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Abstract

Many applications require minimizing a fam-
ily of optimization problems indexed by some
hyperparameter λ ∈ Λ to obtain an entire
solution path. Traditional approaches pro-
ceed by discretizing Λ and solving a series
of optimization problems. We propose an
alternative approach that parameterizes the
solution path with a set of basis functions
and solves a single stochastic optimization
problem to learn the entire solution path.
Our method offers substantial complexity im-
provements over discretization. When us-
ing constant-step size SGD, the uniform er-
ror of our learned solution path relative to
the true path exhibits linear convergence to
a constant related to the expressiveness of
the basis. When the true solution path
lies in the span of the basis, this constant
is zero. We also prove stronger results for
special cases common in machine learning:
When λ ∈ [−1, 1] and the solution path
is ν-times differentiable, constant step-size
SGD learns a path with ϵ uniform error af-

ter at most O(ϵ
1

1−ν log(1/ϵ)) iterations, and
when the solution path is analytic, it only re-
quires O

(
log2(1/ϵ) log log(1/ϵ)

)
. By compar-

ison, the best-known discretization schemes
in these settings require at least O(ϵ−1/2)
discretization points (and even more gradi-
ent calls). Finally, we propose an adaptive
variant of our method that sequentially adds
basis functions and demonstrate strong nu-
merical performance through experiments.
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1 Introduction

Many decision-making applications entail solving a
family of parametrized optimization problems:

θ∗(λ) ∈ arg min
θ∈Rd

h(θ, λ), λ ∈ Λ, (1)

where Λ is an arbitrary set of parameters indexing the
problems. (We assume Problem (1) admits an optimal
solution for each λ ∈ Λ.) In such applications, we
often seek to compute the entire solution path {θ∗(λ) :
λ ∈ Λ} in order to present experts with a portfolio of
possible solutions to compare and assess tradeoffs.

As an example, consider the p-norm fair facility lo-
cation problem (Gupta et al., 2023), which mini-
mizes facility opening costs while incorporating lp-
regularization to promote fairness across socioeco-
nomic groups. Since there is no obvious choice for
p, we might prefer computing solutions for all p and
allowing experts to (qualitatively) assess the resulting
solutions. Many other applications entail navigating
similar tradeoffs, including upweighting the minority
class in binary classification to tradeoff Type I and II
errors or aggregating features to increase interpretabil-
ity at the expense of accuracy. In each case, we seek
the entire solution path because selecting the “best”
solution requires weighing a variety of criteria, some
of which may be qualitative. These settings differ
from classical hyperparameter tuning where there is
a clear auxiliary criterion (like out-of-sample perfor-
mance), and it would be enough to identify the single
λ∗ ∈ Λ such that θ∗(λ∗) optimizes this criteria.

The most common approach to learning the entire so-
lution path is discretization: discretize Λ, solve Prob-
lem (1) at each grid point, and interpolate the result-
ing solutions. With enough grid points, interpolated
solutions are approximately optimal along the entire
path. Several authors have sought to determine the
minimal the number of discretization points needed to
achieve a target level of accuracy, usually under mini-
mal assumptions on h(θ, λ). Giesen et al. (2010) con-
siders convex optimization problems over the unit sim-
plex when Λ ⊆ R and show that learning the solution
path to accuracy ϵ requires at least O(1/ϵ) grid points.
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Giesen et al. (2012) consider the case where h(θ, λ)
is concave in λ and Λ ⊆ R and show only O(1/

√
ϵ)

points are needed. More recently, Ndiaye et al. (2019)
relate the required number of points to the regular-
ity of h(θ, λ), arguing that if h is uniformly convex of
order d, one requires O(1/ d

√
ϵ) points.

A potential criticism of this line of research is that the
computational complexity of these methods depends
not only on the number of grid points but also de-
pends on the amount of work per grid point, e.g., as
measured by the number of gradient calls used by a
first-order method. Generally speaking, these meth-
ods do not share much information across grid points,
at most warm-starting subsequent optimization prob-
lems. However, gradient evaluations at nearby grid
points contain useful information for optimizing the
current grid point, and leveraging this information
presents an opportunity to reduce the total work.

1.1 Our Contributions

We propose a novel, simple algorithmic procedure to
learn the solution path that applies to an arbitrary
set Λ. The key idea is to replace the family of prob-
lems in (1) with a single stochastic optimization prob-
lem. This stochastic optimization problem depends
on two user-specified components: a distribution Pλ

over values of λ ∈ Λ and a collection of basis functions
Φj(·) : Λ→ Rd, j = 1, . . . , p. We then seek to approx-
imate θ∗(λ) as a linear combination of basis functions,

Φ1:p(λ)β̂, where Φ1:p := [Φ1 Φ2 · · · Φp] and β̂ is an
approximate solution to

min
β∈Rp

Eλ̃∼Pλ

[
h(Φ1:p(λ̃)β, λ̃)

]
. (2)

In contrast to discretization schemes which only lever-
age local information, (stochastic) gradient evalua-
tions of Problem (2) inform global structure. More-
over, through a suitable choice of basis functions, we
can naturally accomodate complex sets Λ in contrast
to earlier work that only treats Λ ⊆ R. Finally, any
stochastic optimization routine can be used on Prob-
lem (2) beyond just SGD (see, e.g., Lan (2020); Bottou
et al. (2018), among others).

Despite its simplicity, our approach can approximate
the solution path to higher accuracy than discretiza-
tion with fewer gradient evaluations. See Figure 1 for
a sample of our numerical results on weighted binary
classification using SGD to solve Problem (2). We
prove this behavior is typical. Loosely,

i) When using constant step-size SGD to solve Prob-
lem (2), we prove that the uniform error of our

learned path Φ1:p(λ)β̂ to the true path θ∗(λ) ex-

Figure 1: Learning Solution Path of Weighted
Binary Classification. See Section 6 for setup. We
compare our method with p = 5, 7, 9 Legendre polyno-
mials as our basis with uniform discretization. Orange
line is our adaptive method (c.f. Algorithm 1). Verti-
cal lines indicate when new basis functions are added.

hibits linear convergence to an irreducible con-
stant that is proportional to the expressiveness of
the basis (Theorem 3.4). This behavior is already
visible in Figure 1.

The proof of this result utilizes ideas from the con-
vergence of SGD under various “growth conditions” of
the gradient (Bottou et al., 2018; Nguyen et al., 2018;
Vaswani et al., 2019; Liu et al., 2024; Bertsekas, 1996).
See Khaled and Richtárik (2020) for a summary and
comparison of these various conditions. Our contribu-
tion to this literature is to relate the expressiveness
of the basis Φ1:p(λ) to a relaxed, weak-growth condi-
tion of Gower et al. (2019, Lemma 2.4). Indeed, we
show that under some assumptions, Problem (2) al-
ways satisfies this relaxed weak-growth condition, and
if the solution path lies in the span of the basis, it
satisfies the weak-growth condition of Vaswani et al.
(2019). This allows us to leverage results from those
works to establish Theorem 3.4.

In special cases, we can leverage a priori knowledge of
the structure of θ∗(λ) to prove stronger results. For
example, suppose Λ = [−1, 1], and we use Legendre
polynomials as our basis. We prove that

ii) If the solution path θ∗(λ) is ν-times differentiable,

then using p = O
(
ϵ

1
2(1−ν)

)
polynomials ensures

that after T = O
(
ϵ

1
1−ν log(1/ϵ)

)
gradient calls,

we obtain an ϵ-approximation to the solution path
(Theorem 4.3).

For comparison, Ndiaye et al. (2019) implies that when
h(θ, λ) is strongly-convex, discretization requires at
least O(ϵ−1/2) points. Hence, even if the optimiza-
tion problem at each grid point can be solved with 1
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Algorithm 1 Adaptively Learn the Solution Path
(ALSP)

1: Initialize: Φ1:0(·)← [ ] and β̂0 ← [ ]

2: Return: A sequence of coefficients: β̂1, β̂2, . . .

