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Frequently, policymakers seek to roll out an intervention previously proven effective in a research study,

perhaps subject to resource constraints. However, since different subpopulations may respond differently to

the same treatment, there is no a priori guarantee that the intervention will be as effective in the targeted

population as it was in the study. How then should policymakers target individuals to maximize intervention

effectiveness? We propose a novel robust optimization approach that leverages evidence typically available

in a published study. Our approach is tractable – real-world instances are easily optimized in minutes with

off-the-shelf software – and flexible enough to accommodate a variety of resource and fairness constraints.

We compare our approach with current practice by proving performance guarantees for both approaches,

which emphasize their structural differences. We also prove an intuitive interpretation of our model in terms

of regularization, penalizing differences in the demographic distribution between targeted individuals and

the study population. Although the precise penalty depends on the choice of uncertainty set, we show that

for special cases we can recover classical penalties from the covariate matching literature on causal inference.

Finally, using real data from a large teaching hospital, we compare our approach to common practice in

the particular context of reducing emergency department utilization by Medicaid patients through case

management. We find that our approach can offer significant benefits over common practice, particularly

when the heterogeneity in patient response to the treatment is large.
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1. Introduction

Across domains, we observe an increasingly common decision-making paradigm: Researchers assess

whether a particular intervention is effective in treating a study population, such as in a randomized

control trial. Practitioners then roll out successful interventions to a potentially different candidate

population, hoping to achieve similar effectiveness. Although this paradigm is perhaps most familiar

in medicine, “intervention” and “treatment” can be interpreted quite generally, as these terms
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might refer to an after-school training program to reduce childhood obesity (Vizcáıno et al. 2008)

or a tuition reduction program to increase college enrollment (Deming and Dynarski 2009).

Despite its ubiquity, this paradigm faces practical challenges. Many interventions are too expen-

sive to provide to everyone in the candidate population (see, e.g., our case study below). Thus,

practitioners must solve a resource allocation problem: Who should be targeted for treatment? A

first intuition, motivated by medical practice, might be to target the “sickest patients,” i.e., the

individuals most in need of treatment. However, these sickest patients may be too sick to benefit

from treatment, so targeting them is arguably an inefficient use of resources. More poignantly,

different individuals may respond differently to the same intervention. A prudent decision-maker

would ideally target those individuals who benefit the most in order to maximize the aggregate

benefit subject to resource constraints. The challenge, of course, is identifying the potential benefit

for each individual prior to administering the intervention.

In this paper, we propose a robust optimization approach to this resource allocation problem

using only the evidence typically published in a research study, including its inclusion/exclusion

criteria, the demographic features of its study population and estimates of the average benefit. We

provide a precise specification of this evidence in Section 2.2, but note that it does not usually

include the raw, individual-level study data.

This restriction to the published evidence is a key distinguishing feature of our work. There

is a growing body of literature on predicting the potential benefit of treatment at an individual

level, i.e., learning a heterogeneous causal effect, for either estimation or personalization (see, e.g.,

Imai et al. 2013, Athey and Imbens 2015, Kallus 2017 and references therein). In the marketing

literature, these methods are sometimes referred to as “uplift modeling” (Gutierrez and Gérardy

2017, Zhao et al. 2017, Ascarza 2018). There is also a second stream of literature on estimating

the average causal effect in a population distinct from the original study population (e.g., Cole

and Stuart 2010, Stuart et al. 2011, Hartman et al. 2015). In principle, either approach might be

adapted to solve the above resource allocation problem.

However, these methods typically require access to individual-level data from patients in the

study. Such data are rarely available in practice (Eichler et al. 2012). Indeed, unlike the typical

marketing and personalization settings, the decision-makers rolling out interventions in healthcare

and policy-making contexts are often distinct from the researchers studying those interventions.

Moreover, laws such as the Health Insurance Privacy and Portability Act (HIPPA), the General

Data Protection Regulation (GDPR), and Family Educational Rights and Privacy Act (FERPA)

heavily restrict those researchers from sharing the raw study data with policy makers out of patient-

privacy and ethical concerns. Without this raw study data, it is not possible to implement the

above approaches. Worse, even when study data are available, they are frequently inadequate for
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the task. Since conducting randomized control trials is notoriously expensive, most studies are

sized to have just enough power to detect an average causal effect but are typically too small to

learn the precise heterogeneous effects across patients. Learning this heterogenous effect is critical

to the above resource allocation problem.

Since learning heterogeneous effects without the raw study data seems impractical, we take a

different approach via robust optimization (Ben-Tal et al. 2009). Generally, robust optimization

methods optimize worst-case performance over an uncertainty set of possible realizations of uncer-

tain parameters. Our particular robust approach seeks the subset of patients that maximizes the

worst-case aggregate intervention effectiveness, where the worst-case is taken over an uncertainty

set of models for the heterogeneous causal effect that are consistent with the published study

evidence. In other words, rather than learning a single model for causal effects, we optimize the

targeting to ensure the effect over many plausible models is as large as possible. Depending on the

precise assumptions on the set of models, this optimization problem can be cast as a mixed-binary

linear optimization problem or a mixed-binary second-order cone optimization problem, both of

which can be readily solved with off-the-shelf software. The resulting formulations are also flexible

enough to easily accommodate side constraints on the targeting, such as budget, operational or

fairness constraints, and to incorporate evidence from multiple papers.

We prove that our robust approach is equivalent to approximating the targeted subset’s average

effectiveness by the study population’s average effectiveness minus a penalty that depends on the

differences in demographics between these two groups, an insight that we term “covariate matching

as regularization.” Intuitively, the more different the targeted subset and study population are, the

less accurately the study population’s effectiveness approximates the targeted subset’s effectiveness.

The precise form of the penalty depends on the particular uncertainty set. For special cases, we

show that the penalty coincides with common techniques used for covariate matching in causal

inference – χ2-matching, mean matching, and Mahalanobis matching – highlighting an interesting

theoretical connection between these two areas. (Kallus 2016 observes a similar connection in the

context of designing experiments.)

We stress that our robust approach does not directly estimate individual-level causal effects,

but only approximates the aggregate effect over the targeted subset. This “portfolio” viewpoint

sharply contrasts with both the aforementioned statistical literature and current practice. Indeed,

most common approaches to targeting employ so-called scoring rules: Practitioners assign each

individual in the candidate population a score approximating her unknown heterogeneous causal

effect and then target individuals with the highest scores. Scores are typically informed by some

combination of domain expertise and predictive modeling. However, recent empirical studies have

called the effectiveness of such rules into question (Jackson and DuBard 2015). In Section 3, we
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provide a theoretical analysis of scoring rules, providing sufficient conditions for their optimality

and a tight performance guarantee when they are suboptimal. In particular, we prove that if

patients may experience adverse effects from the particular treatment, scoring rules may perform

arbitrarily badly and may be worse than not providing treatment to anyone.

This research was inspired by our partner hospital, which seeks to reduce excessive emergency

department (ED) utilization by adult Medicaid patients by rolling out a case-management inter-

vention. (See Section 1.2 for details.) We use real data from this case study as a running example

and to assess our methodology (Section 5). We summarize our work as follows:

1. We formalize an optimization approach to maximize intervention effectiveness using the evi-

dence typically available in a published study. To the best of our knowledge, we are the first

to address this problem using only published study data.

2. We prove tight performance bounds for current practice (scoring rules). In particular, we prove

that scoring rules can perform arbitrarily badly when the treatment is potentially harmful.

3. We propose a robust optimization approach to maximize the worst-case performance over a

large class of models that agree with the study evidence. To the best of our knowledge, we

are the first to apply robust optimization methods to the analysis of summary-level causal

inference data. Our model is flexible enough to accommodate a variety of side constraints

and can be solved for real-world instances within a few minutes using commercial software.

Moreover, its worst-case performance is bounded by a value that depends on the class of

models and the true heterogeneous effect. Under some mild assumptions, this constant is zero,

ensuring that our robust approach is never worse than not targeting, even when the treatment

could be potentially harmful.

4. We provide an intuitive interpretation of our robust model as “covariate matching as regu-

larization,” connecting with the literature on causal inference and illustrating how canonical

covariate matching techniques can be recovered as special cases.

5. Using data from our partner hospital, we show that our robust approach performs almost

as well as scoring rules when the degree of heterogeneity in causal effects is small and can

perform much better than scoring rules as the degree of heterogeneity increases, especially

when the treatment is potentially harmful.

1.1. Connections to Existing Literature

Our work connects to a growing body of robust optimization applications, particularly in healthcare

operations (e.g., Bortfeld et al. 2008, Deo et al. 2015, Chan et al. 2016, 2017, Goh et al. 2018.)

Adopting a worst-case perspective is appealing, particularly in healthcare, where decision-makers

aspire to “do no harm”, and high-costs and consequences fuel risk aversion. A distinguishing
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feature of our work is that while many robust optimization models seek to immunize solutions

against parameter uncertainty or implementation uncertainty, our formulation is more naturally

interpreted as immunizing solutions against model uncertainty, i.e., our uncertainty about the true

model for heterogeneous causal effects. In this respect, we are most similar to Bertsimas et al.

(2016b). At the same time, we contribute to a large body of work connecting robust optimization

and regularization (Ghaoui and Lebret 1997, Xu et al. 2009, Lam 2016, Bertsimas and Copenhaver

2017, Gao et al. 2017). In particular, our work elucidates the connection between the form of

regularizer and assumed structure of the causal effects. This perspective, we feel, helps provide an

alternate, statistical interpretation of common regularizers and uncertainty sets.

Moreover, our restriction to the published study evidence distinguishes our work from existing

techniques in data-driven robust optimization. In particular, typical data-driven robust optimiza-

tion models (e.g., Delage and Ye 2010, Esfahani and Kuhn 2015, Bertsimas et al. 2017, 2018) assume

that the data are noisy versions of the underlying parameters or a sequence of i.i.d. realizations of

random variables depending on those parameters. In our setting, such data would correspond to

noisy observations of the potential causal effect in the candidate population before administering

treatment. However, in causal inference settings, it is impossible to observe this effect directly

(even noisily), a phenomenon sometimes called the Fundamental Problem of Causal Inference (see

Holland 1986 or our discussion in Section 2). Worse, in our setting of interest, the data we do

have pertains to a different population, the study population. These features are intrinsic to our

application and require new modeling and methods.

In focusing on the published evidence, our work also connects to meta-regression techniques in

statistics that aim to “pool” the results of different published studies to form a refined estimate of

causal effects (Higgins and Thompson 2002, Bertsimas et al. 2016a). We differ from these works

in two important respects: First, these methods’ successes rely upon access to multiple distinct

papers; it is by combining distinct sources of information that they refine estimates. By contrast,

although our robust approach can be applied when multiple published studies are available, it

applies equally well with only a single study. Second, and more critically, these methods generally

focus on estimation and inference, not on decision-making. A notable exception is Bertsimas et al.

(2016a), which does consider an optimization problem, but in a different context – designing a

clinical trial versus rolling out an intervention – and with a different mathematical structure.

Finally, we contrast our work with the reinforcement learning literature. An alternate approach

to rolling out an intervention might be to proceed sequentially, treating individuals in the candidate

population one at a time, observing their response to treatment, and using those observations

to decide whom to treat next. This approach is naturally modeled as a contextual multi-arm

bandit problem (Bastani and Bayati 2016, Negoescu et al. 2017). While reinforcement learning is
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a reasonable strategy for some interventions, for many others, the outcome of interest may take a

long time to observe. For example, it may take months to check for a reduction in the childhood

obesity rate. With this time delay, online approaches that proceed sequentially may be impractical,

motivating our off-line treatment of the problem.

1.2. Case Study: Emergency Department Visits by Adult Medicaid Patients

Medicaid is a public insurance program for low-income, disabled and needy people under the age

of 65. At our partner hospital, a large teaching hospital, approximately 50% of all ED visits are

from Medicaid patients. Medicaid typically pays 50% less than private insurance(Zuckerman et al.

2009). Consequently, our partner hospital is underpaid for each Medicaid patient’s ED visit. On the

other hand, Medicaid patients generally suffer from multiple chronic diseases and lack easy access

to primary care (Billings and Raven 2013). This combination of financial burden and patient need

has sparked interest in intervention programs that might reduce unnecessary Medicaid ED visits

while improving patients’ health outcomes.

Case management is the most widely used intervention in reducing ED visits. While the imple-

mentation details differ between studies, at a high level, case management involves a team of social

workers, nurses, and physicians providing crisis intervention, supportive therapy by phone or in

person, referral to substance abuse services, linkage to primary care providers and assistance with

making appointments to outpatient care. This team of professionals may also liaise with other

assistance programs on the patient’s behalf, such as to find subsidized housing. Prior research has

shown case management to be effective in specific populations regarding reducing ED visits and

improving patient outcomes (Shumway et al. 2008, Shah et al. 2011).

Unsurprisingly, case management is expensive, both financially and in terms of resources. Lim-

ited availability of physicians, nurses, social workers and psychiatrists prevents enrollment of all

Medicaid patients in the program at our partner hospital. Thus, our case study seeks to use data

to target a subset of adult Medicaid ED patients for case management to reduce ED utilization

and underpayments while maintaining quality of care for this population. Based on their resource

constraints, our partner hospital would ideally like to target approximately 200 patients.

2. Model Setup
2.1. Candidate Population

We seek to target at most K > 0 patients for intervention from a candidate population of size C >K

in order to maximize total intervention effectiveness. We adopt a potential outcome framework

for causal inference (Imbens and Rubin 2015). For each patient c ∈ {1, . . . ,C}, there exists a fixed

tuple (xc, yc(0), yc(1), rc). The parameters xc and rc are assumed known, while yc(0) and yc(1) are
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unknown and represent potential outcomes. Specifically, xc ∈X denotes patient c’s pre-treatment

covariates, e.g., demographic characteristics, and may include discrete and continuous components.

The quantity yc(0) (resp. yc(1)) represents the outcome of interest for patient c if she does not

(resp. does) receive the treatment. Before choosing whether to administer treatment, we know

neither yc(0) nor yc(1). After this choice, exactly one of yc(0) and yc(1) is revealed depending on

on our choice for patient c.

In our case study in Section 5, yc(0) and yc(1) denote the number of times patient c visits the

ED in the next 6 months. In particular, smaller values are better. Consequently, we adopt a non-

standard convention and define the causal effect/treatment effect1 of patient c as δc ≡ yc(0)−yc(1).

(It is usually the negative of this quantity.) We stress that δc may be positive or negative, i.e., the

treatment may benefit or harm an individual patient. Moreover, since we never observe both yc(0)

and yc(1), we cannot observe δc, directly, not even noisily.

We define the intervention effectiveness of patient c to be rcδc, where rc ≥ 0 represents a known

reward. Adopting a linear model for effectiveness is with some loss of generality. However, we believe

this model is a good approximation for our case study (see below) and many other applications. In

many medical applications, one is not interested in a monetary outcome, but simply the aggregate

benefit (in units of δc) across patients. In these cases, one can take rc = 1 for all c. We stress that

rc may differ by patient and might depend in a complex way on the covariates xc. For example, it

might be the output of a machine-learning model that given xc predicts (dollar) savings for each

unit decrease in the outcome. In what follows, we assume without loss of generality that rc is one

of the components of xc since both are known before targeting.

We seek to maximize the total intervention effectiveness as follows:

max
z∈Z

C∑
c=1

zcrcδc, where Z ≡

{
z∈ {0,1}C

∣∣∣∣∣
C∑
c=1

zc ≤K

}
. (1)

If we were to observe the causal effects δc directly, the optimal solution would be to rank each patient

based on the intervention effectiveness rcδc and to target the top K patients with non-negative

values. Let B∗ ⊆ {1, . . . ,C} denote this solution, which we call the full-information benchmark. The

challenge is that since we only observe one of yc(0) or yc(1) depending on our treatment assignment,

we cannot observe the causal effects δc directly.

2.2. Study Population and Evidence for Treatment

Although we cannot learn δc, we will assume that we have some evidence from a published paper

that the treatment is effective, namely, a confidence interval for the average causal effect in a study

population and summary statistics for the pre-treatment covariates of that study population.

1 We will use the term “causal effect” instead of “treatment effect” to distinguish from “intervention effectiveness”
defined below.
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Formally, let (xs, ys(0), ys(1)) for s ∈ {1, . . . , S} be the pre-treatment covariates and potential

outcomes for each patient in the study population.2 In general, the study and candidate populations

may be distinct. The parameters (xs, ys(0), ys(1)) are fixed but unknown. Instead, we assume we

know an interval [I, I] such that I ≤ 1
S

∑S

s=1 δ
s ≤ I, where δs ≡ ys(0)− ys(1), for all s ∈ {1, . . . , S}.

