
.

The Value of Personalized Pricing
Adam N. Elmachtoub

Department of Industrial Engineering and Operations Research & Data Science Institute, Columbia University, New York,

NY 10027, adam@ieor.columbia..edu

Vishal Gupta
Data Science and Operations, USC Marshall School of Business, Los Angeles, CA 90089, guptavis@usc.edu

Michael L. Hamilton
Katz Graduate School of Business, University of Pittsburgh, Pittsburgh, PA 15260, mhamilton@katz.pitt.edu

Increased availability of high-quality customer information has fueled interest in personalized pricing strate-

gies, i.e., strategies that predict an individual customer’s valuation for a product and then o↵er a price

tailored to that customer. While the appeal of personalized pricing is clear, it may also incur large costs in

the form of market research, investment in information technology and analytics expertise, and branding

risks. In light of these trade-o↵s, our work studies the value of personalized pricing strategies over a simple

single price strategy.

We first provide closed-form lower and upper bounds on the ratio between the profits of an idealized

personalized pricing strategy (first-degree price discrimination) and a single price strategy. Our bounds

depend on simple statistics of the valuation distribution and shed light on the types of markets for which

personalized pricing has little or significant potential value. Second, we consider a feature-based pricing

model where customer valuations can be estimated from observed features. We show how to transform our

aforementioned bounds into lower and upper bounds on the value of feature-based pricing over single pricing

depending on the degree to which the features are informative for the valuation. Finally, we demonstrate how

to obtain sharper bounds by incorporating additional information about the valuation distribution (moments

or shape constraints) by solving tractable linear optimization problems.
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1. Introduction

Over the last decade, increased availability of customer information has fueled interest in

personalized pricing strategies. At a high-level, these strategies combine customer data with

machine learning and optimization tools to predict an individual customer’s willingness to

pay and then customize a price for that customer. This customized price is often delivered

as a discount to a universal, posted price via a mobile application or other channel.

The appeal of personalized pricing is clear – If a seller could accurately predict individ-

ual customer valuations, then it could (in principle) charge each customer exactly their

valuation, increasing profits and market penetration. Given this appeal, grocery chains

(Cli↵ord 2012), department stores (D’Innocenzio 2017), airlines (Tuttle 2013), and many
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other industries (Obama 2016) have begun experimenting with personalized pricing. More-

over, within the operations community, there has been a surge in research on how to

practically and e↵ectively implement personalized pricing strategies (e.g., Aydin and Ziya

(2009), Phillips (2013), Bernstein et al. (2015), Chen et al. (2015), Ban and Keskin (2017)).

Unfortunately, implementing any form of price discrimination, including personalized

pricing, may be costly and/or di�cult. A firm would need to engage in price experimenta-

tion and market research, invest in information systems to store customer data, and build

analytics expertise to transform these data into a personalized pricing strategy (see Arora

et al. (2008) for an extensive discussion). Moreover, price discrimination tactics involve

serious branding risks and potential customer ill-will, and, in some markets, may be of

questionable legality. Finally, personalized pricing may impact competitors’ (Zhang 2011)

and manufacturers’ (Liu and Zhang 2006) behavior.

In light of these tradeo↵s, in this work we complement the existing operations literature

on how to implement personalized pricing by quantifying when personalized pricing o↵ers

significant value. Specifically, for a single-product monopolist, we provide various upper

and lower bounds on the profit ratio between personalized pricing and a simple single price

strategy. We consider two di↵erent strategies: (i) idealized personalized pricing (PP), i.e.,

charging each customer exactly their willingness to pay, and (ii) feature-based personalized

pricing (XP), i.e., charging each customer a price based on their observed feature data. For

both personalization strategies, we benchmark the profit against the simple single price

(SP) strategy that o↵ers one price uniformly to all customers. The bounds we develop on

the profit ratios between personalized pricing and single pricing can guide managers in

assessing the upside of personalized pricing in potential markets. For example, in settings

where an upper bound is close to one, we know that any form of price discrimination

necessarily has limited value, while in settings where a lower bound is far from one, we are

guaranteed the value of personalized pricing is significant.

With full-information about the customer valuation distribution, computing the exact

ratio between personalized pricing over single pricing is straightforward; there is no need

for bounding. However, in our opinion, a firm not currently engaging in personalized pricing

is unlikely to know the full valuation distribution. Indeed, it is not necessary to learn this

distribution to price e↵ectively (Besbes et al. 2010, Besbes and Zeevi 2015) and learning

it may be di�cult since real-world distributions are typically complex and irregular (see,

e.g., Celis et al. (2014) for a discussion in an auction setting).
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Consequently, we focus instead on parametric bounds that depend on a few statistics

of the valuation distribution. On the one hand, we believe these statistics are more easily

estimated by a seller not currently engaging in personalized pricing than the full valuation

distribution. For example, in data-poor settings, managers may be able to estimate simple

statistics such as the mean based on domain knowledge or comparable products, but may

find it impossible to accurately specify an entire distribution. Even in data-rich settings, no

non-parametric density estimator using n data points converges in mean-integrated squared

error (MISE) at a rate faster than O(n�4/5), while a simple sample moment converges to its

true moment in mean-squared error at a rate ofO(n�1) Van der Vaart (2000, Chapt. 24). On

the other hand, and perhaps more importantly, parametric bounds based on these statistics

provide structural insights into the types of markets where the value of personalized pricing

is potentially large or minimal. These structural insights can guide practitioners weighing

the benefits of price discrimination for a particular market against the aforementioned

drawbacks.

More specifically, in the first part of the paper, we prove upper and lower bounds on the

profit ratio between idealized personalized pricing and single pricing. Notice that idealized

personalized pricing as we define it is often called first-degree price discrimination in the

economics literature, and observe that it upper bounds the profit of any other price dis-

crimination strategy. We prove upper and lower bounds that are tight, closed-form, and

depend on simple properties of the valuation distribution. Specifically, our upper bounds

depend on three unit-less statistics of the valuation distribution: (i) the scale, which is the

ratio of the upper bound of the support to the mean, (ii) the margin, which we define as

the margin of a unit sold at a price equal to the mean valuation, and (iii) the coe�cient of

deviation, which is the mean absolute deviation over twice the mean. Knowing these three

quantities is equivalent to knowing the mean, support, and mean absolute deviation of the

distribution. Our upper bounds are tight in the sense that we give an explicit valuation

distribution for which the value of personalized pricing over single-pricing matches the

bound. The precise form of the tight distribution depends on the relevant parameters, but

consists of a mixture of Pareto and two-point distributions. Perhaps surprisingly, we also

find that our upper bound is maximal for intermediate values of the coe�cient of deviation

and approaches one as the coe�cient deviation increases with all other parameters fixed.
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We complement our upper bounds with lower bounds that depend on the coe�cient of

deviation and mild shape assumptions on the valuation distribution such as i) unimodality

or ii) unimodality and symmetry. We also show that without any shape assumptions, no

non-trivial lower bound is theoretically possible. To the best of our knowledge, our lower

bounds yield the first provable separation between personalized pricing and single price

strategies for a generic class of distributions. Indeed, our lower bounds provide precise

conditions for when increased heterogeneity in the market guarantees increased value in

personalized pricing. Together our bounds yield strong conditions for identifying which

markets are ripe for personalized pricing and which are well-served by a single price.

Idealized personalized pricing is not implementable in practice as it assumes the monop-

olist can perfectly predict each customer’s valuation. Hence, we also study an alternate

pricing strategy that we call feature-based pricing, where the seller observes a feature

vector (sometimes called a context) for each customer which the seller can use to (imper-

fectly) predict the customer’s valuation and o↵er a custom price. This strategy more closely

resembles price discrimination strategies implemented in practice. We prove a theorem that

relates lower and upper bounds on the profit ratio of feature-based pricing over single pric-

ing to the profit ratio of idealized personalized pricing over single pricing (discussed above).

The relationship between these two ratios is driven by the degree to which the observable

contexts are informative for the unknown customer valuation, as measured by the size of

the residual error when predicting valuations. More specifically, our bounds depend on

the mean absolute deviation of this residual error. Our bounds make precise the intuition

that when the contexts are very informative, feature-based pricing performs comparably

to first-degree price discrimination, but when contexts are uninformative, feature-based

pricing o↵ers little benefit over single-pricing. Moreover, our bounds show how one can

decompose the value of feature-based pricing strategies into the potential benefits of perfect

personalization and the losses from less than perfectly informative features.

In the last part of our paper, we then show how to generalize our work to other moments

besides the coe�cient of deviation. Specifically, we provide an algorithmic procedure to

compute essentially tight bounds on the value of idealized personalized pricing over single

pricing given any generalized moment of the valuation distribution, such as the variance or

quantile information. The key ideas leverage infinite-dimensional linear optimization dual-

ity and a careful discretization argument to generate a tractable optimization formulation
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suitable for o↵-the-shelf software. We show that when using variance (coe�cient of varia-

tion), our bounds have the same insights and structure as the ones derived in closed-form

for the case of coe�cient of deviation.

We summarize our contributions below:

1. We prove closed-form, tight upper bounds for the value of idealized personalized pric-

ing over single-pricing when the scale, margin, and coe�cient of deviation of the

valuation distribution are known (cf. Theorems 1 and 2). When these upper bounds

are small, this suggests the value of any personalized pricing strategy is rather limited.

2. We prove closed-form lower bounds on the value of idealized personalized pricing

that rely on necessary shape assumptions such as unimodality or unimodality and

symmetry (cf. Theorem 3). In the latter case, our bound is tight for any specified

coe�cient of deviation. Our lower bounds provide guarantees on how much increased

value personalized pricing can provide as a function of the market heterogeneity.

3. We then consider the more practical feature-based pricing, and generate lower and

upper bounds on its value in comparison to the ideal case and single pricing (cf. Theo-

rems 4 and 5). These bounds make explicit the relationship between the informational

value of the features, and the value of feature-based pricing in a market. The proof

fundamentally utilizes the previously derived bounds from the ideal case.

4. Finally, we provide a general methodology for computing essentially tight upper and

lower bounds on the value of personalized pricing over single pricing when addi-

tional or di↵erent moment information is known about the valuation distribution. Our

methodology also allows for shape assumptions such as unimodality without losing

computational tractability (cf. Theorems 6, 7, and 8).

In the interest of reproducibility, open-source code for computing all of our bounds and

reproducing all of our plots is available at BLINDED FOR REVIEW.

1.1. Connections to Existing Literature

The study of price discrimination tactics has a long history in economics dating back

at least to Robinson (1934). Historically, the economics literature has focused on how

various forms of price discrimination a↵ect social welfare (see, e.g., Narasimhan (1984),

Schmalensee (1981), Varian (1985), Shih et al. (1988) or Bergemann et al. (2015), Cowan

(2016), Xu and Dukes (2016) for more recent results). In contrast to these works, we take an



6 A. Elmachtoub, V. Gupta, and M. Hamilton: The Value of Personalized Pricing

operational perspective, focusing on the individual firms relative profits under first-degree

price discrimination and other forms of pricing.

Previous authors have also studied the value of personalized pricing over single pricing

under di↵erent distributional assumptions. Barlow et al. (1963) prove that if the valuation

distribution has monotone hazard rates (MHR), the value of personalized pricing is at most

e⇡ 2.718. In experiments, we show this bound is generally loose even when the assumption

is satisfied (c.f. Fig. 2). Tamuz (2013) shows that if the ratio of the geometric mean over

the mean of the valuation distribution is at least 1 � �, then the value of personalized

pricing is at most (1� 2
4
3 �

1
3 )�1, while Medina and Vassilvitskii (2017), shows the value

of personalized pricing over single pricing is at most 4.78 + 2 log(1 +C2), where C is the

coe�cient of variation of the valuation distribution. These two bounds are not tight in

dependence on � and C, respectively. By contrast, our analogous upper bounds rely on

coe�cient of deviation and are proven to be tight for all possible values. We also stress

that these existing results all pertain to upper bounds on the value of personalized pricing.

To the best of our knowledge, we are the first to develop lower bounds for the value of

personalized pricing over single-pricing and the first to develop bounds on the value of

feature-based pricing over single-pricing.

As mentioned above, idealized personalized pricing (first-degree price discrimination) is

an idealized strategy. In practice, firms implement some form of third-degree price dis-

crimination such as the feature-based pricing strategy we consider. Indeed, the operations

literature contains many examples of (implicit or explicit) third-degree price discrimination

strategies including intertemporal pricing (Su (2007), Besbes and Lobel (2015)), opaque

selling (Jerath et al. (2010), Elmachtoub and Hamilton (2017)), rebates/promotions (Chen

et al. (2005), Cohen et al. (2017)), markdown optimization (Caro and Gallien (2012), Özer

and Zheng (2015)), product di↵erentiation (Moorthy (1984), Choudhary et al. (2005)),

dynamic pricing and learning (Cohen et al. (2016), Qiang and Bayati (2016), Javanmard

and Nazerzadeh (2016)), and many others.

By contrast, the focus of our work is not on “how to price discriminate” but rather the

value of price discrimination. Our results shed insight into on when the value of such price

discrimination tactics may be high and worth pursuing, and when the value may be low

and not worthwhile. Huang et al. (2019) also studies the value of personalized pricing,

but in a social network. There, all customers are identical except for their position in the

network, and the proven bounds are asymptotic in the size of the (random) graph.
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Finally, we contrast our work to several recent works that study how to set a single-price

near-optimally given limited distribution information such as the support (Cohen et al.

2015), mean and variance (Chen et al. 2017, Azar et al. 2013), or a neighborhood containing

the true valuation distribution (Bergemann and Schlag 2011). Indeed, these works support

our earlier claim that it is not generally necessary to learn the whole valuation distribution

in order to price e↵ectively, but are very di↵erent in perspective from our work.

2. Model and Preliminaries

We consider a profit-maximizing monopolist selling a product with per unit cost c. A ran-

dom customer’s valuation for the product is denoted by the non-negative random variable

V ⇠ F . The mean valuation E[V ] is denoted by µ. For convenience we shall assume V

has at most countably many point masses. We shall also define F (p) := P(V � p), which

is the probability that a customer shall purchase a product if priced at p. 1 Since it is

never profitable to sell to customers with valuations less than c, assume without loss of

generality, that V � c almost surely. We consider a spectrum of three pricing strategies for

the monopolist:

1) Single Pricing (SP): In the single pricing strategy, the monopolist o↵ers the product

to all customers at the same price p. Thus, the probability that a customer purchases is

given by F (p), and the seller’s corresponding expected profit is (p�c)F (p). LetRSP (F, c) :=

maxp{(p� c)F (p)} denote the seller’s maximal expected profit under single-pricing.

2) Feature-Based Pricing (XP): In the feature-based pricing strategy, the monopolist

observes a feature vector X for each customer before o↵ering a price, but does not directly

observe their valuation V . Based on X, the seller o↵ers a customized price p(X), and

the customer purchases with probability P(V � p(X) |X). Given a joint distribution FXV

of (X, V ), let RXP (FXV , c) := maxp(·)E [(p(X)� c)I(V � p(X))] denote the optimal profit

under feature-based pricing.

3) Idealized Personalized Pricing (PP): In the idealized personalized pricing strategy,

the monopolist can potentially o↵er a di↵erent price to each customer and has full knowl-

edge of each customer’s valuation. Since V � c, it is optimal to o↵er each customer precisely

1 It is traditional to assume that if a customer values a product exactly at the price, then a purchase is made. F (·)
thus includes the P(V = p), and is not the complementary CDF of V . Note however that since V has countable many
point masses, that

R
x2

x1
F (t)dt=

R
x2

x1
P(V > t)dt for any x1 <x2.
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their valuation and, thus, the total revenue earned is E[V ] = µ. Let RPP (F, c) := µ � c

denote the seller’s maximal expected profit under idealized personalized pricing.

By construction, RSP (F, c) RXP (FXV , c) RPP (F, c). Given F and c, we define the

value of idealized personalized pricing over single-pricing as RPP (F,c)

RSP (F,c)
. The value of feature-

based pricing over single-pricing is defined similarly. When F , FXV , and c are clear from

context, we sometimes omit them and write, e.g., RPP

RSP

.

2.1. The Lambert-W Function

Many of our closed-form bounds involve W�1(·), the negative branch of the Lambert-W

function. Although the Lambert-W function is pervasive in mathematics, it is somewhat

less common in the pricing literature. We refer the reader to Corless et al. (1993) for a

thorough review of its properties and provide a brief overview in Section A.

3. The Value of Idealized Personalized Pricing over Single Pricing

In this section, we provide upper and lower bounds on the value of idealized personalized

pricing over single pricing using simple statistics and/or shape assumptions of the valuation

distribution F . The statistics we shall consider are scale (S), margin (M), and coe�cient

of deviation (D) defined respectively as

S :=
inf{k | F (k) = 1}

µ
, M := 1� c

µ
, D :=

E[|V �µ|]
2µ

.

