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Throughout the COVID-19 pandemic, countries relied on a variety of ad-hoc border control protocols to 
allow for non-essential travel while safeguarding public health: from quarantining all travelers to 
restricting entry from select nations based on population-level epidemiological metrics such as cases, deaths 
or testing positivity rates [1, 2]. Here we report the design and performance of a reinforcement learning 
system, nicknamed “Eva.” In the summer of 2020, Eva was deployed across all Greek borders to limit the 
influx of asymptomatic travelers infected with SARS-CoV-2, and to inform border policies through real-
time estimates of COVID-19 prevalence. In contrast to country-wide protocols, Eva allocated Greece’s 
limited testing resources based upon incoming travelers’ demographic information and testing results from 
previous travelers. By comparing Eva’s performance against modeled counterfactual scenarios, we show 
that Eva identified 1.85 times as many asymptomatic, infected travelers as random surveillance testing, 
with up to 2-4 times as many during peak travel, and 1.25-1.45 times as many asymptomatic, infected 
travelers as testing policies that only utilize epidemiological metrics. We demonstrate that this latter benefit 
arises, at least partially, because population-level epidemiological metrics had limited predictive value for 
the actual prevalence of SARS-CoV-2 among asymptomatic travelers and exhibited strong country-specific 
idiosyncrasies in the summer of 2020. Our results raise serious concerns on the effectiveness of country-
agnostic internationally proposed border control policies [3] that are based on population-level 
epidemiological metrics. Instead, our work represents a successful example of the potential of 
reinforcement learning and real-time data for safeguarding public health. 
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Introduction 
 
In the first wave of the pandemic, many countries restricted non-essential travel to mitigate the spread of SARS-
CoV-2. The restrictions crippled most tourist economies, with estimated losses of 1 trillion USD among European 
countries and 19 million jobs [3]. As conditions improved from April to July, countries sought to partially lift 
these restrictions, not only for tourists, but also for the flow of goods and labor.  
 
Different countries adopted different border screening protocols, typically based upon the origin country of the 
traveler. Despite their variety, we group the protocols used in early summer 2020 into 4 broad types: 

• Allowing unrestricted travel from designated “white-list” countries. 
• Requiring travelers from designated “grey-listed” countries to provide proof of a negative RT-PCR test 

before arrival. 
• Requiring all travelers from designated “red-listed” countries to quarantine upon arrival. 
• Forbidding any non-essential travel from designated “black-listed” countries. 

 
Most nations employed a combination of all four strategies. However, the choice of which “color” to assign to a 
country differed across nations. For example, as of July 1st, 2020, Spain designated the countries specified in [1] 
as white-listed, Croatia designated these countries as grey-listed or red-listed. 
 
To the best of our knowledge, in all European nations except Greece, the above “color designations” were entirely 
based on population-level epidemiological metrics (e.g., see [1, 2]) such as cases per capita, deaths per capita, 
and/or positivity rates that were available in the public domain [4, 5, 6]. (An exception is the UK, which engaged 
in small-scale testing at select airports that may have informed their policies.) However such metrics are 
imperfect due to underreporting [7], symptomatic population biases [8, 9, 10] and reporting delays.  
 
These drawbacks motivated our design and nation-wide deployment of Eva: the first fully algorithmic, real-time, 
reinforcement learning system for targeted COVID-19 screening with the dual goals of identifying asymptomatic, 
infected travelers and providing real-time information to policymakers for downstream decisions.  
 
The Eva System: Overview 
 
Eva as presented here was deployed across all 40 points of entry to Greece, including airports, land crossings, and 
seaports from August 6th to November 1st. Fig. 1 schematically illustrates its operation; Fig. 7 in Methods provides 
a more detailed schematic of Eva’s architecture and data flow. 
 
1. Passenger Locator Form (PLF) 
All travelers must complete a PLF (one per household) at least 24 hours prior to arrival, containing (among other 
data) information on their origin country, demographics, point and date of entry. [11] describes the exact fields 
and how these sensitive data were handled securely. 
 
2. Estimating Prevalence among Traveler Types 
We estimate traveler-specific COVID-19 prevalence using recent testing results from previous travelers through 
Eva. Prevalence estimation entailed two steps: First, we leverage LASSO regression from high-dimensional 
statistics [12] to adaptively extract a minimal set of discrete, interpretable traveler types based on their 
demographic features (country, region, age, gender); these types are updated on a weekly basis using recent testing 
results. Second, we use an empirical Bayes method to estimate each type’s prevalence daily. Empirical Bayes has 
previously been used in the epidemiological literature to estimate prevalence across many populations [13, 14]. 
In our setting, COVID-19 prevalence is generally low (e.g., ~2 in 1000), and arrival rates differ substantively 
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across countries. Combined, these features cause our testing data to be both imbalanced (few positive cases among 
those tested) and sparse (few arrivals from certain countries). Our empirical Bayes method seamlessly handles 
both challenges. Estimation details are provided in Section 2.2 of Methods. 
 

 
 
Figure 1: Eva: A Reinforcement Learning System for COVID-19 Testing. Arriving passengers submit travel and demographic information 24 
hours prior to arrival. Based on these data and testing results from previous passengers, Eva selects a subset of passengers to test. Selected 
passengers self-isolate for 24-48 hours while labs process samples. Positive passengers are then quarantined and contact tracing begins; negative 
passengers resume normal activities. Results are used to update Eva to improve future testing and maintain high-quality estimates of prevalence 
across traveler subpopulations. 

3. Allocating Scarce Tests 
Leveraging these prevalence estimates, Eva targets a subset of travelers for (group) PCR testing upon arrival based 
solely on their type, but no other personal information. The Greek National COVID-19 Committee of Experts 
approved group (Dorfman) testing [15] in groups of 5 but eschewed larger groups and rapid testing due to concerns 
over testing accuracy. 
 
Eva’s targeting must respect various port-level budget and resource constraints that reflect Greece’s testing supply 
chain, which included 400 health workers staffing 40 points of entry, 32 laboratories across the country, and 
delivery logistics for biological samples. These constraints were (exogenously) defined and adjusted throughout 
the summer by the General Secretariat of Public Health.  
 
The testing allocation decision is entirely algorithmic and balances two objectives: First, given current 
information, Eva seeks to maximize the number of infected asymptomatic travelers identified (exploitation). 
Second, Eva strategically allocates some tests to traveler types for which it does not currently have precise 
estimates in order to better learn their prevalence (exploration). This is a crucial feedback step. Today’s allocations 
will determine the available data in Step 2 above when determining future prevalence estimates. Hence, if Eva 
simply (greedily) sought to allocate tests to types that currently had high prevalence, then, in a few days, it would 
not have any recent testing data about many other types that had moderate prevalence. Since COVID-19 
prevalence can spike quickly and unexpectedly, this would leave a “blind spot” for the algorithm and pose a 
serious public health risk. Such allocation problems can be formulated as multi-armed bandits [16, 17, 18, 19] – 
which are widely studied within the reinforcement learning literature – and have been used in numerous 
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applications such as mobile health [20], clinical trial design [21], online advertising [22], and recommender 
systems [23]. 
 
Our application is a nonstationary [24, 25], contextual [26], batched bandit problem with delayed feedback [27, 
28] and constraints [29]. Although these features have been studied in isolation, their combination and practical 
implementation poses unique challenges. One such challenge is accounting for information from “pipeline” tests 
(allocated tests whose results have not yet been returned); we introduce a novel algorithmic technique of certainty-
equivalent updates to model information we expect to receive from these tests, allowing us to effectively balance 
exploration and exploitation in nonstationary, batched settings. To improve interpretability, we build on the 
optimistic gittins index for multi-armed bandits [30]; each type is associated with a deterministic index that 
represents its current “risk score”, incorporating both its estimated prevalence and uncertainty. Algorithm details 
are provided in Section 2.3 of Methods. 
 
4. Grey-Listing Recommendations 
Eva’s prevalence estimates are also used to recommend particularly risky countries to be grey-listed, in 
conjunction with the Greek COVID-19 taskforce and the Presidency of the Government. Grey-listing a country 
entails a tradeoff: requiring a PCR test reduces the prevalence among incoming travelers, however, it also reduces 
non-essential travel significantly (approximately 39%, c.f. Sec. 3.2 of Methods), because of the relative 
difficulty/expense in obtaining PCR tests in summer 2020. Hence, Eva recommends grey-listing a country only 
when necessary to keep the daily flow of (uncaught) infected travelers at a sufficiently low level to avoid 
overwhelming contact-tracing teams [31]. Ten countries were grey-listed over the summer of 2020 (see Sec. 4 of 
Methods). 
 
Unlike testing decisions, our grey-listing decisions were not fully algorithmic, but instead involved human input. 
Indeed, while in theory, one might determine an “optimal” cut-off for grey-listing to balance infected arrivals and 
reduced travel, in practice it is difficult to elicit such preferences from decision-makers directly. Rather, they 
preferred to retain some flexibility in grey-listing to consider other factors in their decisions.  
 
5. Closing the Loop 
Results from tests performed in Step 3 are logged within 24-48 hours, and then used to update the prevalence 
estimates in Step 2. 
 
To give a sense of scale, during peak season (August and September), Eva processed 41,830 (±12,784) PLFs 
each day, and 16.7% (± 4.8%) of arriving households were tested each day.  
 
Results 
 
Value of Targeted Testing: Cases Identified 
 
We first present the number of asymptomatic, infected travelers caught by Eva relative to random surveillance 
testing, i.e., where every arrival at a port of entry is equally likely to be tested. Random surveillance testing was 
Greece’s initial proposal and is very common, partly because it requires no information infrastructure to 
implement. However, we find that such an approach comes at a significant cost to performance (and therefore 
public health). 
 
We perform counterfactual analysis using inverse propensity weighting (IPW) [32, 33], which provides a model-
agnostic, unbiased estimate of the performance of random testing.  
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Figure 2: Comparing Eva vs. Randomized Surveillance Testing. Infections caught by Eva (red) vs estimated number of cases caught by random, 
surveillance testing (teal). The peak (resp. off-peak) season is Aug. 6 to Oct. 1 (resp. Oct. 1 to Nov. 1) and is denoted with triangular (resp. 
circular) markers. Seasons are separated by the dotted line. Solid lines denote cubic-spline smoothing with 95% confidence intervals in grey.  

During the peak tourist season, we estimate that random surveillance testing would have identified 54.1% (±8.7%) 
of the infected travelers that Eva identified. (For anonymity, averages and standard deviations are scaled by 
a (fixed) constant, which we have taken without loss of generality to be the actual number of infections 
identified by Eva in the same period for ease of comparison.)  
 
In other words, to achieve the same effectiveness as Eva, random testing would have required 85% more tests at 
each point of entry, a substantive supply chain investment. In October, when arrival rates dropped, the relative 
performance of surveillance testing improved to 73.4% (±11.0%) (see Fig. 2). This difference is largely explained 
by the changing relative scarcity of testing resources (see Fig. 3). As arrivals dropped, the fraction of arrivals 
tested increased, thereby reducing the value of targeted testing. Said differently, Eva’s targeting is most effective 
when tests are scarce. In the extreme case of testing 100% of arrivals, targeted testing offers no value since both 
random and targeted testing policies test everyone. See Sec. 3.1 of Methods for details. 
 
Value of Reinforcement Learning: Cases Identified 
 
We now compare to policies that require similar infrastructure as Eva, namely PLF data, but instead target testing 
based on population-level epidemiological metrics (e.g., as proposed by the EU [2]) rather than reinforcement 
learning. The financial investments of such approaches are similar to those of Eva, and we show these policies 
identify fewer cases. (Sec. 3.2.3 of Methods highlights additional drawbacks of these policies, including poor data 
reliability and a mismatch in prevalence between the general population and asymptomatic traveler population.)  
 