The quantity 1
S

∑S

s=1 δ
s is the Sample Average Treatment Effect (SATE).

Knowing [I, I] is a mild assumption. Most studies, regardless of their precise statistical method-

ologies, report a confidence interval for SATE that can be used for [I, I]. For example, in randomized

control trials (the gold standard for medical research), a simple t-test, a linear regression including

pre-treatment covariates and the treatment assignment, or a matching estimator yields a confidence

interval for SATE (see, e.g., Imbens 2004).

There do exist studies that do not report a confidence interval for SATE because of their chosen

statistical design, such as a stratified analysis, which instead estimates average causal effects in

each stratum. In our opinion, however, such designs are less common in healthcare. In special cases,

we can still approximate a confidence interval for SATE for these studies (see, e.g., Section 2.3).

The interval [I, I] tells us nothing about the distribution of xs in the study population. Most

studies therefore also report summary statistics for xs and detailed inclusion/exclusion criteria.

The precise statistics used (mean, median, standard deviation, etc.) often differ between studies.

To provide a flexible modeling framework for summary statistics, we assume that the study

reports a set of description functions φg :X 7→R, g= 1, . . . ,G and their expectations over the study

population, i.e., µg ≡ 1
S

∑S

s=1 φg(x
s). By suitably choosing the functions φg (according to the study

paper), we can model a wide variety of possible summary statistics as generalized moments of the

study population’s covariate distribution. In our opinion, most studies present a combination of

summary statistics of the following three types:

Partition Description Functions: When there exists a natural partition of X =
⋃I

i=1Xi, e.g.,

patient race, studies often report the proportion of type i patients µi = 1
S

∑S

s=1 I(xs ∈ Xi) for i=

1, . . . , I. We model these statistics with description functions φi(x)≡ I(x ∈Xi) for i= 1, . . . , I − 1.

Note that since µI = 1−
∑I−1

i=1 µi and φI(x) = 1−
∑I−1

i=1 φi(x), it suffices to only specify these I − 1

description functions to capture all I statistics. We assume for simplicity that µi > 0 for i= 1, . . . , I.

Linear Description Functions: When X ⊆ RI contains continuous variables, studies often

report their mean values in the study population µi = 1
S

∑S

s=1 x
s
i for all i= 1, . . . , I. We model these

statistics with description functions φi(x)≡ xi for i= 1, . . . , I.

2 Note the distinction between superscripts and subscripts for x. The value x1 describes the first patient in the study
population, while x1 describes the first patient in the candidate population.
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Quadratic Description Functions: When X ⊆RI , studies may report, in addition to the mean

mi ≡ 1
S

∑S

s=1 x
s
i , the standard deviation σ2

i ≡ 1
S

∑S

s=1(xsi −mi)
2 of each covariate for all i= 1, . . . , I.

We model the mean mi with the I description functions above and the standard deviation with

additional I description functions: φI+i(x)≡ x2
i and µI+i =m2

i +σ2
i for all i= 1, . . . , I.

We stress that these data – summary statistics and SATE in a separate population – strongly

contrast with the data typically available in data-driven robust optimization models. Indeed, tradi-

tional data-driven models often assume we observe (noisy) realizations of δc which, as mentioned,

is impossible in our setting. Nonetheless, we will combine the description functions, their statistics

and the study SATE in Section 4 to formulate our robust optimization model.

2.3. Case Study: Setup

The candidate population in our partner hospital is of size C = 951. (We defer a detailed description

until Section 5.1.) Let yc(0) and yc(1) be the number of ED visits in the next 6 months if patient c

in the candidate population does not or does, respectively, receive case management, Define ys(0)

and ys(1) similarly for the study population. The unknown causal effect δc is the potential number

of ED visits reduced by case management for patient c. Finally, let the known reward rc be an

estimate of the average charges per ED visit for patient c based on their medical history.

We assume a linear model for effectiveness for this application. ED charges typically consist

of a relatively large fixed component common to most visits and a more variable idiosyncratic

component that differs between visits. The fixed component corresponds to charges for doctor

and staff time, basic equipment, and routine testing. The variable component corresponds to the

additional services for the specific complaint on that visit and can be large for very sick patients.

Consequently, charges are highly concentrated around the fixed component with a long tail. (See

Fig. EC.1 in the e-companion.)

Intuitively, case management is unlikely to prevent visits corresponding to extreme medical

events (e.g., strokes, falls among the elderly), i.e. the visits with high variable costs. Rather, case

management might help prevent “less serious” visits (e.g., a person with dehydration from chronic

malnutrition) whose costs are closer to the fixed cost (Billings et al. 2000). Thus, we approximate

the marginal benefit of reducing 1 visit as a constant that may depend on the patient’s covariates.

We use data from Shumway et al. (2008) as the study evidence because their study population

mainly consists of low-income patients with behavioral problems who are similar to the Medicaid

population in our hospital. Shumway et al. (2008) investigate the causal effects of case management

in reducing ED visits among ED frequent users at San Francisco General Hospital, an urban public

hospital. Patients were eligible for study participation if they had at least 5 visits to the ED in the
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Table 1 Evidence of Causal Effects for Case Management from Shumway et al. (2008) for the Study Population

Stratum 1
No. of ED Visits 5 - 11†

Stratum 2
No. of ED Visits ≥ 12

Total

No. of Patients

Treatment 81 (32%) 86 (34%) 167 (66%)

Control 40 (15%) 45 (18%) 85 (34%)
No. of ED Visits in 6 Months

Treatment, mean ± sd 2.5 ± 3.2 5.2 ± 5.6 3.9 ± 2.0∗

Control, mean ± sd 4.6 ± 6.2 8.5 ± 9.6 6.7 ± 8.2∗

CATE∗∗, mean ± sd, [95% CI] 2.1 ± 1.0, [0.1, 4.1] 3.3 ± 1.6, [0.2, 6.4]

SATE, mean ± sd, [95% CI] 2.7 ± 1.0‡, [0.8, 4.6]

Notes. † Patients are stratified based on number of ED visits in the previous year. ∗ Approximated by taking the weighted average of the mean
and variance for each group. For example, the mean outcome for the treatment group is (81× 2.5 + 86× 5.2)/(81 + 86) = 3.9 ED visits. ∗∗ CATE
refers to the Conditional Average Treatment Effect within each stratum. We formally define CATE in Section 4.1. ‡ The standard deviation is

approximated as
√
s21/n1 + s22/n2, where si is the standard deviation of the outcome and ni is the number of people in group i for i= 1,2.

previous year, were San Francisco residents, were at least 18 years old and had psychosocial prob-

lems that might be addressed with case management. Such problems include housing problems,

medical care problems, substance abuse, and mental health disorders. The study was conducted

between 1997 and 1999, and a total of S = 252 eligible patients were enrolled. The authors per-

formed a stratified analysis on two strata based on previous ED visits. We reproduce their results

in Table 1 and summary statistics in Table 2 for the 252 patients. Since Shumway et al. (2008) do

not directly present a confidence interval for SATE, we approximate it (see notes in Table 1 and

also discussion at the beginning of Section 5).

Table 2 Summary Statistics for the Study and Candidate Populations

Study Population

(S = 252 patients)

Candidate Population

(C = 951 patients)

Male 188 (75%) 442 (46%)

Race/Ethnicity

African American 138 (54%) 475 (50%)
Hispanic 55 (22%) 7 (1%)
White 34 (13%) 283 (29%)

Other 28 (11%) 186 (20%)

Age, mean ± sd 43.3 ± 9.5 38.3 ± 12.5

No. of ED Visits in Previous Year∗

5 - 11 121 (48%) 860 (90%)

≥ 12 131 (52%) 91 (10%)

Most Frequent Diagnosis† during ED

Visits
mental disorder (22%) alcohol-related disorders (10%)

injury (16%) abdominal pain (6%)

skin diseases (8%) back problems (5%)

endocrine discorders (5%) nonspecific chest pain (4%)

digestion disorders (5%) connective tissue diseases (3%)
respiratory illnesses (5%) non-traumatic joint disorders (3%)

Notes. ∗ Both populations only include patients who have had at least 5 ED visits. † Calculated from primary the ICD-10-CM diagnosis
code using Clinical Classification Software (Elixhauser et al. 2014).
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The second column of Table 2 presents the same summary statistics for the C = 951 Medicaid

patients at our partner hospital who satisfy the inclusion/exclusion criteria of Shumway et al.

(2008). Despite these criteria, these two populations still display some systematic differences.

Finally, we map Table 2 into our framework with the following description functions:

• The proportion of male patients can be represented as a partition description function with

an indicator for gender. Race and whether the number of ED visits in the previous year exceeds

11 can also be represented with indicators.

• The average age can be represented as a linear description function.

• The standard deviation of age can be represented by a quadratic description function with

corresponding summary statistics 43.32 + 9.52.

3. Scoring Rules

Given the structure of the optimal solution to Problem (1), a natural heuristic is to approximate

the unknown causal effect δc with some observable proxy δ̂c and then rank patients accordingly.

Definition 1. Given a proxy δ̂c > 0, the rδ̂-scoring rule ranks each patient c in the candidate

population by rcδ̂c and targets the K highest-ranked patients with non-negative scores.

In principle, one can use any observable metric as the proxy. We focus on two proxies that

correspond to common assumptions and methods employed by practitioners:

Constant Effect Sizes and Reward Scoring: If one believes that the true causal effect is con-

stant, i.e., δc = δ0 > 0 for all c∈ {1, . . . ,C}, then no matter what the value of δ0 is, using the proxy

δ̂c = 1 and ranking patients by rc (i.e., reward scoring, or r-scoring) yields an optimal solution to

Problem (1). The assumption of constant effect sizes is common in statistical inference for random-

ized control trials. In particular, the most common approach for estimating the sampling variance

of the SATE estimator assumes that the causal effects are constant across all individuals in the

study population (Imbens 2004).

Proportional Effect Sizes and Outcome Scoring: If one believes that the true causal effect

is proportional to the outcome without treatment, i.e., δc = αyc(0) for all c ∈ {1, . . . ,C} and some

α > 0, then no matter what the value of α is, using the proxy δ̂c = yc(0) and ranking patients by

rcyc(0) (i.e., outcome scoring, or ry(0)-scoring) yields an optimal solution to Problem (1).

In words, outcome scoring targets high-risk patients. Many studies have developed statistical

or machine-learning models to predict the number of ED visits by a specific patient in the near

future (Billings and Raven 2013). They estimate yc(0) (i.e., number of ED visits for patient c) and

suggest focusing on patients with large estimates. Implicitly, such recommendations assume that

the true causal effect δc is proportional to yc(0).

Neither reward scoring nor outcome scoring leverages the summary statistics for the study pop-

ulation but may leverage the candidate population covariates in a sophisticated way to estimate rc
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and yc(0). In the rest of this section, we show that scoring rules may be highly suboptimal when

these underlying assumptions about the causal effects are violated.

3.1. Performance of Scoring Rules with Benign Treatment

The performance of scoring rules depends heavily on whether the treatment might be harmful. If

we assume that we can identify and avoid treating patients with potential adverse events to that

all treated patients experience positive causal effects, then scoring rules may perform very well.

Theorem 1 (Worst-Case Performance of Scoring Rules with Benign Treatment).

Without loss of generality, index patients so that r1δ̂1 ≥ · · · ≥ rC δ̂C ≥ 0. Suppose K ≤ C/2 and

there exists 0< δ < δ <∞ such that δc/δ̂c ≥ δ > 0, for all c∈ {1, . . . ,K}, and δc/δ̂c ≤ δ, where δ > 0

for all c∈ {K+ 1, . . . ,C}. Then, the rδ̂-scoring rule obtains at least ω(δ/δ) of the full-information

benchmark optimal value, where

ω(δ/δ)≡
(δ/δ)

∑K

c=1 rcδ̂c

(δ/δ)
∑k∗

c=1 rcδ̂c +
∑2K−k∗

c=K+1 rcδ̂c
(2)

and

k∗ =

{
0, if (δ/δ)≤ r2K δ̂2K/r1δ̂1

arg max{c | 1≤ c≤K, (δ/δ)≥ r2K−c+1δ̂2K−c+1/rcδ̂c}, otherwise.

Moreover, for a given value of r and δ̂, there exist values of δ such that the bound is tight.

Intuitively, δ measures how much we may have underestimated the causal effects of patients

that were not picked, while δ measures how much we may have overestimated the causal effect

of patients that were picked. With this interpretation, the critical assumption in Theorem 1 is

that δc/δ̂c ≥ δ > 0, for all c ∈ {1, . . . ,K}. Indeed, since rc ≥ 0, this implies that rcδc ≥ 0 for all

c∈ {1, . . . ,K}, i.e., targeted patients do not experience adverse effects.

At first reading, the function ω(·) in Theorem 1 appears quite complicated. Importantly, it

depends on the unknown causal effects only through the ratio δ/δ. Intuitively, this ratio measures

the degree of correspondence between the proxy δ̂c and the true causal effect δc. If the proxy is

reasonably accurate, i.e., δ̂c ≈ δc for all c∈ {1, . . . ,C}, then we would expect δ≈ δ, and the ratio is

close to 1. At the other extreme, if δ̂c and δc are very different for patients {1, . . . ,K} compared to

patients {K + 1, . . . ,C}, the ratio δ/δ will be close to 0. Intuitively, scoring rules should improve

as the degree of correspondence increases. We prove that our bound ω(·) shares these features:

Corollary 1. Under the assumptions of Theorem 1,

(1) ω(δ/δ) is increasing in δ/δ;

(2) If δ/δ≥ rK+1δ̂K+1/rK δ̂K, ω(δ/δ) = 1 and the rδ̂-scoring rule is optimal;

(3) ω(δ/δ)→ 0 as δ/δ→ 0.

A numerical example showing typical values of the bound and its shape is in Section 3.3.
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3.2. Performance of Scoring Rules with Potentially Harmful Treatment

Assuming that we can identify and avoid treating patients that would have an adverse response to

the treatment is particularly strong; in practice, the treatment may be ineffective or even harmful.

The evidence for case management, in particular, is mixed. Lee and Davenport (2006) provided

case management to patients with over 3 ED visits in the previous month and found no statistically

significant changes in the number of ED visits. Phillips et al. (2006) provided case management to

high-risk patients manually selected by physicians and found a statistically significant increase in

the number of ED visits afterward. These mixed results strongly suggest that case management

might be ineffective or even harmful when provided to the wrong subpopulation. Unfortunately, if

the treatment is potentially harmful, scoring rules can perform arbitrarily badly.

Remark 1 (Scoring Rules Can be Worse Than not Targeting). Index patients as in

Theorem 1, and suppose that δc/δ̂c = δ < 0 for all c∈ {1, · · · ,K} and
∑

c∈B∗ rcδc > 0. Such a scenario

might occur if the treatment only benefitted a small subgroup of the population but potentially

harmed others, and scoring rules cannot perfectly determine which is which. Then, rδ̂-scoring has

intervention effectiveness δ
∑K

c=1 rcδ̂c < 0, which, in an absolute sense, is worse than not providing

treatment to anyone. In terms of relative performance, the performance can be arbitrarily bad

when the treatment is only marginally effective since

δ
∑K

c=1 rcδ̂c∑
c∈B∗ rcδc

→−∞ as
∑
c∈B∗

rcδc→ 0. (3)

In terms of the performance difference, this may be as large as

δ
2K∑

c=K+1

rcδ̂c− δ
K∑
c=1

rcδ̂c, (4)

if B∗ = {K + 1, . . . ,2K} and δc/δ̂c = δ > 0 for all c ∈B∗. Such a scenario might occur if there do

exist high-reward patients who would benefit from the treatment, but the particular scoring rule

does not identify them.

3.3. Case Study: Performance of Scoring Rules

Using patient data from our partner hospital, we apply Theorem 1 and Remark 1 for reward scoring

(δ̂c = 1) in Figure 1. Since δ̂c = 1, δ/δ measures the degree of heterogeneity in causal effects. For

example, δ/δ= 0.1 means that the causal effects differ by a factor of 10, i.e., if there exist patients

for whom case management reduces the number of ED visits by 1, there also exist patients for

whom case management reduces the number of ED visits by 10.