3: At iteration p = 1, 2, . . . do
4: Append a new basis function:

Φ1:p(·)← [Φ1:p−1(·) Φp(·)]

5: Run a first-order method, starting from
6: [β̂p−1, 0] ∈ Rp, to obtain

β̂p ≈ arg min
β∈Rp

Eλ̃∼Pλ

[
h(Φ1:p(λ̃)β, λ̃)

]
.

gradient evaluation, our approach requires asymptoti-
cally fewer evaluations whenever ν > 3. If ν is large,
the savings is substantive.

iii) If the solution path θ∗(λ) is analytic (ν = ∞),
then using p = O(log(1/ϵ)) basis polynomials en-
sures that after T = O(log2(1/ϵ) log log(1/ϵ)) it-
erations, we obtain an ϵ-approximation to the so-
lution path (Theorem 4.5).

This is almost exponentially less work than discretiza-
tion.

These specialized results strongly suggest that in the
general setting our approach should be competitive as
long as we use enough basis functions. This observa-
tion motivates a natural heuristic in which we adap-
tively add basis functions whenever the stochastic op-
timization routine (e.g., SGD) stalls (see Algorithm 1
and Section 5 for details). We illustrate this idea in
Figure 1 (orange line) where we can see that by pro-
gressively adding functions we drive the uniform error
to zero rapidly.

1.2 Other Related Work

There are some works that consider the total compu-
tational work to learn a solution path, typically focus-
ing on a specific choice of h(·, ·). See, e.g., Tibshirani
(1996); Cortes and Vapnik (1995); Rosset (2004); Ros-
set and Zhu (2007); Friedman et al. (2010); Osborne
et al. (2000); Hastie et al. (2004); Efron et al. (2004);
Mairal and Yu (2012); Tibshirani and Taylor (2011);
Ndiaye and Takeuchi (2021) for results on LASSO and
regularized SVM; Park and Hastie (2007); Bao et al.
(2019) for results on L1-regularization. Liu and Gri-
gas (2023) study a regularization path setting from
an ordinary differential equations perspective using
second-order methods. Overall, our work is similar
to this larger stream in that we focus on total com-
putational cost, but, unlike this stream, we develop a

general-purpose framework with minimal assumptions
on h(·, ·).

2 Model Setup and Preliminaries

We denote the ℓ2-norm by ∥ · ∥ throughout. We focus
on the case of smooth, strongly convex functions:

Assumption 2.1 (Uniform Smoothness and
Strong Convexity). There are constants 0 < µ ≤ L
such that, for all λ ∈ Λ, h(·, λ) is µ-strongly convex
and L-smooth, i.e., for all θ, θ̄ ∈ Rd,

µ

2
∥θ−θ̄∥2 ≤ h(θ)−h(θ̄)−∇h(θ̄)⊤(θ−θ̄) ≤ L

2
∥θ−θ̄∥2.

For any candidate solution path θ(·), we define the
solution path error of θ(·) by

ϵsp(θ(·)) := sup
λ∈Λ
{h(θ(λ), λ)− h(θ∗(λ), λ)} .

An ϵ-solution path is a solution path θ(·) such that
ϵsp(θ(·)) < ϵ. Finally, given any vector of coefficients
β and basis functions Φ1:p(·), we define ϵsp(β) :=
ϵsp(Φ1:p(·)β) to be the solution path error of Φ1:p(·)β.

As mentioned, our method depends on two user-chosen
parameters: a distribution Pλ over λ ∈ Λ and a series
of basis functions Φj : Λ 7→ Rd, for j = 1, . . . , p. We
require some minor assumptions on these choices:

Assumption 2.2. (Distribution, Basis Func-
tions, and Linear Independence).

i) It is easy to generate i.i.d. samples from Pλ.

ii) It is easy to compute Φj(λ) ∈ Rd for any λ ∈ Λ,
and 1 ≤ j ≤ p.

iii) There does not exist β ∈ Rp with β ̸= 0 such that
Φ1:p(λ̃)β = 0 holds Pλ-almost everywhere.

This last condition is a linear independence assump-
tion. If violated, one can remove a function without
affecting the span of the basis on the support of Pλ.

Given Φ1:p, we define the minimal solution path error
for this basis by

ϵ∗sp := inf
β∈Rp

ϵsp(β).

We also define the following auxiliary constants:

C := sup
λ∈Λ

σmax

(
Φ(λ)⊤Φ(λ)

)
, (3)

c := σmin

{
Eλ̃∼Pλ

[
Φ(λ̃)⊤Φ(λ̃)

]}
.

In words, C is a uniform bound on the largest eigen-
value of the positive semidefinite matrix Φ(λ)⊤Φ(λ),
and c is the smallest eigenvalue of the corresponding
expected matrix. By construction, 0 ≤ c ≤ C. Under
Assumption 2.2, both constants are strictly positive.
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Lemma 2.3 (Positive Spectral Values). If As-
sumption 2.2 holds, then 0 < c ≤ C.

We can now state our first key result which relates the
suboptimality of a feasible solution β in Problem (2)
to its solution path error. Define

β∗
avg ∈ arg min

β∈Rp
Eλ̃∼Pλ

[
h(Φ(λ̃)β, λ̃)

]
.

Theorem 2.4 (Relating Suboptimality to Solu-
tion Path Error). Under Assumptions 2.1 and 2.2,
for any β ∈ Rp, we have

ϵsp(β) ≤ 2CL∥β − β∗
avg∥2 +

(
8CL

cµ

)
ϵ∗sp.

This bound decomposes into two terms, one propor-
tional to ∥β − β∗

avg∥2, which represents the subopti-
mality of β and the other proportional to ϵ∗sp, which
measures the maximal expressiveness of the basis. By
solving Problem (2) to greater accuracy, we can drive
down the first term, but we will not affect the second
term. To reduce the second term, we must add basis
functions to obtain a better quality approximation.

Theorem 2.4 shows any algorithm for solving Prob-
lem (2) can be used to approximate the solution path.
In the next section, we argue that when ϵ∗sp is small,
constant step-size SGD for Problem (2) exhibits linear
convergence to a constant proportional to ϵ∗sp, making
it an ideal algorithm to study.

3 SGD to Learn the Solution Path

In this section, we apply constant step-size SGD to
solve Problem (2). The key idea is to show that Prob-
lem (2) satisfies a certain growth condition and ap-
ply Gower et al. (2019, Theorem 3.1). One minor
detail is that Gower et al. (2019) proves their result
under a stronger “expected smoothness” condition for
the setting where the objective Problem (2) is a finite
sum. However, the result holds more generally under
a weaker condition (Eq. (9) of their work). Hence,
for clarity, we first restate this condition and the more
general result.

The following definition is motivated by Gower et al.
(2019, Lemma 2.4):

Definition 3.1 (Relaxed Weak Growth Con-
dition (RWGC)). Consider a family of functions
g(·, z) : Rd → R, z ∼ Pz, and G(·) := Ez∼Pz [g(·, z)].
Let G∗ := minw∈Rd G(w). Then, g and G are said
to satisfy the relaxed weak growth condition with con-
stants ρ ≥ 0 and σ ≥ 0, if for all w ∈ Rd,

Ez∼Pz

[
∥∇g(w, z)∥2

]
≤ 2ρ(G(w)−G∗) + σ2.

When σ = 0, Definition 3.1 recovers the weak growth
condition of Vaswani et al. (2019). In this case, the
variance of the stochastic gradients goes to zero as we
approach an optimal solution. Hence, at optimality,
not only is the expectation of the gradient zero, but
it is zero almost surely in z. For regression problems,
this condition corresponds to interpolation.

Definition 3.1 is implied by a standard second moment
condition on the gradients (take ρ = 0). However, the
most interesting cases are when σ2 is small relative to
ρ and ρ > 0. (This will be the case for Problem (2).
See Section 3.1.)

We then have the following theorem.