We consider three separate policies that test passengers with probability proportional to either (i) cases per capita, 
(ii) deaths per capita, or (iii) positivity rates for the passenger’s country of origin [4, 5, 6], while respecting port 
budgets and arrival constraints. We again use IPW to estimate counterfactual performance (see Fig. 4). 
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Figure 3. Relative Efficacy of Eva over Random Surveillance vs. Testing Budget. Ratio of number of infections caught by Eva relative to number 
of (estimated) infections caught by random surveillance testing, as a function of the fraction of tested travelers. Dotted (resp. dashed) line 
indicates the average fraction tested during the peak (resp. off-peak) tourist season. Triangular (circular) markers denote estimates from peak 
(off-peak) days. Solid blue line denotes cubic-spline smoothing with a 95% confidence interval in grey. 

 

 
Figure 4: Comparing Eva to Policies based on Epidemiological Metrics. Lines represent cubic-spline smoothing of daily infections caught for 
each policy; raw points only shown for Eva and the “Cases” policy for clarity. The dotted line separates the peak (Aug. 6 to Oct. 1) and off-peak 
(Oct. 1 to Nov. 1) tourist seasons.  
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During the peak tourist season (August, September), we found that policies based on cases, deaths and positivity 
rates identified 69.0% (±9.4%), 72.7% (±10.6%), and 79.7% (±9.3%) respectively of the infected travelers 
that Eva identified per test. In other words, Eva identified 1.25x – 1.45x more infections with the same testing 
budget and similar PLF infrastructure. In October, when arrival rates dropped, the relative performance of 
counterfactual policies based on cases, deaths and positivity rates improved to 91.5% (±11.7%), 88.8% (±10.5%) 
and 87.1% (±10.4%) respectively. Like our results in the previous section, we find that the value of smart 
targeting is larger when testing resources are scarcer. In fact, Eva’s relative improvement over these policies was 
highest in the second half of the peak season (when infection rates were much higher and testing resources were 
scarcer). See Sec. 3.2 of Methods for details.  
 
Sec. 4 of Methods discusses possible reasons underlying the poor performance of simple policies based on 
population-level epidemiological metrics, including reporting delays and systematic differences between the 
general and asymptomatic traveler populations. 
 
Poor Predictive Power of Population-Level Epidemiological Metrics 
 
Given the poor performance of simple policies based on population-level epidemiological metrics, a natural 
question is whether more sophisticated functions of these metrics would perform better. Although it is difficult to 
eliminate this possibility, we argue this is likely not the case by studying a related question: “To what extent can 
population-level epidemiological metrics be used to predict COVID-19 prevalence among asymptomatic travelers 
as measured by Eva?” To the best of our knowledge, this is the first study of this kind. Surprisingly, our findings 
suggest that widely used epidemiological data are generally ineffective in predicting the actual prevalence of 
COVID-19 among asymptomatic travelers (the group of interest for border control policies). 
 
Specifically, we examine the extent to which these data can be used to classify a country as high-risk (more than 
0.5% prevalence) or low-risk (less than 0.5% prevalence); such a classification informs whether a country should 
be grey- or black-listed. (A cutoff of 0.5% was typical for initiating grey-listing discussions with the Greek 
COVID-19 taskforce, but our results are qualitatively similar across a range of cutoffs.) We compute the true 
label for a country at each point in time based on Eva’s (real-time) estimates. We then train several models using 
a Gradient Boosted Machine (GBM) [34] on different subsets of covariates derived from the 14-day time series 
of cases per capita, deaths per capita, testing rates per capita, and testing positivity rates. Fig. 5 summarizes their 
predictive accuracy; we obtained similar results for other state-of-the art machine learning algorithms. 
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Figure 5: Predictive Power of Publicly Reported Epidemiological Metrics. Each of Models 1-4 uses a different subset of features from: 14-day 
time series of cases per capita, deaths per capita, tests performed per capita, and testing positivity rate. Model 5 additionally includes country 
fixed-effects to model country-level idiosyncratic behavior. Models 1-4 are essentially no better than random prediction, while Model 5 
achieves slightly better performance. See Sec. 4.1 of Methods for details on model construction and features used in each model. 

 
Note that a random model that uses no data has an AUROC of 0.5. Thus, Models 1-4 offer essentially no predictive 
value, suggesting that these population-level epidemiological data are not informative of prevalence among 
asymptomatic travelers.  
 
Model 5, which additionally uses country-level fixed effects, offers some improvement. These fixed effects 
collectively model country-specific idiosyncrasies representing aspects of their testing strategies, social distancing 
protocols and other non-pharmaceutical interventions that are unobserved in the public, epidemiological data. The 
improvements of Model 5 suggests that these unobserved drivers are critical to distinguishing high- and low-risk 
countries.  
 
Overall, this analysis not only raises concerns about travel protocols proposed by the EU [2] based solely upon 
widely used epidemiological metrics, but also about any protocol that treats all countries symmetrically. Indeed, 
the idiosyncratic effects of Model 5 suggest that the thresholds for deciding whether COVID-19 prevalence in 
travelers from Country A is spiking may differ significantly from that of Country B. See Section 4.1 for details. 
 
In Section 4.3 of Methods, we also study the information delay between a country’s publicly reported cases (the 
most common metric) and prevalence among asymptomatic travelers from that country. We expect a lag because 
of the time taken for symptoms to manifest, and reporting delays induced by poor infrastructure. We find a modal 
delay of 9 days.  
 
Value of Grey-Listing: Cases Prevented 
 
Eva’s measurements of COVID-19 prevalence were also used to provide early warnings for high-risk regions, in 
response to which Greece adjusted travel protocols by grey-listing these nations. We estimate that Eva prevented 
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an additional 6.7% (±1.2%) infected travelers from entering the country through its early grey-listing decisions in 
the peak season; results in the off-peak season are similar. For privacy, we have expressed the benefit relative to 
the number of infected travelers identified by Eva. See Sec. 5 of Methods for details. 
 
 
Conclusions: Lessons Learned from Deployment and Design Principles 
 
To the best of our knowledge, Eva was the first large-scale data-driven system that was designed and deployed 
during the COVID-19 crisis. Leading up to and throughout deployment, we met twice a week with the COVID-
19 Executive Committee of Greece, an interdisciplinary team of scientists and policymakers. Through those 
meetings, we gleaned several lessons that shaped Eva’s design and contributed to its success. 
 
Design the algorithm around data minimization. Data minimization (i.e., requesting the minimum required 
information for a task), is a fundamental tenet of data privacy and the General Data Protection Regulation (GDPR). 
We met with lawyers, epidemiologists, and policymakers before designing the algorithm to determine what data 
and granularity may legally and ethically be solicited by the PLF. Data minimization naturally entails a tradeoff 
between privacy and effectiveness. We limited requests to features thought to be predictive based on best available 
research at the time (origin, age and gender [35, 36]), but omitted potentially informative but invasive features 
(e.g., occupation). We further designed our empirical Bayes estimation strategy around these data limitations. 
 
Prioritize interpretability. For all parties to evaluate and trust the recommendations of a system, the system must 
provide transparent reasoning. An example from our deployment was the need to communicate the rationale for 
“exploration” tests, i.e., tests for types with moderate but very uncertain prevalence estimates). Such tests may 
seem wasteful. Our choice of empirical Bayes allowed us to easily communicate that types with large confidence 
intervals may have significantly higher risk than their point estimate suggests, and thus require some tests to 
resolve uncertainty; see, e.g., Figs. 9 and 11 in Methods, which were featured on policymakers’ dashboards.  
 
A second example was our choice to use gittins indices, which provide a simple, deterministic risk metric for each 
type that incorporates both estimated prevalence and corresponding uncertainty, driving intuitive test allocations. 
In contrast, using UCB or Thompson Sampling with logistic regression [37, 38] would have made it more difficult 
to visualize uncertainty (a high-dimensional ellipsoid or posterior distribution) and test allocations would depend 
on this uncertainty through an opaque computation (a high-dimensional projection or stochastic sampling). 
 
This transparency fostered trust across ministries of the Greek Government using our estimates to inform 
downstream policy making, including targeting contact-tracing teams, staffing of mobile testing units, and 
adjusting social distancing measures. 
 
Design for flexibility. Finally, since these systems require substantial financial and technical investment, they need 
to be flexible to accommodate unexpected changes. We designed Eva in a modular manner disassociating type 
extraction, estimation, and test allocation. Consequently, one module can easily be updated without altering the 
remaining modules. For example, had vaccine distribution begun summer 2020, we could define new types based 
on passengers’ vaccination status without altering our procedure for prevalence estimates or test allocation. 
Similarly, if rapid testing were approved, our allocation mechanism could be updated to neglect delayed feedback 
without affecting other components. This flexibility promotes longevity, since it is easier to get stakeholder buy-
in for small adjustments to an existing system than for a substantively new approach. 
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Data and Code Availability 
 
 
Data availability. To support further research, aggregated, anonymized data are available 
at https://github.com/kimondr/EVA_Public_Data. These data aggregate passenger arrival and testing information 
over pairs of consecutive days, country of origin, and point of entry.  
 
The finer granularity data that support the (exact) findings of this study are protected by GDPR. These data are 
available from the Greek Ministry of Civil Protection but restrictions apply to the availability of these data, which 
were used under license for the current study, and so are not publicly available. Access to these data can only be 
granted by the Greek Ministry of Civil Protection (info@gscp.gr) for research that is conducted in the public interest 
for public health (GDPR Recital 159) and scientific purposes (GDPR Article 89).  
 
Finally, the population-level epidemiological metrics used in our analysis can be obtained freely from the “Our 
World In Data COVID-19 dataset (https://github.com/owid/covid-19-data/tree/master/public/data). 
 
Code Availability. All code used in this paper was written in a combination of R and Python 3.7 The code for the 
deployment of the algorithm on a sample dataset is available at 
https://github.com/vgupta1/EvaTargetedCovid19Testing. The code for reproducing the results of our counterfactual 
analysis is available at https://github.com/vgupta1/Eva_CounterfactualAnalysis.  
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Methods 
 

1 Problem Description 
 
Notation and System Constraints 
 
Let ! ∈ {1, … , '} index time (in days), ) ∈ {1,… , ℰ} index points of entry, and + ∈ {1,… , ,} index the 
set of 193 countries from which travelers may originate. Moreover, for each point of entry	), let .!(!) 
denote the budget of available tests at time !.  
 
Pertinent demographic data about a passenger (extracted from their PLF) include their country and 
region of origin, age group and gender. Since all extracted features are categorical, we represent them 
with a finite, discrete set of values 1. We refer to passengers with features 2	 ∈ 	1 as 2-passengers. 
Let 3"!(!) denote the number of 2-passengers arriving with date of entry ! and point of entry ). For 
every 2	 ∈ 	1, let 4"(!) denote the unknown, time-varying, underlying prevalence among 2-
passengers, i.e., the probability that a 2-passenger is infected.  
 
The budgets .!(!) were exogenously determined by the Secretary General of Public Health. Note that 
the availability of tests relative to arrivals varies significantly across points of entry (see Fig. 6). 
 
Decision Problem 
 
The primary decision problem on day ! is to choose the number of tests 5"!(!) to allocate to 2-
passengers at point of entry ). To formally define this problem, we first specify the information 
available at time !. Namely, let 6"(!) and 7"(!) denote the number of 2-passengers that tested positive 
and negative at time !, respectively. Then, since labs take up to two days to process testing results, the 
available information on day ! is 

{6"(!#), 7"(!#)}"	∈	&,(!)(*+. 

Thus, at the beginning of day !, we must determine the number of tests 5"!(!) to be performed on 2-
passengers at point of entry ) using this information.  
 
Furthermore, our testing decisions need to satisfy two constraints: 

∑ 5"!(!)"∈& ≤ .!(!), ∀	)	 ∈ {1, … , ℰ}, (Budget Constraint), 

ensuring that the number of allocated tests does not exceed the budget at each point of entry, and 

5"!(!) ≤ 3"!(!), ∀	2	 ∈ 	1, )	 ∈ {1, … , ℰ},	(Arrivals Constraint), 

ensuring that the number of allocated tests for 2-passengers does not exceed the number of arriving 2-
passengers.  
 
