ

a Poisson-splitting argument to break the dependence across i in m̂k. More specifically, by the

poisson-splitting property, under Assumption 3.1,

m̂ki ⇠Poisson(mki) where mki ⌘N�kpki, i= 1, . . . , d, k= 1, . . . ,K,

and, furthermore, the m̂ki are independent across i and k.

Beyond its analytical convenience, we consider Assumption 3.1 to be reasonable in many applica-

tions. Consider for instance a retailer optimizing the price of k distinct products, i.e., xk represents

the price product k, ⇠k, represents the (random) valuation of a typical customer, and ck(xk, ⇠k) is

the (negative) profit earned. In such settings, one frequently ties data collection to time, i.e., one

might collect N = 6 months worth of data. To the extent that customers arrive seeking product

k in a random fashion, the number of arrivals N̂k that one might observe in N months is, itself,

random, and reasonably modeled as Poisson with rate proportional to N . Similar statements apply
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whenever data for problem k is generated by an event which occurs randomly, e.g., when observing

response time of emergency responders (disasters occur intermittently), e↵ectiveness of a new med-

ical treatment (patients with the relevant disease arrive sequentially), or any aspect of a customer

service interaction (customers arrive randomly to service).

In some ways, this perspective tacitly underlies the formulation of Problem (2.2), itself. Indeed,

one way to interpret the subproblem weights �k
K�avg

= �kPK
j=1 �j

is that the decision-maker incurs costs

ck(xk, ⇠k) at rate �k, so that problems of type k contribute a �kPK
j=1 �j

fraction of the total long-run

costs. However, if problems of type k occur at rate �k, it should be that observations of type k, i.e.

realizations of ⇠k, also occur at rate �k, supporting Assumption 3.1.

In settings where data-collection is not tied to randomly occurring events, modeling N̂k as Poisson

may still be a reasonable approximation if d is large relative to N̂k and each of the individual pki are

small. Indeed, under such assumptions, a Multinomial(N̂k,pk) is well-approximated by independent

Poisson random variables with rates N̂kpki, i= 1, . . . d (see McDonald 1980, Deheuvels and Pfeifer

1988 for a formal statement). In this sense, we can view the consequence of Assumption 3.1 as a

useful approximation to the setting where N̂k are fixed, even if it is not strictly true.

In any case, under Assumption 3.1, we develop an unbiased estimate for ZK(↵,p0,m̂). We use

the following identity (Chen 1975). For any f :Z+!R, for which the expectations exist,

W ⇠Poisson(�) =) �E[f(W +1)] =E[Wf(W )]. (3.3)

The proof of the identity is immediate from the Poisson probability mass function.2

Now, for any ↵� 0 and q 2�d, define

Z
LOO

k (↵,q)⌘
1

N�avg

dX

i=1

m̂kicki(xk(↵,q,m̂k� ei)), and Z
LOO

K (↵,q)⌘
1

K

KX

k=1

Z
LOO

k (↵,p0).

We then have

Lemma 3.1 (An Unbiased Estimator for ZK(↵,p0)). Under Assumption 3.1, we have for any

↵� 0, and q 2�d
that E [ZLOO

k (↵,q)] =E [Zk(↵,q)] . In particular, E
h
Z

LOO

K (↵,q)
i
=E

⇥
ZK(↵,q)

⇤
.

Proof. Recall that Zk(↵,q) =
1

N�avg

Pd
i=1

mkicki(xk(↵,q,m̂k)) and that under Assumption 3.1

m̂ki ⇠Poisson(mki) independently over i= 1, . . . , d. Let m̂k,�i denote (m̂k,j)j 6=i. Then, by Eq. (3.3),

E [mkicki(xk(↵,q,m̂k)) | m̂k,�i] = E [m̂kicki(xk(↵,q,m̂k� ei)) | m̂k,�i] .

Taking expectations of both sides, summing over i = 1, . . . , d and scaling by N�avg proves

E [ZLOO

k (↵,q)] =E [Zk(↵,q)]. Finally, averaging this last equality over k completes the lemma. ⇤

2
In particular, E[Wf(W )] =

P1
w=0wf(w)e

�� �w

w! = �
P1

w=0 f(w)e
�� �w�1

(w�1)! = �E[f(W +1)].
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We propose selecting ↵ by minimizing the estimate Z
LOO

K (↵,p0). As written, Z
LOO

K (↵,p0) still

depends on the unknown N and �avg, however, these values occur multiplicatively and are positive,

and so do not a↵ect the optimizer. Thus, we let

↵
S-SAA

p0
2 argmin

↵�0

KX

k=1

dX

i=1

m̂kicki(xk(↵,p0,m̂k� ei)). (3.4)

3.2. Motivating ↵
S-SAA via Modified Leave-One-Out Cross-Validation

Although we motivated Eq. (3.4) via an unbiased estimator, we can alternatively motivate it

through leave-one-out cross-validation. This latter perspective informs our “LOO” notation above.

Indeed, consider again our decision-maker, and assume in line with Assumption 3.1 that subprob-

lems of type k arrive randomly according to a Poisson process with rate �k, independently across k.

When a problem of type k arrives, she incurs a cost ck(xk,⇠). Again, the objective of Problem (2.2)

thus represents her expected, long-run costs.

We can alternatively represent her costs via the modified cost function C (x1, . . . ,xK ,,⇠) =

c(x,⇠), where  is a random variable indicating which of the k subproblems she is currently facing.

In particular, letting P(= k) = �k
K�avg

and P(⇠ = aki | = k) = pki, the objective of Problem (2.2)

can be more compactly written

E [C (x1, . . . ,xK ,,⇠)] .

Now consider pooling all the data into a single “grand” data set of size N̂1 + · · ·+ N̂K :

n
(k, ⇠kj) : j = 1, . . . , N̂k, k= 1, . . . ,K

o
.

The grand dataset can be seen as i.i.d. draws of (,⇠).

For a fixed ↵ and p0, the leave-one-out estimate of E [C (x1(↵,p0,m̂), . . . ,xK(↵,p0,m̂),,⇠)] is

given by removing one data point from the grand data set, training x1(↵,p0, ·), . . . ,xK(↵,p0, ·) on

the remaining data, and evaluating C(·) on the left-out point using these policies. (As a computa-

tional matter, only the policy corresponding to the left-out realization of  needs to be trained.)

We repeat this procedure for each point in the grand data set and then average. After some book-

keeping, we can write this leave-one-out estimate as

1
PK

k=1
N̂k

KX

k=1

dX

i=1

m̂kicki(xk(↵,p0,m̂k� ei)),

which agrees with the objective of Eq. (3.4) up to a positive multiplicative constant. Although this

multiplicative constant does not a↵ect the choice of ↵S-SAA, it does cause the traditional leave-one-

out estimator to be biased. This bias agrees with folklore results in machine learning that assert

that leave-one-out does generally exhibit a small bias (Friedman et al. 2001).
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In the case of a data-driven anchor h(m̂), however, we stress that unlike traditional leave-one-out

validation, we do not use one fewer points when computing the anchor point in Algorithm 1; we

use h(m̂) for all iterations. In this sense, Shrunken-SAA is not strictly a leave-one-out procedure,

motivating our qualifier “Modified.”

4. Performance Guarantees for Shrunken-SAA

In this section, we show that in the limit where the number of subproblems K grows, shrinking by

↵
S-SAA

h is essentially best possible, i.e.,

SubOptK(↵
S-SAA

h , h)! 0 as K!1, almost surely, (4.1)

even if the expected amount of data per subproblem remains fixed. More precisely, we prove a

stronger result for finite K, i.e., for any K � 2 and any 0< �< 1, with probability at least 1� �,

SubOptK(↵
S-SAA

h , h) Õ

 
log�(2/�)
p
K

!
, (4.2)

where the Õ(·) notation suppresses logarithmic factors in K, and 1 < � < 2 is a constant that

depends on the particular class of optimization problems under consideration. (See Theorems 4.2

to 4.5 below for precise statements.) High-probability, finite K results like Eq. (4.2) are stronger

than asymptotic results like Eq. (4.1) in the sense that once the precise asymptotic framework

and probability spaces are defined, proving Eq. (4.1) from Eq. (4.2) is straightforward using an

invocation of the Borel-Cantelli lemma.

We will prove separate results below for the case of fixed, non-data-driven anchors (h(m̂) = p0)

and data-driven anchors. Importantly, our bounds for data-driven anchors will hold for any mea-

surable function h(m̂). Thus, they apply to several interesting variants of Shrunken-SAA beyond

shrinking to the grand mean (h(m̂) = p̂GM). For example, in cases where one has domain knowledge

suggesting a particular parametric model (normal, lognormal, etc.), one can fit that parametric

model to the data using any statistical technique and set h(m̂) to the fitted value. Our bounds

will still apply. In fact, one could in principle simultaneously optimize over ↵ and p0 in Eq. (3.2),

even approximately, and set h(m̂) to the optimizer since this procedure is still a function of the

data. In this sense, our performance guarantees are fairly general purpose.

4.1. Overview of Proof Technique

To prove performance guarantees like Eq. (4.2), we first bound the sub-optimality of ↵S-SAA

h by

bounding the maximal stochastic deviations of ZK(↵, h) and Z
LOO

K (↵, h) from their means.
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Lemma 4.1 (Bounding Sub-Optimality). For a non-data-driven anchor h(m̂) = p0,

SubOptK(↵
S-SAA

p0
,p0) 2 sup

↵�0

��ZK(↵,p0)�E
⇥
ZK(↵,p0)

⇤��
| {z }
Maximal Stochastic Deviation in ZK(·,p0)

+2sup
↵�0

���Z
LOO

K (↵,p0, )�E
h
Z

LOO

K (↵,p0)
i���

| {z }
Maximal Stochastic Deviation in Z

LOO

K (·,p0)

.

Similarly, for a general data-driven anchor,

SubOptK(↵
S-SAA

h , h) 2 sup
↵�0, q2�d

��ZK(↵,q)�E
⇥
ZK(↵,q)

⇤��
| {z }

Maximal Stochastic Deviation in ZK(·, ·)

+2 sup
↵�0, q2�d

���Z
LOO

K (↵,q)�E
h
Z

LOO

K (↵,q)
i���

| {z }
Maximal Stochastic Deviation in Z

LOO

K (·, ·)

.

Proof. Consider the first statement. By definition of ↵S-SAA

p0
, Z

LOO

K (↵OR

p0
,p0)�Z

LOO

K (↵S-SAA

p0
,p0)� 0.

Therefore,

SubOptK(↵
S-SAA

p0
,p0)ZK(↵

S-SAA

p0
,p0)�ZK(↵

OR

p0
,p0)+Z

LOO

K (↵OR

p0
,p0)�Z

LOO

K (↵S-SAA

p0
,p0)

 2 sup
↵�0

���ZK(↵,p0)�Z
LOO

K (↵,p0)
���

 2 sup
↵�0

��ZK(↵,p0)�EZK(↵,p0)
��+2sup

↵�0

���Z
LOO

K (↵,p0)�EZLOO

K (↵,p0)
���

+2sup
↵�0

���EZK(↵,p0)�EZLOO

K (↵,p0)
��� .

By Lemma 3.1, the last term is zero. The proof of the second statement is nearly identical, but in

the second inequality, we take an additional supremum over q 2�d in place of h(m̂). ⇤
Proving a performance guarantee for ↵

S-SAA

h,p0
thus reduces to bounding the maximal deviations

in the lemma. Recall ZK(↵,q) =
1

K

PK
k=1

Zk(↵,q) and Z
LOO

K (↵,q) = 1

K

PK
k=1

Z
LOO

k (↵,q). Both pro-

cesses have a special form: they are the sample (empirical) average of K independent stochastic

processes (indexed by k). Fortunately, there exist standard tools to bound the maximal deviations

of such empirical processes that rely on bounding their metric entropy.

To keep our paper self-contained, we summarize one such approach presented in Pollard (1990),

specifically in Eq. (7.5) of that work. Recall, for any set S ✓Rd, the ✏-packing number of S, denoted

by D(S, ✏), is the largest number of elements of S that can be chosen so that the Euclidean distance

between any two is at least ✏. Intuitively, packing numbers describe the size of S at scale ✏.

Theorem 4.1 (A Maximal Inequality; Pollard 1990). Let W(t) = (W1(t), . . . ,WK(t)) 2 RK

be a stochastic process indexed by t 2 T and let WK(t) =
1

K

PK
k=1

Wk(t). Let F 2RK
+

be a random

variable such that |Wk(t)| Fk for all t2 T , k= 1, . . . ,K. Finally, define the random variable

J ⌘ J ({W(t) : t2 T },F ) ⌘ 9kFk2

Z
1

0

q
logD

�
kFk2u,

�
W(t) : t2 T

 �
du. (4.3)
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Then, for any p� 1,3

E

sup
t2T

��WK(t)�E[WK(t)]
��p
�
 5 (2p)p/2 e�p/2E[Jp]K�p

.

In particular, by Markov’s Inequality, for any 0< �< 1, with probability at least 1� �,

sup
t2T

��WK(t)�E[WK(t)]
��  51/p

p
p ·

p
p

E[Jp]

K�1/p
.

The random variable F in the theorem is called an envelope for the process W(t). The random

variable J is often called the Dudley integral in the empirical process literature. Note that if T

is finite, a simple union bound bounds the maximal deviation. Theorem 4.1 extends beyond this

simple case by characterizing the complexity of W(t) over t 2 T . Namely, while packing numbers

describe the size of a set at scale ✏, the Dudley integral roughly describes “the complexity” of the

set at varying scales. We again refer the reader to Pollard (1990) for discussion.

Our overall proof strategy is to use Theorem 4.1 to bound the two suprema in Lemma 4.1, and

thus obtain a bound on the sub-optimality. Specifically, define the following stochastic processes:

Z(↵,q) = (Z1(↵,q), . . . ,ZK(↵,q)), Z
LOO(↵,q) = (ZLOO

1
(↵,q), . . . ,ZLOO

K (↵,q)).

To apply Theorem 4.1 we need to, first, identify envelopes for each process and, second, compute

the Dudley integral for each process. We restrict attention to the case where the optimal value of

each subproblem is bounded for any choice of anchor and shrinkage.

Assumption 4.1 (Bounded Optimal Values). There exists C such that for all i= 1, . . . , d, and

k= 1 . . . ,K, supq2�d |cki(xk(1,q))|C.

