
Small-Data, Large-Scale Linear Optimization
with Uncertain Objectives

Vishal Gupta and Paat Rusmevichientong
Data Science and Operations, USC Marshall School of Business, Los Angles, CA 90089,

guptavis@usc.edu, rusmevic@marshall.usc.edu

Optimization applications often depend upon a huge number of uncertain parameters. In many contexts,

however, the amount of relevant data per parameter is small, and hence, we may only have imprecise

estimates. We term this setting – where the number of uncertainties is large, but all estimates have low

precision – the “small-data, large-scale regime.” We formalize a model for this new regime, focusing on

optimization problems with uncertain linear objectives. We show that common data-driven methods, such

as sample average approximation, data-driven robust optimization, and certain regularized policies, may

perform poorly in this new setting. We then propose a novel framework for selecting a data-driven policy

from a given policy class. Like the aforementioned data-driven methods, our new policy enjoys provably

good performance in the large-sample regime. Unlike these methods, we show that in the small-data, large-

scale regime, our data-driven policy performs comparably to an oracle best-in-class policy under some mild

conditions. We strengthen this result for linear optimization problems and two natural policy classes: the

first inspired by the empirical Bayes literature and the second by regularization techniques. For both classes,

the suboptimality gap between our proposed policy and the oracle policy decays exponentially fast in the

number of uncertain parameters, even for a fixed amount of data. Thus, these policies retain the strong

large-sample performance of traditional methods, and additionally enjoy provably strong performance in the

small-data, large-scale regime. Numerical experiments confirm the significant benefits of our methods.
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1. Introduction

We live in a small-data world. Popular press about the age of “Big Data” notwithstanding, many

real-world decision-making problems exhibit a huge number of uncertain parameters with a small

amount of relevant data per parameter. Consider the following two examples.

Inventory Management for Low-Demand Products: Large online retailers carry millions

of products, but most products have few sales per quarter. Figure 1 summarizes the number of

sales per product for the five most popular product categories based on data for a large e-retailer.

The vast majority of products have fewer than 5 sales. Consequently, although there are many

products with uncertain demands, there are limited demand data per product.

Vehicle Routing after an Accident: Ride-sharing platforms like Uber and logistics services

like UPS frequently update routing decisions based on near real-time tra�c data across millions
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Figure 1 Number of Sales per Product.

Data taken from a leading internet

retailer for all products that sold at

least one unit in the top five cat-

egories between July and September

2005. Except for the DVD category, the

median number of sales for each prod-

uct is at most five.

of road segments. In the wake of a large accident or weather disruption, however, historical tra�c

patterns often shift dramatically; there may only be a few hours of relevant data on the new,

post-disruption travel times. Again, although there are many road segments with uncertain travel

times, there are limited tra�c data per segment.

Some reflection suggests that the “small-amount-of-relevant-data” phenomenon in these exam-

ples is at least partially driven by the nature of modern decision-making under uncertainty. It is

not unusual for real applications to require making thousands of decisions simultaneously, in time-

changing environments with only low-precision estimates. This combination of features – highly

granular decision-making, time-changing environments, and low-precision estimates – combine to

drive the small-data, large-scale phenomenon. Their ubiquity suggests that a host of other appli-

cations, such as new-user product recommendations and disaster response operations, may also

exhibit these features. We term this decision-making setting – many uncertain parameters, each

with limited relevant data and, hence, an imprecise estimate – the small-data, large-scale regime.

By contrast, many traditional, data-driven optimization methods are theoretically justified by

studying their performance in the large-sample regime, where the number of uncertain parameters

is fixed, but we have access to increasing amounts of data, and hence increasingly precise estimates

of all parameters. For example, the Sample Average Approximation (SAA) approach is well known

to converge to the full-information optimal performance in the large-sample regime (Shapiro et al.

2009, Kleywegt et al. 2002). This type of large-sample performance guarantee shows that these

methods will perform well when the amount of data is large relative to the number of uncertainties.

However, it is unclear how these methods may perform in the small-data, large-scale regime.

At a high level, the main messages of this paper are as follows. First, the small-data, large-

scale regime is structurally di↵erent from the large-sample regime, and, consequently, traditional

methods may perform quite poorly in this regime. Second, it is possible to design novel methods that
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retain the strong large-sample performance guarantees of traditional methods but that additionally

have provably good and empirically strong performance in the small-data, large-scale regime.

Since the class of all small-data, large-scale optimization problems is too broad to treat in a

single paper, we focus on problems with known feasible regions but an uncertain, linear objective:

Pn : Z⇤(µ) ⌘ max
x2X

1

n
µ>x.

Here X ✓Rn is a known, non-empty, compact, potentially non-convex set and the objective coef-

ficients µ are unknown. Instead, we are given noisy estimates µ̂j for each j, each of which was

formed using only a small amount of relevant data. (A precise model for µ̂ is given in Section 2).

Let x⇤(µ) denote an optimal solution to Pn.

Admittedly, Problem Pn is not general enough to cover sophisticated models for the aforemen-

tioned inventory management and vehicle routing applications. That said, we do consider Pn to be

a fundamental building block for these applications. In particular, Pn does subsume transportation

and shortest-path problems as special cases (Bertsimas and Tsitsiklis 1997, Chapt. 7).

Our Contributions and Main Results: Using Problem Pn, we highlight unique features and

challenges of the small-data, large-scale regime. In particular, in contrast to the large-sample

regime, the classical Sample Average Approximation (SAA) method can perform arbitrarily badly

(Example 2.6), and no data-driven optimization procedure can guarantee more than constant frac-

tion of the full-information optimum value Z⇤(µ) (Theorem 2.7).

Since consistently attaining full-information performance is provably impossible in the small-

data, large-scale regime by Theorem 2.7, we instead restrict attention to classes of data-driven

policies and seek methods for identifying a member whose performance is comparable to a certain

oracle policy. This oracle has access to the true value of µ in Pn, but is restricted to use a policy

from the class, thus formalizing the notion of a “best-in-class” policy.

We propose a novel framework for this task and show that if the given policy class satisfies

a certain uniform convergence criteria given in Theorem 3.5, then our proposed policy performs

comparably to the oracle policy. Specifically, we prove that when the estimates µ̂j are Gaussian

and n!1 in Pn, the performance of our proposed policy converges to that of the oracle policy,

even if the amount of relevant data per uncertainty remains fixed. Moreover, when µ̂j have non-

Gaussian distributions, the di↵erence in performance between our proposed policy and the oracle

policy converges to a constant that measures the degree of non-normality and this constant does

not depend on the parameters of Pn.

We then specialize and strengthen our general result to linear optimization problems, i.e.,

where X is polyhedral (cf. Eq. (4.1)), focusing on two specific policy classes. The first, which
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we call “Bayes-Inspired” policies, is motivated by the empirical Bayes and compound estima-

tion literature in statistics; see Zhang (2003), Efron (2012), and the references therein. These

methods target applications such as microarray analysis, genomics, and compressed sensing, all

of which involve simultaneously solving thousands of separate inference problems with limited

data. Thus, these methods are particularly suited for the small-data, large-scale regime. Indeed,

simple “estimate-then-optimize” policies leveraging empirical Bayes estimators already outperform

SAA in the small-data, large-scale regime (cf. Sec. 4). However, we observe empirically that these

policies do not typically achieve near oracle performance, because they fail to exploit the par-

ticular optimization structure. By contrast, by specializing our general framework, we propose a

new policy that achieves near oracle performance for large n, and, thus, necessarily outperforms

these “estimate-then-optimize” variants. We strengthen our previous general-purpose results by

providing an explicit, non-asymptotic bound on the suboptimality gap that converges to the afore-

mentioned “non-normality” constant. This bound converges exponentially fast in the number of

uncertain parameters n, even for a fixed amount of data per parameter (Theorem 4.3).

The second policy class that we consider, which we call “Regularization-Inspired” policies, is

motivated by the growing literature on incorporating regularizers into the SAA problem to improve

performance and computational tractability; see Nesterov (2005), Negahban et al. (2012), and the

references therein. We focus on a weighted `2-regularizer. Based upon a well-known equivalence

between regularization and robustness, these policies are equivalent to policies obtained by solv-

ing a robust optimization problem with an ellipsoidal uncertainty set (Lemma E.1). We prove

that common cross-validation techniques – which are routinely used to specify the regularization

parameter in the large-sample regime – do not achieve near oracle performance (Theorem 5.1).

Similarly, we illustrate empirically that policies based on probabilistic feasibility guarantees – a

standard approach to sizing uncertainty sets in robust optimization – also do not achieve near

oracle performance. By contrast, by specializing our general framework, we propose a new policy

that achieves near oracle performance for large n, and, thus, may outperform these approaches. We

again improve upon our previous general-purpose result by proving a non-asymptotic bound on its

suboptimality gap that converges exponentially fast to zero (if the µ̂j are Gaussian) and converges

exponentially fast to the aforementioned “non-normality” constant (Theorem 5.2), otherwise.

In all three of our small-data, large-scale performance guarantees, the suboptimality of our policy

depends on the degree of “non-normality” of the estimators µ̂j. Methods that either explicitly or

implicitly assume Gaussian inputs are common in the high-dimensional statistics and compound

decision-making literature, at least partially because many simple estimators µ̂j are approximately

normally distributed (see Examples 2.2 and 2.5) . Consequently, many authors derive estimation

procedures that are provably optimal under Gaussian assumptions, and then argue such procedures
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have good practical performance, even when strict normality does not hold; see, e.g., Xie et al.

(2012), Mukherjee et al. (2015), Efron and Morris (1973, 1975), Donoho and Johnstone (1995),

Morris (1983). We adopt a similar perspective. Our bounds make theoretically precise the sense in

which our policy can be expected to perform well as normality is violated, and, in Section F.5, we

provide a preliminary empirical assessment of our methods under non-normality.

Importantly, we stress that our small-data, large-scale performance guarantees for our proposed

policies come at essentially “no statistical cost” in the large-sample regime. Specifically, we prove an

explicit, non-asymptotic suboptimality bound relative to the full-information optimum Z⇤
n(µ) for

our policy (Theorem 3.6). In the large-sample setting with i.i.d. observations, this bound converges

to zero at a rate comparable to SAA. In practice, the performance may even be much better

than SAA (see, e.g., Sec. F.4). In this sense, we argue our methods retain the strong large-sample

properties of SAA and also enjoy additional small-data, large-scale performance guarantees.

Finally, we present a simulation study calibrated to real data for managing a portfolio of online

advertisements. Our methods outperform traditional methods and “estimate-then-optimize” meth-

ods from high-dimensional statistics so long as the number of uncertainties is su�ciently large.

Relationship to Prior Work: Problem Pn is a special case of the stochastic optimization problem

min
x2X✓Rn

E [c(x,⇠)] , (1.1)

in which c(x,⇠) = 1

n
⇠>x and E[⇠] = µ. There is now a rich literature in data-driven optimization

on solving data-driven versions of Eq. (1.1) when the distribution of ⇠ is unknown, but one has

access to a dataset ⇠̂1, . . . , ⇠̂S drawn i.i.d as ⇠.1 Our model for µ̂ approximates this data-generation

mechanism (cf. Example 2.2 below), but also captures other settings (e.g., Example 2.5).

As mentioned, many methods for addressing data-driven versions of Equation (1.1) satisfy large-

sample performance guarantees similar to those of SAA. Such methods include Robust SAA (Bert-

simas et al. 2018b), regularized SAA variants (Negahban et al. 2012), stochastic gradient descent

and its variants (Nemirovski et al. 2009, Lan 2012, Nesterov 2009), and distributional robust opti-

mization (Delage and Ye 2010, Esfahani and Kuhn 2018, Gupta 2019). Many of these methods seek

to improve upon SAA by establishing guarantees beyond large-sample performance. For example,

many data-driven robust and distributionally robust optimization methods can be tuned to ensure

that for finite data, solutions will satisfy certain probabilistic feasibility guarantees; see Bertsimas

1 The majority of the literature treats an expected value of objective as in Eq. (1.1), often because the selected
solution will be held fixed for a long-time. Alternatively, one could study the out-of-sample performance as random
variable, i.e., c(x̂,⇠) where x̂ depends on the data and ⇠ is an i.i.d. copy of ⇠. For Problem Pn with n large, however,
this out-of-sample performance is an average of n terms and hence converges to its expectation whenever these terms
are su�ciently independent by strong law of large numbers, further motivating our focus on expected values.
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et al. (2018a,b) for recent references. Meanwhile, gradient-based methods with suitable step-sizes

can o↵er probabilistic optimality guarantees for finite samples. Finally, certain regularizers are

known to yield either consistent estimates of the unknown parameter or consistent predictions

if the underlying parameter satisfies certain a priori structure such as sparsity; see Bickel et al.

(2009), Candès and Recht (2009) and Wainwright (2009) for representative results and Negah-

ban et al. (2012) for additional references. These results do not directly extend to the small-data,

large-scale regime.