A secondary decision problem is to choose “color designations” for every country as described in the 
main text. We denote the set of black, grey, and white-listed countries at time ! by ℬ( , <( ,=(	, 
respectively. Note that determining these sets must be done one week in advance (to provide notice to 
travelers of possibly changing travel requirements). Hence the relevant sets to choose at time ! are 
ℬ(,-, <(,-,=(,-. 
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Figure 6: Testing Capacity at Selected Points of Entry. Circle icons denote airports; square icons denote seaports; triangle icons 
denote land borders. Icon sizes indicate the fraction of daily arrivals that could be tested at each point of entry during the peak 
season. Note that information on some points of entry is omitted due to the sensitive nature of the data. 

As discussed, unlike our testing decisions, color designation decisions are not entirely algorithmic. 
Rather, they were made in conjunction with the Greek COVID-19 taskforce, and further 
reviewed/authorized by the Office of the Prime Minister.1 In particular, Eva was only used to identify 
candidates for grey-listing based on its estimates of the current prevalence 4"(!). In what follows, we 
focus on the algorithmic elements of our procedure, i.e., determining 5"!(!) and, as part of that process, 
estimating 4"(!).  
 
Objective 
Note that, conditional on 5"!(!), the number of positive tests observed at entry ) is binomially 
distributed with 5"!(!) trials and (unknown) success probability 4"(!). Our goal is to maximize the 
expected total number of infections caught at the border, i.e.,  
 

? @A A 	A5"!(!)4"(!)
ℰ

!/0"	∈	&

1

(/0

B. 

 
Note that the testing decisions we make at time ! affect the information that will be available in the 
future, and thereby the quality of our prevalence estimates C4D"(!′)F"	∈	& for !# > !.  
 
Thus, when deciding 5"!(!), we must balance two seemingly conflicting objectives. On the one hand, 
a myopic decision-maker would allocate tests to the (estimated) riskiest passengers, based on their 
features 2 and our current prevalence estimates C4D"(!)F. On the other hand, a forward-looking 

 
1 For completeness, we summarize Greece’s color designation process as follows: Greece adopted the European 
Union’s recommended black-list designations ℬ!"#; all non-Greek citizens from black-listed countries were forbidden 
entry, and 100% of Greek citizens arriving from black-listed countries were tested at the border. Of the remaining 
countries (which accounted for over 97% of arrivals), Greece designated a small subset as grey-listed countries ("!"#) 
if current prevalence was deemed sufficiently high (see Table 19 in Sec. 5 for list of countries), and the remainder as 
white-listed countries (#!"#).  
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decision-maker would want to collect data on 2-passengers for every value of 2, in order to make 
accurate future assessments on which passengers are risky. This suggests allocating tests uniformly 
across feature realizations to develop high-quality surveillance estimates. 
 
This tension – known as the exploration-exploitation tradeoff – is well-studied in the multi-armed 
bandit literature [1, 2, 3]. Optimal solutions balance the need to explore (accurately learn the current 
prevalence 4"(!) for all 2) and to exploit (use the estimated prevalence C4D"(!)F"	∈	& to allocate tests 
to the riskiest passengers).  
 

2 Algorithm Description 
 
2.1 Overview of Algorithm 
 
The tradeoff presented in Section 1 resembles a multi-armed bandit problem. However, our setting 
exhibits a number of salient features that distinguish it from the classical formulation: 
 

1. Non-stationarity: The prevalence 4"(!) is time-varying. 
2. Imbalanced Data: On average, only 2 in 1000 passengers tests positive, meaning the data 

{6"(!#), 7"(!#)}"	∈	&,(!)(*+ is very imbalanced with mostly negative tests.  
3. High-Dimensionality: The number of possible features 1 is very large. 
4. Batched decision-making: All testing allocations for a day must be determined at the start of 

the day (batch) for each point of entry. 
5. Delayed Feedback: Labs may take up to 48 hours to return testing results. 
6. Constraints: Each point of entry is subject to its own testing budget and arrival mix. 

 
Although these features have been studied in isolation, their combination poses unique challenges. We 
next propose a novel algorithm that addresses these features in our setting. We separate our 
presentation into two parts: estimation and allocation. Our estimation procedure (Section 2.2) builds 
on ideas from empirical Bayes and high-dimensional statistics to address the challenges of non-
stationarity, imbalanced data and high-dimensionality. Our allocation procedure (Section 2.3) uses 
these estimates and adapts classical multi-arm bandit algorithms to address the challenges of batched 
decision-making, delayed feedback, and budget constraints.  
 
Before delving into details, we note that to address the aforementioned high-dimensionality, we 
periodically partition the set of features 1 into types, denoted by H(. On first reading the reader can 
take a passenger’s type to be equivalent to their country of origin (i.e., ignoring more granular feature 
information such as origin region, age and gender) without much loss of meaning. However, in reality, 
we distinguish particularly risky passenger profiles within a country as additional, distinct types, where 
these “risky profiles” are identified dynamically using LASSO regression with recent testing results 
(see Section 2.2 for details). Over time, as new testing data arrives, we update this partition, yielding a 
time-dependent set of types H(. We treat all 2-passengers of the same type I ∈ H( symmetrically in 
our estimation and allocation procedures, i.e., our estimates satisfy Ĵ""(!) = Ĵ"#(!) for all features 
20, 2+ ∈ I. This process reduces the dimensionality of our estimation and allocation problems from 
|1| to |H(|.  
 
Fig. 7 overviews the architecture and data flow of Eva. 
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Figure 7: The Data Flow of Eva. The core algorithmic components of Eva are depicted by shaded boxes. All data flows, including 
personal data obtained via the PLF, were managed by the Greek Government (see [4]). Adaptive types were updated once per 
week and held constant between updates. Throughout the summer, our algorithm only identified adaptive types based on the country 
and region; types were never defined based on age group and gender (see also Section 2.2 below). 

 
2.2 Estimation  
 
In this section, we focus on developing estimates for prevalence rates 42(!) for a given day !; we drop 
the time index when it is clear from context. 
 
Recall that the (unknown) prevalence rates 42(!) are time-varying. Common strategies for estimation 
in time-varying settings include discarding sufficiently old data [5, 6] or exponential smoothing [7]. 
The kernel smoothing literature [8] suggests that discarding old data might be preferred if the rates 
42(!) are particularly non-smooth in time. Based on this intuition and conversations with 
epidemiologists on Greece’s COVID-19 taskforce, we choose to discard testing results that are more 
than 16 days old. As before, let 

62 = A 62(!#)
(*3

(!/(*04

, 

denote the total number of type I passengers that tested positive over the past 14 days of test results, 
and let  

72 = A 72(!#)
(*3

(!/(*04

, 

denote the total number of type I passengers that tested negative over the past 14 days of test results. 
An unbiased, and natural estimate of the prevalence for type I is  

Ĵ2
5678! =

62
62 +72

. (1)	 

 
However, because prevalence rates are low (on the order of 2 in a 1000), the variability of this estimator 
is on the same order as 42(!) for moderate values of 52!(!). Worse, for rare types where 52!(!) is 
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necessarily small (e.g., less than 100 arrivals in last 16 days), the variability is quite large. This high 
variability often renders the estimator unstable/inaccurate, an observation also recognized by prior 
epidemiological literature [9, 10]. 
 
As a simple illustration, consider a (foolish) baseline estimator that estimates every prevalence to be 
zero. We compute this baseline estimator and the naïve estimator in Eq. (1) for all countries as of 
September 1, 2020. We find that the average MSE (averaged over countries) of the naïve estimator is 
larger than that of the baseline estimator (see Fig. 8 below). In fact, a conservative estimate of the error 
of Ĵ25678! is 

OExcess	MSE	of	Ĵ2
5678! 	over	Baseline = 	√. 000334 = 	0.018, 

 
which is larger than the typical prevalence of most countries. In other words, any potential signal is 
entirely washed out by noise.  
 

 
Figure 8: Excess MSE over Baseline Estimator. The baseline estimates zero prevalence for all types. The naïve estimator 
(clipped from the plot for readability) corresponds to a prior strength of zero and has far worse MSE than the baseline. Our 
empirical Bayes estimator (red dot) substantively improves performance and approximately minimizes MSE by trading off bias 
and variance. 
To compensate for high variability and potentially rare types, we adopt an empirical Bayes perspective. 
This improves the stability of our estimates at the expense of introducing some bias. Our approach 
naturally allows information-sharing across types, so that rare types partially borrow data from other 
similar types to improve their stability.  
 
At a high level, our estimation procedure has two steps: First, for each color designation (white, grey 
or black-listed) e ∈ {=(,	<( , f(}, we fit a prior Beta(α9(!), β9(!)) for all types from countries of that 
color-designation. Second, we compute Bayesian (posterior) estimates for each 42(!), assuming 42(!) 
was drawn from the appropriately colored prior.  
 
Specifically, consider countries of color e ∈ {=(,	<( , f(}, and the corresponding set of types ℒ9 = {I ∈
H( ∶ I	is from a country in l}. Let 52 = 62 +72 be the total number of tests (with results) allocated to 
type I over the last 16 days. Conditional on 52, 62 is approximately binomially distributed with 52 
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trials and success probability 42. If we further assume that for each I ∈ ℒ9, 42 was drawn 
independently from a Beta(l:, β9) distribution, then the strong law of large numbers yields: 

1
|ℒ9|

	A 	
62
52

2∈ℒ$

		
6.=.

mn	
1
|ℒ9|

	A ? o
62
52
	 |	52p	

2∈ℒ$

	= 	
1
|ℒ9|

	A ?[42] 	= 	
l9

l9 +	s9
2∈ℒ$

 

and 
1
|ℒ9|

	A 	
62	(62 − 1)
52(52 − 1)

2∈ℒ$

		
6.=.

mn		
1
|ℒ9|

	A ?	 u
62(62 − 1)
52(52 − 1)

	|	52v	
2∈ℒ$

=	
1
|ℒ9|

	A ?[42
+] = 	

ll
+

(ll +	sl)	+
+	

ll sl
(ll +	s9)	+(ll +	sl + 1)

2∈ℒ$

	, 

where the limits are taken as |ℒ9| → 	∞. Taking the left sides of the above two expressions as estimators 
for the right sides, we can rearrange to find estimates of (α9 , β9), yielding  

αy: =
z09
+ (1 − z09)

z+9
+ −z09

+
−z09 

βD : 	= αy:
(1 − z09)
z09

 

z09 =	
1
|ℒ9|

	A 	
62
52

2∈ℒ$

	 (2) 

z+9 =	
1
|ℒ9|

	A 	
62	(62 − 1)
52(52 − 1)

2∈ℒ$

	 (3) 

We repeat this procedure separately for each of the three-color designations. Equipped with these 
priors, we then compute posterior distributions for each type I ∈ ℒ9. By conjugacy, these 
are	Beta(α>, β>)	distributed	with estimates 

αy2 =	αy9 + P2		and		sÄ2 = sÄ9 +72	, 
suggesting the following empirical Bayes estimate of the prevalence 42:  

Ĵ2
?@ =

αy2
αy2 + sÄ2

. (4) 

To provide intuition, notice that if type I comes from a country with color designation e, our posterior 
estimate can be rewritten as  

Ĵ2
?@ = Å1 −	

52
52 + l9 +	s9

Ç
α9

α9 + s9
+	

52
52 + l9 +	s9

Ĵ2
5678! , 

i.e., it is a weighted average between the naïve prevalence estimator and our prior mean. The sum 
(α9 + s9) is often called the strength of the prior. For rare types where 52 is small relative to (α9 + s9), 
the estimator is close to the prior mean (i.e., it draws information from similar types). For common 
types where 52 is large relative to (α9 + s9), it is close to the naïve estimator (i.e., it lets the type’s own 
testing data speak for itself). This structure matches our intuition that the naive estimator should only 
be used when 52 is large enough. 
 