These three statistics are unit-less and can be thought of as (rescaled) measurements of

the maximal valuation, per unit cost, and mean absolute deviation. More specifically, S is

the ratio of the largest valuation in the market to the average valuation. By construction,

S � 1, and measures the maximal dispersion of valuations. We stress that S might be

infinite when valuations are unbounded, and, indeed, all of our closed-form bounds below

will still be valid in this setting. By contrast, M = µ�c

µ
2 [0,1], and can be interpreted as

the margin of a unit sold at a price equal to the mean valuation. Finally, by construction,

D 2 [0,1] since E[|V � µ|]  E[|V |] + µ = 2µ by the triangle inequality. Note D is the

(rescaled) mean absolute deviation of V . Mean absolute deviation (MAD) is a common

measure of a random variable’s dispersion, similar to standard deviation. Intuitively, D

measures the overall level of heterogeneity in the market.

Next, we introduce a transformation that reduces the problem of bounding the value of

personalization for a product with c > 0 and µ > 0 to an equivalent problem with c = 0

and µ= 1. This reduction is used repeatedly throughout the paper.
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Lemma 1 (Reduction to Zero Costs and Unit Mean). Let V ⇠ F , and let the dis-

tribution of Vc :=
1

µ�c
(V � c) be denoted by Fc. Then,

RPP (F, c)

RSP (F, c)
=

RPP (Fc,0)

RSP (Fc,0)
.

Moreover, if the scale, margin, and coe�cient of deviation of F are S, M and D, respec-

tively, then the mean, scale, margin, and coe�cient of deviation of Fc (with no marginal

cost) are µc = 1, Sc =
S+M�1

M
, Mc = 1, and Dc =

D

M
, respectively.

We sometimes refer to Vc ⇠ Fc as the standardized valuation distribution.

3.1. A First Upper Bound

We begin by first providing an upper bound on RPP

RSP

using only the scale S and margin M .

The key to the bound is that RSP (F,0) directly yields a bound on the tail behavior of F .

Indeed, for any price p > 0, pF (p)RSP (F,0) by definition, and thus F (p)RSP (F,0)/p.

We use this result repeatedly below, terming it the pricing inequality :

F (x) RSP (F,0)

x
, 8x> 0. (Pricing Inequality)

This inequality drives Theorem 1 below.

Theorem 1 (Upper Bounding RPP

RSP

using S and M). For any F with scale S > 1

and margin M > 0, we have

RPP (F, c)

RSP (F, c)
�W�1

✓
�M

e(S+M � 1)

◆
.

Moreover, this bound is tight.

Proof. First, suppose c= 0 and µ= 1. Then,RPP = 1 andM = 1. Since µ= 1, F (S) = 0,

i.e., 0 V  S, a.s. Using the tail integral formula for expectation, we have that

RPP =

Z
S

0

F (x)dx (1)

RSP +

Z
S

RSP

F (x)dx (0RSP  S) (2)

RSP +

Z
S

RSP

RSP

x
dx (Pricing Inequality) (3)

=RSP +RSP log

✓
S
RPP

RSP

◆
(since RPP = 1).
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Rearranging this inequality yields

RPP

RSP

 1+ log

✓
S
RPP

RSP

◆
. (4)

We next use properties of W�1(·) to simplify Eq. (4). Exponentiating both sides yields,

e
RPP

RSP  eS
RPP

RSP

() 1

eS
 RPP

RSP

e
�RPP

RSP () �1
eS
��RPP

RSP

e
�RPP

RSP (5)

Since �1

eS
2 [�1/e,0) and the function W�1(·) is non-increasing on this range, applying it

to both sides of (5) and multiplying by -1 yields

RPP

RSP

�W�1

✓
�1
eS

◆
, (6)

which proves the bound when c= 0 and µ= 1, since M = 1.

To prove tightness, it su�ces to construct a nonnegative random variable V ⇠ F with

µ = 1 and scale S, such that RSP (F,0) =
�1

W�1(�1
eS
)
. For convenience, define ↵ = �1

W�1(�1
eS
)
,

and notice, by definition of W�1(·),

� 1

Se
=� 1

↵
e�

1
↵ () ↵

S
= e1�

1
↵ () log

⇣↵
S

⌘
= 1� 1

↵
() 1

↵
= 1+ log

✓
S

↵

◆
. (7)

Next consider a random variable with

F S(x) =

8
><

>:

1 if x2 (0,↵],
↵

x
if x2 (↵, S], 0 otherwise.

Observe that FS has mean 1, since

µ=

Z
S

0

F S(x)dx= ↵+↵ log

✓
S

↵

◆
= ↵

✓
1+ log

✓
S

↵

◆◆
= 1,

by Eq. (7). By inspection, FS has scale S. Finally, for any x2 (↵, S], xF S(x) = ↵, and for

any other x, xF S(x) ↵. Hence, RSP (F,0) = ↵, and, thus, the bound is tight for FS.

For a general c > 0 and µ 6= 1, use Lemma 1 to transform to a standardized valuation

distribution with c= 0, µc = 1, Mc = 1, and Sc =
S+M�1

M
. Lemma 1 and Eq. (6) then imply

that RPP (F,c)

RSP (F,c)
= RPP (Fc,0)

RSP (Fc,0)
 �W�1

⇣
�1

eSc

⌘
. Replacing Sc proves the upper bound. Create a

tight distribution by scaling FSc
(defined above) by µ� c and shifting by c. ⇤



A. Elmachtoub, V. Gupta, and M. Hamilton: The Value of Personalized Pricing 11

Figure 1 Bounds and Tight Distribution from Theorem 1.
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Note. The first panel shows the bound in Thm. 1 when M = 1 and as S varies from 1 and 10. The second panel

shows the bound in Thm. 1 when S = 5 and as M varies from 0.1 and 1.0. The third panel shows the bound in Thm. 1

as M

M+S�1 varies from 0.1 and 1.0. The fourth panel shows the tight distribution of Thm. 1 when M = 1 and S = 5.

The described tight distribution in the proof is a truncated Pareto distribution on [↵, S]

for some ↵ 2 [c,S], which satisfies F S(x) / 1/x on its support (see rightmost panel of

Fig. 1). In the auction literature, this distribution is sometimes called the “equal-revenue”

distribution, since all prices in [↵, S] yield the same single-pricing profit. Thus, one optimal

pricing strategy for this distribution is to price at p= ↵ and sell to all customers.

In the first three panels of Figure 1, we plot the bound of Theorem 1 as a function of

S, M , and the fraction M

S+M�1
, since the bound only depends on this ratio. Intuitively, as

the scale increases, valuations become more dispersed and personalization o↵ers greater

potential value, as seen in the first panel. On the other hand, increasing the margin with

a fixed mean is equivalent to decreasing the cost per unit. As discussed above, under the

tight distribution, an optimal single-pricing strategy is to price at p = ↵, which has the

same market share as idealized personalized pricing. Thus, in the second panel, as margin

increases, the profits of both idealized personalized pricing and single pricing increase at

the same rate, and their relative ratio decreases. We stress that this behavior crucially

depends on the properties of the tight distribution.

Remark 1. Many of our subsequent proofs utilize techniques similar to the proof of

Theorem 1. Consequently, we highlight some of its high-level features before proceeding.

First, the proof is centered around an integral representation of a moment of V (in this

case µ) in terms of F (cf. Eq. (1)). The key step is to point-wise upper bound F (x) at each

x. For xRSP , the tightest bound possible is simply 1 (cf. Eq. (2)). For x�RSP , we use

the Pricing Inequality (cf. Eq. (3)). The tight distribution is constructed by constructing a

valid CDF that simultaneously makes each of these point-wise bounds tight. The remaining

steps are simple algebraic manipulation. Thus, the three key elements are an integral
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representation in terms of the cCDF, point-wise bounds on the cCDF, and identifying a

single distribution which simultaneously matches all point-wise bounds. ⇤

3.2. Upper Bound Incorporating the Coe�cient of Deviation

A drawback of Theorem 1 is that the bound becomes vacuous as the scale S!1. The

issue is that S, alone, cannot distinguish between markets where most customers have

relatively similar valuations (which may be relatively low or high) and markets where

customer valuations vary widely. We next provide sharper upper bounds on the value of

idealized personalized pricing by incorporating a measure of the market’s heterogeneity,

i.e., the coe�cient of deviation D.

Intuitively, when D is small, we expect most valuations to be close to µ, and, hence,

the value of personalization to be small. By contrast, when D is large, we expect larger

dispersion in valuations, and, hence, the potential value of personalization to be larger.

This intuition is not entirely correct as we shall see below. In fact, when D is very large

and S is finite, there is a boundary e↵ect; F is approximately a two-point distribution

concentrated near c and µS, and single-pricing strategies are very e↵ective. A single price

can be used to capture the high valuation customers, while the low valuation customers

are simply ignored since their potential profitability is near zero. Consequently, for very

large D, the value of personalization is, in fact, low.

This qualitative description is formalized in Theorem 2 which upper bounds the value

of personalization in terms of S, M , and D. The theorem partitions the space of markets

into three distinct regimes depending on the magnitude of D and provides distinct bounds

for each regime. Specifically, we define the three regimes by

(L) Low Heterogeneity: 0D �L

(M) Medium Heterogeneity: �L D �M

(H) High Heterogeneity: �M D �H ,

where �L, �M , �H are constants that depend on M and S:

�L :=�
M log

�
S+M�1

M

�

W�1

⇣
�1

e
S+M�1

M

⌘ , �M :=
M log

�
S+M�1

M

�

1+ log
�
S+M�1

M

� , �H :=
M(S� 1)

S+M � 1
.

The following lemma states that these regimes form a true partition and is proved in

Section B.3 of the appendix.
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Lemma 2 (Partitioning the Range of D). Given F with scale S and margin M , the

coe�cient of deviation of F satisfies 0D �H . Moreover, 0 �L  �M  �H .

Equipped with Lemma 2, we can state Theorem 2, the main upper bound of this section.

Theorem 2 (Upper Bounding RPP

RSP

using S, M , and D). For any F with scale

S > 1, margin M > 0, and coe�cient of deviation D, we have the following:

a) If 0D �L, then

RPP (F, c)

RSP (F, c)

�W�1

⇣
D

M
�1

e

⌘

1� D

M

. (Low Heterogeneity)

b) If �L D �M , then

RPP (F, c)

RSP (F, c)


M log
�
S+M�1

M

�

D
. (Medium Heterogeneity)

c) If �M D �H , then

RPP (F, c)

RSP (F, c)
 �W�1

 
�1

e(S+M�1

M
)(1� D

M
)

!
. (High Heterogeneity)

Moreover, for any S,M,D there exists a valuation distribution F with scale S, margin M

and coe�cient of deviation D such that the corresponding bound is tight.

Theorem 2 gives a complete, closed-form upper bound on the value of personalized

pricing for any distribution in terms of its scale, margin, and coe�cient of deviation. The

bound is defined piecewise, but is continuous (cf. Fig. 2). Note that the bound captures the

intuition that the value of personalization increases as D increases for small to moderate

D, but also captures the boundary behavior as D becomes very large. Recall that since

RPP upper bounds the value of any price-discrimination strategy, when D is either very

small or very large and the bound is close to 1, Theorem 2 suggests that there is limited

benefits to any price-discrimination strategy.

The maximal point in Fig. 2, at the transition between the low and medium regimes,

corresponds to the bound in Theorem 1. Moreover, when S is infinity, �L = �M = �H = 1

and the low heterogeneity bound (which does not depend on S) always pertains. Like The-

orem 1, Theorem 2 is a tight bound. The distributions which achieve the bounds depends

on the regime but is not unique. See Fig. EC.2 for typical examples and Lemma EC.3 in

the appendix for explicit formulas.
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Figure 2 Value of Idealized Personalized Pricing vs. the Coe�cient of Deviation
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Note. The left panel plots the bound from Theorem 2 as a function of D with S = 4 and M = 1. The middle panel

plots the inverse of this bound, which we note is convex. The right panel shows Theorem 2 as a surface plot, where

D ranges over [0,1], and S ranges over [1.1,4]. The dashed contour is the uniform bound for MHR distributions,

e⇡ 2.718, from Barlow et al. (1963) and Hartline et al. (2008).

We also observe that our bound in the right panel of Figure 2 can be significantly above

or below e, the uniform bound proven for monotone hazard rate (MHR) distributions in

Barlow et al. (1963) and Hartline et al. (2008). In summary, although the value of person-

alized pricing can be large in some settings, our refined analysis based on D characterizes

precisely markets which necessarily have a low value of personalized pricing.

Sketch of Proof of Theorem 2: The proof of Theorem 2 utilizes the same basic tech-

nique as in Theorem 1 and outlined in Remark 1, however instead of being centered around

an integral representation of the mean, the proof is centered around two convenient rep-

resentations of the coe�cient of deviation. To that end, we now establish two integral

representations of D in terms of F (x).

Lemma 3 (Integral Representations of D). For any F with scale S and margin M ,

the coe�cient of deviation D satisfies

D =

Z
S+M�1

M

F (µx+ c)dx =

Z
M

0

1�F (µx+ c)dx. (8)

The proof then proceeds separately for each regime. In the Low (Medium) Heterogeneity

regime we start with the second (first) identity of Lemma 3 and proceed similarly to

Remark 1. The High Heterogeneity bound is also derived in this way, starting with the

second identity of Lemma 3 but using a di↵erent bounding of the cCDF which is tighter

when D is large. For the full details of the proof see Section B.2.

Single-Pricing Guarantee: An alternative interpretation of Theorem 2 is that the recip-

rocal of the bound is a tight guarantee on the performance of single-pricing relative to

idealized personalized-pricing. In other words, the single-pricing strategy is guaranteed

to earn at least the given percentage of the idealized personalized pricing profits. This
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perspective, i.e., interpreting single-pricing as an approximation to idealized personalized

pricing, is common in the approximation algorithm literature.

We plot this guarantee, i.e., the reciprocal of the bound in Theorem 2, in the middle

panel of Fig. 2. Perhaps surprisingly, the reciprocal is convex as a function of D (our

original function was neither convex nor concave). We prove this formally in Lemma EC.5.

Asymptotics: Finally, from a theoretical point of view, one might seek to characterize

the value of personalized pricing as D approaches its extreme values D! 0 or D! �H .

In particular, we will see in Section 4.1 that the first limit also provides insight into the

performance of certain third-degree price discrimination tactics. These limits are below:

Corollary 1 (Asymptotic Behavior). For any S, M , D, let 1/↵(D,M,S) denote

the bound from Theorem 2. Then,

a) As D! 0,
1

↵(S,M,D)
= 1+

r
2
D

M
+O

✓
D

M

◆
.

b) As D! �H ,

1

↵(S,M,D)
= 1+

r
2
S+M � 1

M
·
r

�H �
D

M
+O

✓
�H �

D

M

◆
.

3.3. Lower Bounds on the Value of Personalized Pricing

In this subsection, we complement our upper bounds on the value of personalized pricing

with closed-form lower bounds. Such lower bounds are helpful in identifying when person-

alized pricing strategies can guarantee increased revenues. Unfortunately, when only S, M ,

and D are given, only a vacuous lower bound exists, i.e., no lower bound strictly greater

than 1 can be proven. Consider the following two-point distribution in Example 1 where
RPP

RSP

= 1 for any S, M , and D.

Example 1 (RPP

RSP

= 1 for a Two-Point Distribution). Given S, M , and D, recall

that D M(S�1)

S+M�1
by Lemma 2. Define the two point distribution

V =

8
><

>:

1�M with probability D

M

D(1�M)�M

D�M
with probability 1� D

M

and let F be the corresponding cdf. One can confirm directly that E[V ] = 1 and the

coe�cient of deviation of V is D. Furthermore, D M(S�1)

S+M�1
implies S � D(1�M)�M

D�M
so that

the scale of V is at most S. Finally, one can confirm that pricing at D(1�M)�M

D�M
earns a

profit of M = 1� c=RPP (F, c). Hence,
RPP (F,c)

RSP (F,c)
= 1. ⇤
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To avoid these pathological two-point distributions, we require additional assumptions

about the distribution’s shape. We study two such assumptions below.

Definition 1. A random variable V is unimodal with mode m if F (t) := P(V � t) is a

concave function on (�1,m] and convex on (m,1).

Definition 2. A random variable V is symmetric about point m if P(V 2 [m�x,m]) =

P(V 2 [m,m+x]) for all x� 0.

These two definitions generalize the usual notions definitions of unimodality and symmetry

for random variables that admit densities to allow for point masses.

We utilize these shape assumptions to prove non-trivial, parametric lower bounds on the

value of personalized pricing over single-pricing in Theorem 3. These bounds yield strict

separation between the revenue of idealized personalized pricing and a single price strategy

for a general class of distributions based on the level of heterogeneity in the market. The

bounds describe markets where one is guaranteed that personalized pricing improves upon

single-pricing.

