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Modern decision-making in urban planning, climate change, and healthcare leverage large geospatial and

panel datasets. These data are often extremely noisy, resulting in low-quality downstream decisions. We

propose a new “light touch” framework to adapt techniques from machine learning originally designed for

denoising these data by smoothing to instead guide decision-making. The key to our method is a novel

estimator of out-of-sample policy performance that we call the one-shot Variance Gradient Correction (one-

shot VGC). Using the one-shot VGC, we tune the machine learning methods to minimize downstream costs

(instead of minimizing prediction error or maximizing signal recovery). We uniformly bound the relative

error of the one-shot VGC as an estimate of downstream costs by an intuitive measure of solution stability

for the problem plus a term that vanishes as problem dimension grows. Solution stability depends both

on the policy and the structure of the downstream optimization problem. We bound the solution stability

for three classes of policies and problems – i) regularized plug-in policies for convex feasible regions ii)

(unregularized) plug-in policies for strongly-convex feasible regions and iii) (unregularized) affine plug-in

policies for weakly-coupled (potentially non-convex) problems. In all cases, we show the solution stability

vanishes (relative to out-of-sample cost) as the dimension of the optimization problem grows. Finally, we

present a case study based on real traffic accident data from New York City on deploying speed humps to

reduce pedestrian injury. Our “light-touch” decision-aware approach outperforms traditional decision-blind

techniques and highlights that the optimal level of smoothing for a denoising algorithm should depend on

the downstream decision-problem.

Key words : Decision-aware learning. Small-data, large-scale regime. Predict-then-Optimize Framework.

1. Introduction

Many decision-making problems involve large-scale systems, such as cities in urban design,

road networks in transportation, and ecosystems in wildlife conservation. To analyze and

make decisions in these settings, practitioners must use data to construct estimates of their

many uncertain parameters. Crucial data are often missing or very imprecise as they must

be collected over time through a limited number of sensors, satellites, and people. As a

result, estimates of the key model parameters can be noisy leading to poor decision-making.
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A canonical solution to reducing the noise of estimates is denoising. Denoising describes

a broad variety of approaches that seek to estimate an underlying signal that has been

corrupted by noise. Across domains, denoising has been successfully applied to extract the

heart’s electrical signal from electrocardiograms (Chatterjee et al., 2020), separate speech

from background noise (Wilson et al., 2008), study the impact of drugs, cancer progression,

and cell development at a molecular level (Kavran and Clauset, 2021), and improve weather

forecasts (Kim et al., 2020). Importantly, in each of these applications, the goal is either

signal recovery or improved prediction; there is no explicit downstream decision task.

By contrast, this paper proposes a new method for denoising when the estimated signal

informs a downstream optimization problem by explicitly leveraging the structure of that

problem. Such approaches are sometimes called decision-aware. By contrast estimate-then-

optimize or decision-blind procedures denoise the parameters using standard statistical and

machine learning tools (without knowledge of the downstream optimization) and then plug-

in the denoised estimates into the downstream optimization. Recent works have shown that

decision-aware methods often out-perform decision-blind methods, particularly in small-

data, large-scale settings (Gupta, Huang, and Rusmevichientong, 2022a) and when models

are misspecified (Elmachtoub and Grigas, 2022; Elmachtoub et al., 2023).

More specifically, we study the following optimization problem with linear objective:

x∗ ∈ argmin
x∈X⊆[0,1]n

µ⊤x, (1)

where X is a known, potentially non-convex, feasible region, and µ ∈ Rn is an unknown

vector of parameters (the signal). We observe a corrupted version of µj, i.e., Zj = µj + ξj

for each j, and features Wj ∈Rp that are fixed and known.

We consider a class of policies that first tries to denoise the Zj to recover µj (perhaps

leveraging the Wj and components Zk for k ̸= j) and then plugs in this denoised estimate

for µ in Problem (1) or a regularized variant of Problem (1). Such policies are called plug-in

and regularized plug-in policies, respectively (c.f. Definition 2.2).

Given a class of plug-in or regularized plug-in policies, our goal is to find the policy

x(Z,W ) in that class with the best out-of-sample performance µ⊤x(Z,W ) with respect

to the objective in Problem (1).

Since µ is unknown, even estimating the out-of-sample performance of a given pol-

icy x(Z,W ) is not trivial. The naive in-sample estimator Z⊤x(Z,W ) is biased, i.e.,
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E
[
Z⊤x(Z,W )

]
̸=E

[
µ⊤x(Z,W )

]
. (See Gupta, Huang, and Rusmevichientong, 2022a for

discussion).

Instead, we propose a novel estimator we call the one-shot Variance Gradient Correc-

tion (one-shot VGC) that debiases the in-sample performance Z⊤x(Z,W ) to obtain an

estimate of µ⊤x(Z,W ). The one-shot VGC approximately computes the gradient of the

objective value with respect to Z −µ, similar to the method of Gupta, Huang, and Rus-

mevichientong (2022a), which we refer to as the multi-shot VGC. We provide a detailed

comparison of the one-shot VGC and multi-shot VGC in Sections 1.2, 3.3 and 7.1 below.

We prove uniform bounds on the error of our estimator of out-of-sample performance.

The key insight is that this error is bounded (almost surely) by a particular measure of

solution stability plus an approximation term that is easy to control (c.f. Theorem 4.3).

Thus, to bound the error of our estimator, it is sufficient to study solution stability.

This perspective yields a simple analysis for problems where the plug-in policy is con-

tinuous. For example, with regularized plug-in policies and convex X , the plug-in policy

is Lipschitz continuous, and we show that the error of the one-shot VGC essentially scales

like Õp(n
1/4) for ℓ1-strongly-convex regularizers and like Õp(n

3/4) for ℓ2-strongly-convex

regularizers, uniformly over the class (c.f. Theorem 5.2 and Corollary 5.3). Similarly, for

(unregularized) plug-in policies and strongly-convex X (c.f. Theorem 5.4), the plug-in

policy is almost Lipschitz continuous, and we prove similar rates of convergence on the

uniform error (c.f. Theorem 5.6). In typical applications, the full information optimum of

Problem (1) is Θ(n), and hence, these results show that the relative error of the one-shot

VGC as an estimator of out-of-sample performance vanishes as n→ ∞, uniformly over

the policy class. This further implies that choosing a policy by optimizing our debiased

estimate incurs vanishing relative regret as n→∞. The proofs of these results are short

and straightforward highlighting the pivotal role of our new notion of solution stability.

The case of non-convex X and potentially unregularized plug-in policies is more deli-

cate because plug-ins are typically discontinuous. Solution stability in this case depends

strongly on the interplay between the plug-in function and the constraints of X . We restrict

attention to affine plug-in functions and feasible regions X that are “weakly-coupled” in

the sense of Gupta, Huang, and Rusmevichientong (2022a). As we argue in Section 2.3,

many machine learning and denoising methods can be rewritten as linear smoothers or lin-

ear filters (Buja, Hastie, and Tibshirani, 1989; Wahba, 1990) and, hence, give rise to affine
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plug-in policies. In this sense, the restriction to affine plug-ins is arguably mild. Moreover,

linear optimization problems with wide constraint matrices and some two-stage stochastic

programs are weakly-coupled, so this class subsumes many applications of interest.

We tailor our one-shot VGC correction to this setting. We prove that the error of our

estimator essentially scales like Õp(n
3/4) (c.f. Theorem 6.11 and discussion surrounding

Corollary 6.7), so that in the typical case, the relative error of our debiased estimator of

out-of-sample performance vanishes as n→∞. Again, this implies that choosing a policy

by optimizing our debiased estimate incurs vanishing relative regret as n→∞.

The key to our analysis in this setting is a novel proof technique that breaks the depen-

dence structure in weakly-coupled problems by considering a suitably lifted problem. In

the lifted space, we can characterize dependence between components of the plug-in pol-

icy by the chromatic number of a particular graph constructed from X and the plug-in

function. This analysis allows us to bypass many of the involved duality arguments and

approximate strong-convexity arguments used in Gupta, Huang, and Rusmevichientong

(2022a) to analyze weakly-coupled programs, and may have independent interest.

Finally, in Section 7.2, we perform a numerical case study on prioritizing requests

for speed humps using motor vehicle accident data from New York City. Our decision-

aware denoising approach outperforms decision-blind denoising in identifying locations

with the most pedestrian injuries caused by motor vehicle accidents. The improvement

arises because decision-blind methods “oversmooth” in this example – when restricting to

regions with higher pedestrian injuries, less smoothing is needed than when considering all

of New York, and our decision-aware method correctly exploits this feature.

1.1. Our Contributions

1. We propose the one-shot Variance Gradient Correction (one-shot VGC) for debiasing

in-sample policy performance to estimate out-of-sample policy performance. The one-

shot VGC applies to any plug-in or regularized plug-in policy for Problem (1).

2. Under common assumptions on the data-generating process, we bound the variance

(Theorem 3.2) and tail behavior (Theorem 3.4) of the one-shot VGC. Furthermore we

show the expected error of the one-shot VGC in estimating in-sample bias is bounded

by a specific measure of solution stability that depends on both the policy and structure

of Problem (1) (Theorem 4.3).
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By further bounding this solution stability, we prove that:

3. When Problem (1) is convex, the plug-in function is Lipschitz, and the policy is regular-

ized, we can uniformly bound the estimation error of the one-shot VGC (Theorem 5.2)

in terms of properties of the regularizer. In particular, this bound implies the relative

error of our procedure vanishes, and one can learn a best-in-class policy as the problem

size grows in typical settings.

4. When X is strongly-convex, the plug-in function is Lipschitz, and the policy is unregu-

larized, we can uniformly bound the estimation error (Theorem 5.6) in terms of prop-

erties of the feasible region and the magnitude of the plug-in function. This bound also

implies the relative error of our procedure vanishes, and one can learn a best-in-class

policy as the problem size grows.

5. When Problem (1) is potentially non-convex but weakly coupled, the plug-in function

is affine, and the policy is unregularized, we uniformly bound the estimation error of

the one-shot VGC in terms of the chromatic number of a particular graph depending

on both X and the affine policy (Theorem 6.11). We show that even with crude upper

bounds on this chromatic number, the relative error of our procedure vanishes, and it

is possible to learn a best-in-class policy as the problem size grows in typical settings.

6. We present a case study on deploying speed humps to reduce pedestrian injuries in

motor vehicle accidents using data from New York City. We compare our decision-

aware denoising approach to a decision-blind estimate-then-optimize approach. We

find that the ideal amount of smoothing depends on the downstream loss, and, hence,

decision-blind methods cannot always perform optimally. By contrast, our decision-

aware approach finds a policy with performance comparable to oracle performance.

1.2. Relationship to Prior Work

Denoising has a long history in both signal processing and statistics. Our review is neces-

sarily incomplete. Methods in signal processing include using Fourier analysis to discard

high-frequency noise (Rabiner and Gold, 1975), solving ℓ1-penalized optimization problems

to deblur edges in images (Candes, Romberg, and Tao, 2006), and, more recently, lever-

aging neural networks and autoencoders to enhance blurry video (Tian et al., 2020). In

statistics, denoising is often cast as a type of “smoothing” (Buja, Hastie, and Tibshirani,

1989; Seeger, 2004; Wahba, 1990). Such smoothing methods are particularly common when
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analyzing geospatial data (Chiles and Delfiner, 2012). Both streams of literature focus on

the quality of signal recovery.

By contrast, our work focuses on using denoising to improve decision-making in a down-

stream optimization problem. Unlike the two previous streams, we are not concerned with

recovering the original signal or the error of our denoised estimate from the original signal.

In this sense, our work contributes to the growing literature of “decision-aware learn-

ing,” also called “operational data analysis” (Liyanage and Shanthikumar, 2005; Grigas,

Qi, et al., 2021; Elmachtoub and Grigas, 2022; Wilder, Dilkina, and Tambe, 2019; Hu,

Kallus, and Mao, 2022; Feng and Shanthikumar, 2023; Chu et al., 2023). Most research in

decision-aware learning studies algorithms in the traditional large-sample limit where one

has increasing amounts of data and, hence, increasingly precise estimates of key param-

eters. In our notation, this would correspond to the limit where Zj → µj for each j and

denoising is not needed.

We adopt a different perspective. As mentioned previously, many interesting applications

of denoising exhibit poor data quality, either due to imprecise sensors or missing covariates.

Improving sensor quality or collecting additional covariates can be costly, time-consuming,

or may raise privacy concerns. These features have recently spurred the development of

methods tailored to ”small-data” settings (Besbes and Mouchtaki, 2023; Besbes, Ma, and

Mouchtaki, 2022). At the same time, many applications of interest are large-scale – i.e. n is

large. Thus, we focus on a small-data, large-scale optimization regime where the precision

of each Zj is bounded, and n is large. This regimes exhibits fundamentally different asymp-

totics than the large-sample regime (Gupta and Rusmevichientong, 2021), distinguishing

our work from most prior work on decision-aware learning.

Our one-shot VGC is based on a perturbation argument and Danskin’s Theorem. Similar

perturbation arguments are used in Ito, Yabe, and Fujimaki (2018) and Guo, Jordan,

and Zhou (2022) in very different contexts (parameter estimation and causal inference,

respectively). Both works offer asymptotic analysis in the large-sample limit. By contrast,

we prove explicit (finite n) bounds in a small-data, large-scale regime.

Finally, our work builds on the results of Gupta, Huang, and Rusmevichientong (2022a).

Both works seek to learn plug-in policies for optimization problems with uncertain lin-

ear objective in a small-data, large-scale data setting. Gupta, Huang, and Rusmevichien-

tong (2022a) proposes (what we call) the multi-shot VGC to construct an estimator of
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out-of-sample performance and proves some performance guarantees for weakly-coupled

optimization problems. The emphasis of the work is to advocate for such debiasing over

cross-validation in small-data, large-scale regimes.

Our work improves upon and complements Gupta, Huang, and Rusmevichientong

(2022a) in several ways: First, our analysis of the one-shot VGC applies more generally

than that of the multi-shot VGC; it applies to any regularized plug-in policy with a Lip-

schitz plug-in function when X is convex, (unregularized) plug-in policies with Lipschitz

plug-in functions when X is strongly-convex, and to general affine plug-in policies when

X is weakly-coupled. By contrast, the analysis in Gupta, Huang, and Rusmevichientong

(2022a) applies only to unregularized, separable affine plug-in functions (c.f. Remark 2.3)

and weakly-coupled X . Crucially, most denoising methods do not give rise to separable

plug-ins. Indeed, the key intution in denoising is to combine information from “nearby”

observations to smooth out corruptions. This deficiency was precisely what motivated our

study of this problem.

Second, preliminary experiments suggest our one-shot VGC outperforms the multi-shot

variant (c.f. Section 7.1). Section 3.3 offers some intuition for this performance difference.

Essentially, for separable affine plug-ins, both approaches appear (approximately) unbiased,

but our one-shot VGC exhibits less variance. For non-separable affine plug-ins, the multi-

shot VGC has both larger variance and a non-vanishing bias.

Third, from a more theoretical perspective, our work introduces two technical tools that

facilitate our simpler and more general proofs. First, we use a novel notion of solution

stability (c.f. Theorem 4.1) to bound our estimation error with high-probability. By com-

parison, Gupta, Huang, and Rusmevichientong (2022a) introduced a different notion of

stability – average solution stability – in their work. They show small average solution

stability is a sufficient condition to bound the variance of their estimator for a fixed policy.

However, such pointwise variance bounds are not sufficient for learning, and hence their

performance guarantees do not explicitly leverage average solution stability. By contrast,

we prove our bounds by directly analyzing our novel solution stability concept leading to

more streamlined and intuitive proofs. The second technical tool is our aforementioned

“lifting” technique that allows us to bypass the difficult duality and approximate strong-

convexity argument of Gupta, Huang, and Rusmevichientong (2022a) used to analyze

weakly-coupled problems. Both ideas may be useful in other settings.
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2. Model

Let µ∈Rn be a fixed but unknown signal. We observe corrupted estimates Z =µ+ξ where

ξ ∈Rn is a mean-zero, random vector with independent components, and ξj has (known)

precision νj ≥ 0. (Recall the variance of ξj is 1/νj.) For convenience, let νmin ≡minj νj. We

observe fixed features Wj ∈ Rp that potentially contain information relating components

of µ, and let W ∈Rn×p be the matrix with jth row Wj and Σ be the covariance of ξ.

In traditional signal-processing applications, e.g., with geospatial data, Z represents sen-

sor readings at n locations. The random corruptions ξ represent irreducible measurement

error, and the features Wj encode information about the jth location (latitude, longitude,

elevation, terrain type, rainfall level, etc.). Often, such applications entail many locations

(large n), and improving sensor quality is prohibitively expensive (low precisions νj). Such

applications are perhaps best studied in the so-called small-data, large-scale regime, (Gupta

and Rusmevichientong, 2021; Gupta, Huang, and Rusmevichientong, 2022a; Gupta and

Kallus, 2022), and our analysis takes this perspective.

Our model can also approximate some machine learning applications with panel data

(Ignatiadis and Wager, 2019; Chung et al., 2022; Gupta and Kallus, 2023). Here, j refers

to individual “units” such as patients, facilities, or regions, with Wj encoding the corre-

sponding unit information. The “observations” Z represent predictions from an upstream,

black-box machine learning model with known precisions ν. Because of privacy constraints,

missing data and a host of other issues, precisions can be low (see above references for

examples). Moreover, typical applications often focus on a specific set of existing units —

e.g., a certain set of existing facilities — rather than assessing the performance of a policy

on a hypothetical “out-of-sample” unit.

In either interpretation, we might believe two components j and k with “similar” features

Wj and Wk have similar underlying µj and µk. Thus, we expect the observation Zk to be

informative of the underlying signal µj.

To highlight an application of Problem (1) with such data, consider the following:

Example 2.1 (Speed Hump Planning in NYC) Certain studies such as Elvik et al.

(2009) have shown speed humps can reduce the number of crashes by 50%–60%. They are

highly requested traffic calming measures used to reduce crashes, injuries, and fatalities.

In New York City, residents can request speed humps; however, Kuntzman (2022) recently
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found that the wait time for such requests can be as long as 12 years. Speed studies

that assess the feasibility of deploying a speed hump at a requested location are a salient

bottleneck, taking an average two years to complete.

To prioritize speed hump requests, consider the following linear optimization problem

that chooses speed humps that would, if built, reduce the most pedestrian injuries:

min
x

K∑
k=1

µkxk, s.t.

K∑
k=1

xk ≤B, xk ∈ {0,1} ∀k= 1, . . . ,K. (2)

Here {1,2, . . . ,K} denotes the set of requests for speed humps, and B is the number of

speed humps that can be processed in a year. The binary variable xk encodes if request k

will be processed. We assume that the potential relative reduction of pedestrian injuries is

the same for all requests. The cost µk is the expected number of pedestrian injuries per year

at location k. In cities like New York City, estimates Zk of µk can be formed from traffic

accident reports, but are often noisy. Features Wk capture information such as longitude

and latitude of the accident, street width, speed limit, and number of bike lanes.