Below, we summarize the estimation strategy. 
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Subroutine 1: Estimating Prevalence via Empirical Bayes 
Input: # of positives 62, negatives 72 and tests 52 for each type I in the past 14 days of test results. 

for each color designation of countries e	 ∈ {=(,	<( , f(} 
 Compute z09 , z+9 from Eq. (2) and (3) 
    

αy9 ←
z09
+ (1 − z09)

z+9
+ −z09

+
−z09 , βD 9 	← αy9

(1 − z09)
z09

 

 for all types I ∈ ℒ9 whose origin country is in e:  
 αy2 ← αy9 + 62 and sÄ2 ←	βD9 +72  

 end  

end  

 
Fig. 8 shows the excess MSE for various estimators with differing strength in the prior (the naïve 
estimator Ĵ25678! corresponds to a prior strength of zero and its MSE is too large to fit on the plot). Our 
moment-matching estimator (red dot) approximately minimizes the MSE while maintaining a tractable 
closed-form expression. 
 
2.2.1 Reducing Dimensionality through Adaptive Type Extraction 
 
As mentioned earlier, we adaptively partition the discrete space of features 1 into a smaller set of types 
H( to reduce the dimensionality of the problem. Defining types entirely by a passenger’s country of 
origin is attractive for its operational simplicity and because geography is highly predictive of 
prevalence. That said, there can be significant heterogeneity in infection prevalence based on other 
passenger feature information. For example, certain regions within a country may have a high 
population density and low social distancing compliance relative to the rest of the country, resulting in 
a much higher risk for passengers originating from that region; certain age brackets or genders may 
also carry higher risk. Defining types solely at the country-level risks poor test allocations by failing 
to test passengers with features that suggest high risk. 
 
Consequently, our dimensionality reduction procedure starts with types defined at the country level, 
but then goes one step further to distinguish particularly risky passengers based on their feature 
information (origin region and demographic characteristics) as additional, distinct types.2 These 
additional types are identified dynamically based on recent testing results and allow us to exploit intra-
country heterogeneity in prevalence to better allocate testing resources.  
 
We identify additional types using the celebrated LASSO procedure [11], which has also previously 
been used for dimensionality reduction in contextual bandits [12]. Specifically, we first apply our 
previous empirical Bayes estimation strategy assuming country-based types. Given these estimates, we 
then perform a LASSO logistic regression on the last 14 days of testing results, where the unit of 
observation is a single passenger’s test, and features include (1) the estimated prevalence Ĵ2?@ of the 
passenger’s origin country (estimated in previous step), (2) indicator variables for potential regions, 

 
2 Regions indicates more granular locations within a country (e.g., state or province). Since different countries use 
different nomenclature, we use the generic term “region.” 
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(3) indicator variables for gender-country pairs and (4) indicator variables for age-country pairs. As 
will become clear below, we interact gender and age with the country of origin since our goal is to 
further split existing country-level types based on demographic information, as warranted by the data. 
 
Mathematically, let Ñ denote a tested passenger (from the last 14 days of testing results), Ö7 ∈ {0, 1} 
denote their binary test result, +7 denote their origin country, Ü7 denote their origin region, á7 denote 
their gender-country pair (i.e., the cross product of their gender and country categorical variables), and 
à7 denote their age-country pair (i.e., the cross product of their age group and country categorical 
variables). We then perform the LASSO logistic regression: 

Ö7 = âAĴA%
?@ +	AâBä{Ü = Ü7}

B

+	AâCä{á = á7}
C

+	Aâ6ä{à = à7}
6

+	ã7 		(5) 

 
Let the number of unique countries from the last two weeks be ç, the number of unique regions from 
the last two weeks be é, and further note that there are 3 gender options and 10 possible age brackets. 
Then, the total number of features is 1	 + 	13ç	 + 	é. Note that ç and é change over time as a function 
of the types of recent arrivals; we typically had scheduled arrivals from ç ≈ 170 countries and roughly 
é ≈ 17,000 cities. The regression above yields a sparse vector of coefficients ëâÄA , âÄB , âÄC, âÄ6í. These 
coefficients indicate types of passengers whose estimated prevalence (based on their feature 
information) is notably different than their estimated prevalence based solely on their origin country, 
based on recent testing data. We are primarily interested in identifying risky passenger types (so we 
can concentrate our limited testing resources on such passengers). Hence, we only introduce new 
type(s) when we identify positive coefficients in the support.  
 
As a clarifying example, if a region Ü has a corresponding positive âÄB, then the prevalence of 
passengers from region Ü have notably higher prevalence than passengers of its corresponding country 
+. Thus, we define a new type for passengers originating from Ü, but also retain a type for passengers 
originating from + that are not from Ü. We apply similar transformations for other positive coefficients 
in the LASSO regression as well. 
 
Interestingly, during the summer of 2020, we always found that âÄC = 0 for all gender-country pairs 
and âÄ6 = 0 for all age-country pairs, i.e., we never found the age bracket and/or gender to be predictive 
of passenger test results beyond country/region of origin. This non-predictive behavior is likely 
because only one member of a household fills out the PLF (using their own age and gender) but the 
household likely spans members of different ages and genders. Note that the constraint of one PLF per 
household was a hard constraint imposed by Greek government. 
 
The process is summarized below in Subroutine 2. For simplicity, we have only stated the algorithm 
in the case of potentially positive elements in âÄB, since we never found other features to be predictive.  
  
Subroutine 2: Adaptive Type Extraction 
Input: Ö7 , +7 , Ü7 # historical test results with country and region dummies 

Perform Lasso regression according to Eq. (5) 
return set of types H( =	 {1, … , ç} ∪ îÜ7:	ëâÄBí

7
> 0ñ	 
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We re-ran this procedure every week to obtain new types H(, which are used daily for empirical Bayes 
estimation of prevalence rates as well as the bandit allocation algorithm. 
 
Fig. 9 shows the resulting (anonymized) prevalence and confidence intervals for a typical day (batch) 
from the summer of 2020. The x-axis indexes different types ordered from highest prevalence (left) to 
lowest prevalence (right). This plot was featured on the dashboards of policy-makers in the Greek 
government to communicate the status of the pandemic and to inform grey-listing decisions. 
 

 
Figure 9: Estimated Prevalence by Type. Shown for each type on a given day (batch). Types are ordered from high to low risk. 
Center points are our empirical Bayes estimates of prevalence (mean of estimated posterior distribution). Confidence intervals 
correspond to the 5% and 95% quantiles of estimated posterior distribution. Note that the ability to shrink a confidence interval 
via targeted exploration is limited by the number of arrivals of that type. Estimates formed from n = 64,161 passengers tested in 
previous 14 days. 

 
2.3 Allocating Test Results 
 
2.3.1 Optimistic Gittins Indices 
 
Online optimization problems and the aforementioned exploration-exploitation tradeoff have been 
studied in the literature since the seminal work of [2, 1]. In the classical setting, the celebrated Gittins 
index theorem provides the optimal dynamic solution to this tradeoff [3], but it is typically intractable 
to compute this solution exactly. Consequently, various heuristics with near-optimal asymptotic 
performance guarantees such as Upper Confidence Bound [13], Thompson Sampling [2] and optimistic 
gittins indices [14] have been proposed to overcome these issues. Our approach builds upon the 
optimistic gittins index of [14]. We first describe the mechanics of the optimistic gittins index in a 
classical setting, and then describe how we adapt this technique to address the unique combination of 
challenges in our setting – batched decision-making, delayed feedback and port-specific budget/arrival 
constraints. 
 
Recall that our estimation procedure yields a Beta posterior distribution with parameters l2 , s2 for 
type I. Let óD,E be the CDF of a Beta distribution with parameters l and s. Then, from [14], the 
optimistic gittins index ò2 for type I (with a 1-step lookahead window and a discount factor ô) is the 
unique solution to the following equation: 

ò2 =
l2

l2 + s2
ö1 − ôóD&,0,E&(ò2)õ + ôò2 ö1 − óD&,E&(ò2)õ . (6) 

Country/City (Anonymized)
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In the classical setting, the optimistic gittins index algorithm proceeds very simply: (1) test the type 
(arm) with the highest index, (2) observe the resulting (immediate) feedback and use it to update the 
posterior for that type, (3) calculate the new index for that type, and (4) repeat. Importantly, one can 
confirm that Eq. (6) naturally balances the twin goals of exploration (prioritizing types with a wide 
prior, i.e., large variance) and exploitation (prioritizing types with large, estimated prevalence Ĵ2?@).  
 
2.3.2 Challenges with the Conventional Optimistic Gittins Index Algorithm 
 
Unfortunately, this approach does not perform well in our setting because we do not observe immediate 
feedback from our tests. Rather, we choose thousands of passengers to test in a given day (avg: 5300; 
std dev: 998) and receive no feedback on these allocations for 48 hours. Applied naively, the algorithm 
would simply keep testing the same type (the one with the highest initial index) repeatedly because the 
computed indices for each type remain the same throughout a given batch (day). Such an outcome is 
clearly undesirable.  
 
The batched bandit literature [15, 16] partially resolves this issue in stationary environments by 
uniformly exploring all types in early batches, and then committing to the type with the highest 
prevalence in later exploitation batches. However, this strategy is untenable in highly non-stationary 
environments, because the data from initial exploration in early batches are not representative of 
current rates (recall that we only use the last 14 days of test results for estimation), i.e., we must 
continuously explore and collect new data on each type to form accurate prevalence estimates. Thus, 
it is critical in our setting that our allocation policy combine exploration and exploitation within a batch. 
 
Relatedly, at the start of each batch, we also have a large number of tests that are already in the 
“pipeline” (i.e., tests that have been conducted but the results have not yet been received from the labs) 
from the past 2 days. A good policy should also account for the expected information that will be 
imbued by these pipeline tests when making new allocations. 
 
2.3.3 Certainty Equivalent Pseudo-Updating 
 
In order to address the delayed-feedback and batching challenges above, we propose certainty-
equivalent pseudo-updates to our indices during the course of the allocation assignment algorithm. 
These updates do not alter the mean estimates of prevalence but reduce the variance of our estimates 
based on the number of tests allocated thus far, thereby anticipating information that we will obtain on 
uncertain types in the next few days.  
 
The intuition is as follows: Although we do not observe immediate feedback when allocating a test, 
we can estimate the likely reduction in the variance of our posterior distributions. Specifically, if we 
ignore the uncertainty (motivating our nomenclature certainty-equivalent) around our estimate Ĵ2?@, 
then, after allocating a single additional test to type k, we expect to observe a positive result with 
probability Ĵ2?@ and a negative result with probability 1 − Ĵ2?@ in 48 hours. Consequently, after 
allocating a test, we update the parameters of our Beta distribution with this expected result, namely: 
lù2 ← lù2 + Ĵ2

?@, and sÄ2 ← sÄ2 + 1 − Ĵ2
?@. This update does not change our estimate of the mean 

prevalence, but it does reduce the variance of our posterior distributions. In this sense, it quantifies the 
additional information we are likely to get after the delayed feedback. We refer to this procedure as a 
pseudo-update to the optimistic gittins index, since we are performing a certainty-equivalent update 
based on an allocated test whose feedback has yet to be observed (in contrast to a Bayesian update 
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based on feedback received from an allocated test). Importantly, pseudo-updates allow the optimistic 
gittins indices to dynamically change during the course of allocation assignment within a batch. 
 
Overall, these pseudo-updates ensure that our algorithm allocates a minimum number of tests required 
to resolve uncertainty for types with high variance (exploration) and allocates all remaining tests to 
arms with high estimated prevalence (exploitation). The pseudocode is presented below.  
 