Notice that sup↵�0, q2�d
|cki(xk(↵,q))|= supq2�d

|ck(xk(1,q)|, so that the assumption bounds

the optimal value associated to every policy. Assumption 4.1 is a mild assumption, and follows for

example if cki(·) is continuous and Xk is compact. However, the assumption also holds, e.g, if cki(·)

is unbounded but coercive. With it, we can easily compute envelopes. Recall, N̂max ⌘maxk N̂k.

Lemma 4.2 (Envelopes for Z,Z
LOO

). Under Assumption 4.1,

1. The vector F
Perf
⌘C�/�avg is a valid envelope for Z(↵,q) with

kF
Perf
k2 =

C

�avg

k�k2 
C�max

�min

p

K.

2. The random vector F
LOO

such that F
LOO

k =C
N̂k

N�avg
is a valid envelope for Z

LOO(↵,q) with

kF
LOO
k2 

C

N�avg

kN̂k2 
C

N�min

N̂max

p

K.

3
Strictly speaking, eq. (7.5) of Pollard (1990) shows that E

⇥��supt2T
��WK(t)�E[WK(t)]

����p⇤ 2
p
C

p
pE [J

p
]K

�p
, for

some constant Cp that relates the `p norm of a random variable and a particular Orlicz norm. In Lemma B.1, we

prove that it su�ces to take Cp = 5
1/p

�
p
2e

�1/2
.
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We next seek to bound the packing number (and Dudley integrals) for the sets

{Z(↵,p0) : ↵� 0}✓RK
,

�
Z

LOO(↵,p0) : ↵� 0
 
✓RK

,

for the case of fixed anchors and the sets

{Z(↵,q) : ↵� 0, q 2�d}✓RK
,

�
Z

LOO(↵,q) : ↵� 0, q 2�d

 
✓RK

,

for the case of data-driven anchors. Bounding these packing numbers is subtle and requires exploit-

ing the specific structure of the optimization problem (2.2). In the remainder of the section we

focus on two general classes of optimization problems – smooth, convex optimization problems

and discrete optimization problems. Although we focus on these classes, we expect a similar proof

strategy and technique might be employed to attack other classes of optimization problems.

In summary, in the next sections we prove performance guarantees for the above two classes of

optimization problems by the following strategy: 1) Compute the packing numbers and Dudley

integrals for relevant sets above 2) Apply Theorem 4.1 to bound the relevant maximal deviations

and 3) Use these bounds in Lemma 4.1 to bound the sub-optimality.

Remark 4.1 (Performance of ↵
S-SAA

in the Large-Sample Regime). Although we focus

on performance guarantees for ↵
S-SAA in settings where K is large and the expected amount of

data per problem is fixed, one could also ask how ↵
S-SAA performs in the large-sample regime,

i.e., where K is fixed and N̂k !1 for all k. Using techniques very similar to those above, i.e.,

reducing the problem to bounding an appropriate maximal stochastic deviation, one can show that

xk(↵S-SAA
,p0,m̂) performs comparably to the full-information solution in Problem (2.2) in this

limit. The proof uses many of the results below and somewhat standard arguments for empirical

processes. Moreover, the result is perhaps unsurprising, as all reasonable data-driven methods con-

verge to full-information performance in the large-sample regime (see, e.g., Kleywegt et al. (2002)

for the case of SAA) since p̂k is a consistent estimator of pk for all k in this regime. Consequently,

we here focus on the small-data, large-scale regime.

4.2. Performance Guarantees for Smooth, Convex Optimization Problems

In this section, we treat the case where the K subproblems are smooth enough so that

xk(↵, h(m̂),m̂k) is smooth in ↵ and p0 for each k. Specifically, in this section we assume

Assumption 4.2 (Smooth, Convex Optimization). There exists L,� such that cki(x) are �-

strongly convex and L-Lipschitz over Xk, and, moreover, Xk is non-empty and convex, for all

k= 1, . . . ,K, i= 1, . . . , d,.

We first treat the case of fixed anchors and prove:
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Theorem 4.2 (Shrunken-SAA with Fixed Anchors for Smooth, Convex Problems).

Fix any p0. Suppose Assumptions 4.1 and 4.2 hold. Assume K � 2, N�min � 1. Then, there exists

a universal constant A such that with probability at least 1� �, we have that

SubOptK(↵
S-SAA

p0
,p0)  A ·max

 
L

s
C

�
,
C

4

!
·N

1/4�
5/4
max

�min

·
log5/4(K) log7/4(2/�)

p
K

.

Remark 4.2. Note that the above bound does not explicitly depend on d, the size of the support

for the pk. This implies that a similar performance guarantee holds for a modified Shrunken-SAA

with fixed anchors when the Pk in Problem (1.2) have continuous support and cost functions are

su�ciently smooth. Specifically, one can first discretize each subproblem very finely and then apply

Shrunken-SAA to the discretized subproblems. If the functions ck(x,⇠) are uniformly smooth in

x over ⇠, then Theorem 4.2 provides the same bound for arbitrarily small discretizations, so we

derive a performance guarantee on the original problem. Algorithmically, Shrunken-SAA remains

the same no matter how fine the discretization, so can be applied when Pk are continuous. We

demonstrate this in Section 6.5.

To prove the theorem, we follow the approach outlined in Section 4.1 and first seek to bound

the ✏-packing numbers of {Z(↵,p0) : ↵� 0} and
�
Z

LOO(↵,p0) : ↵� 0
 
. A key observation is that

since the subproblems are smooth and strongly-convex, the optimal solutions xk(↵,p0,m̂k) are

also smooth as functions of ↵ and p0 for each k. Specifically,

Lemma 4.3 (Continuity properties of xk(↵,p0,m̂k)). Under the assumptions of Theorem 4.2,

i) (Continuity in ↵) For any 0 ↵0  ↵ and m̂k such that max(↵, N̂k)> 0, we have

kxk(↵,p0,m̂k)�xk(↵0,p0,m̂k)k2 

s
4C

�

s
N̂k

(N̂k +↵0)2
p
↵�↵0 

s
4C

�

p
↵�↵0 .

ii) (Limit as ↵!1) For any 0 ↵0 and m̂k such that max(↵0, N̂k)> 0, we have

kxk(↵0,p0,m̂k)�xk(1,p0)k2 

s
4C

�

s
N̂k

N̂k +↵0

.

iii) (Continuity in anchor) For any ↵� 0, and any p,p2�d
,

kxk(↵,p,m̂k)�xk(↵,p,m̂k)k2 

s
2C

�

r
↵

N̂k +↵

p
kp�pk1.

Using this continuity, we can now bound the requisite packing numbers. First consider

{Z(↵,p0) : ↵� 0}. Continuity implies that by evaluating x(↵,p0,m̂) on a su�ciently dense grid

of ↵’s, we can construct a covering of the set
n
(xk(↵,p0,m̂k))

K
k=1

: ↵� 0
o
, which in turn yields a

covering of the set {Z(↵,p0) : ↵� 0}. By carefully choosing the initial grid of ↵’s, we can ensure
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Figure 2 Covering a continuous process. The set

{(xk(↵,p0,m̂k))
K
k=1 : ↵� 0} can be thought

of as a parametric curve indexed by ↵ in

the space
QK

k=1Xk. Because of the square-

root continuity in ↵ (Lemma 4.3i)), to cover

this curve for any compact set ↵ 2 [0,↵max]

requires O(1/✏
2
) balls of size ✏/2. Because of

the continuity at ↵ = 1 (Lemma 4.3ii)), it

su�ces to take ↵max = O(1/✏
2
). This yields

a packing number bound of O(1/✏
4
) (c.f.

Lemma 4.4).

that this last covering is a valid (✏/2)-covering. By (Pollard 1990, pg. 10), the size of this covering

bounds the ✏-packing number as desired. Figure 2 illustrates this intuition and further argues the

initial grid of ↵’s should be of sizeO(1/✏4). A similar argument holds forD(✏,
�
Z

LOO(↵,p0) : ↵� 0
 
),

using a grid of ↵’s to cover
��

xk(↵,p0,m̂k� ei) : i= 1, . . . , d, k= 1, . . . ,K
�
: ↵� 0

 
.

We state the formal result below which is proven in full in the appendix.

Lemma 4.4 (Packing Numbers for Smooth, Convex Problems). Under the assumptions of

Theorem 4.2, if
16L2

C�
� 1, then for any 0< ✏ 1,

D

✓
✏kF

Perf
k2, {Z(↵,p0) : ↵� 0}

◆
 1+ N̂avg

28L4

�2C2✏4
, where N̂avg =

1

k�k2
2

KX

k=1

�
2

kN̂k, (4.4)

D

✓
✏kF

LOO
k2,

�
Z

LOO(↵,p0) : ↵� 0
 ◆
 1+ N̂max

28L4

�2C2✏4
, where N̂max =max

k
N̂k. (4.5)

These packing number bounds lead to a bound on the Dudley integral and, by leveraging The-

orem 4.1 and Lemma 4.2, to a bound on the maximal deviations of ZK(·,p0),Z
LOO

K (·,p0). The

details of this are given in Appendix B.2. Finally, combining these results with Lemma 4.1 proves

Theorem 4.2 above (cf. Appendix B.2).

We next consider the case of a data-driven anchor h(m̂). By covering ↵ and p0 2�d simultane-

ously, we can extend the above argument to prove:

Theorem 4.3 (Shrunken-SAA with Data-Driven Anchors for Smooth, Convex Problems).

Suppose Assumptions 4.1 and 4.2 hold. Assume K � 2, N�min � 1. Then, there exists a universal

constant A such that for any 0< �< 1/2, with probability at least 1� �, we have that

SubOptK(↵
S-SAA

h , h)  A ·max

 
L
p
C

p
�

,
C

4

!
·N

1/4�
5/4
max

�min

d
7/4

· log7/4
✓
1

�

◆
·
log3(K)
p
K

.
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Notice that unlike Theorem 4.2, the bound in Theorem 4.3 depends polynomially on d. This

dependence arises because we impose no assumptions on h(m̂)2�d, and hence must control behav-

ior across the entire d-dimensional simplex. From a purely theoretical point of view, with stronger

assumptions on the anchor h(m̂), one might be able to remove this dependence. For h(m̂) = pGM,

we find Shrunken-SAA performs well numerically even if d is large as seen in Section 6.5. A full

proof of Theorem 4.3 can be found in Appendix B.3.

4.3. Performance Guarantees for Fixed Anchors for Discrete Optimization Problems

In this section we consider the case where the K subproblems are discrete optimization problems.

Specifically, we require |Xk|<1 for each k= 1, . . . ,K. This encompasses, e.g., binary linear or non-

linear optimization and linear optimization over a polytope, since we may restrict to its vertices.

Unlike the case of strongly convex problems, the optimization defining xk(↵,p0,m̂k) (cf.

Eq. (2.4)) may admit multiple optima, and hence, xk(↵,p0,m̂k) requires a tie-breaking rule. For

our results below, we assume this tie-breaking rule is consistent in the sense that if the set of min-

imizers to Eq. (2.4) is the same for two distinct values of (↵,p0), then the tie-breaking minimizer

is also the same for both. We express this requirement by representing the tie-breaking rule as a

function from a set of minimizers to a chosen minimizer:

Assumption 4.3 (Consistent Tie-Breaking). For each k= 1, . . . ,K, there exists �k : 2Xk!Xk

such that

xk(↵,p0,m̂k) = �k

✓
arg min

xk2Xk

p̂k(↵)
>ck(xk)

◆
.

The main result that we will prove in this section follows:

Theorem 4.4 (Shrunken-SAA with Fixed Anchors for Discrete Problems). Suppose

that |Xk| <1 for each k and that Assumptions 4.1 and 4.3 hold. Then, there exists a universal

constant A such that with probability at least 1� �,

SubOptK(↵
S-SAA

p0
,p0)  A ·C

�max

�min

·

log(K)

r
log

⇣
2d
PK

k=1
|Xk|

⌘

p
K

· log3/2
✓
2

�

◆
.

We stress that |Xk| occurs logarithmically in the bound, so that the bound is reasonably tight

even when the number of feasible solutions per subproblem may be large. For example, consider

binary optimization. Then, |Xk| often scales exponentially in the number of binary variables, so that

log(|Xk|) scales like the number of binary variables. Thus, as long as the number of binary variables

per subproblem is much smaller than K, the sub-optimality will be small with high probability.

We also note that, unlike Theorem 4.2, the above bound depends on log(d). This mild dependence

on d stems from the fact that we have made no assumptions of continuity on the functions ck(x,⇠)
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Figure 3 Counting Discrete Solutions.

A convex piecewise-linear func-

tion consisting of |Xk| lines has

at most |Xk| � 1 breakpoints,

between which the set of active

supporting lines is constant. Any

function of this set of active sup-

porting lines is piecewise con-

stant with at most |Xk| � 1

discontinuities.

in x or ⇠. Since these functions could be arbitrarily non-smooth, we need to control their behavior

across all i, which introduces a d dependence. However, we argue that this is largely a theoretical

issue, not a practical one. In Section 6.5, we show that the empirical performance of Shrunken-SAA

for these types of discrete problems is fairly insensitive to the value of d.

To prove Theorem 4.4, we again follow the approach outlined in Section 4.1. Since the policy

x(↵,p0,m̂) need not be smooth in ↵, however, we adopt a di↵erent strategy than in Section 4.2.

Specifically, we bound the cardinality of {Z(↵,p0) : ↵� 0},
�
Z

LOO(↵,p0) : ↵� 0
 
, directly. (Recall

that the cardinality of a set bounds its ✏-packing number for any ✏.)

First note the cardinality of {Z(↵,p0) : ↵� 0} is at most that of
n
(xk(↵,p0,m̂k))

K
k=1

: ↵� 0
o
.

A trivial bound on this latter set’s cardinality is
QK

k=1
|Xk|. This bound is too crude for our

purposes; it grows exponentially in K even if |Xk| is bounded for all k. Intuitively, this bound is

crude because it supposes we can vary each solution xk(↵,p0,m̂k) independently of the others to

achieve all
QK

k=1
|Xk| possible combinations. In reality, we can only vary a single parameter, ↵, that

simultaneously controls all K solutions, rather than varying them separately. We use this intuition

to show that a much smaller bound, 2
PK

k=1
|Xk|, is valid.