There is also a separate literature studying Equation (1.1) in the high-dimensional statistics and

machine learning communities. In this setting, ⇠ is often, but not always, an n + 1 dimensional

vector, consisting of an n-dimensional feature component and a 1-dimensional response component,

and Equation (1.1) represents a prediction problem. Most relevantly for our work, this literature

has placed special emphasis on studying the performance of methods under various asymptotic

scalings of n (the number of decision variables) and S (the number of samples), especially the large-

sample regime (S!1 and n fixed) and the high-dimensional regime (both S!1 and n!1).

The celebrated VC-dimension theory (Vapnik 1999) and algorithm stability theory (Bousquet and

Elissee↵ 2002) both provide general frameworks for analyzing approaches to Equation (1.1) in

these regimes. Many works exist that strengthen these performance guarantees for special cases of

Equation (1.1) (see e.g., Bühlmann and Geer (2011) and references therein for lasso-regression, and

Belloni and Chernozhukov (2011) for penalized quantile regression). Ban and Rudin (2014) connects

this literature with the operations literature, highlighting the benefits of leveraging feature vectors

in the particular case of the newsvendor problem in both the large-sample and high-dimensional

regimes. Subsequently, other authors have explored incorporating feature information in operations

research problems both in terms of developing high-quality estimates to plug-in to an optimization

formulation (Ferreira et al. 2015, Ban et al. 2018, Chen et al. 2015) and approaches that blend

estimation and optimization (Bertsimas and Kallus 2019, Elmachtoub and Grigas 2017).

One can view our work as complementing this statistical literature in the setting where S is

fixed and n!1 (again, see, Example 2.2), although all our results are stated in a non-asymptotic

framework. From a technical point of view, although we leverage some standard tools, e.g., pseudo-

dimension (an extension of VC dimension), the structure of Pn requires novel and specialized

analysis, especially for the polyhedral feasibility sets considered in Sections 4 and 5. One cannot

simply apply the VC-theory “out of the box” because these constraints introduce a non-trivial

dependence structure, and the requisite quantities are thus not simple averages of independent,

random functions. Moreover, we focus on proving “best-in-class” optimality results, while much of

the high-dimensional literature instead focuses on generalization results which bound the di↵erence

between in-sample and out-of-sample performance.
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Our approach to computing asymptotically best-in-class policies uses a novel adaptation of

Stein’s unbiased risk estimation (SURE) (Stein 1981), a common approach to model selection in

statistics; for representative examples, see Donoho and Johnstone (1995), Tibshirani and Taylor

(2012) and Candes et al. (2013). To the best of our knowledge, however, SURE has never been

leveraged for more general data-driven optimization problems. The key idea of our adaptation is to

replace the standard SURE estimator with an asymptotically unbiased approximation constructed

so that the approximation error vanishes as the number of uncertainties grows large. In this sense,

our approach is similar in spirit to that of Mukherjee et al. (2015), who also develop an asymptotic

approximation to SURE. However, Mukherjee et al. (2015) heavily leverage the specific structure of

the check-loss function, while our approach applies generally to optimization problems with linear

objectives as long as the class of policies satisfies the requisite uniform convergence criteria.

2. Formulation and Properties of the Small-Data, Large-Scale Regime

Throughout the remainder of the paper, vectors will be denoted in bold, while scalars appear in a

regular font. We use �(·) and �(·) to denote the density and cumulative distribution functions of

the standard normal random variable. We write µ̂j ⇠N (m,v) to indicate that the random variable

µ̂j is normally distributed with mean m and variance v.

Importanty, we adopt the following assumption on the estimates µ̂j.

Assumption 2.1 (Model for µ̂) For each j = 1, . . . , n, µ̂j is unbiased, i.e., E[µ̂j] = µj, and has

known precision ⌫j, i.e., E[(µ̂j �µj)2] = 1/⌫j.

Recall that precision is the reciprocal of the variance. Similar assumptions, i.e., mean-zero noise

with some measure of dispersion, are very common in the high-dimensional statistics literature

(Johnstone 2015) and often used in the robust optimization literature to assess the performance of

uncertainty sets; see, e.g., Bertsimas and Sim (2004), Ben-Tal and Nemirovski (2000), Chen et al.

(2007). The precisions ⌫j implicitly measure the amount of relevant data used in constructing

µ̂j. We use them to define the small-data, large-scale regime in general settings. As a first step,

consider the following motivating example.

Example 2.2 (Finite Observation Model) Suppose that, for each j = 1, . . . , n, we observe

Sj � 1 i.i.d. random variables ⇠1j , . . . , ⇠
Sj
j , each with mean µj and known precision ⌫0. Since the µj

are potentially unrelated and all draws are independent, the data ⇠1j , . . . , ⇠
Sj
j provide no information

for estimating µk whenever k 6= j. Thus, the sample mean µ̂j = 1

Sj

PSj
`=1

⇠`j is arguably the most

natural, unbiased estimate of µj, and has precision ⌫j ⌘ Sj⌫0.

In this example, the small-data large-scale regime corresponds to the setting where n is very large,

but Sj is fixed and small for each j. In particular, although the total amount of data
Pn

j=1
Sj !1
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as n!1, the precision ⌫j remains bounded for each j. Thus, the additional data do not provide

additional precision in estimating µj, i.e., µ̂j 6!p µj as n!1. In this sense there is a small amount

of relevant data for estimating each µj. By contrast, the large-sample regime in this example

corresponds to the setting where n is fixed and Sj is large for each j. In particular, for each j,

⌫j !1 as Sj !1, and µ̂j !p µj as Sj !1 by the law of large numbers.2

Note the distinct behavior of the ⌫j in the two regimes above. Our definition of the small-data,

large-scale regime is inspired by this di↵erence. Specifically, for any µ̂2Rn and ⌫ 2Rn
+
, let the tuple

(Pn, µ̂,⌫) denote an instance of Pn with unbiased estimators µ̂= (µ̂1, . . . , µ̂n)> with corresponding

precisions ⌫ = (⌫1, . . . ,⌫n)>.

Definition 2.3 (Small-Data, Large-Scale Regime) We say a sequence of instances
�
(Pn, µ̂n,⌫n) : µ̂n 2Rn, ⌫n 2Rn

+
, n� 2

 
is in the small-data, large-scale regime if there exists a

⌫max <1 such that ⌫n
j  ⌫max for all j = 1, . . . , n and n= 2, . . . ,1.3

In other words, in the small-data, large-scale regime, all estimates have bounded precision. For

comparison, we also define the large-sample regime. In this case, we consider a sequence of esti-

mators that are improving in quality as we collect more data. This sequence requires an extra

indexing variable S (mnemonically, S stands for the number of samples).

Definition 2.4 (Large-Sample Regime) For a fixed n, we say a sequence of instances
�
(Pn, µ̂S,⌫S) : µ̂S 2Rn, ⌫S 2Rn

+
, S� 1

 
is in the large-sample regime if lim

S!1
min

j=1,...,n
⌫S

j =1.

We stress that in the large-sample regime, the problem Pn is fixed, but the precision of each

estimate µ̂S increases with S. In contrast, in the small-data, large-scale regime, the dimension of

the problem Pn increases with n while the precision remains bounded. We prefer modeling in terms

of precisions as above instead of number of samples S because it allows us to extend the idea of a

“small amount of relevant data” to other settings in a unified way. Consider the following:

Example 2.5 (Linear Regression) Suppose for each j, we observe (⇠j,fj) 2 Rp+1 where

E[⇠j] = µj, and fj 2Rp is an auxiliary feature vector. For example, in our vehicle routing example,

fj may capture the speed limit, number of lanes, and distance of the road segment. In such a

setting, we might posit a linear regression model, i.e.,

⇠j =�Tfj + ✏j, with E[✏j] = 0 and E[✏2j ] = �2, j = 1, . . . , n,

2 As an aside, we mention that by the central limit theorem, we expect this estimator to be approximately Gaussian
if the ⇠kj are not too heavy-tailed and Sj is not too small.
3 We focus on n� 2 to avoid some trivial cases.
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and then estimate � by �̂ obtained by ordinary least squares. We can map this example to our

model by letting µ̂j = �̂>fj. Standard regression results show that µ̂j is unbiased with precision

1/⌫j = �2fj
>(F>F )�1

jj fj where F 2Rn⇥p is the matrix with rows given by fj
>.

Intuitively, some components of µj may have a smaller amount of “relevant” data, because if

some features are very rare, coordinates j depending on these features will have “less” relevant

data. The small-data, large-scale regime intuitively corresponds to settings where n is large and

most coordinates depend on a small number of rare features. Making this idea formal in terms

of n and p requires additionally specifying structure on the matrix F , e.g., its eigenspectrum. By

contrast, the precisions ⌫j, as above, provide a simple way to define the small-data, large-scale

regime and large-sample regime for such examples.4

Finally, we define a data-driven policy x(·) for Pn to be a function mapping (µ̂,⌫,X ) to a feasible

solution x(µ̂,⌫,X )2X . To simplify notation, we typically only emphasize the dependence on the

random variable µ̂, writing x(µ̂) instead of x(µ̂,⌫,X ). Implicitly, x(µ̂) depends on n.

We are interested in studying the performance of various data-driven policies under both regimes

defined above. In the remainder of this section, we highlight the significant di↵erences between

these regimes by proving that certain fundamental results for data-driven optimization in the

large-sample regime do not carry over to the small-data, large-scale regime for Pn.

2.1. The Performance of SAA in the Small-Data, Large-Scale Regime

The Sample Average Approximation (SAA) method is perhaps the most ubiquitous and well-

studied approach to data-driven optimization. In our context, the SAA policy proxies the unknown

µ by its unbiased estimate µ̂ and optimizes against this proxy:

xSAA(µ̂) 2 argmax
x2X

1

n
µ̂>x ,

(compare also to Example 2.2). Under mild assumptions in the large-sample regime,

xSAA(µ̂)!x⇤(µ) almost surely (Kleywegt et al. 2002). Other authors, e.g., Lim et al. (2011), have

shown the fragility of the SAA method in other contexts. We demonstrate that in the small-data,

large-scale regime, SAA can perform arbitrarily poorly.

Example 2.6 (SAA Performs Poorly in the Small-Data, Large-Scale Regime) Fix any

0< ↵< 0.075, and let X = {x2 [0,1]n : 1

n

Pn
j=1

xj  ↵}. Let µ̂j ⇠N (µj,1/⌫j), independently, with

µj =

(
0 if j is odd,

1 if j is even,
⌫j =

(
1 if j is odd,

⌫ if j is even.

4 As an aside, we mention that Frees (1991) proves that under mild assumptions, the µ̂j in this model are approxi-
mately normally distributed.



Gupta and Rusmevichientong: Small-Data, Large-Scale Linear Optimization

10

In words, we would like to identify ↵n high-reward items using only the noisy estimates µ̂j. The

full-information optimum value is ↵; that is, Z⇤
n(µ) = ↵.

By inspection, xSAA
j = I(µ̂j > qn)I(µ̂j � 0), where qn is the bn↵cth largest value among µ̂1, . . . , µ̂n,

except possibly for one fractional component. Note qn is the (1 � ↵)th quantile of the empirical

distribution function: qn = inf{x : 1

n

Pn
j=1

I(µ̂j  x) � 1 � ↵}. Because the empirical distribution

converges uniformly to the true distribution, the sample quantile qn also converges to the true

quantile (Van der Vaart 2000, Lemma 21.2), i.e., qn ! q⌫ as n!1, where q⌫ solves

1

2
Pr

⇢
1+

⇣p
⌫
 q⌫

�
+

1

2
Pr{⇣  q⌫}= 1�↵ () 1

2
�((1� q⌫)

p
⌫ ) +

1

2
�(�q⌫) = ↵

() �((1� q⌫)
p
⌫ ) +�(�q⌫) = 2↵ ,

and ⇣ is a standard normal random variable. Consider the function f⌫(q) =�((1� q)
p
⌫ ) +�(�q).

The function f⌫(·) is strictly decreasing with f⌫(�1) = 2 and f⌫(1) = 0. Note that

f⌫(1.01) =�(�0.01
p
⌫) +�(�1.01)��(�1.01)> 0.1562> 2↵, where the last inequality follows

because ↵< 0.075. Since ⌫ is arbitrary, this means that q⌫ > 1.01 for all ⌫ > 0.

Thus, the SAA performance satisfies

1

n

nX

j=1

µjx
SAA
j =

1

2

2

n

n/2X

k=1

I(µ̂2k � qn)I(µ̂j � 0) !a.s.
1

2
�((1� q⌫)

p
⌫ ), as n!1.

Note that 0 1

2
�((1� q⌫)

p
⌫) 1

2
�(�0.01

p
⌫) because q⌫ > 1.01. Therefore, as ⌫ !1, the above

limit converges to zero. Thus, in the small-data, large-scale limit with large enough ⌫, the SAA

solution will have performance close to 0. For comparison, randomly choosing ↵n of the indices has

expected performance ↵/2 > 0. Moreover, even for finite n and reasonably small ⌫, the performance

can be quite bad. For example, when ⌫ = 2, n= 100, and ↵= .05, SAA achieves about 80% of the

full-information optimum, while our proposed method from Section 4 achieves about 98%.