Theorem 3 (Lower Bounding RPP

RSP

using D). Consider a valuation distribution

V ⇠ F , with margin M > 0 and coe�cient of deviation D.

a) If V is unimodal and symmetric, then RPP (F,c)

RSP (F,c)
� 1

1�2
D

M

. Moreover, for every value of
D

M
there exists a unimodal and symmetric distribution such that this bound is tight.

b) If V is unimodal and

• 0 D

M
 1

3
, then RPP (F,c)

RSP (F,c)
� 1

1� D

M

.

• 1

3
 D

M
 1, then RPP (F,c)

RSP (F,c)
� 8

D

M

(1+ D

M
)
2 .

Moreover, if D

M
= 0, this bound is tight, and, as D

M
tends to 1, there exists a family of

unimodal valuation distributions such that this bound is asymptotically tight.

Theorem 3 gives optimal (near-optimal), closed-form lower bound on the value of per-

sonalized pricing for any symmetric & unimodal (unimodal) distribution in terms of its

margin and coe�cient of deviation. We prove part (a) of Theorem 3 below. The proof of

part (b) is similar, and we relegate it to Appendix B.4 for brevity.

Proof of Theorem 3(a). First suppose c= 0 and µ= 1. Symmetry implies that the mode

equals µ (which equals 1) and 1 S  2. Moreover, by Lemma EC.4 in Appendix B.4, we

have D  0.25 for any symmetric, unimodal distribution. Now, consider two cases based

on the optimal single-price p⇤.
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Case 1: p⇤ > 1. Define the function G(x) = F (x) for all x2 (1,2], and G(1) := limt#1F (t).

These functions agree everywhere except perhaps at 1 if V has a point mass at 1. Moreover,

by unimodality, G(x) is convex on [1,2].

Next, by symmetry about 1, G(1) = limt#1F (t) 1

2
and since S  2, G(2) = F (2) = 0. In

particular, this implies p⇤  2. Thus, writing p⇤ as a convex combination,

G(p⇤) = G
�
(2� p⇤) · 1+ (p⇤� 1) · 2

�
 (2� p⇤)G(1)+ (p⇤� 1)G(2)  (2� p⇤) · 1

2
.

Hence,

RSP = p⇤F (p⇤) = p⇤G(p⇤)  p⇤(2� p⇤)/2  max
x

x(2�x)/2 =
1

2
.

Finally, since D .25, RSP  1/2 1� 2D, and RPP

RSP

� 1

1�2D
.

Figure 3 Geometric Proof of Theorem 3(a).

Note. The revenue of a single pricing using price p⇤ < 1 (shaded rectangle) is depicted relative to the area under a

symmetric unimodal cCDF (solid line). The proof relates this rectangle to the area of regions a1, a2, b1, b2, c1, and c2.

Case 2: p⇤  1. Referring to Fig. 3 note that RSP = p⇤F (p⇤) is the area of the shaded

rectangle. Re-express this quantity as the area of the unit-square (dashed rectangle in

figure) minus the area of the regions a1, a2, b1, b2, c1, and c2. Formally,

RSP = 1�Area(a1 [ b1 [ c1)�Area(a2 [ b2 [ c2),

because the regions are disjoint.

Next, by unimodality, F is concave on [0,1], hence Area(a1)�Area(a2) and Area(b1)�

Area(b2). Moreover, by symmetry, limt"1F (t)� 1

2
, hence Area(c1)�Area(c2), and, in sum,

Area(a1 [ b1 [ c1) � Area(a2 [ b2 [ c2). Substituting above shows RSP  1 � 2Area(a2 [
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b2 [ c2). Finally, by Lemma 3, D = 1 �
R

1

0
F (x)dx. Referring to Fig. 3, this shows that

D=Area(a2[ b2[ c3). Substituting above shows RSP  1�2D, which implies RPP

RSP

� 1

1�2D
.

To show the bound is tight we construct a distribution that is a mixture of a point mass

at 1 and a uniform random variable on [0,2], namely,

V0 =

8
><

>:

1 with probability 1� 4D

Unif[0,2] with probability 4D.

By inspection, V0 is symmetric, unimodal, satisfies E[V0] = 1 and E[|V0�1|]
2

= D and pric-

ing at 1 earns revenue 1� 2D. Hence, for V0,
RPP

RSP

= 1

1�2D
. This completes the proof for

standardized valuation distributions.

For general c and µ, apply Lemma 1 to transform to a standardized distribution Vc ⇠ Fc.

From above, the value of personalized pricing for Vc is at least
1

1�2Dc

. Replace Dc =D/M

to prove the bound, and scale V0 by (µ� c) and shift by c to form a tight distribution. ⇤

4. From First-Degree to Third-Degree Price Discrimination

As mentioned in the introduction, idealized personalized pricing is unachievable in practice.

Here we study a more realistic form of personalized pricing termed feature-based pricing.

4.1. Feature-Based Pricing

In feature-based pricing, the seller predicts the customer valuation V from a set of observed

customer features, X. From a practical point of view, feature-based pricing approximates

a host of third-degree price discrimination strategies in common use. For example, student

discounts are a form of feature-based pricing where X is binary and indicates if the cus-

tomer is a student. More generally, in online retailing settings, sellers often have access

to rich contextual information for each customer from their cookies such as demograph-

ics, browsing history, etc., that can be used to personalize the o↵ered price via a custom

coupon. Clearly, if one can perfectly predict V from X, feature-based pricing is equivalent

to idealized personalized pricing. Typically, however, X is not rich enough to predict V

perfectly, entailing some loss in profits.

Formally, let the random variable µ(X) :=E[V |X] and define the residual ✏ := V �E[V |

X]. By construction, E[✏ |X] = 0 almost surely, i.e., the noise term always has conditional

mean 0. More importantly, when X is very informative for V , we expect ✏ to be “small”.
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In this sense, the size of ✏ measures the degree to which X can be used to predict V .

Intuitively, one might think of ✏ as the residual in a non-parametric regression of V on X.

A first, perhaps obvious, observation is that givenX, it is not optimal to price at E[V
��X].

To the contrary, one should price at the optimal price for the conditional distribution FV |X.

Thus, for any joint distribution FXV , we have

RXP (FXV , c) =E[RSP (FV |X, c)]. (9)

The main results of this section are bounds on the ratio between feature-based pricing

(RXP ) and a single pricing strategy (RSP ) that depend explicitly on the degree to which

X is informative for V as measured by the size of the residual ✏ (more specifically, E[|✏|]
2µ

).

To this end, we first bound the ratio between RXP and RPP in terms of the magnitude of

the residual noise ✏. For convenience, we define D✏ :=
E[|✏|]
2µ

.

Theorem 4 (Feature-Based Pricing vs. Idealized Personalized Pricing).

Suppose that V = µ(X)+ ✏ where the residual ✏ is independent of X and let D✏ =
E[|✏|]
2µ

.

a) Then, RPP (F, c)

RXP (FXV , c)
 1

↵ (S,M,D✏)
,

where ↵(S,M,D) denotes the reciprocal of the bound in Theorem 2.

b) If, additionally, ✏ is unimodal and symmetric, then,

RPP (F, c)

RXP (FXV , c)
� 1

1� 2D✏

M

.

Notice that when X is very informative for V , D✏ is small, and thus the first part of The-

orem 4 implies RPP o↵ers limited benefits over RXP . Correspondingly, when X does not

contain much information about V , the second part guarantees (idealized) personalized

pricing earns significantly more than feature-based pricing under some additional assump-

tions. As an example, we note that Gaussian noise is unimodal and symmetric, so that the

second part of the theorem applies.

We leverage Theorem 4 to bound RXP

RSP

= RPP

RSP

· RXP

RPP

by bounding the second term.

Theorem 5 (Feature-Based Pricing vs. Single Pricing). Suppose V = µ(X) + ✏

with ✏ independent of X. Let D✏ =
E[|✏|]
2µ

.

a) Then, RXP (F, c)

RSP (F, c)
�

1� D✏

M

�W�1

⇣
D✏

M
�1

e

⌘ · RPP (F, c)

RSP (F, c)
.
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b) If, additionally, ✏ is unimodal and symmetric, then

RXP (F, c)

RSP (F, c)

✓
1� 2D✏

M

◆
· RPP (F, c)

RSP (F, c)
.

The proof for Theorem 5 is immediate. Note we have used the (looser) low-heterogeneity

bound of Theorem 2 in place of ↵(S,M,D✏). As noted in the proof of Theorem 2, this

bound pertains to all D and is strongest when D is small. Since we expect one to be

interested in feature-based pricing mostly in settings with relatively informative features

X, we state the bound with this simpler constant. Moreover, we have used Theorem 3(a)

to form the upper bound which requires symmetry of ✏. With minor modifications, one

can instead use Theorem 3(b) which does not require symmetry but increases the constant

beyond 1

1� 2D✏

M

.

Intuitively, Theorem 5 decomposes the benefits of feature-based pricing into those stem-

ming from pure price discrimination and those (losses) stemming from prediction error.

From a theoretical point of view, this result highlights that the value of personalized pricing

(RPP

RSP

) is the fundamental mathematical quantity for study. Indeed, using Theorem 5, we

can plug-in any bounds on RPP

RSP

and obtain corresponding bounds on RXP

RSP

. These include

the bounds developed in Section 3 above and the bounds developed in Section 5 below.

Although we focus on feature-based pricing in this paper, we also suspect that RPP

RSP

may

be a primitive “building block” when studying other forms price discrimination.

From a more practical point of view, Theorem 5 allows a seller who is currently using

a single-pricing strategy and considering switching to a feature-based pricing strategy

to assess the potential benefits of the switch. The key issue is the informativeness (as

measured by D✏) of the features X that the seller currently has or hopes to obtain. If

these features are not su�ciently informative, the second part of the theorem shows there

is little value to the switch. On the other hand, if one intends to collect additional features

on the customers, Theorem 5 also indicates how informative those features must be to

guarantee a desired fraction of idealized personalized-pricing profits. From Theorem 5(a),

we see that to be guaranteed to halve the relative performance gap between personalized

pricing and feature-based pricing, one needs to reduce the size of ✏ by a factor of 4. Loosely,

this corresponds to collecting features X which allow one to predict V four times more

accurately. 2

2 More specifically, using Corollary 1, we can rewrite Theorem 5(a)) as RXP

RSP

�
⇣
1�

p
2D✏/M + o(

p
D✏/M)

⌘
RPP

RSP

,

where we have used the fact that (1+
p

2D✏/M + o(
p

D✏/M))�1 = 1�
p

2D✏/M + o(
p

D✏/M). Rearranging shows
RPP�RXP

RPP


p

2D✏/M + o(
p
D✏). Hence reducing D✏ by a factor of 4 halves the relative performance gap.
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5. Bounds Based upon General Moments

In Section 3 we developed upper and lower bounds for RPP (F,c)

RSP (F,c)
based upon the coe�cient of

deviation. Although the coe�cient of deviation is amenable to closed-form analysis, bounds

using other statistics are of interest. In this section we compute upper and lower bounds

on the value of personalized pricing over single-pricing for other statistics while possibly

imposing shape constraints (such as unimodality) on F . Via Theorem 5, these bounds can

be transformed into bounds on the value of feature-based pricing over single-pricing.

Specifically, throughout the section we assume F satisfies a single moment constraint

of the form E[h(V )] = µh for some known, fixed function h(·) and constant µh. Examples

include:

• Coe�cient of Deviation: When h(v) = |v�µ|
2µ

and µh = D, this constraint ensures

the coe�cient of deviation of F is D, generalizing our analysis from Section 2.

• Coe�cient of Variation: When h(v) = (v�µ)
2

µ2 and µh = C2, this constraint ensures

the coe�cient of variation of F is C.

• Geometric Mean: When h(v) = � log(v/µ) and µh = � log(B/µ), this constraint

ensures the geometric mean of F is B i.e., exp(E[log(V )]) = B. As mentioned, the

value of personalized pricing given the geometric mean has previously been studied

(in a di↵erent context) by Tamuz (2013).

• Incumbent Price: When h(v) = I(v� p̂µ) and µh = q, this constraint ensures that a

fraction q of the market purchases at price p̂µ. Here, p̂µ might represent an incumbent

price that has been used historically.

The key idea of our approach is to formulate an optimization problem over probabil-

ity measures to explicitly compute the value of personalized pricing. Similar ideas have

been used to develop generalized Chebyshev inequalities (Bertsimas and Popescu (2005),

Popescu (2005)).

Before delving into the details of our formulations, we summarize the main insights via

a numerical example in Fig. 4. In each panel we compare upper (solid lines) and lower

bounds (dashed lines) on the value of personalized pricing assuming no shape constraints

(red lines), unimodality (green-dashed line), and unimodality with a mode at m= 1 (blue

lines). The four panels correspond to the four examples of moment functions h(·) described
above. In all panels, we take S = 2, M = .9, and µ= 1. Since S = 2, the maximal deviation

achievable by any unimodal distribution is only .25 (achieved by a uniform distribution),
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Figure 4 Upper and Lower Bounds on RPP /RSP Given Various Shape Constraints. In all panels µ= 1, S = 2

and M = .9. The incumbent price p̂µ= .8 in panel (d). We plot upper (solid lines) and lower (dashed lines) bounds

assuming no shape constraints (red), unimodality (green) and unimodality with mode m= 1 (blue). Bounds are

annotated by their corresponding theorem. Panels plot bounds in terms of di↵erent possible moments of the

valuation distribution.

not 1. Thus, we restrict the plot in first panel to this range. Similar restrictions apply to

the other moment functions and other three panels. Panel (d) uses an incumbent price of

p̂µ= .8.

Overall, as was seen in Section 3.3, enforcing shape constraints significantly strengthens

the bounds, especially for intermediate values of heterogeneity. In the first panel, we have

added the bound from Theorem 3 (b) for comparison. The gap between the “Unimodal”

curve (green dashed line, computed from Theorem 3 (b)) and the “Unimodal (m = 1)”

(blue dashed line, computed from Theorem 8) arises because Theorem 3 holds for all scales

S and possible locations of the mode, m while Theorem 8 is parameterized by S and m.

All four panels show similar qualitative behavior.

We stress that these are only 4 examples of moment functions h(·). In Sections 5.2

to 5.4 below, we formulate generic optimization problems to compute bounds for any h(·).
We believe these formulations provide a general framework for managers to assess the
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value of personalization under di↵erent a priori assumptions on valuations. Naturally, the

computational complexity of these optimization problems hinges on the particular moment

function h(·) and shape constraints. To streamline exposition, we defer all discussion of

tractability until Section 5.5 where we also argue that the 4 examples above are tractable.

5.1. Reduction to Standardized Valuations

Notice that if E[h(V )] = µh, then E[h(Vc)] = 0 where h(t) := h(µM(t� 1) + µ)� µh and

Vc is the standardized valuation distribution of Lemma 1. Hence, to bound the value of

personalized pricing with a moment constraint defined by h, it su�ces to bound the value

of personalized pricing for a standardized valuation distribution satisfying a moment con-

straint defined by a standardized function h. For example, the corresponding standardized

functions for our four examples above are: i) h(t) =M |t� 1|/2�D for the coe�cient of

deviation ii) h(t) =M 2(t� 1)2�C2 for the coe�cient of variation iii) h(t) =� log(M(t�
1)+ 1)+ log(B/µ) for the geometric mean and iv) h(t) = I{M(t� 1)+ 1� p̂}� q. We use

this reduction to the standardized distribution Vc and standardized moment function h(·)
repeatedly in what follows.

Finally, with some loss of generality, we assume throughout this section that S <1 as

it simplifies many of our formulations.3

5.2. Upper Bounds Based upon General Moments

Consider the optimization problem

z⇤ := inf
y,dPv

y (10)

s.t.

Z
Sc

0

dPv = 1, dPv � 0, 8v 2 [0, Sc]

Z
Sc

0

vdPv = 1,

Z
Sc

0

h(v)dPv = 0, y� p

Z
Sc

0

I(v� p)dPv, 8p2 [0, Sc].

The decision variables here are Pv, which represents the distribution of Vc (a standardized

valuation distribution), and y, which represents the single-pricing profit. The first two

constraints ensure that Pv is a valid probability measure. The next two constraints ensure

Pv has mean 1, and Pv satisfies the moment constraint. Finally, the last (infinite) family of

constraints ensures that y is at least the revenue achieved by pricing at p for any p2 [0, S].

3 The case of S =1 can be handled with similar techniques, albeit somewhat more tedious calculations.
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At optimality, y will equal the optimal single price revenue. Therefore, 1/z⇤ is a tight

upper bound on the value of personalized pricing for a standardized valuation distribution

satisfying E[h(Vc)] = 0. From our remarks in Section 5.1, 1/z⇤ can then be used to bound

the value of personalized pricing for a general valuation distribution.