When case management always reduces ED visits (i.e., benign treatment), reward scoring per-

forms well and improves as the resource constraint is relaxed (K/C increases). For example, when
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δ/δ= 0.6, reward scoring obtains approximately 90% of the full-information optimal value. As pre-

dicted by Corollary 1, the performance improves as the value of δ/δ approaches 1. The particularly

strong performance of reward scoring in this example is due to a small group of patients in our

data who incur a very large charge per ED visit, i.e., rc has a long tail. The 99th percentile of rc is

2.8 times the 90th percentile value. Consequently, k∗ is generally large.

Figure 1 Worst-Case Relative Performance of Reward Scoring (r-Scoring) for Case Management in Our

Partner Hospital
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Note. When the treatment is benign, we plot the worst-case relative performance bound (2) provided in Theorem 1. When
the treatment is potentially harmful, the worst-case relative performance is −∞, as mentioned in Remark 1. Thus, we plot
δ
∑K

c=1
rc/δ

∑2K
c=K+1

rc for comparison.

To the contrary, when case management may be ineffective or increase ED visits (i.e., poten-

tially harmful treatment), reward scoring performs quite badly even when case management could

increase the number of ED visits to a smaller degree compared to what it can reduce (e.g., δ/δ =

−0.1). This poor worst-case performance is also caused by the long tail of rc. Intuitively, when

there exists a small proportion of patients with very high marginal rewards, targeting these patients

is “risky.” If those patients benefit from treatment, the overall effectiveness will be high, but if

they respond negatively, the overall effectiveness will be low. Similar behavior is seen for outcome

scoring in Figure EC.2 in the e-companion. Both figures highlight the fact that when the particular

score has a long tail for a fixed degree of correspondence, scoring rules will be very sensitive to

whether or not the treatment is potentially harmful.

4. Robust Targeting

The worst-case performance of scoring rules depends strongly on whether the treatment is poten-

tially harmful. We next introduce our robust approach, which is less sensitive to this distinction.

4.1. Similar Patients Respond Similarly

The key idea of our approach stems from the simple intuition that patients with similar pre-

treatment covariates should respond similarly to treatment. To formalize this idea, we first define

the Conditional Average Treatment Effect (CATE) and re-express Eq. (1).
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To avoid writing long summations in what follows, we define the random variables c̃ to be a

randomly chosen patient from the candidate population. Thus, (xc̃, δc̃) denote the pre-treatment

covariates and causal effect for this randomly chosen patient. Define s̃ and (xs̃, δs̃) similarly for the

study population. We stress that c̃ and s̃ are only defined to simplify the notation; the values (xc, δc)

c = 1 . . . ,C and (xs, δs) s = 1, . . . , S are fixed, unknown constants, i.e., non-random. With this

notation, the SATE in the study population can now be concisely expressed as 1
S

∑S

s=1 δ
s =E[δs̃].

Let the study population CATE for a patient with pre-treatment covariates x∈X be

E[δs̃|xs̃ = x] =
1

|{s | xs = x}|
∑
s:xs=x

δs.

The study population CATE is a function of x. Define the candidate population CATE, i.e.,

E[δc̃|xc̃ = x], similarly. Intuitively, CATE represents the average causal effect across all patients in

the given population with a particular value of covariate.

Using CATE, we can re-express the objective of Eq. (1). Recall, rc is a component of xc, so that

rc̃ is xc̃ measurable. Suppose that z1, . . . zC represent a targeting policy where zc depends only on

xc, i.e, zc̃ is xc̃ measurable. Then, the objective of Eq. (1) for this policy is

C∑
c=1

zcrcδc = C ·E [zc̃rc̃δc̃] = C ·E
[
zc̃rc̃E [δc̃ | xc̃]

]
=

C∑
c=1

zcrcE [δc̃ | xc̃ = xc] , (5)

where the first and last equalities follow from the definition of c̃, and the middle equality uses that

rc̃ is xc̃ measurable. Thus, the objective of Eq. (1) is equivalent to the objective of:

max
z∈Z

C∑
c=1

zcrcE[δc̃|xc̃ = xc]. (6)

Replacing the objective of Eq. (1) with the objective of Eq. (6) is conceptually appealing. Recall,

δc are fundamentally unobservable since we cannot observe both yc(0) and yc(1). By contrast,

E [δc̃ | xc̃ = x] is estimable given a large enough RCT in the candidate population. This is perhaps

why most personalization schemes focus on Eq. (6) directly (see, e.g., Kallus 2017, Athey and

Wager 2017). Moreover, via a similar argument, we can rewrite the confidence interval for the study

SATE as a constraint on the study CATE, i.e., E[δs̃] ∈ [I, I] ⇐⇒ E [E[δs̃ | xs̃]] ∈ [I, I], and focus

on CATEs exclusively.

The challenge with Eq. (6) in our setting, however, is that we do not know the candidate

population CATE; our data on effectiveness is from the study population. We must assume some

“link” between the candidate CATE and the study CATE in order to leverage the study evidence.

To that end, fix any norm ‖ · ‖link on RC and define the constant κ by

κ≡
∥∥∥(E[δs̃ | xs̃ = xc]−E[δc̃ | xc̃ = xc]

)C
c=1

∥∥∥
link
. (7)
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In words, κ measures an aggregate distance between the study CATE and candidate CATE on

the candidate population. Importantly, κ makes rigorous the idea that similar patients in both

populations should respond similarly to treatment. For example, when κ = 0, the CATEs are

identical in both populations, and the expected treatment effectiveness of a patient given her

pre-treatment covariates does not depend on her population. Positive, but small, κ bounds the

difference in effect between the populations.3

4.2. A First Robust Model

Since the candidate CATE is unknown, one approach might be to model this CATE as a random

function, say Ψ̃C(·), and then seek to solve maxz∈Z
∑C

c=1 zcrcE
[
Ψ̃C(xc)

]
. Unfortunately, the data at

hand do not contain information about the precise structure of the candidate CATE. Consequently,

defining the probability distribution of Ψ̃C(·) would require strong a priori assumptions on this

structure that may not be easily validated.

Instead, we adopt a robust optimization perspective. Specifically, we maximize the worst-case

intervention effectiveness over possible values for the candidate CATE that are consistent with the

study findings:

max
z∈Z

min
ΨC(·)∈U

C∑
c=1

zcrcΨC(xc), (8)

where ΨC(·) approximates the candidate CATE. Given our study evidence, a first choice for the

uncertainty set U might be

Uκ̂ =
{

ΨC :X 7→R
∣∣∣ ∃ΨS :X 7→R s.t. I ≤E[ΨS(xs̃)]≤ I, ‖

(
ΨS(xc)−ΨC(xc)

)C
c=1
‖link ≤ κ̂

}
, (9)

where ΨS(·) approximates the study CATE, and the user-defined parameter κ̂ approximates κ.

Unfortunately, this uncertainty set does not yield practically implementable solutions. Specif-

ically, for any fixed z ∈ {0,1}C , z 6= 0 and any x ∈ X , let qz(x) ≡
∑C

c=1 zcrcI(xc = x)/
∑C

c=1 zcrc

denote the reward-weighted covariate distribution of the targeted patients from the candidate

population. Define the set

Z∗ ≡

{
z∈ {0,1}C

∣∣∣∣∣
C∑
c=1

zc ≤K, qz(x) = P(xs̃ = x), ∀x∈X

}
.

Theorem 2 (Trivial Solutions for Unbounded CATEs). For any κ̂ ≥ 0, either 0 is an

optimal solution to (8) with Uκ̂ or every optimal solution is contained in Z∗.

3 The assumption that κ = 0 and the CATEs are identical is common in statistical techniques that generalize a
causal effect from one population to another (e.g., Cole and Stuart 2010, Stuart et al. 2011, Hartman et al. 2015).
Our proposed procedure will not depend on the true value of κ, although its performance will (see Corollary 5).
Consequently, we will formulate our model in the general case when κ≥ 0 and the study and candidate CATE may
differ, but on first reading, the reader may assume κ= 0 without much loss of generality.
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Theorem 2 asserts that under uncertainty set (9), the worst-case optimal targeting either chooses

no patients or matches the study distribution of covariates exactly. Verifying that a solution matches

the study distribution of covariates exactly, however, requires access to the full distribution of xs̃,

i.e., the raw study data, making it impossible to compute such a solution.

4.3. Incorporating Description Functions

The fundamental issue is that Uκ̂ in (9) is “too large” and contains many pathological pairs ΨC,Ψ
S.

Ideally, we would prefer to restrict Uκ̂ to a suitably well-behaved, nonparametric class of functions,

such as those belonging to a kernel space (Kallus 2017). However, for an arbitrary nonparametric

specification of the study CATE, verifying E[δs̃] ∈ [I, I] may require the full distribution of xs̃.

Consequently, we restrict Uκ̂ to a particular nonparametric class of functions for which we can

easily verify this condition.

To this end, consider projecting the study CATE onto the affine space spanned by the descrip-

tion functions {1, φ1(·), . . . , φG(·)}. Then, for any x ∈ X , we can write E[δs̃ | xs̃ = x] = β∗0 +∑G

g=1 β
∗
gφg(x) + ε∗(x), where

(β∗0 ,β
∗)∈ arg min

β0,β

∥∥∥∥∥∥
(
E[δs̃ | xs̃ = xs]−β0−

G∑
g=1

βgφg(x
s)

)S
s=1

∥∥∥∥∥∥
2

2

. (10)

Here ‖ · ‖2 is the ordinary `2-norm. Consequently, by construction, E[ε∗(xs̃)] = 0.

By itself, this decomposition does not restrict the set of CATEs under consideration; any CATE

can be projected onto this affine subspace. This is why we describe our specification as nonpara-

metric. Nonetheless, because E[ε∗(xs̃)] = 0, we have that E[ΨS(xs̃)] = β∗0 +
∑G

g=1 β
∗
gE[φg(x

s̃)] =

β∗0 +
∑G

g=1 β
∗
gµg. Thus, despite the non-parametric specification, verifying the study SATE agrees

with the evidence only requires knowing β∗0 ,β
∗, i.e., E [δs̃]∈ [I, I] ⇐⇒ β∗0 +

∑G

g=1 β
∗
gµg ∈ [I, I].

Motivated by this decomposition, our new uncertainty set is formed by restricting the size of the

coefficients and residual in this decomposition. Specifically, let ‖ · ‖ be a norm on RG and ‖ · ‖res be

a norm on RC . The main uncertainty set of our robust model is then

UΓ̂,κ̂ =

{
ΨC(·) :X 7→R

∣∣∣∣∣∃ε(·) :X 7→R, β0 ∈R, β ∈RG, s.t. ΨS(x) = β0 +

G∑
g=1

βgφg(x) + ε(x), (11)

I ≤ β0 +

G∑
g=1

βgµg ≤ I,
∥∥∥(ΨS(xc)−ΨC(xc)

)C
c=1

∥∥∥
link
≤ κ̂, ‖β‖ ≤ Γ̂1,

∥∥(ε(xc))
C

c=1

∥∥
res
≤ Γ̂2,

}
.

In words, the first equality of our uncertainty set decomposes ΨS(·) into its projection onto the

affine space of description functions and a residual. Any function can be decomposed in this way,

so this equality does not limit the class of study CATEs under consideration. The second pair
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of inequalities model the study evidence. The third inequality bounds the distance between the

CATEs as in Eq. (9). The last two inequalities depend on the user-defined parameters Γ̂1, Γ̂2 and

restrict the set of possible CATEs beyond Eq. (9). Also note that this uncertainty set is always

non-empty for any nonnegative (κ̂, Γ̂1, Γ̂2). One can verify that ΨC(x) = I+I

2
for all x ∈ X is a

member of UΓ̂,κ̂ by letting ΨC(·) = ΨS(·), β0 = I+I

2
, β = 0 and ε(·) = 0. In other words, for any

choices of the model parameters, our uncertainty set includes a “nominal” case where there is no

heterogeneity in causal effects, and the SATE of the study and targeted population are the same.

To build some intuition for these last two constraints, consider the idealized special case where

we 1) choose the norm ‖ · ‖ such that ‖β‖2 ≡βTΣβ with Σgg′ ≡E[(φg(x
s̃)−µg)(φg′(xs̃)−µg′)] for

all g, g′ = 1, . . . ,G and 2) choose the norm ‖ · ‖res such that
∥∥∥(ε(xc))

C

c=1

∥∥∥
res

=
∥∥∥(ε(xs))

S

s=1

∥∥∥
2
.4 Then,

the constraint ‖β‖ ≤ Γ̂1 is equivalent to Var(β0 +
∑G

g=1 βgφg(x
s̃))≤ Γ̂2

1, and the constraint on ε(·)
bounds the residual variance in the regression Eq. (10). In other words, Γ̂1 controls the amount of

variability of Ψ(xs̃) explained by the description functions, while Γ̂2 controls the residual variability.

With these choices of norm, the sum Γ̂1 + Γ̂2 is the total variance of Ψ(xs̃) and describes the

heterogeneity in the study CATE. As this sum tends to zero, Ψ(xs̃) tends to a constant, i.e.,

the study-CATE is homogenous. At the same time, the ratio Γ̂1

Γ̂1+Γ̂2
describes the ability of these

description functions to capture this hetereogeneity, much like the R2 of a linear regression. If

this ratio is large, these description functions capture most of the heterogeneity, and given φg(x
s)

we can predict the CATE of patient s well. If this ratio is small, these description functions are

uninformative, and we cannot predict the CATE of patient s well from these values.

That said, we stress these choices for norms are idealized, not prescriptive. Specifying the norms

in this manner would require detailed information on the distribution of covariates in the study

population, which is unavailable. Nonetheless, we will leverage this intuition to motivate specific,

practical choices of the norm in special cases in what follows.

4.4. Robust Counterparts

Using standard techniques, we can compute a robust counterpart. Let ‖ · ‖∗, ‖ · ‖∗link and ‖ · ‖∗res be

dual norms to ‖ · ‖, ‖ · ‖link and ‖ · ‖res, respectively.

Theorem 3 (General Robust Counterpart). The robust targeting problem (8) with uncer-

tainty set (11) is equivalent to

max
z∈Z

I
C∑
c=1

zcrc− Γ̂1

∥∥∥∥∥∥
(

C∑
c=1

zcrc(φg(xc)−µg)

)G
g=1

∥∥∥∥∥∥
∗

− Γ̂2

∥∥∥(zcrc)
C

c=1

∥∥∥∗
res
− κ̂

∥∥∥(zcrc)
C

c=1

∥∥∥∗
link
. (12)

4 This norm can always be specified in this manner whenever the random variables xs̃ and xc̃ are mutually abso-

lutely continuous. In this case, simply take
∥∥∥(ε(xc))

C
c=1

∥∥∥2

res
≡
∑C
c=1 ε(xc)

2 P(xs̃=xc)
P(xc̃=xc)

. One can then check directly that∥∥∥(ε(xc))
C
c=1

∥∥∥
res

=
∥∥∥(ε(xs))Ss=1

∥∥∥
2
.
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Remark 2 (Computational Complexity). From a theoretical point of view, Problem (12)

is NP-Complete, even when G= 1, κ̂= Γ̂2 = 0, φ(x) takes binary values and ‖ · ‖∗ is an `p-norm

(Theorem EC.1, Appendix EC.1). From a practical point of view, when the norms correspond

to (weighted) `1 or `∞-norms, Problem (12) is a mixed-binary linear program, and when the

norms corresponds to (weighted) `2-norms, Problem (12) is a mixed-binary second-order cone

problem. Although theoretically difficult, moderately sized mixed-binary linear and mixed-binary

second-order cone problems (such as those we study in this paper) can be solved efficiently using

off-the-shelf software on a personal computer in minutes.

Problem (12) provides insight into the structure of an optimal targeting:

No Dependence on I. The robust counterpart does not depend on I, or, equivalently, the width

of the confidence interval I− I. This lack of dependence is a unique feature of our causal inference

setting that distinguishes it from more traditional data-driven robust optimization settings.

Specifically, in typical data-driven settings where one directly observes data on the relevant

uncertainties, the width of the of the confidence interval roughly corresponds to the precision of

the estimates of those uncertainties (see, e.g., Bertsimas et al. 2017). With more data, this interval

shrinks, and the robust counterpart “converges” to a nominal (full-information) problem.