Gittins Pseudo-Update for type û  

Input: lù2 , sÄ2 for type I 

Ĵ2
?@ ←

lù2
lù2 + sÄ2

 

      

lù2 ← lù2 + Ĵ2
?@ and sÄ2 ←	sÄ2 + 1 − Ĵ2?@	 

Compute ò2 from Eq. (6) using lù2 , sÄ2 
      

return ò2        

 
2.3.4 Prior Widening 
 
Unlike the theoretical formulation in [3, 14], our empirical Bayesian priors are data-driven and may 
therefore be mis-specified due to our model assumptions, estimation error or rapid changes in 
prevalence that have not yet been reflected in recent testing results. The Bayesian bandit literature has 
shown that “widening” posterior distributions (i.e., inflating variance) can ensure that the resulting 
allocations are robust to prior misspecification [17, 18]. Accordingly, at the start of each batch, we 
decrease the strength of our prior by scaling down our estimated posterior parameters for each type I 
by a constant + ∈ (0,1): 

lù2 ← +lù2 , sÄ2 ← +sÄ2 . 
We periodically tuned + to ensure that every type with sufficient arrivals was allocated at least 500 
tests every 14 days: this is roughly the number of tests required to distinguish a type with 0.5% 
prevalence from a type with 0.1% prevalence with high probability. Typically, + ∈ [. 1, .5]. 
 
2.3.5 Test Allocation Strategy 
 
Equipped with our pseudo-update technique, we can now describe the allocation procedure that is run 
each day. Let ü2 denote the number of pipeline tests for type I (i.e., tests allocated to type I passengers 
in the last 2 days for which we have yet to receive feedback).  
 
If we had a single point of entry, we would proceed by first estimating the posterior distributions of 
each type using our empirical Bayes strategy, and widening the resulting posterior parameters. We 
would perform ü2 pseudo-updates for type I to account for the expected information of current 
pipeline tests. We would then allocate a test to the type with the highest optimistic gittins index for 
which there are still available untested passengers, perform a pseudo-update to the posterior for that 
type, and repeat until we deplete our testing budget or run out of passengers. Notice this entire 
procedure can be run at the beginning of the day, and, hence, the allocations are pre-computed. 
 
However, since we have multiple points of entry, we must also account for constraints on port-specific 
testing budgets and arrivals. Specifically, once we have identified that type I has the highest (current) 
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optimistic gittins index, we must decide to which type I passenger we will allocate a test. This decision 
is not entirely trivial. Depending on the choice, it will consume testing budget at a particular point of 
entry. Some points of entry have very limited testing budgets (see Fig. 6), and passengers of some 
types only travel to certain points of entry. For example, as shown in Fig. 10 below, passengers from 
North Macedonia (MK), a rare type, only arrive at a few points of entry, while passengers from 
Germany (DE), a common type, arrive across many points of entry. Intuitively, one should not allocate 
tests to common passenger types at a point of entry predominantly used by rare types. Rather, one 
should strategically “save tests” at that point of entry for potential rare type arrivals. Indeed, if we 
exhaust the budget on common passenger types early in the batch, we will be unable to test rare 
passenger types if directed to by the gittins procedure later on in the batch.  
 

 
Figure 10: Heatmap of Arrivals. Depicts arrivals from selected countries (y-axis) to selected ports of entry (x-axis). Darker 
color signifies more arrivals. Values anonymized for privacy. 

Although the bandit literature has explored incorporating constraints [19] into allocations, it remains 
an open problem to adapt such approaches to a nonstationary, batched environment (e.g., incorporating 
constraints along with our certainty-equivalent updates). An optimal allocation can be determined by 
solving a large binary integer program, but solution times can be long.3 Instead, we employ a greedy 
heuristic to resolve this last challenge. Specifically, if type I currently has the highest optimistic gittins 
index, we choose a passenger of type I at the point of entry with the most remaining tests available. In 
this manner, we preferentially allocate tests at less constrained ports, with the goal of potentially saving 
tests for rare types at constrained ports. When a point of entry’s budget is depleted, we remove that 
point of entry from consideration; similarly, if all arrivals of a certain type have been assigned to be 
tested, we remove that type from consideration. Otherwise, we follow the procedure outlined earlier. 
The pseudocode for our test allocations is provided below. Once we obtain the allocations, we 
randomly select the requisite number of passengers of each type at each point of entry. 
 
 
 
 
 
 

 
3 Due to operational constraints on when passengers could complete a PLF and when results needed to be sent to 
border agents, Eva needed to reliably pre-compute all allocations within minutes of receiving the day's PLF data. 
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Subroutine 3: Τest Allocation Sub-Routine 

Input: Posterior distribution estimates  lù2 , sÄ2 for each type I ∈ H(, arrivals 32!(!) and budgets 
.!(!) for each type I and point of entry ), number of pipeline tests ü2 for each type I, and tuning 
parameters {+, ô} 

for I = 1:H( 

 lù2 ← c	lù2 , sÄ2 ← c	sÄ2	# prior widening 

Compute ò2 from Eq. (6) using lù2 , sÄ2  

ò2 ← pseudo-update index of type	I (repeat ü2 times) # account for pipeline tests 

†2 ← ∑ 32!(!)! 	# type I passengers not yet allocated a test 

   for ) = 1: ℰ 

 †2! ← 32!(!)	# type I	passengers at point of entry e not yet allocated a test 

ç! ← .!(!)	# remaining (un-allocated) tests at point of entry e 

72! ← 0 # initialize allocations 

     end   

end   

while max
F
ç! > 0	and max

>,	!!∈{!	|	I'JK}
†2!! > 0  

 I∗ = argmax2{ò2:	†2 > 0} 

)∗ = argmax!{ç!:	†2∗! > 0} 

72∗!∗ ← 72∗!∗ + 1	# allocate a test to a type k passenger at point of entry e 

ç!∗ ← ç!∗ − 1, 	†2∗!∗ ← †2∗!∗ − 1, 	†2∗ ← †2∗ − 1 

ò2∗ ← pseudo-update index of type I∗ 

end 

 
 

return {72!}2∈N),!∈{0,…,ℰ}	 # number of tests allocated to each type at each port of entry  

 
Fig. 11 shows the resulting (anonymized) allocations for a typical day (batch) from the summer of 
2020. The x-axis indexes different types ordered from highest prevalence (left) to lowest prevalence 
(right). Each bar denotes the number of arrivals. The teal portion represents the number of allocated 
tests, while the pink portion represents the remaining untested passengers. We observe that, as desired, 
our algorithm allocates tests to essentially all high-risk arrivals (exploitation) but additionally assigns 
a small number of tests to all types to reduce the variance of our estimates (exploration). The inclusion 
of port-specific constraints may cause some distortions, e.g., the lowest-risk type in Fig. 11 still 
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receives a large number of tests because these passengers arrived at a point of entry with atypically 
large testing capacity. 
 

 
Figure 11: Test Allocations by Arrivals. Shows number of test allocations (teal) and untested scheduled arrivals (pink) for each 
type on a given day (batch). Types are ordered from high to low risk according to our empirical Bayes estimates of prevalence. 
Note that our algorithm allocates tests to essentially all high-risk arrivals (exploitation) but additionally assigns a small number 
of tests to all types (exploration). 

 
2.3.6 Quantifying Exploration 
 
The gittins allocation scheme does not differentiate between tests allocated for exploration and 
exploitation. However, a reasonable proxy for the number of “exploration” tests may be the number 
of tests that were allocated on each day that a greedy policy would not allocate. Specifically, if £ 
tests are allocated on day !, we consider the fraction of tests that were allocated to passengers whose 
estimated prevalences were not among the top £ highest prevalences of arrivals that day. The left 
panel of Fig. 12 shows the results. We observe a noticeable spike in mid-August, corresponding to a 
change in Greek travel protocols where several countries were grey-listed on the same day; this 
induced a (temporary) surge in exploration to learn about the new grey-listed types. After this spike, 
the fraction of exploration tests stabilized to roughly 40% for the rest of the summer. 
 
A drawback of this proxy is that it does not distinguish between the “level of exploration” per test, 
i.e., did we allocate a test to a medium prevalence type (splitting the difference between 
exploration/exploitation) or to a low prevalence type (mostly exploration/no exploitation). In the 
previous metric, both instances are simply counted as 1 exploration test. Thus, we consider a second 
proxy for the amount of exploration: the average prevalence among passengers tested by Eva on day 
! relative to the average (estimated) prevalence among passengers that would have been tested by a 
greedy exploitation-only strategy. If Eva were allocating all of its exploration tests to passengers with 
moderate/high prevalence, this difference will be small. If Eva were allocating all of its exploration 
tests to passengers with low prevalence, this difference will be large.  
 
The right panel of Fig. 12 shows the results. We see that, after the spike, exploration results in a 
roughly 20% reduction in average prevalence relative to a greedy strategy. This suggests that most 
exploration tests (identified in the previous metric) are actually partially exploiting by targeting types 
with medium prevalence. 
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Figure 12: Quantifying Exploration. Fraction of tests allocated for “exploration” (left) and the average prevalence of allocated 
tests relative to a greedy strategy (right) as a function of time. Plots depict 7-day rolling average. The spike in mid-August 
corresponds to a change in Greece’s travel protocols, inducing a temporary surge in exploration. 

3 Off-Policy Evaluation and Counterfactual Analysis 
 
In this section, we detail our comparison of Eva’s historical performance to counterfactual estimates 
of the performance of other natural targeting policies: random surveillance testing and simple policies 
based on widely used epidemiological metrics.  
 
Specifically, in Sections 3.1, we benchmark against a random surveillance testing policy that tests 
passengers uniformly at random at each port of entry. In Section 3.2, we benchmark against policies 
which assign tests to travelers based on their country of origin and proportional to one of three country-
level epidemiological metrics: cases per capita, deaths per capita, or positivity rates (number of positive 
cases found divided by number of tests performed in last 14 days). We calibrate each of these 
benchmark policies to have the same testing budget as Eva and to use the same grey-listing decisions. 
(See Section 5 below for more discussion of the effect of grey-listing decisions.) 
 
Before proceeding, we note that the historically realized data from Eva exhibits a significant no-show 
rate, i.e., passengers who filed a PLF but did not travel. Due to operational limitations, we do not know 
the actual number of type I travelers who arrived at entry point ) on day !. Hence, we estimate this 
number as follows. Denote by 5D2!(!) the number of passengers of type I that were actually tested at 
point of entry ) on day ! (as acknowledged by scanning their QR-code and associating it with a 
sample). Due to no-shows, this number may be less than 52!(!), the number of passengers of type I 
that	filed a PLF and were allocated a test by Eva. We estimate the type- and entry-specific fraction of 
passengers that actually arrived by  

§2!(!) =
5D2!(!)
52!(!)

, 

and estimate the actual arrivals by 3Ä2!(!) = §2!(!)	32!(!). This estimate is unbiased because our 
decision to test a traveler is conditionally independent of their decision to not travel (“no-show”) given 
their type. 
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Finally, throughout this counterfactual analysis, we take types to be defined exclusively by the 
traveler’s country of origin (no adaptive type specification). This simplification permits a more 
straightforward computation of standard errors, and our estimators remain unbiased. 
 
 
3.1 Defining the Benchmark Policies 
Let 

• 5D⋅!(!) = ∑ 5D2!(!)2	∈	N)  denote the total number of tests performed at entry ) 
• 5D2⋅(!) = ∑ 5D2!(!)ℰ

!/0  denote the total number of tests performed on type I passengers 
• 3Ä⋅!(!) = ∑ 3Ä2!(!)2	∈	N)  denote the (estimated) actual arrivals at entry ) 
• 3Ä2⋅(!) = 	∑ 3Ä2!(!)ℰ	

!/0 	denote the (estimated) actual type I arrivals across all entries. 
• 22(!) denote one of cases per capita, deaths per capita, or positivity rate for country c where 

type I’s country of origin is + 
 

For any of our benchmark policies, let •2(!) be the probability an arbitrarily chosen type I arrival is 
tested at time t. For the random surveillance policy, by definition, 

•2
Q65R(!) = 	A	

3Ä2!(!)

3Ä2⋅(!)
	
5D⋅!(!)

3Ä⋅!(!)

ℰ

!/0

. 