To this end, we fix k and study the dependence of xk(↵,p0,m̂k) on ↵. In the trivial case N̂k = 0,

xk(↵,p0,m̂k) takes only one value: xk(1,p0). Hence we focus on the case N̂k � 1.

Consider re-parameterizing the solution in terms of ✓= ↵
↵+N̂k

2 [0,1) and let ↵(✓) = ✓
1�✓

N̂k. Then

for any x2Xk, define the linear function

g
k
x(✓) =

⇣
(1� ✓)p̂k + ✓p0

⌘>
ck(x), ✓ 2 [0,1).

Since g
k
x(·) is linear, the function ✓ 7! minx2Xk

g
k
x(✓) is convex, piecewise-linear with at

most |Xk| � 1 breakpoints. By construction, xk(↵(✓),p0,m̂k) 2 argminxk2Xk
g
k
x(✓). More

precisely, for any ✓, the set of active supporting hyperplanes of minx2Xk
g
k
x(·) at ✓ is

�
(p0
� p̂k)>ck(x) : x2 argminxk2Xk

g
k
x(✓)

 
.
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Notice that the set of active supporting hyperplanes is constant between breakpoints, so that the

set of minimizers argminxk2Xk
g
k
x(✓) is also constant between breakpoints. By Assumption 4.3, this

implies ✓ 7! xk(↵(✓),p0,m̂k) is piecewise constant with at most |Xk|� 1 points of discontinuity.

Viewed in the original parameterization in terms of ↵, it follows that ↵ 7! xk(↵,p0,m̂k) is also

piecewise constant with at most |Xk|� 1 points of discontinuity. We illustrate this argument in

Fig. 3 and summarize the conclusion as follows:

Lemma 4.5. Suppose Assumption 4.3 holds. Fix any p0 and m̂k. Then, the function

↵ 7!xk(↵,p0,m̂k) is piecewise constant with at most |Xk|� 1 points of discontinuity.

By taking the union of all these points of discontinuity over k = 1, . . . ,K, we get that

(xk(↵,p0,m̂k))
K
k=1

is also piecewise constant with at most
PK

k=1
(|Xk| � 1) points of disconti-

nuity. Therefore, it takes at most 2
PK

k=1
|Xk| � 2K + 1 di↵erent values – a distinct value for

each of the
PK

k=1
(|Xk|� 1) breakpoints plus a distinct value for the

PK
k=1

(|Xk|� 1) + 1 regions

between breakpoints. This gives the desired cardinality bound on |{Z(↵,p0) : ↵� 0}|. A similar

argument considering the larger (xk(↵,p0,m̂k� ei))
K,d
k=1,i=1

gives a corresponding cardinality bound

on
���ZLOO(↵,p0) : ↵� 0

 ��. We summarize this result as follows:

Corollary 4.1 (Bounding Cardinality of Solution Sets for Discrete Problems).

Suppose Assumption 4.3 holds. Then,

|{Z(↵,p0) : ↵� 0}| 2
KX

k=1

|Xk| ,
���ZLOO(↵,p0) : ↵� 0

 �� 2d
KX

k=1

|Xk| .

Although these bounds may appear large, the important feature is that they are only linear in K

as long as
��X k

�� are bounded over k.

We use these cardinality bounds to bound the packing numbers and then apply our usual strategy

via Theorem 4.1 and Lemma 4.1 to prove Theorem 4.4. The details are in Appendix B.4.

4.4. Performance Guarantees for Data-Driven Anchors for Discrete Optimization Problems

We next extend the results of Section 4.3 to the case of a data-driven anchor, h(m̂). We prove that

Theorem 4.5 (Shrunken-SAA with Data-Driven Anchors for Discrete Problems).

Suppose that |Xk| <1 for each k and that Assumptions 4.1 and 4.3 hold. Then, there exists a

universal constant A such that with probability at least 1� �,

SubOptK(↵
S-SAA

h , h)  A ·C
�max

�min

log(K)

r
d log

⇣
d
PK

k=1
|Xk|

⌘

p
K

log3/2
✓
2

�

◆
.
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Figure 4 Solution Induced Hyperplane

Arrangement. The hyperplanes

Hkij (cf. Eq. (4.8)) in Rd
are indif-

ference curves between solutions i

and j in subproblem k. The total

ordering on each set Xk induced by

x 7! (↵q+ m̂k)
> ck(x) is thus constant

on the interior of the fully-specified

polyhedra defined by the hyperplanes.

Our strategy is again to bound the cardinality of
�
Z(↵,q) : ↵� 0,q 2�d

 
,
�
Z

LOO(↵,q) : ↵� 0,q 2�d
 
.

The key to obtaining a tight bound is realizing that ranging d+1 parameters, ↵� 0 and q 2�d,

does not achieve all
QK

k=1
|Xk| possible combinations of solutions.

We first reparameterize our policies. Let ✓ 2Rd
+
and define ↵(✓) = k✓k1 and q(✓) = ✓/k✓k1 for

✓ 6= 0 and qi(0) = 1/d. Notice,

���Z(↵,q) : ↵� 0,q 2�d
 ��

���
n
(xk(↵,q,m̂k))

K
k=1

: q 2�d,↵� 0
o���



���
n
(xk(↵(✓),q(✓),m̂k))

K
k=1

: ✓ 2Rd
+

o��� . (4.6)

Hence, it su�ces to bound the right most sides of Eq. (4.6). An advantage of this ✓-parameterization

over the original (↵,q)-parameterization is that (by scaling)

xk(↵(✓),q(✓),m̂k)2 arg min
x2Xk

(✓+ m̂k)
>ck(x), (4.7)

and ✓ occurs linearly in this representation.

Next index the set Xk =
n
xk,1, . . . ,xk,|Xk|

o
in some order and define the hyperplanes

Hkij =
n
✓ 2Rd : (✓+ m̂k)

> (ck(xki)� ck(xkj)) = 0

o
, 8 k= 1, . . . ,K, i 6= j = 1, . . . ,

��X k
�� . (4.8)

In words, for ✓ on Hkij we are indi↵erent between xki and xkj when using ✓ in Eq. (4.7). On either

side, we strictly prefer one solution. These hyperplanes induce the hyperplane arrangement seen

in Fig. 4, consisting of m⌘
PK

k=1

�|Xk|
2

�
hyperplanes in Rd.

Now fix any ✓ 2 Rd and consider the polyhedron induced by the equality constraints of those

hyperplanes containing ✓, and the inequality constraints defined by the side on which ✓ lies for the

remaining hyperplanes in the arrangement. We call such polyhedra fully-specified because they are

defined by their relationship to all m hyperplanes in the arrangement. Because this polyhedron lives

in Rd, it necessarily has dimension j  d. For example the shaded region in Fig. 4 is a fully-specified

polyhedron with j = 2, the bold line segment has j = 1 and the bold point has j = 0.
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The key to bounding Eq. (4.6) is recognizing that under Assumption 4.3, (xk(↵(✓),q(✓),m̂k))
K
k=1

is constant on the relative interior of any j-dimensional fully-specified polyhedron with j � 1. This

is because for any ✓, ✓0 both in the relative interior of the same fully-specified polyhedron, ✓ and

✓0 are on the same “side” of all the hyperplanes, and hence induce the same solutions to Eq. (4.7).

When j = 0, the relevant fully-specified polyhedron is simply a point, and hence, solutions are still

constant over the polyhedron. Since the fully-specified polyhedra with dimensions 0 j  d fully

partition Rd, it follows that Eq. (4.6) is at most the number of such polyhedra in the arrangement.

Notice this argument generalizes our previous argument from counting breakpoints in a univariate

piecewise a�ne function to counting the pieces in a multivariate piecewise a�ne function.

Appendix B.5 provides a geometric argument to count such polyhedra and bound the cardinality

and packing number. A similar argument (with a di↵erent hyperplane arrangement) can be used

to bound the cardinality of
�
Z

LOO(↵,q) : ↵� 0,q 2�d
 
. Equipped with both, we follow our usual

strategy via Theorem 4.1 and Lemma 4.1 to prove Theorem 4.5. The details are in Appendix B.5.

5. The Sub-Optimality-Stability Tradeo↵: An Intuition for Data-Pooling

In the previous section, we established that for various classes of optimization problems, Shrunken

SAA pools the data in the best possible way for a given anchor, asymptotically as K!1. In this

section, we show how Shrunken SAA can also be used to build a strong intuition into when and

why data-pooling improves upon decoupling.

We focus first on the case of a non-data-driven anchor p0 for simplicity. Lemma 3.1 shows

that (under Assumption 3.1) E
⇥
ZK(↵,p0)

⇤
=E

h
Z

LOO

K (↵,p0)
i
. Theorems 4.2 and 4.4 establish that

under mild conditions, we often have the stronger statement

ZK(↵,p0)| {z }
True Performance of ↵

= Z
LOO

K (↵,p0)| {z }
LOO Performance of ↵

+ Õp(1/
p

K)| {z }
Stochastic Error

,

where the error term is uniformly small in ↵. In these two senses, optimizing ZK(↵,p0) over ↵ is

roughly equivalent to optimizing Z
LOO

K (↵,p0) over ↵, especially for large K.

A simple algebraic manipulation then shows that

Z
LOO

K (↵,p0) =
1

N�avg

⇣
SAA-SubOpt(↵) + Instability(↵) + SAA(0)

⌘
,

where

SAA-SubOpt(↵) ⌘
1

K

KX

k=1

dX

i=1

m̂ki

⇣
cki

�
xk(↵,p0,m̂k)

�
� cki

�
xk(0,p0,m̂k)

�⌘

Instability(↵) ⌘
1

K

KX

k=1

dX

i=1

m̂ki

⇣
cki

�
xk(↵,p0,m̂k� ei)

�
� cki

�
xk(↵,p0,m̂k)

�⌘
,

SAA(0) ⌘
1

K

KX

k=1

dX

i=1

m̂kicki

�
xk(0,p0,m̂k)

�
.
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Note SAA(0) does not depend on ↵. In other words, optimizing ZK(↵,p0) over ↵ is roughly

equivalent to optimizing Z
LOO

K (↵,p0), which in turn is equivalent to optimizing

min
↵�0

SAA-SubOpt(↵)+ Instability(↵). (Sub-Optimality-Instability Tradeo↵)

We term this last optimization the “Sub-Optimality-Instability Tradeo↵.”

To develop some intuition, notice SAA-SubOpt(↵) is nonnegative, and measures the average

degree to which each xk(↵,p0,m̂k) is sub-optimal with respect to a (scaled) SAA objective. In

particular, SAA-SubOpt(↵) is minimized at ↵ = 0, and we generally expect it is increasing in

↵. By contrast, Instability(↵) measures the average degree to which the (scaled) performance of

xk(↵,p0,m̂k) changes on the training sample if we were to use one fewer data points. It is minimized

at ↵ =1, since the fully-shrunken solution xk(1,p0,m̂k) does not depend on the data and is,

hence, completely stable. Intuitively, we might expect Instability(↵) to be decreasing since as ↵

increases, the shrunken measure p̂k(↵) depends less and less on the data. In reality, Instability(↵)

is often decreasing for large enough ↵, but for smaller ↵ can have subtle behavior depending on

the optimization structure. (See below for examples.)

This tradeo↵ is intuitive in light of our data-pooling interpretation of xk(↵,p0,m̂k) from Sec-

tion 2.1. Recall, we can interpret xk(↵,p0,m̂k) as the solution when we augment our original

dataset with a synthetic dataset of size ↵ drawn from p0. As we increase ↵, we introduce more

SAA-sub-optimality into xk(↵,p0,m̂k) because we “pollute” the k
th dataset with draws from a

distinct distribution. However, we also increase the stability of xk(↵,p0,m̂k) because we reduce its

dependence on the original data m̂k. Shrunken-SAA seeks an ↵ in the “sweet spot” that balances

these two e↵ects.

Importantly, this tradeo↵ also illuminates when data-pooling o↵ers an improvement, i.e., when

↵
S-SAA

> 0. Intuitively, ↵S-SAA
> 0 only if Instability(0) is fairly large and decreasing. Indeed, in this

setting, the SAA-sub-optimality incurred by choosing a small positive ↵ is likely outweighed by the

increased stability. However, if Instability(0) is already small, the marginal benefit of additional

stability likely won’t outweigh the cost of sub-optimality.

More precisely, we intuit that data-pooling o↵ers a benefit whenever i) the SAA solution is unsta-

ble, ii) the fully-shrunken solution xk(1,p0,m̂) is not too sub-optimal, and iii) K is su�ciently

large for the above approximations to hold. In particular, when N̂k is relatively small for most

k, the SAA solution is likely to be very unstable. Hence, intuition suggests data-pooling likely

provides a benefit whenever N̂k is small but K is large, i.e., the small-data, large-scale regime.

The intuition for a data-driven anchor h(m̂) is essentially the same. The proofs of Theorems 4.3

and 4.5 show that the the approximation ZK(↵,p0) ⇡ Z
LOO

K (↵,p0) holds uniformly in ↵ and p0.
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Consequently, the Sub-Optimality-Instability Tradeo↵ also holds for all p0. Hence, it holds for the

specific realization of h(m̂), and changing ↵ balances these two sources of error for this anchor. We

recall in contrast to traditional leave-one-out validation, however, Shrunken-SAA does not remove

a data point and retrain the anchor. This detail is important because it ensure the fully-shrunken

solution xk(1, h(m̂),m̂) is still completely stable per our definition, i.e., has instability equal to

zero, despite depending on the data.

At a high-level, the Sub-Optimality-Instability Tradeo↵ resembles the classical bias-variance

tradeo↵ for MSE. Loosely speaking, both tradeo↵s decompose performance into a systematic loss

(bias or SAA-sub-optimality) and a measure of dispersion (variance or instability). An important

distinction, however, is that the Sub-Optimality-Instability tradeo↵ applies to general optimization

problems, not just mean-squared error. Even if we restrict to the case of MSE (c.f. Example 2.1),

however, the two tradeo↵s still di↵er and are two di↵erent ways to split the “whole” into “pieces.”

We discuss this in detail in Appendix D.