In our setting, we do not directly observe data on the relevant uncertainty, i.e., the candidate

CATE. The width of the confidence interval [I, I] does not correspond to the precision of the

relevant uncertain parameters, i.e., the candidate CATE, but rather to the precision of the estimate

for the study SATE. The precision of this estimator does not affect our targeting. What matters in

the targeting problem is the level of the study SATE and the variability of study CATE. Intuitively,

an RCT with an extremely large sample size could drive the width of the confidence interval to

zero, but that would not imply that the study CATE had low variability. There would still be

uncertainty in the form of the heterogenous effect in candidate population.

Avoiding high-reward patients if κ̂ or Γ̂2 is large. As κ̂→∞ with Γ̂1 and Γ̂2 fixed, the last

term in Eq. (12) grows. Consequently, an optimal solution selects fewer and fewer patients with

very high rewards, until ultimately no patients are targeted. We claim this behavior is intuitive.

Recall that κ̂ proxies κ (see Eq. (7)). If a decision-maker believed κ were quite large (and hence

specified κ̂ to be large), she also believes that the study CATE is not representative of the candidate

CATE. Said another way, she believes there is only weak evidence in the study, itself, to guarantee

that targeting in the candidate population will be effective. Consequently, an optimal risk-averse

targeting should select relatively few patients, and avoid patients with very high rewards. Indeed,

recall from our discussion of the pitfalls of reward scoring around Fig. 1 that high-reward patients

are “risky.” If these patients react adversely to treatment, they have very negative effectiveness.
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The robust model guards against the pitfalls of reward-scoring when the study-evidence is weak.

If the evidence is weak enough, it recommends not targeting.

A similar behavior holds as Γ̂2→∞ with κ̂ and Γ̂1 fixed. Recall that Γ̂2 proxies the residual error

in Eq. (10). If a decision-maker believed Γ2 were large (and hence specified a large Γ̂2), then even

if she believed κ= 0, i.e., that study CATE and candidate CATE were identical, she should select

relatively few patients and avoid patients with high rewards. Indeed, asserting κ= 0 is tantamount

to saying the way causal effects depend on covariates x is the same in both populations. However,

asserting that Γ2 is large implies that this dependence relies on information in x not captured

by the values φ1(x), . . . , φG(x). Consequently, there is still only weak evidence in the study, itself,

to guarantee that targeting in the candidate population will be effective. Note the dependence of

Problem (12) on Γ̂1 is more subtle and discussed in detail in the next subsection.

Although Theorem 3 is stated in full-generality, it depends on three user-defined parameters

κ̂, Γ̂1 and Γ̂2, and three user-defined norms ‖ · ‖, ‖ · ‖link and ‖ · ‖res. Practically, it is not clear

that the data at hand, i.e., the summary statistics and the study-evidence, support this detailed a

specification. We might prefer a simpler model with fewer parameters to specify.

Consequently, in what follows, we propose choosing ‖ · ‖res and ‖ · ‖link to be `∞-norms. The

resulting counterpart has a simple form, with only one effective user-defined parameter and norm.

Corollary 2 (Simplified Robust Counterpart). Suppose both ‖ · ‖res and ‖ · ‖link are taken

to be `∞-norms. Let z∗ be an optimal solution to problem (8) with uncertainty set (11). Then,

1. If I − Γ̂2− κ̂≤ 0, z∗ = 0.

2. If I − Γ̂2− κ̂ > 0, z∗ is also an optimal solution to

max
z∈Z

C∑
c=1

zcrc−
Γ̂1

I − Γ̂2− κ̂

∥∥∥∥∥∥
(

C∑
c=1

zcrc(φg(xc)−µg)

)G
g=1

∥∥∥∥∥∥
∗

, (13)

and the optimal value of problem (8) is (I − Γ̂2− κ̂) time the optimal value of problem (13).

We argue that problem (13) represents a good practical modeling compromise. The simplified

structure still captures many of the qualitative features of problem (12), e.g., for sufficiently large

κ̂ or Γ̂2, we should target no one. More importantly, finding an optimal solution only requires

specifying one user-defined parameter, i.e., the ratio Γ̂1

I−Γ̂2−κ̂
and one user-defined norm, i.e., ‖ · ‖.

This ratio further admits a simple interpretation as an “adjusted” coefficient of variation (CV).

Specifically, in the special case when κ̂= Γ̂2 = 0, then, under our earlier idealized choice of norm

‖β‖2 ≡Var
(∑G

g=1 βgφg(x
s̃)
)

, this ratio upper bounds the coefficient of variation of our approximate

study CATE ΨS(xs̃). Equivalently, since κ̂ = 0, it also upper bounds the coefficient of variation

on our approximate candidate CATE on the study population ΨC(xs̃). When κ > 0 or Γ̂2 > 0,

we adjust this coefficient of variation by reducing our estimate of the mean effectiveness due to

differences between the study and candidate populations, i.e., reducing I to I −Γ2− κ̂.
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4.5. Covariate Matching as Regularization

Problem (13) also facilitates a new connection between our approach and covariate matching in

statistics. Intuitively, we might expect that the larger the difference between the covariates of the

study population and targeted patients is, the less reliable the SATE of the study population is as

an estimate of causal effects in the targeted patients. Thus, we should avoid such targetings.

To make this intuition precise, note when I − Γ̂2− κ̂≥ 0, we can rewrite Eq. (13) as

C∑
c=1

zcrc−
Γ̂1

I − Γ̂2− κ̂
·

∥∥∥∥∥∥
(

C∑
c=1

wcφg(xc)−µg

)G
g=1

∥∥∥∥∥∥
∗

·
C∑
c=1

zcrc, where wc ≡
zcrc∑C

c=1 zcrc
. (14)

Thus, the objective Problem (13) approximates the intervention effectiveness of a candidate

targeting z by its total reward minus a penalty that depends on the distance between the summary

statistics µ evaluated on the study population and a reward-weighted average of these statistics

(
∑C

c=1wcφg(xc))
G
g=1 evaluated on the targeted patients from the candidate population. Our adjusted

CV Γ̂1

I−Γ̂2−κ̂
controls the trade-off between these two objectives. For small adjusted CV, solutions

to (13) will target high-reward patients regardless of their covariates. When the adjusted CV is 0,

problem (13) reduces to reward scoring. As the adjusted CV increases, solutions to (13) will match

the reward-weighted average summary statistics in the study population more closely. Similar

behavior holds for the general problem (12).

This “covariate matching as regularization” interpretation of our model provides a natural intu-

ition that connects with the literature on matching in design of experiments. Unlike traditional

schemes for matching, however, our approach incorporates the rewards rc both in the objective and

in the particular structure of the penalty. We next show that in special cases with appropriately

chosen norms ‖ · ‖, we recover common matching procedures in the regularizer.

For any positive definite matrix A, let ‖t‖A ≡
√

tTAt. The corresponding dual norm is ‖ · ‖A−1 .

Corollary 3 (χ2-Matching under Partition Description Functions). Suppose there

exists a partition X =
⋃G+1

g=1 Xg, and φg(x) = I(x∈Xg) are our description functions with statistics

µg for all g = 1, . . . ,G. Define ‖ · ‖ in (11) by ‖ · ‖ ≡ ‖ · ‖Σ, where Σ ≡ diag(µ)− µµT ∈ RG×G.

Then, Eq. (13) with this uncertainty set is equivalent to

C∑
c=1

zcrc−
Γ̂1

I − Γ̂2− κ̂
·

√√√√G+1∑
g=1

(qz,g −µg)2

µg
·
C∑
c=1

zcrc, (15)

where qz,g ≡
∑C

c=1 zcrcI(xc ∈Xg)/
∑C

c=1 zcrc is the (reward-weighted) proportion of type g patients

in the targeted population and µG+1 ≡ 1−
∑G

g=1 µg.

The penalty term of (15) is the χ2-distance between (µg)
G+1
g=1 and (qz,g)

G+1
g=1 . The χ2-distance metric

is commonly used for matching with partitioned covariates (Imbens and Rubin 2015). It arises

naturally as a regularizer in our method through the appropriate choice of uncertainty set.
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Remark 3. When |X | is finite and the partition consists of singletons, every CATE ΨS(x) can

be written in the form ΨS(x) = β0 +
∑G

g=1 βgI(x∈Xg) for some (β0,β)∈RG+1 . Consequently, one

can take Γ2 = Γ̂2 = 0 without loss of generality. This is the canonical setting for Corollary 3.

Corollary 4 (Mean Matching under Linear Description Functions). Suppose X ∈

RG, and φg(x) = xg are our description functions with statistics µg for all g = 1, . . . ,G. For any

positive definite matrix V ∈ RG×G, consider uncertainty set (11) with a weighted `2-norm ‖ · ‖V .

Then, Problem (13) is equivalent to

max
z∈Z

C∑
c=1

zcrc−
Γ̂1

I − Γ̂2− κ̂
·

∥∥∥∥∥∥
(

C∑
c=1

wcxc−µg

)G
g=1

∥∥∥∥∥∥
V−1

·
C∑
c=1

zcrc, (16)

where wc ≡ zcrc∑C
c=1 zcrc

.

The penalty term of Eq. (16) is a (weighted) distance between the means of the covariates in

the study population and in the target population. These types of distances between means are

frequently used to assess the quality of covariate matching (Imbens and Rubin 2015, pg. 410). The

choice of V controls the weighting. A common choice is to take V to be Σ, the covariance matrix

of xs̃, which recovers so-called Mahalanobis matching (Imbens and Rubin 2015, pg. 411). Another

common choice is to take V to be diag(Σ). This choice recovers the Euclidean metric (Imbens and

Rubin 2015, pg. 411) or so-called mean-matching penalty (Kallus 2016).

In summary, the interpretation of our method as regularizing via covariate matching highlights

that the role of the norm ‖ · ‖∗ is primarily to establish a metric between the distribution of

covariates in the study population and the (reward-weighted) distribution of covariates in the

targeted group. Indeed, any choice of norm enjoys this interpretation. Thus, although it is certainly

mathematically elegant to let ‖ · ‖ to be ‖ · ‖Σ, when Σ is known, other reasonable norms should

still yield good performance. Indeed, we use diag(Σ) to specify the norm in our case-study, because

the full covariance matrix of covariates is not reported in Shumway et al. (2008).

In principle, one might ask if is possible to choose an uncertainty set to recover other covariate

matching techniques. Appendix EC.2.4 describes a general construction. However, we consider

this construction to be principally of theoretical, rather than practical, interest for two reasons:

First, the above matching techniques (χ2-matching, Mahalanobis Matching and mean-matching)

are by far the most common in practice. Second, and more importantly, other covariate matching

techniques typically require knowledge of the full-distribution of covariates, not simply knowledge

of a few statistics. Since most studies do not report this full distribution, they cannot be used

practically as a regularizer in our setting. We refer the readers to Appendix EC.2.4 for further

details.
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4.6. Performance Guarantee for the Robust Approach

Recall that for a sufficiently large radius, our uncertainty set contains the true candidate CATE.

Using this observation, we bound the performance of our robust approach.

Corollary 5 (Worst-Case Performance of Robust Targeting). Let Γ1,Γ2, κ be suffi-

ciently large so that E[δc̃ | xc̃ = xc]∈ UΓ,κ. Let zRob be an optimizer of problem (12) for uncertainty

set UΓ̂,κ̂. Let

d1 ≡

∥∥∥∥∥∥
(

C∑
c=1

zRob
c rc(φg(xc)−µg)

)G
g=1

∥∥∥∥∥∥
∗

, d2 ≡
∥∥∥(zRob

c rc
)C
c=1

∥∥∥∗
res
, d3 ≡

∥∥∥(zRob
c rc

)C
c=1

∥∥∥∗
link
.

Then,

C∑
c=1

zRob
c rcE[δc̃|xc̃ = xc] ≥ I

C∑
c=1

zRob
c rc−Γ1d1−Γ2d2−κd3 ≥ (Γ̂1−Γ1)d1 + (Γ̂2−Γ2)d2 + (κ̂−κ)d3.

Corollary 5 describes the performance of the robust model under misspecification of the parameters.

The bound only depends on the unknown causal effect through the parameters Γ1,Γ2, κ. Corollary 5

guarantees that if we specify an uncertainty set large-enough, the robust strategy has non-negative

effectiveness, i.e., it is not harmful. (A sufficient condition is that Γ̂1 ≥ Γ1, Γ̂2 ≥ Γ2 and κ̂≥ κ.) This

is structurally different from targeting rules, where the performance depends strongly on how well

the rule matches the underlying causal effect if treatments may be harmful (Remark 1). Moreover,

we stress that the bound only depends on the covariates differences between the study population

and the targeted group, not the candidate population.

4.7. Selecting the Adj. CV parameter

Thus far, we have not discussed the choice of the adj. CV parameter Γ̂1

I−Γ̂2−κ̂
. One approach might

be to use external information or domain knowledge to 1) estimate the amount of explained het-

erogeneity in causal effects, 2) estimate the average causal effect in candidate population, and then

3) take their ratio. This approach requires external information or domain knowledge because the

reported study-data itself does not contain information about these parameters.

We adopt a different viewpoint motivated by the satisficing literature (Simon 1955). Let

z(λ)∈ arg max
z∈Z

C∑
c=1

zcrc−λ

∥∥∥∥∥∥
(

C∑
c=1

zcrc(φg(xc)−µg)

)G
g=1

∥∥∥∥∥∥
∗

.

Note that z(0) is the reward-scoring solution.

Then, given an acceptable revenue loss 0<α< 1 , we set λ to be the solution of

max
λ≥0

λ s.t.
C∑
c=1

rczc(λ)≥ (1−α)
C∑
c=1

rczc(0). (17)



24 Authors’ names blinded for peer review: Maximizing Intervention Effectiveness

In words, we seek the largest amount of robustness such that our targeting still achieves 1− α

of the optimal procedure under the nominal scenario (no heterogeneity). Similar ideas have been

used throughout decision-analysis. and there is growing empirical evidence that such models better

capture how real decision-makers think (see, e.g., Brown and Sim (2009) and references therein).

In some sense we have simply replaced the problem of specifying λ with the problem of specifying

α. However, from a practical point of view, we believe it is much more natural for a decision-

maker to specify that she is willing to give up, say 10%, of revenues in the nominal scenario to

protect herself against potential heterogeneity, than it is for her to specify a value for the coefficient

of variation of the unknown heterogeneous causal effect in the candidate population. This is the

perspective we take in our case study, and specify α= 10%.

Problem (17) can be solved by bisection search over λ. (See Theorem EC.2 in Appendix.)

4.8. Extensions of the Base Model

Appendix EC.2 considers several extensions to our base robust model and shows how one can

naturally incorporate fairness considerations, domain-specific knowledge of the candidate CATE,

evidence from multiple papers, and other generalizations.

5. Case Study: Comparison of Targeting Methods

Using data from our partner hospital, we seek to answer the following two questions: 1) when

do robust methods outperform scoring rules, and 2) what drives this performance? We target a

subset of Medicaid patients for case management at the end of 2014, with the goal of reducing the

underpayments for ED charges from 1/1/2015 to 6/30/2015.

At the time of writing, there has not yet been a large-scale, landmark study quantifying the

heterogeneous causal effects of case management. Hence, we do not have detailed CATE estimates,

i.e., we do not have a “ground truth” against which to evaluate our methods. Our best empirical

evidence to date is from Shumway et al. (2008) (Table 1). Using these data, we adopt the following

approach to compare different methods:

1. We approximate a confidence interval for the SATE (Table 1). Had a researcher run a simple

randomized control trial using data from Shumway et al. (2008), instead of a stratified analysis,

she might have reported this estimate. This estimate is what would be typically available in

a (non-stratified) published study.

2. We use this approximate confidence interval and summary statistics (Table 2) to compute our

robust targeting solutions for two different variations of our uncertainty set (described below)

corresponding to different (possibly misspecified) structures of CATEs.

3. We compare the performance of various methods in two different settings:
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a. Section 5.4: We assume that the ground-truth candidate CATE is given by the estimates

in Shumway et al. (2008). This setting is most relevant if we believe that the strata based

on previous ED visits capture most of the heterogeneity in causal effects.

b. Section 5.5: We assume that the ground-truth candidate CATE depends only on

demographic-related covariates: gender, race and age. This setting is most relevant if we

believe that these demographics capture most of the heterogeneity in causal effects. A

drawback of this setting is that we have no experimentally validated estimates of CATEs.

Thus, we must focus on the worst-case performance.