It may not be surprising that SAA performs badly in the previous example because it does not

leverage any information about the ⌫j. Since the odd items have a lower precision (higher variance)

than the even items, the µ̂j with odd j frequently appear better than the µ̂j with even j, despite

having a lower mean. Other authors have observed similar poor performance of SAA in finite

sample, inspiring techniques that utilize the ⌫j, such as robust optimization and regularization,

but these approaches typically do not directly leverage the scale of the optimization. In Section 5,

we discuss refinements of these approaches for the small-data, large-scale regime.

2.2. Full-Information Performance is Unachievable in Small-Data, Large-Scale Regime

The main result of this section is as follows:
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Theorem 2.7 (Unattainability of Full-Information Optimality) Let x(µ̂) denote any

data-driven policy. Then, for each n� 2, there exist instances of Pn with X = [0,1]n, µ2 {�1,+1}n,
µ̂j ⇠N (µj,1) for all j, and µ̂1, . . . , µ̂n are independent such that

E
h
1

n
µ>x(µ̂)

i

Z⇤(µ)
< 0.842.

This upper bound is not tight. Nonetheless, a consequence of the theorem is that given any data-

driven policy x(·), one can construct a sequence of instances {(Pn, µ̂n,⌫n) : n� 2}, in the small-

data, large-scale regime such that the expected performance of x(·) is at most a constant fraction

of the full-information optimal performance for each instance.

See Appendix B for a proof. Loosely, the proof proceeds by generating random instances of Pn

by sampling µ uniformly from {�1,+1}n. The worst-case expected performance of x(µ̂) across

these instances is bounded by its average expected performance across these instances. To complete

the theorem, we compute an upper bound on this average expected performance. We note that

the constant 0.842 arises from the way in which we generate the random instance in the proof. In

particular, a di↵erent sampling procedure for µ2 {�1,+1}n might yield tighter upper bounds.

3. Selecting Policies in the Small-Data, Large-Scale Regime

In light of Theorem 2.7, constructing policies that consistently achieve full-information optimal

performance in the small-data, large-scale regime is impossible. Consequently, we restrict attention

to a class of policies and focus on selecting a member that performs nearly as well as an oracle policy

that knows the true value of µ in advance, but is constrained to use a policy within the class. If

the class of policies is su�ciently rich, we expect this oracle policy, and, hence, our selected policy,

to have good practical performance in applications. Specifically, let x(✓, µ̂) be a data-driven policy

indexed by a parameter ✓ 2⇥, and let X⇥(µ̂) = {x(✓, µ̂)2X : ✓ 2⇥} be a set of such policies.

Definition 3.1 (Oracle Policy) Let

✓OR = ✓OR(Pn, µ̂,⌫)2 argmax
✓2⇥

1

n
µ>x(✓, µ̂)

We define the policy µ̂ 7!x (✓OR, µ̂) to be an oracle policy for Problem Pn and policy class X⇥(µ̂).

Note that ✓OR is random because it depends on µ̂. The performance of every policy in X⇥(µ̂) is

bounded above by the performance of x(✓OR, µ̂) almost surely in µ̂; in this sense, the oracle policy

serves as a benchmark. However, x(✓OR, µ̂) is not a “valid” data-driven policy because identifying

✓OR requires knowing µ; in this sense, it is an “oracle.” Indeed, it is not obvious that there exist

data-driven policies which attain this benchmark without knowing µ.

We introduce two example policy classes that we study throughout the remainder:
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Example 3.2 (Bayes-Inspired Policies) In Section 4, we use a Bayesian argument to motivate

the class of policies

XBayes(µ̂)⌘
�
x(⌧, µ̂)2X : ⌧ � 0

 
, where x(⌧, µ̂)2 argmax

x2X

1

n

nX

j=1

⌫j
⌫j + ⌧

µ̂jxj. (3.1)

To avoid ambiguity, we index these policies by ⌧ instead of ✓. The oracle policy x(⌧OR, µ̂) is defined

by ⌧OR 2 argmax⌧�0
1

n

Pn
j=1

µ>x(⌧, µ̂). We discuss properties of this oracle policy in Section 4.

Example 3.3 (Regularization Policies) In Section 5 we motivate and study the class of policies

XReg(µ̂)⌘
�
xR(�, µ̂) : �2 [�min,�max]

 
, where xR(�, µ̂)2 argmax

x2X

1

n
µ̂>x�

�
p
⌫min

2n

nX

j=1

x2

j

⌫j
. (3.2)

Here, �min,�max are user-specified parameters. Again, to avoid ambiguity, we index this policy class

by � instead of ✓. Its oracle policy xR(�OR, µ̂) is defined by �OR 2 argmax�2[�min ,�max]
1

n
µ>xR(�, µ̂).

Viewing Pn through the lens of a policy class also clarifies why SAA sometimes performs poorly

in the small-data, large-scale regime.

Example 3.4 (SAA Revisited) Suppose xSAA 2 X⇥(µ̂) almost surely, i.e., there exists

✓SAA 2⇥ such that x(✓SAA, µ̂) =xSAA(µ̂). Observe that ✓SAA 2 argmax✓2⇥
1

n
µ̂>x(✓, µ̂) because

µ̂>x(✓SAA, µ̂) = µ̂>xSAA(µ̂) = max
x2X

µ̂>x � sup
✓2⇥

µ̂>x(✓, µ̂),

where the last inequality follows because x(✓, µ̂)2X for all ✓ 2⇥.

Thus, SAA can be seen as finding the policy member that maximizes 1

n
µ̂>x(✓, µ̂). By contrast,

the oracle policy seeks to maximize the true reward 1

n
µ>x(✓, µ̂). Because of the dependence of

x(✓, µ̂) on µ̂, the SAA objective is biased. In the large-sample regime, this bias often vanishes

asymptotically. However, in the small-data, large-scale regime, the bias is non-negligible, partially

explaining SAA’s poor performance. We emphasize that if the policy class is large enough that

xSAA 2X⇥(µ̂) almost surely, its oracle policy necessarily performs at least as well as the SAA.

3.1. Our Bias-Corrected Policy

The main result of this section is a general framework for selecting a member of X ✓(µ̂) whose

performance is “comparable” to x(✓OR, µ̂), in the sense that we expect under mild conditions the

suboptimality gap to be small in the small-data, large-scale regime. The key idea is to construct an

approximation to µ>x(✓, µ̂) that does not require knowing µ, and, then, to select ✓̂ to optimize

this approximation.

One such approximation might be µ̂>x(✓, µ̂) because µ̂ is an unbiased estimator of µ. However,

as noted in Example 3.4, this naive approximation is biased and should be corrected. Our bias-

correction is inspired by Stein’s Lemma (Ross et al. 2011), which states that for any (di↵erentiable)
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function f(·) and ⇣ ⇠ N (µ,1/⌫), we have E[(⇣ � µ)f(⇣)] = 1/⌫ · E
h

@
@⇣
f(⇣)

i
. Considering the jth

element of the bias E [(µ̂�µ)>x(✓, µ̂))], this roughly suggests

E[(µ̂j�µj)xj(✓, µ̂)] ⇡ 1

⌫j
E


@

@µ̂j
xj(✓, µ̂)

�
⇡ 1

2h
p
⌫j
E
⇥
xj(✓, µ̂+hej/

p
⌫j)�xj(✓, µ̂�hej/

p
⌫j)
⇤
,

where ej is the standard unit vector in the jth direction, and 0<h< 1 is a user-defined bandwidth

parameter. For clarity, the last line approximates the derivative by a first-order finite di↵erence

with step h/
p
⌫j, and the derivative in the second line may not be well-defined since the solution

x(✓, µ̂) need not be di↵erentiable (or even continuous). Lemma C.2 in the appendix resolves these

issues by generalizing Stein’s Lemma to approximately Gaussian random variables and approximate

derivatives.

In any case, this heuristic argument suggests the bias-correction

B(✓, h, µ̂) ⌘ 1

n

nX

j=1

1

2h
p
⌫j


xj

⇣
✓, µ̂+

h
p
⌫j
ej

⌘
�xj

⇣
✓, µ̂� h

p
⌫j
ej

⌘�
.

Approximating 1

n
µ>x(✓, µ̂) by 1

n
µ̂>x(✓, µ̂)�B(✓, h, µ̂), we let

✓̂ 2 argmax
✓2⇥

1

n
µ̂>x(✓, µ̂)�B(✓, h, µ̂). (3.3)

3.2. Performance in the Small-Data, Large-Scale Regime

The suboptimality of x(✓̂, µ̂) with respect to x(✓OR, µ̂) will depend on the quality of the above

approximations, which in turn depends on the policy class X⇥(µ̂) and the estimator µ̂. We next

prove a general purpose bound that provides intuition into the types of policy classes and estimators

for which this suboptimality gap is likely small in the small-data, large-scale regime. The key idea is

that our bias-corrected criteria for ✓̂ is very close to the true criteria that defines ✓OR in this regime.

Theorem 3.5 (A General Bound on the Sub-Optimality Gap) Suppose Assumption 2.1

holds and there exists �2 such that for each j, the random variable (µ̂j �µj)
p
⌫j has a density �j(·)

and is sub-Gaussian with variance proxy at most �2.5 Then,

1

n
µ>x(✓OR, µ̂)� 1

n
µ>x(✓̂, µ̂)

| {z }
Sub-Optimality Gap

 4(h�1 + 24�2)
p
⌫min

⇥TV⇥ log
⇣ e

TV

⌘

| {z }
Degree of Non-Normality

+
4h2

p
⌫min| {z }

Derivative Approximation

+ sup
✓2⇥

1

n

���(µ̂�µ)>x(✓, µ̂)�E[(µ̂�µ)>x(✓, µ̂)]
���+ sup

✓2⇥

���B(✓, h, µ̂)�E[B(✓, h, µ̂)]
���

| {z }
Maximal Stochastic Deviations

,

5 Recall, a mean-zero random variable ⇠ is sub-Gaussian with variance proxy �2 if E[exp(t⇠)]  exp(t2�2/2) for all
t2R (Wainwright 2015). Estimators are frequently modeled as sub-Gaussian.
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where TV⌘ 1

2n

Pn
j=1

k�j ��k
1
is a number between zero and one measuring the average total vari-

ation distance between �j(·) and the standard normal density �(·).

Intuitively, Theorem 3.5 suggests x(✓̂, µ̂) performs comparably to x(✓OR, µ̂) in the small-data,

large-scale regime whenever 1) the µ̂j are nearly gaussian, 2) the µ̂j are su�ciently independent

and 3) X⇥(µ̂) is not “too complex” a function class, as measured, e.g., by its VC-dimension.

To see this, note first that Theorem 3.5 decomposes the suboptimality gap into three terms. The

first term is a deterministic constant measuring the degree of non-normality in the µ̂j and, notably,

does not depend on the instance Pn. It is small whenever TV is small. Moreover, when each µ̂j is

Gaussian, then (µ̂j � µj)
p
⌫j is a standard normal random variable with �j(·) = �(·), so TV = 0

and the first term on the right-hand-side of the theorem vanishes.6 The total variation TV thus

measure the average degree of non-normality of the µ̂j. In particular, TV will be small when each

µ̂j is approximately Gaussian even if µ̂ is not jointly multivariate Gaussian.

The second term is also a deterministic constant stemming from our Approximate Stein Lemma

(cf. Lemma C.2 in the appendix) and can be made small through a suitable choice of bandwidth

h. We discuss this choice in more detail below.

The third term, consisting of the two suprema, is more subtle and is a random variable. The

argument of each suprema can be written as the average of n, mean-zero random variables. Intuition

suggests that for a fixed ✓, these terms will concentrate at zero (their mean) provided that the µ̂j

are su�ciently independent as n!1.7 If, additionally, the policy class X⇥(µ̂) is not too complex,

i.e., it has low VC-dimension or metric entropy, this concentration occurs uniformly for all ✓ 2⇥

(see, e.g., Pollard (1990) or Van der Vaart (2000)). Importantly, this convergence holds as n!1,

even if the ⌫j remain bounded, i.e., it holds in the small-data, large-scale regime. Commonly used

policy classes in optimization, including those from Sections 4 and 5, often have low metric entropy,

suggesting this convergence holds for a wide variety of policy classes.

Stepping back, if the µ̂j are approximately gaussian, and su�ciently independent, then we expect,

intuitively, that all three terms in the suboptimality bound will be small in the small-data, large-

scale regime for many policy classes. Making this intuition formal requires a careful analysis of

the dependency in xj(✓, µ̂) across j and computing the “complexity” of X⇥(µ̂). We carry out this

analysis in Sections 4 and 5 for our Bayes-Inspired and Regularization policy classes in the special

case of linear optimization problems with independent µ̂j. This analysis confirms these policies

have near-oracle performance in the small-data, large-scale regime in this setting.

6 We adopt the usual convention that 0 · log 0 = 0 by continuity.
7 For example, standard central-limit-theorem results still hold when the summands are mildly dependent. Intuitively,
similar phenomena should hold here.