5.1. Sub-Optimality-Instability Tradeo↵ as a Diagnostic Tool

Our comments above are qualitative, focusing on developing intuition. However, the Sub-

Optimality-Instability Tradeo↵ also provides a quantitative diagnostic tool for studying the e↵ects

of pooling. Indeed, for simple optimization problems such as minimizing MSE, it may be possible

to analytically study the e↵ects of pooling (cf. Theorem 2.1), but for more complex optimization

problems where xk(↵, h(m̂),m̂k) is not known analytically, such a study is not generally possi-

ble. Fortunately, both SAA-SubOpt(↵) and Instability(↵) can be evaluated directly from the data.

Studying their dependence on ↵ for a particular instance often sheds insight into how data-pooling

improves (or does not improve) solution quality.

We illustrate this idea using a simple optimization problem, i.e., Example 2.2, to facilitate

comparison to analytical results:

Example 5.1 (Simple Newsvendor Revisited). We revisit Example 2.2 and simulate an

instance with K = 1000, pk1 distributed uniformly on [.6, .9] and p01 = .3. One can confirm that as

in Example 2.2, data-pooling o↵ers no benefit over decoupling (regardless of the choice of N̂k) for

these parameters. We take N̂k ⇠Poisson(10) for all k, and simulate a single data realization m̂.

Using the data, we can evaluate SAA-SubOpt(↵) and Instability(↵) explicitly. We plot them in

the first panel of Fig. 5. Notice that as expected, SAA-SubOpt(↵) increases steadily in ↵, however,

perhaps surprisingly, Instability(↵) increases at first, before ultimately decreasing. The reason is

that as in Example 2.2, xk(↵,p0,m̂k) = I [p̂k1(↵)� 1/2]. For small positive ↵, p̂k1(↵) is generally

closer to 1

2
than p̂k1, and since 1

2
is the critical threshold where xk(↵,p0,m̂) changes values, the

solution is less stable. Hence, Instability(↵) increases for small ↵, but ultimately decreases as ↵
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(a) p01 = .3, s= .5 (b) p01 = .75, s= .5 (c) p01 = .3, s= .2

Figure 5 Sub-Optimality-Instability Curves. We consider K = 1000 newsvendors where pk1 ⇠Uniform[.6, .9],

N̂k ⇠ Poisson(10), and a single data draw. The values of p01 and the critical fractile s is given in each

panel. In the first panel, instability initially increases, and there is no benefit to pooling. In the second

and third, instability is decreasing and there is a benefit to pooling.

becomes su�ciently large. Because of this initial increasing behavior, the “gains” in stability never

outweigh the costs of sub-optimality, and hence decoupling is best. Indeed, as seen in the first panel

of Fig. EC.1 in the appendix, ↵S-SAA

p0
= ↵

OR

p0
= 0.0 for this example.

We earlier observed that the benefits of pooling depend on the anchor. We next consider the

same parameters and data as above but let p01 = .75. The second panel of Fig. EC.1 shows the

Sub-Optimality-Instability tradeo↵. We see here that again Sub-Optimality(↵) is increasing, and,

perhaps more intuitively, Instability(↵) is decreasing. Hence, there is a positive ↵ that minimizes

their sum. Indeed, the second panel Fig. EC.1 shows ↵S-SAA

p0
⇡ 12.12 and ↵

OR

p0
⇡ 16.16 for this example.

Finally, as mentioned previously, the potential benefits of data-pooling also depends on the prob-

lem structure, and the Sub-Optimality-Instability tradeo↵ again allows us to study this dependence.

Consider letting p01 = .3 again, but now change the objective to a newsvendor cost function with

critical fractile s= .2. We again see a benefit to pooling. The Sub-Optimality-Instability tradeo↵

is in the last panel of Fig. 5. The last panel of Fig. EC.1 also shows ↵S-SAA

p0
⇡ 2.02 and ↵

OR

p0
⇡ 2.42.

In summary, while ↵
S-SAA

h identifies a good choice of shrinkage in many settings, Sub-Optimality

and Instability graphs as above often illuminate why this is a good choice of shrinkage, providing

insight. This is particularly helpful for complex optimization problems for which it may be hard

to reason about xk(↵, h(m̂),m̂k).

6. Computational Experiments

In this section we study the empirical performance of Shrunken-SAA on synthetic and real data.

All code for reproducing these experiments and plots is available at BLINDED FOR REVIEW. We
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focus on assessing the degree to which Shrunken-SAA is robust to violations of the assumptions

underlying Theorems 4.2 to 4.5. Specifically, we ask how does Shrunken-SAA perform when

• K is small to moderate, and not growing to infinity;

• Assumption 3.1 is violated, i.e., each N̂k is fixed and non-random;

• d is large / potentially infinite, i.e., the true Pk do not have finite, discrete support; or

• N grows large.

For simplicity, we take each subproblem to be a newsvendor problem with a critical quantile of

s = 95%. Since the performance of Shrunken-SAA depends on the true distributions pk, we use

real sales data from a chain of European pharmacies. (See Section 6.1 for more details.)

We compare several policies:

i) SAA: the decoupled-benchmark, x(0,p0,m̂) ,

ii) JS-Fixed: a policy inspired by James-Stein estimation and a fixed anchor, x(↵JS

p0
,p0,m̂),

iii) S-SAA-Fixed: the Shrunken-SAA policy with a fixed anchor, x(↵S-SAA

p0
,p0,m̂)

iv) Oracle-Fixed: the oracle policy with a fixed anchor, x(↵OR

p0
,p0,m̂),

v) JS-GM:, a policy inspired by James-Stein estimation and the grand-mean anchor x(↵JS

p̂GM , p̂
GM

,m̂),

vi) S-SAA-GM: the Shrunken-SAA policy with the grand-mean anchor, x(↵S-SAA

p̂GM , p̂GM
,m̂) and

vii) Oracle-GM: the oracle policy with the grand-mean anchor, x(↵OR

p̂GM ,p0,m̂).

For each policy we take the fixed anchor to be the uniform distribution p0i =
1

d
, and recall that

p̂GM
⌘

1

K

PK
k=1

p̂k. In each case, the requisite ↵ is computed by exhaustively searching a finite grid.

Unless otherwise specified, d= 20, and Nk = 10. For ease of comparison, we present all results as

“% Benefit over SAA,” i.e., bigger values are better.

Intuitively, the di↵erence between the JS policies and the SAA policy illustrates the value of

data-pooling in a “generic” fashion that does not account for the shape of the cost functions.

By contrast, the di↵erence between the Shrunken-SAA policies and the JS policies quantifies the

additional benefit of tailoring the amount of pooling to the specific newsvendor cost function.

Before presenting the details, we summarize our main findings. When N is moderate to large, all

methods (including Shrunken-SAA) perform comparably to the full-information solution. When N

is small to moderate, however, our Shrunken-SAA policies provide a significant benefit over SAA

and a substantial benefit over JS variants that do not leverage the optimization structure. This is

true even for moderate K (K  100) and even when N̂k are fixed (violating Assumption 3.1). The

value of d has little e↵ect on the performance of Shrunken-SAA; it strongly outperforms decoupling

even as d!1.

6.1. Data Description

Our dataset consists of daily sales at the store level for a European pharmacy chain with locations

across 7 countries. For the purpose of our experiments, we treat these aggregated store sales as if
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they were the realized daily demand of a single product. Although this is clearly a simplification

of the underlying inventory management problem, we do not believe it significantly impacts the

study of our key questions outlined above. Additionally, aggregating over the many products makes

demand censoring an insignificant e↵ect.

The original dataset contains 942 days of data across 1115 stores. After some preliminary data-

cleaning (see Appendix E.3 for details) to remove holidays where most stores are closed or running

seasonal promotions, we are left with 629 days. Due to local holidays, individual stores may still be

closed on these 629 days even after our cleaning. Almost all (1105) stores have at least one missing

day, and 16% of stores have 20% of days missing.

Stores vary in size, available assortment of products, promotional activities and prices, creating

significant heterogeneity in demand. The average daily demand ranges from 3,183 to 23,400. The

first panel of Fig. EC.2 in Appendix E plots the average daily demand by store. The second

panel provides a more fine-grained perspective, showing the distribution of daily demand for a few

representative stores. The distributions are quite distinct, at least partially because the overall

scale of daily sales di↵ers wildly between stores.

Finally, with the exception of Section 6.5, we discretize demand by dividing the range of obser-

vations into d equally-spaced bins to form the true distributions pk. Figure 6 plots pk for some

representative stores when d= 20. We consider these distributions to be quite diverse and far from

the uniform distribution (our fixed anchor). We also plot the distribution of the 95% quantile with

respect to this discretization in the second panel of Fig. 6. Note that it is not the case that 95%

quantile occurs in the same (discretized) bin for each pk, i.e., the quantile itself displays some

heterogeneity, unlike Example 2.3.

6.2. An Idealized Synthetic Dataset

We first consider an ideal setting for Shrunken-SAA. Specifically, after discretizing demand for

each store into d= 20 buckets, we set pk to be the empirical distribution of demand over the entire

dataset with respect to these buckets. We then simulate synthetic data according to Eq. (2.1)

under Assumption 3.1. We train each of our methods using this data, and then evaluate their true

performance using the pk. We repeat this process 200 times. The left panel of Fig. 7 shows the

average results.

As suggested by Theorems 4.4 and 4.5, Shrunken-SAA significantly outperforms decoupling even

for K as small as 32. For large K, the benefit is as large as 10� 15%. Both of our Shrunken-SAA

policies converge quickly to their oracle benchmarks. We note the JS policies also outperform the

decoupled solutions, but by a smaller amount (5-10%). For both sets of policies, shrinking to the

grand mean outperforms shrinking to the uniform distribution, since, as observed earlier, the true

distributions are far from uniform and have quantiles far from the uniform quantile.
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(a) Representative pk

(b) Distribution of Critical Quantile across

Bins

Figure 6 Heterogeneity in pk across stores. The left panel shows some representative (discretized) distri-

butions pk when d= 20 for several stores. The right panel shows a histogram of the number of stores

whose critical quantile occurs in each bin.
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(a) N̂k ⇠Poisson(Nk)
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(b) N̂k = 10 fixed

Figure 7 Robustness to Assumption 3.1. Performance of policies on simulated data. In the first panel, the

amount of data per store follows Assumption 3.1 with Nk = 10. In the second panel, the amount of data

is fixed at N̂k = 10 for all runs. Error bars show ±1 standard error.

We also illustrate the standard deviation of the performance for each of these methods in

Fig. EC.3 in Appendix E. For all approaches, the standard deviation tends to zero as K !1,

because the true performance concentrates at its expectation for each method. For small K, our

Shrunken-SAA approaches exhibit significantly smaller standard deviation than SAA, and, for
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larger K, the standard deviation is comparable to the oracle values, and much less than JS variants.

The reduction in variability compared to SAA follows intuitively since pooling increases stability.

Finally, we plot the average amount of shrinkage across runs as a function of K for each method

in Fig. EC.4 in Appendix E. We observe that the shrinkage amount converges quickly as K!1,

and that our Shrunken-SAA methods pool much more than the JS variants. In particular, when

shrinking to the grand-mean, our Shrunken-SAA methods use a value of ↵⇡ 35, i.e., placing 3.5

times more weight on the grand-mean measure than the data, itself. By contrast, JS variants

eventually engage in almost no pooling.

6.3. Relaxing Assumption 3.1

We next consider robustness to Assumption 3.1. Specifically, we repeat the experiment of the

previous section but now simulate data with N̂k = 10 for all k and all runs. Results are shown

in the second panel of Fig. 7. Although the magnitude of the benefit is somewhat reduced, we

largely see the same qualitative features. Specifically, our Shrunken-SAA methods converge to

oracle performance, and, even for moderate K, they significantly outperform decoupling. The JS

methods o↵er a much smaller improvement over SAA. Many of the other features with respect to

convergence in ↵ and standard deviation of the performance are also qualitatively similar. Overall,

we attribute these similarities to the fact that when d= 20, a Multinomial(10,p) random variable

is very well-approximated by independent poisson random variables, provided p is not too close to

a unit vector. Hence, Assumption 3.1, while not strictly true, is approximately satisfied.

6.4. Historical Backtest

For our remaining tests we consider a less ideal, but more realistic setting for Shrunken-SAA.

Specifically, we repeated random subsampling validation to assess each method: for each store we

select N̂k = 10 days randomly from the dataset, then train each method with these points, and

finally evaluate their out-of-sample performance on Ntest = 10 data points, again chosen randomly

from the dataset. We repeat this process 200 times. Note that unlike the previous experiment, it

is possible that some of sampled training days have missing data for store k. In this cases, we will

have fewer than N̂k points when training store k. Similar issues with missing data occur for the

Ntest testing points. Thus, missing data poses an additional challenge in this setting. We prefer

repeated, random subsampling validation to say, more traditional 5-fold cross-validation, because

we would like to be able finely control the number of data points N̂k used in each subproblem.
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Figure 8 Robustness to choice of d. In the first panel, we evaluate our policies on historical data using d= 20.

Error bars show ±1 standard error. In the second panel, we limit attention to the Shrunken-SAA policies

and compare them on the same historical datasets for d= 20,50,1.

6.5. Performance as d!1

Recall that the Shrunken-SAA algorithm, itself, only relies on the value d through the distributions

p̂k and their support. Like traditional SAA, however, Shrunken-SAA can be applied to distributions

with continuous support by simply using the empirical distributions P̂k without any discretization.

This amounts to treating each observation as if it were in its own bin and is equivalent to setting

d=1. In this sense, the choice to discretize the data into d bins is a modeling choice more than

an algorithmic requirement.

Consequently, we next study the robustness of Shrunken-SAA to this choice of d. As a base

case, we first evaluate each of our policies using the our historical backtest set-up for d = 20 in

the first panel of Fig. 8. Importantly, we see the same qualitative features as in our synthetic

data experiment: our Shruken-SAA methods converge to oracle optimality and o↵er a substantive

improvement over SAA for large enough K. They also outperform JS variants that do not leverage

the optimization structure.

We next increase d. Figure EC.5 in Appendix E shows results for d = 50 and d =1, i.e., not

performing any discretization. The performance is nearly identical to the case of d= 20. To make

this clearer, in the second panel of Fig. 8 we plot the performance of our Shrunken-SAA methods

for varying d. Again, the di↵erences are quite small. In our opinion, these results suggest that the

focus on finite d is primarily a mathematical convenience to facilitate a simpler proof, but not

intrinsic to the algorithm or required for good performance.