Unfortunately, since Problem (10) has both an infinite number of variables Pv for v 2

[0, Sc] and an infinite number of constraints (indexed by p 2 [0, Sc]), it is not clear how to

solve it. A first thought might be to discretize Eq. (10) by restricting Pv to have (fixed)

finite, discrete support and only enforcing the semi-infinite constraint on some grid. The

resulting value, however, is not a valid lower bound on RSP , and, hence, its reciprocal does

not upper bound the value of personalized-pricing.

Theorem 6 below provides an alternate approach by discretizing the dual of (10) which

does yield a valid bound. See Appendix B.7 for details.

Theorem 6 (Upper Bounding VoPP for General Moments). Let F be any val-

uation distribution with scale S, margin M and mean µ that satisfies E[h(v)] = µh for a

fixed, known h(·) and constant µh. Let 0 = p0 < p1 < . . . < pN�1 < pN = S+M�1

M
be a dis-

cretization of the interval [0, S+M�1

M
] and define

z⇤
N

:= max
✓,�,Q

✓+�1 (11)

s.t.
NX

j=0

Qj = 1, Q� 0, ✓+�1

S+M � 1

M
+�2 (h(Sµ)�µh)

NX

j=0

pjQj ,

✓+�1v+�2

⇣
h(µM(v� 1)+µ)�µh

⌘


k�1X

j=0

pjQj, 8v 2 [pk�1, pk), k= 1, . . . ,N.

Then, RPP

RSP

 1/z⇤  1/z⇤
N
.

5.3. Upper Bounds Based upon General Moments under Unimodality

We next compute upper bounds on the value of personalized pricing under a general

moment constraint and assuming F is unimodal with mode m (we call such a distribution

m-unimodal). We focus on the case of unimodality as it seems most relevant for pric-

ing applications, however, our techniques can be applied to other shape constraints that

describe a convex class of distributions, e.g., symmetric distributions, by leveraging the

appropriate representation theorems from Popescu (2005).
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We adapt our argument in Theorem 6 by leveraging Lemma 4.2 of Popescu (2005). The

key idea is that any m-unimodal distribution can be represented as a mixture of uniform

distributions supported on [t,m] for t < m, uniform distributions supported on [m,t] for

t > m, and a Dirac distribution at m. More formally, let Unif[t,m] denote the uniform

distribution on [t,m] if t m and the uniform distribution on [m,t] otherwise. Then, if

Vc is standardized valuation distribution that is mc-unimodal, then there exists random

variable ⌧ ⇠M supported on [0, Sc] such that Vc ⇠d W where W |⌧ ⇠Unif[⌧,mc].

Using this representation of m-unimodal distributions, we can formulate our optimiza-

tion problem by reparameterizing in terms of the mixing distribution M. Specifically,

observe that if Yt ⇠Unif[t,m], then E[Yt] = (t+m)/2, and

P(Yt � p) :=G(p,m, t) :=

8
>>>>>>>><

>>>>>>>>:

0 if p >max(m,t)

1 if p <min(m,t)

I(m� p) if m= t,

max(m,t)�p

|m�t| otherwise.

E[h(Yt)] :=H(t,m) :=

8
><

>:

1

m�t

R
m

t
h if m 6= t,

h(m) otherwise.

(12)

Consequently, using our representation of Vc as a mixture distribution, E[Vc] = E[W ] =

E[(⌧ +mc)/2], and E[h(Vc)] =E[h(W )] =E[H(⌧,mc)] by conditioning on ⌧ .

We can then write an analogue of Eq. (10) when Vc is mc-unimodal as

z⇤,mc := inf
y,M

y (13)

s.t.

Z
Sc

0

dMt = 1, dMt � 0,

Z
Sc

0

t+mc

2
dMt = 1,

Z
Sc

0

H(t,mc)dMt = 0,

y� p

Z
Sc

0

G(p,mc, t)dMt, 8p2 [0, Sc].

Here Mt is the distribution of ⌧ , i.e., the mixing distribution over the requisite uniform

distributions, and the constraints ensure the mixture distribution satisfies the moment

constraints, similar to Problem 10. Using the dual to this optimization problem, we prove:

Theorem 7 (Upper Bounding VoPP under Unimodality). Let F be any m-

unimodal valuation distribution with scale S, margin M , and mean µ that satisfies

E[h(v)] = µh for a fixed, known h(·) and constant µh.
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Let mc :=
m�µ+µM

µM
, and 0 = p0 < p1 < . . . < pN = S+M�1

M
, be a discretization of [0, S+M�1

M
]

such that pj⇤ =mc for some j⇤. Let z⇤,mc

N
denote the optimal value of

sup
✓,�,Q

✓+�1(2�mc) (14)

s.t. Q� 0,
NX

j=0

Qj = 1,

✓+�1mc +�2 (h(m)�µh) 
j
⇤X

j=0

pjQj ,

✓(mc� t)+�1t(mc� t)+�2

Z
mc

t

(h(µM(s� 1)+µ)�µh)ds


kX

j=0

pjQj(mc� t)+
j
⇤X

j=k+1

pjQj(mc� pj), 8t2 [pk, pk+1), k= 0, . . . , j⇤� 1,

✓(t�mc)+�1t(t�mc)��2

Z
mc

t

(h(µM(s� 1)+µ)�µh)ds


j
⇤X

j=0

pjQj(t�mc)+
kX

j=j⇤+1

pjQj(t� pj), 8t2 (pk, pk+1], k= j⇤ +1, . . . ,N � 1.

Then, RPP

RSP

= 1/z⇤,mc  1/z⇤,mc

N
.

5.4. Lower Bounds Based upon General Moments under Unimodality

We next complement the upper bounds of the previous section by lower bounds. For many

moment functions h(·), we can adapt the argument underlying Example 1 to construct

a two-point distribution satisfying the given moment constraint for which the value of

personalized pricing over single pricing is 1 (see Section B.8 for discussion of our four

examples). Consequently, we focus below on the cases where V is m-unimodal to derive

more informative bounds.

Using the same mixture distribution representation of a unimodal distribution from the

previous section, we claim that for a standardized, mc-unimodal valuation distribution

pricing at p earns at most

rmc(p) := sup
dMt

Z
Sc

0

pG(p,mc, t)dMt

s.t.

Z
Sc

0

dMt = 1, dMt � 0,

Z
Sc

0

t+mc

2
dMt = 1,

Z
Sc

0

H(t,mc)dMt = 0,

where G(·) andH(·) were defined in Eq. (12). As in Problem (13),Mt describes the relevant

mixing distribution. Unlike in the previous section, the objective here maximizes the single

pricing profit for pricing at p. Thus, the value of personalized pricing over single pricing

satisfies RPP

RSP

= 1

maxp2[0,Sc] r
mc (p)

.
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By combining a duality argument with a careful discretization of the prices, we can lower

bound the value of personalization. Since the techniques and results are quite similar to

those in the previous section, we simply summarize the main result and relegate the precise

formulations and proofs to Appendix B.9.

Theorem 8 (Lower Bounding VoPP under Unimodality). Let F be any m-

unimodal valuation distribution with scale S, margin M , and mean µ that satisfies

E[h(v)] = 0 for a fixed, known h(·). Let mc :=
m�µ+µM

µM
, and fix any 0 < � < 1. Then,

RPP

RSP

� r⇤,m
�

where r⇤,mc

�
is non-increasing in � and tight in the limit �! 0. Moreover, r⇤,mc

�

can be evaluated by solving N := d1+ log(S+M�1
M�

)
log(1+�)

e optimization problems. Each of these N

problems has three decision variables ✓, �1, �2, and at most 2 semi-infinite constraints of

the form

a1H(t,mc)+ a2t� a3 8t2 [l, u], and a4t
2 + a5t+ a6

Z
mc

t

(h(µM(s� 1)+µ)�µh)ds� a7 8t2 [l, u],

(15)

where ai i= 0, . . .7 are (known) a�ne functions of ✓,� and [l, u]✓ [0, S+M�1

M
].

5.5. Computational Tractability

Thus far we have not discussed the computational tractability of problems described in

Theorems 6 to 8. Each of these problems has a small number of variables and simple

constraints, and, additionally, a small number of semi-infinite constraints. For example,

Problem (11) has the constraint (indexed by v)

✓+�1v+�2 (h(µM(v� 1)+µ)�µh)
k�1X

j=0

pjQj, 8v 2 [pk�1, pk).

Semi-infinite constraints are well-studied in the robust optimization literature (Ben-

Tal and Nemirovski 2000, Ben-Tal et al. 2015). For many classes of h(·), they are both

theoretically and practically tractable. In some cases, classical results yield explicit, convex

reformulation of these semi-infinite constraints in terms of a finite number of variables and

constraints. These reformulations can then be passed directly to o↵-the-shelf solvers.

For general h(·) that might not admit a simple reformulation, such constraints are still

computationally tractable if one can separate e�ciently over the constraint. In the example

above, this amounts to finding an optimizer of

max
v2[pk�1,pk]

�1v+�2 (h(µM(v� 1)+µ)�µh) (16)
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for a given k, �1, and �2. Such a subroutine can be used with constraint-generation to solve

the optimization problems in Theorems 6 to 8 as a linear optimization problems e�ciently

(see Bertsimas et al. (2016) for details). Fortunately, for many h(·), an optimizer is often

available in closed-form.

To illustrate these ideas, Propositions EC.1 to EC.4 in Appendix B.10 show that each

of the above optimization problems is tractable for the four cases considered either by i)

using techniques from the robust optimization literature to reformulate the relevant semi-

infinite constraints or ii) by showing we can separate over the constraint in closed-form or

via bisection search.

6. Conclusions

Increasingly rich consumer profiles enable retailers to price discriminate among customers

at finer and finer granularity for increased profits. However, such price discrimination

strategies entail upfront investment costs in the form of information technology, analytics

expertise, and market research. Motivated by this trade-o↵, we provide a framework to

quantify the benefits of personalized pricing in terms of the features of the underlying mar-

ket. In particular, we exactly characterized the value of personalized pricing over posting

a single price for all customers in terms of the scale, coe�cient of deviation, and margin

of the valuation distribution in closed-form.

Using our closed-form bounds, we are also able to bound the value of certain third-

degree price discrimination tactics that more closely mirror current practice. Specifically,

we show how to transform our previous bounds on idealized personalized pricing into more

practical bounds on the value of feature-based pricing over single price strategies. We also

show how to incorporate alternative moment information for sharper bounds by solving

tractable optimization problems.

Overall, we believe that our results provide a rigorous foundation for analyzing pricing

strategies in the context of personalization. Our results can be used both by researchers

attempting to design algorithms for personalized pricing, as well as by managers seeking

to implement or improve their pricing strategies. Future research directions might include

computing the value of personalized pricing directly from data, especially in the presence

of censoring or competition.
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e-companion to A. Elmachtoub, V. Gupta, and M. Hamilton: The Value of Personalized Pricing ec1

Online Appendix: The Value of Personalized Pricing
Appendix A: A Primer on the Lambert-W Function

The general (multi-valued) Lambert-W function W (x), is defined as a solution to

W (x)eW (x) = x.

When x2 [�1/e,0), this equation has two distinct real solutions. The branch W�1(·) gives the solution that

lies in (�1,�1]. The other branch W0(·) gives the solution in [�1,1), but is not be needed in our work.

Both branches are illustrated in the left panel of Fig. EC.1.

Figure EC.1 The Lambert-W Function.
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Note. The left panel shows the two real branches of the Lambert-W function, W0(·) (dashed black), and W�1(·)
(solid). Our bounds depend upon the W�1(·) branch (rescaled), as shown in right panel, and which can be upper and

lower bounded via Chatzigeorgiou (2013) (dotted).

To build intuition, we encourage the reader to think of W�1(·) as analogous to the natural logarithm,

log(·). Indeed, like W�1(x), log(x) is defined as a solution to an equation, namely, elog(x) = x. For a handful

of values, both W�1(·) and log(·) can be evaluated exactly. For example, W�1(�1/e) = �1, log(1) = 0,

and limx!0W�1(x) = limx!0 log(x) = �1. For most values, however, both functions must be evaluated

numerically. Fortunately, numerically evaluating W�1(·) is no more di�cult than evaluating log(·).
Moreover, the natural logarithm provides simple bounds on W�1(·). Indeed, Chatzigeorgiou (2013) proves

that for 0<x 1,

� 1�
p
2 log(1/x)� log(1/x)  W�1

⇣
�x

e

⌘
 �1�

p
2 log(1/x)� 2

3
log(1/x). (EC.1)

(Recall W�1(·) is defined on [�1/e,0), so that this inequality spans its domain.) The right panel in Fig. EC.1

illustrates these bounds and shows they are quite tight.

Appendix B: Omitted Proofs

B.1. Proof of Lemma 1

Proof. First note the profit from personalized pricing under valuation distribution F is RPP (F, c) =

E[V ]�c= µ�c and under Fc isRPP (Fc,0) =E[ 1
µ�c

(V �c)]�0 = 1. Hence, it su�ces to show thatRSP (F, c) =

(µ� c)RSP (Fc,0) to prove the first statement. Observe that

RSP (F, c) =max
p

(p� c)P (V � p)

=max
p

(p� c)P
✓
V � c

µ� c
� p� c

µ� c

◆

=max
q

(µ� c)qP
✓
V � c

µ� c
� q

◆
(Making the substitution

p� c

µ� c
! q)

= (µ� c)RSP (Fc,0).



ec2 e-companion to A. Elmachtoub, V. Gupta, and M. Hamilton: The Value of Personalized Pricing

For the last statement of the theorem, note that µc =E[ 1
µ�c

(V � c)] = 1, Mc = 1� 0/µc = 1,

Sc =
inf{k | Fc(k) = 1}

µc

=
1

µ�c
(inf{k | F (k) = 1}� c)

1
=

µ

µ� c

✓
inf{k | F (k) = 1}

µ
� c

µ

◆
=

S� 1+M

M
,

and

Dc =
E[|Vc�µc|]

2µc

=
E
h
|V �c

µ�c
� 1|

i

2
=

E [|V � c� (µ� c)|]/µ
2(µ� c)/µ

=
D

M
.

This completes the proof. ⇤

B.2. Proof of Theorem 2

Proof. For simplicity, we first consider the special case when c= 0 and µ= 1 and treat each regime of D

separately. In this setting RPP = µ= 1 and M = 1. We follow the general technique of Theorem 1. Starting

with the second identity of Lemma 3,

D=

Z 1

0

1�F (x)dx�
Z RSP

RPP

0

0 dx+

Z 1

RSP

RPP

1� RSP

RPP

1

x
dx, (EC.2)

where we have pointwise upper bounded F (x) by 1 for x 2 [0, RSP

RPP

] and used the Pricing Inequality for

x2 [RSP

RPP

,1]. Evaluating the integrals yields,

D�
✓
1� RSP

RPP

◆
+

RSP

RPP

log

✓
RSP

RPP

◆
. (EC.3)

We next use properties of W�1(·) to rewrite the inequality. For brevity, let ↵= RSP

RPP

. Then,

D� 1�↵+↵ log(↵) ()D� 1� ↵(log(↵)� 1)

() D� 1

e
� elog(↵)�1(log(↵)� 1) (using ↵= e · elog(↵)�1).

Since D 2 [0,1], the left hand side is between �1/e and 0, and since ↵> 0 the right hand side is greater than

-1/e. Applying W�1(·) to both sides (and recalling this function is non-increasing) yields

W�1

✓
D� 1

e

◆
 log(↵)� 1 () e · eW�1(D�1

e )  ↵ ()
W�1

�
D�1

e

�

D� 1
� 1

↵
(EC.4)

() RPP

RSP


W�1

�
D�1

e

�

D� 1
, (EC.5)

where the penultimate implication follows from the definition of W�1(·), and the last line follows from the

definition of ↵. We stress Eq. (EC.5) holds for all D and coincides with the Low Heterogeneity bound when

c= 0, µ= 1.

Similarly, we can bound the cCDF in the first identity in Lemma 3 to yield an alternate bound. Specifically,

D=

Z
S

1

F (x)dx
Z

S

1

RSP

RPP

dx

x
=

RSP

RPP

log(S).

Rearranging yields,
RPP

RSP

 log(S)

D
. (EC.6)

Again, Eq. (EC.6) holds for all D and coincides with the Medium Heterogeneity bound.

The High Heterogeneity bound can be derived similarly, using a di↵erent bounding of the cCDF which

is tighter when D is large. We defer the details to the next subsection and only state the result in Lemma

EC.1 below.
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Lemma EC.1 (High Heterogeneity Bound when c= 0 and µ= 1). If D> �M , then,

RPP

RSP

�W�1

✓
�1

eS(1�D)

◆
. (EC.7)

To summarize, Eqs. (EC.5) and (EC.6) hold for all 0D �H and Eq. (EC.7) holds for all �M D �H .