 
By contrast, our benchmark policy based on population-level epidemiological metrics tests a passenger 
with probability (roughly) proportional to their reported risk. Specifically, we first obtain the relevant 
pre-processed and smoothed time series 22(!) for a given metric from https://ourworldindata.org/ [20, 
21, 22]. We use the smoothed/pre-processed values instead of the the raw reported metrics since the 
raw data exhibit a number of missing or undefined (e.g., infinite) values and a number of “back-dated” 
corrections, i.e., negative counts to correct for over-reported metrics in previous days. Using this pre-
processed data yields an optimistic analysis for the benchmark (pessimistic for Eva) since any real-
time system based on epidemiological metrics would need to use the raw data as it was released in 
real-time, i.e., not adjusting for the back-dated corrections. (See Section 3.2.3 on “Drawbacks of 
Allocations Based on Epidemiological Metrics” for more discussion.) For allocations on day !, we use 
the value of the smoothed metric reported on day ! − 1 when available; when missing, we impute the 
value based on averaging the same metric across other countries on day ! − 1. 
 
Given this time series for 22(!), our benchmark policy then tests a type I arrival at time ! with 
probability proportional to 22(!), i.e.,  

•
2

STU97A(!) =A
3Ä2!(!)

3Ä2⋅(!)
min ¶

22(!) ⋅ 5D⋅!(!)

∑ 3Ä9!(!)29(!)9∈N)
, 1®

ℇ

!/0

 

where the proportionality constant is chosen so that the expected number of tests at each point of 
entry is roughly equal to the number tested by Eva 5D⋅!(!).   
 
Inspired by soft-max heuristics in machine learning, we allocate tests proportionally to 22(!) rather 
than entirely to countries with the maximum metric above. This choice is typically more effective 
with noisy data. For example, if there were only two countries, one with 100 deaths per capita and 
the other with 101 deaths per capita, it would be much more reasonable to assign tests roughly 
equally to both countries rather than all tests to the second country. Of course, when the gap in 
metrics is large, proportional allocation does allocate essentially all tests to the riskier country.  
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We say the expected number of tests at port ) allocated by this policy is tuned to “roughly” equal 
5D⋅!(!) because we cap testing probabilities at 1 in the summand. (Probabilities above 1 are clearly 
infeasible.) This capping causes a small percentage of tests to be unused when rare arrivals at an 
entry point have particularly large values of 22(!). To provide the fairest comparison, we correct for 
these unutilized tests below by comparing the number of cases caught per allocated test for these 
policies versus the cases caught per allocated test for Eva.  
 
In the special case that an epidemiological metric 22(!) is identical for all (I, !), the above policy 
reduces to the random policy. Note that the first branch of the “min” always pertains for the random 
policy, so it requires no correction for unutilized tests.  
 
3.2 Background on Inverse Propensity Weight (IPW) Scoring 
 
While we directly observe Eva’s performance, we do not observe the performance of our benchmark 
policies, requiring us to estimate a counterfactual. We use a classical method, inverse propensity weight 
(IPW) scoring [23, 24], which is a model-agnostic approach. In particular, although our estimation and 
allocations entail several approximations, the IPW estimate of performance of the benchmark policies 
is conditionally unbiased (conditional on the arrival process of passengers) regardless of the quality of 
these approximations. Thus, this analysis provides a fair comparison between the Eva and any of the 
benchmarks. We perform all analysis conditional on the number and types of passengers that arrive at 
each time at each point of entry.  
 
We also note that only 0.6% of arrivals were tested by border agents at their own discretion (i.e., not 
recommended by Eva). Thus, unlike many IPW analyses, our test allocations do not suffer substantive 
unobserved confounding. For completeness, we drop these 0.6% of arrivals from the analysis.  
 
3.2.1 Estimating Mean Performance 
 
We next summarize the pertinent details of the IPW method. Recall that 62!(!) denotes the total 
number of positive type I passengers identified by Eva at entry ), and that 62⋅(!) is the number of 
positive type I cases identified at time ! by Eva at all entries.  
 
The probability a type I arrival would be tested at time ! by Eva is 

A	
5D2!(!)

3Ä2!(!)

ℰ

!/0

	
3Ä2!(!)

3Ä2⋅(!)
= 	
5D2⋅(!)

3Ä2⋅(!)
.	 

 
IPW scoring estimates the corresponding number for a benchmark policy by 

Ü2(!) = 	 •2(!) ©
5D2⋅(!)

3Ä2⋅(!)
™´ × 62⋅(!), 

where the leading ratio is called the inverse propensity weight. In words, IPW scoring corrects the 
observed number of positives by multiplying by the relative likelihood of being tested under both 
methods. We then estimate the total number of positive cases that the benchmark would have caught 
by summing: 
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≠@!5AWX6Q2 =AA Ü2	(!)
2∈N)

1

(/0

 

It is common practice in the causal inference literature to drop elements of the summand for extreme 
values of the inverse propensity weight [23] to reduce variability. We follow this practice and drop any 
outlier (), !, I) combinations where the inverse propensity score exceeds the 97.5% quantile of all 
inverse propensity scores. To ensure fair comparison, we also drop the same elements from Eva’s 
performance when reporting relative improvements.  
 
Finally, for the policies based on epidemiological metrics, we additionally normalize the performance 
by the number of tests performed to ensure fair comparison. Specifically, we scale the number of 
estimated infections caught by the public policy by  

ÆSTU97A = ØAA5!∞ (!)
ℰ

!/0

1

(/0

± ≤A A •
2

STU97A(!)32⋅(!)
2	∈	N)

1

(/0

≥ .¥  

Note that ÆSTU97A ≥ 1 by construction; we estimate this scaling factor separately for peak and off-peak 
seasons for each epidemiological metric, with values ranging from 1.02 to 1.06. 
 
3.2.2 Estimating the Variance 
 
We now turn to estimating the variance of ≠@!5AWX6Q2. Although ≠@!5AWX6Q2 is conditionally unbiased 
in a model-agnostic fashion, we require some modeling assumptions to approximate its variance. While 
recent work has developed methods to estimate this variance in classical bandit problems [25, 26], they 
require strong assumptions that do not hold in our setting, particularly that the underlying rewards are 
stationary and the amount of exploration is vanishing. Thus, we develop a new and conservative (worst-
case) approximation for this variance in our highly non-stationary setting. Even if the assumptions 
underlying our approximation are mildly violated, our estimates are likely still valid because we adopt 
a worst-case perspective. 
 
To be precise, define †( =	∑ Ü2(!)2∈N)  so that ≠@!5AWX6Q2 =	∑ †(Y

(/0 . We upper bound the conditional 
variance of ≠@!5AWX6Q2 assuming that 

I. No-show behavior at time !, i.e., the decision to not travel after filing a PLF, is independent 
across passengers. 

II. The public epidemiological metric is such that there is no need to cap the probabilities at 1, 
i.e., the first branch of the “min” defining •

2

STU97Aalways pertains.  
III. There exists a constant Δ such that for |§ − !| ≥ Δ, the Correlation(†( , †=) ≤ 0, i.e., the 

autocorrelation of the process is negligible (or non-positive) after Δ days.  
We first argue that the three assumptions are reasonable. For the first, passenger cancellations on a 
given day ! are likely primarily driven by idiosyncratic/passenger-specific reasons (e.g., a relative is 
ill). Hence modeling them as independent across passengers is reasonable.  
 
For the second assumption, the probabilities exceed 1 relatively rarely (affecting only 2%-6% of 
allocated tests). Alternatively, we can interpret this assumption as saying that our analysis bounds the 
variance of a related random variable ≠ZQ["\, which is defined identically to ≠@!5AWX6Q2 but without 
the “min” in the definition of •

2

STU97A. In so far as capping a random variable generally reduces its 
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variance, one intuitively expects the variance of ≠ZQ["\ bounds the variance of ≠@!5AWX6Q2, in line with 
our worst-case, conservative viewpoint. Finally, we recall that for the random policy, the capping is 
never needed, and, hence, this assumption is trivially satisfied. 
 
For the final assumption, observe that for Δ large enough, our estimates Ĵ2?@(!) and Ĵ2?@(§) are based 
on disjoint streams of testing data, because we discard old data. Moreover, even for small Δ, our prior-
widening heuristic forces a certain minimal amount of exploration of each type (roughly 500 tests 
every 14 days), which occurs regardless of the results of previous tests. Thus, a large number of 
“exploration tests” are allocated independently of past test results and reduce dependence of future 
time periods on the past.  
 
In summary, there is good reason to believe our third assumption holds for some Δ,	and we use our 
data to estimate a reasonable value. Fig. 13 plots an estimate of the autocorrelation of †( for our random 
surveillance policy at various lags after detrending the data and removing day of week effects with 
linear regression. For each lag e, the blue dotted lines represent an approximate two-sided 95% test 
statistic of the null hypothesis that the autocorrelation at lag e	is zero, assuming the underlying process 
†( is stationary white noise. Similarly, for each lag, the red dotted lines represent an approximate two-
sided 95% test statistic of the null hypothesis that the autocorrelation at lag e is zero, assuming the 
underlying process !! is a moving average process of order " − 1. (Computation of such confidence 
intervals is standard, e.g., see [27].) The plot suggests that the process does not exhibit 
autocorrelations that are statistically distinguishable from zero for lags greater than 7 days. Based on 
this analysis, we take Δ to be 8 days in what follows; our results are likely robust to small deviations 
of this value since we are performing a worst-case analysis. 
 

 
Figure 13: Autocorrelation of Off-Policy Estimates. Autocorrelation of the (de-trended, de-seasonalized) time series !* defining 
the IPW estimate. Blue lines are a 95% test statistic (2-sided) for the null hypothesis that the autocorrelation is zero, assuming !* 
is white noise. Similarly, the red lines are a 95% test statistic (2-sided) for the null hypothesis that the autocorrelation at lag "	is 
zero, assuming !* is a moving average process of order " − 1. Results strongly suggest that autocorrelations die rapidly and are 
negligible after 1 week. Both test statistics computed using Bartlett’s Formula; see [27]. Time series of length T = 88 days used 
in estimation. 

−0.5

0.0

0.5

1.0

0 5 10 15 20
Lag (days)

A
ut

oc
or

re
la

tio
n

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3789038

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



Page 20 of 32 
 

We now derive a worst-case upper bound on the variance. We write our upper bound in the special 
case of our 22(!) benchmark policy (recall that the estimate for the random surveillance policy is 
obtained by setting 22(!)= 1 for all I, !.)  
 
We first group terms in the sum defining ≠@!5AWX6Q2 by days modulo Δ. Specifically, define  

∏9 =	 A †(
(/9	X[RT9[	]

. 

Then,  

πàJ(≠@!5AWX6Q2) = πàJ	 ØA∏9

]*0

9/K

± 	= 	AA ç∫ªàJÑà£+)(∏9,∏X)	

]*0

X/K

]*0

9/K

	

≤ 	AA ºπàJÑà£+)(∏9	)	πàJÑà£+)(∏X)	

]*0

X/K

]*0

9/K

	

 
where the last inequality follows by taking the worst-case assumption that each ∏9 has correlation one 
with each ∏X. In so far as each ∏9 is a sum of terms †( whose autocorrelation is approximated in Fig. 
13 to be never more than 0.25, this upper bound is quite conservative.  
 
Under our assumption that autocorrelations of †( are negligible after Δ days, the terms of ∏9 are 
uncorrelated. Hence,  

πàJÑà£+)(∏9) = 	 A πàJÑà£+)(†().
(/9	X[RT9[	]

 

 
By conditioning on information up to time !, the law of total variance shows (after some simplification) 

πàJÑà£+)(†() = πàJÑà£+) ≤A 3Ä2⋅(!)	42(!)	•2(!)
2∈N)

	≥ + Ω æA 42(!)ë1 − 42(!)í
2∈N)

	
3Ä2⋅(!)+	•2(!)+

5D2⋅(!)
ø. 

 
A model-agnostic plug-in estimate of the second term above is 

A Ĵ2
5678!(!) ö1 − Ĵ2

5678!(!)õ
2∈N)

	
3Ä2⋅(!)+	•2(!)+

5D2⋅(!)
. 