As mentioned, many denoising methods share information across similar locations to

estimate µ. We next introduce two policy classes that exploit this intuition.

2.1. Policy Classes

We study a class of (potentially regularized) plug-in policies. Let T : Rn × Θ̄ 7→ Rn be a

transformation of the data depending on a user-defined parameter θ̄ ∈ Θ̄, and let ϕ : [0,1] 7→

R+ be a strongly convex regularizer.

Definition 2.2 (Regularized Plug-in Policy) A regularized plug-in policy x
(
Z, (ρ, θ̄)

)
for Problem (1) takes the form1

x(Z, (ρ, θ̄))∈ argmin
x∈X

n∑
j=1

(
Tj(Z, θ̄)xj + ρϕ(xj)

)
. (3)

The policy is defined by (ρ, θ̄) – i.e., T and ϕ are fixed – hence we sometimes write θ= (ρ, θ̄)

for brevity. Given Θ̄ and an interval [ρmin, ρmax], let Θ=R+× Θ̄ for brevity, and define the

policy class XΘ(Z)≡
{
x(Z, (ρ, θ̄)) : (ρ, θ̄)∈Θ

}
. We assume throughout that Θ is compact.

1 When Eq. (3) admits multiple optima, we tie-break via some deterministic rule, e.g., taking the lexicographically
smallest solution.
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Intuitively, regularized plug-in policies proxy the unknown µ by a transformation

T (Z, θ̄) of the data Z, and plug this proxy into a version of Problem (1) with a regularizer.

The use of the regularizer ϕ(·) in this proxy problem is common (see, e.g. Grigas, Qi, et al.

(2021) and Wilder, Dilkina, and Tambe (2019)), because when X is convex it ensures poli-

cies are (almost everywhere) differentiable with respect to θ̄. However, in settings where

X is non-convex – e.g., when Problem (1) encodes a minimum spanning tree problem –

we lose this differentiability, and the value of regularization is unclear. Hence, in what

follows, we treat i) regularized policies, i.e., ρ> 0 and ii) unregularized policies, i.e., ρ= 0

separately in Sections 5 and 6, respectively.

We focus on regularized plug-in policies because they are “light touch” in the sense

of Chung et al. (2022), i.e., they are only marginally more complex to implement than

an estimate-then-optmize procedure. Specifically, for a fixed θ̄, one need not alter the

measurement or prediction procedure used to obtain Z. The transformation T (Z, θ̄) is

applied as a post-processing step. Unregularized plug-in policies are also “light touch”

with respect to the optimization. If one has a specialized algorithm to solve Problem (1)

efficiently, one can apply this algorithm directly to the transformed vector T (Z, θ̄).

Remark 2.3 (Relation to Separable, Affine Plug-in Policies) Regularized plug-in

policies generalize the separable affine plug-in policy class studied in Gupta, Huang,

and Rusmevichientong (2022a). Namely, separable affine plug-in policies take ρ = 0 and

Tj(Z, θ̄) = aj(θ̄)Zj + bj(θ̄), where the functions aj and bj may depend on W . We focus on

general plug-ins as they are strictly necessary to exploit our earlier intuition that Zk may

be informative for µj when Wj and Wk are similar. Because Tj(Z, θ̄) may depend on Zk

for k ̸= j, our analysis of general, regularized plug-in policies below must use substantively

different techniques than those in Gupta, Huang, and Rusmevichientong (2022a).

2.2. A Decision-Aware Oracle Benchmark

Unlike previous works on denoising, we do not assume that µ= T (Z, θ̄∗) for some value

of θ̄∗. Instead, we take a best-in-class perspective. We define the oracle parameter

θOR ∈ argmin
θ∈Θ

µ⊤x(Z,θ), (4)

and corresponding oracle policy x(Z,θOR). This oracle is “best-in-class” over Θ, but not

easily computable because µ is unknown.

In what follows, we consider two tasks:
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1. (Policy Evaluation) Given a fixed θ, provide an estimate of µ⊤x(T (Z,θ)). Our strat-

egy will be to debias the observed performance Z⊤x(Z,θ).

2. (Policy Learning) Find a parameter θ̂(Z) (depending on the data) such that

µ⊤(x(Z, θ̂(Z)−x(Z,θOR))) is “small.” Our strategy will be to show that our debi-

ased estimators from task 1 are accurate uniformly over Θ, and hence optimizing the

estimate yields a policy with performance comparable to oracle performance.

2.3. Examples of Denoising Plug-Ins

Before delving into the details of our approach, we describe popular denoising plug-ins

inspired by modern machine learning methods. The following examples are all affine trans-

formations of Z. Affine structure is not necessary for the majority of our paper, but is

necessary for our results in Section 6.

Example 2.4 (Kernel Smoothers) Kernel smoothers define similarity via a kernel

function Kθ̄(Wj,Wk) with parameters θ̄. For example, the box-kernel is defined by

Kθ̄(Wj,Wk) = I
{
∥Wj −Wk∥ ≤ θ̄

}
. Inspired by kernel smoothing, we consider a plug-in

policy using Nadaraya-Watson regression as our transformation, i.e.,

TKR
j (Z, θ̄) =

n∑
i=1

Kθ̄(Wj,Wi)∑n
l=1Kθ̄(Wj,Wl)

Zi. (5)

This expression is affine in Z. By varying θ̄ ∈ Θ̄, we obtain a class of plug-in-policies each

with a different amount of smoothing.

Example 2.5 (Local Regression) Local linear regression uses a kernel to upweight sim-

ilar data points when predicting for a given test point. To estimate µj, it solves

βLR
j (Z, θ̄)∈ argmin

β

n∑
i=1

Kθ̄(Wj,Wi) (Wjβ−Zj)
2 ,

and outputs TLR
j (Z, θ̄) = W⊤

j βLR
j (Z, θ̄). Defining the Graham matrix K =

(Kθ̄(Wj,Wk))ij ∈Rn×n, we can rewrite this estimator as

TLR
j (Z, θ̄) =W⊤

j

(
W⊤diag(Kj)W

)−1
W⊤diag(Kj)Z,

which is again affine in Z. By varying θ̄ (and thus the Graham Matrix), we obtain a

class of plug-in policies based on local linear regression with different sized neighborhoods.

Polynomial local regression methods can also be used in a similar way.
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Example 2.6 (Ridge Regression and Random Features) In high dimensional set-

tings when p≫ n, regularized regression is often use to improve stability. For example,

ridge regression solves

βRR(Z, θ̄)∈ argmin
β

∥Wβ−Z∥22+ θ̄∥β∥2, (6)

and then proxies µ by

TRR(Z, θ̄) =WβRR(Z, θ̄) =W
(
W⊤W + θ̄I

)−1
W⊤Z,

which is affine in Z. By varying θ̄, we can construct a class of plug-in policies corresponding

to different degrees of regularization.

If we first apply a non-linear transformation to each feature Wj 7→ψ(Wj)∈Rp̄ and then

apply ridge regression, the resulting transformation is still in affine in Z. Thus, plug-in

policies based on kernelized ridge regression also fall within our scope. Recently, randomized

feature maps (Gallicchio and Scardapane, 2020; Rahimi and Recht, 2008) have been used

to approximate kernelized ridge regression. Such methods also give rise to affine policies.

Example 2.7 (Clustering) Consider a clustering method indexed by a hyperparameter

θ̄. (For example, take K-means clustering indexed by the number of clusters K.) Applied

to the features Wj, j = 1, . . . , n, clustering yields a partition S(θ̄) = {C1, . . . ,CK} of the

set {1, . . . , n}. We estimate µj by the average of its cluster:

TCL
j

(
Z, θ̄

)
=

K∑
k=1

I{j ∈Ck}

(
1

|Ck|
∑
i∈Ck

Zi

)
.

This transformation is affine in Z. By varying θ̄ (e.g. varying the number of clusters), we

again obtain a class of plug-in policies with different local neighborhoods.

The above list is not exhaustive. Many transformations T (·) can be cast as linear

smoothers (see Buja, Hastie, and Tibshirani (1989)). Such predictors yield affine plug-in

policies, and are often indexed by a low dimensional parameter θ̄.

Of course, not all policies are affine plug-in policies. For example, when using a deep

neural network to predict µj, the resulting predictions are generally not affine in Z. Outside

of Section 6, our results will not require affine structure. However, we stress that non-affine

plug-ins can sometimes be approximated by affine plug-ins. For example, Jacot, Gabriel,

and Hongler (2018) show that kernel regression using neural tangent kernels approximates

infinitely wide fully-connected neural networks, and Arora et al. (2020) provide evidence

that this approximation has comparably strong performance in small-data tasks.
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3. One-Shot Variance Gradient Correction for Policy Evaluation

To denoise the in-sample performance Z⊤x(Z,θ), we must essentially estimate the in-

sample optimism since

µ⊤x(Z,θ)︸ ︷︷ ︸
Out-of-Sample Performance

= Z⊤x(Z,θ)︸ ︷︷ ︸
In-Sample Performance

− ξ⊤x(Z,θ)︸ ︷︷ ︸
In-Sample Optimism

.

Loosely, our approach to estimating ξ⊤x(Z,θ) is as follows: Define

x̂(t, ρ)∈ argmin
x∈X

t⊤x+ ρ
n∑

j=1

ϕ(xj) and V (t, ρ)≡ t⊤x̂(t, ρ)+ ρ

n∑
j=1

ϕ(x̂j(t, ρ)).

Fix some small user-defined constant h > 0 and random vector δh ∈Rn. (We discuss how

this choice affects estimation quality in Theorem 4.3 below.) Finally, compute the one-shot

VGC Correction:

D(Z,θ) =D
(
Z, (ρ, θ̄)

)
≡ 1

h
E
[
V (T (Z, θ̄)+ δh, ρ)−V (T (Z, θ̄), ρ)

∣∣Z] . (7)

Computationally, the expectation can be approximated by simulating δh and averaging.

The one-shot VGC D(Z,θ) is our estimate of the in-sample optimism ξ⊤x(Z,θ). Hence

our estimate of out-of-sample performance is µ⊤x(Z,θ)≈Z⊤x(Z,θ)−D(Z,θ).

3.1. A Heuristic Derivation

To provide some intuition, we outline a heuristic derivation of our correction similar to

that in Gupta, Huang, and Rusmevichientong (2022a). We consider a fixed policy and drop

ρ, θ̄ from the notation in this derivation.

Consider the function

λ 7→ V (T (Z)+λξ), (8)

where ξ≡Z −µ. By Danskin’s theorem, whenever x̂(r(Z)+λξ) is the unique optimizer,

the derivative of this function is

∂

∂λ
V (T (Z)+λξ)

∣∣∣∣
λ=0

= ξ⊤x̂(T (Z)).

(When x̂(T (Z) + λξ) is not the unique optimizer, then ξ⊤x̂(T (Z)) is a subgradient.)

Hence, instead of estimating the rightside, we attempt to estimate the leftside.
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Since we cannot evaluate the derivative directly, we approximate it with a first-order,

forward finite-difference approximation (LeVeque, 2007, Chapter 1). For sufficiently small

h> 0, we expect that

∂

∂λ
V (T (Z)+λξ)

∣∣∣∣
λ=0

=
1

h

(
V (T (Z)+hξ)−V (T (Z))

)
+ op(h) as h→ 0. (9)

Finally, since ξ is unknown, we approximate T (Z) + hξ by T (Z) + δh. The resulting

estimator 1
h
(V (T (Z)+ δh)−V (T (Z))) depends on the random variable δh. To reduce

variance, we derandomize our estimator by taking a conditional expectation over δh (Rao-

Blackwellization).

3.2. Properties of the One-Shot VGC

Under minimal assumptions, we can bound the variance of the one-shot VGC D(Z,θ).

Assumption 3.1 (Lipschitz Plug-in) The function Z 7→ T (Z, θ̄) is CT (θ̄)-Lipschitz

with respect to the ℓ1 norm, i.e., ∥T (Z, θ̄)−T (Y , θ̄)∥1 ≤CT (θ̄)∥Z −Y ∥1.

Define CT =maxθ̄∈Θ̄CT (θ̄).

When T (Z, θ̄) = L(θ̄)Z + l(θ̄) is affine, CT (θ̄) = maxj ∥Lj(θ̄)∥1, i.e., the maximal ℓ1-

norm of the columns. For many linear smoothers presented in Section 2.3, the matrix L(θ̄)

has non-negative entries with columns that sum to 1. Hence, CT (θ̄) = 1 in these examples.

We apply the Efron-Stein Inequality to bound the variance of the one-shot VGC:

Theorem 3.2 (Variance of the VGC) Under Assumption 3.1, the variance of the one-

shot VGC satisfies

Var(D(µ+ ξ,θ)) ≤ 4C2
T (θ̄)n

h2νmin

.

This bound on the variance suggests that if CT (θ̄) is Op(1), the stochastic fluctuations

of the one-shot VGC are Op(n
−1/2/h). Thus, in typical cases where the full information

solution to Problem (1) is O(n), the stochastic contributions are asymptotically negligible

if h
√
n→∞ as n→∞.

We can strengthen this result to a high probability tail bound assuming ξ has light tails:

Assumption 3.3 (Independent Sub-Gaussian Corruptions) For all j = 1, . . . , n, ξj

is sub-Gaussian with variance proxy at most κ2.
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Theorem 3.4 (Concentration of the VGC) Suppose Assumptions 3.1 and 3.3 hold.

Then, with probability at least 1− ϵ,

|D(Z,θ)−E [D(Z,θ)]| ≤ CT (θ̄)
κ

h

√
n log

(
2

ϵ

)
.

3.3. Comparison to Multi-Shot VGC

In Gupta, Huang, and Rusmevichientong (2022a), a similar approach is used to motivate

what we refer to as the multi-shot VGC. Providing a rigorous, theoretical comparison of

the methods is difficult because the multi-shot VGC only applies to separable affine plug-in

policies. To develop some intuition, we compare the two estimators in the special case that

T (Z, θ̄) =Z + ℓ(θ̄), ρ= 0, and ξj are independent standard normals for all j.

Under these simplifying assumptions, the multi-shot VGC with a stepsize of h̄ is

DMS(Z) =
n∑

j=1

1

h̄
E [(V (Z + δjej)−V (Z)) |Z] , where δj ∼N (0, h̄2+2h̄), j = 1, . . . , n.

(10)

Define the random variable δ̄ ∈ Rn by δ̄ ∼ δjej with probability 1
n
, and let h = h̄/n.

Then,

DMS(Z) =
1

h
E
[
V (Z + δ̄)−V (Z) |Z

]
.

Thus, multishot VGC is a special case of the one-shot VGC with a specific random step.

As we will show in Theorem 4.3 and Proposition 4.4, when ξj are independent, standard

normals, the random variable δh which minimizes estimation error in our one shot VGC is

δh ∼N (0, (h2+2h)I). Hence the relevant comparison is to

D(Z) =
1

h
E [V (Z + δh)−V (Z) |Z] . (11)

When h < 1/n, we see that both methods take a step size of length Op(
√
nh). When

h > 1/n, multi-shot VGC takes a step of size Op(nh), while the one-shot VGC takes a

smaller step of size Op(
√
nh). In both cases, the multishot VGC only steps in coordinate

directions, while the one-shot VGC steps in a uniformly random direction. Because of this

difference in step-size and direction, the two corrections are different in general. However,

in the special case that the optimization problem fully decouples, i.e, x̂j(t,0) only depends

on tj for all j, the two corrections are essentially equivalent. (See Proposition B.3 in the

appendix for a formal statement.)
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From a theoretical point of view, the different structure of one-shot and multi-shot VGC

give rise to different analyses. Specifically, because it restricts to coordinate directions,

bounding the bias of the multishot VGC is straightforward (Gupta, Huang, and Rus-

mevichientong, 2022a, Theorem 3.2), but analyzing its stochasic behavior is quite difficult

and involves a subtle duality argument and a number of assumptions on the policy and

optimization. See Gupta, Huang, and Rusmevichientong (2022a, Theorem 3.5). By con-

trast, as we have shown in Theorems 3.2 and 3.4, by fully randomizing the step direction,

the one-shot VGC admits a very simple analysis of its stochastic deviation around its

mean, but analyzing its bias is now more difficult and considered in the next section.

From an empirical point of view, we study the multi-shot and one-shot VGC numeri-

cally in Section 7.1 and find that the larger steps of the multi-shot VGC can cause it to

have larger variance and estimation error than the one-shot VGC. Moreover, when the

optimization problem does not decouple, the bias of the multi-shot VGC grows with the

degree of coupling. Our one-shot variant thus performs much better.

4. Bounding the Estimation Error by Solution Stability

In this section, we bound the estimation error of our method by a more manageable term

related to the stability of our policies:

Definition 4.1 For any θ ∈Θ and h> 0, we define the solution stability of a policy by

SS(ξ, h,θ) =
∣∣ξ⊤ (x̂(T (Z, θ̄), ρ)− x̂(T (Z, θ̄)+hξ, ρ)

)∣∣ .
Intuitively, solution-stability measures how much the solution changes given a small per-

turbation of the data Z in the direction of the noise ξ. In particular, solution-stability is

random, and not directly computable (because it depends on ξ). Below, we first show that

the error of our estimator is bounded by solution stability (plus a term that is easy to

control) and then discuss how to further bound solution-stability.

To that end, write

sup
θ∈Θ

∣∣Z⊤x(Z,θ)−D(Z,θ)−µ⊤x(Z,θ))
∣∣︸ ︷︷ ︸

Estimation Error

≤ sup
θ∈Θ

∣∣∣∣ξ⊤x(Z,θ)− 1

h

(
V (T (Z, θ̄)+hξ, ρ)−V (T (Z, θ̄), ρ)

)∣∣∣∣︸ ︷︷ ︸
Finite Difference Error

(12a)
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+sup
θ∈Θ

∣∣∣∣1h (V (T (Z, θ̄)+hξ, ρ)−V (T (Z, θ̄), ρ)
)
−D(Z,θ)

∣∣∣∣︸ ︷︷ ︸
Replication Error

. (12b)

Intuitively, the Finite Difference Error measures the error incurred by approximating the

derivative by a forward finite step approximation. The Replication Error measures the

error introduced by replacing ξ by δ.

We can further bound Finite Difference Error by invoking the concavity of f(λ) =

V (T (Z,θ)+λξ, ρ).2 By concavity,

f(h) ≤ f(0)+hf ′(0) =⇒ V (T (Z, θ̄)+hξ, ρ)−V (T (Z, θ̄), ρ)

h
≤ ξ⊤x̂(T (Z, θ̄), ρ),

f(0) ≤ f(h)−hf ′(h) =⇒ V (T (Z, θ̄)+hξ, ρ)−V (T (Z, θ̄), ρ)

h
≥ ξ⊤x̂(T (Z, θ̄)+hξ, ρ),

where we have again used Danskin’s theorem to compute the derivatives. Combining shows

Eq. (12a) ≤ sup
θ∈Θ

∣∣ξ⊤ (x̂(T (Z, θ̄), ρ)− x̂(T (Z, θ̄)+hξ, ρ)
)∣∣ = sup

θ∈Θ
SS(ξ, h,θ). (13)

As we will argue in Section 4.1 below, Solution Stability depends strongly on the structure

of Problem (1) and the choice of policy class.