Theorem 3.2 (Gower et al. (2019)). Suppose that the
RWGC holds for the family of functions g(·, z) : Rd →
R, and that G(·) := Ez∼Pz

[g(·, z)] is µg-strongly con-
vex for some for some µg > 0. Consider the SGD
algorithm, initialized at w0 ∈ Rd, with iterations

wt+1 = wt −
η̄

ρ
∇g(wt, zt),

where zt ∼ Pz is a random sample and η̄ ∈(
0,min

{
1, ρ

µg

}]
parametrizes the step-size. Then for

all t ≥ 0, we have

E[∥wt −w∗∥2] ≤
(
1− η̄µg

ρ

)t

∥w0 −w∗∥2 + η̄σ2

ρµg
.

In other words, constant step-size SGD under the
RWGC exhibits a “fast” linear convergence in expec-
tation up to a constant that is directly proportional
to σ2, after which it stalls. When σ2 = 0, we exactly
recover the result of Vaswani et al. (2019). To keep
the exposition self-contained, we provide a proof in
the appendix.

3.1 Solving Problem (2) with SGD

We next prove that Problem (2) satisfies RWGC, and
in particular, that the “σ2” term depends on ϵ∗sp, the
minimal solution path error of the basis. To our knowl-
edge, we are the first to make this observation.

Define

f(β, λ) := h(Φ(λ)β, λ), (4a)

F (β) := Eλ̃∼Pλ

[
f(β, λ̃)

]
= Eλ̃∼Pλ

[
h(Φ(λ̃)β, λ̃)

]
, (4b)

Lemma 3.3 (Problem (2) satisfies RWGC). Sup-
pose that Assumptions 2.1 and 2.2 hold and recall the
constants defined in Equation (3). Then, the family
of functions f(·, λ) and the function F (·), defined in
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Equation (4), satisfy the relaxed weak growth condition
(RWGC) with constants ρ = CL and σ2 = 2CLϵ∗sp.

Namely, for all β ∈ Rd,

Eλ̃∼Pλ

[
∥∇f(β, λ̃)∥2

]
≤ 2CL(F (β)− F ∗) + 2CLϵ∗sp.

In addition, F (·) is cµ-strongly convex.

We now combine Theorems 2.4 and 3.2 and Lemma 3.3
to yield our main result: a bound on the expected so-
lution path error for constant step-size SGD. Recall
constant step-size SGD in this setting yields the iter-
ation

βt+1 ← βt − η∇βh(Φ(λ̃t)βt, λ̃t),

where

∇βh(Φ(λ̃t)βt, λ̃t) = Φ(λ̃t)
⊤∇θh(Φ(λ̃t)βt, λ̃t),

and λ̃t ∼ Pλ. We assume that the gradient ∇θh(θ, λ)
is easily computable for any θ and λ.

We then have:

Theorem 3.4 (Expected Solution Path Error
Convergence for SGD). Under Assumptions 2.1
and 2.2, consider applying SGD to Problem (2) with a
constant step-size η = η̄

CL parameterized by η̄ ∈ (0, 1].
Then, after T iterations, the expected solution path er-
ror is at most

E [ϵsp(βT )] ≤ 2CL∥β0 − β∗
avg∥2

(
1− η̄cµ

CL

)T
+

(
4CL(η̄ + 2)

cµ

)
ϵ∗sp.

In particular, when ϵ∗sp > 0, then for T ≥⌈
CL
η̄cµ log

(
cµ∥β0−β∗

avg∥
2

2η̄ϵ∗sp

)⌉
,

E [ϵsp(βT )] ≤
(
8CL(η̄ + 1)

cµ

)
ϵ∗sp.

When ϵ∗sp = 0, then for any ϵ > 0 and T ≥⌈
CL
η̄cµ log

(
2CL∥β0−β∗

avg∥
2

ϵ

)⌉
,

E [ϵsp(βT )] ≤ ϵ.

Theorem 3.4 highlights the role of the basis functions
in our results. First we see that as T → ∞, the ex-
pected solution path error plateaus at a constant pro-
portional to CL

cµ ϵ
∗
sp. As mentioned, ϵ∗sp measures the

expressiveness of the basis, and we expect ϵ∗sp to be
small as we add more basis functions. We interpret
CL
cµ as a condition number for Problem (2), which also

depends on the choice of basis through Equation (3).
This constant increases as we grow the basis. Finaly,

the iteration complexity scales linearly with this con-
dition number. Thus, an “ideal” basis must navigate
this tradeoff between ϵ∗sp and C/c.

Fortunately, there exists a rich theory on function
approximation that studies the relationship between
basis functions, uniform error, and eigenspectra. In
the next section we leverage this theory to provide a
comparison of our method with existing discretization
techniques in a specialized setting.

4 Specialized Results for Λ = [−1, 1]

We next leverage results from function approximation
theory to bound the number of basis functions needed
to achieve a target solution path error. We focus on
the case Λ = [−1, 1] as it facilitates simple comparisons
to existing results and elucidates key intuition.

We use a simple basis: we approximate each compo-
nent i = 1, . . . , d of θ∗i (·) by the first q Legendre poly-
nomials. Hence the total number of basis functions
is p = qd. Recall, the Legendre polynomials form an
orthogonal basis on [−1, 1] with respect to the uni-

form distribution, i.e., Eλ̃∼Unif[−1,1]

[
Pn(λ̃)Pm(λ̃)

]
=

2
2n+1 I {n = m}, where Pn and Pm are the nth and mth

Legendre polynomial, respectively. Since we approxi-
mate each component separately, the matrix Φ(λ) ∈
Rd×qd is block-diagonal, with d blocks of size 1× q.

For this basis, depending on the value of p = qd im-
plied by the choice of q, let Cp, cp refer to the constants
(3). We can bound the constant Cp/cp:

Lemma 4.1 (Cp/cp for Legendre Polynomials).
Take Λ = [−1, 1] and Pλ to be the uniform distribution
on [−1, 1]. Then, for the above basis, Cp/cp ≤ q2.

Notice, that this constant is independent of d and
grows mildly with q. This is not true of all polyno-
mial bases. One can check empirically that for the
monomial basis, Cp/cp grows exponentially fast in q.

Bounding ϵ∗sp depends on the properties θ∗(λ). As a
first example,

Lemma 4.2 (ϵ∗sp for ν-Differentiable Solution
Paths). Let Λ = [−1, 1]. Suppose Assumption 2.1
holds and that there exists an integer ν ≥ 0 and con-
stant V > 0 such that for all i = 1, . . . , d, θ∗i (λ) has ν

derivatives and the νth derivative θ
∗(ν)
i is V -Lipschitz

continuous. Then, for any q ≥ ν + 1, for the basis

described above, ϵ∗sp ≤ dL
2

(
2V

πν(q−ν)ν

)2
.

The proof of Lemma 4.2 is constructive; we exhibit a
polynomial with the given solution path error.

Combining these lemmas with Theorem 3.4 allows us
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to calculate the requisite basis size and number of iter-
ations needed to achieve a target solution-path error:

Theorem 4.3 (SGD for ν-differentiable Solu-
tion Paths). Let Λ = [−1, 1], Pλ be the uniform
distribution on [−1, 1]. Then, under the conditions

of Lemma 4.2, if we use q = O(ϵ
1

2(1−ν) ) polynomials
in the previous basis, and run constant-step size SGD

for O(ϵ
1

1−ν log(1/ϵ)) iterations, the resulting iterate βT

satisfies E [ϵsp(βT )] ≤ ϵ.

For clarity, both big “Oh” terms should be interpreted
as ϵ → 0, and both suppress constants not depend-
ing on ϵ (but possibly depending on h). Loosely, the
theorem establishes that the “smoother” θ∗(·) is (i.e.
larger ν), the fewer iterations required by our method
to achieve a target tolerance.

Recall, Ndiaye et al. (2019) established that for
strongly convex functions, discretization requires at
least O(ϵ−1/2) points. One might expect the number of
gradient evaluations per point to scale likeO(log(1/ϵ)).
Hence, if ν ≥ 3, our approach requires asymptotically
less work. The larger ν, the larger the savings.