Before proceeding to the details, we summarize our main findings:

• As predicted by Theorem 1, when treatment is benign or causal effects are nearly homogeneous,

reward scoring performs well. However, this performance degrades rapidly if the treatment may be

harmful. As the heterogeneity in CATE increases, scoring rules can be worse than not targeting.

• Our robust method performs almost as well as scoring rules when the heterogeneity (as mea-

sured by the adjusted CV) is small and much better than scoring rules as the adjusted CV increases,

provided that the study CATE is approximately linear in the chosen description functions. If not,

robust methods may perform poorly. These results agree qualitatively with Corollary 5.

• In this particular dataset, the benefits of our robust approach increase as the distribution of

rc has a shorter right tail or as the resource constraint K/C is tightened.

5.1. The Candidate Population

The data from our partner hospital include information on all adult Medicaid ED visits from

1/1/2014 to 12/31/2014. For each visit, we have the date of visit, total charges, associated primary

ICD-10-CM diagnosis code, and patient identifier as well as the patient’s demographic information,

including age, gender, race and Medicaid eligibility. For patients who visited the ED in 2014, we also

have the number of ED visits from 1/1/2015 to 6/30/2015. Table 3 provides the summary statistics

for the patients before and after we apply Shumway et al. (2008)’s inclusion/exclusion criteria and

limit our attention to Medicaid patients only. (See notes of Table 3 for detailed inclusion/exclusion

criteria.) Despite applying the same inclusion-exclusion criteria, the resulting candidate population

differs significantly from both the Medicaid ED patient population and the study population. (See

Table 2 for a comparison of candidate and study populations.)

5.2. Implementation Details of Targeting Methods

For a fair comparison, all methods are assessed against the same values of rc. Except in Section

5.6, these values are the average charges per ED visit for each patient in 2014. In Section 5.6, we

assess the methods against other values of rc with different tail behaviors. To maintain anonymity,

we normalize performance metrics in dollar amounts by the full-information optimal value when it
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Table 3 Inclusion Criteria and Summary Statistics for the Candidate Population

All Medicaid ED Patients
(24,943 patients in 2014)

Candidate Population
(C = 951 patients)

Inclusion Criteria§

Age, mean ± sd 43.3 ± 9.5 38.3 ± 12.5

No. of ED Visits in 2014

1 - 4 23,558 (94%) 0 (0%)
5 - 11 1,286 (5%) 860 (90%)

≥ 12 99 (1%) 91 (10%)
Comorbidity ∗∗

Alcohol Abuse 1,186 (5%) 777 (18%)

Drug Abuse 188 (0.8%) 39( 5%)
Psychological Problem 1144 (5%) 216 (23%)

Medicaid Type∗∗∗

HUSKY A 8,767 (35%) 125 (13%)
HUSKY B 43 (0.2%) 0 (0%)

HUSKY C 1,697 (7%) 204 (21%)

HUSKY D 9,039 (36%) 695 (73%)

Other Characteristics

Male 11,349 (45%) 442 (46%)

Race/Ethnicity
African American 9,153 (37%) 475 (50%)
Hispanic 177 (1%) 7 (1%)

White 7,532 (30%) 283 (29%)

Other 8,081 (32%) 186 (20%)
Length of Stay (hours), mean ± sd 5.1 ± 7.4 6.2 ± 5.5

No. of ED Visits from 1/1/2015 to

6/30/2015 yc(0), mean ± sd
1.8 ± 1.7 7.2 ± 4.2

Avg. Charges Per ED Visit in 2014 rc ($),

mean ± sd
3,252 ± 4,491 3,324 ± 3,048

Charlson Comorbidity Score‡, mean ± sd 0.08 ± 0.4 1.9 ± 0.9

Most Frequent Diagnosis† during ED

Visits
back problems (5%) alcohol-related disorders (10%)

nonspecific chest pain (5%) abdominal pain (6%)

skin diseases (4%) back problems (5%)
upper respiratory infection (4%) nonspecific chest pain (4%)
alcohol-related disorders (4%) connective tissue diseases (3%)

sprains and strains (4%) non-traumatic joint disorders (3%)

Notes. § Patients are included in the candidate population if they are at least 18 and below 65 years old; had at least 5 visits to the ED of our
partner hospital in 2014; have a history of alcohol abuse, drug abuse, or psychological problems; have disability or blindness (HUSKY C); or have
a low income and no dependent child (HUSKY D). ∗∗ Calculated from the primary ICD-10-CM diagnosis code using Elixhauser Comorbidity
Software (Elixhauser et al. 1998). ∗∗∗ In Connecticut, Medicaid patients are eligible for one of the four parts (http://www.ct.gov/hh/cwp/view.asp?
a=3573&q=421548). HUSKY A covers children, their parents and pregnant women; HUSKY B covers children whose parents earn too much money
to qualify for Medicaid; HUSKY C covers low-income patients with disabilities or blindness; and HUSKY D covers the lowest-income patients
with no dependent child. ‡ Calculated from the primary ICD-10-CM diagnosis code using Charlson Comorbidity Score (Charlson et al. 1987). †

Calculated from the primary ICD-10-CM diagnosis code using Clinical Classification Software (Elixhauser et al. 2014).

is available (Section 5.4) or by the summation of K largest rc when it is not (Section 5.5). Except

for Section 5.6, we fix K = 200 (K/C = 21%).

We compare the following four methods:

Reward Scoring (r-Scoring) We score by rc.

Outcome Scoring (ry(0)-Scoring) We score by rcyc(0), where yc(0) is the actual number of ED

visits for patient c from 1/1/2015 to 6/30/2015.
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Robust-2 We solve Problem (15) using a partition description function for strata. (Equivalently,

we add the constraints βg = 0 to all other description functions.) The corresponding summary

statistics, i.e., the proportion of patients in each stratum, are given by Table 1.

Robust-Full-Linear We solve Problem (16) using partition description functions for strata, gen-

der, and race and a linear description function for age. The corresponding summary statistics, i.e.,

the mean and standard deviation of each covariate, are given by Table 2.

We focus on reward and outcome scoring because, as mentioned, these methods are optimal when

the causal effect is homogeneous and additive or multiplicative, respectively. Moreover, outcome

scoring, in particular, closely mirrors current state-of-practice for targeting at our partner hospital.

We choose the adjusted CV parameter Γ̂1/(I− Γ̂2− κ̂) via the satisficing heuristic in Section 4.7

with α = 10%, yielding 0.55 and 0.3 for Robust-2 and Robust-Full-Linear, respectively. In other

words, we are willing to trade-off 10% of the cost saving in a nominal case for robustness. Finally,

robust optimization problems frequently exhibit multiple optimal solutions. In our case study, we

use the Pareto robust optimal solution corresponding to the realization ΨC(·) = I − Γ̂2− κ̂ , which

can be computed as in Iancu and Trichakis (2013). Intuitively, this solution is non-dominated

among robust optimal solutions when all patients respond to treatment identically.

5.3. Properties of the Solutions

Both Robust-2 and Robust-Full-Linear target all K = 200 patients when specifying their Adj.

CV parameters as described above. This is essentially because targeting fewer than 200 patients

would amount to more than a 10% loss in the nominal scenario. Indeed, as seen in Fig. EC.3 in

Section EC.3.3, as long as one insists on less than a 50% loss in the nominal scenario, both robust

methods fully utilize the budget.

Because of their different choices of description functions, the two robust methods match the

distribution of covariates in the study population differently. Robust-2 attempts to match the

proportion of patients in each stratum. Specifically, Table 4 shows that there are only 48% patients

in stratum 1 in the study population, in contrast to 90% of the reward-weighted proportion of

patients in stratum 1 in the candidate population. Thus, Robust-2 targets proportionally fewer

stratum 1 patients, yielding an overall percentage of 78%. Notice that although this proportion is

closer to the study population’s 48%, it is not an exact match since the robust method also balances

the competing objective of targeting higher-reward patients (recall Remark 4.5). In our candidate

population, stratum 2 patients typically have lower rc than stratum 1 patients (Figure EC.4 in the

e-companion). Completely matching the proportion of stratum 1 patients would entail a significant

loss in rewards. Also, although Robust-2 improves the matching of proportion of patients in each

stratum, it exacerbates differences in other covariates, such as the proportion of Hispanic patients.
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Similar observations can be made about Robust-Full-Linear. It more closely matches the means

of the covariates in the study population than in the candidate population but does not always

achieve exact matching. For example, our candidate population has very few Hispanic patients, so

Robust-Full-Linear is unable to fully match the 22% of Hispanic patients in the study population.

For all other covariates, it achieves a reasonably close match.

Table 4 Characteristics and Reward-Weighted Average Covariates for the Targeted Patients by Method

Study
Population

Candidate
Population

Reward
Scoring

Outcome
Scoring

Robust-2
Robust-Full-

Linear

Characteristics of Targeted Patients

Avg. Charges Per ED Visit in 2014 rc ($) 3,324 7,547 5,965 6,795 6,815

Avg. No. of ED Visits from 1/1/2015 to

6/30/2015 yc(0)
2.3 2.2 5.3 3.0 2.6

Weighted Avg. Pre-Treatment

Covariates∗

Demographics

Male 75% 48% 51% 52% 53% 62%

African American 54% 46% 43% 44% 41% 53%
Hispanic 22% 0.5% 0.3% 0.1% 0.1% 0.3%

White 13% 34% 41% 42% 43% 44%

Age 43.3 40.7 44.9 44.9 45.3 44.3
Two Strata from Shumway et al. (2008)

Stratum 1: 5 - 11 ED Visits in 2014 48% 90% 90% 83% 78% 84%

Note. ∗ Except for the study population, we show the reward-weighted average of pre-treatment covariates. Thus, the reward-weighted summary statistics
for the candidate population are different from those in Table 3.

5.4. When CATEs Depend Only on Previous ED Visits

In this section, the ground-truth candidate CATE is given by

E[δc̃ | xc̃ = xc]≡ψ1 · I(patient c in stratum 1) +ψ2 · I(patient c in stratum 2) (18)

for all c∈ {1, . . . ,C}, where ψ1 and ψ2 denote the true CATEs for stratum 1 (5 to 11 ED visits in

the previous year) and stratum 2 (greater than or equal to 12 ED visits in the previous year).

For the particular point estimates of ψ1 = 2.1, ψ2 = 3.3 (ED visits reduced) provided by Shumway

et al. (2008), reward scoring achieves 99% of the full-information optimum benchmark, while

Robust-2 achieves 95% and Robust-Full-Linear achieves 93%.

However, the point estimates for ψ1,ψ2 are not exact, so our assessment might be optimistic.

We next study the performance under small perturbations of these estimates. Specifically, we vary

ψ1, ψ2 uniformly within the confidence intervals provided by Shumway et al. (2008): [0.1,4.1] and

[0.2,6.4], respectively. Each pair of values yields a different relative performance for each method

and a different level of heterogeneity in the candidate CATE, as measured by its coefficient of

variation. This coefficient of variation is given by CV =
√∑2

g=1 µg(ψg −µTψ)2/µTψ, where µ1 =
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Figure 2 Relative Performance as Both ψ1 and ψ2 Vary Uniformly within Their Confidence Intervals
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Note. Performance is relative to the full-information benchmark, and ψ1, ψ2 are the number of ED visits reduced in each
stratum. We plot the mean relative performance (point) across choices of ψ1, ψ2 with the given CV, plus/minus one standard
deviation (error bar). To the left of the dashed line CV= 0.55, the ground-truth CATEs belong to the uncertainty set of the
Robust-2 method.

0.48 and µ2 = 0.52 from Table 2. We summarize the relative performance of each method by plotting

the mean and standard deviation for a given level of CV across all perturbations in Figure 2.

Perhaps unsurprisingly, all methods perform reasonably well, obtaining at least 65% of the full-

information optimal value. Indeed, the confidence intervals of CATEs are both strictly positive,

i.e., treatment is benign, and Theorem 1 ensures that reward scoring cannot be too suboptimal.

Nonetheless, as the heterogeneity increases, we do observe qualitative differences in behavior.

When CV= 0, reward scoring is optimal (as expected by Corollary 1). As CV increases, reward

scoring’s performance degrades rapidly. At worst, it obtains about 75% relative performance.

Robust-2 performs slightly worse than reward scoring when the degree of heterogeneity is small

(obtaining about 90% relative performance) and much better than reward scoring as CV increases

up to 0.4 (obtaining almost 95% relative performance). A similar observation can be made for

Robust-Full-Linear: Robust-Full-Linear performs almost as well as reward scoring when the degree

of heterogeneity is small and is better than reward scoring when it is sufficiently large.

Notice also that when CV < 0.55, the ground-truth CATEs in our simulation belong to the

uncertainty set defined by Robust-2. However, because of its “worst-case perspective”, Robust-2

does not outperform Reward Scoring unless the CV is sufficiently large.

One way to interpret the value CV = .4 (where the methods intersect) is that since SATE is

approximately 2.7, CV = .4 implies the standard deviation of the candidate CATE is at most .4 ·

2.7 = 1.08. In other words given two random patients, the expected absolute difference between their

causal effect is at most
√

2 · 1.08≈ 1.5 visits.5 Thus, if we believe that benefit of case management

varies by more than 1.5 visits between patients, Robust-2 outperforms reward scoring.

5 For X,Y i.i.d. random variables, E[|X −Y |]≤
√

E[(X −Y )2] =
√

2Var(X) by Jensen’s inequality.
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Figure 3 Relative Performance as Either ψ1 or ψ2 Varies
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Note. Negative values of ψ1, ψ2 indicate increased ED visits. In the left panel, we fix ψ2 = 3.3 and vary ψ1, while in the right
panel, we fix ψ1 = 2.1, and vary ψ2. The dashed vertical lines indicate the point estimates of the varying parameter.

To further investigate the effects of heterogeneity, we vary only one of ψ1 or ψ2 in Figure 3 and

keep the other fixed at its point estimate from Shumway et al. (2008). The performance of reward

scoring degrades rapidly as ψ1 decreases, and it can perform very badly when ψ1 becomes negative,

i.e., when case management may increase ED visits for patients in stratum 1. To the contrary,

both robust methods outperform reward scoring significantly in these instances. As mentioned in

Section 5.3, both robust methods effectively target fewer stratum 1 patients, which makes their

performance less sensitive to the changes in ψ1. Of course, since these methods target more stratum

2 patients, they are more sensitive to the value of ψ2 (see right panel of Figure 3), but the magnitude

of the changes are substantially smaller. Overall, then, we would argue that the robust methods

are indeed more “robust” to uncertainties in ψ1 and ψ2.

5.5. When CATEs Depend Only on Patient Demographics

In this section, the ground-truth study CATE is given by

E[δs̃ | xs̃ = xs]≡ β0 +
G∑
g=1

βgφg(x
s) + ε(xs), ∀s∈ {1, . . . , S}, (19)

for some β0,β such that βg 6= 0 only if g corresponds to a demographic-related covariate, i.e,. the

patient’s gender, race or age. Let G be the set of indices for these demographic-related description

functions. Since we do not have experimentally validated estimates for a CATE with this structure,

we will compare to worst-case performance over the uncertainty set

U∗Γ,κ =

{
ΨC :X 7→R

∣∣∣∣∣ ∃ε :X 7→R, β0 ∈R, β ∈RG, s.t. ΨS(x) = β0 +

G∑
g=1

βgφg(x) + ε(x), βg = 0 ∀g 6∈ G,

(20)

I ≤ β0 +

G∑
g=1

βgµg ≤ I,
∥∥∥(ΨS(xc)−ΨC(xc)

)C
c=1

∥∥∥
∞
≤ κ, ‖β‖V ≤ Γ1,

∥∥(ε(x∗c))
C

c=1

∥∥
∞ ≤ Γ2

}
,

for varying κ, Γ1, and Γ2. Here, V is diagonal with the variance of demographic-related covariates

as entries (Table 2).
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Using Theorem 3, we can compute the worst-case objective in closed form. To maintain

anonymity, we normalize the worst-case objective by (I − Γ2 − κ)
∑K

c=1 rc, where r1 ≥ · · · ≥ rC .

The final worst-case performance metric only depends on the ratio Adj. CV ≡ Γ1/(I − Γ2 − κ).

Inspired by this fact, we present our results relative to this “true” Adj. CV, and use the notation

Adj. ĈV≡ Γ̂1/(I − Γ̂2− κ̂) for the parameter of the uncertainty set used to compute Robust-2, or

Robust Full-Linear, depending on the chosen setting.