 
Estimating the first term is more subtle. Using the expression for •2(!) we can rewrite the relevant sum 
as 

πàJÑà£+) ≤A 3Ä2⋅(!)	42(!)	•2(!)
2∈N)

	≥ = 	πàJÑà£+) ØA¿!(!)	5D⋅!(!)	

ℰ

!/0	

±, 

where 

¿!(!) = 	
∑ 42(!)	22(!)	3Ä2!(!)2∈N)	

∑ 	22(!)3Ä2!(!)2∈N)	
. 

 
The only source of randomness in the last expression is the random variables 5D⋅!(!). If the no-show 
rate were zero, 5D⋅!(!) would be deterministic because Eva always allocates the entire budget by 
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construction. The challenge is that when the no-show rate is non-zero, 5D⋅!(!) will be less than the 
testing budget at entry e.  
 
Fortunately, given our independence assumption on passenger no-show behavior,  

5D⋅!(!) ∼ .Ñ£∫¬Ñàe(	.!(!), 1 − √!5[*=W[^(!)	), 

where we recall that .!(!) is the testing budget at entry ) at time !, and √!5[*=W[^(!) is the probability 
a passenger does not travel after filing a PLF. Moreover, 5D⋅!(!) is independent across ).  
 
Based on these observations, we let  

√ù!5[*=W[^(!) = 1 −	
5D⋅!(!)
.!(!)

, 

Then, by plugging in this estimate into the formula for the variance of a binomial distribution and 
leveraging the independence yields the plug-in estimate 

πàJÑà£+) ØA¿!(!)	5D⋅!(!)	

ℰ

!/0	

± ≈ 	A¿!(!)+	5D⋅!(!)	√ù!5[*=W[^(!).

ℰ

!/0	

 

 
Combining all the pieces yields our final estimator of the variance. 
 

πàJ(≠@!5AWX6Q2) ≲ ∑ ∑ ºª9 	ªX	]*0
X/K

]*0
9/K , 

 
where  

ª9 =	 A A Ĵ2
5678!(!) ö1 − Ĵ2

5678!(!)õ
2∈N)

	
3Ä2⋅(!)+	•2(!)+

5D2⋅(!)
(/9	X[RT9[	]

	

+ 	 A A¿!(!)+	5D⋅!(!)	√ù!5[*=W[^(!).

ℰ

!/0	(/9	X[RT9[	]

 

 
Note, in instances where we scale our estimate ≠@!5AWX6Q2 by ÆSTU97A to account for unutilized tests, 
we scale the variance of our estimator by (ÆSTU97A)+. 
 
3.2.3 Drawbacks of Allocating Tests Based on Epidemiological Metrics 
 
Beyond the quantitative assessment above, we highlight some qualitative drawbacks of policies based 
on epidemiological metrics: 
 

1. Raw reported epidemiological data can be unreliable. In the months leading to Eva’s 
deployment (mid April to beginning of July, when the design was being crystallized), 51% of 
the daily tests performed and 12% of daily deaths were undefined (either due to periodic or 
inconsistent reporting) while 0.1% of reported deaths per capita were negative (see for example 
Fig. 14 below) among the countries from which we saw arrivals. This created serious concerns 
for the Eva team, epidemiologists and policymakers about making test allocations entirely 
based on these metrics. In our analysis, we use time series that were pre-processed by 
https://ourworldindata.org/ to correct for many of these issues with the benefit of hindsight, but 
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such corrections would not have been available in real-time. Finally, Greece has very little 
influence over real-time data quality as all data are provided (voluntarily) by other nations.  
 

2. Using a policy based on epidemiological metrics requires a similar capital infrastructure 
investment as Eva, but obtains a fraction of the benefits. In particular, to implement the above 
policy, one would still need the PLF system to know the daily arrival mix across types in order 
to determine testing probabilities. Such infrastructure is not required for the random 
surveillance policy, where one can simply choose passengers out of the customs line without 
knowing anything about arrival rates, but this policy performs substantively worse. 

 
3. These methods provide less effective surveillance. If a country's asymptomatic passenger 

population had disproportionately high risk relative to its publicly reported epidemiological 
metrics, one would never know and might unintentionally admit many such passengers. This 
outcome is especially concerning since Eva's estimates were also used in other downstream 
policy decisions. For example, the ministry of Civil Protection combined Eva’s risk estimates 
with travelers’ within-country itineraries to identify areas within Greece that had a likely 
relatively high (incoming) viral load. For such areas, mobile testing teams were allocated in 
order to aggressively test the local and visiting population, and preemptively impose stricter 
social distancing rules if deemed necessary. 

 
Figure 14: Reported daily deaths by Spain. Note the large negative value in late May that “corrected” previously reported 
cumulative counts. In addition, Spain abruptly stopped reporting daily deaths in late May and switched to cumulative reports.  

 

4 Evaluating the Predictive Power of Epidemiological Metrics 
 
We now turn to evaluating more sophisticated functions of population-level epidemiological metrics 
on cases, deaths and testing rates [20, 21, 22] in predicting traveler prevalence at the Greek border. 
Recently, [28] used mathematical modeling to show that forecasting within epidemiological SIR 
models (through data-driven parametrization of model parameters) is not effective in predicting spikes 
in infections. Hence, in our analysis, we prefer the use of flexible, non-parametric methods like 
Gradient-Boosted regression Models (GBM) [29] for building predictive models.4 Specifically, GBM 

 
4 Wherever we reference GBM, we have used the R implementation publicly available at: https://cran.r-
project.org/web/packages/gbm/index.html tuned with 5 fold cross-validation. 
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is a machine-learning algorithm based on tree ensembles, which are known to perform well in 
structured classification tasks [30, 31]. 
 
4.1 Predictive Value of Commonly Used Epidemiological Data  
 
We first provide details of our analysis of the predictive power of country level epidemiological data 
from the main text, namely, the ability of these data to predict whether a country was high-risk.  
 
We define a binary response variable for each country at each point in time as 1 if Eva’s estimated 
prevalence for that country was above 0.5%. We predict this binary response variable using gradient 
boosted regression models [29] with 500 trees and 5-fold cross-validation. These models have been 
shown to perform well across a variety of prediction tasks [30], but we also tested other predictive 
models such as LASSO and recurrent neural networks (RNNs) and obtained similar results. We use 
raw time series data for each epidemiological metric in this analysis, but we verified that we obtain 
essentially identical results with smoothed/pre-processed time series data. 
 
We evaluated different combination and granularities of public data, presented below: 

• Model 1: Features are the 14-day average of cases and deaths per capita. 
• Model 2: Features are the 14-day average of cases, deaths and tests performed per capita, and 

the positivity rate (number of positives divided by number of tests). 
• Model 3: Features are the 14-day timeseries of cases and deaths per capita. 
• Model 4: Features are the 14-day timeseries of cases, deaths and tests performed per capita, 

and the positivity rate. 
• Model 5: Features are the 14-day timeseries of cases, deaths and tests performed per capita, the 

positivity rate, and country fixed effects.  
 
For each model, we use the predictive performance on a held-out test set to assess the performance of 
our different estimators. Performance is measured by AUROC (area under ROC curve), which is a 
more informative metric than accuracy for imbalanced data [32]. Table 15 below reports the top 
features for each GBM model and their corresponding influence scores [29], which identify the features 
that most influence the resulting predictions. 
 
Feature Model 1 Model 2 Model 3 Model 4 Model 5 
14-day avg of cases per capita 50% 29% - - - 

14-day avg of deaths per capita 50% 30% 8% - - 

14-day avg of tests per capita  25% - 5% 7% 

14-day avg positivity rate  16%  - - 

Cases per capita (today)   17% 11% 9% 

Cases per capita (1 day lag)   5% - - 

Deaths per capita (today)   - 6% - 

Tests per capita (7 day lag)    12% 11% 

Tests per capita (12 day lag)    6% - 

Country fixed effect     25% 

AUROC 0.504 0.523 0.518 0.515 0.622 
Table 15: GBM feature influence scores for each model. For clarity, we only report influence scores for features with at least 5% 
influence on the model’s prediction. A “–” denotes features that were included but had negligible feature influence. Therefore, 
columns may add to less than 100%. 
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Again, as discussed in the main document, all models except Model 5 offer minimal improvement 
over a model which predicts randomly. Importantly, country fixed effects have significant influence 
(25%) in Model 5.  
 
4.2 Traveler Population vs. General Population 
 
As discussed in the main text, asymptomatic travelers to Greece from a particular country might exhibit 
fundamentally different demographic characteristics from that country’s general population. This 
difference would further explain why country-level epidemiological metrics are not very predictive of 
asymptomatic prevalence.  
 
To study this hypothesis, Fig. 16 below focuses on Germany, and compares the age distribution of the 
general adult population and travelers to Greece in summer of 2020. We focus on Germany as there 
were many German arrivals in our data, allowing for a large sample size.  
 
Perhaps expectedly, we observe that travelers are younger than the general population, suggesting a 
substantially different COVID-19 risk profile. There are likely many other distinguishing 
characteristics (e.g., socio-economic status, health risk), although these are difficult to quantify given 
the aggregated data Eva can access from the PLF. Nonetheless, these systematic differences underscore 
the need for reinforcement learning based methods that leverage testing data on the specific population 
of interest to make good testing decisions. 
 

 
Figure 16: Population-Level vs. Traveler Age Distribution. Age distribution of adult German population (red) versus the adult 
travelers originating from Germany (teal). n =527,974 PLFs were used to estimate traveler age distribution. 

 
4.3 Evaluation of Delay Between Prevalence and Public Case Data 
 
A second possible explanation for the poor predictive power of population-level epidemiological 
metrics are reporting delays. These delays might either be caused by information infrastructure 
(hospitals report up to a regional level on a weekly basis), or, more fundamentally, because COVID-
19 patients typically exhibit a delay between infection and the onset of symptoms. Stressed healthcare 
systems in summer of 2020 may have focused testing on symptomatic populations, thus providing 
estimates that lag asymptomatic prevalence.  
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To study potential delays, we focus on reported cases per capita. For each country, we aim to classify 
whether it is currently at risk, i.e., its prevalence (as measured by Eva) exceeds its median prevalence 
over the summer. Intuitively, if a country’s case data lags its underlying prevalence by ℓ days, then we 
can much more effectively predict its risk status Ö( on day ! using case data from ℓ days in the future, 
i.e., cases in the period [! + ℓ − 14, ! + ℓ]. Consequently, for each country, we build separate gradient 
boosted regression models for each ℓ ranging from 1 to 20. The left panel of Fig. 17 shows the resulting 
AUROC as a function of ℓ for 3 representative countries. A large AUROC for some ℓ suggests an 
information delay of ℓ days, e.g., France exhibits a delay of 8-9 days. 
 
We then use mixed-integer optimization to group countries into a small number of clusters with similar 
delays ℓ. In particular, we take as input the AUROC ΩAℓ of the model for country + with lag ℓ based 
on the above analysis. Then, for a given value of z clusters, we solve the following binary optimization 
problem: 
 

max
`,\

AAΩAℓ∆Aℓ

+K

ℓ/0

a

A/0

	

§. !. ∆Aℓ ∈ {0, 1}	
		∆Aℓ ≤ Öℓ	for all + ∈ {1,… , ,}	

		A ∆Aℓ = 1	for all + ∈ {1,… , ,}
+K

ℓ/0

 

		AÖℓ ≤ z

+K

ℓ/0

 

 
Figure 17: Information Delays in Population-Level Cases. Left: AUROC for various ℓ for three representative countries: Austria 
(AT), France (FR), and Great Britain (GB). Large AUROC at lag ℓ suggests an information delay of ℓ days. The number of 
datapoints used to estimate the AUROC at each lag l above ranges from 70 to 90 (depending on the lag used). Right: Elbow graph 
of the objective value of the optimization problem vs the number of clusters M. The sharp change in slope at 3 suggests three 
clusters in the data. 