These results are su�cient to prove that the bounds from the theorem are valid. For completeness, however,

the next lemma further proves that in each regime, the bound for that regime is the strongest of the applicable

bounds.

Lemma EC.2 (Strongest Bound by Regime).

a) The function

D 7!
�W�1

�
� 1�D

e

�

1�D
� log(S)

D
,

is negative for D 2 (0, �L), is positive for D 2 (�L, �H ], and has a unique root at D= �L.

b) The function

D 7! log(S)

D
+W�1

✓
�1

eS(1�D)

◆
,

has a unique root at D= �M and is non-negative for all D 2 [0, �H ].

A consequence of Lemma EC.2 is

• When D 2 [0, �L], Eq. (EC.5) dominates Eq. (EC.6).

• When D 2 (�L, �M ], Eq. (EC.6) dominates Eq. (EC.5).

• When D 2 (�M , �H ], Eq. (EC.7) dominates Eqs. (EC.5) and (EC.6).

This concludes the proof that the bounds are valid when c= 0 and µ= 1.

For a general c > 0 and µ> 0, we transform the problem to one in which c= 0 and µ= 1 using Lemma 1

and apply the results from Eqs. (EC.5) to (EC.7) using the new Sc, Mc and Dc. Simplifying proves that the

bounds are valid for general c and µ.

It only remains to establish that the bounds are tight. We use the same technique as in Theorem 1.

Namely, in each regime, given S, M, D, and µ, we construct a cCDF that makes all pointwise bounds on the

cCDF simultaneously. A di↵erence from Theorem 1 is that the integral representations of D in the proof of

Theorem 2 do not determine F over its whole domain [0, Sµ]; they only span [0, µ], or [µ,S] depending on

the regime. This introduces some freedom in constructing the cCDF on the remaining segment and causes

the tight distributions to be non-unique. We defer the details to Lemma EC.3 in the section subsection for

brevity. ⇤

B.3. Omitted Details, Proofs, and Lemmas for Theorem 2

We now provide proofs for the lemmas necessary to complete the proof of Theorem 2.

Proof of Lemma 2. Consider the case when c= 0 and µ= 1, which implies that M = 1. We first prove

that D �H and that there exists an F whose coe�cient of deviation is exactly �H . To this end, consider an

arbitrary random variable V , and define the new random variable V with two-point support

V =

(
E[V |V  1] with probability P(V  1)

E[V |V > 1] with probability P(V > 1).
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By construction, E[V ] =E[V ] = 1. Furthermore,

E
h
|V � 1|

i
=E

h
|V � 1| | V  1

i
P(V  1)+E

h
|V � 1| | V > 1

i
P(V > 1)

=E
h
1�V | V  1

i
P(V  1)+E

h
V � 1 | V > 1

i
P(V > 1)

=
⇣
1�E

h
V | V  1

i⌘
P(V  1)+

⇣
E
h
V | V > 1

i
� 1
⌘
P(V > 1)

=E
h
|V � 1|

i
,

i.e., both V and V have the same coe�cient of deviation. Thus, to find a distribution with maximal coe�cient

of deviation, it su�ces to consider two-point distributions.

We compute such a distribution explicitly via the following optimization problem:

1

2
max
x,y,q

q(1�x)+ (1� q)(y� 1)

s.t. qx+(1� q)y= 1

0 x 1 y S, 0 q 1,

where the objective is the coe�cient of deviation of a distribution with mass q at x < 1 and mass 1� q

at y > 1. The constraint ensures that the mean is 1. In particular, this constraint implies q = y�1
y�x

for any

feasible solution, whereby the objective simplifies to (1�x)(2y�1)
y�x

. This function is decreasing in x, whereby

the optimal solution is x⇤ = 0, y⇤ = S and q⇤ = S�1
S

with optimal value S�1
S

. Note S�1
S

= �H since M = 1.

Next we show 0 �L  �M  �H . Notice that �L = log(S)
�W�1(� 1

eS
)
is the ratio of two positive terms. Thus, it is

positive. To show �L  �M , note that, since S � 1,

1+ log(S) � 1 =
e1+log(S)

eS
,

which, after rearranging, implies

� (1+ log (S)) e�(1+log(S))  �1
eS

.

Applying W�1(·) to both sides and noting this function is decreasing shows

� (1+ log (S))�W�1

✓
�1
eS

◆
,

which implies

�L =
log(S)

�W�1

��1
eS

�  log(S)

1+ log(S)
= �M ,

as was to be shown.

To show �M  �H , observe that since S � 1, 0 log(S) S� 1, which implies that

�M =
log(S)

1+ log(S)
 S� 1

1+ (S� 1)
= �H ,

since x 7! x

1+x
is an increasing function for x� 0. This completes the proof in the case c= 0 and µ= 1.

For general c > 0 and µ> 0, first apply Lemma 1 to obtain an instance with zero cost and unit mean with

corresponding parameters Dc, Sc, and Mc. From the previous arguments, we have that 0Dc  Sc�1
Sc

and

0 log(Sc)

W�1( �1
eSc

)
 log(Sc)

1+log(Sc)
 Sc�1

Sc

. Transform back to the original parameters to prove the lemma, noting that

Dc =
D

M
and Sc =

S+M�1
M

. ⇤
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Proof of Lemma 3. Let V ⇠ F and note,

0 =E[V �µ] =E[(V �µ)+]�E[(µ�V )+] =) E[(V �µ)+] =E[(µ�V )+].

Moreover, E[|V � µ|] = E[(V � µ)+] + E[(µ � V )+], hence, combining with the above yields E[|V � µ|] =
2E[(V � µ)+] = 2E[(µ� V )+]. We use these two identities to re-express D. From the first equality and the

tail integral formula for expectation,

D=
1

µ
E[(V �µ)+] =

1

µ

Z 1

0

P
�
(V �µ)+ � t

�
dt=

1

µ

Z
µ(S�1)

0

P (V � µ+ t)dt=

Z
S+M�1

M

F (µx+ c)dx,

where the last line follows from the change of variables µ+ t! µx+ c. Similarly, using second equality and

the tail integral formula for expectation,

D=
1

µ
E[(µ�V )+] =

1

µ

Z 1

0

P((µ�V )+ > t)dt=
1

µ

Z
µ�c

0

P(V  µ� t)dt=

Z
M

0

F (µx+ c)dx,

where the last line follows from the change of variables µ� t! µx+ c. ⇤

Proof of Lemma EC.1. We follow the same strategy as previous two regimes bounds. Note that when

the coe�cient of deviation is high, the probability that V is “close” to 1 is low, since µ= 1. Formally, we

claim that

P(V � t) 1�D 8t2 (1, S). (EC.8)

To prove the claim, note that D=E[(1�V )+] P(V  1), where the equality is Lemma 3 and the inequality

uses (1�V )+  1. Rearranging proves P(V � 1) 1�D, which in turn implies Eq. (EC.8).

We use this inequality when pointwise bounding our integral representation. Specifically, for any 1 t0  S,

we have

D=

Z
S

1

P(V > t)dt (Lemma 3)

=

Z
t0

1

P(V > t)+

Z
S

t0

P(V > t)dt


Z

t0

1

(1�D)dt+

Z
S

t0

RSP

RPP

dt

t
(Eq. (EC.8) and Pricing Inequality)

= (t0� 1) (1�D)+
RSP

RPP

log

✓
S

t0

◆
. (EC.9)

Minimizing over t0 yields t0 =max
n
1, RSP

RPP

1
(1�D)

o
. We next argue that D � �M implies 1 RSP

RPP

1
(1�D) , so

that the unique minimizer is t0 =
RSP

RPP

1
(1�D) .

Recall by Eq. (EC.6) RPP

RSP

 log(S)
D

for all values of D and, in particular, we have that for D 2 [�M , �H ],

RPP

RSP

 log (S)

D
 log(S)

�M
= 1+ log (S) .

Further D� �M = log(S)
1+log(S) implies that 1+ log(S) 1

1�D
. Combining shows

RPP

RSP

 1

1�D
() 1 RSP

RPP

1

(1�D)
,

which confirms that t0 =
RSP

RPP

1
(1�D) is the unique minimizer.
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Plugging in this value t0 =
RSP

RPP

1
(1�D) into Eq. (EC.9) yields:

1 RSP

RPP

+
RSP

RPP

log

 
S(1�D)

RSP

RPP

!
.

We next use properties of the Lambert-W function to simplify this equation. For notational convenience

define ↵= RSP

RPP

. Then,

1 ↵+↵ log

✓
S(1�D)

↵

◆
() 1 ↵(1+ log (S(1�D))� log(↵)) (EC.10)

() �1� ↵(log(↵)� log (eS(1�D))).

Note ↵= elog(↵) = elog(↵)�log(eS(1�D)) · e ·S(1�D). Substituting above proves

�1
eS(1�D)

� elog(↵)�log(eS(1�D))(log(↵)� log (eS(1�D))).

The left hand side is between �1/e and 0 by inspection. The function W�1(·) is non-increasing on this range,

so that applying W�1(·) to both sides yields

W�1

✓
�1

eS(1�D)

◆
 log(↵)� log(eS(1�D)) () ↵� eS(1�D) · eW�1( �1

eS(1�D) ) (EC.11)

() RPP

RSP

� �1
eS(1�D)

e�W�1( �1
eS(1�D) ).

Finally, from the definition of W�1,

�1
eS(1�D)

=W�1

✓
�1

eS(1�D)

◆
eW�1( �1

eS(1�D) ),

which we use to simplify the last inequality to obtain RPP

RSP

�W�1

⇣
�1

eS(1�D)

⌘
. ⇤

Proof of Lemma EC.2. First consider part a). Recalling that �W�1(�1/e) = 1, we confirm directly that

the given function is negative as D # 0 since it is continuous. Notice further that �W�1(·) is an increasing

function (cf. Fig. EC.1), whereby
�W�1(� 1�D

e ))
1�D

is an increasing function, while log(S)/D is a decreasing

function. It follows that the given function has a unique root, and it su�ces to show this root is �L to

complete the proof. To this end, write,

�
W�1

�
� 1�D

e

�

1�D
=

log(S)

D
() W�1

✓
�1�D

e

◆
= log

⇣
S

D�1
D

⌘

() �1�D

e
= log

⇣
S

D�1
D

⌘
· exp

⇣
log
⇣
S

D�1
D

⌘⌘
(definition of Lambert-W )

() � 1

eS
= S

�1
D · � log(S)

D
(simplifying)

() � 1

eS
= exp

✓
� log(S)

D

◆
· � log(S)

D
(using S

�1
D = exp

✓
� log(S)

D

◆
)

() W�1

✓
� 1

eS

◆
=� log(S)

D
(Applying W�1(·))

() D=� log(S)

W�1

�
� 1

eS

� = �L.

This completes the proof of part a).
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To prove part b), first observe that

W�1

✓
� 1

eS(1�D)

◆
�� log(S)

D
() � 1

eS(1�D)
� log(S)

D
exp

✓
� log(S)

D

◆
,

because the function y 7! yey is the inverse of W�1(·) and is non-increasing on the domain of W�1(·), i.e.,
[�1/e,0). Simplifying the righthand inequality yields,

�1
e
 log

⇣
S

D�1
D

⌘
·S

D�1
D .

Now make the substitution log
⇣
S

D�1
D

⌘
! y so this last inequality is equivalent to �1

e
 yey. One can confirm

by di↵erentiation that y 7! yey has a unique minimizer at y=�1, and, thus, this last inequality holds for all y.

This proves the function defined in part b) is nonnegative everywhere. Moreover, it has a root at y= 1 which

corresponds to log
⇣
S

D�1
D

⌘
=�1. Simplifying shows this condition is equivalent to D= log(S)/(1+log(S)) =

�M , as was to be proven. ⇤

We next explicitly describe the distributions which make Theorem 2 tight. By Lemma 1, it su�ces to

consider the case where c= 0 and µ= 1. The general case can be handled by scaling and shifting the below

tight distributions:

Lemma EC.3 (Tight distributions).

a) Suppose D 2 [0, �L], and let ↵L =

✓
W�1(D�1

e )
D�1

◆�1

. Then, there is a random variable V with cCDF

FL(x) =

8
>>><

>>>:

1 if 0 x< ↵L

↵L

x
if ↵L  x 1

D

log(S)x if 1<x S

0 otherwise,

(Tight cCDF, Low Heterogeneity)

and this random variable has scale S, coe�cient of deviation D, and mean 1 and satisfies Eq. (EC.5)

with equality.

b) Suppose D 2 [�L, �M ], and let ↵M = D

log(S)
. Then, there is a random variable V with cCDF

FM(x) =

8
>>><

>>>:

1 if x= 0,
↵M

e
S

1
D

�1 if x2 (0, eS1� 1
D )

↵M

x
if x2 [eS1� 1

D , S]

0 otherwise,

(Tight cCDF, Medium Heterogeneity)

and this random variable has scale S, coe�cient of deviation D, and mean 1 and satisfies Eq. (EC.6)

with equality.

c) Suppose D 2 [�M , �H ], and let ↵H :=
⇣
�W�1

⇣
�1

eS(1�D)

⌘⌘�1

. Then, there is a random variable V with

cCDF

FH(x) =

8
>>><

>>>:

1 if x= 0,

1�D if x2 (0, ↵H

1�D
]

↵H

x
if x2 ( ↵H

1�D
, S)

0 otherwise,

(Tight cCDF, High Heterogeneity)

and this random variable has scale S, coe�cient of deviation D, and mean 1 and satisfies Eq. (EC.7)

with equality.
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Figure EC.2 Tight distributions for Theorem 2
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H
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)

Note. S = 4, µ = 1 and M = 1. In all three regimes, a worst-case distribution can be constructed from a mixture

of a two-point distribution and truncated Pareto distributions; what di↵ers between the regimes is the placement

and sizes of these components. We show in the course of proving Theorem 2 that any price along the truncated

Pareto section is an optimal price for the single-pricing strategy. These results generalize a folklore result that the

Pareto distribution represents the worst-case valuation distribution when S and D are unrestricted to the case where

these values are known. Note that the distribution varies by regime and is non-unique. See Lemma EC.3 for explicit

formulas.

Proof of Lemma EC.3. Intuitively, FL, FM , and FH each make all the pointwise bounds on the cCDF

the integral representation of D used in the proofs of Eqs. (EC.5) to (EC.7) tight, simultaneously. Thus,

they will make the overall bound tight. See Figure EC.2 for examples of these tight distributions.

To prove the lemma formally, we will prove that FL, FM and FH are valid cCDFs, each with mean 1,

scale S, and coe�cient of deviation D, and that RSP (FL,0) = ↵L, RSP (FM ,0) = ↵M and RPP (FH ,0) = ↵H ,

respectively. The lemma then follows directly from the definition of ↵L, ↵M and ↵H since RPP (FL,0) =

RPP (FM ,0) =RPP (FH ,0) = µ= 1.

a) (Low Heterogeneity) Note that replacing ↵ by ↵L and the inequality by equality in Eq. (EC.4) and

then following the implications backwards proves that ↵L satisfies

D= 1�↵L +↵L log(↵L).

We next prove FL is a valid cCDF. By inspection, we need only prove FL is non-increasing, i.e., that

↵L �D/ log(S) () 1/↵L  log(S)/D. This inequality follows directly from Lemma EC.2 since D 2 [0, �L],
and the left-hand side is low-heterogeneity bound while the right side is the medium heterogeneity bound.

This proves FL is valid.

Next, write Z 1

0

FL(x)dx=

Z 1

0

FL(x)dx+

Z
S

1

FL(x)dx= ↵L�↵L log(↵L)+D= 1,

where the last equality uses the identity proven above for ↵L. Thus, FL has mean 1. By Lemma 3, its

coe�cient of deviation isZ 1

0

1�FL(x)dx=

Z
↵L

0

0dx+

Z 1

↵L

1� ↵L

x
dx= 1�↵L +↵L log(↵L) =D, (EC.12)

again using the identify for ↵L. By inspection, it has scale S.

Finally, any price x 2 [↵L,1] earns profit ↵L, while any price x 2 [0,↵L) earns profit strictly less than ↵L.

Any price x 2 (1, S] earns profit D/ log(S) which is at most ↵L as we noted when proving that FL is valid.

Thus, RSP (FL,0) = ↵L, which proves that a random variable V with cCDF FL will satisfy Eq. (EC.5) with

equality.
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b) (Medium Heterogeneity) To prove that FM is a valid cCDF, it su�ces to show that eS1� 1
D  S,

which is equivalent to 1� D

log(S) . Rewrite this last inequality as 1
↵M

� 1, and recall from Step 1 of the proof

of Theorem 2 that 1
↵M

is an upper bound on the value of personalization and, thus, must be at least 1.