Gupta and Rusmevichientong: Small-Data, Large-Scale Linear Optimization

15

Theorem 3.5 also highlights the tradeo↵ in specifying the bandwidth h. As h ! 0,

sup✓2⇥

���B(✓, h, µ̂) � E[B(✓, h, µ̂)]
��� grows because B(✓, h, µ̂) scales with 1

h
, and if TV 6= 0, the

“Degree of Non-Normality term” also grows. Thus, a good bandwidth must balance between these

two terms and the error from derivative approximation in Theorem 3.5. One heuristic for selecting

a bandwidth when TV = 0 might be to select h large enough that ✓ 7!B(✓, h, µ̂) is smooth in ✓,

since ideally the above suprema is small and ✓ 7!E[B(✓, h, µ̂)] is a smooth function of ✓. Sections 4

and 5 provide more precise guidance on selecting a good bandwidth for those classes.

A potential drawback of our method (cf. Eq. (3.3)) is that computing B(✓, h, µ̂) for each ✓

seemingly involves solving 2n instances of Pn to determine x
⇣
✓, µ̂+ hp⌫j

ej

⌘
and x

⇣
✓, µ̂� hp⌫j

ej

⌘

for each j. (See, e.g., our example policy classes above.) For large n, this may be prohibitive. In

Sections 4 and 5, we utilize the structure of the policy class to circumvent this issue, developing a

more computationally e�cient bias correction.

In summary, although Theorem 3.5 provides a framework for analyzing (cf. Eq. (3.3)), at this

level of generality, its usefulness is primarily foundational. It highlights the key conditions on the

estimator and policy class required for good performance, and, also provides the “roadmap” for

our more specialized analysis of specific policy classes Sections 4 and 5. We expect future research

might also leverage Theorem 3.5 to study alternate optimization problems and policy classes by

showing the relevant maximal stochastic deviations are small.

3.3. Performance in the Large-Sample Regime

Before specializing and strengthening Theorem 3.5, we prove that, despite being motivated by

the small-data, large-scale regime, ✓̂ has good theoretical performance in the large-sample regime.

The key insight is that the bias-correction is small in the large-sample regime. Thus, x(✓̂, µ̂)

approximately optimizes the SAA objective provided X⇥

n (µ̂) contains xSAA(µ̂) as a member.

Lemma 3.1 (Bound to SAA Performance). Suppose xSAA(µ̂)2X⇥(µ̂) almost surely. Then,

0 1

n
µ̂>
⇣
xSAA(µ̂)�x(✓̂, µ̂)

⌘
 1

h⌫min

, where ⌫min = min
j=1,...,n

⌫j.

Under fairly general assumptions, SAA solutions perform comparably to the full-information

optimum in the large-sample regime, i.e., as ⌫min grows large. We use Lemma 3.1 to prove our policy

also performs well in these settings:

Theorem 3.6 (Bound to Full-Information Optimum) Suppose xSAA(µ̂) 2 X⇥(µ̂) almost

surely. Then, under Assumption 2.1,

E
���Z⇤(µ) � 1

n
µ>x(✓̂, µ̂)

���
�
 2+h�1

p
⌫min

.
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Theorem 3.6 is a non-asymptotic result but is perhaps best understood by considering a sequence

of instances of
�
(Pn, µ̂S,⌫S) : S� 1

 
(indexed by S) in the large-sample regime. Since the band-

width h scales with n, it is fixed in the large-sample regime, but ⌫S

min
!1 as S!1. Consequently,

Theorem 3.6 proves x(✓̂, µ̂) converges to full-information optimal performance in the large-sample

regime, even if µ̂ are potentially highly non-normal. We summarize these ideas in the follow-

ing corollary, which proves that our policy also performs well in the large-sample regime.

Corollary 3.7 (Best of Both Regimes) Consider a sequence {(Pn, µ̂S,⌫S) : S� 1} of instances

in the large-sample regime, each satisfying Assumption 2.1. For each Pn, let ✓̂S be a solution

to Eq. (3.3). Assume for every S that xSAA(µ̂S) 2 X⇥(µ̂S), almost surely. Then, as S ! 1, the

performance 1

n
µ>x(✓̂S, µ̂S) converges in L1 to the full-information optimum Z⇤.

Corollary 3.7 provides a strong argument in favor of the policy x(✓̂, µ̂). Indeed, a potential criti-

cism of our approach is that it limits attention to the class of policies X⇥(µ̂), which may not contain

the full-information optimum, while SAA (and similar approaches) is essentially nonparametric,

considering all possible policies. Theorem 3.6 and Corollary 3.7 prove that despite restricting to

a policy class, our proposed policy achieves performance comparable to the full-information opti-

mum in the large-sample regime, provided the policy class is rich enough to contain xSAA(µ̂). We

consider this a fairly minor condition, and is satisfied, for example by XBayes(µ̂) and XReg(µ̂)

when �min = 0. Moreover, if, as in Example 2.2, ⌫j =O(S) for all j, then the rate of convergence to

full-information optimum is is O
�
1/

p
S
�
, which is comparable to the convergence rate of the SAA

solution (Ruszczynski and Shapiro 2003, Kleywegt et al. 2002).

4. Bayes-Inspired Policies over Polyhedral Feasible Regions

In this section, we specialize and strengthen Theorem 3.5 for the policy class in Example 3.2 with

a polyhedral feasible region. We first motivate this policy class.

Consider a Bayesian approach to the decision problem (Pn, µ̂,⌫). In this approach, we first

assume the unknown µ is drawn as a realization from a known prior distribution ⇡, e.g., we might

assume µj ⇠N (0,1/⌧0) for some ⌧0 � 0, independently across j . We then assume the likelihood

µ̂ |µ follows a known likelihood distribution, e.g., that µ̂j | µj ⇠N (µj,1/⌫j), independently across

j. In principle, we can then compute the Bayes-optimal policy with respect to ⇡ using the data µ̂.

For Gaussian priors and likelihoods, conjugacy gives the posterior mean E⇡[µj | µ̂] =
⌫j

⌫j+⌧0
µ̂j, and

it follows that x(⌧0, µ̂) defined in Example 3.2 is a Bayes-optimal policy.

Bayes policies enjoy strong performance guarantees. For example, Bayes policies are always

admissible, i.e., no other data-driven policy pareto-dominates a Bayes optimal policy (Berger 2013).
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Under mild assumptions, Bayes optimal policies also form an essentially complete class; that is, any

data-driven policy is weakly dominated by a Bayes optimal policy for some prior (Berger 2013).

Nonetheless, Bayes policies require strong assumptions, e.g., that one knows the precise form of

the prior. We can partially mitigate these drawback by not fixing a prior, but instead considering a

class of policies, each of which is Bayes optimal for some prior, and then seeking its oracle member.

Indeed, this perspective motivates our policy class XBayes(µ̂), i..e, it is the set of Bayes-optimal

policies when the µj are drawn from some mean-zero Gaussian prior, and the µ̂j | µj are Gaussian,

justifying our terminology “Bayes-Inspired.”8

We argue that even if one does not adopt the Bayesian perspective, i.e., one does not believe

µ is drawn from some mean-zero, Gaussian prior, XBayes(µ̂) is still a rich and interesting class

of policies for two reasons. First, x(⌧, µ̂) has an intuitive structure. Each estimate µ̂j is shrunk

towards zero. Components with lower precision are shrunk more aggressively because if ⌫j < ⌫k,

then
⌫j

⌫j+⌧
 ⌫k

⌫k+⌧
. The parameter ⌧ controls the degree of shrinkage.

Second, a host of popular estimators for µ have the general form
⇣

⌫j
⌫j+⌧

µ̂j : j = 1, . . . , n
⌘

for

some data-driven value of ⌧ when µ̂ is Gaussian. These estimators often have provably good

theoretical properties, and exhibit good empirical performance in applications, even when the

underlying Gaussian assumptions might be violated; see the references below. The class XBayes(µ̂)

thus contains the corresponding “estimate-then-optimize” policy for each of these estimators.9

Consequently, x(⌧OR, µ̂) must perform at least as well as these estimate-then-optimize policies. We

consider this to be a strong argument for good performance of the oracle policy in a broad range

of applications. Examples of such estimators and their properties when µ̂ is Gaussian include:

• Maximum Likelihood Estimation: The value ⌧ = 0 yields the estimator µ̂, which is the max-

imum likelihood estimator for µ and also the minimum variance unbiased estimator. Moreover,

by construction, x(0, µ̂) equals the sample average approximation xSAA(µ̂) because x(0, µ̂) =

argmaxx2X
1

n
µ̂>x. Since the SAA policy is a member of XBayes(µ̂), it follows that its perfor-

mance must be no better than that of the oracle policy. In fact, as shown in Example 4.1, its

performance can be much worse.

• James-Stein Shrinkage: The value ⌧JS = 1�
⇣
1� n�2

kµ̂k22

⌘�1

yields the James-Stein estimator.

When ⌫j = 1 for all j = 1, . . . , n and n � 3, Stein (1981) proved that this biased estimate has

smaller mean-squared error than µ̂.

8 Of course, since we treat µ as an unknown constant and not a realization from a prior in our analysis, there is
technically no notion of a Bayes-optimal policy, hence necessitating the qualifier “Inspired.”
9 For clarity, “estimate-then-optimize” policies are policies computed by first estimating µ using some statistical
criteria (e.g., maximum likelihood estimation), and then plugging in that estimator for µ in Pn and solving.
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• Empirical Bayes: The values ⌧MM and ⌧MLE, defined by

⌧MM ⌘
 

1

n

nX

j=1

�
µ̂2

j � 1/⌫j
�
!�1

and ⌧MLE is a solution to
nX

j=1

µ̂2

j � 1/⌧MLE � 1/⌫j
(1/⌧MLE + 1/⌫j)2

= 0,

correspond, respectively, to the empirical Bayes moment-matching and empirical Bayes maxi-

mum likelihood estimators (Xie et al. 2012)10. Generally speaking, parametric empirical Bayes

methods assume that the data were generated from a Bayesian hierarchical model and then use

the marginal distribution of the data to fit parameters of the prior. For our specific case, this

amounts to assuming that µj is a realization of a mean-zero Gaussian prior, and then using

either the method of moments or maximum-likelihood estimation on µ̂ to estimate ⌧ ; see Xie

et al. (2012) for details. If the assumed hierarchical model is actually valid, the two methods

both converge in performance as n!1 to the Bayes optimal procedure.

• SURE Estimation: Finally, Xie et al. (2012) propose the choice ⌧SURE, which solves11

nX

j=1

 
⌫�2

j µ̂2

j

(1/⌫j + 1/⌧SURE)3
�

⌫�2

j

(1/⌫j + 1/⌧SURE)2

!
= 0.

Xie et al. (2012) prove that as n!1, this estimator achieves the minimum mean-squared error

among all estimators of the form
⇣

⌫j
⌫j+⌧

µ̂j : j = 1, . . . , n
⌘

almost surely.

By construction, x(⌧OR, µ̂) is no worse than the above estimate-then-optimize policies,

whether or not µ is a realization from a Gaussian prior.

A potential criticism of estimate-then-optimize policies is that the estimation phase involves

a purely statistical criterion that is agnostic to the down-stream optimization (Elmachtoub and

Grigas 2017, Liyanage and Shanthikumar 2005). By contrast, x(⌧OR, µ̂) does leverage optimization

structure. Consequently, as shown in the next example, it may perform strictly better than these

estimate-then-optimize policies.

Example 4.1 (Benefits over Estimate-Then-Optimize) Consider the ranking problem from

Example 2.6 with ↵= 0.05, µ̂j ⇠N (µj,1/⌫j) independently across j and

(µj,⌫j) =

8
><

>:

(0.0, 0.1) if 1 j  bn/3c,
(0.3, 4.0) if bn/3c< j  b2n/3c,
(1.0, 1.0) if b2n/3c< j  n.

We have three types of items in roughly equal proportions: “Low” items have low value (µj = 0)

and low precisions (⌫j = 0.1), so their noisy estimates frequently make them appear attractive.

“Medium” items have medium value and very high precision (µj = 0.3 and ⌫j = 4). “High” items

10 If the equation has no solution, take ⌧MLE = 0.
11 If the equation has no solution, take ⌧SURE = 0.
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have good value and medium precision, with µj = 1 and ⌫j = 1. Note that these values of µj do not

resemble a draw from a Gaussian prior, and that a good solution will contain many High items.

The first panel of Figure 2 shows the performance of x(⌧, µ̂) for varying ⌧ , a single realization

of µ̂, and n = 512 and n = 217. The second panel shows the performance of a subset of the above

estimate-then-optimize policies, x(⌧OR, µ̂), and our proposed policy x(⌧̂ , µ̂) (defined in the next

section). See Appendix F for a larger figure including all the above estimate-then-optimize policies.