Note that both robust methods are “misspecified” under (19) and (20). Specifically, Robust-Full-

Linear assumes that CATEs may depend on the strata membership (when they, in fact, do not)

and assumes a particular value of Adj. ĈV , which, in general, is different from the true Adj. CV

above. We also stress that the treatment in this experiment can be potentially harmful.

Figure 4 Worst-Case Performance When CATEs Depend Only on Demographics
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Note. Worst-case performance is the worst-case objective value under uncertainty set (20) normalized by (I−Γ2−κ)
∑K

c=1
rc.

We plot the anonymized worst-case performance against Adj. CV for different methods in Figure

4. Consider reward scoring and Robust-Full-Linear. When Adj. CV = 0, reward scoring is optimal.

Notice that Robust-Full-Linear performs not optimally but at least 90% compared to scoring rule

due to our proposed heuristics of choosing Adj. ĈV in Section 4.7. However, the performance of

reward scoring degrades rapidly as Adj. CV increases, while Robust-Full-Linear performs signifi-

cantly better than scoring rules as Adj. CV increases above 0.2.

Robust-2 performs poorly in this experiment. The worst-case performance of Robust-2 can be

negative and worse than not targeting. We partially explain this behavior using Corollary 5 in

Section EC.3.4 of the appendix. Intuitively, the variation in the true CATE is not well-captured

by the description functions in Robust-2. Consequently, Γ2 must be very large before the true

CATE is contained in its uncertainty set, making the uncertainty set very large and the worst-case

performance very poor. In other words, Robust-2 is highly misspecified.
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5.6. Sensitivity Analysis

Reward scoring performs well compared to robust methods when the treatment is benign. We

argued that this is due to the long-tail behavior of the reward distribution. In this section, we seek

to verify this by exploring how the performance of our robust methods and reward scoring changes

as we vary the tail behavior of rc distribution and the resource constraint K/C.

We only include results for Robust-Full-Linear and reward scoring, but we observe similar behav-

ior for Robust-2 and outcome scoring (see Appendix EC.3.5). Throughout, we focus on the perfor-

mance difference between Robust-Full-Linear and reward scoring under the ground-truth models of

Sections 5.4 and 5.5. For each setting, we compute the performance metrics for the robust method

and reward scoring separately and report their difference. For example, under the ground truth

of Section 5.4, we compute the average relative performance to the full-information optimum for

each method and determine the difference. We refer to this quantity as the average relative perfor-

mance difference. Under the ground truth of Section 5.5, we compute the worst-case performance

of Robust-Full-Linear and reward scoring (normalized by (I − Γ2 − κ)
∑K

c=1 rc) separately and

determine the difference. We term this quantity the worst-case performance difference. A positive

performance difference implies that Robust-Full-Linear outperforms reward scoring.

Figure 5 Difference between Robust-Full-Linear and Reward Scoring Varying the Resource Constraint
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Note. The left panel corresponds to Figure 2 in Section 5.4. The right panel corresponds to Figure 4 Section 5.5. In both
panels, we plot the performance difference (defined in the main text) against K/C.

To investigate the sensitivity of resource constraint, we vary the value of K and reproduce the

experiments of Figs. 2 and 4 in terms of the performance difference between Robust-Full-Linear

and reward scoring in Figure 5. For each value of K, we use our satisficing approach of Section 4.7

with α = 10% to specify the parameters of the uncertainty set. For all values of K studied, i.e.,

K = 10,20, . . . ,50,100,150, . . . ,800, both Robust Full-Linear and Robust-2 target all K patients.

For brevity, we only present results for Robust Full-Linear.

We see that the performance difference increases as the resource constraint is tightened, i.e., as

K/C decreases, in both settings. In addition, for any fixed level of K/C, Robust-Full-Linear tends
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to increasingly outperform reward scoring as CV or Adj. CV increases, which is consistent with

our previous observations.

To investigate the sensitivity to the reward distribution, we reproduce the experiments in Figure

2 and Figure 4 in terms of performance differences for a variety of different reward distributions.

Specifically, define the new rewards

r′c ≡ F−1
α1,10(F̂ (rc)), ∀c= 1, . . . ,C, (21)

where F̂ (·) is the empirical cumulative distribution function (CDF) of original rewards rc (average

charges per ED visit for patient c in 2014) and F−1
α1,10(·) is the inverse CDF of beta distribution with

parameter α1 and α2 = 10. By varying α1, we can alter the tail behavior of the reward distribution

(see Figure 6). Although this transformation may change the average reward in the candidate

population, the scale of rewards does not affect our performance metrics.

Figure 6 Distribution of Rewards r′c defined in Eq. (21)

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

r′c

α1

● 1 3 5 7 20 50

Note. The parameter α2 = 10 and α1 varies.

For varying α1, we re-compute rewards by Eq. (21), re-compute each method and assess the

performance difference with the new rewards under our two possible ground truths (Figure 7).

Figure 7 Difference between Robust-Full-Linear and Reward Scoring Varying Reward Distribution
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Note. The left panel corresponds to Figure 2 in Section 5.4. The right panel corresponds to Figure 4 Section 5.5.
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Similar to previous experiments, for a fixed value of α1, we see an increasing performance gap as

CV or Adj. CV increases. More interestingly, the performance difference increases as α1 increases,

although with severely decreasing marginal returns; for large values of α1, there is almost no benefit.

This effect is significantly less pronounced in the right panel when considering worst-case behavior.

Overall, it seems that for this particular dataset, the benefits of the Robust-Full-Linear method

over reward scoring increase as the reward distribution has a shorter right tail. We write “for this

dataset” since it is possible to construct datasets where this finding is not true.

This result agrees well with our previous intuition that targeting patients with very high rewards

is “risky” since the performance will depend strongly on the unknown causal effect of these high-

reward patients. Intuitively, if case-management causes these high-reward patients to visit the ED

more frequently, our effectiveness decreases substantially. In the left panel, reward scoring performs

well (i.e., the performance difference is negative) for the initial reward distribution at least partially

because the highest-reward patients mostly belong to stratum 1 and because these patients have

the highest causal effects. As the reward distribution shifts, the difference in rewards between

stratum 1 and stratum 2 patients shrinks, so this benefit erodes, and the performance difference

becomes positive. By contrast, in the right-hand panel, since we consider worst-case behavior,

reward scoring does not enjoy such a benefit under the initial reward distribution, and we see a

much smaller gain as we shift the distribution.

6. Conclusion

We proposed a robust optimization model to maximize intervention effectiveness utilizing evidence

available from published studies. Our approach is intuitive, flexible, and computationally tractable

and outperforms current practice when the underlying heterogeneity in causal effects are large.
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ec1

Proofs and Additional Graphs

EC.1. Proofs

Proof of Theorem 1. We require the following identity:

v+w

v+ z
≥ v+w

v+ z
, whenever v≥ v, z ≥w. (EC.1)

To prove the identity, differentiate the left-hand side by v, yielding

z−w
(v+ z)2

≥ 0,

since z ≥ w by assumption. Thus, decreasing v to v never increases the ratio in (EC.1), which

proves the identity.

Recall that B∗ denotes the full-information optimal solution to Problem (1). We assume that

|B∗|=K without loss of generality. Since δc/δ̂c ≥ δ > 0, we have rcδc ≥ 0 for all c ∈ {1, . . . ,K}. If

|B∗|<K, we can always target additional patients in {1, . . . ,K} without decreasing the objective.

For notational convenience, let ac ≡ rcδ̂c and bc ≡ δc
δ̂c

for all c ∈ {1, . . . ,C}. Then, rδ̂-scoring is

equivalent to a-scoring, and the objective of Problem (1) can be written as
∑C

c=1 rcδc =
∑C

c=1 acbc.

The relative performance of the a-scoring rule is∑
c:1≤c≤K acbc∑
c:c∈B∗ acbc

=

∑
c:1≤c≤K,c∈B∗ acbc +

∑
c:1≤c≤K,c/∈B∗ acbc∑

c:1≤c≤K,c∈B∗ acbc +
∑

c:c≥K+1,c∈B∗ acbc
. (EC.2)

Since B∗ is the full-information optimal solution,∑
c:c∈B∗

acbc ≥
∑

c:1≤c≤K

acbc ⇔
∑

c:c≥K+1,c∈B∗
acbc ≥

∑
c:1≤c≤K,c/∈B∗

acbc.

By assumption, we also have bc ≥ δ for all c∈ {1, . . . ,K}. Applying the identity in (EC.1) yields∑
c:1≤c≤K acbc∑
c:c∈B∗ acbc

≥
δ
∑

c:1≤c≤K,c∈B∗ ac +
∑

c:1≤c≤K,c/∈B∗ acbc

δ
∑

c:1≤c≤K,c∈B∗ ac +
∑

c:c≥K+1,c∈B∗ acbc
. (EC.3)

Then,

Eq.(EC.3) ≥
δ
∑

c:1≤c≤K ac

δ
∑

c:1≤c≤K,c∈B∗ ac + δ
∑

c:c≥K+1,c∈B∗ ac
, (EC.4)

since bc ≥ δ for all c∈ {1, . . . ,K}. Define k≡ |B∗∩{1, . . . ,K}| to be the number of patients targeted

by both methods. Then,

Eq. (EC.4) ≥
δ
∑K

c=1 ac

δ
∑k

c=1 ac + δ
∑2K−k

c=K+1 ac
(since ac is in decreasing order and δ > 0)

≥
δ
∑K

c=1 ac

max0≤k≤K{δ
∑k

c=1 ac + δ
∑2K−k

c=K+1 ac}
. (EC.5)
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Consider the maximization in (EC.5) and rewrite the summations:

δ
k∑
c=1

ac + δ
2K−k∑
c=K+1

ac = δ
2K∑

c=K+1

ac +
k∑
c=1

[δac− δa2K−c+1].

The first term does not depend on k. In the second term, note that for c < c′, we have δac −

δa2K−c+1 ≥ δac′ − δa2K−c′+1 since ac is in descending order and δ, δ > 0. Therefore, the quantity

δac − δa2K−c+1 is also decreasing in c. It follows that the optimal k∗ is the largest c such that

1≤ c≤K and δac − δa2K−c+1≥0 and is 0 if this quantity is always non-positive. This proves the

inequality (2).

We next give an example in which the bound is achieved. Take

δc =

{
δδ̂c, if 1≤ c≤K
δδ̂c, otherwise,

⇔ bc =

{
δ, if 1≤ c≤K
δ, otherwise.

For these values, we will confirm that the true relative performance of a-scoring is given by (2). We

first show that B∗ = {1, . . . , k∗}∪{K + 1, . . . ,2K − k∗}, where k∗ is defined in the theorem. To see

this, note that since ac is non-increasing and bc is constant on the scale 1≤ c≤K, B∗ must be of

the form {1, . . . , k}∪{K+ 1,2K− k} for some 0≤ k≤K, and the full-information objective value

is max0≤k≤K{δ
∑k

c=1 ac + δ
∑2K−k

c=K+1 ac}. As proven previously, k∗ optimizes this objective so that

B∗ has the required form. Substituting in the definition of ac, bc and B∗ into Eq. (EC.2) completes

the proof. �

Proof of Corollary 1. For the first part, take the derivative of ω(δ/δ) with respect to δ/δ to

obtain

ω′(δ/δ) =

∑K

c=1 rcδ̂c
∑k∗

c=1 rcδ̂c

((δ/δ)
∑k∗

c=1 rcδ̂c +
∑2K−k∗

c=K+1 rcδ̂c)
2
≥ 0,

where the inequality follows because rcδ̂c ≥ 0 for all c∈ {1, . . . ,C} by assumption.

For the second part, we apply the definition of k∗ in Theorem 1. When δ/δ ≥ rK+1δ̂K+1/rK δ̂K ,

k∗ =K and ω(δ/δ) = 1.

Finally, when (δ/δ) is sufficiently small, (δ/δ) ≤ r2K δ̂2K/r1δ̂1, and we have k∗ = 0. Then, the

denominator of ω does not depend on δ/δ, and the numerator goes to 0 as δ/δ→ 0, so ω(δ/δ)→ 0.

Thus, the proof is complete. �

Proof of Theorem 2. First note that 0 is feasible and has worst-case performance 0 in (8). Thus,

it suffices to show that for any z 6∈ Z∗, the worst-case objective over (9) is at most 0. For such a z,

there must exist x0 ∈X such that qz(x0) 6= P(xs̃ = x0). Consider the function Ψλ(x) = I +λ(I(x =

x0)−P(xs̃ = x0)). Since κ̂≥ 0, Ψλ ∈ Uκ̂. Furthermore,

C∑
c=1

zcrcΨλ(xc) =
C∑
c=1

zcrc

(∑
x∈X

qz(x)Ψλ(xc)

)
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=
C∑
c=1

zcrc

(
I +

∑
x∈X

qz(x)λ(I(xc = x0)−P(xs̃ = x0))

)

=
C∑
c=1

zcrc
(
I +λ(qz(x0)−P(xs̃ = x0))

)
.

Now, if
∑C

c=1 zcrc = 0, this quantity is 0. Otherwise, if
∑C

c=1 zcrc > 0, then, by taking λ→±∞, we

have that the worst-case performance over (9) of z is −∞. In either case, the worst-case performance

is at most 0. This proves the theorem. �

Proof of Theorem 3. We apply standard techniques (see, e.g., Ben-Tal et al. 2009 for a review).

Given any feasible z, the inner minimization of (8) under uncertainty set (11) can be rewritten as

min
β0,β,(ε(xc))

C
c=1,(v(xc))Cc=1

C∑
c=1

zcrc

(
β0 +

G∑
g=1

βgφg(xc) + ε(xc) + v(xc)

)

s.t. I ≤ β0 +
G∑
g=1

βgµg ≤ I, ‖β‖ ≤ Γ̂1

‖(ε(xc))Cc=1‖res ≤ Γ̂2, ‖ (v(xc))
C

c=1 ‖link ≤ κ̂,

where v(xc) represents the difference ΨC(xc)−ΨS(xc). This optimization problem decomposes into

the sum of three separate minimizations:

min
β0,β

C∑
c=1

zcrc

(
β0 +

G∑
g=1

βgφg(xc)

)

s.t. I ≤ β0 +

G∑
g=1

βgµg ≤ I, ‖β‖ ≤ Γ̂1,

min
(ε(xc))Cc=1:

C∑
c=1

zcrcε(xc)

s.t. ‖(ε(xc))‖res ≤ Γ̂2,

min
(v(xc))Cc=1:

C∑
c=1

zcrcv(xc)

s.t. ‖(v(xc))‖link ≤ κ̂

Consider the second optimization problem. By the Cauchy-Schwarz inequality, the optimal value

is at least −Γ̂2

∥∥∥(zcrc)
C

c=1

∥∥∥∗
res

. In fact, the optimal value is exactly this quantity by definition of the

dual norm.

An entirely analogous argument holds for the third optimization problem, which has optimal

value −κ̂
∥∥∥(zcrc)

C

c=1

∥∥∥∗
link

.

It remains to evaluate the first optmization problem. For Γ̂1 > 0, β0 = (I − I)/2, β = 0, is

a strictly feasible solution. It follows that Slater’s condition holds, and we have strong duality.

Dualizing the two linear inequalities and rearranging yields the Lagrangian dual supγ1,γ2≥0 G(γ1, γ2)

where

G(γ1, γ2) = γ1I − γ2I + min
β0

β0

C∑
c=1

(zcrc− γ1 + γ2) + min
β:‖β‖≤Γ̂1

G∑
g=1

(
C∑
c=1

zcrcφg(xc)− (γ1− γ2)µg

)
βg.

The first minimization is finite only if γ1− γ2 =
∑C

c=1 zcrc. By the Cauchy-Schwarz inequality the

second minimization is equal to∥∥∥∥∥∥
(

C∑
c=1

zcrcφg(xc)− (γ1− γ2)µg

)G
g=1

∥∥∥∥∥∥
∗

.
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Substituting these values above yields the dual problem:

sup
γ1,γ2

γ1I − γ2I +

∥∥∥∥∥∥
(

C∑
c=1

zcrcφg(xc)− (γ1− γ2)µg

)G
g=1

∥∥∥∥∥∥
∗

s.t. γ1− γ2 =
C∑
c=1

zcrc.