By contrast, we can bound the Replication Error with minimal additional assumptions.

Our results primarily depend on the complexity of the plug-in class which we capture by

deterministic covering of the set Θ. Specifically, we assume the following covering exists.

Assumption 4.2 (Plug-in and Regularization Covering) For any ε > 0, there exists

a deterministic set Θ0(ε) such that for every (θ̄, ρ)∈Θ there exists a (θ̄0, ρ0)∈Θ0(ε) such

that ∥T (Z, θ̄)−T (Z, θ̄0)∥1 ≤ εCΘ(∥Z∥1 +1) and |ρ− ρ0| ≤ ε for some universal constant

C ≥ 1.

Many of the machine learning plug-ins in Section 2.3 satisfy the assumption due to their

affine structure as T (Z, θ̄) is C(∥Z∥1 + 1)-Lipschitz with respect to θ̄ for some constant

C. We also note the assumption is trivially satisfied if Θ0 is finite as often happens with

clustering plug-ins (Example 2.7).

Combining these two bounds yields the first main result of our paper:

2 This map is concave because it is the minimum of linear functions of λ.
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Theorem 4.3 (Bounding Estimation Error by Stability) Suppose Assump-

tions 3.1, 3.3 and 4.2 hold. Then, there exists a constant C (depending on ϕmax, νmin,

∥µ∥∞) such that the following holds with probability at least 1− 2ϵ,

sup
θ∈Θ

∣∣Z⊤x(Z,θ)−D(Z,θ, h)−µ⊤x(Z,θ)
∣∣︸ ︷︷ ︸

Estimation Error

≤ C
(CT +h)κ

h

√
n · logn · log |Θ0 (n−1/2)| · log

(
2

ϵ

)
︸ ︷︷ ︸

Deviation of Replication Error

+
1

h
sup
θ∈Θ

W1

(
T (Z, θ̄)+hξ, T (Z, θ̄)+ δh

)
︸ ︷︷ ︸

Expected Replication Error

+ sup
θ∈Θ

SS(ξ, h,θ)

where W1 the Wasserstein 1-distance metric.

For many of the policies presented earlier in Section 2.3, e.g., Examples 2.4 and 2.7,∣∣Θ0

(
n−1/2

)∣∣ is polynomial in n and, hence, the first term in the bound is Õ(
√
n/h). The

second term of the bound depends on how well we replicate the (unknown) perturbation

hξ. In special cases, it possible to exactly replicate hξ so that this term is 0.

Proposition 4.4 (Exact Distribution Replication with Multivariate Gaussians)

Let Z ∼ N (µ,Σ) and let T (Z, θ̄) = L(θ̄)Z + l(θ̄) be affine. If L(θ̄)Σ + ΣL(θ̄)⊤ is a

positive semi-definite matrix, then choosing δh ∼N (0, h(L(θ̄)Σ+ΣL(θ̄)⊤)+h2Σ), yields

W1

(
T (Z, θ̄)+hξ, T (Z, θ̄)+ δh

)
= 0.

Finally the third term in Theorem 4.3 is the solution stability. As we argue in the

next section, we believe that some dependence on solution stability is fundamental and

unavoidable. In Sections 5 and 6 we use problem structure to bound this term.

4.1. Is Dependence on Solution Stability Unavoidable?

We build on our heuristic derivation from Section 3.1 to develop some intuition for why

solution stability arises in our analysis and why we believe it is a fundamental quan-

tity. Other authors (Yu, 2013; Shalev-Shwartz et al., 2010) have similarly observed the

importance of stability in learning applications. We fix θ and drop it from the notation

throughout this subsection.
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For a twice differentiable function, a classical Taylor series argument shows that the

error in approximating the first derivative by a first-order finite step difference scales like

the second derivative, i.e.,∣∣∣∣f(h)− f(0)

h
− f ′(0)

∣∣∣∣= h

2
|f ′′(0)|+ o(h).

Hence, for the function λ 7→ V (T (Z)+λξ) from Eq. (8), we might expect that∣∣∣∣V (T (Z)+hξ)−V (T (Z))

h
− ξ⊤x̂(T (Z))

∣∣∣∣ ≈ h

2

∣∣∣∣∣ ∂2

∂λ2
V (T (Z)+λξ)

∣∣∣∣
λ=0

∣∣∣∣∣ ,
and

∂2

∂λ2
V (T (Z)+λξ)

∣∣∣∣
λ=0

=
∂

∂λ
ξ⊤x̂(T (Z)+λξ)

∣∣∣∣
λ=0

= ξ⊤J(T (Z))ξ,

where J(T (Z)) ∈Rn×n is the Jacobian of λ 7→ x̂(T (Z)+λξ). This heuristic analysis sug-

gests that the magnitude of changes in the solution vector x̂(T (Z)) to perturbations of

its input drives the error in our method. More specifically, if we apply a first order finite

difference to ∂
∂λ
ξ⊤x̂(T (Z) + λξ) at λ = 0, we recover ξ⊤ (x̂(T (Z)+hξ)− x̂(T (Z))), the

solution stability of Eq. (13).

This perspective also highlights why solution stability depends on the particular struc-

ture of Problem (1) and the policy class. Specifically, the (i, j)th element of J(T (Z)) is

∂
∂Zj

x̂i(T (Z)), measuring how much the ith component of the solution changes with small

perturbations of the jth component of the input. The magnitude of this change depends

strongly on the constraints in the feasible set X of Problem (1) and how T (·) magni-

fies/attenuates the perturbation. Hence, unlike bounding the replication error, bounding

the finite difference error seemingly requires stronger assumptions on Problem (1).

In the next two sections, we present rigorous bounds on the solution stability (and hence,

finite difference error) under different structural assumptions on Problem (1). In Section 5,

we treat the simpler case of regularized policies and convex X , where we can bound the

solution stablity using strong convexity. In Section 6, we treat the more difficult case of

unregularized affine policies where we instead require a weakly-coupled assumption on X .

5. Bounds for Continuous Plug-in Policies

5.1. Regularized Policies

We first present bounds for regularized plug-in policies when the feasible set X is convex.

The key insight is that when t 7→ V (t, ρ) is strongly-convex, plug-in policies are Lipschitz
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in their argument. Other authors have utilized this Lipschitz continuity in a variety of

contexts. We use it to derive a simple upper bound on solution stability.

Lemma 5.1 (Solution Stability of Regularized Policies) If X is convex, ρ> 0, and

ϕ(·) is 1-strongly convex with respect to the norm ∥ · ∥,

|SS(ξ, h,θ)| ≤ h

ρ
∥ξ∥2∗, a.s..

The bound only depends on the regularizer through the dual norm, but does not otherwise

depend on the plug-in T (Z,θ). In this sense, it is general purpose.

Plugging Lemma 5.1 into Theorem 4.3 bounds estimation error uniformly.

Theorem 5.2 (Estimation Error for Regularized Policies) Suppose Assump-

tions 3.1, 3.3 and 4.2 hold, X is convex, and Θ= [pmin, pmax]× Θ̄ for 0 < pmin < pmax. If

ϕ(·) is 1-strongly convex with respect to ∥ · ∥, then there exists a constant C (depending on

ϕmax, νmin, ∥µ∥∞) such that with probability at least 1− ϵ

sup
θ∈Θ

∣∣Z⊤x(Z,θ)−D(Z,θ, h)−µ⊤x(Z,θ)
∣∣ ≤ h

ρmin

∥ξ∥2∗

+C
(CT +h)κ

h

√
n log |Θ0 (n−1/2)| log

(
1

ϵ

)
+

1

h
sup
θ∈Θ

W1(T (Z, θ̄)+hξ,T (Z, θ̄)+ δh).

Common regularizers include ϕ(x) = 1
2
x2, which is 1-strongly convex with respect to

the ℓ2 norm (so ∥ · ∥∗ is the ℓ2 norm), and ϕ(x) = x logx, which is 1-strongly convex with

respect to the ℓ1 norm (so ∥ · ∥∗ is the ℓ∞ norm). In either case, ∥ξ∥2∗ can be bounded using

standard techniques.

In the special case that the Wasserstein component is zero (c.f. Proposition 4.4), we can

optimize the choice of h to obtain explicit rates:

Corollary 5.3 (Regularized Policies with Exact Replication) Suppose the

assumptions of Theorem 5.2 and Proposition 4.4 hold and
∣∣Θ0(n

−1/2)
∣∣ is polynomial in n.

i) If ϕ(·) is 1-strongly convex with respect to ∥ · ∥1, letting h= ρ
1/2
minn

1/4 shows

sup
θ∈Θ

∣∣Z⊤x(Z,θ)−D(Z,θ, h)−µ⊤x(Z,θ)
∣∣ = Õp

(
n1/4ρ

−1/2
min

)
,

ii) If ϕ(·) is 1-strongly convex with respect to ∥ · ∥2, letting h= ρ
1/2
minn

−1/4 shows

sup
θ∈Θ

∣∣Z⊤x(Z,θ)−D(Z,θ, h)−µ⊤x(Z,θ)
∣∣ = Õp

(
n3/4ρ

−1/2
min

)
.

For ρmin → 0 sufficiently slowly as n grows, both errors vanish relative to out-of-sample

performance in the typical case that the optimal vaue of Problem (1) is O(n).
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5.2. Strongly Convex Feasible Regions

We next study unregularized policies in the special case where X is strongly convex by

adapting techniques from El Balghiti et al., 2022. We first summarize key results from

that work and then show how they can be used to bound solution stability and, hence,

estimation error, in our setting.

For a given norm ∥ · ∥, let B(x0, r) = {x ∈ Rn : ∥x− x0∥ ≤ r} be the ball of radius r

centered at x0. Recall the following classical definition:

Definition 5.4 (Strongly Convex Feasible Region) We say the feasible region X is

α-strongly convex with respect to ∥ · ∥ if for any x,y ∈X , and any λ∈ [0,1],

B(λx+(1−λ)y,
α

2
λ(1−λ)∥x−y∥2)⊆X

In words, strong convexity of the feasible region ensures that X is “round.” El Balghiti

et al. (2022, Theorem 7, Theorem 3a) establishes that when X is α-strongly convex, the

plug-policies are almost Lipschitz continuous, namely3

∥x̂(t,0)− x̂(t̄,0)∥ ≤ 2∥t− t̄∥∗
α (∥t∥∗+ ∥t̄∥∗)

, ∀t, t̄∈Rn.

These results provide a simple bound on solution-stability:

Lemma 5.5 (Solution Stability for Strongly-Convex Feasible Regions) Suppose

X is α-strongly convex with respect to ∥ · ∥. Then,

|SS(ξ, h,θ)| ≤ 2h∥ξ∥2∗
α∥T (Z, θ̄)∥∗

.

Unlike Lemma 5.1, our bound depends not only on the strong-convexity parameter, but

also the magnitude of T (Z, θ̄). Intuitively, if T (Z, θ̄) is close to 0, then a small perturbation

might cause the plug-in policy to change wildly.

We can combine this bound with our previous results to provide an estimation bound

for unregularized policies and strongly-convex feasible regions:

3 El Balghiti et al. (2022, Theorem 3a) uses a slightly worse constant in which they bound 1
2
(∥t∥∗ + ∥t̄∥∗) ≥

min(∥t∥∗,∥t̄∥∗). We use the tighter constant above.
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Theorem 5.6 (Estimation Error for Strongly-Convex Feasible Regions)

Suppose Assumptions 3.1, 3.3 and 4.2 hold, X is α-strongly convex with respect to ∥ · ∥
and Θ= [0]× Θ̄ (i.e. ρ= 0) and inf θ̄∈Θ̄ ∥T (Z, θ̄)∥∗ ≥ Tmin. Then there exists a constant C

(depending on ϕmax, νmin,∥µ∥∞) such that with probability at least 1− ϵ,

sup
θ∈Θ

∣∣Z⊤x(Z,θ)−D(Z,θ, h)−µ⊤x(Z,θ)
∣∣ ≤ Ch∥ξ∥2∗

αTmin

+C
(CT +h)κ

h

√
n log |Θ0 (n−1/2)| log

(
1

ϵ

)
+

1

h
sup
θ∈Θ

W1(T (Z, θ̄)+hξ,T (Z, θ̄)+ δh).

Much like Theorem 5.2, when the Wasserstein contribution is zero, we can optimize the

choice of h to obtain an explicit rate. The results are identical to Corollary 5.3 with ρmin

replaced by αTmin and hence omitted for brevity.

6. Bounds for Unregularized Plug-in Policies in Weakly-Coupled Problems

For combinatorial optimization problems with non-convex feasible sets, the plug-in policy is

typically not continuous with respect to its parameter. Hence, bounding solution stability

requires us to exploit the structure of the underlying problem more heavily.

In this section, we prove estimation error bounds for non-regularized plug-in policies, i.e.

when ρ= 0 and Θ= {0}× Θ̄. We focus on a general class of linear optimization problems

known as weakly-coupled linear optimization problems, also studied in Gupta, Huang, and

Rusmevichientong (2022a).

To describe such problems, let S0, . . . , SK be a disjoint partition of {1, . . . , n} and let

xk = (xj : j ∈ Sk) denote vectors of decision variables for k = 0, . . . ,K. Without loss of

generality, reorder the indices so that the Sk occur “in order,” i.e., (j ∈ S0), . . . , (j ∈ SK) is

a consecutive sequence. Weakly-coupled optimization problems have the following form:

min
x0,...,xK

(
µ0
)⊤

x0+

K∑
k=1

(
µk
)⊤

xk (14a)

s.t.

K∑
k=0

∑
j∈Sk

A0
j(x

0)xj ≤ b0(x0) (14b)

x0 ∈X 0 (14c)

xk ∈X k(x0), ∀k= 1, . . . ,K, (14d)

where for each fixed x0, A0
j(x

0) ∈Rm for all j, b0(x0) ∈Rm, and X k(x0) for k = 1, . . . ,K

are convex. The coupling set X 0 is possibly non-convex. We let XWC denote the feasible
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set that satisfies Eqs. (14b) to (14d) and assume XWC ⊆ [0,1]n. For convenience, define

Smax ≡maxk |Sk| to be the size of the largest subproblem.

The optimization problem is “weakly-coupled” in the sense that by removing the linear

constraints (Eq. (14b)) and fixing a choice of x0 ∈X 0 (Eq. (14c)), the optimization problem

decouples into K separate convex subproblems of the form:

min
xk

(
µk
)⊤

xk, s.t. xk ∈X k(x0). (15)

We assume throughout that after fixing x0, Problem (14) satisfies strong convex duality.

Many applications of linear optimization have the form of Problem (14). For exam-

ple, two-stage stochastic optimization problems are often weakly coupled by variables. In

these problems, x0 are first-stage decision variables (which are sometimes binary), and

each xk represents second-stage decisions for the K different scenarios. Gupta, Huang, and

Rusmevichientong (2022a) consider such an instance to model drone assisted emergency

medical response. In that application, m= 0 and |X 0|=O(1) as K →∞. Other applica-

tions are weakly-coupled by constraints, where the binding constraints (Eq. (14b)) model

resource budgets, e.g., on time or labor. Example 2.1 is such an example, where the binding

constraint limits the number of speed humps that can be built. In general, we argue that

in typical applications, the number of subproblems K =O(n), the number of coupling con-

straints m=O(1), and log |X 0|= o(n). Although we present results for general instances,

the reader may want to focus on these scalings as they interpret our results.

Additional Assumptions

Proving strong estimation error bounds for Problem (14) with general policies appears

challenging. We make several simplifying assumptions. First, we specialize our policy class.

Definition 6.1 (Affine Plug-in Policy) An affine plug-in policy x
(
Z, (0, θ̄)

)
is a plug-

in policy where T (z, θ̄) =L(θ̄)z+ l(θ̄) and L(·), l(·) may implicitly depend W .

As highlighted in Section 2.3, many machine learning methods are W -dependent affine

transformations of Z. The separable affine plug-in policy class studied in Gupta, Huang,

and Rusmevichientong (2022a) corresponds to the special case where L(θ̄) is diagonal.

To simplify exposition, we also assume the parameters are appropriately rescaled:
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Assumption 6.2 (Scaling of Plug-in Parameters) Let σj(θ̄) be the jth largest singu-

lar value of L(θ̄).We assume that supθ̄∈Θ̄ σ1(θ̄)≤ 1.

Assumption 6.2 almost holds without loss of generality because (L(θ̄), l(θ̄)) can be scaled

by small positive constant; such scaling does not alter x(Z, (0, θ̄)). We say “almost” because

Assumption 6.2 requires this constant be chosen uniformly over Θ̄. This uniformity holds for

many examples of interest. In Example 2.4 and Example 2.5 this property holds whenever

the kernel K is supported on a compact set (like the box-kernel). In Example 2.6, it holds

so long as θ̄ is bounded away from zero, and it always holds in Example 2.7.

We also require invertibility of the submatrices of L(θ̄) and L(θ̄)+hI for our analysis:

Assumption 6.3 (Invertibility of Submatrices) Let Lk
(
θ̄
)
∈R|Sk|×|Sk| be the subma-

trix of L
(
θ̄
)
induced by the set Sk. We assume there exists a constant σmin such that

0<σmin ≤ inf
θ̄∈Θ̄

σmin(L
k(θ̄)), and 0<σmin ≤ inf

θ̄∈Θ̄
σmin(L

k(θ̄)+hI), ∀k= 1, . . . ,K,

where σmin(·) denotes the smallest singular value, and h is the step size in the one-shot

VGC (cf. Eq. (7)).

Practically, we can satisfy Assumption 6.3 by adding a small perturbation γI to L(θ̄). In

Section 7.2, however, we show our approach is effective even Assumption 6.3 does not hold.

Finally, following Gupta and Rusmevichientong (2021) and Gupta, Huang, and Rus-

mevichientong (2022a), we assume Gaussian corruptions. Recall Σ is the covariance of

Z.

Assumption 6.4 (Gaussian Corruptions) We assume Z ∼N (µ,Σ) and that L(θ̄)Σ+

ΣL(θ̄)⊤ is positive semidefinite for every θ̄ ∈ Θ̄.

We focus on the Gaussian case for simplicity. Using Gupta, Huang, and Rusmevichientong

(2022a, Lemma B.4) one might extend our results to the case of approximately Gaussian

noise, but we do not pursue this below. The assumption that L(θ̄)⊤Σ+ΣL(θ̄)T is positive

semidefinite allows us to invoke Proposition 4.4 to simplify our analysis.

Assumptions 6.3 and 6.4 are arguably more stringent than Assumption 6.2 or requiring

affine policies. In our numerical experiments, we study a setting where these assumptions

may not hold and our method still demonstrates strong performance.
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We next analyze the special case of block decoupled problems, i.e., when m = 0 and

|X 0|= 0 in Section 6.1. We utilize these results to construct a specialized one-shot VGC

for general weakly-coupled problems in Section 6.2. We bound the estimation error of this

specialized one-shot for weakly-coupled problems in Section 6.3.