Gupta and Kallus: Data-Pooling in Stochastic Optimization

37

6.6. Performance as N !1

As a final test, we study the performance of our methods as we increase N̂k. Recall in the experiment

above, N̂k = 10, with some instances having fewer training points due to missing values. In Fig. EC.6

we consider N̂k = 20 days and N̂k = 40 days for training (again with some instances having fewer

data points), and let d=1. As N̂k increases for all k, SAA, itself, converges in performance to the

full-information optimum. Consequently, there is “less-room” to improve upon SAA, and we see

that for N̂k = 40, our methods still improve upon decoupling, but by a smaller amount. We also note

that the JS-GM variant performs relatively better than for small N̂k. We intuit this is because as

N̂k!1, the empirical distribution p̂k converges in probability to the true distribution pk, i.e., the

variance of p̂k around pk decreases. For large enough N̂k, this variance is a “second order” concern,

and hence accounting for discrepancy in the mean (which is how ↵
JS

p0
is chosen) captures most

of the benefits. This viewpoint accords more generally with intuition that estimate-then-optimize

procedures work well in environments with high signal-to-noise ratios.

In summary, we believe these preliminary studies support the idea that Shrunken-SAA retains

many of SAA’s strong large-sample properties, but still o↵ers a marginal benefit for large K.

7. Conclusion and Future Directions

In this paper, we introduce and study the phenomenon of data-pooling for stochastic optimization

problems, i.e., that when solving many separate data-driven stochastic optimization subproblems,

there exist algorithms which pool data across subproblems that outperform decoupling, even 1)

when the underlying subproblems are distinct and unrelated, and 2) data for each subproblem are

independent. We propose a simple, novel algorithm, Shrunken-SAA, that exploits this phenomenon

by pooling data in a particular fashion motivated by the empirical Bayes literature. We prove that

under frequentist assumptions, in the limit as the number of subproblems grows large, Shrunken-

SAA identifies whether pooling in this way can improve upon decoupling, and, if so, the ideal

amount to pool, even if the amount of data per subproblem is fixed and small. In other words,

Shrunken-SAA identifies an optimal level of pooling in the so-called small-data, large-scale regime.

In particular, we prove explicit high-probability bounds on the performance of Shrunken-SAA

relative to an oracle benchmark that decay like Õ(1/
p
K) where K is the number of subproblems.

Shrunken-SAA need not o↵er a strict benefit over decoupling for all optimization instances. Con-

sequently, we also introduce the Sub-Optimality-Instability tradeo↵, a decomposition of the benefits

of data-pooling that provides strong intuition into the kinds of problems for which data-pooling

o↵ers a benefit. Overall, this intuition and empirical evidence with real data suggest Shrunken-SAA,

and data-pooling more generally, o↵er significant benefits in the small-data, large-scale regime for

a variety of problems.
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Finally, Shrunken-SAA is merely one possible algorithm to exploit data-pooling. Others certainly

exist. Our Sub-Optimality-Instability tradeo↵ provides a general intuition for analyzing methods

for simultaneously solving many data-driven stochastic optimization problems. It suggests that

any algorithm that can be tuned to trade o↵ between in-sample optimality and stability might

be adapted to exploit data-pooling. Natural candidates include data-driven distributionally robust

procedures and regularization approaches. A formal study of these techniques in a data-pooling

context and of the conditions under which they might outperform Shrunken-SAA is an interesting

area of future study.

Overall, we hope our work inspires fellow researchers to think of data-pooling as an “additional

knob” that might be leveraged to improve performance when designing algorithms for data-driven

decision-making under uncertainty.
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Shapiro, A., D. Dentcheva, A. Ruszczyński. 2009. Lectures on Stochastic Programming: Modeling and Theory .

SIAM.

Stanley, R.P. 2004. An introduction to hyperplane arrangements. IAS/Park City Mathematics Series 14.

Stein, C. 1956. Inadmissibility of the usual estimator for the mean of a multivariate normal distribution.

Proceedings of 3rd Berkeley Symposium on Mathematical Statistics and Probability I 197–206.

Stigler, S.M. 1990. The 1988 Neyman Memorial Lecture: a Galtonian perspective on shrinkage estimators.

Statistical Science 5(1) 147–155.

Yu, B. 2013. Stability. Bernoulli 19(4) 1484–1500.



e-companion to Gupta and Kallus: Data-Pooling in Stochastic Optimization ec1

This page is intentionally blank. Proper e-companion title

page, with INFORMS branding and exact metadata of the

main paper, will be produced by the INFORMS o�ce when

the issue is being assembled.



ec2 e-companion to Gupta and Kallus: Data-Pooling in Stochastic Optimization

Online Appendix: Data-Pooling for Stochastic Optimization

Appendix A: Proof of Theorem 2.1: Data-Pooling for MSE

Proof of Theorem 2.1. First note that
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We begin by showing Eq. (EC.A.1) converges to zero in probability. Notice Eq. (EC.A.1) is the

maximal deviation of a stochastic process (indexed by ↵) composed of averages of independent, but

not identically distributed, processes (indexed by ↵). Such processes are discussed in Theorem 4.1

above, and we follow that approach to establish convergence here.

We first claim that the constants Fk = 4a2

max
yield an envelope. Specifically,

|µk� µ̂k(↵)| 
��p>ak

��+
��p̂(↵)>ak

��  2kakk1.

which is at most 2amax. Hence (µk� µ̂k(↵))2  Fk.

We next show that the set
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✓RK has pseudo-dimension at most 3.
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: ✓ 2R
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This set is the range of a quadratic function of ✓, and is hence contained within a linear subspace

of dimension at most 3. Thus, it has pseudo-dimension at most 3.

Since this set has pseudo-dimension at most 3, there exists a constant A1 (not depending on

K or other problem parameters) such that the corresponding Dudley integral can be bounded
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as J  A1kF k2 (Pollard 1990, pg. 37). Theorem 4.1 thus implies there exists a constant A2 (not

depending on K or other problem parameters) such that
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Markov’s inequality then yields the convergence of Eq. (EC.A.1) to 0 in probability.
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We will now complete the proof by showing that ↵JS
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the numerator and denominator converge in probability. For the numerator,
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k/N̂ + (µk0� µk)2 by the bias-variance decomposition. Com-

bining the numerator and denominator, we have by Slutsky’s Theorem that ↵JS
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AP. ⇤

Appendix B: Deferred Proofs for Sub-Optimality Guarantees from Section 4

In this section, we provide the complete proofs for the high-probability sub-optimality bounds

presented in Section 3.
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B.1. Additional Lemmas

We first prove two additional lemmas that we need in what follows.

Lemma B.1 (Relating  -norm and Lp-norm). Fix p � 1. Let  (t) = 1

5
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Rearranging and taking the p
th root of both sides proves the last statement. ⇤

Lemma B.2 (Bounding Tails of N̂max). Define the constant Nmax = N�max, the random vari-

able N̂max ⌘maxk N̂k and assume Nmax � 1 and K � 2. Let � =
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tion 3.1
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We now prove the first claim. Note � = �0
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Namely, for any random variable Y , kY k ⌘ inf {C > 0 : E [ (|Y |/C)] 1}.
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where in the last step we have bounded the maximum by a sum and extended the limits of

integration because the integrand is positive. Now take expectations of both sides and evaluate the

integral, yielding

E
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since K � 2.

To prove the second claim, observe that K � 2 implies that 1+ logK  3 logK. Furthermore, we

claim that log(1+ log 2
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for Nmax � 1. Substituting into the definition of � proves the second claim.

For the third claim, notice from Lemma B.1 that
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where we have used the second claim to simplify. This concludes the proof. ⇤

B.2. Proof of Theorem 4.2: Shrunken-SAA with Fixed Anchors for Smooth, Convex Problems

We first prove the results summarized in Section 4.2.

B.2.1. Proof of continuity lemma and packing number bounds

Proof of Lemma 4.3. Fix k. For any q 2�d, define

fq(x)⌘ q>ck(x), x(q)2 arg min
x2Xk

fq(x).

We first prove the general inequality for any q,q 2�d,
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We will then use this general purpose inequality to prove the various parts of the lemma by choosing

particular values for q and q.

Note that since each cki(x) is �-strongly convex for each i, fq(x) is also �-strongly convex. From

the first-order optimality conditions, rfq(x(q))> (x(q)�x(q))� 0. Then, from strong-convexity,
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A symmetric argument holds switching q and q yielding
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Adding yields,
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by the Cauchy-Schwarz inequality. Rearranging proves Eq. (EC.B.1).

We can now prove each part of the lemma.
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�����
N̂k

N̂k +↵
�

N̂k

N̂k +↵0

����� ,

since
��� ↵
N̂k+↵

�
↵0

N̂k+↵0

���=
��� N̂k
N̂k+↵

�
N̂k

N̂k+↵0

���.
Finally, �����

N̂k

N̂k +↵
�

N̂k

N̂k +↵0

����� =
(↵�↵0)N̂k

(N̂k +↵)(N̂k +↵0)


(↵�↵0)N̂k

(N̂k +↵0)2
,

because ↵0  ↵. Substituting into Eq. (EC.B.1) proves the first inequality. The second follows

because ↵,↵0 � 0 and N̂k � 1.

ii) Take q= p0 and q= p̂k(↵). Then,

kq� qk1 =

�����

✓
1�

↵0

N̂k +↵0

◆
p0 +

 
0�

N̂k

N̂k +↵0

!
p̂k

�����
1



����1�
↵0

N̂k +↵0

����+

�����0�
N̂k

N̂k +↵0

�����

= 2
N̂k

N̂k +↵0

.

Again, substituting into Eq. (EC.B.1) proves the inequality.

iii) Finally take

q=
↵

↵+ N̂k

p+
N̂k

N̂k +↵
p̂k

q=
↵

↵+ N̂k

p+
N̂k

N̂k +↵
p̂k
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Then,

kq� qk1 
↵

N̂k +↵
kp�pk1.

Substituting into Eq. (EC.B.1) proves the result. ⇤

Proof of Lemma 4.4. We first prove Eq. (4.4). We proceed by constructing an ✏
2
kF

Perf
k2-

covering. The desired packing number is at most the size of this covering. Let Zk(1,p0) =
1

�avg

Pd
i=1

�kpkicki(xk(1,p0))

First, suppose N̂avg = 0, which implies N̂k = 0 for all k = 1, . . . ,K. In this case, xk(↵,p0,m̂k) =

xk(1,p0) for all k, whereby {Z(↵,p0) : ↵� 0}= {Z(1,p0)}, and the covering number is 1, so the

above bound is valid.

Now suppose N̂avg > 0. Let ↵max = N̂avg

⇣
16L2

C�✏2
� 1

⌘
. By assumption on the parameters, ↵max > 0.

Then, for any ↵� ↵max,

|Zk(↵,p0)�Zk(1,p0)| 
�k

�avg

dX

i=1

pki |cki(xk(↵,m̂))� cki(xk(1))|


�k

�avg

dX

i=1

pkiLkxk(↵,m̂))�xk(1)k2 (Lipschitz continuity)


�k

�avg

L

s
4C

�
·

s
N̂k

N̂k +↵
(Lemma 4.3, part ii) since ↵> 0).

It follows that

kZ(↵,p0)�Z(1,p0)k
2

2


L
24C

�2
avg

�

KX

k=1

�
2

k

N̂k

N̂k +↵


4CL
2
k�k2

2

��2
avg

N̂avg

N̂avg +↵

where the last inequaity follows from Jensen’s after noting that x 7! x
x+↵

is concave. Using ↵� ↵max,

we conclude the last line is at most ✏2C2k�k22
�2
avg

/4, i.e., kZ(↵,p0)�Z(1,p0)k2 
✏Ck�k2
2�avg

= ✏
2
kF

Perf
k for

all ↵� ↵max. Thus, to construct our covering, we place one point at Z(1,p0) to cover all points

Z(↵,p0) with ↵� ↵max.

Next let {↵1, . . . ,↵M} be a �C✏2

16L2 covering of [0,↵max]. Note, M 
16L2↵max

�C✏2
. We claim

{Z(↵,p0), . . . ,Z(↵M ,p0)} is a C✏k�k2
2�avg

-covering of {Z(↵,p0) : ↵ 2 [0,↵max]}. Indeed, for any ↵ 2

[0,↵max], let ↵j be the nearest element of the ↵-covering, and then

|Zk(↵,p0)�Zk(↵j,p0)| 
�k

�avg

dX

i=1

pki |cki(xk(↵,p0,m̂j))� cki(xk(↵j,p0,m̂k))|


�k

�avg

dX

i=1

pkiLkxk(↵,p0,m̂j)�xk(↵j,p0,m̂k)k2


�k

�avg

L

s
4C

�

q
|↵�↵j| (Lemma 4.3, part i))
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�k

�avg

L

s
4C

�

r
�C✏2

16L2

=
C✏�k

2�avg

It follows that kZ(↵,p0)�Z(↵j,p0)k2 
C✏k�k2
2�avg

as was to be shown.

The total size of the covering is thus

1+M  1+
16L2

↵max

�C✏2
 1+

16L2

�C✏2
N̂avg

✓
16L2

C�✏2
� 1

◆
 1+ N̂avg

162L4

�2C2✏4
.

We next prove Eq. (4.5). We again proceed by constructing an ✏kFLOOk2
2

-covering, since the desired

packing is at most the size of this covering. By Lemma 4.2, kFLOO
k
2

2
= C2

N2�2
avg

PK
k=1

N̂
2

k .

If N̂max = 0, then N̂k = 0 for all k, and {Z
LOO(↵,p0) : ↵� 0}= {0}, so this covering number is 1.

Otherwise, N̂max > 0. Let ↵max = N̂max

⇣
16L2

✏2C�
� 1

⌘
. By assumption on the parameters, ↵max > 0.