Since I > I, we claim at optimality that γ2 = 0. Indeed, if this were not true, then the solution

(γ1 − γ2,0) is still feasible, but yields a better objective value than (γ1, γ2). We conclude that at

optimality, γ∗1 =
∑C

c=1 zcrc and γ∗2 = 0. Substituting above, combining the three subproblems and

simplifying proves the result. �

Theorem EC.1. Problem (12) is NP-Complete even if G= 1 and κ̂= Γ̂2 = 0, φ(x) is binary-

valued and ‖ · ‖∗ is the `p-norm.

Proof of Theorem EC.1. We reduce to the well-known NP-Complete problem Subset Sum. We

first state the decision version of subset sum and the relevant special case of problem (12).

Subset Sum : Given natural numbers a1, . . . , aM , and a target number T > 0, is there a subset of

N ⊆ {a1, ..., aM} that adds up to precisely T?

Decision Version of Special Case of Problem (12): Given parameters I, Γ̂1, K and µ, sequences

rc ≥ 0 and φ(xc)∈ {0,1]} for c= 1, . . . ,C, and a target value Q, is the objective value of

max
z∈Z

I
C∑
c=1

zcrc− Γ̂1

∣∣∣∣∣
C∑
c=1

zcrc(φ(xc)−µ)

∣∣∣∣∣
at least Q?

We next describe the reduction.: Given an instance of Subset Sum with positive integers

{a1, . . . , aM} and target sum value T , for any I > 0 , let Γ̂1 > 2I, and take C =K =M + 1, µ=

0.5, Q= 2TI, and

rc =

{
ac if c= 1, . . . ,M

T if c=M + 1
, φ(xc) =

{
0 if c= 1, . . . ,M

1 if c=M + 1
.

Let z∗ be the solution to Eq. (12) with these parameters. We will prove that the objective value is

at least Q if and only if the answer to Subset Sum is “Yes.”

Assume without loss of generality that T ≤
∑m

c=1 ac, else the answer to the Subset Sum problem

is trivially, “No.” Thus, we have the simple bound

I
C∑
c=1

z∗c rc− Γ̂1

∣∣∣∣∣
C∑
c=1

z∗c rc(φ(xc)−µ)

∣∣∣∣∣≤ I
C∑
c=1

z∗c rc ≤ 2TI. (EC.6)
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Now suppose that the optimal objective is at least Q. We claim that z∗M+1 must equal 1. Indeed,

if z∗0 = 0, then the objective can be rewritten as

I
C∑
c=1

zcrc− Γ̂1

∣∣∣∣∣
C∑
c=1

zcrc(φ(xc)−µ)

∣∣∣∣∣= I

M∑
c=1

z∗c rc− Γ̂1

∣∣∣∣∣
M∑
c=1

zcrc ·
−1

2

∣∣∣∣∣ (since φ(xc) = 0 for all c= 1, . . . ,M)

= (I − Γ̂1/2)

M∑
c=1

z∗c rc

≤ 0 (since Γ̂> 2I).

This contradicts the assumption that the optimal objective is at least Q.

Thus, if the optimal objective is at least Q, each of the inequalities in Eq. (EC.6) must be

equalities. Furthermore, since z∗M+1 = 1, it must be that
∑M

c=1 z
∗
c rc = T , i.e, these z∗ encode the

relevant subset and the answer to Subset Sum is “Yes.”

Now suppose that the answer to Subset Sum is “Yes.” Then, consider a solution zc for c =

1, . . . ,M encoded by this subset and zM+1 = 1. The objective value of this solution is

I
C∑
c=1

zcrc− Γ̂1

∣∣∣∣∣
C∑
c=1

zcrc(φ(xc)−µ)

∣∣∣∣∣ = 2TI − Γ̂1 |T (−.5) +T (1− .5)| = 2TI = Q.

Thus, the optimal value must be at least Q. This completes the proof. �

Proof of Corollary 2. Substituting in the appropriate norms to problem (12) yields

max
z∈Z

(I − Γ̂2− κ̂)
C∑
c=1

zcrc− Γ̂1

∥∥∥∥∥∥
(

C∑
c=1

zcrc(φg(xc)−µg)

)G
g=1

∥∥∥∥∥∥
∗

.

If I − Γ̂2 − κ̂ < 0, then both terms of the objective are non-negative and z∗ = 0 is an optimal

solution. Else, we can factor out this term from the maximization yielding problem (13). �

Proof of Corollary 3. Define µG+1 ≡ 1−µTe, where e∈<G is a vector of ones. We first claim

Σ−1 = diag(µ)−1 +µ−1
G+1eeT . (EC.7)

Indeed, we compute directly

Σ ·Σ−1 = I +µ−1
G+1µeT −µeT −µ−1

G+1(µTe)µeT = I +
(
µ−1
G+1− 1−µ−1

G+1(1−µG+1)
)
µeT = I

and

Σ−1 ·Σ = I− eµT +µ−1
G+1eµ

T −µ−1
G+1(µTe)eµT = I−

(
1−µ−1

G+1 +µ−1
G+1(1−µG+1)

)
eµT = I,

which proves the claim. Problem (13) is equivalent to

max
z∈Z

C∑
c=1

zcrc−
Γ̂

I − Γ̂2− κ̂

∥∥∥∥∥∥
(

C∑
c=1

zcrc(I(xc ∈Xg)−µg)

)G
g=1

∥∥∥∥∥∥
Σ−1

. (EC.8)
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For notational convenience, let us define fg ≡
∑C

c=1 zcrc(I(xc ∈Xg)−µg) for all g = 1, . . . ,G. Con-

sequently,

fTe =
C∑
c=1

zcrc(
G∑
g=1

I(xc ∈Xg)−
G∑
g=1

µg)

=
C∑
c=1

zcrc ((1− I(xc ∈XG+1))− (1−µG+1))

=
C∑
c=1

zcrc (µG+1− I(xc ∈XG+1)) .

Simplifying (EC.8) yields:

Eq. (EC.8) =
C∑
c=1

zcrc−
Γ̂

I − Γ̂2− κ̂

√
fTΣ−1f

=
C∑
c=1

zcrc−
Γ̂

I − Γ̂2− κ̂

√
fT
(
diag(µ)−1 +µ−1

G+1eeT
)
f

=
C∑
c=1

zcrc−
Γ̂

I − Γ̂2− κ̂

√
fTdiag(µ)−1f + (fTe)2µ−1

G+1,

which yields (15). Thus, the proof is complete. �

Proof of Corollary 4. The proof follows directly by applying Corollary 2 and by definition of

dual norm. �

Proof of Corollary 5 To prove the first inequality, note that there exists Γ, κ such that the

true CATE Ψ∗(·)≡E[δc̃ | xc̃ = xc] is a member of UΓ,κ. So we have

C∑
c=1

rcz
Rob
c E[δc̃ | xc̃ = xc]≥ min

Ψ∗
C
(·)∈UΓ,κ

C∑
c=1

rcz
Rob
c Ψ∗(xc), (EC.9)

and applying Theorem 3 yields the result. To see the second equality, notice that for any candidate

CATE ΨC(·)∈ UΓ̂,κ̂,

min
ΨC(·)∈U

Γ̂,κ̂

C∑
c=1

rcz
Rob
c ΨC(xc)≥ 0,

where the inequality follows because z = 0 is a feasible solution to the robust problem while zRob

is an optimal solution. Continuing Eq. (EC.9), we have

C∑
c=1

rcz
Rob
c E[δc̃ | xc̃ = xc]≥ min

Ψ∗
C
(·)∈UΓ,κ

C∑
c=1

rcz
Rob
c Ψ∗(xc)− min

ΨC(·)∈U
Γ̂,κ̂

C∑
c=1

rcz
Rob
c ΨC(xc).

Applying Theorem 3 again yields the result, which completes the proof. �

To show that problem (17) can be solved by bisection search for any α, it suffices to show that

z(0) equals reward scoring, limλ→∞ z(λ) = 0 and that the constraint is monotonic in λ. The first

two claims are clear from the definition of z(λ). We prove the last:
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Theorem EC.2 (Monotonicity of z(λ)). The function λ→
∑C

c=1 rczc(λ) is non-increasing.

Proof of Theorem EC.2. Let 0≤ λ1 <λ2. Then, from optimality of z(λ1),

C∑
c=1

rczC(λ1)−λ1

∥∥∥∥∥∥
(

C∑
c=1

zc(λ1)rc(φg(xc)−µg)

)G
g=1

∥∥∥∥∥∥
∗

≥
C∑
c=1

rczC(λ2)−λ1

∥∥∥∥∥∥
(

C∑
c=1

zc(λ2)rc(φg(xc)−µg)

)G
g=1

∥∥∥∥∥∥
∗

.

(EC.10)

Similarly, from the optimality of z(λ2),

C∑
c=1

rczC(λ2)−λ2

∥∥∥∥∥∥
(

C∑
c=1

zc(λ2)rc(φg(xc)−µg)

)G
g=1

∥∥∥∥∥∥
∗

≥
C∑
c=1

rczc(λ1)−λ2

∥∥∥∥∥∥
(

C∑
c=1

zc(λ1)rc(φg(xc)−µg)

)G
g=1

∥∥∥∥∥∥
∗

.

Adding these two equations and rearranging yields:

0≥ (λ1−λ2)

∥∥∥∥∥∥
(

C∑
c=1

zc(λ1)rc(φg(xc)−µg)

)G
g=1

∥∥∥∥∥∥
∗

−

∥∥∥∥∥∥
(

C∑
c=1

zc(λ2)rc(φg(xc)−µg)

)G
g=1

∥∥∥∥∥∥
∗

Since λ1 <λ2, this implies that∥∥∥∥∥∥
(

C∑
c=1

zc(λ1)rc(φg(xc)−µg)

)G
g=1

∥∥∥∥∥∥
∗

≥

∥∥∥∥∥∥
(

C∑
c=1

zc(λ2)rc(φg(xc)−µg)

)G
g=1

∥∥∥∥∥∥
∗

.

Substituting back into Eq. (EC.10) and rearranging shows

C∑
c=1

rczc(λ1)≥
C∑
c=1

rczc(λ2) +λ1

∥∥∥∥∥∥
(

C∑
c=1

zc(λ1)rc(φg(xc)−µg)

)G
g=1

∥∥∥∥∥∥
∗

−

∥∥∥∥∥∥
(

C∑
c=1

zc(λ2)rc(φg(xc)−µg)

)G
g=1

∥∥∥∥∥∥
∗

≥
C∑
c=1

rczc(λ2),

which completes the proof. �

EC.2. Extensions of the Base Model
EC.2.1. Fairness Constraints, and Domain-Specific Knowledge

Adding constraints on z does not significantly increase the complexity of the robust model. Such

constraints can be used to enforce fairness, e.g., that equal numbers of men and women be targeted

for treatment. Similarly, it is straightforward to adjust the budget to the form dTz≤K to model

the case when different patients have different costs of treatment dc.

Similarly, adding convex constraints to our uncertainty set (11) does not significantly increase the

complexity of the model. Thus, we might incorporate domain-specific knowledge of the structure

on ΨC(·) by enforcing, e.g., βg = 0 for some g, or by bounding its magnitude, as in lc ≤ΨC(xc)≤ uc.

Applying standard techniques yields a corresponding robust counterpart.
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EC.2.2. Incorporating Evidence from Multiple Studies

When there are multiple, distinct studies providing evidence that the treatment is effective, we

would prefer to incorporate all of them into our model. For concreteness, consider the case of J

studies with corresponding confidence intervals [Ij, I
j
], description functions φjg(·) and statistics µjg

for all g= 1, . . . ,Gj and j = 1, . . . , J . With these data, let

U j
Γ̂j ,κ̂j

=

{
ΨC(·) :X 7→R

∣∣∣∣∣∃ε(·) :X 7→R, β0 ∈R, β ∈RGj , s.t. ΨS(x) = β0 +

Gj∑
g=1

βgφ
j
g(x) + ε(x), (EC.11)

Ij ≤ β0 +

Gj∑
g=1

βgµ
j
g ≤ I

j
,
∥∥∥(ΨS(xc)−ΨC(xc)

)C
c=1

∥∥∥
link
≤ κ̂j , ‖β‖ ≤ Γ̂j1,

∥∥(ε(xc))
C

c=1

∥∥
res
≤ Γ̂j2,

}
be our usual uncertainty set built using the study evidence of the jth paper. Then a natural

extension of our robust model is

max
z∈Z

min
ΨC(·)∈

⋂J
j=1 U

j

Γ̂j ,κ̂j

C∑
c=1

zcrcΨC(xc), (EC.12)

i.e., to consider worst-case performance over models for the CATE which are consistent with each

of the studies. Again, using fairly standard techniques, we can form the robust counterpart:

Theorem EC.3 (Robust Counterpart for Multiple Papers). Problem (EC.12) is equiva-

lent to

max
z,w

J∑
j=1

Ij C∑
c=1

wjc − Γ̂j1

∥∥∥∥∥∥
(

C∑
c=1

wjc(φ
j
g(xc)−µjg)

)Gj
g=1

∥∥∥∥∥∥
∗

− Γ̂j2

∥∥∥(wjc)Cc=1

∥∥∥∗
res
− κ̂j

∥∥∥(wjc)Cc=1

∥∥∥∗
link


s.t.

J∑
j=1

wjc = zcrc c= 1, . . .C.

Proof. Let U j ⊆ RC be the set
{

(ΨC(xc) : c= 1, . . . ,C) |ΨC ∈ U jΓ̂j ,κ̂j
}
. In words, U j are the

set of possible realizations of the candidate CATE on the candidate population that are consis-

tent with the study evidence from the jth paper. Then, for a fixed z, the inner minimization of

Problem (EC.12) is equivalent to

−max
p

C∑
c=1

(−zcrc)pc s.t. p∈
J⋂
j=1

U j.

We recognize the maximum as the support function of the set
⋂J

j=1U j evaluated at (−zcrc : c =

1 . . .C). Standard results allow us to re-express this support function in terms of the support

functions of U j (see, e.g., Ben-Tal et al. (2015)). Specifically, the above optimization is equivalent

to

−min
w

J∑
j=1

δ∗(wj | U j) s.t.
J∑
j=1

wj
c =−zcrc, c= 1, . . . ,C,
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where (δ∗w | U j)≡ supp∈Uj pTw is the support function of U j. Pass the negative sign through the

minimization and make the transformation wj→−wj to write

max
w

J∑
j=1

−δ∗(−wj | U j) s.t.
J∑
j=1

wj
c = zcrc, c= 1, . . . ,C.

Finally, note that −δ∗(−wj | U j) = minp∈Uj
∑C

c=1w
j
cpc, and this minimization is precisely the inner

problem in the proof of Theorem 3. Applying that result and simplifying completes the proof. �

In principle, one could specify the each of the norms and parameters Γ̂j1, Γ̂
j
2, κ̂j, separately,

although practical considerations would favor taking them to be equal. Importantly, the theorem

emphasizes that in our meta-analysis setting, adding additional evidence does not affect our uncer-

tainty set by simply shrinking its radius as in more traditional data-driven robust optimization

models. Rather, additional evidence adds additional constraints to the set, which yields a more

complex robust counterpart.

EC.2.3. Modeling Uncertainty in rc

In many applications we are not interested in (dollar) rewards, but rather aggregate benefit to

patients, in which case setting rc = 1 is a natural choice. Even in settings such as our case-study,

where one is interested in monetary savings, there is often detailed covariate information available

for the candidate population, e.g., medical history and past ED visits, which can be used to build

high-quality estimates r̂ of these savings from historical data. In these cases, the uncertainty in

rc is often relatively small, much smaller than the uncertainty in δc, and approximating rc ≈ r̂c is

reasonable.

That said, from a theoretical point of view, one could imagine settings where the uncertainty in

r is large, and one wishes to“robustify” this parameter. As a simple example, suppose we model

r∈ UΓr ≡ {r̂ + ∆r : ‖∆r‖r ≤ Γr} for some point estimate r̂ bounded error ∆r, and we wish to solve

max
z∈Z

min
Ψ(·)∈U

Γ̂,κ̂

min
r∈UΓr

C∑
c=1

zcrcΨ(xc).

A straightforward computation shows this problem is equivalent to

max
z∈Z

min
Ψ(·)∈U

Γ̂,κ̂

C∑
c=1

zcr̂cΨ(xc)−Γr
∥∥(zcΨ(xc))

C
c=1

∥∥∗
r

where ‖ · ‖r and ‖ · ‖∗r are dual norms.