Since ρ= 0 throughout this section, we write x̂(t) and drop ρ from the notation.

6.1. Block Decoupled Problems

Our first result bounds the solution stability. The proof uses the chromatic number of a

particular graph built from the policy class to bound the dependence between subprob-

lems. For simplicity of exposition, we present a weaker bound using Brook’s Theorem to

upperbound this chromatic number. (See Section E.4 for the tighter bound and proof.)

Lemma 6.5 (Solution Stability of Block-Decoupled Problems) Suppose Assump-

tions 3.1 and 6.2 to 6.4 hold. Consider Problem (14) with m = 0, and |X 0| = 0. If Θ =

{0} × Θ̄, then there exists a constant C (depending on νmin, νmax, σmin) such that, with

probability at least 1− ϵ,

sup
θ∈Θ

SS(ξ, h,θ) ≤ CSmaxnh

√
log

(
1

h

)
+CS3/2

max

√
nTmax logXmax · log

(
SmaxTmax

ϵ

)
where Tmax =maxj

∑n
i=1maxθ̄∈Θ̄ I

{
Lij(θ̄) ̸= 0

}
, and Xmax =maxz∈Rn |XΘ(z)|.

The first term on the right bounds supθ∈ΘE [SS(ξ, h,θ)]. It scales with Smax, the

size of the blocks. In the typical case where Smax = O(1) as n → ∞, such as

Example 2.1, the expected solution stability is Õp(nh). The second term bounds

supθ∈Θ |SS(ξ,θ, h)−E [SS(ξ,θ, h)]| and depends on the level of independence between pol-

icy components xj(Z,θ) as measured by SmaxTmax, which bounds number of subproblems

that can be correlated to one another. The
√
logXmax measures the policy class complexity

to allow for a uniform bound. The constants Tmax and Xmax depend on our choice of policy

class. Loosely, when L(θ̄) is sparse, e.g. when denoising is based on “local” neighborhoods,

Tmax =O(1). Furthermore, if
∣∣Θ̄∣∣ is small, we expect Xmax is also small. We formalize these

intuitions in Section E.1 by revisiting our examples from Section 2.3.

We can now combine Theorem 4.3 and Lemma 6.5 to obtain a bound on the estimation

error of the one-shot VGC. Let Lmax = supθ̄∈Θ̄ supi,j |Lij(θ̄)|.
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Theorem 6.6 (Estimation Error for Block Decoupled Problems) Suppose

Assumptions 3.1, 4.2 and 6.2 to 6.4 hold. Consider Problem (14) with m= 0, and |X 0|= 0.

Define δh as in Proposition 4.4. Finally assume h<CT . If Θ= {0}× Θ̄, then there exists

a constant C (depending on νmin, νmax, σmin,∥µ∥∞,Lmax) such that with probability at least

1− ϵ,

sup
θ∈Θ

∣∣Z⊤x(Z,θ)−D(Z,θ, h)−µ⊤x(Z,θ)
∣∣

≤ C

(
Smaxn

1/2h+
Tmax

h

)
︸ ︷︷ ︸

Step-Size Trade-Off

√
n logn · log

(
1

h

)
· log |Θ0 (n−1/2)| · log

(
2

ϵ

)

+ CS3/2
max

√
nTmax logXmax log

(
SmaxTmax

ϵ

)
.

The VGC step-size trade-off groups terms that depend on the choice of h, and the stochas-

tic error groups terms related to the structure of the optimization problem and plug-in

estimator. By optimizing h, we obtain the following corollary.

Corollary 6.7 (Optimized Step-Size) Under the assumptions of Theorem 6.6, if h=

O
(
n−1/4T

1/2
maxS

−1/2
max

)
there exists a constant C (depending on νmin, νmax, σmin,∥µ∥∞,Lmax)

such that with probability at least 1− ϵ,

sup
θ∈Θ

∣∣Z⊤x(Z,θ)−D(Z,θ, h)−µ⊤x(Z,θ)
∣∣

≤ CS3/4
maxn

3/4 logn
√
Tmax logXmax log |Θ0 (n−1/2)| · log

(
SmaxTmax

ϵ

)
.

The corollary shows that when all problem and policy parameters are Õ(1), then the

estimation error grows at a rate Õp(n
3/4). Thus, in typical settings where full-information

performance is of order O(n), the one-shot VGC estimator has vanishing relative error.

6.2. A Modified VGC for Weakly-Coupled Problems

Our strategy for the weakly-coupled Problem (14) will be to i) “fix” values of the coupling

variables Eq. (14c) and Lagrangian duals for the coupling constraints Eq. (14b) ii) apply

our previous results to the resulting decoupled problem iii) take a union bound over all

possible values of the “fixed” quantities. To execute this strategy we define a lifted policy

class indexed by the “fixed” quantities and then define a modified VGC for this lifted class.
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Lifted Affine Policy Class

We first introduce dual notation. Recall the general affine plug-in for the weakly-coupled

optimization problem Problem (14) solves

x(Z,θ)∈ argmin
x

n∑
j=1

Tj(Z, θ̄)xj (16a)

s.t.
K∑
k=0

∑
j∈Sk

A0
j(x

0)xj ≤ b0(x0) (16b)

x0 ∈X 0 (16c)

xk ∈X k(x0), ∀k= 1, . . . ,K. (16d)

where A0
j(x

0) ∈ Rm for j = 1, . . . , n and b0(x0) ∈ Rm are vectors that may or may not

depend on x0.

Fix some x0 ∈X 0 and consider relaxing Eq. (16b) with dual variables λ∈Rm
+ to obtain

the block decoupled optimization problem

min
x

K∑
k=1

⟨T k(Z, θ̄)+A0
Sk
(x0)⊤λ,xk⟩, s.t. xk ∈X k(x0), ∀k= 1, . . . ,K (17)

where A0
Sk
(x0) is formed by taking columns j ∈ Sk. Let x̃

k(Z,λ,x0, θ̄) denote the solution

of the kth subproblem and x̃(Z,λ,x0, θ̄) =
(
x0, x̃1(Z,λ,x0, θ̄)⊤, . . . , x̃K(Z,λ,x0, θ̄)⊤

)⊤
.

Although the notation is onerous, the intuition is to view Eq. (17) as defining the plug-in

policy x̃(Z,λ,x0, θ̄) for the target optimization problem

min
x

K∑
k=1

⟨µk,xk⟩, s.t. xk ∈X k(x0), ∀k= 1, . . . ,K,

where
(
x0,λ, θ̄

)
define the plug-in policy. Our strategy will be to use Theorem 6.6 to debias

the in-sample performance of this policy, and then relate it back to the original plug-in

policy for our weakly coupled problem. To that end, define the lifted affine policy class

X̃ (Z) =
{
x̃(Z,λ,x0, θ̄) : λ∈Rm

+ , x
0 ∈X 0, θ̄ ∈ Θ̄

}
and the corresponding plug-in function

Ṽ
(
t,x0

)
=min

{
t⊤x : xk ∈X k(x0), ∀k= 1, . . . ,K.

}
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Our one-shot VGC applied to this lifted, block-decoupled problem is

D̃(Z,λ,x0, θ̄, h)≡ 1

h
E
[
Ṽ (T (Z, θ̄)+ (A0)⊤λ+ δh,x

0)− Ṽ (T (Z, θ̄)+ (A0)⊤λ,x0)
∣∣∣Z] ,

where δh is defined as in Proposition 4.4.

Of course Eq. (17) is not the same as Problem (16). However, one might intuit that if

we set (λ,x0) to their optimal values, Eq. (17) might closely approximate Problem (16)

and the corresponding VGC might approximately debias Problem (16). To that end, for a

fixed x0, we define the optimal dual variables

λ(Z, θ̄,x0)∈ argmax
λ≥0

−
〈
b0(x0), λ

〉
+

K∑
k=0

〈
T k(Z, θ̄)+A0

Sk
(x0)⊤λ, x̃k(Z,λ,x0, θ̄)

〉
(18)

and optimal coupling variables x0(Z,θ) as the portion of the optimal solution to Prob-

lem (16) corresponding to block S0. Our modified VGC correction is then

DWC(Z,θ, h)≡ D̃(Z,λ(Z, θ̄,x0(Z,θ)),x0(Z,θ), θ̄, h). (19)

Remark 6.8 (Computing the Modified VGC) Computing the modified VGC is not

much harder than solving Problem (16) since one can extract x0(Z,θ) and then solve

a convex problem to obtain λ(Z,θ,x0) and x̃ (Z,λ(Z,θ,x0),x0(Z,θ),θ). In practice,

however, we adopt a simpler approach. Let V (t) denote the optimal objective value of

Problem (16) when the cost coefficients are t ∈ Rn. We approximate DWC(Z,θ, h) ≈
1
h
E
[
V
(
T (Z, θ̄)+ δh,0

)
−V

(
T (Z, θ̄),0

)∣∣Z] . As can be seen in the proof, these quantities

are asymptotically identical. We treat Eq. (19) in our analysis for simplicity.

6.3. Estimation Error of Weakly-Coupled One-Shot VGC

The key insight to leveraging Theorem 6.6 to analyzing DWC is relating solutions to Prob-

lem (16) to our lifted affine policy class. In particular, we will show that

xk(Z,θ) = x̃k
(
Z,λ(Z, θ̄,x0(Z,θ)),x0(Z,θ), θ̄

)
whenever x̃k

(
Z,λ(Z, θ̄,x0),x0(Z,θ), θ̄

)
is the unique solution to its defining optimization

problem. We next introduce a technical assumption that allows us to bound the number

of blocks with multiple solutions.
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Let Dk(x0) be the set of unit vectors d such that minx∈Xk(x0)d
⊤x has multiple optima

and define the set of vectors

F(Z,x0, θ̄)≡
K⋃
k=1



Tj(Z, θ̄)

A0
j

−dj

 : j ∈ Sk, d∈Dk(x0)

⊆Rm+2.

We assume these vectors are in general position.

Assumption 6.9 (Induced Cost Vectors in General Position) We have

P
(
F(Z,x0, θ̄) are in general position for all θ̄ ∈ Θ̄ and x0 ∈X 0

)
= 1.

We use this assumption to show that the number of subproblems of our lifted affine policy

that have multiple solutions is at most m in Lemma F.1.

Additionally, we require assumptions on the boundedness of the optimal dual values

λ0(Z,θ,x0) to cover the policy class. We adopt a simple assumption similar to Gupta,

Huang, and Rusmevichientong (2022a) and Gupta and Rusmevichientong (2021).

Assumption 6.10 (s̄-Strict Feasibility of Coupling Constraints) For each x0 ∈
X 0, there exists an s̄ > 0 and x̄∈XWC such that

∑n
j=1A

0
j(x

0)x̄j + s̄e≤ b0(x0).

Lemma F.2 bounds ∥λ(Z,θ)∥1 under this assumption.

We now can present our uniform bound on the estimation error of the weakly-coupled

one-shot VGC. Let ∥A0∥∞ be the entry-wise infinity norm for matrices.

Theorem 6.11 (Estimation Error of the Weakly-Coupled VGC) Assume

Assumptions 3.1, 4.2, 6.2 to 6.4, 6.9 and 6.10 hold and let Θ = {0} × Θ̄. Choose

h = O
(
n−1/4T

1/2
maxS

−1/2
max

)
and δh as in Proposition 4.4. Consider Problem (14). There

exists a constant C (depending on νmin, νmax, σmin, ∥µ∥∞, Lmax, log s̄
−1, ∥A0∥∞ ) such

that the following holds with probability at least 1− ϵ− exp(−n),

sup
θ∈Θ

∣∣Z⊤x(Z,θ)−DWC(Z,θ, h)−µ⊤x(Z,θ)
∣∣︸ ︷︷ ︸

Estimation Error

≤C4S
3/4
maxn

3/4 log3/2 n
√
mTmax logXmax log |Θ0 (n−1/2/2)| · log

(
SmaxTmax |X 0|

ϵ

)
︸ ︷︷ ︸

Block Decoupled Bound

,

+CmSmax

√
logn · log

(
1

ϵ

)
︸ ︷︷ ︸

Lifted Policy Estimation Error
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Since we apply the one-shot VGC to the lifted class, our bound for weakly-coupled

problems only differs from Theorem 6.6 by the additional lifted policy approximation error.

This error bounds the difference between the in-sample optimism of the lifted policy and

the original policy. In typical settings wherem=O(1) (c.f. Example 2.1), this term is Õ(1).

We stress that since our weakly-coupled VGC applies to the lifted decoupled problem,

it depends on the complexity of the lifted policy class X̃Θ(Z), not just XΘ(Z). Since the

lifted class simply shifts the plug-in by an affine amount, it can often be bounded using

the same techniques as in Section E.1

7. Computational Study

7.1. Comparing One-Shot and Multi-Shot VGC

As discussed, the one-shot and multi-shot VGC are provably equal in special cases,

most notably when the optimization problem fully decouples (c.f. Proposition B.3 in the

appendix). In this section, we compare these two methods empirically, focusing on set-

tings where the feasible region has coupling constraints. For clarity, the theoretical analysis

of multi-shot VGC in Gupta, Huang, and Rusmevichientong, 2022a does not cover non-

separable affine plug-in policies, but the algorithm can still be applied (without theoretical

guarantees) to this setting. We utilize synthetic data where can individually vary the degree

of coupling and size of the problem.

Specifically, we consider on the full information optimization problem:

max
x∈X

K∑
k=1

B∑
j=1

µkjxkj, where X =

{
x :

B∑
j=1

xkj ≤ 1∀k; xkj ∈ {0,1}∀k, j

}

We observe Wj = j, and Zkj ∼N (µkj,1/νkj) with

(µkj, νkj) =


(0,2) w.p. 1

2
,

(0.5,10) w.p. 1
4
,

(1,6) w.p. 1
4
.

The “ground-truth” values of µ and ν are generated once and fixed throughout the experi-

ment. The data Z are generated each simulation run, and B = 4 unless otherwise specified.
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Figure 1 Multi-Shot vs. One-Shot: Separable Policy. The graphs show the root mean squared error

(RMSE) of the one-shot VGC (Eq. (11)) is better than the RMSE of the multi-shot VGC (Eq. (10)) for

the plug-in policy with T (Z, θ̄) =Z. For figures (a) and (b) the values are computed over 200 trials and

use the same δh. Plot (a) varies the step size parameter h for n= 160 and plot (b) varies the number

of decisions n for h = .5. Figure (c) plots the estimated bias over block sizes for a fixed n = 160 and

step-size h= 2−5. Error bars are 95% confidence intervals computed using 200 trials.

Separable Plug-In. In Fig. 1, we first consider a separable affine plug-in function

Tj(Z) =Zj. We build on our intuition from Section 3.3 that the different step-sizes of one-

shot and multi-shot VGC impacts estimation quality. The first two panels show that multi-

shot VGC has uniformly worse mean-square error than our one-shot variant across different

step-sizes and problems izes. Panel (c) shows that both estimates yield approximately

unbiased estimates, even as the degree of coupling grows. Hence, this difference in MSE is

due to increased variance.

Non-Separable Plug-in. Fig. 2 considers a non-separable affine plug-in Tj(Z) =

0.5Zj + 0.25(Zj−1 + Zj+1), which can be seen as a 1-nearest-neighbor smoothing. In this

case, multi-shot VGC not only exhibits higher variance, but is also biased. Panel (a) shows

the size of the bias increases as the degree of coupling in the feasible region increases. Panel

(b) shows this bias is non-vanishing in n, even for a fixed step-size h. By contrast, bias

(scaled by full information) of the one-shot VGC closely corresponds to the predicted rate

of O(Bh) from Theorem 6.6. Overall, the plots suggest that the bias for the multi-shot

VGC seems scales poorly with B when applied to non-separabe policies.

7.2. Case Study: Prioritizing Speed Hump Requests

Our case study further develops Example 2.1, i.e., prioritizing speed hump requests to

improve traffic safety. We use motor vehicle accident data from the New York Police
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Figure 2 Multi-Shot vs. One-Shot: Non-Separable Policy. The graphs plots the estimates of the bias

of the one-shot VGC (Eq. (11)) and multi-shot VGC (Eq. (10)) for the non-separable plug-in policy

Tj(Z) = 0.5Zj+0.25(Zj−1+Zj+1). Figure (a) increases the size of the blocks (B) for fixed n=KB = 160

and h= 2−5. Figure (b) increases the number of decision variables n for B = 20 and h= 2−5. Error bars

are 95% confidence intervals computed using 200 trials.

Department from 2012-2023 (New York, 2023). Our goal is to identify census tracts that

have the highest incidence of pedestrian injury due to motor vehicle accidents subject to

a budget constraint on the number of tracts that can be serviced in a given year (B).

Notably, our data lack covariate information such as foot and vehicle traffic that are

(intuitively) highly predictive of pedestrian injury rates. Hence, obtaining precise estimates

is difficult or impossible. While one might argue for collecting and integrating these (and

other) useful covariates into the dataset, such integration can be costly, time-consuming,

and may conflict with data-privacy regulations. Our approach instead seeks to identify the

highest quality decisions possible using only the data at hand.

All code and data for these experiments are available on Github4.

Data and Setup. We consider selecting the top 5% of the 2,157 total census tracts in

New York city to prioritize speed hump requests, i.e., B = 107 and n= 2,157.

We let µj represent the expected number of crashes per year with pedestrian, cyclist, or

motorist injuries in census tract j. We model µj = λjpj where λj and pj are the respective

crash rate per year and probability a pedestrian is injured given an accident for census tract

j. As ground truth, we take pj to be the observed pedestrian injury rate for each census

tract across the entire time period covered by the dataset (2012-2023). These ground-truth

values range from 0 to 0.1576 across census tracts. We treat these values as unknown.

4 https://github.com/mh3166/Decision-Aware-Denoising
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Similarly, we take the ground-truth λj to be the observed average number of crashes per

year over the time frame. These values range from 1.4 to 448 across census tracts with an

average of 52 crashes per year. However, we treat these value as known and fixed.

We set Nj to be the number of accidents observed in 2018. To generate our observations,

we let p̂j ∼Binomial(γNj, pj) for γ ∈ {1,2,3,4}. Intuitively, this represents estimating the

pedestrian injury rate based on γ years of historical data. The predicted number of crashes

with injuries is then Zj = λj p̂j/γ. This setup allows us to generate multiple simulation

paths Zj and also vary the amount of historical data available in forming these estimates.

Policy Class. We consider a non-regularized kernel smoother plug-in policy class (Exam-

ple 2.4):

Tj(p̂,W , θ) = λj

n∑
i=1

p̂i
I{∥Wj −Wi∥ ≤ θ}∑n
l=1 I{∥Wj −Wl∥ ≤ θ}

,

where we let the bandwidth θ≥ 0 vary. Here Wj are the longitude and latitude coordinates

of the centroid of census tract j. Our goal is to select θ that maximizes the out-of-sample

performance
∑n

j=1 λjpjxj(p̂,W , θ).