Next, write

Z 1

0

FM(x)dx=

Z
eS

1� 1
D

0

FM(x)dx+

Z
S

eS
1� 1

D

FM(x)dx= ↵M +↵M log

✓
S

eS1� 1
D

◆
= 1,

where the last equality uses the definition of ↵M . It follows that FM has mean 1, and, by inspection, scale

S. Write, Z
S

1

FM(x)dx= ↵M logS =D,

to conclude from Lemma 3 that FM has coe�cient of deviation D. Finally, observe that any price x 2
[eS1� 1

D , S] earns profit ↵M , while any other price earns strictly less profit. Thus, RSP (FM ,0) = ↵M , com-

pleting this part of the lemma.

c) (High Heterogeneity) To prove FH is a valid cCDF, it su�ces to show that ↵H/(1�D) S. Note

that by Lemma EC.1, 1/↵H is an upper-bound on the value of personalization, whereby ↵H is necessarily at

most 1. Moreover, for the Lambert-W function defining ↵H to be well-defined, we must have that 1
S(1�D)  1

which implies S(1�D)� 1. Thus, ↵H  1 S(1�D) which implies that ↵H/(1�D) S and that FH is a

valid cCDF.

Next write,
Z

S

0

F (x)dx=

Z ↵H

1�D

0

(1�D)dx+

Z
S

↵H

1�D

↵H

x
dx

= ↵H +↵H log

✓
S

↵H

(1�D)

◆
. (EC.13)

We claim this last quantity equals 1. Indeed, from the definition of W�1(·), ↵H = eS(1�D) · eW�1( �1
eS(1�D) ).

Then, replace ↵ by ↵H and the inequality by equality in Eq. (EC.11) and follow the implications backwards

to Eq. (EC.10), proving the claim. Thus, FH has mean 1, and, by inspection, has scale S.

To compute its coe�cient of deviation, we first claim that ↵H/(1�D)� 1. Indeed, recall that

D� �M =
log(S)

1+ log(S)
() log(S) D

1�D
() log(S)

D
 1

1�D
.

It follows that
↵H

1�D
� ↵H

log(S)

D
=

↵H

↵M

� 1,

where the last inequality follows from Lemma EC.2. Now compute
Z 1

0

1�FH(x)dx=D,

whereby FH has coe�cient of deviation D by Lemma 3.

Z 1

0

1�F (x)dx=D.

It remains to check that RSP (F,0) = ↵H , which we verify directly by observing that any price x 2 [ ↵H

1�D
, S]

obtains profit ↵H any any other price obtains profit no more than ↵H . ⇤
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B.4. Proof of Theorem 3

Part (a) of the theorem was proven in the main text, except for the following lemma:

Lemma EC.4 (Maximum Deviation for Symmetric, Unimodal Distributions). Suppose V ⇠ F

is symmetric, unimodal and supported on [0, S] with mean µ= 1. Then the mean absolute deviation of V is

at most 1
4 . Moreover, this bound is tight for uniform random variable on [0,2].

Proof. Note by unimodality, V may have at most one point mass, located at 1. Define the function

G(x) = F (x) for x 2 [0,1) and G(1)⌘ limt"1F (x). Note, since V is unimodal, F (x) and G(x) are convex on

[0,1].

Now, by Lemma 3,

D =

Z 1

0

F (x)dx =

Z 1

0

G(x)dx,

since the two functions di↵er only at one point. Then, by convexity

D 
Z 1

0

xG(0)+ (1�x)G(1)dx = G(1)

Z 1

0

(1�x)dx =
1

2
G(1),

where the first equality uses G(0) = F (0) = 0. Finally, by symmetry, G(1) := limt"1F (x) 1
2 , whereby D 

.25. The tightness for the uniform is immediate. ⇤

Next we prove part (b).

Proof of Theorem 3(b). First consider a standardized valuation distribution where c= 0 and µ= 1. Fix

F , D, let m be the mode of F , and suppose p⇤ is the revenue maximizing single price. The proof will proceed

in four cases depending on the sizes of m and p⇤.

(Case 1: m� 1, p⇤  1) By Lemma 3, 1�D=
R 1

0
F (x)dx. Thus,

RSP = p⇤F (p⇤) 
Z

p
⇤

0

F (x)dx 
Z 1

0

F (x)dx = 1�D,

where the first inequality follows since F is decreasing and the second inequality follows because p⇤  1. This

implies RPP

RSP

� 1
1�D

.

(Case 2: m � 1, p⇤ > 1) Since m � 1, F (x) is concave on [0,1]. Hence, for any x 2 [0,1), F (x) � (1�

x)F (0)+xF (1) = (1�x)+xF (1) = 1�x(1�F (1)).

Thus, by Lemma 3,

D = 1�
Z 1

0

F (x)dx  1�
Z 1

0

�
1� (1�F (1))x

�
dx =

1�F (1)

2
,

and, hence,

F (1)  1� 2D. (EC.14)

Now since p⇤ > 1,

RSP = F (p⇤)+ (p⇤� 1)F (p⇤)

= F (p⇤)+ (p⇤� 1)F (p⇤)
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 F (p⇤)+

Z
p
⇤

1

F (x)dx (F (x) is decreasing)

 F (1)+D (p⇤ > 1 and Lemma 3 )

 (1� 2D)+D (Eq. (EC.14))

= 1�D.

Thus in this case RPP

RSP

� 1
1�D

.

(Case 3: m 1, p⇤ m) Much like in Case 1, since p⇤ m 1 it follows that

RSP (F ) = p⇤F (p⇤) 
Z

p
⇤

0

F (x)dx 
Z 1

0

F (x) = 1�D,

which implies RPP

RSP

� 1
1�D

.

(Case 4: m 1, p⇤ >m) Let l(x) = F (p⇤)�f(p⇤) (x� p⇤) be the tangent line of F (x) at p⇤. This line equals

0 at p⇤ + F (p⇤)
f(p⇤) . Since p⇤ is an optimal price, it satisfies the first order condition d

dp
pF (p) = F (p)� pf(p) = 0.

Thus F (p⇤)
f(p⇤) = p⇤ and the root of l(x) is actually p⇤ + F (p⇤)

f(p⇤) = 2p⇤.

Thus, l(x) passes through the points {(m, l(m)), (2p⇤,0)}, and we may equivalently rewrite l(x) =
2l(m)p⇤�l(m)x

2p⇤�m
. Hence, we also have the identity F (p⇤) = l(p⇤) = l(m)p⇤

2p⇤�m
.

Now define the parameter � :=
R

m

0
F (x)dx. The proof will proceed in two additional sub-cases depending

on the size of �.

(Sub-case 4(a): �� 2
3)Notice, because p⇤ >m, we have p⇤ < 2p⇤�m, which implies that (p⇤)2

2p⇤�m
< 2p⇤�m.

Thus, we can upper bound RSP by

RSP = p⇤F (p⇤) =
l(m)

2p⇤�m
(p⇤)2

 l(m)(2p⇤�m)

= 2

Z 2p⇤

m

l(x)dx

 Z 2p⇤

m

l(x)dx= l(m)
2p⇤�m

2

!

 2

Z 1

m

F (x)dx (l(x) F (x) for x2 (m,1))

= 2(1��).

Finally, since �� 2/3, it follows that RSP  2(1��) 2
3  �. Thus, in this subcase RPP

RSP

� 1
�
. Since m 1,

�
R 1

0
F (x)dx= 1�D, and it follows that RPP

RSP

� 1
1�D

.

(Sub-case 4(b): � 2
3)

Write RSP (F ) as the sum before the mode and after the mode

RSP (F ) =mF (p⇤)+ (p⇤�m)F (p⇤). (EC.15)

The first term on the right hand side of Eq. (EC.15) is bounded by

mF (p⇤) =mF (m)
mF (p⇤)

mF (m)

 �
mF (p⇤)

mF (m)

✓
since F (x) is decreasing =) mF (m)

Z
m

0

F (x)dx

◆

 �
l(p⇤)

l(m)

�
since l(m) F (m) and l(p⇤) = F (p⇤)

�

= �
p⇤

2p⇤�m
, (EC.16)
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The second term on the right hand side of Eq. (EC.15) is bounded by

(p⇤�m)F (p⇤) = l(m)
⇣
p⇤� m

2

⌘ (p⇤�m)F (p⇤)

l(m)(p⇤� m

2 )

=

 Z 2p⇤

m

l(x)dx

!
(p⇤�m)F (p⇤)

l(m)(p⇤� m

2 )

 
l(m)(p⇤� m

2
) =

Z 2p⇤

m

l(x)dx

!

 (1��)
(p⇤�m)F (p⇤)

l(m)(p⇤� m

2 )

 Z 2p⇤

m

l(x)
Z 1

m

F (x)dx= 1��

!

= (1��)
2p⇤ (p⇤�m)

(2p⇤�m)2
.

✓
F (p⇤) =

l(m)p⇤

2p⇤�m

◆
(EC.17)

Thus we can upper bound RSP by combining Eqs. (EC.16) and (EC.17)

RSP (F )  �
p⇤

2p⇤�m
+(1��)

2p⇤ (p⇤�m)

(2p⇤�m)2
=

p⇤(2p⇤ +m(�� 2))

(2p⇤�m)2
 max

p�m

p(2p+m(�� 2))

(2p�m)2
.

This last optimization problem is di↵erentiable in p. As p!1, the objective tends to 1
2 . At p = m, the

objective becomes �. There is one critical point obtained by di↵erentiation at p= m(2��)
2� >m since � 2/3.

At the critical point, the objective is (2��)2

8(1��) . For 0 � 2/3, this value always exceeds � and 1
2 , and hence

this is the optimum.

Thus in this subcase RPP

RSP

� 8(1��)
(2��)2

. Further, since m 1, �
R 1

0
F (x)dx= 1�D and it follows that 8D

(1+D)2
.

Combining all cases and sub-cases gives RPP

RSP

�min{ 1
1�D

, 8D
(1+D)2

} which yields the desired bound.

The tightness at D= 0 is immediate since the only feasible distribution is a point mass at m and RPP

RSP

= 1.

To prove the asymptotic tightness as D! 1, we construct a family of unimodal distributions {V�} indexed

by � such that as �! 0, the coe�cient of deviation of V� tends to 1, and the value of personalized pricing

tends to 2. Namely,

V� =

(
Unif[0, �] with probability 1� �

Unif[�, 2
�
� 1] with probability �.

By inspection, each distribution in this family is unimodal with mode � and E[V ] = 1. To see the deviation

tends to 1 as � tends to 0 consider the lower uniform component of V� i.e. lim�!0+ E[|V�� 1|]� lim�!0+(1�

�)(1 � �/2) = 1. Furthermore, pricing at 1
�
� 1��

2 earns revenue ( 1
�
� 1��

2 )P
�
V� � 1

�
� 1��

2

�
= ( 1

�
� 1��

2 ) �

2 .

Taking the limit as � tends to 0 yields revenue 1/2 and thus value of personalized pricing of 2 matching the

above lower bound. ⇤

B.5. Other Omitted Results and Proofs from Section 3

Lemma EC.5 (Convexity of the Single-Pricing Guarantee). For any S, M ,and D, let ↵(S,M,D)

denote the reciprocal of the bound on the value of personalized pricing in Theorem 2. Then ↵(S,M,D) is a

convex function in D.

Proof of Lemma EC.5. Let us fix S and M , and define ↵(D) := ↵(S,M,D). Fix any D1,D2, with 0 

D1 D2  �H , and any t2 [0,1]. We will show that ↵(tD1+(1� t)D2) t↵(D1)+ (1� t)↵(D2) to prove the

theorem.
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By Theorem 2, there exists random variables V1 ⇠ F1 and V2 ⇠ F2 each with scale S and margin M such

that the coe�cient of deviation of F1 is D1, the coe�cient of deviation of F2 is D2, ↵(D1) =
RSP (F1,c)
RPP (F1,c)

and

↵(D2) =
RSP (F2,c)
RPP (F2,c)

.

Since both V1 and V2 have the same margin and cost, they also have the same mean µ= c

1�M
. Take X to

be a Bernoulli random variable with parameter t, and let Ṽ ⌘XV1+(1�X)V2 where X,V1, V2 are sampled

independently. Note that Ṽ has mean µ, margin M , and scale S. Furthermore, the coe�cient of deviation

of Ṽ is

D̃=
1

2µ

⇣
E
h
|XV1 +(1�X)V2�µ|

i⌘

= P(X = 1) · 1

2µ
E
h
|V1�µ|

i
+P(X = 0) · 1

2µ
E
h
|V2�µ|

i
(EC.18)

= tD1 +(1� t)D2.

To conclude the proof, write

t↵(D1)+ (1� t)↵(D2) = t
RSP (F1, c)

RPP (F1, c)
+ (1� t)

RSP (F2, c)

RPP (F2, c)

=
tRSP (F1, c)+ (1� t)RSP (F2, c)

RPP (F̃ , c)

� RSP (F̃ , c)

RPP (F̃ , c)

� ↵(D̃)

= ↵(tD1 +(1� t)D2).

The first equation follows from the definitions of F1 and F2. The second equation follows from the fact that

the personalized pricing strategy yields µ� c for F1, F2, and F̃ . The first inequality follows from the fact

that the optimal single price for Ṽ yields revenue of at most RSP (F1, c) for the market corresponding to V1

and at most RSP (F2, c) for the market corresponding to V2. The second inequality follows Theorem 2. The

last equality follows from Eq. (EC.18). ⇤

Proof of Corollary 1. Note that Eq. (EC.1) shows that

W�1

⇣
�x

e

⌘
= 1+

p
2 log(1/x)+O(log(1/x)) as x! 1.

Substituting this expression into the bounds in the low heterogeneity and high heterogeneity regimes proves

the result. ⇤

B.6. Omitted Proofs from Section 4

Proof of Theorem 4.

Part a) Using Eq. (9), write RXP = maxp(·)E[p(X)I(µ(X) + ✏ � p(X)], where the maximization is taken

over all (measurable) functions of the features representing the pricing policy. We lower bound this quantity
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by constructing a feasible pricing policy. Let p0 2 argmaxp�0 pP(µ+ ✏ � p), where µ = E[V ]. We consider

the feasible pricing policy that o↵ers price p0 +µ(X)�µ to a customer with features X. Then,

RXP � E [(p0 +µ(X)�µ)I(µ(X)+ ✏� p0 +µ(X)�µ)]

= E [(p0 +µ(X)�µ)I(µ+ ✏� p0)]

= E [p0I(µ+ ✏� p0)] +E [µ(X)�µ)I(µ+ ✏� p0)] .

The first expectation equals RSP (Fµ+✏, c) by choice of p0. By independence, the second expectation is

E [µ(X)�µ)]P(µ+ ✏� p0) = 0 since E[µ(X)] = µ. Thus, we have shown RXP (F, c)�RSP (Fµ+✏, c).

Finally, applying Theorem 2 to the random variable µ + ✏, we can bound RSP (Fµ+✏, c) � (µ � c) ·
↵(Sµ+✏,M,D✏), where Sµ+✏ is the scale of µ+ ✏. Notice, by independence of ✏ and X, Sµ+✏  S. Hence we

further lower bound this quantity by (µ� c)↵(S,M,D✏) to complete the first part.

Part b) Write

RXP (F, c) =E[RSP (FV |X, c)] =

Z 1

c

RSP (Ft+✏, c)fµ(X)(t)dt, (EC.19)

where we have used the fact that FV |X = Fµ(X)+✏ because X and ✏ are independent. Now applying Theo-

rem 3(a) to the random variable t+ ✏ yields,

RSP (Ft+✏, c)  (t� c)

 
1� 2

E[|✏|]
2t
t�c

t

!
= (t� c)

✓
1� E[|✏|]

(t� c)

◆
= t� c�E[|✏|].

Substituting into the integral above shows

RXP (F, c) 
Z 1

c

(t� c�E[|✏|])fµ(X)(t)dt = (µ� c)�E[|✏|] = (µ� c) ·
✓
1� D✏

M

◆
.

Noting RPP = µ� c and rearranging completes the proof. ⇤

B.7. Omitted Proofs from Sections 5.2 and 5.3.

Proof of Theorem 6. Based on the reduction described in Section 5.1, it su�ces to upper bound the value

of personalized pricing for a standardized distribution with standardized moment function h(·). We do this

by providing a lower-bound on Eq. (10). Following Shapiro (2001), the dual to Eq. (10) is

sup
✓,�,dQp

✓+�1

s.t.

Z
Sc

0

dQp = 1, dQp � 0, (EC.20)

✓+�1v+�2h(v)�
Z

Sc

0

pI(v� p)dQp  0, 8v 2 [0, Sc].