This gap is particularly striking ν → ∞. As a second
example, suppose θ∗i (λ) is analytic on [−1, 1], i.e, its
Taylor Series is absolutely convergent on this interval.

Lemma 4.4 (ϵ∗sp for Analytic Solution Paths).
Suppose Assumption 2.1 holds and that for each i =
1, . . . , d, θ∗i (·) is analytic on the interval [−1, 1]. Then,
there exist constants ω > 1 and M > 0 such that
for any q > 0, with the basis described above, ϵ∗sp ≤
dL
2

(
2Mω−q

ω−1

)2
.

The proof is again constructive. The constants ω and
M pertain to the analytic continuation of θ∗i (·) to the
complex plane. Importantly, the solution path error
now dies geometrically fast (like ω−2q). Using this
faster decay rate yields,

Theorem 4.5 (SGD for Analytic Solution
Paths). Let Λ = [−1, 1], and Pλ be the uniform dis-
tribution on [−1, 1]. Then, under the conditions of
Lemma 4.4, if we use q = log(1/ϵ)/ log(ω) polynomials
in the previous basis, and run constant-step size SGD
for O

(
log2(1/ϵ) log log(1/ϵ)

)
iterations, the resulting

iterate βT satisfies E [ϵsp(βT )] ≤ ϵ.

Again, the big “Oh” hides constants that do not de-
pend on ϵ. Compared to Ndiaye et al. (2019), the
amount of work almost exponentially smaller.

5 An Adaptive Algorithm

Although the previous section’s specialized results pro-
vide theoretical insight, they do not suggest practical

algorithms. Picking the number of basis apriori from
approximation theory is difficult. This challenge mo-
tivates our algorithm Algorithm 1, where the number
of basis functions is determined “on the fly.” To imple-
ment Algorithm 1, one needs to specify i) a sequence
of basis functions ii) a distribution Pλ and iii) a cri-
terion for deciding when to add a new basis function.
We next discuss these choices.

Although any basis and distribution can be used in Al-
gorithm 1, we suggest making these choices in concert.
In our experiments we focus on sequences of polyno-
mials that are orthogonal with respect to Pλ. The
Legendre polynomials and the uniform distribution on
[−1, 1] is one such pair, but there are many canoni-
cal examples including Hermite polynomials with the
normal distribution and Laguerre polynomials with
the exponential distribution. There are performance-
optimized implementations of these families in stan-
dard software (see, e.g., scipy.special). Although
polynomials map to R, by approximating each dimen-
sion separately as in Section 4, we can extend these
polynomials to a basis for d > 1. Finally, polynomi-
als are uniform function approximators for Lipschitz
functions. Thus, the class is highly expressive.

Two other advantages of orthogonal polynomials in
Algorithm 1 are: i) Extending the basis does not re-
quire altering existing basis functions. This is unlike,
e.g., cubic splines or adding nodes to a neural net-
work, where the addition of a new spline point affects
previous bases. ii) Intuitively, orthogonality suggests

that if β̂p−1 is near optimal in the (p− 1)th iteration,

then [β̂p−1, 0] is likely to be close to optimal in the pth

iteration. Thus, we benefit from warmstarts.

We next discuss the criterion for adding a new basis
function. One approach is to empirically approximate
the objective of Problem (2) using a hold-out valida-
tion set, and add a basis function when performance
stalls. This approach requires additional functional
evaluations and samples λ̃. In our experiments, we ex-
plore an alternate criterion motivated by the RWGC.
Specifically, if β is near-optimal, the upperbound on
the second moment of the gradient in RWGC is ap-
proximately constant. Thus, we add a basis function
when second moment of the gradient averaged over re-
cent iterations has plateaued. This allows us to reuse
gradients and additional function evaluations.

6 Numerical Experiments

We next empirically compare i) our approach using a
fixed, large basis (denoted LSP for “Learning the So-
lution Path”) ii) our adaptive Algorithm 1 (denoted
ALSP for “Adaptive LSP” and iii) uniform discretiza-



Qiran Dong, Paul Grigas, Vishal Gupta

tion, a natural benchmark. We aim to show that both
our approaches not only outperform the benchmark
but that the qualitative insights from our theoretical
results hold for more general optimization procedures
than constant step-size SGD. We also provide prelim-
inary results on how the choice of basis affects perfor-
mance.

We choose uniform discretization for our benchmark
in lieu of other schemes (like geometric spacing) be-
cause i) it matches the theoretical lower bound from
(Ndiaye et al., 2019) and ii) we see it as most intu-
itive for learning the solution path with small uniform
error. Specifically, for various ϵ, we consider a uni-
form spacing of size

√
ϵ in each dimension of λ, and

run (warm-started) gradient descent for O(log(1/ϵ))
iterations. The constant here is calibrated in an or-
acle fashion to achieve a solution-path error of O(ϵ)
(see Appendix B.1 for details) giving the benchmark a
small advantage.

6.1 Weighted Binary Classification

We consider a binary classification problem using
a randomly selected subset of 1000 cases from the
highly imbalanced Law School Admission Bar Passage
dataset (Wightman, 1998). Of the 1000 cases, there
are 956 positive instances and 44 negatives. Standard
logistic regression predicts 992 positives with a false
positive rate of 0.86. When identifying students likely
to fail is key, the default classifier may not be useful.
Reweighting cases is a standard approach to improve
false positive rate at the cost of overall accuracy.

We take

h(θ, λ) = (1− λ)lpos(θ) + λlneg(θ) + 0.125∥θ∥2,

where lpos(θ) and lneg(θ) denote the log-likelihood on
the positive and negative classes respectively. Specif-
ically, letting (xi, yi) ∈ R45 × {0, 1} for i = 1, . . . , n
denote the data,

lpos(θ) =
1

|{i : yi = 1}|
∑

i:yi=1

log(1 + e(−2yi+1)x⊤
i θ),

and similarly for lneg(θ).

The hyperparameter λ ∈ [0, 1] controls the weight
placed on each class. We use (scaled and shifted) Leg-
endre polynomials with a Unif[0, 1] distribution.

The ground truth θ∗(λ) is computed via 5000 itera-
tions of (warm-started) gradient descent over a uni-
form grid of 210 points. Solution path error is approx-
imated by the uniform error over this grid.

For LSP, we run SGD using torch.optim.SGD. In lieu
of a constant learning rate, we dynamically reduce the

learning rate according to the Distance Diagnostic of
Pesme et al. (2020, Section 4). This dynamic updating
is more reflective of practice. We use the suggested pa-
rameters from Pesme et al. (2020) with the exception
of q, which we tune by examining the performance af-
ter 200 iterations. (We take q = 1.3) For ALSP, we
initialize the algorithm with 5 polynomials and stop it
after adding 12 polynomials.

Figure 2: LSP: Interpolating the Solution Path
for Weighted Binary Classification. Compare
Φ3,1:7(λ)β̂ to θ∗

3(λ) across λ after running LSP with 7
Legendre polynomials for 500, 100, 200, 400 gradient
calls.

Figure 1 in the introduction shows the performance for
LSP. As we can see, LSP methods converge rapidly to
an irreducible error, and this error decreases as we
add basis functions. Our adaptive method converges
rapidly. This performance is resonated by Figure 2,
where we plot the coefficient profile for θ∗3(λ) when
using 7 polynomials. The approximation improves as
we increase the number of iterations, and eventually
become closely aligned with the true solution path.

Practically, this experiment suggests that when the
region of Λ is compact, taking Pλ to be uniform paired
with a polynomial basis is favorable. The polynomial
basis can then be taken to be orthogonal to Pλ as
discussed in Section 5.