Experiments. We compare decision-aware methods to decision-blind methods for select-

ing θ as we vary the amount of crash data observed (γ).

For decision-aware methods, we compare the multi-shot VGC implementation discussed

in Section 3.3 and the Stein correction from Gupta and Rusmevichientong (2021). All

three approaches estimate the out-of-sample performance of different choices of θ. We

set h= n−1/4 for the one-shot VGC and simulate δh as multivariate Gaussians similar to

Proposition 4.4. The Stein correction and multi-shot VGC also require a choice of h which

we set as h= n−1/6 as recommended. For full implementation details, see Appendix G.1.

For our decision-blind policy, we use a predict-then-optimize policy that chooses the θ

that minimizes (oracle) mean squared error (MSE) of the predicted pedestrians injured.

Using oracle MSE favors the decision-blind by avoiding any noise from misestimating MSE.

Formally, the MSE policy selects

θMSE ∈ argmin
θ≥0

1

n

n∑
j=1

(Tj(p̂,W , θ)−λjpj)
2

Finally, we also benchmark against the oracle θ that optimizes the true out-of-sample

performance for each realization of our data p̂. This oracle represents an upperbound on

achievable performance.
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For ease of comparison, we present performance relative to the full information optimal

performance maxx∈X
∑n

j=1 λjpjxj.

7.3. Case Study Results

Figure 3 plots the estimates of the expected out-of-sample performance of the all the

different methods as we increase the amount of data. We highlight several key observations.

First, we show that decision-aware and decision-blind approaches can both achieve per-

formance comparable to the oracle policy as the data increases. However, our proposed

decision-aware one-shot VGC approach converges faster, showing that it can also perform

well in small-data settings. We also stress that we are using an oracle version of MSE, so

the MSE performance here optimisitc.

Second, we see that among decision-aware approaches, the one-shot VGC also converges

faster to oracle performance. We hypothesize the one-shot VGC converges faster than

the Stein correction due to leveraging the optimization structure more directly. The same

observation was also made in Gupta, Huang, and Rusmevichientong (2022a) with the

multi-shot VGC. For the multi-shot VGC, we see the bias and variance issues discussed in

Section 7.1 directly translate into learning worse policies.

Lifted Optimization Problems. Inspired by Theorem 6.11, we next consider a modi-

fications of the one-shot VGC and multi-shot VGC in which we apply these corrections

to the lifted policy class introduced in Section 6.2. Fig. EC.1 in the appendix provides a

larger plot with all methods for ease of comparison.

As predicted by Theorem 6.11, the “lifted” one-shot VGC performs similarly to the non-

lifted variant. However, we see that the “lifted” multi-shot VGC outperforms its non-lifted

version, achieving performance similar to the Stein correction. This empirical result com-

bined with Proposition B.3 suggest some of the bias of multi-shot VGC from Section 7.1

might be heuristically addressed by “lifting” coupling constraints. While not pursued here,

we conjecture that techniques from Theorem 6.11 and Gupta, Huang, and Rusmevichien-

tong (2022b) might be used to formalize this heuristic.

Advantage of Decision-Aware Approach. In Figure 4, we map the selected census

tracts of the decision-aware one-shot VGC policy and the decision-blind MSE policy. The

map also plots contours of pedestrian injury rates generated from observed crashes. Many

of the census tracts selected by the MSE policy lie on regions where there are multiple
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Figure 3 Performance Results. We compare the estimated expected out-of-sample performance of our method

to various benchmarks and various over 100 trials. The error bars are 95% confidence intervals. The

experiments vary the amount of data available but keep the number of decisions fixed.

Figure 4 Map of Census Tracts Selected. We plot the census tracts selected by the MSE policy and the

one-shot VGC policy for the Manhattan and Brooklyn boroughs of New York City. The contour lines

plot the density of crashes with pedestrian injuries.

contour lines indicating a changing density of crashes with pedestrian injury. By contrast,

the one-shot VGC policy tends to select census tracts in the center of regions with a high

pedestrian injury rate.

To better understand this phenomenon, we plot the distribution of θMSE, θOR and θV GC

(the θ that optimizes our one-shot VGC estimator) in Fig. 5. Note that θOR and θMSE

are quite different. By construction, θMSE is the best possible θ to minimize MSE, not

downstream decision loss. In this example, it systematically over-smooths the data. This
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Figure 5 Amount of Smoothing by Method The figure compares the values of θ chosen by each method.

Across realizations, θMSE tends to oversmooth relative to θOR, particularly as the amount of historical

data grows. By contrast, the one-shot VGC performs less smoothing.

partially explains why it chooses census tracts that cross contour lines – the larger θ

effectively smooths away the differences across the contour. By contrast, the one-shot

VGC selects a θV GC much closer to the oracle value. We see this as strong evidence that

i) Decision-aware approaches are necessary for finding the “right” level of smoothing in

these types of applications, and ii) our one-shot VGC, despite being light-touch, is able to

identify a good level of smoothing.

8. Conclusion

Our paper highlights the benefits of adapting traditional denoising techniques to decision-

making settings. We provide rigorous guarantees of our approach for a wide class of

regurlarized plug-in and non-regularized plug-in policies. Specifically, we provide a general

bound of the error of the approach in terms of the stability of the underlying policies. For

regularized plug-in policies and convex optimization, this approach readily yields strong

guarantees that show the relative error of the method is vanishing as the problem size

increases. We also develop a customized VGC estimator for general affine plug-in poli-

cies for weakly-coupled, potentially non-convex optimization problems. Under somewhat

stronger assumptions, we also show the relative error in these settings vanishes as the

problem size grows.

The fundamental role of stability in these results complements the role of stability in

more traditional generalization guarantees in machine learning. Exploring other aspects of

stability in data-driven optimization is an open area.

Electronic copy available at: https://ssrn.com/abstract=4714305



Gupta, Huang and Rusmevichientong: Decision-Aware Denoising
37

Finally, while our results primarily focus on debiasing policy performance for optimiza-

tion problems with linear objectives, developing similar debiasing techniques for other

structured optimization classes remains an exciting direction for future work.
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Online Appendix: Decision-Aware Denoising

Appendix A: Background Results

Recall, a mean-zero random variable X is subgaussian with variance proxy κ2 if E [exp(λX)] ≤
exp

(
λ2κ2

2

)
. Let f : Rn 7→ R be a function. We say that f is 1-Lipschitz with respect to the c-

weighted ℓ1 norm if

|f(x1, . . . , xn)− f(y1, . . . , yn)| ≤
n∑

i=1

ci |xi − yi| ,

for some c ∈ Rn
+. Kontorovich (2014) proved that such functions applied to subGaussian random

variables concentrate.

Theorem A.1 (Kontrovich 2014) Let X = (X1, . . . ,Xn) be a vector of independent random

variables such that Xi −E [Xi] is subGaussian with variance proxy κ2
i . Suppose f(·) is 1-Lipschitz

with respecct to the c-weighted ℓ1 norm. Then, there exists a universal constant C such that for

any 0< ϵ< 1
2
, with probability at least 1− ϵ,

|f(X)−E [f(X)]| ≤ C

√√√√ n∑
i=1

c2iκ
2
i ·
√

log(2/ϵ).

Remark 1. The original result in Kontorovich, 2014 is stated with respect the sub-Gaussian diam-

eters of the Xi. Note however that if Xi −E [Xi] is sub-Gaussian with variance proxy κ2
i , then Xi

has sub-Gaussian diameter at most a constant times κi.

Appendix B: Section 3 Proofs

B.1. Auxilliary Lemmas

Many of our results leverage that the function V (z, ρ) =minx∈X z⊤x+ ρ
∑n

j=1 ϕ(xj) is Lipschitz.

Lemma B.1 (Lipschitz Bounds on V ) Let V (z, ρ) = minx∈X z⊤x + ρ
∑n

j=1 ϕ(xj) and X ⊆
[0,1]n. Then, the following holds,

i) |V (z, ρ)−V (y, ρ)| ≤ ∥z−y∥1.
ii) |V (z, ρ)−V (z, ρ′)| ≤ nϕmax |ρ− ρ′| , where ϕmax = supx∈[0,1] |ϕ(x)|

Proof of Lemma B.1:

Part i) We first upper-bound the difference. We see,

V (z, ρ)−V (y, ρ) = z⊤x̂(z, ρ)+ ρ
n∑

j=1

ϕ(x̂j(z, ρ))−z⊤x̂(y, ρ)− ρ
n∑

j=1

ϕ(x̂j(y, ρ))︸ ︷︷ ︸
≤0, by optimality of x̂(z,ρ)

+(z−y)
⊤
x̂(y, ρ)

≤ ∥z−y∥1∥x̂(y, ρ)∥∞ ≤ ∥z−y∥1
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where the first inequality holds by Holder’s inequality and the second inequality holds because

∥x̂(y, ρ)∥∞ ≤ 1. By symmetry, this completes the proof of Part i).

Part ii) We apply a similar argument. Letting ϕ(x) =
∑n

j=1 ϕ(xj),

V (z, ρ)−V (z, ρ′) = z⊤x̂(z, ρ)+ ρϕ(x̂(z, ρ))−z⊤x̂(z, ρ′)− ρϕ(x̂(z, ρ′))︸ ︷︷ ︸
≤0, by optimality of x̂(z,ρ)

+(ρ− ρ′)ϕ(x̂(z, ρ′))

≤ |ρ− ρ′|
n∑

j=1

sup
x∈[0,1]

|ϕ(x)| = nϕmax |ρ− ρ′| .

By symmetry, we can also bound V (z, ρ′)−V (z, ρ), completing the proof. □

Since V (·) is 1-Lipschitz relative to ∥·∥1, we can bound the expected error introduced by proxying

ξ by δh in our proof:

Lemma B.2 (Distribution Replication Bound) The following holds,

|E [V (T (Z)+hξ)−V (T (Z)+ δh)]| ≤ W1 (T (Z)+hξ, T (Z)+ δh) .

Proof of Lemma B.2: The result is immediate given Lemma B.1 and integral-probability metric

representation of the Wasserstein distance (Wainwright, 2019, pg. 76).

□

B.2. Proof for Theorem 3.2

We fix θ througout and drop it from the notation. Recall Z = ξ+µ. Let ξ̄ be an i.i.d. copy of ξ.

Let ξk denote the vector ξ with element k replaced with ξ̄k. By the Efron-Stein Inequality,

Var(D(Z))≤ 1

2

n∑
k=1

E
[(
D(ξ+µ)−D(ξk +µ)

)2]
Focusing on the term inside the square, we see∣∣D(ξ+µ)−D(ξk +µ)

∣∣≤ 1

h

∣∣E [V (T (ξ+µ)+ δh)−V (T (ξk +µ)+ δh)
∣∣ξ,ξk

]∣∣
+

1

h

∣∣V (T (ξ+µ))−V (T (ξk +µ))
∣∣

≤ 2

h
∥T (ξ+µ)−T (ξk +µ)∥1

≤ 2

h
CT ∥ξ− ξk∥1

≤ 2

h
CT

∣∣ξk − ξ̄k
∣∣ .

The second inequality holds by Lemma B.1 and the third holds by Assumption 3.1.

Plugging in the upper-bound,

E
[(
D(ξ+µ)−D(ξk +µ)

)2] ≤ E
[
4

h2

∣∣ξk − ξ̄k
∣∣2C2

T

]
≤ 8C2

T

νkh2
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Letting νmin =mink νk, we see,

Var(D(Z)) ≤ 4nC2
T

νminh2

This completes the proof.

B.3. Proof for Theorem 3.4

We leverage Theorem A.1 on the function D(Z). Let Zk be identical to Z except possibly in the

kth component. Following the same steps of the proof of Theorem 3.2, we have∣∣D(Z)−D(Zk)
∣∣≤ 2

h

∣∣Zk − Z̄k

∣∣CT ,

We take ci =
2
h
CT and κ(Zi)≤ κ.

Applying Theorem A.1 yields the result.

B.4. The One Shot and Multi-Shot VGC under Decoupling

In Section 3.3, we showed that in special cases where both corrections apply, the multi-shot VGC

can be seen as a special case of the one-shot VGC. We next show that when the optimization

problem fully decouples, so that x̂j(t,0) only depends on tj but not tk for k ̸= j, for all j, then the

one-shot VGC is equivalent to the multi-shot VGC.

Proposition B.3 (One-Shot vs. Multi-Shot VGC for Decoupled Problems) Suppose

that T (Z, θ̄) = Z + ℓ(θ̄) for some ℓ(·), ρ = 0, and Zj ∼ N (µj,1) for each j (not necessarily

independent). Let δ be any random variable such that δj ∼ N (0, h2 + 2h). Finally, assume that

x̂j(t,0) only depends on tj for each j. Then, the one-shot VGC with stepsize h and perturbation δ

is equivalent ot the multi-shot VGC with step size h.

Proof. We make two observations necessary for the proof: First, since x̂j(t,0) only depends on

tj, x̂j(t,0) = x̂(tjej,0) for each j. Second, V (t+ δjej)− V (t) = (tj + δj)x̂((tj + δj)ej)− tjx̂(tjej)

since all the terms k ̸= j in the two sums are identical and drop out.

Then, starting with the one-shot VGC, and suppressing θ in the notation,

D(Z)≡ 1

h
E [V (Z + ℓ+ δ)−V (Z + ℓ) |Z]

=
1

h

n∑
j=1

E [(Zj + ℓj + δj)x̂j(Z + ℓ+ δ)− (Zj + ℓj)x̂j(Z + ℓ) |Z]

=
1

h

n∑
j=1

E [(Zj + ℓj + δj)x̂j(Z + ℓ+ δjej)− (Zj + ℓj)x̂j(Z + ℓ) |Z]

=
1

h

n∑
j=1

E [V (Z + ℓ+ δjej)−V (Z + ℓ) |Z] ,

where the second-to-last and last equalities use our two observations from the beginning of the

proof. Recognizing the definition of the multi-shot VGC completes the proof. □
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Appendix C: Section 4 Proofs

C.1. Proof for Theorem 4.3

Recall from Eq. (12), the estimation error can be decomposed into the following two components:

sup
θ∈Θ

∣∣Z⊤x(Z,θ)−D(Z,θ)−µ⊤x(Z,θ))
∣∣︸ ︷︷ ︸

Estimation Error

≤ sup
θ∈Θ

∣∣∣∣ξ⊤x(Z,θ)− 1

h

(
V (T (Z, θ̄)+hξ, ρ)−V (T (Z, θ̄), ρ)

)∣∣∣∣︸ ︷︷ ︸
Finite Difference Error

+sup
θ∈Θ

∣∣∣∣1h (V (T (Z, θ̄)+hξ, ρ)−V (T (Z, θ̄), ρ)
)
−D(Z,θ)

∣∣∣∣︸ ︷︷ ︸
Replication Error

.

We bound the finite difference error by solution stability in the main text (c.f. Eq. (13)). Hence,

we focus on on bounding the replication error.

To bound replication error, first note that by definition,∣∣∣∣V (T (Z, θ̄)+hξ, ρ)−V (T (Z, θ̄), ρ)

h
−D(Z,θ, h)

∣∣∣∣= ∣∣∣∣V (T (Z, θ̄)+hξ, ρ)−E[V (T (Z, θ̄)+ δh, ρ)|Z]

h

∣∣∣∣ .
Applying the triangle inequality to the right side for a fixed θ,

Replication Errorθ ≤
∣∣∣∣V (T (Z, θ̄)+hξ, ρ)−E[V (T (Z, θ̄)+hξ, ρ)]

h

∣∣∣∣︸ ︷︷ ︸
(i)

+

∣∣∣∣E[V (T (Z, θ̄)+ δh, ρ)|Z]−E[V (T (Z, θ̄)+ δh, ρ)]

h

∣∣∣∣︸ ︷︷ ︸
(ii)

+

∣∣∣∣E[V (T (Z, θ̄)+ δh, ρ)−V (T (Z, θ̄)+hξ, ρ)]

h

∣∣∣∣︸ ︷︷ ︸
(iii)

Bounding Component (i). We first fix θ= (θ̄, ρ) and prove a point-wise bound. We will apply

Theorem A.1. To that end, define ξk =
(
ξ1, . . . , ξ̄k, . . . , ξn

)⊤
and Zk =

(
Z1, . . . , Z̄k, . . . ,Zn

)⊤
where

ξ̄k and Z̄k are i.i.d. copies of ξk and Zk, respectively. Then,∣∣V (T (Z, θ̄)+hξ, ρ)−V (T (Zk, θ̄)+hξk, ρ)
∣∣ ≤ ∥T (Z, θ̄)+hξ−T (Zk, θ̄)−hξk∥1

≤ (CT (θ̄)+h)∥ξ− ξk∥1

≤ (CT +h)
∣∣ξk − ξ̄k

∣∣ ,
where CT =maxθ̄CT (θ̄). The first inequality follows from Lemma B.1 and the second inequality

follows from Assumption 3.1. Since ξk are sub-Gaussian, we can then apply Theorem A.1 with

ck =CT +h to show the following holds with probability at least 1− ϵ,∣∣V (T (Z, θ̄)+hξ, ρ)−E[V (T (Z, θ̄)+hξ, ρ)]
∣∣≤C · (CT +h)κ

√
n log

(
2

ϵ

)
(20)
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for a fixed θ and universal constant C.

Now consider the covering Θ0(ε). Letting θ0 be the element in Θ0(n
−1/2) closest to θ, we have

that for any th ∈Rn,∣∣V (T (Z, θ̄)+ th, ρ)−E[V (T (Z, θ̄)+ th, ρ)]
∣∣

≤ sup
θ∈Θ0(n

−1/2)

∣∣V (T (Z, θ̄)+ th, ρ)−E[V (T (Z, θ̄)+ th, ρ)]
∣∣ (21a)

+
∣∣V (T (Z, θ̄)+ th, ρ)−V (T (Z, θ̄0)+ th, ρ0)

∣∣ (21b)

+
∣∣E[V (T (Z, θ̄)+ th, ρ)−V (T (Z, θ̄0)+ th, ρ0)]

∣∣ . (21c)

Equation (20) and the union bound show that for th = hξ that with probability at least 1− ϵ

Eq. (21a)≤C(CT +h) ·κ

√
n log (|Θ0 (n−1/2) |) log

(
2

ϵ

)
,

where |Θ0(n
−1/2)| is the cardinality of Θ0(n

−1/2).