The example highlights the tradeo↵s induced by ⌧ . Note that for any ⌧ , x(⌧, µ̂) corresponds to

ranking the rewards
⌫j

⌫j+⌧
µ̂j and selecting the top 5% of items. When ⌧ = 0, we have no shrinkage,

the Low items appear very attractive, and x(⌧, µ̂) chooses many Low items. This is illustrated in

Figure 3(a), which shows the distribution of the reward and that “Low” items (in red) comprise

the tail of the distribution. If ⌧ is too large, such as ⌧ = 4.94, there is “too much” shrinkage, and

the Medium items (in green) comprise the tail of the distribution, as shown in Figure 3(c). For

intermediate values of ⌧ , say ⌧ = 0.577, High items appear the most attractive, c.f., Figure 3(b).

This tradeo↵ in turn drives the performance of the various methods. Indeed, in Figure 3(d),

we see that for this example, ⌧OR is fairly small but strictly positive. Hence, SAA (⌧ = 0) shrinks

too little, and the estimate-then-optimize policies generally shrink too much. More specifically,

the estimate-then-optimize policies seek ⌧ values that yield low mean-squared error, a statistical

objective. Because of the form of our optimization problem, however, lower mean-squared error

does not translate into better performance.

By contrast, we observe that our proposed policy x(⌧̂ , µ̂) (defined in the next section) converges

in performance to x(⌧OR, µ̂) as n!1. As we will see in the next section, this policy does explicitly

leverage the optimization structure.

4.1. A Near-Oracle Policy for the Bayes-Inspired Class

Instead of applying Theorem 3.5 verbatim to bound the suboptimality, we utilize the special struc-

ture of XBayes(µ̂) to construct a more computationally e�cient bias correction and focus on a

special case of Pn to develop further insight. Specifically, we will assume that X is polyhedral, i.e.,

X =

(
x2 [0,1]n :

1

n

nX

j=1

Ajxj  b

)
, (4.1)

where b2Rm is an arbitrary vector, so that Pn represents an arbitrary linear optimization problem

over a bounded feasible region. Linear optimization is a fundamental class of problems subsuming

many applications. Any linear optimization with a bounded feasible region can be written in the

form of Problem Pn, after potentially scaling and shifting to place the feasible region in the unit

box [0,1]n. In particular, for a fixed n, scaling the constraints by 1/n is without loss of generality,

and our results below are stated for fixed n.
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● ● ● ● ● ● ● ● ● ● ● ● ●

●

Figure 2 Benefits over Estimate-Then-Optimize in Example 4.1. The left panel shows the performance

of x(⌧, µ̂) for varying ⌧ , n = 217 = 131,072 (dotted blue line) and n = 29 = 512 (solid red line). The

function is discontinuous but becomes smoother as n!1. The right panel shows the performance of

various data-driven policies from XBayes(µ̂) for varying n: “SAA” is the sample average approximation,

“EB OR” is the oracle benchmark, “EB MLE” is the empirical Bayes maximum likelihood estimate, and

“EB SURE” is the Stein’s Unbiased Risk Estimate. “EB OPT” (defined in Section 4) is our proposed

procedure. Only EB OPT achieves best-in-class performance.

We stress that X , and, hence, A and b, are known a priori. However, with no further assumptions,

X may be empty, rendering Pn trivial. To avoid technicalities, we will assume Pn is strictly feasible:

Definition 4.1 (s0-Strict Feasibility). We say that X is s0-strictly feasible if there exists

s0 > 0 and x0 2X such that 1

n

Pn
j=1

Ajx0

j + s0e b.

Assuming strict feasibility is slightly stronger than assuming X is non-empty, but it can often be

achieved via a small perturbation of A and b.12

To define our specialized policy, we first reinterpret x(⌧, µ̂) as the solution to

x(⌧, µ̂)2 argmax
x2X

1

n

nX

j=1

rj(⌧, µ̂j)xj, where rj(⌧, µ̂j) =
⌫min + ⌧

⌫min

⇥ ⌫j
⌫j + ⌧

µ̂j. (4.2)

The objective coe�cients in Equations (3.1) and (4.2) di↵er by a positive scaling, so the two

definitions of x(⌧, µ̂) are equivalent. However, an advantage of Equation (4.2) is that the variance

of rj(⌧, µ̂j) is bounded below by 1/⌫j, which simplifies the analysis.

Under Equation (4.1), the dual to Equation (4.2) is

min
�2Rm

+

Dµ̂(�, ⌧), where Dµ̂(�, ⌧)⌘ b>�+
1

n

nX

j=1

(rj(⌧, µ̂j)�A>
j �)+.

12 For example, if Ax b encoded an inequality constraint, e.g., a>
0 x b0 and �a>

0 x�b0, we might relax these
constraints to a>

0 x b0 + � and �a>
0 x�b0 + � to achieve strict feasibility. The extent to which such a relaxation

is an acceptable approximation is application dependent.
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(a) ⌧ = 0 (b) ⌧ = 0.577

(c) ⌧ = 4.94 (d) Density of estimator

Figure 3 E↵ects of Shrinkage on Solution in Example 4.1. Figures 3(a), 3(b), and 3(c) show smoothed

histograms of ⌫j µ̂j/(⌫j + ⌧) for various ⌧ along a single sample path, n= 217 = 131,072. When ↵= .05,

all items to the right of the dotted black line are chosen. Although a small amount of shrinkage increases

the number of High items chosen, excessive shrinkage causes many Medium items to be eventually

chosen. Figure 3(d) shows the density of the fitted ⌧ for various methods over 200 simulations. Estimate-

then-optimize methods generally over-shrink for this example.

Let �(⌧, µ̂) be an optimal solution. Now we can define our alternate bias correction: For any

bandwidth 0<h< 1, define hj(⌧) = ⌫min+⌧
⌫min

⇥ hp⌫j
⌫j+⌧

= rj(⌧, h/
p
⌫j), and let

BBayes(⌧, h, µ̂)⌘ 1

n

nX

j=1

1

2h
p
⌫j

I(
��rj(⌧, µ̂j)�A>

j �(⌧, µ̂)
�� hj(⌧)),

and define our candidate policy x(⌧̂ , µ̂) by

⌧̂ 2 argmax
⌧�0

1

n
µ̂>x(⌧, µ̂)�BBayes(⌧, h, µ̂). (4.3)
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Note that computing ⌧̂ does not require knowledge of µ. We motivate this particular form of the

bias-correction in the next section. Note that we can compute ⌧̂ above using a grid search.

We next bound the suboptimality x(⌧̂ , µ̂) against the oracle for XBayes(µ̂). To develop explicit

tail bounds on the stochastic terms for all finite n, we require the following assumptions.

Assumption 4.2 (Independent Near-Gaussians) In addition to Assumption 2.1, assume that

i) (Independence) The random variables µ̂1, . . . , µ̂n are independent.

ii) (Bounded precisions) There exists ⌫min,⌫max such that 0 < ⌫min  ⌫j  ⌫max < 1 for all

j = 1, . . . , n.

iii) (Sub-Gaussian) There exists a positive constant � such that for all j = 1, . . . , n, (µ̂j �µj)
p
⌫j

is sub-Gaussian with variance proxy at most �2.

iv) (Bounded and Positive Density) For all j = 1, . . . , n, (µ̂j �µj)
p
⌫j admits a density �j(·) that

is bounded and strictly positive over any finite interval; that is, max
j=1,...,n

sup
t2R

�j(t) < 1 and

min
j=1,...,n

inf
t:|t|T

�j(t)> 0 for all T > 0.

The above assumptions impose rather mild requirements on the distribution of µ̂j. When µ̂j are

Gaussian, then �j(·) is the density of the standard Gaussian, which is bounded above by 1/
p

2⇡ and

bounded below by 1p
2⇡

exp
⇣
�T2

2

⌘
over an interval [�T,T ]. Intuitively, if the µ̂j are approximately

normally distributed, we expect these conditions to also hold as well. We can now strengthen

Theorem 3.5 for x(⌧, µ̂) by bounding the maximal stochastic deviations:

Theorem 4.3 (Finite-Dimension Bound for the Bayes-Inspired Policy Class) Consider

Pn under Assumption 4.2 with X given by Equation (4.1) such that X is s0-strictly feasible and

m� 1. Let Cµ, CA be such that |µj| Cµ and kAjk2  CA for all j = 1, . . . , n, and � > 0 be such

that the minimum eigenvalue of the matrix 1

n

Pn
j=1

AjA>
j 2Rm⇥m is at least �.

Then, for all 0 < � < 1, 0 < h < 1, there exist positive constants C1,C2 not depending on

{n,m, �, h}, such that

0 1

n
µ> �x(⌧OR, µ̂)�x(⌧̂ , µ̂)

�
 2C1

 
TV log(e/TV)

h| {z }
Degree of Non-Normality

+
�

h|{z}
Approximating

Dual Solution

+ h2

|{z}
Approximating

Stein’s Lemma

!
+ 2R|{z}

Stochastic
Errors

,

where for any ✏� (m+1)
3/2

logn

n3/2
p

log(m+1)
,

P{R> 6✏} 130

"
exp

 
�C2�

p
n

(m+ 1)
p

log(m+ 1)

!
log

 
1+

(m+ 1)
p

log(m+ 1)

C2�
p
n

!
+ exp

 
�C2✏h

p
np

(m+ 1) log(m+ 1)

!#
,

and TV= 1

2n

Pn
j=1

k�j ��k
1
is the average total variation distance between �j(·) and the standard

normal density �(·).
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Theorem 4.3 decomposes the suboptimality gap into a deterministic error arising from various

approximation steps in our proof and a stochastic error with bounded tails. The result is not

asymptotic; it holds for a fixed instance of (Pn, µ̂,⌫), i.e., for finite n. Similar to Theorem 3.5,

the bound suggests our method will perform well in the small-data, large-scale regime if the µ̂j

are nearly Gaussian. Specifically, for a well-chosen sequence of bandwidths hn depending on n,

the performance of our policy converges to that of the oracle asymptotically, as in the following

corollary whose proof is given in Appendix D.3.

Corollary 4.4 (Almost Sure Convergence to Oracle) Consider a sequence {(P n, µ̂n,⌫n) :

n � 2} of instances in the small-data, large-scale regime, each satisfying the hypothesis of The-

orem 4.3 such that the parameters do not grow with n; that is, m is constant, kAjk  CA,
��µn

j

��  Cµ, and ⌫min  ⌫n
j  ⌫max for all 1  j  n. Suppose further that the smallest eigenvalue of

1

n

Pn
j=1

An
jA

n
j
> 2 Rm⇥m is at least � for all n. Let hn be bandwidth parameters chosen such that

hn ! 0 and hn

p
n!1. Finally, for each Pn, let ⌧̂n be the solution to Equation (4.3) with band-

width hn. If each µ̂j is Gaussian, then the policy x(⌧̂n, µ̂) performs as well as the oracle policy for

XBayes,n(µ̂), almost surely as n!1.

For the Gaussian case with TV = 0, by matching the orders of the deterministic and stochastic

errors in Theorem 4.3, one can show that the rate of convergence for the bound is optimized when

hn =O(n�1/6), in which case the suboptimality gap converges to zero as Op(n�1/3). Similar argu-

ments hold when some parameters grow mildly with n, such as m=O(logn), with slightly modified

bandwidth sequences. Regardless of the precise scaling, Theorem 4.3 provides good evidence that

our procedure based on ⌧̂ should have a strong performance for instances with large, finite n as

long as the other parameters are not too large. We confirm this claim numerically in Section 6.

In the remainder of this section, we motivate our alternate bias correction in Equation (4.3) and

outline the proof of Theorem 4.3 by considering the asymptotic regime where n!1 while other

parameters stay fixed. See Appendix D.1 for a formal proof for finite n, including explicit values

for the constants C1 and C2.

4.2. Proof Outline for Theorem 4.3 and the Alternate Bias Correction

The proof of Theorem 4.3 follows the framework of Theorem 3.5; i.e., we first seek to prove that

sup
⌧�0

1

n

�����

nX

j=1

(µ̂j �µj)xj(⌧, µ̂)�E[(µ̂j �µj)xj(⌧, µ̂)]

�����!p 0. (4.4)

Establishing this convergence involves two key ideas:
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1) Rounding the Primal Solution (Lemma D.6): We first use linear optimization duality

to rewrite x(⌧, µ̂) more simply. By complementary slackness, for all but possibly m components

where the xj are fractional, we have that

xj(⌧, µ̂j) = I(rj(⌧, µ̂j)>A>
j �(⌧, µ̂)). (4.5)

These fractional terms contribute at most m
n

maxj=1,...,n |µj � µ̂j| to the total. Since the maximum

of sub-Gaussian random variables concentrates at its mean, which grows like O(
p

logn), the error

from rounding the primal solution is small:

1

n
(µ� µ̂)>x(⌧, µ̂) =

1

n

nX

j=1

(µj � µ̂j)I(rj(⌧, µ̂j)>A>
j �(⌧, µ̂)) + op(1). (4.6)

2) Approximating the Dual Solution (Lemma D.7): The sum in Equation (4.6) consists of

dependent random variables because �(⌧, µ̂) depends on the entire vector µ̂. This dependence poses

a technical challenge in establishing the requisite convergence. The second key idea approximates

�(⌧, µ̂) by the solution of an “average” dual problem to break this dependence. Define

min
�2Rm

+

D(�, ⌧), where D(�, ⌧)⌘ b>�+
1

n

nX

j=1

E[(rj(⌧, µ̂j)�A>
j �)+],

and let �(⌧) be an optimal solution. Intuitively, �(⌧, µ̂) = �(⌧) + op(1) for large n (Lemma D.5),

so that the error from approximating the dual solution is also small:

1

n
(µ� µ̂)>x(⌧, µ̂) =

1

n

nX

j=1

(µj � µ̂j)I(rj(⌧, µ̂j)>A>
j �(⌧)) + op(1).