6.2 Portfolio Allocation

We next consider a portfolio allocation problem cal-
ibrated to real data where θ ∈ Rd represents the
weights on d = 10 different asset classes. Namely,
let µ ∈ Rd and Σ ∈ Rd×d be the mean and covariance
matrix of the returns of the different asset classes. We
fit these parameters to the monthly return data from
Aug. 2014 to July 2024 using the Fama-French 10
Industry index dataset.1

1https://mba.tuck.dartmouth.edu/pages/faculty/
ken.french/data_library.html

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html


Beyond Discretization: Learning the Optimal Solution Path

We then solve

min
θ

− λ1µ⊤θ + λ2θ
⊤Σθ + ℓ̄1(θ).

Here the first term represents the (negative) expected
return, the second represents the risk (variance) and
the third is a smoothed version ℓ1 regularization to
induce sparsity. Namely, ℓ̄1(θ) :=

∑d
i=1

√
θ2i + .012 −

.01. The parameters λ1 ∈ [0, 1] and λ2 ∈ [0.2, 1] control
the tradeoffs in these multiple objectives.

Ground truth θ∗(λ) is computed over a 100×100 grid.

We focus on bivariate-Legendre polynomials for our
basis, scaled and shifted to be orthogonal to uniform
distribution on [0, 1]× [.2, 1]. We initialize with ALSP
with 2 polynomials in each dimension, and iterate by
adding one polynomial in each dimension, so that p =
4, 9, 16, 25, after which we stop.

Unlike our previous experiment, to showcase that the
qualitative insights of our theory hold for other al-
gorithms other than SGD, we use torch.optim.BFGS

for LSP, ALSP and uniform discretization (for a fair
comparison). Unlike SGD, BFGS uses both function
and gradient evaluations. We restrict it to use only 10
function calls per gradient step so that the total work
is still proportional to number of gradient calls.

Figure 3: LSP and ALSP for Portfolio Alloca-
tion. Compares methods using the first p = 4, 9, 16
bivariate-Legendre polynomials.

As in our previous experiment, we see that LSP rapidly
converges to an irreducible error and then plateaus.
By contrast, ALSP seems to make continued progress
as we add polynomials. Both method substantively
outperform uniform discretization.

The improved performance over uniform discretization
is partially attributable to the increased dimension
of Λ (because discretization suffers the curse of di-
mensionality), but is also because (traditionally) dis-
cretization interpolates solutions in a piecewise con-
stant fashion. In this example, θ∗(λ) is very smooth.
See Figure 5 in Appendix. Hence, polynomial can

learn to interpolate values very fast, while uniform dis-
cretization needs a great deal more resolution.

7 Conclusion

We propose a new method for learning the optimal
solution path of a family of problems by reframing it
as a single stochastic optimization problem over a lin-
ear combination of pre-specified basis functions. Com-
pared to discretization schemes, our method offers flex-
ibility and scalability by taking a global perspective on
the solution path. When using sufficiently large bases,
we prove our problem satisfies a certain relaxed weak-
growth condition that strongly allows us to solve the
single optimization problm very efficiently. Theoreti-
cal results in special cases and numerical experiments
in more general settings support these findings.

Future research might more carefully examine the in-
terplay between the parameterization of the family of
problems and choice of basis. One might also consider
other universal function approximators (like deep neu-
ral networks or forests of trees) within this context.
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A Omitted Proofs

A.1 Proofs from Section 2

Proof for Lemma 2.3. Suppose by contradiction that c = 0. Then there exists a corresponding eigenvector
v ∈ Rp with v ̸= 0 such that

Eλ̃∼Pλ

[
Φ(λ̃)⊤Φ(λ̃)

]
v = 0 =⇒ Eλ̃∼Pλ

[
∥Φ(λ̃)v∥22

]
= 0.

This further implies that Φ(λ̃)v = 0 almost everywhere. By the linear independence assumption in Assump-
tion 2.2, we then must have v = 0, but this is a contradiction since v is an eigenvector.

For the second statement, notice

c ≤ σmax

{
Eλ̃∼Pλ

[
Φ(λ̃)⊤Φ(λ̃)

]}
≤ Eλ̃∼Pλ

[
σmax

{
Φ(λ̃)⊤Φ(λ̃)

}]
≤ C,

where the penultimate inequality follows from Jensen’s inequality and the convexity of the maximal eigenvalue
function.

Next, recall the family of functions f(·, λ) and the function F (·) defined in (4):

f(β, λ) := h(Φ(λ)β, λ), F (β) := Eλ̃∼Pλ

[
f(β, λ̃)

]
= Eλ̃∼Pλ

[
h(Φ(λ̃)β, λ̃)

]
.

Before proceeding, we establish smoothness and strong convexity of these functions.

Proposition A.1 (Uniform Smoothness and Strong Convexity). The family of functions f(·, λ), over all
λ ∈ Λ, is CL-smooth. Moreover, F (·) is CL-smooth and cµ-strongly convex.

Proof for Proposition A.1. Fix an arbitrary λ ∈ Λ. Then, for any β, β̄ ∈ Rp, smoothness of f(·, λ) is certified
by

∥∇f(β, λ)−∇f(β̄, λ)∥ = ∥∇βh(Φ(λ)β, λ)−∇βh(Φ(λ)β̄, λ)∥
≤ ∥Φ(λ)⊤(∇θh(Φ(λ)β, λ)−∇θh(Φ(λ)β̄, λ))∥ (chain rule)

≤ ∥Φ(λ)⊤∥ · L∥Φ(λ)(β − β̄)∥ (L-smoothness)

≤ CL∥β − β̄∥

for any β, β̄ ∈ Rd. To obtain the same conclusions for F (·), we may take expectation over λ ∼ Pλ on the above
inequalities, and invoke the linearity of expectations as well as the property that

∥E [g(·)] ∥ ≤ E [∥g(·)∥] .

Next, we verify the strong convexity of F (·). Fixing β, β̄ ∈ Rd, for any λ ∈ Λ, define θ(λ) := Φ(λ)β,
θ̄(λ) := Φ(λ)β̄. Then, by strong convexity of h, we have

h(θ̄(λ), λ) ≥ h(θ(λ), λ) +∇θh(θ(λ), λ)
⊤ (θ̄(λ)− θ(λ)

)
+
µ

2
∥θ̄(λ)− θ(λ)∥2.

Take expectation w.r.t. λ̃ ∼ Pλ on both sides, we obtain

F (β̄) = E
[
h(Φ(λ̃)β̄, λ̃)

]
≥ E

[
h(Φ(λ̃)β, λ̃)

]
+ E

[
∇θh(θ(λ̃), λ̃)

⊤
(
Φ(λ̃)(β̄ − β)

)]
+
µ

2
E
[
∥Φ(λ̃)(β̄ − β)∥2

]
= F (β) + E

[
Φ(λ̃)⊤∇θh(θ(λ̃), λ̃)

]⊤
(β̄ − β) +

µ

2
(β̄ − β)⊤E

[
Φ(λ̃)⊤Φ(λ̃)

]
(β̄ − β)

≥ F (β) +∇F (β)⊤(β̄ − β) +
cµ

2
(β̄ − β)⊤(β̄ − β)

The second term in the last inequality comes from the Leibniz integral rule and the third term invokes a well-
known property of the smallest eigenvalue of a positive definite matrix.
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Proof for Theorem 2.4. First, we prove that ϵ∗sp is attained at some β∗
sp ∈ Rp. Observe that ϵsp(·) is contin-

uous. Thus, its level set M(1) := {β ∈ Rp : ϵsp(β) ≤ 1} is closed. Furthermore, M(1) is bounded. To see this,
for any β ∈M(1), by strong convexity of F ,

cµ

2
∥β − β∗

avg∥2 ≤ F (β)− F (β∗
avg)

= Eλ̃∼Pλ

[
h(Φ(λ̃)β, λ̃)− h(Φ(λ̃)β∗

avg, λ̃)
]

≤ Eλ̃∼Pλ

[
h(Φ(λ̃)β, λ̃)− h(θ∗(λ̃), λ̃)

]
≤ ϵsp(β) (4)

≤ 1.