	
This optimization assigns each country to a single lag, encoded by the decision variable ∆Aℓ. Every 
country must be assigned some lag (the first equality constraint). The first inequality constraint ensures 
that the variables Öℓ will be equal to 1 and non-zero only if some country was assigned lag ℓ. The final 
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inequality constraint ensures that there are no more than z distinct lags to which countries are assigned. 
In other words, the optimization seeks a clustering of countries to lag with minimal error and no more 
than z clusters. We solved this optimization for various values of z and used the common heuristic 
of looking for an “elbow” in the resulting objective (see right panel of Fig. 17) to select z = 3.  
 
Fig. 18 identifies the resulting three clusters of delays: short (1 day), medium (9 days) and long (16 
days), as well as representative countries in each cluster. 
 

  
Figure 18: Information Delays across Countries. Three clusters are identified with Short (1 day), Medium (9 days) and Long (16 
days) information delays. The table lists representative countries from each cluster. 

 

5 Grey-listing Counterfactuals 
 
Although not a fully algorithmic element of Eva’s deployment, grey-listing decisions were partially 
made on the estimates produced by Eva. We next examine some aspects and consequences of the 
grey-listing decisions in summer 2020. For completeness, the complete list of countries that were 
grey-listed and the time at which they were grey-listed is in Table 19.  
 

ISO Code Start Date End Date 
BG 2020-07-28 - 
RO 2020-07-28 - 
MT 2020-08-12 - 
SE 2020-08-18 - 
BE 2020-08-18 - 
ES 2020-08-18 - 
NL 2020-08-01 2020-08-31 
IL 2020-09-14 - 
CZ 2020-09-28 - 
PL 2020-10-03 - 

 

Table 19: Grey-listed Countries. Over summer 2020, 10 countries were grey-listed. These are listed above with day that grey-
listing began, and, in the case of the Netherlands, the day grey-listing ended. All other countries remained grey-listed for the 
duration of Eva’s operation. 
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Grey-listing has two effects: it reduces the prevalence of infections among arrivals (because all arrivals 
are required to obtain a negative PCR test) and it reduces arrivals (because it is difficult or inconvenient 
for tourists to obtain a test). To assess the impact of our grey-listing policy, we must estimate the 
counterfactual prevalence and arrival rate that would have occurred had we not grey-listed a nation. 
For both estimates, we use gradient boosted regression models (GBM). Specifically, our models are as 
follows: 
 
Counterfactual Prevalence Model: The unit of observation is a country-date pair and the response is 
the prevalence estimated by Eva. We have training data from white-listed and grey-listed countries 
prior to grey-listing, as well as training data from white-listed countries post grey-listing. Our features 
included time series data of publicly reported cases, deaths and testing rates for each day within a 
[−20,+20] day range, a categorical country variable to control for fixed-effects, as well as the date 
(to capture global time trends). Note that we include data from future dates to account for the 
information lag in public data. 
 
The resulting prevalence model was used to predict the prevalence for grey-listed countries prior to 
grey-listing (in-sample) and up to 9 days post grey-listing (out-of-sample); the latter yields 
counterfactual prevalence estimates to infer the number of infections prevented by grey-listing. The 
left panel of Fig. 20 depicts the results for Malta; as desired, we observe a close match between the 
true and counterfactual prevalence prior to grey-listing.  
 
Observe that our prevalence estimates indicate a sustained drop in prevalence among arrivals from the 
grey-listed country. One week after grey-listing, we still see a 44% reduction on average in prevalence 
for grey-listed countries relative to the non-grey-listed counter factual estimates. 
 
Counterfactual Arrivals Model: The unit of observation is every grey-listed country-date pair and the 
response is the 7-day rolling average number of arrivals from that country on that day. We have training 
data from all countries prior to grey-listing, as well as training data from non-grey-listed countries post 
grey-listing. Our features included current total arrivals from white-listed countries, total arrivals from 
black-listed countries, a categorical country variable, as well as the date (to capture global time trends). 
One concern is that, as discussed earlier, a significant fraction of scheduled arrivals does not materialize 
at the border, and this varies by country. However, our data suggests that the no-show rate does not 
materially change due to the grey-listing policy. Thus, we compute a single no-show rate per country, 
and use this as a multiplier on both actual and predicted arrival rates to calculate actual arrivals. 
 
The resulting arrivals model was used to predict arrivals for grey-listed countries prior to grey-listing 
(in-sample) and up to 9 days post grey-listing (out-of-sample); the latter yields counterfactual arrival 
estimates to infer the number of infections prevented by grey-listing. The right panel of Fig. 20 depicts 
the results for Malta; as desired, we observe a close match between the true and counterfactual arrivals 
prior to grey-listing.  
 
These predictions also indicate a sustained drop in arrivals from the grey-listed country. In particular, 
one week after grey-listing, we see a 39% reduction on average in arrivals for grey-listed countries 
relative to the non-grey-listed counter factual estimates. 
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Figure 20: Grey-listing Counterfactuals for Malta. Measured and counterfactually estimated prevalence (left) and arrival rates 
(right) for Malta before and after-grey-listing. Grey-listing occurred on 12 Aug (dotted line). As desired, the models visually 
track both true prevalence and true arrival rates well prior to the grey-listing intervention (overlapping lines). The 
counterfactuals in the left and right panels were estimated on n=14,748 and n=460 observations respectively. 

 
5.1 From Counterfactual Analysis to the Value of Grey-listing 
 
One might argue that our analysis in Section 3 of the performance of benchmark policies is overly 
optimistic for the benchmarks (pessimistic for Eva), because we assumed these benchmarks 
implemented the same grey-listing decisions as Eva. Absent Eva’s reinforcement learning, grey-listing 
decisions would necessarily be made on publicly available epidemiological data, and, in light of our 
results in Section 4 on the limited predictive power of country-level epidemiological data, it is not 
obvious such decisions would perform as well. Hence, we next attempt to quantify the benefit Eva 
enjoyed due to its grey-listing decisions relative to a policy that would grey-list the same countries as 
Eva, but 9 days later (based on our lag analysis in Section 4).  

In more detail, grey-listing functionally causes infected passengers to stay in their origin country and 
not travel to Greece, either because they cannot easily obtain an PCR test, or their PCR test indicates 
they are infected. We use the above counterfactual analysis to estimate the number of infections that 
Eva prevented by grey-listing as  

3Ä2
bIc(!)	Ĵ2

bIc(!) −	3Ä2(!)	Ĵ2
?@(!), 

where	Ĵ2bIc(!), 3Ä2bIc(!) are the model predictions for prevalence and arrivals under the grey-listing 
counterfactual from the previous subsection. The above difference is then an estimate of the total 
number of infected arrivals in the non-grey-listed scenario minus the total number of infected arrivals 
in the grey-listed scenario. Notice all these infections were prevented by Eva since none of them arrived 
in Greece (they remained home and did not travel). We sum this contribution up for every day in the 9 
days following grey-listing for every country that was grey-listed to form our estimate of the value of 
grey-listing in the main paper.  
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5.1.1 Estimating the Variance 
 
We estimate the variance of this value of grey-listing conditional on the arrival process. The dominant 
term in the variance stems from the variability of 3Ä2bIc(!)	Ĵ2bIc(!), and, in particular, from variability 
in our grey-list counterfactual estimation procedure above. Hence, we focus on quantifying this 
variability.  
 
Specifically, for each counterfactual model, we evaluate the prediction error by splitting our original 
training dataset into a training set (70% of observations) and test set (30% of observations). The 
residuals on the test set Ö − Öù appear roughly normally distributed in both cases. Denote the variance 
of the residuals as «SQ!8+  for predicting prevalence, and «6QQ+ (+) for predicting arrivals for country +.5 
Thus, we model our counterfactual estimates of prevalence and arrivals as normal random variables, 
centered around the predicted value with variance given by «SQ!8+  and «6QQ+ (+) respectively. We then 
compute the value of grey-listing 9 days later than Eva (as described above) across 1 million Monte 
Carlo simulations to numerically estimate its variance. 
 
5.1.2 Results 
 
For privacy reasons, we again present results scaled by an arbitrary constant which is taken to be the 
actual number of infections identified by Eva in summer 2020 for ease of comparison.  
 
During the peak season, Eva prevented an additional 6.7% (±1.2%) asymptomatic, infected travelers 
from entering through its early grey-listing decisions. In the off-peak season, this number was similar 
6.8% (±0.5%). In both cases, for privacy reasons we have expressed the benefit (and standard error) 
relative to the actual number of infected travelers identified by Eva in the corresponding period.  
 

6 Data Governance, Storage, Privacy 
 
The Greek Government detailed its travel protocols and intent to carry out diagnostic screening 
throughout the 2020 Tourist season in Joint Ministerial Decision Nr. Δ1αΓΠ. oικ 40383/28.6.2020 
(Journal of Greek Government, B’ 2602). This document outlines both the collection and storage of 
PLF data and testing results. Here, we only summarize pertinent details. A complete Privacy Policy 
issued by the Greek Government is available at [4], including details on travelers’ rights to amending 
or requesting deletion of their data, routine personal data deletion procedures, and other legal details. 
 
In GDPR terminology, the General Secretariat of Civil Protection (GSCP) in the Greek Government 
is the “Controller” of the personal data. Similarly, the Ministry of Digital Governance (MDG) 
is the “Processor” of the data. 
 
Both the GSCP and MDG committed to a high level of protection of travelers’ personal data in 
accordance with all EU regulations, GDPR, and Greek law. GSCP collected travelers’ personal data 
(with consent) via the Passenger Locator Form (PLF). These personal data were necessary for contact 
tracing and other public safety measures. This collection and processing of data is necessary (Art 6 
GDPR) for the performance of a task carried out in the public interest (for the protection of Public 

 
5 We used a single model to predict prevalence for all countries, but we used a separate country-specific model to 
predict arrivals for each grey-listed country. These decisions were made to improve out-of-sample accuracy. 
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Health) and in the exercise of official authority vested in the controller (9 ar. 9 par. 2 i, Greek Law 
4624/2019 ar. 22 par. 1 c). 
  
Data were stored on a cloud-server located in European Union and encrypted using the (industry 
standard) AES-256 encryption algorithm.  
 
The source code that implements the algorithms described in the paper resided on the servers of the 
Controller, received pseudonymized/aggregated data from the Controller and output data (testing 
recommendations) to the Controller. Researchers only have access to the source code that implements 
the algorithm for maintenance purposes but do not have access rights to read or write data from or to 
the database clusters of the Controller. At no point did researchers have access to personal data since 
the processing, reading and writing from the database clusters of the Controller can only be performed 
by the Processor and the Controller (who ensure GDPR compliance as described above). 
 

7 Other Technical Implementation Details 
 
Eva can roughly be described as four modules: 

1. The Application Communication Interface (API) used for communication with the Greek data 
provider (GR-DB)  

2. The Eva Engine  
3. The Continuous Deployment System 

These modules were contained in the same Virtual Private Cloud (VPC) and, to ensure privacy, no 
incoming communication to the open internet was allowed. Any incoming or outgoing data 
connections with GR-DB took place through a common VPC using the API module.  
 
The API module operated on AWS Lambda, the serverless computing service of Amazon. The API 
had two serverless functions: one responsible for data ingestion, and the other for communication of 
results back to GR-DB. To provide additional security, token-based authentication was implemented 
and enforced, and all authentication attempts were logged.  
 
The Eva Engine module operated on Amazon Elastic Compute Cloud (EC2) on an 8 V-CPU and 32 
GiB Memory server. It contained the code for running the Eva algorithm, which outputs daily test 
allocations given recent testing results and the current passenger manifest. The results were stored for 
analysis purposes to the Database and were also transformed to various formats to be sent to the API.  
 
A Continuous Deployment system was in place to ensure that updates to the code could be deployed 
easily and safely in the API or the Eva engine, while offering functionality for logging, notifications 
and rollback. 
 
There were three identical versions of the Eva system all running in parallel: a production version that 
had the latest verified and approved code, a “staging” version that had code that had not yet been 
verified for validity, and a development version for active research and development. The daily cost of 
the Eva portion of the system ranged from $17 to $25 per day. 
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