Then, for any ↵� ↵max,

��ZLOO

k (↵,p0)�Z
LOO

k (1,p0)
�� 1

N�avg

dX

i=1

m̂ki |cki(xk(↵,m̂k� ei))� cki(xk(1))|


L

N�avg

dX

i=1

m̂kikxk(↵,m̂k� ei)�xk(1)k2 (Lipschitz-Continuity)


L

N�avg

dX

i=1

m̂ki

s
4C

�

s
N̂k� 1

N̂k� 1+↵
(Lemma 4.3, part ii))

L

s
4C

�
·

N̂k

N�avg

·

s
N̂k

N̂k +↵
,

because x 7!
x

x+↵
is an increasing function. Thus,

kZ
LOO

k (↵,p0)�Z
LOO

k (1,p0)k
2

2


4CL
2

�

KX

k=1

N̂
2

k

N 2�2
avg

·
N̂k

N̂k +↵


4CL

2

�

 
KX

k=1

N̂
2

k

N 2�2
avg

!
·max

k

N̂k

N̂k +↵

=
4L2

C�
kF

LOO
k
2

2
·max

k

N̂k

N̂k +↵


4L2

C�
kF

LOO
k
2

2
·

N̂max

N̂max +↵

where the last inequality again follows because x 7! x/(x+ ↵) is increasing. Since ↵� ↵max, this

last term is at most
4L2

C�
kF

LOO
k
2

2
·
✏
2
C�

16L2
=
kF

LOO
k
2

2
✏
2

4
,
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which implies kZLOO

k (↵,p0)�Z
LOO

k (1,p0)k2 
kFLOOk2✏

2
. Thus, to construct our covering, we place

one point at ZLOO(1,p0) to cover all points ZLOO(↵,p0) for ↵� ↵max.

Next let {↵1, . . . ,↵M} be an ✏2�C
16L2 -covering of [0,↵max]. Note M  16L2↵max

✏2�C
. We claim this covering

induces an ✏
2
kF

LOO
k2-covering of {ZLOO(↵,p0) : ↵ 2 [0,↵max]}. Indeed, for any ↵ 2 [0,↵max], let ↵j

be the nearest element of the ↵-covering. Then, for any k such that N̂k > 0,

���ZLOO

k (↵,p0)�Z
LOO

k (↵j,p0)
���


1

N�avg

dX

i=1

m̂ki |cki(xk(↵,m̂ki� ei))� cki(xk(↵j,m̂ki� ei))|


L

N�avg

dX

i=1

m̂kikxk(↵,m̂ki� ei))�xk(↵j,m̂ki� ei)k2 (Lipschitz Continuity)


LN̂k

N�avg

·

s
4C

�
·

q
|↵�↵j| (Lemma 4.3, part i))


LN̂k

N�avg

·

s
4C

�
·
✏

4L

p
�C

=C
N̂k

N�avg

✏

2
.

On the other hand, for any k such that N̂k = 0,
��ZLOO

k (↵,p0)�Z
LOO

k (↵j,p0)
��= 0. In total, this implies

kZ
LOO(↵,p0) � Z

LOO(↵j,p0)k22 
✏2

4

C2

N2�2
avg

PK
k=1

N̂
2

k , which implies kZLOO(↵,p0) � Z
LOO(↵j,p0)k 

✏
2
kF

LOO
k2, as was to be proven.

Thus, the total size of the covering is at most

1+M  1+
16L2

↵max

✏2�C
 1+

16L2

✏2�C
· N̂max

✓
16L2

✏2C�
� 1

◆
 1+ N̂max

162L4

✏4�2C2
.

This completes the proof. ⇤

B.2.2. Maximal deviation bounds and performance guarantee. We next use the above

lemmas to bound the maximal deviations of interest via Theorem 4.1.

Lemma B.3 (Uniform Convergence of True Performance). Under the assumptions of The-

orem 4.2 and
16L2

C�
� 1, there exists a universal constant A such that with probability at least 1� �

sup
↵�0

�����
1

K

KX

k=1

(Zk(↵,p0)�E[Zk(↵,p0))]

����� A ·L

s
C

�
·N

1/4�
5/4
max

�min

·
log1/4(K)
p
K

· log3/4
✓
1

�

◆
.

Proof. We first bound the variable J in Eq. (4.3) corresponding to the process {Z(↵,p0) : ↵� 0}

with the envelope given by Lemma 4.2. Notice, if N̂avg = 0, then by Eq. (4.4) the integrand in

Eq. (4.3) is zero, and hence J = 0. Thus, we focus on the case N̂avg � 1.
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By assumption 16L2

�C
� 1, hence N̂avg

16
2L4

�2C2x4
� 1 for all x2 [0,1]. Thus, using Eq. (4.4),

J  9C
k�k2
�avg

Z
1

0

s

log

✓
1+ N̂avg

162L4

�2C2x4

◆
dx  9C

k�k2
�avg

Z
1

0

s

log

✓
N̂avg ·

2 · 162L4

�2C2x4

◆
dx.

For convenience, let t= N̂avg
2·162L4

�2C2 . Now make the substitution u=
p
log(t/x4) () x= t

1/4
e
�u2/4

in the integrand to yield,

t
1/4

2

Z 1

log t

u
2
e

�u2

4 du 
t
1/4

2

Z 1

�1
u
2
e

�u2

4 du =
t
1/4
p
4⇡

2
·

1
p
4⇡

Z 1

�1
u
2
e

�u2

4 du = t
1/4
p
4⇡,

where we recognize the last integral as the second moment of a mean-zero gaussian with variance

2. Substituting above shows there exists a universal constant AJ such that

J  AJ
k�k2
�avg

·L

s
C

�
N̂

1/4
avg

 AJ
�max

�min

·L

s
C

�
N̂

1/4
avg

·

p

K

Notice this expression also holds when N̂avg = 0.

We next bound the p
th norm of J . Note by assumption N�min � 1, which implies Nmax � 1. By

Lemma B.2,

E[N̂p/4
avg

]  E[N̂p/4
max

]  6

✓
6p

4e

◆p/4

N
p/4
max

logp/4K.

Hence, there exists a constant A0 such that

p
p
E[Jp]  AJ

�max

�min

·L

s
C

�
·

p

K ·
p

q
E[N̂p/4

avg]

 A0

�max

�min

·L

s
C

�
·N

1/4
max

· p
1/461/p ·

p

K log1/4K

Hence, from Theorem 4.1, there exists a universal constant A1 such that with probability at least

1� �,

sup
↵�0

�����
1

K

KX

k=1

Zk(↵,p0)�E[Zk(↵,p0)]

�����  A1

✓
6 · 5

�

◆1/p

p
3/4

·L

s
C

�
·N

1/4
max

�max

�min

·
log1/4(K)
p
K

.

This bound is minimized to first order in � by choosing any p
⇤ = A2 log(1/�). Substituting this

value, collecting constants, and simplifying shows there exists a universal constant A3 such that

with probability at least 1� �

sup
↵�0

�����
1

K

KX

k=1

Zk(↵,p0)�E[Zk(↵,p0)]

�����  A3 log
3/4(1/�) ·L

s
C

�
·N

1/4
max

�max

�min

·
log1/4(K)
p
K

.

This completes the proof after noting that Nmax =N�max. ⇤
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Lemma B.4 (Uniform Convergence of LOO Performance). Under the assumptions of The-

orem 4.2 and
16L2

C�
� 1, there exists a universal constant A such that

sup
↵�0

�����
1

K

KX

k=1

�
Z

LOO

k (↵,p0)�E[ZLOO

k (↵,p0)]
�
�����  A ·L

s
C

�
·N

1/4�
5/4
max

�min

·
log5/4(K)
p
K

· log7/4
✓
1

�

◆
.

Proof. The proof follows a similar structure to Lemma B.3. We first bound the variable J in

Eq. (4.3) corresponding to the process
�
Z

LOO(↵,p0) : ↵� 0
 
with the envelope given by Lemma 4.2.

Notice, if N̂max = 0, then by Eq. (4.5) the integrand in Eq. (4.3) is zero, and hence J = 0. Thus, we

focus on the case N̂avg � 1.

Since 16L2

�C
� 1, we have that N̂max

16
2L4

x4�2C2 � 1 for all 0 x  1. Using Eq. (4.5), we then upper

bound

J  9kFLOO
k2

Z
1

0

s

log

✓
1+ N̂max

162L4

x4�2C2

◆
dx  9kFLOO

k2

Z
1

0

s

log

✓
N̂max

2 · 162L4

x4�2C2

◆
dx.

Let t = N̂max
2·162L4

�2C2 . The same transformation as in Lemma B.3 allows us to upperbound the

integral. We conclude that there exists a universal constant AJ such that

J(m̂)AJ ·
L
p
�C

· kF
LOO
k2N̂

1/4
max

.

We next bound E[Jp]. Recall by assumption N�min � 1, which implies Nmax � 1. Then,

E [Jp]Ap
J

✓
L
p
�C

◆p
C

p
K

p/2

Np�
p
min

E[N̂ 5p/4
max

] (Lemma 4.2)

 6Ap
J

✓
L
p
�C

◆p
C

p
K

p/2

Np�
p
min

✓
30p

4e

◆5p/4

N
5p/4
max

log5p/4(K) (Lemma B.2).

Using Theorem 4.1 shows that there exists a universal constant A1 such that with probability at

least 1� �,

sup
↵�0

�����
1

K

KX

k=1

Z
LOO

k (↵,p0)�E[ZLOO

k (↵,p0)]

�����A1

✓
6 · 5

�

◆1/p

p
7/4

·L

s
C

�
·
N

5/4
max

N�min

log5/4(K)
p
K

This bound is minimized to first order in � for by any p
⇤ =A2 log(1/�). S ubstituting this value,

collecting constants, and simplifying shows there exists a universal constant A3 such that with

probability at least 1� �

sup
↵�0

�����
1

K

KX

k=1

Z
LOO

k (↵,p0)�E[ZLOO

k (↵,p0)]

�����A3L

s
C

�
·
N

5/4
max

N�min

·
log5/4(K)
p
K

log7/4
✓
1

�

◆
.

Note that Nmax =N�max and simplify to complete the proof. ⇤
We can now prove the main result of the section.
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Proof of Theorem 4.2. We first consider the case that 16L2

C�
� 1. Then, Lemmas B.3, B.4 and 4.4

bound the maximal deviations in Lemma 4.1. Instantiate the lemmas with �! �/2, adding their

right hand sides and applying the union bound thus bounds the sub-optimality. Collecting dominant

terms yields the bound

A ·L

s
C

�
·N

1/4�
5/4
max

�min

·
log5/4(K)
p
K

· log7/4
✓
2

�

◆
.

where A is some universal constant not depending on problem parameters.

In the case that 16L2

C�
< 1, we can always increase L to

p
C�/4 and apply the case above with

this larger Lipschitz constant. The resulting bound is of the same form except the leading term is

now C/4. Taking the maximum of these two cases proves the result. ⇤

B.3. Proof of Theorem 4.3: Shrunken-SAA with Data-Driven Anchors for Smooth, Convex

Problems

Our strategy to proving Theorem 4.3 is similar to proving to Theorem 4.2 except that our process

is now indexed by both ↵� 0 and q 2�d. Using Lemma 4.3, part iii), we can reduce bounding the

maximal deviations of ZK(·, ·), Z
LOO

K (·, ·) to bounding the maximal deviations of ZK(·,q), Z
LOO

K (·,q)

for a finite number of fixed anchors q.

Lemma B.5 (Reduction to Maximal Deviations with Fixed Anchor). Under the assump-

tions of Theorem 4.3, if {q1
, . . . ,qM

} is an ✏0-covering of �d
with respect to `1, then

sup
↵�0,q2�d

��Z(↵,q)�E[Z(↵,q)]
��  L

p
✏0

s
8C

�
+ max

j=1,...,M
sup
↵�0

��Z(↵,qj)�E[Z(↵,qj)]
�� ,

(EC.B.2)

sup
↵�0,q2�d

���Z
LOO

(↵,q)�E[ZLOO

(↵,q)]
���  L

p
✏0

s
2C

�

 
N̂avg

N�avg

+1

!
(EC.B.3)

+ max
j=1,...,M

sup
↵�0

���Z
LOO

(↵,qj)�E[ZLOO

(↵,qj)]
��� .

Proof. Let {q1
, . . . ,qM

} be an ✏0 covering of �d with respect to `1.

We first prove the first inequality. Consider some q 2�d, and suppose qj is the closest member

of the covering. Then,

��Z(↵,q)�Z(↵,qj)
�� 1

K

KX

k=1

�k

�avg

��pk
> �ck(xk(↵,q,m̂k))� ck(xk(↵,q

j
,m̂k))

���


L

K

KX

k=1

�k

�avg

��xk(↵,q,m̂k)�xk(↵,q
j
,m̂k)

��
2

(Lipschitz Continuity)

L

s
2C

�

p
kq� qjk1 ·

1

K

KX

k=1

r
↵

N̂k +↵
(Lemma 4.3, part iii))

L

s
2C

�

p
✏0.
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By Jensen’s inequality, this further implies that
��E[Z(↵,q)]�E[Z(↵,qj)]

�� 
E
⇥��Z(↵,q)�Z(↵,qj)

��⇤L

q
2C
�

p
✏0. By the triangle inequality,

��Z(↵,q)�E
⇥
Z(↵,q)

⇤��
��Z(↵,q)�Z(↵,qj)

��+
��E
⇥
Z(↵,q)�Z(↵,qj)

⇤��+
��Z(↵,qj)�E

⇥
Z(↵,qj)

⇤�� .

Applying the above bounds we arrive at the first inequality in the result.

We next prove the second inequality. Now consider some q 2�d, and suppose qj is the closest

member of the covering. Then,

���Z
LOO

(↵,q)�Z
LOO

(↵,qj)
���


1

KN�avg

KX

k=1

dX

i=1

m̂ki

��cki(xk(↵,q,m̂k� ei))� cki(xk(↵,q
j
,m̂k� ei))

��


L

KN�avg

KX

k=1

dX

i=1

m̂ki

��xk(↵,q,m̂k� ei)�xk(↵,q
j
,m̂k� ei)

��
2

(Lipschitz Continuity)


L
p
✏0

KN�avg

s
2C

�

KX

k=1

N̂k

r
↵

N̂k� 1+↵
I
h
N̂k > 0

i
(Lemma 4.3, part iii))


L
p
✏0

KN�avg

s
2C

�

KX

k=1

N̂k

=L
p
✏0

s
2C

�

N̂avg

N�avg

By Jensen’s inequality, this further implies that
���E[Z

LOO

(↵,q)]�E[ZLOO

(↵,qj)]
��� 

E
h���Z

LOO

(↵,q)�Z
LOO

(↵,qj)
���
i
 L
p
✏0

q
2C
�
. Using the triangle inequality as before and applying

the two bounds above yields our second inequality in the result. ⇤

B.3.1. Maximal deviation bounds and performance guarantee. We next use the above

lemmas to bound the maximal deviations of interest via Theorem 4.1

Lemma B.6 (Bound on Maximal Deviation of True Performance for General Anchors).