Since β is arbitrary, for any β, β̄ ∈M(1),

∥β − β̄∥ ≤ ∥β − β∗
avg∥+ ∥β̄ − β∗

avg∥ ≤
2
√
2

√
cµ
.

Applying the Weierstrass Theorem, there exists β∗
sp ∈M(1) ⊂ Rp s.t.

ϵsp(β
∗
sp) = ϵ∗sp.

Next, we prove the main result of the theorem. Again, fix an arbitrary λ. By L-smoothness of h(·, λ),

h(Φ(λ)β, λ)− h(θ∗(λ), λ) ≤ L

2
∥Φ(λ)β − θ∗(λ)∥2 (5)

Using the identity (a+ b+ c)2 ≤ 4a2 + 4b2 + 4c2 and triangle inequality on the right-hand side, this inequality
becomes

h(Φ(λ)β, λ)− h(θ∗(λ), λ) ≤ 2L(∥Φ(λ)(β − β∗
avg)∥2 + ∥Φ(λ)(β∗

avg − β∗
sp)∥2 + ∥Φ(λ)β∗

sp − θ∗(λ))∥2).

By strong convexity of h(·, λ) and definition of β∗
sp,

∥Φ(λ)β∗
sp − θ∗(λ)∥2 ≤ 2

µ
sup
λ∈Λ

{
h(Φ(λ)β∗

sp, λ)− h(θ
∗(λ), λ)

}
=

2

µ
ϵsp(β

∗
sp) =

2

µ
ϵ∗sp,

So

ϵsp(β) ≤ 2CL(∥β − β∗
avg∥2 + ∥β

∗
avg − β∗

sp∥2) +
4L

µ
ϵ∗sp. (6)

Next, we bound ∥β∗
avg − β∗

sp∥2. Observe that due to the optimality of θ∗(λ) for each λ,

E
[
h(Φ(λ̃)β∗

sp, λ̃)
]
− E

[
h(Φ(λ̃)β∗

avg, λ̃)
]
≤ E

[
h(Φ(λ̃)β∗

sp, λ̃)− h(θ
∗(λ̃), λ̃)

]
≤ ϵ∗sp.

On the other hand, from the optimality of β∗
avg and strong-convexity of F (·),

F (β∗
sp)− F (β

∗
avg) = E

[
h(Φ(λ̃)β∗

sp, λ̃)
]
− E

[
h(Φ(λ̃)β∗

avg, λ̃)
]
≥ cµ

2
∥β∗

avg − β∗
sp∥2.

Combining this inequality with the previous one shows cµ
2 ∥β

∗
avg − β∗

sp∥2 ≤ ϵ∗sp, which implies that

∥β∗
avg − β∗

sp∥2 ≤
2ϵ∗sp
cµ

.

Substitute the above into Equation (6). Take expectation over sample paths on both sides, we conclude that

ϵsp(β) ≤ 2CL

(
∥β − β∗

avg∥2 +
2ϵ∗sp
cµ

)
+

4L

µ
ϵ∗sp.

Rearranging and using the fact that C/c ≥ 1 verifies the statement.
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A.2 Proofs from Section 3

Proof for Theorem 3.2. The proof follows the proof of Theorem 3.1 of Gower et al. (2019); we include it for
completeness under the assumption of the RWGC Definition 3.1. Let η := η̄

ρ denote the step-size. For t ≥ 0, we
have

∥wt+1 −w∗∥2 = ∥wt −w∗ − η∇g(wt, zt)∥2

= ∥wt −w∗∥2 − 2η∇g(wt, zt)
⊤(wt −w∗) + η2∥∇g(wt, zt)∥2.

Taking conditional expectations yields

E
[
∥wt+1 −w∗∥2

∣∣ wt

]
= ∥wt −w∗∥2 − 2η∇G(wt)

⊤(wt −w∗) + η2E
[
∥∇g(wt, zt)∥2

∣∣ wt

]
≤ ∥wt −w∗∥2 − 2η∇G(wt)

⊤(wt −w∗) + η2[2ρ(G(wt)−G∗) + σ2]

≤ ∥wt −w∗∥2 + 2η
(
G∗ −G(wt)− µg

2 ∥wt −w∗∥2
)
+ η2[2ρ(G(wt)−G∗) + σ2]

= (1− ηµg) ∥wt −w∗∥2 + 2
(
η2ρ− η

)
(G(wt)−G∗) + η2σ2

≤ (1− ηµg) ∥wt −w∗∥2 + η2σ2 (7)

The first inequality above uses the RWGC and the second uses strong convexity. The final inequality holds since

η2ρ−η =
(

η̄
ρ

)2
ρ− η̄

ρ =
(

η̄
ρ

)
(η̄ − 1) and η̄ ≤ 1. Furthermore, since η̄ ≤ ρ

µg
, we have ηµg =

(
η̄
ρ

)
µg ≤ 1; therefore,

by iterating Equation (7) and taking overall expectations, we get

E
[
∥wt −w∗∥2

]
≤ (1− ηµg)

t∥w0 −w∗∥2 + η2σ2
t−1∑
k=0

(1− ηµg)
k

≤ (1− ηµg)
t∥w0 −w∗∥2 + η2σ2

1− (1− ηµg)

= (1− ηµg)
t∥w0 −w∗∥2 + ησ2

µg
,

where the second inequality uses the geometric series bound. Recalling that η = η̄
ρ completes the proof.

Proof for Lemma 3.3. Recall that Proposition A.1 already establishes the smoothness of f and smoothness and
strong convexity of F .

Define
β̄(λ) ∈ arg min

β∈Rp
f(β, λ) = arg min

β∈Rp
h(Φ(λ)β, λ).

By CL-smoothness, we have

f(β, λ) ≥ f(β̄(λ), λ) +∇f(β̄(λ), λ)⊤(β − β̄(λ)) +
1

2CL
∥∇f(β, λ)−∇f(β̄(λ), λ)∥2.

Using ∇f(β̄(λ), λ) = 0 for all λ, rearranging and recalling the definitions of β∗
avg (Section 2) and β∗

sp (proof of
Theorem 2.4) yields

1

2CL
∥∇f(β, λ)∥2 ≤ f(β, λ)− f(β̄(λ), λ)

≤ f(β, λ)− h(θ∗(λ), λ)

= (f(β, λ)− f(β∗
avg, λ)) + (f(β∗

avg, λ)− f(β
∗
sp, λ)) + (f(β∗

sp, λ)− h(θ
∗(λ), λ))

≤ (f(β, λ)− f(β∗
avg, λ)) + (f(β∗

avg, λ)− f(β
∗
sp, λ)) + ϵ∗sp

where the second inequality uses optimality of θ∗(λ) and the third uses that ϵ∗sp is attained at β∗
sp. Taking

expectations on both sides, we get

1

2CL
E
[
∥∇f(β, λ̃)∥2

]
≤ F (β)− F (β∗

avg) + F (β∗
avg)− F (β

∗
sp) + ϵ∗sp ≤ F (β)− F (β∗

avg) + ϵ∗sp,
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where we used that the definition of β∗
avg implies that F (β∗

avg) ≤ F (β
∗
sp). Multiplying through by 2CL completes

the proof.

Proof for Theorem 3.4. Our strategy will be to invoke Lemma 3.3 and apply Theorem 3.2, in conjuction with
Theorem 2.4. To that end, notice that the upper bound on the step-size parameter η̄ given in Theorem 3.2
becomes CL

cµ ≥ 1. Hence, we need only constrain 0 < η̄ ≤ 1.

Applying Theorem 3.2 yields

E
[
∥βT − β∗

avg∥2
]
≤
(
1− η̄ cµ

CL

)T
∥β0 − β∗

avg∥2 +
2η̄ϵ∗sp
cµ

.