Importantly, replacing �(⌧, µ̂) with �(⌧) transforms the sum into a sum of independent random

variables. We can now use standard uniform law of large number results (Lemma D.8) to establish

1

n
(µ� µ̂)>x(⌧, µ̂) =

1

n

nX

j=1

E
⇥
(µj � µ̂j)I(rj(⌧, µ̂j)>A>

j �(⌧))
⇤
+ op(1). (4.7)

Finally, by “unwinding” the above approximations, we can also show that

1

n

nX

j=1

E
⇥
(µj � µ̂j)I(rj(⌧, µ̂j)>A>

j �(⌧))
⇤
=

1

n

nX

j=1

E[(µ̂j �µj)xj(⌧, µ̂)] + op(1),

which proves Equation (4.4).

If we sought to apply Theorem 3.5 directly, we would next need to prove

1

n

nX

j=1

1

2h
p
⌫j

"
xj

 
⌧, µ̂+

hp
⌫j

ej

!
�xj

 
⌧, µ̂� hp

⌫j

ej

!#
!p 0.

This convergence can be established using similar arguments as above using the average dual

optimal solution, but, it is easier to take a di↵erent approach. Specifically, instead of applying
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our approximate Stein’s Lemma to xj(·) as in Theorem 3.5, we apply it to right-hand side of

Equation (4.7). This leads to the third key idea in the proof.

3) A Custom Bias Correction: Let ⇣j = (µ̂j � µj)
p
⌫j and let fj : R ! R be defined by

fj(t) = �1p⌫j
I(rj(⌧, µj + t/

p
⌫j) >A>

j �(⌧)) for all t 2R. Note that ⇣j is mean-zero, has precision 1,

and is sub-Gaussian with parameter �2. Furthermore,

E
⇥
(µj � µ̂j)I(rj(⌧, µ̂j)>A>

j �(⌧))
⇤
=E [⇣jfj(⇣j)] .

Using Lemma C.2, we approximate E [⇣jfj(⇣j)] by a first-order finite di↵erence with step h, so

E [⇣jfj(⇣j)] ⇡ 1

2h
E [fj(⇣j +h)� fj(⇣j �h)]

=
�
�
I
�
rj
�
⌧, µ̂j +h/

p
⌫j
�
>A>

j �(⌧)
 
� I
�
rj
�
⌧, µ̂j �h/

p
⌫j
�
>A>

j �(⌧)
 �

2h
p
⌫j

.

Since µ̂j 7! rj(⌧, µ̂j) is linear, rj(⌧, µ̂j +h/
p
⌫j) = rj(⌧, µ̂j)+ rj(⌧, h/

p
⌫j) = rj(⌧, µ̂j)+hj(⌧), and

similarly, rj(⌧, µ̂j �h/
p
⌫j) = rj(⌧, µ̂j)�hj(⌧). Thus,

I
�
rj(⌧, µ̂j +h/

p
⌫j)>A>

j �(⌧)
 
� I
�
rj
�
⌧, µ̂j �h/

p
⌫j
�
>A>

j �(⌧)
 

(4.8)

= I
�
rj(⌧, µ̂j) +hj(⌧, h/

p
⌫j)>A>

j �(⌧)
 
� I
�
rj (⌧, µ̂j)�hj(⌧, h/

p
⌫j)>A>

j �(⌧)
 

= I
�
rj(⌧, µ̂j)�A>

j �(⌧)>�hj(⌧, h/
p
⌫j)
 
� I
�
rj (⌧, µ̂j)A

>
j �(⌧)>+hj(⌧, h/

p
⌫j)
 

= I
���rj(⌧, µ̂j)�A>

j �(⌧)
�� hj(⌧)

 
.

In light of Equation (4.7), this suggests the alternate bias correction

1

n

nX

j=1

1

2h
p
⌫j
E
⇥
I(
��rj(⌧, µ̂j)�A>

j �(⌧)
�� hj(⌧))

⇤
.

Estimating the expectation by its sample average (Lemma D.10) and replacing �(⌧) with �(⌧, µ̂)

(Lemma D.11) gives the bias correction term appearing in Equation (4.3).

Note that an advantage of this custom bias correction term over the explicit finite di↵erence

procedure of Theorem 3.5 is that evaluating the bias correction for a fixed ⌧ only involves deter-

mining �(⌧, µ̂), which is typically obtained for “free” as a by-product of computing x(⌧, µ̂). Thus,

we need only solve one optimization per ⌧ , instead of 2n.

The detailed proof of Theorem 4.3 in Appendix D provides explicit (finite n) bounds on each of

the op(1) remainder terms to show that they are uniformly small. As an aside, we note that one

can also intuitively derive BBayes(⌧, h, µ̂) by simply plugging in the approximation Eq. (4.5) into

our original bias-correction B(✓, h, µ̂) and simplifying along the lines of Eq. (4.8).
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4.3. Performance in the Large-Sample Regime

Despite the slight di↵erences between BBayes(⌧, h, µ̂) and our original bias correction B(✓, h, µ̂),

the proofs of Lemma 3.1 and Theorem 3.6 carry through with almost no adjustments, yielding:

Corollary 4.5 (Bound to Full-Information Optimum) Let ⌧̂ be a solution to Equation (4.3).

Then, under Assumption 2.1,

E


1

n

���µ> (x⇤(µ)�x(⌧̂ , µ̂))
���
�
 2+h�1

p
⌫min

.

Following an argument identical to the one for Corollary 3.7, we can also prove that x(⌧̂ , µ̂) achieves

full-information optimal performance in the large-sample regime. We omit the details for brevity.

5. Regularization Policies over Polyhedral Feasible Regions

Another approach to improving the finite-sample behavior of SAA is to use a regularizer. We next

tailor our framework in Equation (3.3) to our Regularization Policies introduced in Example 3.3:

XReg(µ̂)⌘
�
xR(�, µ̂) : �2 [�min,�max]

 
, where xR(�, µ̂)2 argmax

x2X

1

n
µ̂>x�

�
p
⌫min

2n

nX

j=1

x2

j

⌫j
.

Here � controls the amount of regularization. Our choice to scale � by
p
⌫min

2n
is without loss of

generality but simplifies our large-sample analysis in Section E.5. This regularizer penalizes the

SAA objective, discouraging solutions that contain many low-precision components. Choosing low-

precision components causes SAA to perform poorly in Example 2.6. Thus, we intuitively expect

regularized solutions with well-chosen � to improve upon SAA.

We note that XReg(µ̂) can equivalently be cast as robust optimal solutions over uncertainty sets

given by ellipsoids. See Ben-Tal and Nemirovski 2002 for an overview of robust optimization and

Appendix E.1 for discussion and a formal statement.

5.1. Cross-Validation Approaches to Selecting �

The most common data-driven approach to selecting the regularization parameter in the large-

sample regime is to use some form of cross-validation (Friedman et al. 2001). Unfortunately, cross-

validation procedures may not be well-defined in the small-data, large-scale regime, and, even when

they are well-defined, may not have perform comparably to the oracle. We prove this claim for the

canonical examples of leave-one-out (LOO) and K-fold cross-validation. Informally, K-fold cross-

validation divides the data into K roughly equal portions or folds, and then iteratively forms the

policy class using all the data except the kth fold, and evaluates these policies on the “left-out”

fold. It then selects �K�fold to maximize the average performance, where averaging is performed

over all K possible choices of the left-out fold. In practice, K is typically taken to be 2, 5 or 10.
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LOO validation is the special case when K = S, and each component has the same amount of data,

i.e., Sj = S. Hold-out-validation is the special case when K = 2 and one maximizes the performance

when leaving out the first fold. Notice, K-fold cross-validation is not defined when K > S, and in

the small-data, large-scale regime, S may be very small, e.g., less than 10, so that not all forms of

cross-validation may even be defined.

We only analyze K-fold cross-validation in the specific setting of Example 2.2 for the special

case that Sj = S�K for all j and S is a multiple of K for simplicity. Let

µk
j ⌘

K

S

kS/KX

l=(k�1)S/K+1

µ̂l
j, µ�k

j ⌘ K

S(K � 1)

X

1l(k�1)S/K,
kS/K<lS

µ̂l
j

be sample averages of the jth coordinate in, and excluding, the kth fold, respectively. Then

xK(�,µ�k) 2 argmax
x2X

1

n
x>µ�k � �

2n

1p
S⌫0

r
K

K � 1

nX

j=1

x2

j

is the analogue of Equation (3.2) for this setting that excludes the kth fold and accounts for the

adjusted precision. The K-fold cross-validation solution selects

�K�fold 2 arg max
�2[�min ,�max]

1

K

KX

k=1

1

n
µk>xk(�, µ̂�k) (5.1)

and implements xR(�K�fold, µ̂). Notice that the implemented policy uses the full data (all folds).

The following theorem proves that, there exist instances where 5-fold, 10-fold and LOO validation

will not achieve oracle performance in the small-data, large-scale regime.

Theorem 5.1 (Leave-One-Out and K-fold Cross-Validation Are Not Best-In-Class)

There exists a sequence of instances
�
(Pn, µ̂n,⌫n) : µ̂n 2Rn, ⌫n 2Rn

+
, n� 2

 
in the small-data,

large-scale regime with µ̂n as in Example 2.2 with Sj = S⌘ 10 for all j, such that

lim
n!1

1

n
µn>xR(�K�fold,n, µ̂)
1

n
µn>xR(�OR,n, µ̂)

< 0.03 ,

for any K 2 {2,5,10}. Here �K�Fold,n and �OR,n are the K� fold and oracle � for the nth instance.

In other words, none of 5-fold, 10-fold, hold-out, or LOO validation achieve oracle performance

in the small-data, large-scale regime for this instance.

The proof of the theorem is constructive (see Appendix). Intuitively, K-fold cross validation does

not achieve oracle performance because, when S is small, xk(�,µ�k) may be very di↵erent from

xR(�, µ̂). For example, if S= 2, leaving out one data point amounts to throwing away 50% of the

data. Hence, the right hand side of Equation (5.1) is a poor approximation to µ>xR(�, µ̂). If in

addition the true oracle curve � 7! µ>xR(�, µ̂) is not very flat near its optimum, then this poor

approximation will generally not yield a near minimizer. One can see this intuition directly in the

proof of Theorem 5.1, in particular, in Fig. EC.1.



Gupta and Rusmevichientong: Small-Data, Large-Scale Linear Optimization

28

5.2. A Near-Oracle Policy for the Regularization-Inspired Class

We next use Theorem 3.5 to identify a policy that performs comparably to the oracle. As in

Section 4.1, we exploit the structure of the policy class to develop a more computationally e�cient

bias correction. Lemma E.2 (see appendix) shows the dual problem to Equation (3.2) is

�R(�, µ̂) 2 arg min
��0

b>�+
1

n

nX

j=1

wj(�, µ̂j �A>
j �) ,

where wj(�, t) =

8
>>><

>>>:

0 if t < 0,
⌫j

2�
p
⌫min

t2 if 0 t �
p
⌫min

⌫j
,

t� �
p
⌫min

2⌫j
if �

p
⌫min

⌫j
< t .

(5.2)

Intuitively, the function wj(�, t) is a smoothed approximation of the hinge function
⇣
t� �

p
⌫min

⌫j

⌘+

.

Lemma E.2 also shows that xR
j (�, µ̂) can be written explicitly in terms of the dual solution as

xR
j (�, µ̂) =

⌫j
�
p
⌫min

 
⇥
µ̂j �A>

j �
R(�, µ̂)

⇤+ �

µ̂j �A>

j �
R(�, µ̂)�

�
p
⌫min

⌫j

�+!
.

Substituting this expression into our standard bias-correction and taking the limit as h! 0 suggests

the alternate, more computationally e�cient correction

BReg
n (�, µ̂)⌘ 1

�n
p
⌫min

nX

j=1

I
✓

0 µ̂j �A>
j �

R(�, µ̂)
�
p
⌫min

⌫j

◆
.

Finally, for any 0< �min < �max <1, define

�̂2 arg max
�min��max

1

n
µ̂>xR(�, µ̂)�BReg

n (�, µ̂). (5.3)

Under assumptions similar to Theorem 4.3, we can strengthen Theorem 3.5 for xR(�̂, µ̂) by bound-

ing the maximal stochastic deviations.