Suppose
16L2

C�
� 1. Then, under the assumptions of Theorem 4.3, there exists a constant A such

that for any 0< �<
1

2
, with probability at least 1� �,

sup
↵�0, q2�d

�����
1

K

KX

k=1

Zk(↵,q)�E[Zk(↵,q)]

�����  A ·L

s
C

�
·N

1/4�
5/4
max

�min

· d
3/4 log(K)
p
K

· log3/4
✓
1

�

◆
.

Proof. Let {q1
, . . . ,qM

} be an ✏0 covering of �d with respect to `1. Note that M 
3
d

✏d0
(cf.

(Pollard 1990, Lemma 4.1)). Combining a union bound with Lemmas B.3 and B.5 shows that there

exists a constant A2 such that with probability at least 1� �,

sup
↵�0,q2�d

��Z(↵,q)�E[Z(↵,q)]
��A2L

s
C

�

 
p
✏0 +N

1/4�
5/4
max

�min

·
log1/4(K)
p
K

log3/4
✓
M

�

◆!
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A2L

s
C

�

 
p
✏0 +N

1/4�
5/4
max

�min

·
log1/4(K)
p
K

✓
log

✓
1

�

◆
+ d log

✓
3

✏0

◆◆3/4
!
,

where we have used the aforementioned bound on M .

Directly optimizing the choice of ✏0 appears di�cult. We instead take (the suboptimal choice)

✏0 =
3

K
. Notice then, d log(3/✏0) = d logK > 1, because d� 2 and K � 2. Since �< 1

2
, 2 log(1/�)> 1.

Hence,

log

✓
1

�

◆
+ d log

✓
3

✏0

◆
 d log(K) log

✓
1

�

◆
+2d log(K) log

✓
1

�

◆
= 3d log(K) log

✓
1

�

◆
.

Substituting above shows there exists a constant A3 such that with probability at least 1� �,

sup
↵�0,q2�d

��Z(↵,q)�E[Z(↵,q)]
��

 A3 ·L

s
C

�

✓
1
p
K

+N
1/4�

5/4
max

�min

· d
3/4 log(K)
p
K

log3/4
✓
1

�

◆◆

We now “clean-up” the bound. RecallN�min � 1 by assumption, which impliesN�max � 1. Hence,

N
1/4 �

5/4
max

�min
= (N�max)1/4

�max
�min
� 1. Moreover, 2d3/4 log(K) log3/4(1/�)� 1. Hence we can increase to

1
p
K
! 2N 1/4�

5/4
max

�min

· d
3/4 log(K) log3/4(1/�).

Substituting above, simplifying and collecting constants completes the proof. ⇤

Lemma B.7 (Bound on Maximal Deviation of LOO Performance for General Anchors).

Suppose
16L2

C�
� 1. Then, under the assumptions of Theorem 4.3, there exists a constant A such

that for any 0< �< 1 with probability at least 1� �

sup
↵�0, q2�d

�����
1

K

KX

k=1

Z
LOO

k (↵,q)�E[ZLOO

k (↵,q)]

�����A ·L

s
C

�
·N

1/4�
5/4
max

�min

· d
7/4 log

3(K)
p
K

· log7/4
✓
2

�

◆
.

Proof. Let {q1
, . . . ,qM

} be an ✏0 covering of �d with respect to `1. Note that M 
3
d

✏d0
(cf.

(Pollard 1990, Lemma 4.1)). We proceed by applying Lemma B.5 and working term by term in

Eq. (EC.B.3). To analyze the first term of Eq. (EC.B.3), we note from Lemma B.2 that for � =
log(1+ log 2

Nmax )
1+logK

, E[exp(�Nmax)] 6. Hence, by Markov’s Inequality, with probability at least 1� �/2,

N̂max 
log

�
12

�

�

�
 6Nmax log

✓
12

�

◆
logK,

using the second part of Lemma B.2 to simplify. This inequality, in turn, implies that with proba-

bility at least 1� �/2,

L
p
✏0

s
2C

�

N̂avg

N�avg

 6L
p
✏0

s
2C

�

�max

�avg

log

✓
12

�

◆
logK,



e-companion to Gupta and Kallus: Data-Pooling in Stochastic Optimization ec15

To analyze the second term in Eq. (EC.B.3), we first combine a union bound with Lemma B.4

to argue that there exists a constant A2 such that with probability at least 1� �/2,

sup
↵�0

1jM

���Z
LOO

(↵,qj)�E[ZLOO

(↵,qj)]
���A2L

s
C

�
·
�max

�min

N
1/4
max

·
log5/4(K)
p
K

log7/4
✓
2M

�

◆

=A2L

s
C

�
·
�max

�min

N
1/4
max

·
log5/4(K)
p
K

✓
log

✓
2

�

◆
+ d log

✓
3

✏0

◆◆7/4

where we have used the aforementioned bound on M .

Again, optimizing ✏0 appears di�cult so we instead choose ✏0 = 3/K. Then, d log(3/✏0) =

d logK > 1, because d� 2 and K � 2. Similarly, �< 1 implies 2 log(2/�)> 1. Therefore,

log(2/�)+ d log(3/✏0)  d log(K) log(2/�)+ 2d log(K) log(2/�) = 3d logK log(2/�).

Substituting above shows there exists a constant A3 such that with probability at least 1� �/2,

sup
↵�0

1jM

���Z
LOO

(↵,qj)�E[ZLOO

(↵,qj)]
���  A3 ·L

s
C

�
·
�max

�min

N
1/4
max

·d
7/4

·
log3K
p
K

· log7/4
✓
2

�

◆
. (EC.B.4)

Moreover, substituting ✏0 into our earlier bound on the first term in Eq. (EC.B.3) shows that

with probability at least 1� �/2,

L
p
✏0

s
2C

�

N̂avg

N�avg

 6L

s
2C

�

�max

�avg

log

✓
12

�

◆
logK
p
K

,

Combining these two terms bounds the relevant maximal deviation. We next “clean-up” the

bound slightly. Since �< 1, log(12/�) 5 log7/4(2/�). Recall Nmax � 1 by assumption which implies

N
1/4
max
� 1. Finally, d� 2 and K � 2 implies that d

7/4 log2(K)� 1. Hence, replacing our bound on

the first term with

30L

s
2C

�
N

1/4
max

�max

�avg

· d
7/4

·
log3K
p
K

· log7/4
✓
2

�

◆
,

Adding this term to the righthand side in Eq. (EC.B.4), simplifying and collecting constants

completes the proof. ⇤
We can now prove the main result of the section.

Proof of Theorem 4.3. We first treat the case 16L2

C�
� 1. Then, Lemmas B.6 and B.7 bound each

of the maximal deviations in Lemma 4.1. Instantiating them with �! �/2, adding their righthand

sides and applying the union bound thus bounds the sub-optimality. Collecting dominant terms

yields

SubOptK(↵
S-SAA

h , h)  A ·
L
p
C

p
�

·N
1/4�

5/4
max

�min

d
7/4

· log7/4
✓
1

�

◆
·
log3(K)
p
K

.

Now, in the case that 16L2

C�
< 1, we can always increase L to the larger Lipschitz constant

p
C�
4

. We

can then apply the case above yielding a similar bound but with leading term C/4. Taking the

maximum of both bounds proves the theorem. ⇤
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B.4. Proof of Theorem 4.4: Shrunken-SAA with Fixed Anchors for Discrete Problems

We first use Corollary 4.1 proven in Section 4.3 to prove the following bounds on the maximal

deviations of interest via Theorem 4.1.

Lemma B.8 (Bound on Maximal Deviation for True Performance). Under the assump-

tions of Corollary 4.1, there exists a constant A such that with probability at least 1� �,

sup
↵�0

�����
1

K

KX

k=1

Zk(↵,p0)�E[Zk(↵,p0)]

�����  A ·C ·
�max

�min

·

r
log

⇣
2
PK

k=1
|Xk|

⌘

p
K

·

s

log

✓
1

�

◆
.

Proof. We first bound the variable J in Eq. (4.3) corresponding to the process {Z(↵,p0) : ↵� 0}

with the envelope given by Lemma 4.2. By Corollary 4.1,

J  9C ·
�max

�min

·

p

K

vuutlog

 
2

KX

k=1

|Xk|

!
.

It follows from Theorem 4.1, that there exists a constant A1 such that with probability at least

1� �,

sup
↵�0

�����
1

K

KX

k=1

Zk(↵,p0)�E[Zk(↵,p0)]

�����A

✓
5

�

◆1/p

p
1/2

C
�max

�min

vuut log
⇣
2
PK

k=1
|Xk|

⌘

K
.

Optimizing the choice of p, substituting and collecting constants completes the proof. ⇤

Lemma B.9 (Bound on Maximal Deviation for LOO Performance). Under the assump-

tions of Corollary 4.1, there exists a constant A such that with probability at least 1� �,

sup
↵�0

�����
1

K

KX

k=1

Z
LOO

k (↵,p0)�E[ZLOO

k (↵,p0)]

�����  A ·C
�max

�min

·
log(K)
p
K

vuutlog

 
2d

KX

k=1

|Xk|

!
· log3/2

✓
1

�

◆
.

Proof. The proof follows that of Lemma B.8 closely. We first bound the variable J in Eq. (4.3)

corresponding to the process
�
Z

LOO(↵,p0) : ↵� 0
 

with the envelope given by Lemma 4.2. By

Corollary 4.1,

J  9C ·
N̂max

Nmax

�max

�min

·

p

K

vuutlog

 
2d

KX

k=1

|Xk|

!
.

Hence,

p
p
E[Jp]  9C

1

Nmax

�max

�min

p

K

vuutlog

 
2d

KX

k=1

|Xk|

!
.

p

q
E[N̂p

max]

 A0 ·C
�max

�min

·

vuutlog

 
2d

KX

k=1

|Xk|

!
· 61/pp logK

p

K



e-companion to Gupta and Kallus: Data-Pooling in Stochastic Optimization ec17

where A0 is a universal constant.

By Theorem 4.1 there exists a constant A1 such that with probability at least 1� �,

sup
↵�0

�����
1

K

KX

k=1

Z
LOO

k (↵,p0)�E[ZLOO

k (↵,p0)]

�����A1

✓
6 · 5

�

◆1/p

p
3/2

·C
�max

�min

·
logK
p
K

·

vuutlog

 
2d

KX

k=1

|Xk|

!

Optimizing p and collecting constants proves the lemma. ⇤
We can now prove the main result of the sectiosn.

Proof of Theorem 4.4. Lemmas B.8 and B.9 bound the maximal deviations in Lemma 4.1.

Instantiating them for �! �/2, adding their righthand sides and applying the union bound bounds

the sub-optimality. Collecting dominant terms proves the result. ⇤

B.5. Proof of Theorem 4.5: Shrunken-SAA with Data-Driven Anchors for Discrete Problems

As a first step towards our proof, we bound the cardinality of
�
Z(↵,q) : ↵� 0,q 2�d

 
and

�
Z

LOO(↵,q) : ↵� 0,q 2�d
 
. As argued in the main text, to bound

���Z(↵,q) : ↵� 0,q 2�d
 �� it suf-

fices to count the number of j-dimensional fully-specified polyhedron in the arrangement induced

by Eq. (4.8).

Counting the polyhedra induced by hyperplane arrangements is a classical problem in geometry.

For example, it is well-known that the number of d-dimensional, fully-specified polyhedra in a

hyperplane arrangement with m hyperplanes in Rd is at most
Pd

i=0

�
m
i

�
(Stanley 2004, Prop. 2.4).

We first use this result to bound the total number of polyhedra in an arbitrary arrangement with

m hyperplanes in Rd.

Lemma B.10 (Number of Fully-Specified Polyhedra). In a hyperplane arrangement with m

hyperplanes in Rd
, the number of fully-specified polyhedra is at most

dX

j=0

✓
m

d� j

◆ jX

i=0

✓
m� d+ j

i

◆
 (1+ 2m)d.

Proof of Lemma B.10 Each fully-specified polyhedron has some dimension, 0 j  d. We will

count the number of such fully-specified polyhedra by counting for each dimension j.

Fix some 0  j  d. Notice that each j-dimensional polyhedron lives in a j-dimensional sub-

space defined by d� j linearly independent hyperplanes from the arrangement. There are at most
�

m
d�j

�
ways to choose these linearly independent d � j hyperplanes. Next project the remaining

hyperplanes onto this subspace which yields at most m� d+ j non-trivial hyperplanes in the sub-

space, i.e., hyperplanes that are neither the whole subspace nor the empty set. These non-trivial

hyperplanes “cut up” the subspace into various polyhedra, including j-dimensional, fully-specified

polyhedra. By (Stanley 2004, Prop. 2.4), the number of j-dimensional, fully-specified polyhedra in

this hyerplane arrangement of at most m� d+ j hyperplanes in j-dimensional space is at most
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Pj
i=0

�
m�d+j

i

�
. In summary, it follows that there are at most

�
m

d�j

�Pj
i=0

�
m�d+j

i

�
j-dimensional,

fully-specified polyhedra in the arrangement.

Summing over j gives the lefthand side of the bound in the lemma.

For the righthand side, recall that

jX

i=0

✓
m� d+ j

i

◆


jX

i=0

(m� d+ j)i · 1m�d+j�i
 (1+m� d+ j)j  (1+m)j,

where the penultimate inequality is the binomial expansion and the last follow because j  d. Next,

dX

j=0

✓
m

d� j

◆ jX

i=0

✓
m� d+ j

i

◆


dX

j=0

✓
m

d� j

◆
(1+m)j



dX

j=0

m
d�j(1+m)j

= (1+2m)d,

where the last equality is again the binomial expansion. ⇤
Using this lemma, we can prove the following:

Lemma B.11 (Size of Discrete Solutions Sets for Data-Driven Anchors).