Taking expectation of Theorem 2.4 on both sides and substituting the above, we have

E [ϵsp(βT )] ≤ 2CLE
[
∥βT − β∗

avg∥2
]
+

8CL

cµ
ϵ∗sp

≤ 2CL
(
1− η̄ cµ

CL

)T
∥β0 − β∗

avg∥2 + 4
η̄CL

cµ
ϵ∗sp +

8CL

cµ
ϵ∗sp. (8)

Rearranging yields the first result. We next prove the two bounds on the iteration complexity.

First consider the case ϵ∗sp > 0. Our goal will be to choose T large enough to drive the first term on the right

side of (8) to below 4CL
cµ η̄ϵ

∗
sp. To simplify exposition, let κ = CL

cµ . Then, we need to ensure that

T log(1− η̄/κ) ≤ log

(
2κη̄ϵ∗sp

CL∥β0 − β∗
avg∥2

)
.

We can upper bound the right side using the identity log(1 + x) ≤ x. Hence, it would be sufficient if

T ≥ κ

η̄
log

(
CL∥β0 − β∗

avg∥2

2κη̄ϵ∗sp

)
.

Replacing κ with its definition yields the first case.

For the second case where ϵ∗sp = 0, (8) reduces to

E [ϵsp(βT )] ≤ 2CL
(
1− η̄ cµ

CL

)T
∥β0 − β∗

avg∥2.

Given ϵ > 0, we need to ensure that

T log(1− η̄/κ) ≤ log

(
ϵ

2CL∥β0 − β∗
avg∥2

)
.

Again using log(1 + x) ≤ x, it would be sufficient if

T ≥ κ

η̄
log

(
2CL∥β0 − β∗

avg∥2

ϵ

)
.

Replacing κ with its definition yields the second case.

A.3 Proofs from Section 4

Proof of Lemma 4.1. As described in the main text, Φ(λ) ∈ Rd×qd is block-diagonal with d blocks of size 1× q.
Denote this block by ψ(λ) ∈ R1×q and note the elements of ψ(λ) are precisely the first q Legendre polynomials
evaluated at λ.
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Now the matrix Φ(λ)⊤Φ(λ) ∈ Rqd×qd is also block diagonal with d copies of the matrix ψ(λ)⊤ψ(λ). As a
consequence, the eigenvectors of Φ(λ)⊤Φ(λ) are the stacked copies of the eigenvectors of ψ(λ)⊤ψ(λ) with the
same eigenvalues.

Since ψ(λ)⊤ψ(λ) is a rank-one matrix, it has at most one non-zero eigenvalue, and by inspection, this eigenvalue
is ∥ψ(λ)∥2 with eigenvector ψ(λ)⊤. Then,

Cp = sup
λ∈[−1,1]

∥ψ(λ)∥2 = q,

because the Legendre polynomials achieve their maxima at 1 with a value of 1.

By a nearly identical argument, we can see that

cp = σmin

{
E
[
ψ(λ̃)⊤ψ(λ̃)

]}
= min

n=0,...,q−1

2

2n+ 1

=
2

2q − 1
,

because by the orthogonality of the Legendre polynomials, the above matrix is diagonal. Hence

Cp/cp =
2q2 − q

2
≤ q2.

Proof for Lemma 4.2. Our proof is constructive and we will show a slightly stronger result. We will approximate
θ∗
i (λ) by the its Chebyshev truncation up to degree q for each i. Letting β̄ be the coefficients corresponding to

the resulting polynomials, we will show that ϵsp(β̄) satisfies the bound in Lemma 4.2, which implies that ϵ∗sp also
satisfies the bound.

Let Tn(λ) denote the nth Chebyshev polynomial of the first kind. For the ith dimension of the solution path, let
ai,n denote the coefficient of Tn in the Chebyshev truncation of θ∗

i up to degree q.

Since θ
(ν)∗
i (λ) is Lipschitz continuous with constant V , it also has bounded variation V . Thus, for any q > ν

and i ∈ [d], Trefethen (2013, Theorem 7.2) guarantees that

sup
λ∈[−1,1]

∣∣∣∣∣
q∑

n=0

ai,nTn(λ)− θ∗
i (λ)

∣∣∣∣∣ ≤ 2V

πν(q − ν)ν
.

Then,

ϵsp(β̄) = sup
λ∈Λ

h
( q∑

n=0

ai,nTn(λ)

)
i=[d]

, λ

− h(θ∗(λ), λ)

 .

Moreover, smoothness of h(·, λ) ensures that for any λ ∈ Λ,

h

( q∑
n=0

ai,nTn(λ)

)
i=[d]

, λ

− h(θ∗(λ), λ) ≤ L

2

∥∥∥∥∥∥
(

q∑
n=0

ai,nTn(λ)

)
i=[d]

− θ∗(λ)

∥∥∥∥∥∥
2

.

Combine the above and using the definition of l2-norm, we deduce that

ϵsp(β̄) ≤ sup
λ∈Λ

L2
∥∥∥∥∥∥
(

q∑
n=0

ai,nTn(λ)

)
i=[d]

− θ∗(λ)

∥∥∥∥∥∥
2


≤ sup
λ∈[−1,1]

dL2 · supi∈[d]

∣∣∣∣∣
q∑

n=0

ai,nTn(λ)− θ∗
i (λ)

∣∣∣∣∣
2


≤ dL

2

(
2V

πν(q − ν)ν

)2

.



Beyond Discretization: Learning the Optimal Solution Path

Proof of Theorem 4.3. As we are only interested in asymptotic behavior as ϵ → 0, we will often suppress any
constants that do not depend on ϵ below. In particular, we will write a ≲ b whenever there exists a constant C
(not depending on ϵ but perhaps depending on h and Λ) such that a ≤ Cb.

Note that in order to attain a small solution path error, we will need to use a large number of polynomials q.
Based on Theorem 3.4, our first goal is to choose q large enough that

ϵ ≥ 8L(η̄ + 1)

µ

Cq

cq
· ϵ∗sp(q). (9)

First observe that Lemma 4.2 establishes that the solution path error is at most

ϵ∗sp(q) ≤
4dLV 2

2π2ν2(q − ν)2ν
≲ q−2ν . (10)

Using Lemma 4.1, we can upper bound the right side of Equation (9) by

8L(η̄ + 1)

µ

Cq

cq
· ϵ∗sp(q) ≲ q2(1−ν),

for some constant A1 not depending on ϵ. Hence it suffices to take

ϵ−
1

2(ν−1) ≲ q

polynomials to achieve our target error.

We now seek to bound the iteration count. By Theorem 3.4, the iteration count should exceed

L

η̄µ

Cq

cq
log

(
cqµ∥β∗

avg∥2

2η̄ϵ∗sp

)
≲ q2

(
log ∥β∗

avg∥2 + log(q)
)

where we have assumed SGD was initialized at β = 0 and used Equation (10) and cq = 2
2q−1 (cf. the proof of

Lemma 4.1) to simplify.

To complete the proof we need to bound ∥β∗
avg∥2. To this end, we first bound ∥β̄∥, where β̄ is constructed by

approximating each component θ∗i (λ) by its Chebyshev truncation to degree q for each i.

Then,

∥β̄∥2 =

d∑
i=1

q∑
k=1

|aik|2

=

d∑
i=1

ν∑
k=1

|aik|2 +
d∑

i=1

q∑
k=ν+1

|aik|2 .

≲
q∑

k=ν+1

1

k2(ν+1)
,

≲
∞∑

k=ν+1

1

k2(ν+1)
,

where the penultimate inequality collects constants and invokes Trefethen (2013, Theorem 7.1) to bound the
second summation. Note, for ν ≥ 0, this last sum is summable, so that ∥β̄∥ ≲ 1.

Furthermore, from the proof of Lemma 4.2, ϵsp(β̄) ≲ q−2ν . Hence, since the solution-path error upper bounds the
stochastic error, we also have F (β̄)−F (β∗

avg) ≲ q−2ν . From strong convexity, this implies that ∥β̄−β∗
avg∥ ≲ q−ν .
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Putting it together, we have that

∥β∗
avg∥ ≤ ∥β

∗
avg − β̄∥+ ∥β̄∥ ≲ q−ν + 1 ≲ 1.