To bound Eq. (21b), recall that θ= (θ̄, ρ) and θ0 = (θ̄0, ρ0), so with probability at least 1− ϵ,∣∣V (T (Z, θ̄)+ th, ρ)−V (T (Z, θ̄0)+ th, ρ0)
∣∣≤ ∣∣V (T (Z, θ̄)+ th, ρ)−V (T (Z, θ̄0)+ th, ρ)

∣∣
+
∣∣V (T (Z, θ̄0)+ th, ρ)−V (T (Z, θ̄0)+ th, ρ0)

∣∣
(a)

≤ ∥T (Z, θ̄)−T (Z, θ̄0)∥1 + nϕmax |ρ− ρ0|
(b)

≤ n−1/2C (∥Z∥1 +1)+n−1/2 ·nϕmax

(c)

≤ C√
n

(
κ

√
n log

(
1

ϵ

)
+n

(
ν
−1/2
min + ∥µ∥∞ +ϕmax

)
+1

)
(d)

≤ C1κ

√
n log

(
1

ϵ

)
where ϕmax =maxx∈[0,1] ϕ(x) and C1 = 4C

(
ν
1/2
min + ∥µ∥∞ +ϕmax +1

)
. We see (a) holds by the Lips-

chitz results of V in Lemma B.1, (b) holds by applying Assumption 4.2 with ϵ= n−1/2 and universal

constant C ≥ 1, (c) holds since C ≥ 1 and

∥Z∥1 ≤ ∥ξ∥1 + ∥µ∥1 ≤ (∥ξ∥1 −E∥ξ∥1)+E∥ξ∥1 +n∥µ∥∞ ≤ κ

√
n log

(
1

ϵ

)
+nν

1/2
min +n∥µ∥∞

where the last inequality applies Theorem A.1 to ∥ξ∥1 − E∥ξ∥1 with cj = 1 for all j and that

E|ξj| ≤E
∣∣∣√ξ2j ∣∣∣≤√Eξ2j ≤ ν

−1/2
min . For the former, we see cj = 1 since ∥ξ−ξk∥1 =

∣∣ξk − ξ̄k
∣∣. Inequality

(d) holds for ϵ < 1/e and noting a+ b≤ 2ab for a≥ 1, b≥ 1.

A similar argument can be applied to bound Eq. (21c),

E
∣∣V (T (Z, θ̄)+ th, ρ)−V (T (Z, θ̄0)+ th, ρ0)

∣∣≤ E
[
n−1/2CΘ (∥Z∥1 +1)+n−1/2 ·nϕmax

]
≤ CΘn

−1/2
(
nν

1/2
min +n∥µ∥∞ +nϕmax +1

)
≤ C1κ

√
n
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Combining Eq. (21a), Eq. (21b), and Eq. (21c), collecting terms and applying a supremum over

θ, we have for some universal constant C,

(i) ≤ C
C1(CT +h)κ

h

√
n · log (|Θ0 (n−1/2)|) · log

(
2

ϵ

)
Bounding Component (ii). We can make an argument similar to (i). By Jensen’s inequality,

sup
θ∈Θ

∣∣E[V (T (Z, θ̄)+ δh, ρ)|Z]−E[V (T (Z, θ̄)+ δh, ρ)]
∣∣

= sup
θ∈Θ

∣∣E [V (T (Z, θ̄)+ δh, ρ)−E
[
V (T (Z, θ̄)+ δh, ρ)

∣∣δh]∣∣Z]∣∣
≤ E

[
sup
θ∈Θ

∣∣V (T (Z, θ̄)+ δh, ρ)−E
[
V (T (Z, θ̄)+ δh, ρ)

∣∣δh]∣∣∣∣∣∣Z]
We then bound the term inside the expectation. For a fixed δh, we apply the bounds to Eq. (21)

for th = δh. We only need to adjust the bound to Eq. (21a) since it depends on the choice th. Note

that,

∣∣E [V (T (Z, θ̄)+ δh, ρ)
∣∣Z]−E

[
V (T (Zk, θ̄)+ δh, ρ)

∣∣Zk
]∣∣ ≤ ∥E

[
T (Z, θ̄)+ δh −T (Zk, θ̄)− δh

∣∣Z, Z̄k

]
∥1

≤ CT (θ̄)∥ξ− ξk∥1

≤ CT

∣∣ξk − ξ̄k
∣∣ ,

Thus, for th = δh and applying Theorem A.1 with ck =CT , we have

Eq. (21a)≤CCT ·κ

√
n log (|Θ0 (n−1/2) |) log

(
2

ϵ

)
.

Since the bounds for Eq. (21b) and Eq. (21c) do not depend on th, we have

(ii) ≤ C
C1CTκ

h

√
n · log (|Θ0 (n−1/2)|) · log

(
2

ϵ

)
Bounding Component (iii). Component (iii) is bounded by Lemma B.2.

Combining (i), (ii), and (iii), we prove the result.

C.2. Proof for Proposition 4.4.

First observe that since h> 0 and L(θ̄)Σ+ΣL(θ̄)⊤ is positive semidefinite, the matrix h(L(θ̄)Σ+

ΣL(θ̄)⊤)+h2Σ) is also positive semidefinite and δh is well-defined.

Since the sum of two multivariate Gaussians is also a multivariate Gaussian, we see both

T (Z, θ̄) + hξ and T (Z, θ̄) + δh are distributed as N (µ, (L + hI)Σ(L + hI)⊤). Thus, their 1-

Wasserstein distance is 0.
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Appendix D: Continuous Policy Proofs

D.1. Proof for Lemma 5.1

We first establish the following well-known result:

Lemma D.1 (Regularized Plug-in Policies are ρ-Lipschitz) When X is convex and ρ > 0,

∥x̂(t, ρ)− x̂(t′, ρ)∥ ≤ 1
ρ
∥t− t′∥∗, where ∥ · ∥∗ is the dual norm of ∥ · ∥.

Proof. Let hρ(x, t)≡
∑n

j=1 tjxj + ρϕ(xj). Since hρ(x, t) is strongly convex over X and by the

optimality of x̂(t, ρ) and x̂(y, ρ), we see

hρ(x̂(t, ρ),y)−hρ(x̂(y, ρ),y)≥
ρ

2
∥x̂(t, ρ)− x̂(y, ρ)∥2

hρ(x̂(y, ρ), t)−hρ(x̂(t, ρ), t)≥
ρ

2
∥x̂(t, ρ)− x̂(y, ρ)∥2

Adding the two inequalities, we see

ρ∥x̂(t, ρ)− x̂(y, ρ)∥2 ≤ hρ(x̂(t, ρ),y)−hρ(x̂(y, ρ),y)+hρ(x(y, ρ), t)−hρ(x(z, ρ), t)

=
n∑

j=1

yj(x̂j(t, ρ)− x̂j(y, ρ))+ tj(x̂j(y, ρ)− x̂j(t, ρ))

=
n∑

j=1

(yj − tj) (x̂j(t, ρ)− x̂j(y, ρ))

≤ ∥y− t∥∗ ∥x̂(t, ρ)− x̂(y, ρ)∥ ,

where the last line holds by Holder’s inequality. Rearranging, we get our intended result.

We can now simply prove Lemma 5.1.

Proof of Lemma 5.1. The result follows directly from Cauchy-Schwarz since

SS(ξ, h,θ) ≤ ∥ξ∥∗∥x̂(T (Z, θ̄), ρ)− x̂(T (Z, θ̄)+hξ, ρ)∥ ≤ h

ρ
∥ξ∥2∗.

D.2. Proof for Theorem 5.2

The proof is immediate from combining Theorem 4.3 and Lemma 5.1 and collecting constants.

D.2.1. Proof Corollary 5.3.

Proof. First consider the case where ϕ(·) is 1-strongly convex with respect to ∥ · ∥1. To form

a more explicit bound on the solution stability, we analyze ∥ξ∥2∗ = ∥ξ∥2∞. Since ξ is mean-zero,

∥ξ∥∞ = ∥ξ − E [ξ]∥∞,. Furthermore, since ξj − E [ξj] is sub-Gaussian with variance proxy κ2, we

have that with probability at least 1− ϵ, there exists an absolute constant C1 such that

|ξj −E [ξj]| ≤C1κ
√
log(n/ϵ)≤C1κ

√
logn log(1/ϵ),
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simultaneously for all j. Hence, with probability at least 1− ϵ,

∥ξ∥2∞ ≤C2
1κ

2 logn log(1/ϵ).

Next, we substitute this bound into Theorem 5.2 and optimize the choice of h. Recall, by

assumption the Wasserstein contribution is zero. Hence, the terms depending on h are (neglecting

constants)
h

ρmin

logn+
CT

h

√
n logn.

Choosing h= ρ
1/2
minn

1/4 optimizes this quantity (up to logarithmic factors). Substituting back into

the bound and collecting constants proves the first part of the corollary.

We next consider the case that ϕ(·) is 1-strongly convex with respect to ∥ · ∥2. To bound solution

stability more explicitly, we bound ∥ξ∥2∗ = ∥ξ∥22 =
∑n

j=1 ξ
2
j . Since ξj is sub-Gaussian with parameter

κ, Vershynin, 2018, Lemma 2.7.6 shows that there exists an absolute constant C1 such that that

∥ξ2j ∥Ψ1
≤ C1κ

2. (Recall, for any random variable Y , ∥Y ∥Ψ1
≡ inf{t > 0 : E [exp(|Y |/t)] ≤ 2}, c.f.,

Vershynin (2018, pg. 31).) Hence, by the triangle inequality, ∥
∑n

j=1 ξ
2
j ∥Ψ1

≤ C1nκ
2. Finally, by

Markov’s Inequality, with probability at least 1− ϵ,
∑n

j=1 ξ
2
j ≤ C2nκ

2 log(1/ϵ), for some absolute

constant C2.

Next we plug this upper bound into Theorem 5.2 and optimize the choie of h. Again, the

Wasserstein contribution is zero. Neglecting constants, the remaining terms are

h

ρmin

n+
CT

h

√
n logn.

Choosing h= ρ
1/2
minn

−1/4 optimizes the boudn up to logarithmic factors. Substituting in and collect-

ing terms completes the proof. □

D.3. Proof of Theorem 5.6.

Proof of Lemma 5.5. By Cauchy-Schwarz,

|SS(ξ, h,θ)| ≤ ∥ξ∥∗∥x̂(T (Z, θ̄),0)− x̂(T (Z, θ̄)+hξ,0)∥∗

≤ 2h∥ξ∥2∗∥
α
(
∥T (Z, θ̄)∥∗ + ∥T (Z, θ̄)+hξ∥∗

)
≤ 2h∥ξ∥2∗∥

α∥T (Z, θ̄)∥∗

This completes the proof. □

Proof of Theorem 5.6. The proof follows from substituting Lemma 5.5 into Theorem 4.3 and

collecting terms. □
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Appendix E: Proofs and Additional Materials for Block Decoupled Problems

E.1. What are typical values of Tmax and Xmax?

In this subsection, we revisit some examples from Section 2.3 to provide explicit bounds on the

constants Tmax and Xmax.

Example E.1 (Clustering Revisited) Recall our clustering based policy class from Exam-

ple 2.7. Let xCL(Z, θ̄) be the resulting policy when clustering into θ̄ clusters. We form a policy

class by allowing the number of clusters to vary between θ̄min and θ̄max.

Then, Tmax corresponds to the size of the largest cluster. Hence, if θ̄min =O(n), i.e., we only want

to average over “local” neighborhoods, then Tmax = O(1). Furthermore, the number of possible

policies Xmax is bounded by the number of possible clusterings θ̄max− θ̄min which is in turn at most

n. Hence, in the typical case where Smax = 1 and we constrain θ̄min =O(n), Corollary 6.7 bounds

the error by a term of size Õp(n
3/4).

In the previous example, Θ is finite, since we can have at most n clusters. We next provide an

example where Θ is not finite, but the induced set of plug-in policies is finite.

Example E.2 (Kernel Smoothers Revisited) Consider the kernel regression policy from

Example 2.4 with the box-kernel with bandwidth θ̄, i.e., Kθ̄(Wj,Wk) = I
{
∥Wj −Wk∥ ≤ θ̄

}
. Let

xKR(Z, θ̄) be the corresponding plug-in policy. Consider the policy class XKR(Z) = {xKR(Z, θ̄) :

0≤ θ̄≤ θ̄max}.
Then,

Tmax =max
j

n∑
i=1

max
θ̄∈[0,θ̄max]

I{Kθ̄ (Wj,Wi) ̸= 0}=max
j

n∑
i=1

I
{
∥Wj −Wi∥ ≤ θ̄max

}
,

which decreases with θ̄max. In other words, for small enough θ̄max, i.e., “local”, neighborhoods, Tmax

can be made O(1).

That said, [0, θ̄] is an infinite set. However, the set of kernel weights induced by θ ∈ [0, θ̄] is

finite. Namely, partition the real number line at the O(n2) points ∥Wi−Wj∥. Then, for any θ1, θ2
in the same interval, Kθ1(Wi,Wj) =Kθ2(Wi,Wj). Letting T KR

Θ (Z) = {TKR(Z, θ) : θ ∈Θ}, we see

|T KR
Θ (Z)| ≤ n(n+1)/2+1 by counting the number of intervals. We can then bound Xmax as follows,

|XKR
Θ (Z)|= |

{
x̂(t) : t∈ T KR

Θ (Z)
}
| ≤ |T KR

Θ (Z)| ≤ n(n+1)

2
+1.

In settings where neither Θ or TΘ(Z) are finite, Gupta, Huang, and Rusmevichientong (2022a)

describe how to bound Xmax under a general assumption on the plug-in class. Roughly, they show

that ∥XΘ(Z)∥ = O(ndim(Θ)) for separable affine plug-in classes, or in words, they show Xmax is

polynomial in n if the dimension of θ ∈Θ is fixed. Similar techniques can be applied to bound the

affine plug-ins considered in our paper. We omit the details.
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E.2. Proof for Bounding Solution Stability, Lemma 6.5

We bound the solution stability by decomposing it into the following components,

sup
θ∈Θ

∣∣∣ξ⊤
(
x̂
(
T (Z, θ̄)

)
− x̂

(
T (Z, θ̄)+hξ

))∣∣∣
≤ sup

θ̄∈Θ

∣∣∣E[ξ⊤
(
x̂
(
T (Z, θ̄)

)
− x̂

(
T (Z, θ̄)+hξ

))]∣∣∣
+ sup

θ∈Θ

∣∣ξ⊤x̂
(
T (Z, θ̄)

)
−E

[
ξ⊤x

(
T (Z, θ̄)

)]∣∣
+ sup

θ∈Θ

∣∣ξ⊤x̂
(
T (Z, θ̄)+hξ

)
−E

[
ξ⊤x̂

(
T (Z, θ̄)+hξ

)]∣∣
≤ sup

θ∈Θ

∣∣∣E[ξ⊤
(
x̂
(
T (Z, θ̄)

)
− x̂

(
T (Z, θ̄)+hξ

))]∣∣∣ (22a)

+2 sup
θ∈Θ

h′∈{0,h}

∣∣ξ⊤x̂
(
T (Z, θ̄)+h′ξ

)
−E

[
ξ⊤x̂

(
T (Z, θ̄)+h′ξ

)]∣∣ (22b)

We bound Eq. (22a) in Lemma E.3 and bound Eq. (22b) by invoking Lemma E.5 with κ =

1/
√
νmin and using the crude bound on the chromatic number given after the theorem. Combining

the two bounds gives us our bound on the solution stability.

E.3. Bound on Eq. (22a)

Lemma E.3 (Expected Solution Stability) Suppose Assumptions 6.2 to 6.4 hold. Then, for

any 0≤ h≤ S−1
max, there exists a constant C (depending on νmin, νmax, σmin) such that,

sup
θ̄∈Θ̄

∣∣∣E[ξ⊤
(
x̂
(
T (Z, θ̄)

)
− x̂

(
T (Z, θ̄)+hξ

))]∣∣∣ ≤ CSmaxnh

√
log

(
1

h

)
Proof for Lemma E.3. Fix θ̄ and suppress it in the notation. Rewrite the argument of the

supremum as a sum over blocks Sk:∣∣∣∣∣
K∑

k=1

E
[(
ξk
)⊤ (

x̂k
(
T (Z)

)
− x̂k

(
T (Z)+hξ

))]∣∣∣∣∣
=

∣∣∣∣∣
K∑

k=1

E
[(
ξk
)⊤ (

x̂k
(
T k(Z)

)
− x̂k

(
T k(Z)+hξk

))]∣∣∣∣∣
=

∣∣∣∣∣
K∑

k=1

E
[
E
[(

ξk
)⊤ (

x̂k
(
T k(Z)

)
− x̂k

(
T k(Z)+hξk

))∣∣∣Zk

]]∣∣∣∣∣
where Zk ∈ Rn−|Sk| correspond to the components of Z not in Sk. The first equality holds since

the kth block only depends on the objective cost components in the kth block and the second by

law of iterated expectations.

We now focus on bounding the conditional expectation

E
[(

ξk
)⊤ (

x̂k
(
T k(Z)

)
− x̂k

(
T k(Z)+hξk

))∣∣∣Zk

]
(23)
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for a fixed k. We first note

T k(Z) = ek ◦ (LZ + l) =LkZk +LkZk + lk =Lkξk +Lkµk +LkZk + lk

where ek is a vector where component j is 1 if j ∈ Sk and 0 otherwise. The matrix Lk ∈R|Sk|×|Sk|

is the square submatrix induced by the rows and columns in Sk. (Recall, this matrix is invertible

by Assumption 6.3.) The matrix Lk ∈R|Sk|×(n−|Sk|) is the matrix with rows corresponding Sk and

columns corresponding to Sc
k. We then fix a k and Zk, and temporarily suppress k in the notation.

We define y0 =Lξ, yh =Lξ+ hξ and g(y) = x̂(y+Lµ+LZ + l) ∈R|Sk|. Then, the conditional

expectation Eq. (23) is∣∣∣E[(L−1y0

)⊤
g(y0)

]
−E

[(
(L+hI)−1yh

)⊤
g(yh)

]∣∣∣
≤
∣∣∣E[((L−1 − (L+hI)−1

)
yh

)⊤
g(yh)

]∣∣∣︸ ︷︷ ︸
Term (i)

+
∣∣∣E[(L−1y0

)⊤
g(y0)

]
−E

[(
L−1yh

)⊤
g(yh)

]∣∣∣︸ ︷︷ ︸
Term (ii)

Bounding Term (i)

Since ∥g(y)∥∞ ≤ 1, we have that∣∣∣[((L−1 − (L+hI)−1
)
yh

)⊤
g(yh)

]∣∣∣≤ ∥
(
L−1 − (L+hI)−1

)
yh∥1 = h∥L−1ξ∥1

≤ h
√

|Sk|∥L−1ξ∥2 ≤
h
√

|Sk|
σmin

∥ξ∥2

where last inequality holds by definition of the operator norm on the matrix L−1.

Hence, we have∣∣∣E[((L−1 − (L+hI)−1
)
yh

)⊤
g(yh)

]∣∣∣≤ h
√

|Sk|
σmin

E [∥ξ∥2]≤
h|Sk|

σmin
√
νmin

Bounding Term (ii)

To bound the second term, we would like to appeal to a total variation argument, however the

terms in the expectation are not bounded. We thus consider truncating the terms at U (a constant

we will determine later).∣∣∣E[(L−1y0

)⊤
g(y0)

]
−E

[(
L−1yh

)⊤
g(yh)

]∣∣∣
≤
∣∣∣E[(L−1yh

)⊤
g(yh)I

{
∥L−1yh∥1 >U

}]∣∣∣ (24a)

+
∣∣∣E[(L−1y0

)⊤
g(y0)I

{
∥L−1y0∥1 >U

}]∣∣∣ (24b)

+
∣∣∣E[(L−1y0

)⊤
g(y0)I

{
∥L−1y0∥1 ≤U

}]
−E

[(
L−1yh

)⊤
g(yh)I

{
∥L−1yh∥1 ≤U

}]∣∣∣ (24c)

We first bound Eq. (24a). By Holder’s inequality, we have∣∣∣E[(L−1yh

)⊤
g(yh)I

{
∥L−1yh∥1 >U

}]∣∣∣≤E
[((

L−1yh

)⊤
g(yh)

)2
]1/2

P
{
∥L−1yh∥1 >U

}1/2
(25)
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after observing E
[
I{∥L−1yh∥1 >U}2

]1/2
= P{∥L−1yh∥1 >U}1/2.