Theorem 5.2 (Finite-Dimension Bound for the Regularization Policy Class) Consider

Pn under Assumption 4.2 with X as in Equation (4.1) with m � 1 and X is s0-strictly feasible.

Let Cµ, CA be such that |µj|Cµ and kAjk2 CA for all j = 1, . . . , n, and � > 0 be such that the

minimum eigenvalue of 1

n

Pn
j=1

AjA>
j 2Rm⇥m is at least �. Assume 0< �min < �max <1. Then, for

each 0< �< 1, there exist positive constants C1,C2,C3,C4 not depending on {n,m, �}, such that

0 1

n
µ>(xR(�OR, µ̂)�xR(�̂, µ̂) C1�|{z}

Approximating

Dual Solution

+C1TV log(e/TV)| {z }
Degree

Non-Normality

+ 2Rn|{z}
Stochastic
Errors

,
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where for any ✏> �2/
p
n,

P{Rn > 4✏}  C2 exp

 
�C3�

p
n

(m+ 1)
p

log(m+ 1)

!
log

 
1+

(m+ 1)
p

log(m+ 1)

C3�
p
n

!

+C2 exp

 
�C4✏

p
np

(m+ 1) log(m+ 1)

!
, (5.4)

and TV= 1

2n

Pn
j=1

k�j ��k
1
is the average total variation distance between �j(·) and the standard

normal density �(·).

Like Theorem 4.3, Theorem 5.2 holds for a fixed instance (Pn, µ̂,⌫), i.e., finite n. The structure

of the bound, however, provides insight into the performance in the small-data, large scale regime,

and shows that the performance of our policy converges to that of the oracle when the dimension

increases and µ̂j is gaussian. This result is stated in the following corollary:

Corollary 5.3 (Almost Sure Convergence to Oracle) Consider a sequence of instances of

{(P n, µ̂n,⌫n) : n� 2} in the small-data, large-scale regime, with each instance satisfying Assump-

tion 4.2 with Xn given by Equation (4.1) and each Xn satisfying Assumption 4.1 for a common s0.

Suppose further that the parameters do not grow with n, i.e., m is constant, kAjk2 CA,
��µn

j

��Cµ,

and ⌫min  ⌫n
j  ⌫max for all 1 j  n and that the smallest eigenvalue of 1

n

Pn
j=1

An
jA

n
j
> 2Rm⇥m is

at least � for all n. For each Pn, let �̂n be given by Equation (5.3). If each µ̂j is Gaussian, then

the policy xR(�̂n, µ̂) performs as well as the oracle policy for XReg,n(µ̂), almost surely as n!1.

We stress that it is unclear a priori whether x(⌧̂ , µ̂) or xR(�̂, µ̂) yields better performance in

Problem Pn since it is not clear which benchmark, x(⌧OR, µ̂) or xR(�OR, µ̂), is superior. In general,

we find that the di↵erence is application specific.

Like Theorem 4.3, the proof of Theorem 5.2 also follows Theorem 3.5 and uses an “average”

dual problem to break the dependence between terms (Lemma E.6). Practically, the restriction

0< �min < �max <1 is mild; we expect in practice to optimize �̂ by searching over a finite grid. It

is an open question if Theorem 5.2 can be strengthened to allow �min = 0 or �max =1.

Although we focused above on the small-data, large-scale regime, our policy also achieves full-

information optimality in the large-sample regime. (Note Theorem 3.6 is not applicable when

�min > 0 because xSAA(µ̂) may not be in XReg(µ̂)). See Appendix E.5 for theorem and discussion.

6. Numerical Experiments

We next study the empirical performance of our methods in the context of a specific application: the

online-advertising portfolio optimization problem (OAPOP). Our goals are two-fold: 1) quantify

the potential benefits of our Bayes-Inspired and Regularization-Inspired best-in-class policies over
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traditional variants for this application and 2) assess the robustness of our results to increasingly

large departures from normality.

We focus on the OAPOP because we view it as typical of the small-data, large-scale optimization

regime. Loosely speaking, the OAPOP involves an advertiser seeking to allocate a finite budget

among various “targeting items” to maximize her return. Targeting items may represent keywords,

impressions, cookies, and websites and may span di↵erent advertising channels and platforms. In

practice, an advertiser must also estimate the expected cost and expected revenue for each targeting

item before electing an allocation. Pani et al. (2017) provide a thorough overview of the OAPOP,

including its pivotal role in the online-advertising industry and the recent surge of decision-support

software products for the problem, such as Adobe Marketing Cloud and Google’s DoubleClick.

Most importantly, the authors observe that a typical instance of the OAPOP may involve tens of

thousands of targeting items and that because the underlying problem parameters shift rapidly,

estimates are necessarily very noisy – the two defining features of the small-data, large-scale regime.

Pani et al. (2017) argue that despite the many complexities of the online-advertising industry,

the OAPOP can be modeled e↵ectively as an o✏ine, fractional, multi-choice knapsack problem.

The choices correspond to di↵erent bid levels for each targeting item, while the weights and rewards

correspond to the expected costs and revenues. The authors propose a customized algorithm for

massively large instances where the expected returns and expected cost of each item are known. We

adopt a similar perspective, complementing their work by focusing instead on instances where the

returns are not known, but rather imprecisely estimated. As in Rusmevichientong and Williamson

(2006), we consider only a single, representative bid level. The resulting problem is an o✏ine,

fractional knapsack problem with uncertain rewards. It can be written in the form of Problem Pn

with X =
�
x2 [0,1]n : 1

n
c>x 1

 
for some fixed cost-vector c2Rn.

We simulate a variety of instances of the OAPOP and apply our data-driven procedures. Our

precise simulation procedure for µ, µ̂, and ⌫ is in Appendix F.2 and closely follows the procedure

of Pani et al. (2017). Those authors calibrated this procedure to match a real-world dataset drawn

from Google’s Keyword Planner tool for “medium-high volume keywords from a wide variety of

industry categories including retail (apparel, footwear, etc.), insurance, and financial services” (Pani

et al. 2017, pg. 23). Overall, although simulated, we believe our instances to be realistic in structure.

Throughout our experiments, SAA is the sample average approximation policy; EB OR is the

oracle policy x(⌧OR, µ̂); EB OPT is our proposed policy x(⌧̂ , µ̂); EB MLE and EB MM are

the estimate-then-optimize policies based on empirical Bayes maximum likelihood and moment-

matching estimates, respectively; and SURE is the estimate-then-optimize policy based on the

SURE estimate (c.f. Section 4). Similarly, Reg OR is the oracle policy xR(�OR, µ̂) and Reg OPT
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is our proposed policy xR(�̂, µ̂). RO 1% and RO 5% are robust optimization policies using ellip-

tical uncertainty sets for two di↵erent choices of r (c.f. Appendix E.1.). Specifically, we use the

“safe-approximation” guideline for robustness (Chapter 2 in Ben-Tal and Nemirovski 2002), and

for ✏= 0.01,0.05, we let r =
p

2 log(1/✏). For both the Bayes-Inspired and Regularization-Inspired

classes, we also compare to hold-out (denoted “HO”), 5-fold (denoted “K5”) and leave-one-out

(denoted “LOO”) cross-validation. We note that cross-validation strategies are seemingly rare in

the empirical bayes literature, but can be defined analogously as in the regularization case. We

also remind the reader that that K-fold cross validation is not well defined when S <K.

The code for all experiments written in the Julia programming language (Bezanson et al. (2017))

is available at https://github.com/vgupta1/EmpBayes. When computing ⌧̂n, we take hn = n�1/6

and searched exhaustively over ⌧ 2 [0,5] using a grid of size .01. When computing ⌧OR, we use

a parametric linear programming algorithm to find the exact optimum over R+. Similarly, when

computing both �̂ and �OR, we search exhaustively over � 2 [1,100] using a grid of size .5. No

special e↵ort was devoted to tuning these parameters.

Before proceeding, we summarize our main insights as follows:

1. For large n, our small-data, large-scale methods (EB OPT, Reg OPT) o↵er significant benefits

over SAA. They also o↵er a smaller benefit over estimate-then-optimize methods that do not

leverage the optimization structure.

2. For this particular application, cross-validation methods perform well, often comparable to

the oracle, in contrast to their theoretical analysis. This distinction arises because the OAPOP

problem is very flat around its optimum.

3. For small to moderate n, our methods exhibit somewhat more variability than estimate-

then-optimize methods methods and, as a consequence, can have poorer performance. Their

variability, however, is comparable to cross-validation procedures.

4. Overall, the performance of our methods seems robust to mild departures from normality.

6.1. Finite-dimensional Behavior (finite n)

We first study the behavior of our approach as n grows when µ̂j is Gaussian, i.e., TV= 0. Figure 4

shows the performance of various data-driven methods across 200 simulations for increasing n. We

have split the methods into two plots – Bayes-Inspired policies and Regularization-Inspired policies

– and included a subset of policies for readability. A larger plot with all policies is in Appendix F.3.

With respect to the Bayes-Inspired policies, several features are immediately clear. First, as

expected, our proposed policy EB OPT o↵ers significantly better performance than estimate-then-

optimize policies and SAA, especially as n grows large. By contrast, cross-validation procedures,
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Figure 4 Relative Performance by Policy for OAPOP. The left panel plots the performance of x(⌧, µ̂)

for various n and data-driven procedures for choosing ⌧ from Section 4. The right panel plots the

performance of xR(�, µ̂) along the same sample paths for data-driven procedures for choosing � from

Section 5. The error bars represent 10% and 90% quantiles over 200 simulations.
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(b) Regularization-Inspired Policies

Figure 5 Standard Deviation of Performance for OAPOP. The left panel plots the standard deviation of

x(⌧, µ̂) for various n and data-driven procedures for choosing ⌧ from Section 4. The right panel plots

the standard deviation of xR(�, µ̂) along the same sample paths for data-driven procedures for choosing

� from Section 5. Note the log-log scales.
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●

●
●

(a) Distribution of �’s by method (b) xR(�, µ̂)

Figure 6 Explaining Performance of Cross-Validation for OAPOP. The left panel plots the distribution of

the optimizing � for various methods across the 200 simulations. The right panel plots the oracle curve

�!µ>xR(�, µ̂) for a single realization, when n= 217, with optimizing � of other methods indicated.

which do leverage the optimization structure, have very similar performance in this example. A

drawback of both EB OPT and the cross-validation procedures is that they are more variable than

competitors. This feature is more pronounced in Figure 5, where we plot the standard deviation

of the performance (relative to the full-information optimum) of each method along the 200 sim-

ulations. Nonetheless, from Figure 4, we would argue that the benefits in average performance

outweigh the extra variability for n> 30,000, a fairly reasonable number for this application.

Regularization-Inspired policies exhibit similar performance. Our proposed policy Reg OPT

converges quickly to oracle performance. Cross-validation approaches are highly competitive. By

contrast, the robust optimization policies with radii specified according to the safe-approximation

guideline have significantly worse performance, converging to SAA as n!1.

In the case of Regularization-Inspired policies, the strong performance of cross-validation sharply

contrasts with Theorem 5.1. We believe this performance is somewhat application specific. Recall

that cross-validation policies perform poorly when i) the cross-validation estimates for each fold

di↵er greatly from original policy class (i.e. xk(�,µ�k) di↵ers from xR(�, µ̂) in Eq. (5.1)) and ii)

the oracle curve � 7! xR(�, µ̂) is not too flat at its optimum. For our OAPOP instances, the first

condition holds. This is somewhat di�cult to see by examining the curves directly (left panel of

Figure EC.5 in Appendix F.3), but it is more evident by noting that the optimizing �’s for these

curves converge to di↵erent values as n!1 (right panel of Figure EC.5). Indeed, Figure 6 below

shows boxplots of the distribution of the various estimated �’s when n= 217, highlighting that the

cross-validation procedures over-regularize in this example, while Reg Opt converges to �OR.

The key observation, however, is that the second condition does not hold for these instances: the

oracle curve is very flat; see right panel of Figure 6. Hence, even though cross-validation procedures
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select the “wrong” �, this error manifests as a neglible amount of sub-optimality. (Contrast this

curve to the oracle curve in Theorem 5.1, seen in Figure EC.1.) In our opinion, this feature explains

the strong performance of K-fold cross-validation in this application, and, Theorem 5.1 shows this

feature does not always hold. By contrast, our Reg Opt policy is guaranteed to achieve oracle

performance in the small-data, large-scale regime under the conditions in Theorem 5.2.

A very similar analysis can be performed for the cross-validation policies in the Bayes-Inspired

policy class. See Figures EC.6 and EC.7 in Appendix F.3 for the details. There, too, we notice that

the oracle curve is quite flat at its optimum (in contrast to, e.g., Example 4.1) partially explaining

the strong performance of cross-validation for these instances.

As an aside, we note that the optimal policies EB OPT and Reg OPT typically have very

di↵erent structures. For example, on a typical path with n = 217, more than 50% of the positive

values of xR(�̂, µ̂) (Reg OPT) are fractional. By contrast, x(⌧̂ , µ̂) (EB OPT) has at most one

fractional value by construction, regardless of the size of n. Depending on the intended application,

this di↵erence in structure may be pertinent.