Substituting above shows that it suffices to take O(q2 log q) iterations as ϵ→ 0. Given our previous calculation

of q, this amount to O(ϵ̄
1

1−ν log(1/ϵ̄)) iterations.

Proof for Lemma 4.4. The proof is very similar to the proof of Lemma 4.2, with the only difference being that
we use Theorem 8.2 from (Trefethen, 2013) instead of Theorem 7.2.

Recall that a Bernstein ellipse Eω with radius ω in the complex plain is the ellipse

Eω =

{
z =

1

2

(
ωeθ

√
−1 + ω−1e−θ

√
−1
)
: θ ∈ [0, 2π)

}
.

Since θ∗i (λ) is analytic, there exists an analytic continuation of θ∗i (λ) to a Bernstein ellipse of radius ωi > 1.
The value of ωi generally depends on if θ∗i (λ) has any singularities in the complex plane, but is guaranteed to
be larger than 1. Let Mi be maxz∈Eωi

|θ∗i (z)|. Finally, let ω ≡ mini=1,...d ωi > 1 and M = maxi=1,...,dMi <∞.

Now, define Tn(λ) and ai,n as in the proof for Lemma 4.2.

For any q > 0 and i ∈ [d], Theorem 8.2 in (Trefethen, 2013) guarantees that

sup
λ∈[−1,1]

∣∣∣∣∣
q∑

n=0

ai,nTn(λ)− θ∗
i (λ)

∣∣∣∣∣ ≤ 2Mω−q

ω − 1
.

Plug this result into the last inequality of the proof for Lemma 4.2, we obtain

ϵsp(β̄) ≤ sup
λ∈[−1,1]

dL2 · supi∈[d]

∣∣∣∣∣
q∑

n=0

ai,nTn(λ)− θ∗
i (λ)

∣∣∣∣∣
2
 ≤ dL

2

(
2Mω−q

ω − 1

)2

.

Proof of Theorem 4.5. The proof is quite similar to the proof of Theorem 4.3. Again, we only consider asymptotic
behavior as ϵ→ 0 and suppress all other constants. Hence, a ≲ b means there exists a constant C (not depending
on ϵ) such that a ≤ Cb.

Again, our first goal is to identify a q sufficiently large to achieve our target error. By Theorem 3.4 we seek q
large enough that

ϵ ≥ 8L(η̄ + 1)

µ

Cq

cq
ϵ∗sp(q).

Lemma 4.4 shows that there exists an ω > 1 such that

ϵ∗sp(q) ≲ ω−2q,

hence it suffice to take q large enough that

q2ω−2q ≲ ϵ̄.

Solving this equation exactly requires the Lambert-W function. Instead, we take q = log(1/ϵ̄)
logω . Then,

q2ω−2q =
ϵ2 log2

(
1
ϵ

)
log2(ω)

≲ ϵ̄

for ϵ̄ sufficiently small.
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Again, to bound the number of iterations, we will need to bound ∥β∗
avg − β0∥. We again will assume that

β0 = 0, and first consider bounding β̄. Recall, β̄ is obtained by approximating each component i by the
Chebyshev truncation of θ∗(λ) to degree q. Then,

∥β̄∥2 =

d∑
i=1

q∑
k=1

|aik|2

≲
q∑

k=1

ω−k

≤
∞∑
k=1

ω−k.

Here, the second to last inequaity uses (Trefethen, 2013, Theorem 8.1). Since the last summation is summabble,
we again conclude that ∥β̄∥2 ≲ 1.

The proof of Lemma 4.4 establishes that ϵsp(β̄) ≲ ω−2q. Since solution path error bounds the stochasstic error,
we conclude that F (β̄)− F (β∗

avg) ≲ ω−2q, and by strong convexity, ∥β̄ − β∗
avg∥ ≲ ω−q.

Putting it together, we have that

∥β∗
avg∥ ≤ ∥β

∗
avg − β̄∥+ ∥β̄∥ ≲ ω−q + 1 ≲ 1.

Substituting into the iteration complexity shows that it suffices to take

q2
(
log ∥β∗

avg∥+ log q
)
≲ log2(1/ϵ̄) log log(1/ϵ̄)

iterations, by using our condition on q.

B Implementation Details

B.1 Calibrating Uniform Discretization

To apply uniform discretization in practice on must decide i) the number of grid points to use, and ii) the number
of gradient calls to make at each grid point. Loosely speaking, our approach to these two decisions is to first fix
a set of desired “target” solution path errors denoted ∆. Then, for each δ ∈ ∆, we determine the number of grid
points and gradient calls to approximately achieve a solution path error of δ.

More specifically, Ndiaye et al. (2019) suggests that to achieve a solution path error of δ, we require O(1/
√
δ)

grid points. Thus, for each δ ∈ ∆, we construct a uniform discretization with 1/
√
δ grid points across every

dimension of the hyperparameter space. We denote this grid by G(δ). Recall that deterministic gradient descent
requires O(log(1/δ)) steps to achieve an error of O(δ). Motivated by this result, we use c1 log(c2/δ) gradient
calls per grid point. The total number of gradient calls is thus c1 log(c2/δ)/

√
δ.

The specific values of c1, c2, and ∆ used in our experiments are recorded in Table 1.

Weighted Binary Classification c1 = 1 c2 = 0.5 ∆ = {2−6, 2−6.5, 2−7, . . . , 2−18}
Portfolio Allocation c1 = 0.65 c2 = 1 ∆ = {4−2, 5−2, . . . , 19−2}

Table 1: Parameters Used in Experiments.

We next argue that this procedure with these constants is roughly efficient. Define the grid pass error as

sup
λ∈G(δ)

h(θ̂(λ), λ)− h(θ∗(λ), λ).

For comparison, the solution-path error is

ϵsp(θ̂(·)) = sup
λ∈Λ

h(θ̂(λ), λ)− h(θ∗(λ), λ).
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Since G(δ) ⊆ Λ, the grid pass error is always less than the solution path error.

By comparing the grid pass error, the solution path error, and the target solution path error, we can calibrate
the amount of work done at each grid point and the total number of grid points. Specifically, if the grid pass
error is much smaller than the solution pass error, it suggests we have allocated too much work to gradient calls
at grid points and have insufficient grid points. On the other hand, if the grid pass error is very far from the
target solution path error, it suggests we have not allocated enough work to gradient calls at the grid points and
have too many grid points. Based on this trade-off, we tune the constants c1 and c2.

In Figure 4, we compare the solution path error and grid pass error to the target solution path error for our
experiments. Figure 4a illustrates that in the weighted binary classification experiment with w(λ) = λ, the
discretization scheme performs well, satisfying both objectives as the solution path error and grid pass error
closely align with the target solution path error. Figure 4b demonstrates that for the portfolio allocation
problem, both solution path error and grid pass error are still close to each other, but fall below the target
solution path error. This is primarily due to the high precision of BFGS, though only very few gradient calls are
performed at each grid.

(a) (b)

Figure 4: Compare: Ideal Stopping Criterion, Grid Pass Error, and Solution Path Error. (a) weighted
binary classification; (b) portfolio allocation. Solution path error and grid pass error are plotted against the
corresponding total number of gradient calls incurred in practice. Target solution path error δ is plotted against
c1 log(c2/δ)/

√
δ, which also equals the total number of gradient calls incurred in practice. Each discrete point in

the line plots above corresponds to a discretization grid point δ ∈ G(δ); thus smaller δ is associated with more
gradient calls.
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C Additional Figures

Figure 5: θ∗(λ) for Portfolio Allocation from Section 6.2. The true solution paths are very smooth in each
dimension, suggesting that this problem is highly interpolable by a polynomial basis.

Figure 6: LSP and ALSP for Portfolio Allocation. Compares methods using the first p = 4, 9, 16 bivariate-
Legendre polynomials. Differs from Figure 3 as the y-axis records the number of function evaluations during
line-search of BFGS instead of gradient calls.
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