To bound Eq. (25), we first bound the term inside the expectation. Applying Holder’s inequality

again shows ((
L−1yh

)⊤
g(yh)

)2

≤ ∥L−1yh∥21∥g(yh)∥2∞ ≤ ∥L−1yh∥21,

where the second holds since ∥g(yh)∥∞ ≤ 1. For 0≤ h≤ 1 and σmin ≤ 1, the last term can be further

bounded as follows,

∥L−1yh∥21 = ∥L−1 (L+hI)ξ∥21

≤ 2∥ξ∥21 +2h2∥L−1ξ∥21 (Triangle Inequality and (a+ b)2 ≤ 2a2 +2b2)

≤ 2|Sk|∥ξ∥22 +2|Sk|h2∥L−1ξ∥22

≤ 2|Sk|∥ξ∥22 +
2|Sk|h2

σ2
min

∥ξ∥22

≤ 4|Sk|
σ2
min

∥ξ∥22, (since σmin ≤ 1, h≤ 1).

Applying this bound to the the probability term as well, we have

P
{
∥L−1yh∥1 >U

}1/2 ≤ P

{
2
√

|Sk|
σmin

∥ξ∥2 >U

}1/2

= P

{
∥ξ∥2 >

σminU

2
√

|Sk|

}1/2

.

We can then bound the probability as follows,

P

{
∥ξ∥2 >

σminU

2
√

|Sk|

}
= P

{
∥ξ∥22 >

σ2
minU

2

4|Sk|

}
≤ 2exp

(
−σ2

minνminU
2

C1|Sk|2

)
for some absolute constant C1. The inequality holds by first noting ∥ξ∥2−E [∥ξ∥2] is sub-Gaussian

with variance proxy O(
√
2|Sk|/νmin) by Gupta and Rusmevichientong (2021, Lemma A.1). Then,

via Vershynin (2018, Lemma 2.7.6), this implies ∥ξ∥22 is sub-exponential satisfying

P
{
∥ξ∥22 > t

}
≤ 2exp

(
−tνmin

C1|Sk|

)
for some absolute constant C1.

Plugging in our bounds to Eq. (25), we have

Eq. (24a)≤E
[
4|Sk|
σ2
min

∥ξ∥22
]1/2

P

{
∥ξ∥2 >

σminU

2
√

|Sk|

}1/2

≤ 2
√
2|Sk|

σmin
√
νmin

exp

(
−σ2

minνminU
2

C2|Sk|2

)1/2

,

for some absolute constant C2.

To bound Eq. (24b), we can repeat the same argument but take h= 0 throughout. Consequently,

Eq. (24b) ≤ 2|Sk|
σmin

√
νmin

exp

(
−σ2

minνminU
2

C2|Sk|2

)1/2

.
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Combining the two bounds, we have for σmin ≤ 1 and 0≤ h≤ 1,

Eq. (24a)+Eq. (24b)≤ 5|Sk|
σmin

√
νmin

exp

(
−σ2

minνminU
2

C2|Sk|2

)1/2

.

Finally, we bound Eq. (24c) using a Total Variation argument. We first note the function y 7→
(L−1y)

⊤
g(y) is bounded by U for all y as∣∣∣(L−1y

)⊤
g(y)I

{
∥L−1yh∥1 ≤U

}∣∣∣ ≤ I
{
∥L−1yh∥1 ≤U

}
∥L−1y∥1∥g(y)∥∞ ≤ U.

Thus, we have

Eq. (24c) ≤ U ·TV(y0,yh),

where TV(y0,yh) is the total variation distance between y0 and yh. By Lemma E.4 (c.f. Remark 2,

this term is at most U ·C3|Sk|h for the constant C3 described in the lemma.

Putting it all together in Eq. (24), we have

Term (ii) ≤ UC4|Sk|h+C4|Sk| exp
(

−U 2

C4|Sk|2

)1/2

.

for some constant C4 (depending on νmin, νmax, σmin). Choosing U =C4 |Sk|
√
logh−2 and collecting

constants shows

Term (ii) ≤ C5

√
log(1/h) |Sk|2 h+C5 |Sk|h ≤ C5 |Sk|2 h

√
log(1/h), ,

for some C5 (depending on νmin, νmax, σmin).

Combining Term (i) and Term (ii) and summing across k, we have

K∑
k=1

C6h|Sk|+C6|Sk|2h

√
log

(
1

h

)
≤ 2C6Smaxnh

√
log

(
1

h

)
,

for a constant C6. This completes the proof.

□

The next lemma bounds the total variation distance between two random variables of interest.

When we invoke the lemma, the role of L will be played by Lk. We phrase the lemma with out

this k notation for simplicity.

Lemma E.4 (Bound on TV distance) Assume L−1 exists for L∈Rd×d. Let

ξ∼N (0,Σ), Σ=diag
(
(1/νj)

d
j=1

)
, y0 =Lξ, yh = (L+hI)ξ.

Suppose the matrix LΣ+ΣL⊤ is positive semi-definite. Then, for 0≤ h≤ 1, there exists a constant

C (depending on σmin, νmin, νmax) such that

TV (y0,yh) ≤ Cdh,

where νmin =mini νi, νmax =maxi νi, and σmin =min{1, σd(L)} bounds the smallest singular value

of L.
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Proof for Lemma E.4. Let

Σ0 =LΣL⊤, Σh = (L+hI)Σ(L+hI)⊤,

and λi be the eigvenvalues of Σ−1
0 Σh − I. Since y0 and yh are multivariate Gaussians, Devroye,

Mehrabian, and Reddad (2018, Theorem 1.1) proves that

TV (y0,yh)≤

√√√√ d∑
i=1

λ2
i .

To bound the right side, we will first argue that λi ≥ 0 for all i. Write Σ−1
0 Σh−I =Σ−1

0 (Σh−Σ0).

Notice Σh − Σ0 = h(LΣ + ΣL⊤) + h2Σ is the sum of two positive semidefinite matrices, and

hence positive semidefinite. It is also symmetric. On the other hand, Σ−1
0 is symmetric and posi-

tive semidefinite. Finally, the product of two positive semidefinite, symmetric matrices is positive

semidefinite. This proves that λi ≥ 0 for each i.

We next bound the summation inside the square root by first observing,

0 ≤
d∑

i=1

λ2
i ≤

(
d∑

i=1

λi

)2

(since λi ≥ 0)

= tr
(
Σ−1

0 (Σh −Σ0)
)2
.

Since Σ−1
0 (Σh −Σ0) =Σ−1

0 (hLΣ+hΣL⊤ +h2Σ), we have

tr
(
Σ−1

0 (Σh −Σ0)
)
= tr

(
hΣ−1

0 LΣ
)
+tr

(
hΣ−1

0 ΣL⊤)+tr
(
h2Σ−1

0 Σ
)

= h · tr
(
(L⊤)−1Σ−1L−1LΣ

)
+h · tr

(
(L⊤)−1Σ−1L−1ΣL⊤)

+h2 · tr
(
(L⊤)−1Σ−1L−1Σ

)
= h · tr

(
(L⊤)−1

)
+h · tr

(
L−1

)
+h2 · tr

(
(L⊤)−1Σ−1L−1Σ

)
where the first equality holds since the trace is a linear mapping, the second equality holds by

plugging in the definition of Σ0, the third equality holds by applying the cyclic property of the

trace.

Next, note that multiplying by Σ or Σ−1 scales the diagonals by at most 1/νmin or νmax, respec-

tively. Hence,

tr
(
(L⊤)−1Σ−1L−1Σ

)
≤ tr ((L⊤)−1Σ−1L−1)

νmin

=
tr (L−1(L⊤)−1Σ−1)

νmin

≤ νmax

νmin

tr
(
(L⊤L)−1

)
.

Thus,

tr
(
Σ−1

0 (Σh −Σ0)
)
≤ 2h ·

∣∣tr (L−1
)∣∣+ h2νmax

νmin

· tr
(
(L⊤L)−1

)
.
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We can further bound

tr
(
(L⊤L)−1

)
=

d∑
i=1

1

σ2
i

≤ d

σ2
min

since the trace is the sum of the squared singular values of L−1 which are inverse of the singular

values of L.

Lastly, we bound |tr(L−1)|. Letting λL
j be the eigenvalues of L, we see

∣∣tr(L−1)
∣∣ =

∣∣∣∣∣
d∑

j=1

1

λL
j

∣∣∣∣∣ ≤ d

σmin

where λL
min =minj λ|λL

j |. The first equality holds by definition of trace and noting the eigenvalues

of L−1 are the inverses the eigenvalues of L. The last inequality holds since σmin ≤
∣∣λL

j

∣∣ for all j.
In summary, we have shown

TV (y0,yh) ≤
2hd

σmin

+
h2dνmax

νminσ2
min

≤ dh

(
2

σmin

+
2νmax

νminσ2
min

)
This completes the proof. □

Remark 2 (Applying Lemma E.4). We observe that under Assumptions 6.2 to 6.4, to the ran-

dom variables induced by Sk, i.e., that

TV(Lkξk, (Lk +hI)ξk) ≤C |Sk|h.

To do so, we simply verify the assumptions of the lemma. The matrix Lk is invertible by Assump-

tion 6.3. By Assumption 6.4, the matrix LΣ +ΣL⊤ ∈ Rn×n is positive semidefinite. We claim

that this implies that LkΣk +Σk(Lk)⊤ ∈R|Sk|×|Sk| is also positive semidefinite, Σk is the diagonal

covariance matrix of ξk. To see this, observe that the ijth component of LΣ can be written as

Lijσj since Σ is a diagonal matrix. Consequently, LkΣk is a principle submatrix of LΣ. Similarly,

we see Σk(Lk)⊤ is a principle submatrix of ΣL⊤. Thus, LkΣk +Σk(Lk)⊤ is a principle submatrix

of LΣ+ΣL⊤. Finally, the principle sub-matrices of a positive semidefinite matrix are also positive

semidefinite. Thus, under Assumptions 6.2 to 6.4, we can apply the lemma to the subcomponents

pertaining to Sk.

E.4. Bound on Eq. (22b)

To bound Eq. (22b) for block decoupled problems (i.e., Problem (14) with m = 0 and |X0| = 0),

the primary challenge is that for k ̸= k̄, even though ξk and ξk̄ are independent, it may still be

that x̂k(T (Z, θ̄)) and x̂k̄(T (Z, θ̄)) are correlated, since L(θ̄) may smooth across subproblems.

Hence, we cannot treat
∑K

k=1 ξ
k⊤x̂k(T (Z, θ̄)−E

[
ξk⊤x̂k(T (Z, θ̄)

]
as a sum of independent random

variables.
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To circumvent this issue, we will identify groups of subproblems such that subproblems in the

same group are independent. We construct these groups by looking at the coloring of a particular

graph. We will then sum over subproblems of a particular color (which will be independent by

construction), and use a union bound over the colors.

To that end, we introduce the block graph G(V,E). The vertex V = {0, . . . ,K} corresponds to

our disjoint partition {S0, . . . , SK}. An edge e(k, k̄) exists between vertices k and k̄ if there exists

i ∈ Sk, j ∈ Sk̄, l ∈ {1, . . . , n}, and θ̄ ∈ Θ̄ such that Lil(θ̄) ̸= 0 and Ljl(θ̄) ̸= 0. In words, this means

that Ti(Z, θ̄) and Tj(Z, θ̄) both depend on ξl, despite i and j belonging to different subproblems.

Let χ(G) be the chromatic number of G(V,E) and fix a vertex coloring for the graph. We claim

that if k ̸= k̄ have the same color, then ξk⊤x̂k(T (Z,θ)) and ξk⊤x̂k(T (Z,θ)) must be independent.

Indeed, suppose this was not the case. Then, there must exist an i ∈ Sk and a j ∈ Sk̄ such that

Ti(Z, θ̄) and Tj(Z, θ̄) both depend on some component ξl, which suggests e(k, k̄) is present, and

hence k and k̄ cannot be the same color. This is a contradiction.

Let R1, . . . ,Rχ(G) be the partition of V corresponding to the different colors. Using this par-

tition, we prove the following result under the weaker Assumption 3.3 rather than the stronger

Assumption 6.4 assumed in Theorem 6.6.

Lemma E.5 (Convergence of Solution Stability to Expectation) Suppose Assumption 3.3

holds. Then, there exists a constant C such that with probability at least 1− ϵ,

sup
θ̄∈Θ̄

h′∈{0,h}

∣∣∣ξ⊤x̂
(
T (Z, θ̄)+h′ξ

)
−E

[
ξ⊤x̂

(
T (Z, θ̄)+h′ξ

)]∣∣∣
≤ CκSmax

√
χ(G)n log(Xmax) log (χ(G)) log(1/ϵ).

Proof for Lemma E.5. We first decompose Eq. (22b) into the sets determined by the vertex

coloring as follows,

sup
θ̄∈Θ̄

h′∈{0,h}

∣∣ξ⊤x̂
(
T (Z, θ̄)+h′ξ

)
−E

[
ξ⊤x̂

(
T (Z, θ̄)+h′ξ

)]∣∣
≤

χ(G)∑
l=1

sup
θ̄∈Θ̄

h′∈{0,h}

∑
k∈Rl

(ξk)⊤x̂k
(
T (Z, θ̄)+h′ξ

)
−E

[
(ξk)⊤x̂k

(
T (Z, θ̄)+h′ξ

)]
.

We bound each term of the outer summation using Theorem A.1 of Gupta, Huang, and Rus-

mevichientong (2022a) since fk(Z, θ̄, h
′) = (ξk)⊤x̂k

(
T (Z, θ̄)+h′ξ

)
for k ∈ Rl are independent.

Fixing an l, we take

F (Z) =
(
∥ξk∥1

)
k∈Rl

∈R|Rl|
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We can bound the Orlicz norm as follows,

∥∥F (Z)∥2∥Ψ ≤
∥∥∥√Smax∥(ξk)k∈Rl

∥2
∥∥∥
Ψ
≤
√
Smaxκ

√
2Smax|Rl|= Smaxκ

√
2|Rl|

where the first inequality holds by noting ∥ξk∥1 ≤
√
Smax∥ξk∥2 and the second inequality holds by

Gupta and Rusmevichientong (2021, Lemma A.1).

Note that ∣∣∣{((ξk)⊤x̂k (T (Z,θ)+h′ξ)
)
k∈Rl

: θ̄ ∈ Θ̄, h′ ∈ {0, h}
}∣∣∣≤ 2Xmax.

Now apply Gupta and Rusmevichientong (2021, Theorem A.1) to show that there exists an absolute

constant C such that probability at least 1− ϵ,

sup
θ̄∈Θ̄

h′∈{0,h}

∣∣∣∣∣∣
∑
k∈Rl

(ξk)⊤x̂k
(
T (Z, θ̄)+h′ξ

)
−E

[
(ξk)⊤x̂k

(
T (Z, θ̄)+h′ξ

)]∣∣∣∣∣∣
≤ CSmaxκ

√
|Rl| log(Xmax) log

(
1

ϵ

)
.

To complete the proof, we take a union bound over l allowing us to show that with probability

1− ϵ

sup
θ̄∈Θ̄

h′∈{0,h}

∣∣ξ⊤x̂
(
T (Z, θ̄)+h′ξ

)
−E

[
ξ⊤x̂

(
T (Z, θ̄)+h′ξ

)]∣∣
≤

χ(G)∑
l=1

CSmaxκ
√

|Rl| log(Xmax) log

(
χ(G)

ϵ

)
.

≤ Cχ(G)Smaxκ

√
K

χ(G)
log(Xmax) log

(
χ(G)

ϵ

)
≤ CκSmax

√
χ(G)n log(Xmax) log

(
χ(G)

ϵ

)
where the first inequality is the union bound, and the second inequality uses

∑χ(G)

l=1 |Rl|=K and

Jensen’s inequality. Collecting constants proves the lemma.

□

In the main body, we use a slightly looser bound by further bounding χ(G). Specifically,

by Brook’s Theorem, χ(G) is at most the maximal degree of G(V,E) plus one. Let Tmax =

maxj

∑n

i=1 supθ̄∈Θ̄ I
{
Lij(θ̄) ̸= 0

}
. In words, Tmax is the maximal number of non-zero elements in a

column of L(θ̄).

Then we claim that the maximal degree of G(V,E) is at most SmaxTmax. To see this, consider S1.

For each k ∈ S1, Tk(Z, θ̄) can depend on at most Tmax different components of ξ. In a worst-case,

these components each belong to different subproblems, creating at most Tmax outgoing edges from
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node 1. This is true for each k ∈ S1, so S1 has an outdoing degree of at most |S1|Tmax. This is true

for each subproblem, yielding the upperbound SmaxTmax.

For simplicity of exposition, we use this upper bound in the main text, but the chromatic number

bound above is often substantively tighter.

E.5. Proof for Block Decoupled Estimation Error, Theorem 6.6

We apply Theorem 4.3 and use Lemma 6.5 to bound the solution stability term. We complete the

bound by obtaining CT for the affine plug-in class. We see

∥∥T (Z, θ̄)−T (Y , θ̄)
∥∥
1
=
∥∥L(θ̄) (Z −Y )

∥∥
1

≤
n∑

j=1

∥∥Lj(θ̄)(Zj −Yj)
∥∥
1
=

(
max

j

∥∥Lj(θ̄)
∥∥
1

)
∥Z −Y ∥1 ≤ TmaxLmax ∥Z −Y ∥1 ,

so CT = TmaxLmax.

Appendix F: Weakly-Coupled Policy Proofs

Proof for Theorem 6.11 We can bound the estimation error for weakly-coupled problems as

follows,

sup
θ∈Θ

∣∣ξ⊤x(Z,θ)−DWC(Z,θ, h)
∣∣

≤ sup
θ∈Θ

∣∣ξ⊤ (x(Z,θ)− x̃(Z,λ(Z, θ̄,x0(Z,θ)),x0(Z,θ), θ̄)
)∣∣

+sup
θ∈Θ

∣∣∣ξ⊤x̃(Z,λ(Z, θ̄,x0(Z,θ)),x0(Z,θ), θ̄)− D̃(Z,λ(Z, θ̄,x0(Z,θ)),x0(Z,θ), θ̄, h)
∣∣∣

≤ sup
θ∈Θ

∥ξ∥∞
∥∥x(Z,θ)− x̃(Z,λ(Z, θ̄,x0(Z,θ)),x0(Z,θ), θ̄)

∥∥
1︸ ︷︷ ︸

(a)

+ sup
θ∈Θ,x0∈X0

∣∣∣ξ⊤x̃(Z,λ(Z, θ̄,x0),x0, θ̄)− D̃(Z,λ(Z, θ̄,x0),x0, θ̄, h)
∣∣∣︸ ︷︷ ︸

(b)

The first inequality adds and subtracts our approximate policy. The last inequality gives us the

key terms we must bound.