We recognize this as a robust problem where the uncertainty occurs in a convex fashion in the

inner problem. There are a variety of approaches to attacking such problems when UΓ̂ is polyhedral,

including, e.g., vertex enumeration and converting the problem to adjustable linear program (Zhen

et al. 2017a, Den Hertog 2018) which can be solved exactly via Fourier-Motzkin elimination (Zhen
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et al. 2017b) or approximately via decision-rules (Kuhn et al. 2011). For clarity, UΓ̂,κ̂ will be

polyhedral whenever the norms defining it are (weighted) `1 or `∞ norms.

Solving robust problems with convex uncertainty can be computationally demanding. Each of the

above approaches offers its own strengths and drawbacks. The best approach is often application

dependent. Since our target application is well-modeled by a known rc, we leave a comprehensive

study of the computational merits of each of the above approaches to future work.

EC.2.4. Other Forms of Covariate Matching as Regularization

Section 4.5 showed that with appropriately chosen norms in our uncertainty set, we can recover

several well-known covariate matching techniques as regularizers in the robust counterpart. In this

section we show how, given a general covariate matching technique, one can modify the construction

of Eq. (11) to obtain the corresponding uncertainty set.

Given a candidate targeting z, let r◦z = (rczc)
C

c=1, and let w(z) = r◦z
e>(r◦z)

∈RC+. We can interpret

w(z) as a discrete probability distribution on X which assigns mass wc(z) to each point xc ∈ X ,

c = 1, . . . ,C. We will commit a small abuse of notation and refer to w(z) and this probability

distribution interchangeably. Similarly, we let PS denote the empirical distribution of the covariates

on X in the study population, i.e., the discrete probability distribution that assigns mass 1/S to

each point xs ∈X , s= 1, . . . , S.

Intuitively, covariate matching techniques seek a group such that the distribution of covariates

in this group closely matches that of some other, fixed group of interest. (In causal studies, this

often amounts to finding a control group who closely matches the treatment group.) We restrict

attention to covariate matching techniques of the form minz d(w(z),PS), where d(·, ·) is a function

measuring the “distance” between two probability distributions defined on X . (This is where we

commit our aforementioned abuse of notation.) We write “distance” in quotation marks because

we do not require that the function be a metric (see below for examples).

Almost all common covariate matching techniques can be written in this form for some d(·, ·).

For example, we might take d(w(z), PS) to be an integral probability metric, such as

sup
A⊆X

∣∣∣∣∣
C∑
c=1

wc(z)I(xc ∈A)− 1

S

S∑
s=1

I(xs ∈A)

∣∣∣∣∣ (Total Variation Distance)

or

sup
f :X→R,

f is 1-Lipschitz

∣∣∣∣∣
C∑
c=1

wc(z)f(xc)−
1

S

S∑
s=1

f(xs)

∣∣∣∣∣ (Wasserstein Distance).
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These metrics minimize the total variation and Wasserstein distance between the distribution of

covariates in the target population and study population, respectively. Alternatively, we can take

d(w(z), PS) to be a general φ-divergence metric,

1

S

S∑
s=1

φ

(∑C

c=1wc(z)I(xc = xs)
1
S

∑S

r=1 I(xr = xs)

)
(φ-divergence),

where φ(·) is a convex function satisfying φ(1) = 0, 0φ(a/0) ≡ a limt→∞ φ(t)/t for a > 0 and

0φ(0/0) ≡ 0.6 By specializing the function φ, φ-divergences recover many well-known probabil-

ity metrics including relative entropy, Hellinger-distance, and the Cressie-Read divergences. See

Ben-Tal et al. (2013) for more examples.

Importantly, our earlier covariate matching results, namely, Corollaries 3 and 4, can also be

obtained as special cases of this framework. Loosely speaking, we take d(·, ·) to be the function

of the two probability distributions which first maps each distribution to the expected value of

the description functions with respect to that distribution, and then applies a function to these

expected values.

More specifically, consider the function d(w(z),PS) =
∥∥∥∑C

c=1wc(z)xc− 1
S

∑S

s=1 xs
∥∥∥

V−1
, which

effectively computes the mean of each distribution and then computes the weighted `2 norm between

the resulting means. Minimizing this d(·, ·) is equivalent to Mahanoblis matching (compare to

Corollary 4).

Similarly, suppose as in Corollary 3, that there exists a partition X =
⋃G+1

g=1 and the G description

functions are given by I(x∈Xg). Then the function d(w(z),PS) given by√√√√G+1∑
g=1

(qz,g −µg)2

µg
,

where

qz,g =
C∑
c=1

wc(z)I(xc ∈Xg) and µg =
1

S

S∑
s=1

I(xs ∈Xg)

effectively computes the mean of each description function under the two measures, and then

computes the χ2-distance between them. Minimizing this d(·, ·) is equivalent to χ2 matching as in

Corollary 3.

We stress that in contrast to integral probability metrics and general φ-divergences, the last

two examples only depend on PS via the statistics of the description functions, not the entire

distribution.

6 The use of φ in defining the φ-divergences is cannonical and unfortunately conflicts with our use of φ in defining the
description functions. We will only refer to φ-divergences here, and stress, that with this exception of this appendix,
all references to φ refer to description functions in the study evidence.
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In summary, the possibilities for distance functions and covariate matching techniques under

this framework are numerous and our list is non-exhaustive. We refer the reader to Gibbs and Su

(2002), Pardo (2005) and references therein for further examples and discussion.

Given such a distance function d(·, ·), we can define a modification of Eq. (11) that yields this

distance function as a regularizer, i.e., we can obtain a “covariate matching as regularization”

interpretation of the robust counterpart for a general covariate matching technique. We will require

that d satisfy some mild conditions. Each of the examples above satisfies these conditions.

Assumption EC.1 (Regularity Conditions of Distance Function). We assume that

1. d(·,PS) is convex and lower-semicontinuous in its first argument,

2. d(PS,PS) = 0, and

3. d(P,PS)>−∞ for all P.

Theorem EC.4 (General Covariate Matching as Regularization). Suppose d(·, ·) satis-

fies Assumption EC.1. Let

UΓ̂,κ̂,d =

{
ΨC(·) :X 7→R

∣∣∣∣∣∃ε(·) :X 7→R, ΨS(·) :X 7→R, θ, I ∈R, y ∈RC , s.t. (EC.13)

ΨS(xc) = I + θ− yc + ε(xc), c= 1, . . . ,C,

I ≤ I ≤ I,
∥∥∥(ΨS(xc)−ΨC(xc)

)C
c=1

∥∥∥
link
≤ κ̂, d∗

(
y

Γ̂1

)
≤ θ

Γ̂1

,
∥∥(ε(xc))

C

c=1

∥∥
res
≤ Γ̂2,

}
,

where d∗(y)≡ supw y>w− d(w,PS) is the convex conjugate of d(·,PS). Then, the robust targeting

problem Eq. (8) with uncertainty set Eq. (EC.13) is equivalent to

max
z∈Z

I
C∑
c=1

zcrc− Γ̂1

(
C∑
c=1

rczc

)
· d
(
w(z),PS

)
− Γ̂2

∥∥∥(zcrc)
C

c=1

∥∥∥∗
res
− κ̂

∥∥∥(zcrc)
C

c=1

∥∥∥∗
link
. (EC.14)

Proof. The proof follows the proof of Theorem 3 closely. Indeed, for a fixed z, we can write

ΨC(xc) = I + θ − yc + ε(xc) + ΨC(xc) − ΨS(xc). With this substitution, the inner minimization

similarly decouples into the sum of four minimization problems:

min
I

Ie>(r ◦ z)

s.t. I ∈ [I, I],

min
θ,y

(θe−y)>(r ◦ z)

s.t. d∗
(

y

Γ̂1

)
≤ θ

Γ̂1

,

min
(ε(xc))

C
c=1

C∑
c=1

zcrcε(xc)

s.t. ‖(ε(xc))‖res ≤ Γ̂2,

min
(v(xc))

C
c=1

C∑
c=1

zcrcv(xc)

s.t. ‖(v(xc))‖link ≤ κ̂
,

where v(xc) represents ΨS(xc)−ΨC(xc). The solution to the first minimization problem is trivially

I = I. The third and fourth minimization can again be solved using the Cauchy-Schwarz inequality,

yielding optimal objectives Γ̂2‖r ◦ z‖∗res and κ̂‖r ◦ z‖∗link.
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Only the second optimization problem remains. By Lagrange duality, this minimization is equiv-

alent to

sup
t≥0

{
min
θ
θ(e>(r ◦ z)− t

Γ̂1

) + min
y
−y>(r ◦ z) + t · d∗

(
y

Γ̂1

)}
The minimization over θ is finite only if t= Γ̂1e

>(r ◦ z). The minimization over y is equivalent to

−tmax
y

Γ̂1y
>(r ◦ z/t)− d∗(y) = −t · d

(
Γ̂1

t
· r ◦ z, PS

)
,

where we’ve used Assumption EC.1 to conclude the conjugate of d∗ is d itself. Combining and

simplifying shows

min
θ,y

(θe−y)>(r ◦ z)

s.t. d∗
(

y

Γ̂1

)
≤ θ

Γ̂1

,
= −Γ̂1e

>(r ◦ z) · d
(

r ◦ z

e>(r ◦ z)
, PS

)
.

Combining the optimal values of all four subproblems proves the theorem. �

Equation (EC.14) decomposes the objective into a portion that maximizes effectiveness under

a worst-case homogeneous effect scenario, and three penalties, the first of which is the covariate-

matching distance and the second two are as in Theorem 3. In the special case that ‖·‖res = ‖·‖link =

‖ · ‖∞, we can also simplify the robust counterpart along the lines of Corollary 2, leaving only the

covariate-matching distance as a regularizer.

Theorem EC.4 generalizes Theorem 3. Indeed, by choosing d(·, ·) appropriately we can recover

Eq. (12). Moreover, as already noted above, we can also recover the covariate matching regularizers

in Corollaries 3 and 4. Perhaps more importantly, Theorem EC.4 gives an explicit uncertainty set

which recovers general covariate matching techniques, e.g., based on total-variation or φ-divegences.

(As an aside, for most covariate matching techniques listed above, the conjugate d∗ is known.) This

result thus expands the scope of our “covariate matching as regularization” interpretation of our

method.

Remark EC.1 (Computational Complexity). Since d(·,PS) is convex in its first argument,

the function z 7→ e>(r ◦ z) · d
(

r◦z
e>(r◦z)

, PS
)

is also convex in z. (Namely, the function (t,z) 7→
t · d

(
r◦z
t
, PS

)
is convex in (t,z) for t > 0 since it is the perspective function of d, and our desired

function is obtained by composing this function with the linear mapping z 7→ (e>(r ◦ z),z).) Thus,

Eq. (EC.14) is a mixed-binary convex optimization. Developing algorithms for general mixed-binary

convex optimization problems remains an active area of research, but, in our opinion, it is fair to

say that from a practical perspective, solving such problems is considerably more difficult than

solving mixed-binary linear or mixed-binary convex quadratic optimization problems, and there are

many fewer commercial codes available. This increased computational burden makes this approach

somewhat less appealing practically than our previous formulations.
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Remark EC.2 (Dependence on PS). As stated earlier, covariate matching techniques based

on integral probability metrics or φ-divergences typically require access to the full distribution PS,

or, equivalently, {xs : s = 1, . . . , S}, in order to evaluate d(w(z),PS). Most studies do not report

these data, making these types of covariate matching impractical in our application setting. For this

reason, we consider Theorem EC.4 to be primarily of theoretical interest. Practical implementations

will necessarily have to restrict to covariate matching techniques that only depend on PS through

the description functions and their statistics.
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EC.3. Additional Graphs and Numerical Results
EC.3.1. Graphs from Section 2.3.

Figure EC.1 Histogram of Avg. ED Visit Charges By Patient
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Note. ED visit charges are highly concentrated with a long tail. Approximately 75% of charges are between 2 and 8.3 in
anonymized monetary units. For comparison, rc ranges between 0 and 110 in anonymized monetary units, so that approximately
75% of charges occur over 6% of the range.

EC.3.2. Graphs from Section 3

Figure EC.2 shows the worst-case relative performance of outcome scoring (i.e., ry(0)-scoring) based

on yc(0). When the case management is benign, outcome scoring performs well, and its performance

improves as δ/δ approaches 1. When the resource constraint is relaxed (i.e., as K/C increases), the

benefit of outcome scoring improves slightly. To the contrary, when case management could increase

the number of ED visits to a smaller degree compared to what it can reduce (i.e., δ/δ = −0.1),

outcome scoring performs quite badly. Again, this is because the distribution of outcomes rcyc(0)

has a long tail for a fixed degree of correspondence.

EC.3.3. Graphs from Section 5.3

Recall that for very large values of the Adj. CV parameter, the Robust-2 and Robust-Full-Linear

methods may not fully utilize the budget. However, for our dataset, if one specifies the Adj. CV

parameter via our method in Section 4.7, both methods fully utilize the budget so long as one

specifies α < 50%, i.e., requiring the robust methods achieve at least 50% of the rewards in the

nominal case. See Figure EC.3

We present the box-plot of rewards for each stratum given by Shumway et al. (2008) in Figure

EC.4.



ec16

Figure EC.2 Worst-Case Relative Performance of Outcome Scoring (ry(0)-Scoring)
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Note. When the treatment is benign, we plot the worst-case relative performance bound (2) provided in Theorem 1.

When the treatment is potentially harmful, the worst-case relative performance is −∞, as mentioned in Remark 1.

Thus, we plot δ
∑K
c=1 rcyc(0)e/δ

∑2K
c=K+1 rcyc(0) for comparison.

Figure EC.3 Budget Utilization when varying α
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Note. For each value of α, we specify the Adj. CV parameter using the method of Section 4.7 and plot the corresponding
percentage of the budget utilized.

Figure EC.4 Box-Plot of Rewards by Each Stratum
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Note. Each point represents a patient and the monetary values of rewards are anonymized. The dashed line is the cut-off of
reward scoring for K = 200. Every patient above the line will be targeted by reward scoring.
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EC.3.4. Graphs from Section 5.5

In this section, we leverage Corollary 5 to explain the poor performance of Robust-2 in our exper-

iment in Section 5.5. Recall, given a robust solution zRob, the worst-case performance bound in

Corollary 5 is

(I −ΓRob
2 −κRob)

C∑
c=1

zRob
c rc−ΓRob

1

∥∥∥∥∥∥
(

C∑
c=1

zRob
c rc(φg(xc)−µg)

)G
g=1

∥∥∥∥∥∥
∗

,

where ΓRob
1 ,ΓRob

2 , κRob are large enough so that corresponding uncertainty set for this method

with these radii contains the true (unknown) CATE. We argue that for any values of Γ1,Γ2, κ in

Eq. (20), the corresponding value of ΓRob
2 necessary to cover the worst-case realization in Eq. (20)

is fairly large. Consequently, this performance bound is quite small, likely negative, and Robust-2

will perform poorly.

To see this, we compute the worst-case realized CATE over Eq. (20) and show that the linear

projection of this CATE onto description functions given by the strata necessarily has a large

residual. Specifically, we compute the worst-case realization of the CATE over Eq. (20) for the

solution given by Robust-2 and a particular choice of Γ1, Γ2, κ. We then perform a linear regression

of this (candidate) CATE over the description functions of Robust-2 and plot the resulting standard

deviation of the residual (which corresponds loosely to ΓRob
2 ). Note that the most optimistic case

for Robust 2 is given by Γ2 = κ= 0. For any other values, this worst-case residual can only have

larger standard deviation. We plot this standard deviation versus the Adjusted CV in Fig. EC.5.

For comparison, we perform the same procedure with Robust Linear and also plot its values.

Intuitively, we think this provides a strong intuition for why Robust-2 performs poorly in this

Figure EC.5 Explaining Performance of Robust Methods under the Setting in Section 5.5
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Note. The standard deviation of the above residual is a rough approximation of the value ΓRob
2 required for the uncertainty

set of the corresponding robust model to cover the true CATE. Larger values imply poorer performance.

setting; it is highly misspecified, so one needs to accommodate a very large residual to cover the

true CATE.
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EC.3.5. Graphs from Section 5.6

Figure EC.6 Difference between Robust-2 and Reward Scoring Varying the Resource Constraint
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Note. The left panel corresponds to Figure 2 in Section 5.4. The right panel corresponds to Figure 4 Section 5.5.

Figure EC.7 Difference between Robust-2 and Reward Scoring Varying Reward Distribution
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Note. The left panel corresponds to Figure 2 in Section 5.4. The right panel corresponds to Figure 4 Section 5.5.
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