���Z(↵,q) : ↵� 0,q 2�d
 ��

 
KX

k=1

|X |k
2

!d

,
���ZLOO(↵,q) : ↵� 0,q 2�d

 �� d
d

 
KX

k=1

|X |k
2

!d

.

Proof of Lemma B.11. Recall there are m =
PK

k=1

�|Xk|
2

�
hyperplanes in the arrangement

Eq. (4.8) and the number of fully-specified polyhedra in this arrangement upper-bounds
���Z(↵,q) : ↵� 0,q 2�d

 ��. Noting 1 + 2m = 1 +
PK

k=1
|Xk| (|Xk|� 1) 

PK
k=1

|Xk|
2 yields the first

bound.

A similar argument can be used to bound
���ZLOO(↵,q) : ↵� 0,q 2�d

 ��. In particular,

���ZLOO(↵,q) : ↵� 0,q 2�d
 ��

���
n
(xk(↵,q,m̂k� ei))

K, d
k=1,i=1

: q 2�d,↵� 0
o���



���
n
(xk(↵(✓),q(✓),m̂k� ei))

K, d
k=1,i=1

: ✓ 2Rd
+

o��� . (EC.B.5)

We then consider the arrangement generated by

Hkijl =
n
✓ 2Rd : (✓+ m̂k� el)

> (ck(xki)� ck(xkj)) = 0

o
,

for all k = 1, . . . ,K, i, j = 1, . . . , |Xk| with i 6= j, and l= 1, . . . d. Notice there are d
Pk

k=1

�|Xk|
2

�
such

hyperplanes. Moreover,
���ZLOO(↵,q) : ↵� 0,q 2�d

 �� is upper-bounded by the number of fully-

specified polyhedra in this arrangement. Note that 1+2d
Pk

k=1

�|Xk|
2

�
= 1+d

PK
k=1

|Xk| (|Xk|�1)

d
PK

k=1
|Xk|

2. Plugging in this value into Lemma B.10 yields the second bound above. ⇤
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Importantly, both bounds in Lemma B.11 are polynomial in K whenever
��X k

�� are bounded over

k and d is fixed.

We next use Lemma B.11 to bound the maximal deviations of interest via Theorem 4.1.

Lemma B.12 (Bound on Maximal Deviation for True Performance for General Anchors).

Under the assumptions of Theorem 4.5, there exists a constant A such that with probability at

least 1� �,

sup
↵�0, q2�d

�����
1

K

KX

k=1

Zk(↵,q)�E[Zk(↵,q)]

�����A ·C
�max

�min

·

r
d log

⇣PK
k=1

|Xk|

⌘

p
K

·

s

log

✓
1

�

◆
.

Proof of Lemma B.12 By Lemmas B.11 and 4.2 and since
⇣PK

k=1

��X k
��2
⌘d



⇣PK
k=1

��X k
��
⌘2d

,

J  9C
N̂max

Nmax

�max

�min

p

K

vuut2d log

 
KX

k=1

|Xk|

!
.

The remainder of the proof follows that of Lemma B.8. ⇤

Lemma B.13 (Bound on Maximal Deviation for LOO Performance for General Anchors).

Under the assumptions of Theorem 4.5, there exists a constant A such that with probability at

least 1� �,

sup
↵�0, q2�d

�����
1

K

KX

k=1

Z
LOO

k (↵,q)�E[ZLOO

k (↵,q)]

�����AC
�max

�min

log(K)
p
K

vuut
d log

 
d

KX

k=1

|Xk|

!
log3/2

✓
1

�

◆
.

Proof of Lemma B.13. By Lemmas B.11 and 4.2 and since d
d
⇣PK

k=1

��X k
��2
⌘d



⇣
d
PK

k=1

��X k
��
⌘2d

,

J  9C
N̂max

Nmax

�max

�min

p

K

vuut2d log

 
d

KX

k=1

|Xk|

!
.

The rest follows as in the proof of Lemma B.9. ⇤
We can now prove the main result of the section.

Proof of Theorem 4.5. We apply our usual strategy. Note Lemmas B.12 and B.13 bound the

two maximal deviations in Lemma 4.1 respectively. Instantiating them for �! �/2, adding the

right hand sides and applying the union bound yields a bound on the sub-optimality. Collecting

dominant terms yields the result. ⇤
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Appendix C: Deferred Proofs from Section 5

Proof of Lemma D.1 By definition, the k
th term of SAA-SubOpt(↵) is

dX

i=1

m̂ki (cki(xk(↵,p0,m̂k))� cki(xk(0,p0,m̂k))) = N̂k

dX

i=1

p̂ki (cki(xk(↵,p0,m̂k))� cki(xk(0,p0,m̂k)))

= N̂k

⇣
E
h
(⇠̂k� µ̂k(↵))

2
| m̂k

i
+E

h
(⇠̂k� µ̂k)

2
| m̂k

i⌘

where xk(↵,p0,m̂k) = µ̂k(↵)⌘
↵

N̂k+↵
µk0 +

N̂k
N̂k+↵

µ̂k, and ⇠̂k ⇠ p̂k.

Note E
h
(⇠̂k� µ̂k(↵))2 | m̂k

i
= (µ̂k � µ̂k(↵))2 + �̂

2

k, where �̂
2

k is the variance of ⇠̂k | m̂k. Similarly,

E
h
(⇠̂k� µ̂k)2 | m̂k

i
= �̂

2

k. Hence from above, the k
th term of SAA-SubOpt(↵) is N̂k(µ̂k � µ̂k(↵))2.

Using the definition of µ̂k(↵) we have (µ̂k � µ̂k(↵))2 =
⇣

↵
N̂k+↵

⌘2

(µ0� µ̂k)2. Summing across the k

terms yields the expression for SAA-SubOpt(↵) in the lemma.

Now consider taking the conditional expectation of the k
th term of SAA-SubOpt(↵) where we

condition on N̂ . From our previous expression, this is simply

N̂k

✓
↵

N̂k +↵

◆2

E
h
(µ0� µ̂k)

2
| N̂

i
= N̂k

✓
↵

N̂k +↵

◆2✓
(µ0�µk)

2 +
�
2

k

N̂k

◆
.

= N̂k

✓
↵

N̂k +↵

◆2

(µ0�µk)
2 +

✓
↵

N̂k +↵

◆2

�
2

k.

Taking expectations and then averaging over k yields the expression for E [SAA-SubOpt(↵)], com-

pleting the lemma. ⇤

Appendix D: Contrasting the Sub-Optimality-Stability Bias-Variance Tradeo↵s

We here expand on the discussion from Section 5 comparing the Sub-Optimality-Stability tradeo↵

to the classic bias-variance tradeo↵. As mentioned in Section 5, one important distinction is that

the former applies to general optimization problems. In the following we will show that they are

di↵erent even when we restrict to the case of MSE (c.f. Example 2.1).

To be more precise, fix the cost functions ck(x, ⇠) = (x� ⇠)2, let µk and �
2

k denote the mean

and variance of ⇠k 2 R and assume �k = 1 for all k for simplicity. There are at least two ways to

interpret the classical bias-variance tradeo↵ in context of Assumption 3.1. First, we can decompose

conditionally on N̂ , yielding

E
h
ZK(↵,p0) | N̂

i
=

1

K

KX

k=1

✓
↵

N̂k +↵

◆2

(µk�µk0)
2

| {z }
Conditional Bias Squared

+

 
N̂k

N̂k +↵

!2

�
2

k

N̂k| {z }
Conditional Variance

,

where µk0 = p>
0
ak. Taking expectations of both sides yields the identity for ↵> 0

E
⇥
ZK(↵,p0)

⇤
=

1

K

KX

k=1

E
"✓

↵

N̂k +↵

◆2
#
(µk�µk0)

2

| {z }
Expected Conditional Bias Squared

+ E
"

N̂k

(N̂k +↵)2

#
�
2

k

| {z }
Expected Conditional Variance

. (EC.D.1)
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This perspective is perhaps most appropriate if view Assumption 3.1 as a smoothing that random-

izes over instances.

Alternatively, we can apply the bias-variance decomposition unconditionally, yielding for ↵> 0,

E
⇥
ZK(↵,p0)

⇤
=

1

K

KX

k=1

(E [xk(↵,p0, µ̂k)�µk])
2 +Var(xk(↵,p0, µ̂k)),

=
1

K

KX

k=1

✓
E


↵

N̂k +↵

�◆2

(µ0k�µk)
2

| {z }
Bias Squared

+Var(xk(↵,p0, µ̂k))| {z }
Variance

, (EC.D.2)

(We can, if desired, evaluate the second term using the law of total variance after conditioning

on N̂k, but this expression will not be needed in what follows.) This perspective is perhaps most

appropriate if we view the randomization of N̂k as intrinsic to the data-generating process.

Finally, from Lemma 3.1 and our previous comments, we have that

E
⇥
ZK(↵,p0)

⇤
=

1

N�avg

(E [SAA-SubOptimality(↵)] +E [Instability(↵)] +E [SAA(0)]) ,

where, again, SAA(0) does not depend on ↵. A straightforward calculation yields,

Lemma D.1 (SAA-Sub-Optimality for MSE). For ↵> 0, we have

SAA-SubOpt(↵) =
1

K

KX

k=1

N̂k

✓
↵

N̂k +↵

◆2

(µ̂k�µk0)
2

E [SAA-SubOpt(↵)] =
1

K

KX

k=1

E
"
N̂k

✓
↵

N̂k +↵

◆2
#
(µk�µk0)

2 +
1

K

KX

k=1

E
"✓

↵

N̂k +↵

◆2
#
�
2

k,

where µ̂k is the sample mean for the k
th

subproblem.

By inspection, 1

N�avg
E[SAA-SubOpt(↵)] involves a non-zero term that depends on both �

2

k and

↵. Consequently, it must di↵er from the bias-squared term in Eq. (EC.D.2) and the expected

conditional bias-squared term in Eq. (EC.D.1). In particular, since the di↵erence depends on ↵ and

SAA(0) does not depend on ↵, the di↵erence is not solely due to the treatment of this constant.

Finally, since each of the identities decomposes the same quantity E
⇥
ZK↵,p0

⇤
, it follows that the

bias-variance tradeo↵ and the Sub-Optimality-Instability Tradeo↵ are fundamentally di↵erent for

this example.

Appendix E: Additional Figures and Computational Details

E.1. Simulation Set-up for Fig. 1

For d = 10, we generate 5,000 distributions pk according to a uniform distribution on the sim-

plex and additional 5,000 distributions pk according to the Dirichlet distribution with parameter

(3, . . . ,3), for a total of K = 10,000 subproblems. We take �k = 1 for all k. Across all runs, these
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(a) ↵S-SAA

p0
= ↵

OR

p0
= 0 (b) ↵S-SAA

p0
⇡ 12.12, ↵OR

p0
⇡ 16.16 (c) ↵S-SAA

p0
⇡ 2.02, ↵OR

p0
⇡ 2.42

Figure EC.1 LOO and Oracle Curves. We consider K = 1000 newsvendors where pk1 ⇠Uniform[.6, .9], N̂k ⇠

Poisson(10). We consider a single data draw. The values of p01 and the critical fractile s is given in

each panel. In the first panel, instability initially increases, and there is no benefit to pooling. In

the second and third, instability is decreasing and there is a benefit to pooling.

pk and �k are fixed. Then, for each run, for each k, we then generate N̂k = 20 data points inde-

pendently according to Eq. (2.1). We train each of our policies on these data, and evaluate against

the true pk. Results are averaged across 10,000 runs.

E.2. Additional Figures from Example 5.1.

Figure EC.1 shows the companion figures for Example 5.1 from Section 5.

E.3. Implementation Details for Computational Results

On average, less than 2.5% of stores are open on weekends, and hence we drop all weekends

from our dataset. Similarly, the data exhibits a mild upward linear trend at a rate of 215 units

a year (approximately 3.7% increase per year), with a p-value < .001. This trend is likely due to

inflation and growing GDP over the time frame. We remove this trend using simple ordinary least

squares. Finally, many stores engage in promotional activities periodically throughout the month

of December leading up to Christmas. These promotions distort sales in the surrounding period.

Hence we drop data for the month of December from our dataset.

Throughout, ↵OR

p0
,↵

S-SAA

p0
are obtained by exhaustively searching a grid of length 120 points from

0 to 180. The grand-mean variants are obtained similarly. Notice when N̂k = 10, a value of ↵= 180

amounts to having 18 times more weight on the anchor point than the data itself.

E.4. Additional Figures from Section 6.

The first panel of Fig. EC.2 shows the average daily demand by store for each of the 1,115 stores

in our dataset.

Figure EC.3 shows the standard deviation of each of our methods on simulated data from

Section 6.2 as a function of K.
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(a) Distribution of Average Daily Demand (b) Demand Distributions by Store

Figure EC.2 Heterogeneity in Store Demand. The first panel shows a histogram of average daily demand

by store across 1,115 stores in a European drugstore chain. The second panel shows estimates of

the demand distribution at a few representative stores.
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Figure EC.3 Standard Deviation of Performance

For each method, the standard deviation

of converges to zero because performance

concentrates at its expectation as K !

1. Notice that our Shrunken-SAA meth-

ods are less variable than the decoupled

SAA solution because pooling increases

stability.

Figure EC.4 shows the average amount of pooling by method by K on our simulated data set

from Section 6.2.

Figure EC.5 shows results from our historical backtest in Section 6.5 with d= 50 and d=1.

Figure EC.6 shows results from our historical backtest in Section 6.6 with N̂k = 20 or N̂k = 40,

both fixed.
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Figure EC.4 Amount of Pooling by Method We plot the amount of data-pooling (↵) for each of the above

methods. When shrinking to p̂GM
, both the oracle and our Shrunken-SAA method shrinks very

aggressively. Plotted separately for clarity.
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(a) d= 50
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(b) d=1
Figure EC.5 Robustness to choice of d. Performance of policies on our historical data. In the first panel,

d = 50. In the second panel, the distributions Pk are treated as continuous in the leave-one-out

calculation, i.e., d=1. Error bars show ±1 standard error. The di↵erences between the plots are

essentially indescernible.
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(a) N̂k = 20

●
●

●

●

●

●
●
● ●

●
● ●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●

●

(b) N̂k = 40
Figure EC.6 Dependence on N . Evaluated on historical data with d=1. Error bars show ±1 standard error.