Here, Qp is a probability measure defined on p 2 [0, Sc]. By weak-duality, any feasible solution to problem

(EC.20) yields a valid lower bound to RSP . To form such a feasible solution to (EC.20), we constrain

Qp to be supported only on {p0, . . . , pN} (noting pN = Sc) and denote the corresponding point masses as

Q0,Q1, . . . ,QN . Then, the value of (EC.20) is at least

z⇤
N
:= max

✓,�,Q
✓+�1

s.t.
NX

j=0

Qj = 1, Q� 0

✓+�1v+�2h(v)�
NX

j=0

pjI(v� pj)Qj  0, 8v 2 [0, Sc] . (EC.21)
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Notice that the sum of indicators in Eq. (EC.21) is constant over v 2 [pk�1, pk). Thus, we can rewrite this

constraint of Eq. (EC.21) as N +1 separate sets of constraints:

✓+�1v+�2h(v)
k�1X

j=0

pjQj , 8v 2 [pk�1, pk), k= 1, . . . ,N,

✓+�1Sc + c+�2h(Sc)
NX

j=0

pjQj .

Replacing Eq. (EC.21) with these N +1 sets of constraints, and then substituting in the definitions of Sc and

h(·) provides a lower bound on the personalized-pricing revenue. Taking a reciprocal completes the proof.

⇤

Proof of Theorem 7. Based on the reduction described in Section 5.1, it su�ces to upper bound the

value of personalized pricing for a standardized distribution with standardized moment function h(·). We

do this by lower bounding Eq. (13). Note that if V is m-unimodal, then the standardized distribution Vc is

mc-unimodal.

Using the fact that
R

Sc

0
dMt = 1, we can replace the constraint

R
Sc

0
t+mc

2 dMt = 1 by the constraint
R

Sc

0
tdMt = 2�mc. Then, following Shapiro (2001) the dual to Eq. (13) with this constraint replaced is

sup
✓,�,Q

✓+�1(2�mc) (EC.22)

s.t. ✓+�1t+�2H(t,mc)
Z

Sc

0

pG(p,mc, t)dQp 8t2 [0, Sc], (EC.23)

dQp � 0,

Z
Sc

0

dQp = 1.

Again, by weak duality, any feasible solution to this problem lower-bounds z⇤,mc . We restrict Q to discrete

distributions supported on the given discretization over p (noting pN = Sc), and denote the corresponding

point masses as Q0,Q1, . . . ,QN . The last two constraints then become Q� 0 and
P

N

j=0Qj = 1.

Constraint (EC.23) can also be written as the following three (families) of constraints

✓+�1t+�2H(t,mc)
NX

j=0

pjG(pj ,mc, t)Qj 8t2 [pk, pk+1) k= 0, . . . , j⇤� 1, (EC.24a)

✓+�1m+�2H(mc,mc)
NX

j=0

pjG(pj ,mc,mc)Qj , (EC.24b)

✓+�1t+�2H(t, ,mc)
NX

j=0

pjG(pj ,mc, t)Qj 8t2 (pk, pk+1] k= j⇤ +1, . . . ,N � 1. (EC.24c)

These three cases correspond to whether t is less than, equal to, or greater than the mode. We further

simplify these constraints.

Consider Eq. (EC.24a), fix some k and note that necessarily pk  t < pk+1 <m. Split the sum as

kX

j=0

pjG(pj ,mc, t)Qj +
j
⇤X

j=k+1

pjG(pj ,mc, t)Qj +
NX

j=j⇤+1

pjQjG(pj ,mc, t).
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In the first sum, pj  t, in the second sum, t < pj mc, and in the third sum, mc < pj . Consequently, by the

definition of G(·), we can rewrite these three sums as

kX

j=0

pjQj +
j
⇤X

j=k+1

pj

mc� pj

mc� t
Qj .

Plugging this expression back into Eq. (EC.24a) and multiplying through by (mc� t) yields,

✓(mc�t)+�1t(mc�t)+�2

Z
mc

t

h(s)ds 
kX

j=0

pjQj(mc�t)+
j
⇤X

j=k+1

pjQj(mc�pj), 8t2 [pk, pk+1), (EC.25)

for all k= 0, . . . , j⇤� 1.

Next consider Eq. (EC.24b) and use that H(mc,mc) = h(mc) and G(p,mc,mc) = I(mc � p) to rewrite it

as

✓+�1mc +�2h(mc)
j
⇤X

j=0

pjQj . (EC.26)

Finally consider Eq. (EC.24c), fix some k and note that necessarily mc < pk < t pk+1. Split the sum as

j
⇤X

j=0

pjG(pj ,mc, t)Qj +
kX

j=j⇤+1

pjG(pj ,mc, t)Qj +
NX

j=k+1

pjG(pj ,mc, t)Qj .

In the first sum, pj  mc, in the second sum, mc < pj < t, and in the third sum, t  pj . Hence, by the

definition of G(·), we can rewrite these three sums as

j
⇤X

j=0

pjQj +
kX

j=j⇤+1

pj

t� pj

t�mc

Qj .

Plugging this expression back into Eq. (EC.24c) and multiplying through by (t�mc)yields

✓(t�mc)+�1t(t�mc)��2

Z
mc

t

h(s)ds
j
⇤X

j=0

pjQj(t�mc)+
kX

j=j⇤+1

pjQj(t� pj), 8t2 (pk, pk+1], (EC.27)

for all k= j⇤+1, . . . ,N �1. Combining these three families of constraints and substituting in the definitions

of Sc and h(·) completes the proof. ⇤

B.8. Omitted Examples from Section 5.4

In this subsection, we show that in the absence of shape constraints on the distribution, only vacuous lower

bounds on the value of personalized pricing exist for the four moments described in Section 5. Recall that

when h(v) corresponds to the coe�cient of deviation, in Example 1 we explicitly constructed a distribution

with margin M , scale at most S, coe�cient of deviation D, and value of personalized pricing equal to 1. We

next discuss the other three cases.

Example EC.1 (Vacuous Lower Bound for Coefficient of Variation). Let h(v) = (v�µ)2

µ2 and

fix S > 1, M  1, and C. We shall construct a random variable V with margin M , µ= 1, and scale at most

S such that E[h(V )] =C2, and RPP

RSP

= 1. Specifically, let V be the two-point distribution

V =

8
><

>:

1�M with probability
C

2

M2

1+ C2

M2

1+ C
2

M
with probability 1

1+ C2

M2
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and let F be the corresponding cdf. One can confirm that E[V ] = 1 and E[h(V )] = C2. By Theorem 1 of

Bhatia and Davis (2000), any random variable V with mean 1 and supported on [c,S] satisfies:

C2 =E[(V � 1)2] (S� 1)M.

Thus, the scale of V satisfies 1 + C
2

M
 1+ S � 1 = S. Finally, observe that a single price at 1 + C

2

M
earns a

profit of 1� c and hence, RPP (F,c)
RSP (F,c) = 1. ⇤

Example EC.2 (Vacuous Lower Bound for Geometric Mean). Let h(v) = � log
⇣

v

µ

⌘
and fix

M < 1 and B. We shall construct a random variable V with margin M such that E[h(V )] =� log
⇣

B

µ

⌘
and

µ= 1. We let V be the two-point distribution

V =

(
1�M with probability ✏

1+ ✏M

1�✏
with probability 1� ✏

and let F be the corresponding cdf, where ✏2 (0,1) shall be determined later. One can confirm that E[V ] = 1

and that single pricing at 1+ ✏M

1�✏
yields a profit of 1� c and hence RPP (F,c)

RSP (F,c) = 1.

What remains is to show that there exists an ✏ such that E[h(V )] =� log
⇣

B

µ

⌘
, which reduces to

B = (1�M)✏
✓
1� ✏+ ✏M

1� ✏

◆1�✏

. (EC.28)

Note that the RHS of (EC.28) is a continuous function which equals 1 when ✏= 0 and equals 1�M when

✏= 1. Moreover, by Jensen’s inequality and V � 1�M almost surely, it must be that B 2 [1�M,1]. Thus,

there exists an ✏ that solves (EC.28). ⇤

Example EC.3 (Vacuous Lower Bound for Incumbent Price). Let h(v) = I{v � p̂µ} and fix

M < 1, p̂ > 1�M , and q 2 [0,1]. We shall construct a random variable V with marginM such that E[h(V )] = q

and µ= 1. We let V be the two-point distribution

V =

(
1�M with probability 1� q

1�M + M

q
with probability q

and let F be the corresponding cdf. One can confirm that E[V ] = 1. In order for this distribution to be valid

with margin M , we must satisfy the fact that pricing at p̂ yields a profit of at most RPP (F, c) = 1� c=M ,

i.e. (p̂�c)q= (p̂+M �1)qM . From this inequality, it follows that p̂2 (1�M,1�M + M

q
] and E[h(V )] = q.

Finally, one can confirm that single pricing at 1�M + M

q
yields a profit of M and thus RPP (F,c)

RSP (F,c) = 1. ⇤

B.9. Omitted Proofs from Section 5.4

Recall we have shown in the main text that when Vc is mc unimodal, RPP

RSP

= 1
maxp2[0,Sc]

rmc (p) . Unfortunately,

this maximization is not concave. Hence, to form a bound, we discretize the price space. The next lemma

quantifies the error induced from such a procedure.

Lemma EC.6 (Error from Geometric Price Ladder). Let Fc be a standardized valuation distribution

with scale Sc. Fix 0< � < 1 and let N = d1+ log(Sc/�)
log(1+�) e. Let p0 = 0, and pj = �(1+ �)j�1 for j = 1, . . . ,N , so

that {pj}N

j=0 discretize the interval [0, SS]. Define r⇤
�
:=maxj:0jN pjP(Vc � pj). Then,

r⇤
�
 RSP (Fc,0)  max(�, (1+ �)r⇤

�
) .
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Proof of Lemma EC.6. The first inequality follows because the price ladder restricts the feasible region

and hence reduces the possible single-pricing revenue. For the second, let p⇤ be the optimal single price and

let k be such that pk  p⇤  pk+1. We consider two cases: If k = 0, then RSP (Fc,0) = p⇤P(Vc � p⇤) p1 = �.

Alternatively, if k� 1, then,

RSP (Fc,0) = p⇤P(Vc � p⇤)  pk+1P(Vc � pk)  (1+ �)pkP(Vc � pk)  (1+ �)r⇤
�
.

Combining yields the lemma. ⇤
Notice by inspection, the error from this discretization decreases as �! 0 and is tight in the limit. We

next leverage Lemma EC.6 together with duality to prove Theorem 8.

Proof of Theorem 8. Based on the reduction described in Section 5.1, it su�ces to lower bound the value

of personalized pricing for a standardized distribution with standardized moment function h(·). Note that if

V is m-unimodal, then the standardized distribution Vc is mc-unimodal.

Now consider the geometric price ladder described in Lemma EC.6. By that lemma, we have

RPP

RSP

� 1

max(�, (1+ �)maxj:0jN rmc(pj))
⌘ r⇤,mc

�
.

This bound clearly improves as �! 0 and is tight in the limit. Thus it only remains to prove that rmc(pj)

can be evaluated as an optimization problem for each j.

Since
R

Sc

0
dMt = 1, we can replace the constraint

R
Sc

0
t+mc

2 dMt = 1 by
R

Sc

0
tdMt = 2�mc in the definition

of rmc(pj). Then, by duality, we have

rmc(pj) = inf
✓,�

✓+�2(2�mc)

s.t. ✓+�1H(t,mc)+�2t � pjG(pj ,mc, t) t2 [0, Sc].

We consider three cases based on the value of pj :

Case i) pj <mc. Separate the semi-infinite constraint into two constraints depending on whether t2 [0, pj ],

t2 (pj , Sc] and use the definition of G(pj ,mc, t) to write it as

✓+�1H(t,mc)+�2t � pj

✓
mc� pj

mc� t

◆
t2 [0, pj ].

✓+�1H(t,mc)+�2t � pj t2 [pj , Sc].

Multiply the first of these constraints through by mc� t > 0 and combine to obtain the optimization problem

rmc(pj) = inf
✓,�

✓+�2(2�mc)

s.t. ✓(mc� t)+�1

Z
mc

t

h(s)ds+�2t(mc� t) � pj(mc� pj) 8t2 [0, pj ],

✓+�1H(t,mc)+�2t � pj 8t2 [pj , Sc].

Both constraints are special cases of Eq. (15).

Case ii) pj =mc. In this case we separate the semi-infinite constraint into two constraints depending on

whether t2 [0,mc) or t2 [mc, Sc], and use the definition of G(mc,mc, t) to write

✓+�1H(t,mc)+�2t� 0 8t2 [0,mc]

✓+�1H(t,mc)+�2t�mc 8t2 [mc, Sc],
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where we have used continuity to close the half-open interval. Substituting above yields the optimization

problem

rmc(mc) = inf
✓,�

✓+�2(2�mc)

s.t. ✓+�1H(t,mc)+�2t� 0 8t2 [0,mc]

✓+�1H(t,mc)+�2t�mc 8t2 [mc, Sc].

Both constraints are special cases of Eq. (15).

Case iii) pj >mc We now consider two cases depending on whether t 2 [0, pj ] or t 2 (pj , Sc]. Again, split

the semi-infinite constraint and use the definition of G(pj ,mc, t) to write

✓+�1H(t,mc)+�2t � 0 8t2 [0, pj ]

✓+�1H(t,mc)+�2t� pj

✓
t� pj

t�mc

◆
8t2 [pj , Sc].

Multiply the second constraint through by t�mc > 0, and combine to show that

rmc(pj) = inf
✓,�

✓+�2(2�mc)

s.t. ✓+�1H(t,mc)+�2t � 0 8t2 [0, pj ]

✓(t�mc)��1

Z
mc

t

h(s)ds+�2t(t�mc)� pj(t� pj) 8t2 [pj , Sc].

Both constraints are special cases of Eq. (15).

These three cases thus complete the proof. ⇤

B.10. Omitted Proofs from Section 5.5

In this section, we prove that each of our mathematical programming bounds on the value of personalized

pricing is computationally tractable for the four cases considered in the main text.

For clarity, recall the standardized moment function h(t) := h(µM(t� 1)+µ)�µh. Using this function to

simplify notation, we see that the optimization problem in Theorem 6 can be solved as a linear optimization

problem with constraint generation if we can identify an optimizer of

max
v2[pk,pk+1)

a1v+ a2h(v) (EC.29)

for every a2R2 and k.

Moreover, the optimization problem in Theorem 7 can be solved as a linear optimization problem with

constraint generation if we can identify an optimizer of

max
t2[pk,pk+1]

a1t+ a2t
2 + a3

Z
mc

t

h(s)ds (EC.30)

for every a2R3 and k.

Finally, the optimization problem in Theorem 8 can be solved as a linear optimization problem with

constraint generation if we can identify an optimizer for each of

min
t2[l,u]

a1H(t,mc)+ a2t and min
t2[l,u]

a1t
2 + a2t+ a3

Z
mc

t

h(s)ds, (EC.31)

for any a2R3 and [l, u]✓ [0, S]. Notice this second optimization is of the same form as Eq. (EC.30).

Thus to prove that our mathematical programming bounds are computationally tractable for our four

previous examples, it su�ces to give optimization procedures for each of these problems for the corresponding

standardized moment functions h(·).
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Proposition EC.1 (Tractability of VoPP Optimizations for Coe�cient of Deviation).

Suppose h(t) =M |t� 1|/2�D. Then,

a) For each a2R3 and k, an optimizer to Eq. (EC.30) can be found in closed-form.

b) For any a 2R3 and [l, u] with �1< l < u<1, optimizers to the two problems in Eq. (EC.31) can be

found by bisection search and in closed-form, respectively.

In other words, the problems in Theorems 7 and 8 can each be solved e�ciently as a linear optimization with

constraint generation.

Remark EC.1. Note that for the special case of h(t) =M |t� 1|/2�D, Theorem 6 is superceded by the

closed-form bound Theorem 2, and, hence, omitted above. ⇤
Proof of Proposition EC.1.

Part a): An optimizer to Eq. (EC.30) occurs either at an endpoint pk, pk�1, or else at a critical point, i.e.,

solutions to a1
a3

+ 2a2
a3

t= M

2 |t� 1|�D. We first seek roots where t 1. There is at most one such root, given

by t1 ⌘ �2a1�2D+a3M

4a2+a3M
, but only if this value is less than equal to 1. Otherwise, there is no root less than 1.

We next seek roots for t� 1. Again, there is at most one such root, given by t�1 ⌘ �2a1�2D�a3M

4a2�a3M
, but only if

this value is great than or equal to 1. Otherwise there is no root greater than one.

In summary, an optimizer is one of pk, pk�1, t1 (if t1  1) or t�1 (if t�1 � 1), and can be identified by

simply checking the feasibility and comparing these (at most) 4 values.