To bound (a), we apply Lemma F.1, showing

sup
θ∈Θ

∥ξ∥∞
∥∥x(Z,θ)− x̃(Z,λ0(Z,θ,x0(Z,θ)),x0(Z,θ), θ̄)

∥∥
1
≤ ∥ξ∥∞ ·m ·Smax

Since ξ is a vector of independent sub-Gaussian random variables, with probability at least 1− ϵ,

∥ξ∥∞ ≤ C1

√
logn

νmin

· log
(
1

ϵ

)
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where C1 is a universal constant (Wainwright, 2019) . Thus, with probability at least 1− ϵ,

(a) ≤ C1 ·m ·Smax

√
logn

νmin

· log
(
1

ϵ

)
.

To bound (b), we first observe by Lemma F.2 ∥λ0(Z, θ̄,x0)∥1 ≤ 2
s̄
∥T (Z, θ̄)∥1, for every θ̄,x0.

Moreover,

∥T (Z, θ̄)∥1 ≤ ∥L(θ̄)∥1∥Z∥1 + ∥l(θ̄)∥1 ≤ ∥µ∥1 + ∥ξ∥1 +1≤Cµ(n+1)+n · ∥ξ∥∞.

Plugging in our bound on ∥ξ∥∞, we see with probability at least 1− ϵ

∥T (Z, θ̄)∥1 ≤ 2C1Cµn

√
logn

νmin

· log
(
1

ϵ

)
.

Letting ϵ= e−n, we see that for λmax = 4C1Cµs̄
−1ν

−1/2
min n2 that P{∥λ(Z,θ,x0(Z,θ,x0))∥1 ≥ λmax}<

e−n.

Let Λ=
{
λ∈Rm

+ : ∥λ∥1 ≤ λmax

}
. Then, when λ(Z,θ,x0)∈Λ,

(b) = sup
θ∈Θ,x0∈X0

∣∣∣ξ⊤x̃(Z,λ0(Z,θ,x0),x0,θ)− D̃(Z,λ0(Z,θ,x0),x0,θ, h)
∣∣∣

≤ sup
x0∈X0

sup
θ∈Θ
λ∈Λ

∣∣∣ξ⊤x̃(Z,λ,x0,θ)− D̃(Z,λ,x0, θ̄, h)
∣∣∣

We complete the bound on (b) by first fixing x0 in the last line and then applying Corollary 6.7 to

the block decoupled setting induced by the lifted affine policy class to show

sup
(θ̄,λ)∈Θ̃

∣∣ξ⊤x̃(Z,λ,x0,θ)− D̃(Z,λ,x0, θ̄, h)
∣∣

≤ C2S
3/4
maxn

3/4 logn

√
Tmax logXmax log

∣∣∣Θ̃0 (n−1/2)
∣∣∣ · log(SmaxTmax

ϵ

)
,

where C2 is the constant from the corollary and (θ̄,λ) ∈ Θ̃ ≡ Θ× Λ. Note that the new plug-in

class T (Z, θ̄)+λ⊤A0(x0) indexed by Θ̃ is still an affine policy class and satisfies Assumption 3.1

with the same Lipschitz constant as the original plug-in class.

We can further bound
∣∣∣Θ̃0(n

−1/2)
∣∣∣ with respect to the covering Θ0(ϵ). Letting Λ0(ϵ) be the

ϵ-covering of Λ0, we see∣∣∣Θ̃0(2ϵ)
∣∣∣ (i)

≤ |Θ0 (ϵ)| ·
∣∣∣∣Λ0

(
ϵ

∥A0∥∞n

)∣∣∣∣ (ii)

≤ |Θ0(ϵ)| ·
(
3λmax∥A0∥∞n

ϵ

)m

.

The inequality (i) follows because Θ0 (ϵ)×Λ0

(
ϵ

∥A0∥∞n

)
is a valid covering that satisfies Assump-

tion 4.2 since for each (θ̄,λ)∈ Θ̃ there exists (θ̄0,λ0)∈ Θ̃0(n
−1/2) we have

∥T (Z, θ̄)+λ⊤A0(x0)−
(
T (Z, θ̄0)+λ⊤

0 A
0(x0)

)
∥1 ≤ ∥T (Z, θ̄)−T (Z, θ̄0)∥1 + ∥ (λ−λ0)

⊤
A0(x0)∥1
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≤C (∥Z∥1 +1) ϵ+
n∑

j=1

∣∣∣(λ−λ0)
⊤
A0

j(x
0)
∣∣∣

≤C (∥Z∥1 +1) ϵ+n∥λ−λ0∥1 ∥A
0∥∞

≤C (∥Z∥1 +1) ϵ+ ϵ

≤ 2C (∥Z∥1 +1) ϵ.

Inequality (ii) applies Pollard (1990, Lemma 4.1).

We can further simplify our bound for n> 2 by

log
∣∣∣Θ̃0(2n

−1/2)
∣∣∣≤ log

∣∣Θ0(n
−1/2)

∣∣+ log
(
3λmax∥A0∥∞n1/2

)m
≤
(
log
∣∣Θ0(n

−1/2)
∣∣)m log

(
3λmax∥A0∥∞n1/2

)
≤m

(
log
∣∣Θ0(n

−1/2)
∣∣) (log (3λmax∥A0∥∞

)
+ logn1/2

)
≤m logn ·

(
log
∣∣Θ0(n

−1/2)
∣∣) (log (3λmax∥A0∥∞

)
+1
)
.

Redefining 2n−1/2 → n−1/2 shows

log
∣∣∣Θ̃0(n

−1/2)
∣∣∣ ≤ C3m logn ·

(
log
∣∣Θ0(n

−1/2/2)
∣∣)

for some constant C3 depending on log(λmax) and log(∥A0∥∞).

Taking a union bound over x0 ∈X 0, and collecting terms, we have

(b)≤ sup
x0∈X0

sup
θ∈Θ
λ∈Λ

∣∣ξ⊤x̃(Z,λ,x0,θ)− D̃(Z,λ,x0, θ̄, h)
∣∣

≤ C4S
3/4
maxn

3/4 log3/2 n
√
mTmax logXmax log |Θ0 (n−1/2/2)| · log

(
SmaxTmax |X 0|

ϵ

)
where C4 depends on logλmax, log ∥A0∥∞, νmin, νmax, σmin, ∥µ∥∞, Lmax.

Combining bounds on (a) and (b) completes the proof.

□

Lemma F.1 (Error Approximating Weakly-Coupled by Constraints Policies) Assume

Assumption 6.9 holds. Then,

∥x(Z,θ)− x̃(Z,λ(Z,θ,x0(Z,θ)),x0(Z,θ),θ)∥1 ≤m ·Smax, a.s.

Proof for Lemma F.1 To streamline the proof, we fix a θ ∈Θ and Z, dropping them from the

notation. We let x̄ and λ̄ represent the optimal primal solution x(Z,θ) and optimal dual solution

λ(Z,θ,x0(Z,θ)), respectively.
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Our goal is to bound

∥x̄− x̃
(
λ̄, x̄0

)
∥1 =

K∑
k=0

∥x̄k − x̃k
(
λ̄, x̄0

)
∥1.

Focusing on the kth term, recall x̃k
(
λ̄, x̄0

)
solves the optimization problem,

min
xk≥0

∑
j∈Sk

(Tj + λ̄⊤A0
j(x̄

0))xj, s.t. xk ∈X k(x̄0). (26)

We claim that if Problem (26) has a unique solution, then x̄k = x̃k(λ̄, x̄0). To prove the claim,

we show first show x̄k is the optimal solution of Problem (26). Let

g(λ) =−
〈
b(x̄0), λ

〉
+

K∑
k=1

min
xk∈Xk

〈
T k +λ⊤A0

Sk
(x̄0), xk

〉
be the dual problem objective solved by λ̄. Using strong duality of Problem (16) with a fixed x0,

we can show
K∑

k=1

〈
T k, x̄k

〉
= g(λ̄), by strong duality,

= −
〈
b(x̄0), λ̄

〉
+

K∑
k=1

min
xk∈Xk

〈
T k + λ̄⊤A0

Sk
(x̄0), xk

〉
(∗)
≤ −

〈
b(x̄0), λ̄

〉
+

K∑
k=1

〈
T k + λ̄⊤A0

Sk
(x̄0), x̄k

〉
, since x̄k ∈X k(x̄0),

=
〈
A0(x̄0)x̄− b(x̄0), λ̄

〉︸ ︷︷ ︸
≤0, since x̄∈XWC and λ̄≥0

+
K∑

k=1

〈
T k, x̄k

〉

≤
K∑

k=1

〈
T k, x̄k

〉
.

Here we have shown that equality holds throughout. Since inequality (∗) is an equality, we see that

x̄k minimizes Problem (26) for each k. Since we claim Problem (16) has a unique solution, we have

x̄k = x̃k
(
λ̄, x̄0

)
.

Thus, to bound ∥x̄− x̃
(
λ̄, x̄0

)
∥1, we count the number of sub-problems that do not have unique

solutions. Let K be the set of k where x̃k
(
λ̄, x̄0

)
is not a unique solution. We see k ∈K if:

1. The subproblem cost vector is 0, or formally,Tj

A0
j

0

⊤1
λ
0

= 0, ∀j ∈ Sk

2. The subproblem cost vector points in a direction corresponding to a unit vector in Dk(x̄0), or

formally, there exists d∈Dk(x̄0) and αk > 0 such that Tj

A0
j

−dj

⊤ 1
λ
αk

= 0, ∀j ∈ Sk
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We let K1 define the set of k that satisfy the first condition.

Combining all the equalities across k ∈ K, j ∈ Sk, we see they each represent a linear relation

among the vectors of F in Assumption 6.9. By the assumption, the maximal number of equalities

we can have among the vectors is at most the number of variables:

m︸︷︷︸
of λ

+ |K|− |K1|︸ ︷︷ ︸
of αk for k∈K\K1

+ 1.

Hence

m+ |K|− |K1|+1 ≥
∑
k∈K

|Sk| =
∑

k∈K\K1

|Sk|+
∑
k∈K1

|Sk|.

Next, we claim that for any k ∈ K \K1, we must have |Sk| ≥ 2. Indeed, if |Sk|= 1, then X k is an

interval, and the only way to have multiple solutions is if the subproblem cost vector is 0, i.e.,

k ∈K1, a contradiction. As a result, we can further lower bound this last quantity by

m+ |K|− |K1|+1 ≥ 2 (|K|− |K1|)+ |K1|.

Rearranging, proves |K| ≤m+1.

Finally, for k ∈K, ∥x̄k − x̃k
(
λ̄, x̄0

)
∥1 ≤ |Sk|. Hence, ∥x̄− x̃

(
λ̄, x̄0

)
∥1 ≤m ·Smax. This completes

the proof. □

Lemma F.2 (Dual Variables Bounded by Plug-in) Under Assumption 6.10, we see for all

θ ∈ {0}× Θ̄, z ∈Rn, and x0 ∈X 0 that

∥λ(z, θ̄,x0)∥1 ≤ 2

s̄
∥T (z, θ̄)∥1.

Proof of Lemma F.2 Fix z,θ,x0. To reduce notation, let x̃= x̃
(
z,λ

(
z, θ̄,x0

)
,x0, θ̄

)
and

L(x,λ) = T (z, θ̄)⊤x+λ⊤ (A0(x0)x− b0(x0)
)
,

By optimality,

L
(
x̃,λ

(
z, θ̄,x0

))
≥ L(x̃,0) ≥ −∥T (z, θ̄)∥1

where the last inequality holds since decision variables are bounded between 0 and 1.

Since λ(z, θ̄,x0)≥ 0, we see ∥λ(z, θ̄,x0)∥1 = e⊤λ(z, θ̄,x0). Thus,

∥λ(z, θ̄,x0)∥1 ≤ max
λ≥0

e⊤λ

s.t. min
x∈X̃

L(x,λ) ≥ −∥T (Z, θ̄)∥1,
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where X̃ =
{
x :xk ∈X k(x0), ∀k= 1, . . . ,K

}
. We upper bound the optimization problem by relaxing

our one constraint with penalty 1/s̄ > 0 to show,

∥λ(z, θ̄,x0)∥1

≤ max
λ≥0

e⊤λ+
1

s̄

(
min
x∈X̃

L(x,λ)+ ∥T (z, θ̄)∥1
)

= max
λ≥0

e⊤λ+
1

s̄

(
min
x∈X̃

T (z, θ̄)⊤x+λ⊤ (A0(x0)x− b0(x0)
)
+ ∥T (z, θ̄)∥1

)
≤ max

λ≥0
e⊤λ+

1

s̄

(
T (z, θ̄)⊤x̄+λ⊤ (A0(x0)x̄− b0(x0)

)
+ ∥T (z, θ̄)∥1

)
,

= max
λ≥0

1

s̄

(
T (z, θ̄)⊤x̄+λ⊤ (A0(x0)x̄+ s̄e− b0(x0)

)
+ ∥T (z, θ̄)∥1

)
where x̄ ∈ XWC satisfies our strict feasibility assumption (Assumption 6.10) for x0. The first

inequality is our upper-bound from relaxing the one constraint. The first equality expands L(x,λ).

The second inequality holds since x̄∈XWC ⊆ X̃ . The second equality collects terms.

Since A0(x0)x̄+ s̄e− b0(x0)≤ 0 by the strict feasibility assumption,

∥λ(z, θ̄,x0)∥1 ≤ 1

s̄

(
T (z, θ̄)⊤x̄+ ∥T (z, θ̄)∥1

)
≤ 2

s̄
∥T (z, θ̄)∥1

Note the bound holds for any choice of z,θ,x0. This completes the proof. □

Appendix G: Details for Numerics and Examples

G.1. Implementation Details for Numerics

We describe the implementation of the one-shot VGC, multi-shot VGC, and Stein correction for

the speed hump case study. For the lifted policy classes, we let λ(Z, θ̄) be the optimal dual variable

corresponding to the budget constraint for the cost vector T (Z, θ̄).

G.1.1. One-Shot VGC Implementation The primary challenge of implementing the one-shot

VGC is choosing a distribution for δh for each policy and evaluating the expectation

E
[
V (T (Z, θ̄)+ δh, ρ)

∣∣Z] .
In Section 7.2, for a fixed L, we choose δh ∼N

(
0, Σ̂h

)
and evaluate the expectation by Monte Carlo

simulation with 25 samples of δh. To construct Σ̂h, consider the matrix Σh = h (LΣ+ΣL⊤)+h2Σ.

If Σh is positive semi-definite, then Σ̂h =Σh. If Σh is not positive semi-definite, then we form the

eigenvalue decomposition Σh =QhΛhQh⊤ and construct

Σ̂h = ρQhΛh
+Q

h⊤, where Λh
+ =diag

{
max(0,Λh

11), . . . ,max(0,Λh
nn)
}

and ρ=
tr (Λh)

tr (Λh
+)
.

This method of “correcting” a non-positive definite matrix was also used in Chan and Wood, 1997

when simulating stationary Gaussian random fields.
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To estimate the conditional expectation, we simulate δi
h ∼N

(
0, Σ̂h

)
for i= 1, . . . , S. The result-

ing one-shot VGC out-of-sample performance estimate is

Z⊤x(Z,θ)−

(
1
S

∑S

i=1 V (T (Z, θ̄)+ δi
h, ρ)

)
−V (T (Z, θ̄), ρ)

h
.

In our experiments, we choose S = 25.

G.1.2. Multi-Shot VGC Implementation For the multi-shot VGC, we let δhj ∼N (0, (h2 +

2h)/νj) and define δh(θ̄), aj(θ̄) ∼ Ljj(θ̄)δ
h
j ej, Ljj(θ̄) with probability 1/n for every j. We simu-

late δ
i

h(θ̄), a
i
j(θ̄) from the distribution. The resulting multi-shot VGC out-of-sample performance

estimate is

Z⊤x(Z,θ)− 1

S

S∑
i=1

V (T (Z, θ̄)+ δ
i

h(θ̄), ρ)−V (T (Z, θ̄), ρ)

aij(θ̄)h/n
.

In our experiments, we choose S = n.

G.1.3. Stein Correction Implementation We implement the Stein correction on the lifted

plug-in policy which was also proposed in Gupta and Rusmevichientong, 2021. Since the lifted

policy fully decouples the optimization problem, the decisions correspond to indicator variables.

The Stein correction out-of-sample performance estimate is calculated by

Z⊤x(Z,θ)−
n∑

j=1

1

2h
√
νj

(
I
{
Tj

(
Z +

h
√
νj
, θ̄

)
−λ(Z, θ̄)≥ 0

}
− I
{
Tj

(
Z − h

√
νj
, θ̄

)
−λ(Z, θ̄)≥ 0

})
G.1.4. Lifted One-Shot VGC To define the one-shot VGC on the lifted plug-in policy, we first

let Ṽ (t) = t · I{t≥ 0} which represents the optimal plug-in objective value with plug-in t for one

element of the fully decoupled optimization problem. Again, we let δi
h ∼N

(
0, Σ̂h

)
for i= 1, . . . , S

and S = 25. The one-shot VGC out-of-sample performance estimate is

Z⊤x(Z,θ)− 1

S

S∑
i=1

1

h

(
Ṽ
(
Tj

(
Z, θ̄

)
+ δh,ij −λ(Z, θ̄)

)
− Ṽ

(
Tj

(
Z, θ̄

)
−λ(Z, θ̄)

))
G.1.5. Lifted Multi-Shot VGC Similar to the multi-shot VGC on the original policy, we

have δh,ij ∼N (0, (h2 +2h)/νj) for i= 1, . . . , S and j = 1, . . . , n. The out-of-sample estimate is then

computed as

Z⊤x(Z,θ)− 1

S

S∑
i=1

n

Ljj(θ̄)h

(
Ṽ
(
Tj

(
Z, θ̄

)
+Ljj(θ̄)δ

h,i
j −λ(Z, θ̄)

)
− Ṽ

(
Tj

(
Z, θ̄

)
−λ(Z, θ̄)

))
for S = 25. Note that Tj

(
Z, θ̄

)
+Ljj(θ̄)δ

h,i
j = Tj

(
Z + δh,ij , θ̄

)
since we are only looking at the jth

element.

G.2. Additional Results

We include a larger version of Fig. 3 that includes the VGC variants with the lifted policy for the

reader’s convenience.
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Figure EC.1 Performance Results. We compare the estimated expected out-of-sample performance of our

method to various benchmarks and various over 100 trials. The error bars are 95% confidence

intervals. The experiments vary the amount of data available but keep the number of decisions

fixed.
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