Part b): Consider the first of the two optimization problems. Notice that if Yt ⇠Unif[t,mc], we can write

Y = t+ (mc � t)⇠ with ⇠ ⇠ Uniform[0,1]. Hence, we can rewrite H(t,mc) = E[h(t+ (mc � t)⇠)]. Since h(·)

is convex, it follows that H(t,mc) is convex in t; h(t+ (mc� t)⇠) is the composition of a convex and a�ne

function, and expectations preserve convexity.

We conclude that if a 0, the first optimization problem is the minimization of a concave function, and

the optimum occurs at an end point {l, u}. If a > 0, then it is the minimization of a convex function. The

optimum occurs either at an end point {l, u}, or else at t⇤ solving @tH(t,mc) + b/a = 0. Such a t⇤ can be

found by bisection search.

A procedure for solving the second problem was given in Part a). ⇤

Proposition EC.2 (Tractability of VoPP Optimizations for Coe�cient of Variation).

Suppose h(t) =M2(t� 1)2�C2. Then,

a) Problem (11) can be solved explicitly as a (finite) convex second order cone problem.

b) For each a2R3 and k, an optimizer to Eq. (EC.30) can be found in closed-form.

c) For any a 2R3 and l, u 2R, optimizers to the two problems in Eq. (EC.31) can be found by bisection

search and in closed-form, respectively.

In other words, the problems in Theorems 6 to 8 are each computationally tractable.

Remark EC.2. Notice in Part a), we do not use separation. The problem is an explicit second order cone

problem that can be passed to o↵-the-shelf software. ⇤
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Proof of Proposition EC.2.

Part a): Since h(·) is continuous, it su�ces to reformulate the semi-infinite constraint

�1v+�2h(v)
k�1X

j=0

pjQj � ✓, 8v 2 [pk�1, pk],

Since v 2 [pk�1, pk] () (v�pk�1)(v�pk) 0, we can use the definition of h(·) to rewrite the kth constraint

as

✓�
kX

j=0

pjQj ��2C
2  min

v:(v�pk�1)(v�pk)0
��1v��2M

2(v� 1)2.

The (possibly non-convex) minimization on the right is an example of a quadratic optimization problem

in which quadratic forms in the objective and in the constraint are simultaneously diagonalizable. Such

problems were studied in Ben-Tal and Den Hertog (2014) which shows they can be equivalently written as

convex, second order cone problems. Indeed, applying the results of that paper shows the kth constraint is

equivalent to the constraints

(yk +�2M
2)pk�1pk�x� ✓�

kX

j=0

pjQj +�2(M
2�C2)

4ykxk � z2
k

(EC.32)

zk = 2�2M
2��1� (yk +�2M

2)(pk�1 + pk)

xk, yk � 0, y+�2M
2 � 0,

with the auxiliary variables xk, yk, zk. This formulation is always convex (Constraint (EC.32) is a rotated

second-order cone constraint; see Boyd and Vandenberghe (2004)). Performing this transformation for each

of the semi-infinite constraints yields a (convex) second order cone representation, proving the theorem.

Part b): Again, an optimizer of Eq. (EC.30) occurs either at endpoint pk, pk�1, or else at a crit-

ical point, i.e., a solution to a1
a3

+ 2a2
a3

t = M2(t � 1)2 � C2. This equation has two roots, given by
a2+a3M

2±
p

a
2
2+a3(a1+2a2+a3C

2)M2

a3M
2 . These roots can only be optimizers of Eq. (EC.30) if they lie within

[pk, pk+1]. Hence there are at most 4 possible optimizers, and we can identify an optimizer in closed form by

comparing their objective values.

Part c): Consider the first of the two optimization problems. The same convexity argument that applied

in the case of Proposition EC.1 applies here unchanged. Hence, when a1  0, an optimum occurs at an

end point of {l, u}. If a1 > 0, then an optimum occurs either at this end point or else the solution t⇤ to

@tH(t⇤)+ a2/a1 = 0 which can be obtained by bisection.

A procedure for solving the second problem was given in Part b). ⇤

Proposition EC.3 (Tractability of VoPP Optimization with Geometric Mean). Suppose

h(t) =� log(M(t� 1)+ 1)+ log(B/µ). Then,

a) Problem (11) can be solved by solving two explicit (finite) convex optimization problems. Alternatively,

for any k, �1 and �2, an optimizer of Eq. (EC.29) can be found in closed-form. Hence, Problem (11)

can also be solved e�ciently by constraint generation as a linear optimization problem.
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b) For each a2R3 and k, an optimizer to Eq. (EC.30) can be found in closed-form, and hence Problem (14)

can be solved e�ciently by constraint generation as a linear optimization problem.

c) For any a 2R3 and l, u 2R, optimizers to the two problems in Eq. (EC.31) can be found by bisection

search and in closed-form, respectively.

Proof of Proposition EC.3.

Part a): We formulate two separate convex optimization problems corresponding to the cases where the

optimal �2 > 0 and �2  0 and note that the solution to Problem (11) is the better of these two objective

values.

To formulate an optimization problem when �2 � 0, notice that when �2 > 0, maxv2[pk�1,pk] �1v+�2h(v)

is the maximization of a convex function, and hence the maximum occurs at one of the two endpoints. Hence,

we can simply replace the kth semi-infinite constraint by two linear constraints, namely,

�1pk�1 +�2h(pk�1)
k�1X

j=0

pjQj , �1pk +�2h(pk)
k�1X

j=0

pjQj .

Applying this transformation for each k and adding the constraint �2 � 0 yields our first convex optimization

problem (in fact a linear optimization problem).

To formulate an optimization problem when �2  0, use the definition of h(·) to write

max
v2[pk�1,pk]

�1v+�2h(v) () � |�2| log(B/µ) + max
v,w

�1v+ |�2| log
�
Mv+(1�M)

�

s.t. v=w, w 2 [pk�1, pk].

By Lagrangian duality, we relax the equality constraint yielding

max
v

(�1��k)v+ |�2| log
�
Mv+(1�M)

�

s.t. v 2R
+

max
w

�kw

s.t. w 2 [pk�1, pk]

The second optimization can be solved in closed form yielding max(�kpk�1,�kpk), which is convex in �k. The

first optimization can also be solved explicitly by looking at the first-order condition yielding

|�2|
✓
log

✓
M |�2|
�k��1

◆
� 1

◆
+(�k��1)

1�M

M
if �k > �1,

and infinity otherwise. Substituting back, shows we can equivalently write the kth semi-infinite constraint

when �2  0 as

9�k 2R s.t.

�k � �1, �2  0,
✓
log

✓
M |�2|
�k��1

◆
� 1

◆
+(�k��1)

1�M

M
+max(�kpk�1,�kpk)

k�1X

j=0

pjQj .

These constraints are convex. Making this transformation for each k yields the convex optimization problem

for the case �2  0. Taking the better of these two optimization problems yields a solution to Problem (11).

To prove the last statement about Problem ??, notice that an optimum must occur either at a critical

point or an endpoint {pk�1, pk}. Di↵erentiating, we see the only critical point is 1� 1/M + a2/a1, if this

value is in [pk�1, pk]. Comparing these (at most) three values yields an optimizer.
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Part b): Again, an optimizer occurs either at an endpoint {pk�1, pk} or a critical point. Using the definition

of h(t), critical points satisfy a1 +2a2t=�a3 log(M(t� 1)+ 1)+ a3 log(B/µ). When a3 = 0, this yields the

unique critical point �a1/2a2 if this value is in [pk�1, pk].

When c 6= 0, we rewrite this equation as

2a2
a3

t+ log(Mt+1�M) = log(B/µ)� a1
a3

.

Make the substitution y Mt+1�M yielding,

2a2y

a3M
+ log(y) = log(B/µ)� a1

a3
+

2a2
a3

✓
1

M
� 1

◆
() y exp

✓
2a2y

a3M

◆
=

B

µ
exp

✓
2a2
a3

✓
1

M
� 1

◆
� a1

a3

◆
,

where the implication follows by exponentiating both sides. Finally multiplying both sides by 2a2
a3M

yields

2a2y

a3M
exp

✓
2a2y

a3M

◆
=

2a2B

a3Mµ
exp

✓
2a2
a3

✓
1

M
� 1

◆
� a1

a3

◆
.

This equation implies that

2a2y

a3M
=W⇤

✓
2a2B

a3Mµ
exp

✓
2a2
a3

✓
1

M
� 1

◆
� a1

a3

◆◆
,

where W⇤ denotes any branch of the Lambert-W function. It follows that y only admits a real-valued solution

if 2a2B

a3Mµ
exp

⇣
2a2
a3

�
1
M
� 1
�
� a1

a3

⌘
�� 1

e
. Furthermore, if this value lies within [� 1

e
,0), y admits two solutions,

corresponding to the �1 and 0 branches of the function. If this value is non-negative, y admits only one

solution, corresponding to the 0 branch. Transforming back to t yields at most two critical points:

t1 = 1� 1/M +
a3
2a2

W�1

✓
2a2B

a3Mµ
exp

✓
2a2
a3

✓
1

M
� 1

◆
� a1

a3

◆◆
if � 1

e
 2a2B

a3Mµ
exp

✓
2a2
a3

✓
1

M
� 1

◆
� a1

a3

◆
< 0,

t2 = 1� 1/M +
a3
2a2

W0

✓
2a2B

a3Mµ
exp

✓
2a2
a3

✓
1

M
� 1

◆
� a1

a3

◆◆
if

2a2B

a3Mµ
exp

✓
2a2
a3

✓
1

M
� 1

◆
� a1

a3

◆
> 0,

where we have indicated when the critical point is defined. Checking these at most 4 points yields an

optimizer.

Part c): Consider the first of the two optimization problems. The same convexity argument that applied

in the case of Proposition EC.1 applies here unchanged. Hence, when a1  0, an optimum occurs at an end

point of {l, u}. If a1 > 0, then an optimum occurs either at this end point or else the unique solution t⇤ to

@tH(t⇤,mc)+ a2/a1 = 0 which can be obtained by bisection.

A procedure for solving the second optimization problem was given in Part b). ⇤

Proposition EC.4 (Tractability of VoPP Optimizations for Incumbent Price). Suppose h(t) =

I{M(t� 1)+ 1� p̂}� q for some p̂2 [0, S] and q 2 [0,1]. Then,

a) Problem (11) can be solved as an explicit linear optimization problem.

b) For each a 2 R3 and k, an optimizer to Eq. (EC.30) can be found in closed-form, and, hence, Prob-

lem (14) can be solved e�ciently by constraint generation as a linear optimization problem.

c) For any a2R3 and l, u2R, optimizers to the two problems in Eq. (EC.31) can be found in closed-form,

respectively.
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In other words, the problems in Theorems 7 and 8 can each be solved e�ciently as a linear optimization with

constraint generation.

Remark EC.3. Notice in Part a), we do not use separation. The problem is an explicit linear optimization

problem that can be passed to an o↵-the-shelf software.

Proof of Proposition EC.4. Throughout, let v0 ⌘ p̂�1
M

+1, so that h(y) = I{M(y� 1)� p̂� 1}� q= I{y�
v0}� q.

Part a): Fix some k and consider the corresponding semi-infinite constraint in Eq. (11):

max
v2[pk�1,pk)

✓+�1v+�2I{v� v0}��2q 
k�1X

j=0

pjQj ,

If v0 62 [pk�1, pk), then the objective function on the left is a linear function, and we can replace this

constraint with the two linear constraints corresponding to the end points:

✓+�1pk�1 +�2I{pk�1 � v0}��2q 
k�1X

j=0

pjQj ,

✓+�1pk +�2I{pk � v0}��2q 
k�1X

j=0

pjQj .

On the other hand, if v0 2 [pk�1, pk), then the objective function on the left is a piecewise linear function

with one breakpoint. In general, there may be a discontinuity at this breakpoint. Hence we can replace the

semi-infinite constraint by four constraints: the two constraints above corresponding to the endpoints and

two additional constraints corresponding to the values v= v0 and v " v0:

✓+�1v0 +�2(1� q)
k�1X

j=0

pjQj , ✓+�1v0��2q
k�1X

j=0

pjQj .

Making these replacements for each k yields an explicit linear optimization problem.

Part b): Again, an optimizer of Eq. (EC.30) occurs either at endpoint pk, pk+1, or else at a critical point.

When a3 = 0, the unique critical point is at � a2
2a1

, if this value occurs in [pk, pk+1). When a3 6= 0, a critical

point occurs when a1
a3

+ 2a2
a3

t= I{t� v0}� q. We have two cases depending on the value of the indicator:

If t� v0, then a critical point occurs when a1
a3

+ 2a2
a3

t= 1� q, i.e., at t1 ⌘ a3
2a2

⇣
1� q� a1

a3

⌘
, provided a2 6= 0,

t1 2 [pk, pk+1) and t1 � v0. Otherwise, there is no such critical point.

If t < v0, then a critical point occurs when a1
a3

+ 2a2
a3

t = �q, i.e., at t0 ⌘ � a3
2a2

⇣
q+ a1

a3

⌘
, provided a2 6= 0,

t0 2 [pk, pk+1) and t0 < v0. Otherwise, there is no such critical point.

Checking these at most 4 values yields an optimizer.

Part c): Consider the first of the two optimization problems in Eq. (EC.31). By definition,

H(t,mc) = E[h(Yt)] = P(Yt � v0)� q = G(v0,mc, t)� q,

where we now Yt ⇠ Unif[mc, t]. Moreover, this last function is non-decreasing in t. Hence, we see that an

optimum of the first problem in Eq. (EC.31) either occurs at an endpoint or, if a2a1 < 0, in the interior. We

add the two endpoints `, u to the set of potential optimizers and next search for potential optimizers on the

interior. To this end, we assume a2a1 < 0.
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Notice that h(t) is continuous whenever t 6= v0, Hence, by the fundamental theorem of calculus, we can

di↵erentiate Eq. (12) when t 6= v0, yielding

@tH(t,mc) = � 1

mc� t
h(t)+

1

(mc� t)2

Z
mc

t

h =
H(t)�h(t)

mc� t
=

G(v0,mc, t)� I{t� v0}
mc� t

.

This implies, for t 6= v0,

@t (a1H(t,mc)+ a2t) =
a1

mc� t
(G(v0,mc, t)� I{t� v0})+ a2,

which, by inspection, is not well-defined when t=mc. Thus, we conclude that, excluding the points v0 and

mc, any potential optimizer in the interior must satisfy a1
mc�t

(G(v0,m, t)� I{t� v0})+ a2 = 0. We add both

v0 and mc to the set of potential optimizers and restrict attention in the remainder to solutions of this

equation.

Multiplying through by (mc� t) shows such critical points must satisfy

G(v0,mc, t) = I(t� v0}+
a2
a1

(t�mc). (EC.33)

Notice this equation is piecewise continuous in t. We solve it by considering 6 cases corresponding to all

combinations of the two branches of the indicator and the 3 branches which define G(·) where mc 6= t.

Case 1: v0  t.

Subcase i) max(mc, t)< v0. This subcase is impossible since we assume v0  t.

Subcase ii) v0 < min(mc, t). Here Eq. (EC.33) reduces to 1 = a2
a1
(t �mc) + 1, whose only solution is

t=mc. Since we already added mc as a potential maximizer, we ignore this case.

Subcase iii) min(mc, t)  v0  max(mc, t) and mc 6= t. Since v0  t, it follows that mc  v0  t and

mc < t. Then Eq. (EC.33) reduces to t�v0
t�mc

= a2
a1

(t�mc) + 1. Since t 6=mc by assumption, we can multiply

through and solve for t, yielding

t1,2 =mc ±
r

a1
a2

(mc� v0).

We disregard t2 since mc < t by assumption. Thus, we add t1 to the set of potential optimizers.

Case 2: v0 > t.

Subcase i) max(mc, t)< v0. Equation (EC.33) reduces to 0 = a2
a1
(t�mc), whose only solution is t=mc

Since we already added mc as a potential maximizer, we ignore this case.

Subcase ii) v0 <min(mc, t). This case is impossible since we assume v0 > t.

Subcase iii) min(mc, t) v0 max(mc, t) and mc 6= t. Since v0 > t, it follows that t < v0 mc. Simplifying

Eq. (EC.33) gives
mc� v0
mc� t

=
a2
a1

(t�mc).

Again, since t 6=mc, we can multiply through and solve for t yielding two roots

t3,4 =m±
r

a1
a2

(v0�mc).

We disregard t3 since t <mc and add t4 to the set of potential optimizers.

In summary, we have shown that an optimizer to the first problem in Eq. (EC.31) occurs at one of the

following points:
n
l, u,mc, v0,mc +

q
a1
a2
(mc� v0),mc�

q
a1
a2
(v0�mc)

o
. Checking these at most 6 points

thus yields an optimizer.

A procedure for solving the second problem in Eq. (EC.31) was given in Part b).

⇤