6.2. Other Experiments

Appendices F.4 and F.5 present additional experiments assessing the relative performance of our

methods when S is large but finite, and when µ̂ is non-gaussian, respectively. Generally, we find

that EB Opt and Reg Opt are competitive with cross-validation methods, and generally outperform

SAA and estimate-then-optimize methods when S is large, even when estimators are non-gaussian.

In particular, our method is robust to some non-normality, when noise is still sub-Gaussian and

admits a density (see Appendix for details).

7. Conclusion and Future Directions

Motivated by emerging optimization applications where the amount of relevant data per parameter

is small, we proposed a novel method for dealing with linear optimization in the small-data, large-

scale regime. In contrast to the large-sample regime, the full-information optimum is not achievable

in this context, and, so, we must focus on finding a best-in-class policy. As a benchmark, we

consider an oracle policy that knows the underlying parameters in advance but is constrained to

use a policy from a specific class.

By correcting for the bias in the estimated objective value, we developed a novel framework

for designing a policy whose performance converges to this oracle benchmark and applied the

framework to two important classes of policies: Bayes-Inspired and Regularization-Inspired policies.

Numerical results show that our policies are robust and perform well across a broad range of

problem instances, surpassing traditional methods in the literature.
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Our framework can be applied to an arbitrary class of policies. However, to ensure convergence,

we need to establish uniform convergence properties of the bias correction terms. It would be

interesting to explore other classes of policies and optimization problems for which such uniform

convergence can be established. This paper focused on linear optimization, but the spirit of our

approach can be extended to nonlinear and discrete optimizations as well. This is a challenging

but potentially exciting research area. It is our hope that this research galvanizes the community

to consider optimization problems within this important small-data, large-scale regime.
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Online Appendix: Small-Data Linear Optimization

Appendix A: Background Results on Uniform Laws of Large Numbers (ULLN)

Consider independent random variables Z1, . . . ,Zn taking values in some abstract space ⌅. Let

T be an arbitrary indexing set, and let fj(t,Zj) be a sequence of functions fj : T ⇥ ⌅! R. For

a fixed t 2 T , the sum 1

n

Pn
j=1

fj(t,Zj)� E[fj(t,Zj)] is a mean-zero random variable that, under

suitable regularity conditions, will converge in probability to 0 as n ! 1 by the law of large

numbers. Uniform laws of large numbers establish conditions under which this convergence happens

uniformly over T , that is, conditions under which

sup
t2T

1

n

�����

nX

j=1

fj(t,Zj)�E[fj(t,Zj)]

�����!p 0 as n!1. (A.1)

From an optimization perspective, such convergence results imply that for large n, minimizers

of the sample average are approximate minimizers of the expected average; see Lemma C.1. There

exists a well-developed literature on uniform laws of large numbers; see, for example, Pollard (1990)

and Van der Vaart (2000). To keep our paper self-contained, we summarize a few key results. Our

exposition and notation mirrors those of Pollard (1990). These results are not the tightest possible

but are su�cient for our purposes.

For any F ✓Rn, define the packing number M(✏,F) to be the largest number m such that there

exist m points x1, . . . ,xm 2F with kxi�xjk2 > ✏, 1 i < j m. For each fixed Z = (Z1, . . . ,Zn),

let F(Z) =
n�

f1(t,Z1), f2(t,Z2), . . . , fn(t,Zn)
�
2Rn : t 2 T

o
✓Rn be the set of n-dimensional vec-

tors as t varies over the indexing set T . Finally, let Fj(Zj) be a corresponding set of envelope

functions, that is, functions satisfying |fj(t,Zj)| Fj(Zj) for all t2 T and Zj 2⌅. We write F (Z)

to denote the vector whose jth component is Fj(Zj).

Let  (t) = 1

5
exp(t2), and, for any real-valued random variable Z, define the Orlicz norm kZk 

as follows: kZk ⌘ inf{C > 0 : E[ (|Z|/C)]  1}. Random variables with a finite Orlicz norm are

sub-Gaussian (Pollard 1990). The following lemma summarizes well-known facts about k · k :

Lemma A.1 (Properties of the Orlicz Norm)

i) For any constant C 0, kC 0k  |C 0|.

ii) If Z is a mean-zero, sub-Gaussian random variable with variance proxy at most �2, then

kZk  2�.

iii) For j = 1, . . . , n, let Zj, be a mean-zero, sub-Gaussian random variable with variance proxy at

most �2. Then, k max
j=1,...,n

Zjk  2�
p

2+ logn.
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iv) Let Z = (Z1, . . . ,Zn) be a vector of independent, mean-zero sub-Gaussian random variables

each with variance proxy at most �2. If n> 1, then kkZk2k  �
p

2n.

Proof: The first claim follows immediately from the definition.

For the second claim, using the tail expectation formula, we obtain

E
⇥
exp

�
Z2/C2

�⇤
=

Z 1

0

P
�
exp

�
Z2/C2

�
> t
�
dt = 1+

Z 1

1

P
⇣
|Z|> |C|

p
log(t)

⌘
dt

 1+ 2

Z 1

1

exp

✓
�C2 log(t)

2�2

◆
dt,

where the last inequality follows because Z is sub-Gaussian. This integral converges if C >
p

2�,

yielding E [exp (Z2/C2)]  1+ 4�2

C2�2�2 . For C = 2�, we get E [exp (Z2/C2)]  3, so kZk  2�.

For the third claim, (Pollard 1990, Lemma 3.2, pg. 10) proves

k max
j=1,...,n

Zjk 
p

2+ logn max
j=1,...,n

kZjk . Applying our previous result for sub-Gaussian random

variables proves the claim.

For the final claim, using independence of Z1, . . . ,Zn,

E
"
exp

 ����
Z

�
p

2n

����
2

2

!#
= E

"
exp

 
nX

j=1

Z2

j

2�2n

!#
=

nY

j=1

E

exp

✓
Z2

j

2�2n

◆�

✓

1� 1

n

◆�n/2

,

where the last inequality follows from (Wainwright 2015, Thm. 2.1 Part IV, pg. 16) and uses the

fact that 1

n
< 1. This function is decreasing in n, and at n = 2, it equals 2, which is less than 5.

This completes the proof. ⇤
By specializing the results of Pollard (1990), we have the following:

Theorem A.2 Suppose that there exist constants A,W (not depending on ✏) such that for each

Z 2⌅n,

M (✏kF (Z)k2,F(Z))A✏�W . (A.2)

Let V (A,W )⌘ W+logAp
logA

. If kkF (Z)k2k K, then

P
(

sup
t2T

�����

nX

j=1

fj (t,Zj)�E [fj(t,Zj)]

�����> t

)
 25exp

✓
�t

9KV (A,W )

◆
.

Proof: We sketch how the results are obtained as a special case of Pollard (1990). It follows from

Equation (7.4) of Pollard (1990) that

P
(

sup
t2T

�����

nX

j=1

fj (t,Zj)�E [fj(t,Zj)]

�����> t

)
 25exp

✓
�t

kJn(Z)k
 

◆
,
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where Jn(Z) ⌘ 9

Z
sup{kfk :f2F(Z)}

0

p
logM(✏,F(Z)) d✏. Thus, it su�ces to shows that the

kJn(Z)k
 
 9KV (A,W ). As discussed in Equation (7.7) in Chapter 7 of Pollard (1990), the

entropy integral can be bounded in terms of the envelopes F (Z), A, and W as follows:

Jn(Z) 9kF (Z)k2
Z

1

0

p
W log(1/✏) + logA d✏.

Make the change of variables
p
W log(1/✏) + logA 7! u, so ✏ = exp(�(u2 � logA)/W ) with d✏ =

� 2u
W

exp (�(u2 � logA)/W )du. Thus,
Z

1

0

p
W log(1/✏) + logA d✏=

Z 1

p
logA

2u2

W
exp

�
�(u2 � logA)/W

�
du

=
p
WA1/W

Z 1

q
logA
W

2t2 exp(�t2)dt,

where the last equality follows from the change of variable u/
p
W 7! t. Using integration by parts,

the last integral is equal to
p

logA+
p
⇡W
2

A1/WErfc

✓q
logA
W

◆
, where Erfc(s) ⌘ 2p

⇡

R1
s

exp(�t2)dt

is the complementary error function. Substitute the standard bound, Erfc(s)  2p
⇡

exp(�s2)/s,

and simplify to yield
R

1

0

p
W log(1/✏) + logA d✏ V (A,W ). Thus, Jn(Z) 9V (A,W )kF (Z)k2, so

kJn(Z)k
 
 9V (A,W )K, and this completes the proof. ⇤

As noted in the theorem below, Equation (A.2) of Theorem A.2 is satisfied by sets with bounded

pseudo-dimension (Pollard 1990). Recall that the set F(Z) has pseudo-dimension at most V if for

any c2Rn and subset of indices J ✓ {1, . . . , n} with |J |= V + 1,
���
n�

I (fj(t,Zj)> cj) | j 2J
�
2 {0,1}|J | : t2 T

o��� < 2V+1.

Here
�
I (fj(t,Zj)> cj) | j 2 J

�
denotes a binary vector of dimension |J |. If the above inequality

holds instead with equality, we say that c is a witness to the shattering of J .

Theorem A.3 If F(Z) has pseudo-dimension at most V � 2, then M (✏kF (Z)k2,F(Z)) satisfies

Equation (A.2) of Theorem A.2, with W = 4V , A= V 6V , and V (A,W ) 6
p
V log(V ).

Proof: Again, we specialize results from Pollard (1990). Specifically, tracking the constants from

Theorems 4.7, 4.8, and 4.10 of Pollard (1990), we find that the theorem holds for A� (1+V )2/C2

and W = 4V , where C = mint�1

p
t/(1 + 2 log t)V . By di↵erentiating and substituting, we find

C = (4V )�V exp(V � 1

4
), so that

logC =�V (log(4)� 1)�V logV � 1

4
��2V logV,

where the inequality follows by comparing the derivatives of both sides for V � 2. Then,

log

✓
(1+V )2

C2

◆
= 2 log(V + 1)� 2 logC  2 log(V + 1) + 4V logV  6V log(V ),
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where the last inequality again follows by comparing derivatives. This proves the claim for A.

To bound V (A,W ), note that V � 2 implies that 2V logV � 1, so that

V (A,W ) =
4V + 6V logVp

6V logV
 8V logV + 6V logVp

6V logV
=

14p
6

p
V logV  6

p
V logV .

This completes the proof. ⇤

Appendix B: Proofs of the Results in Section 2

We now present proofs of the results in Section 2.

B.1. Proof of Theorem 2.7:

As mentioned, the proof of Theorem 2.7 involves generating a random instance of Pn. To that end,

let ⇡ be a probability distribution on M✓ Rn. Consider the hierarchical Bayes model where the

random vector Y = (Y1, . . . , Yn) follows a prior distribution ⇡ and

Wj|Y ⇠N (Yj,1/⌫j), independently, j = 1, . . . , n. (B.1)

Consider then the Bayesian decision problem maxx2X
1

n
Y >x where Y is unobserved and W is

data. This problem is a random instance of Pn, where the true values of the unknown parameter µ

are considered random. The expected performance of x(·) in Pn for a fixed realization of µ equals

E
⇥
1

n
Y >x(W ) |Y =µ

⇤
.

A straightforward computation shows that the Bayes-optimal solution with respect to ⇡ is

xBayes(⇡,W ) 2 argmax
x2X

1

n

nX

j=1

E[Yj|W ]xj.

Before we prove Theorem 2.7, we use this Bayes optimal solution to compute an upper bound

on the expected revenue of any data-driven policy.

Lemma B.1 (Bayes Policies Bound Worst-Case Performance) Let x(·) denote any data-

driven policy. For any compact set M⇢Rn and prior distribution ⇡ :M!R+,

inf
µ2M

E


1

n
µ>x(µ̂)

�
 E


1

n
Y >x(W )

�
 E


1

n
Y >xBayes(⇡,W )

�
.

Proof: Note infµ2ME
⇥
1

n
µ>x(µ̂)

⇤
= infµ2ME

⇥
1

n
Y >x(W ) |Y =µ

⇤
. Thus, the first inequality fol-

lows because the worst-case reward is less than or equal to the average reward over M. For the

second,

E


1

n
Y >x(W )

�
=

1

n
E
"

nX

i=1

Yjxj(W )

#
=

1

n
E
"

nX

i=1

E [Yj|W ]xj(W )

#

 1

n
E
"

nX

i=1

E [Yj|W ]xBayes
j (⇡,W )

#
= E


1

n
Y >xBayes(⇡,W )

�
,

where the inequality follows from the definition of a Bayes optimal policy. ⇤
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Lemma B.1 asserts that for any µ, the Bayes-optimal performance in the system Eq. (B.1)

upper bounds the worst-case expected performance of all other data-driven policies in our original

system. We note that this result is actually a special case of a considerably more general, classical

result in statistical minimax decision theory (Wald 1947, 1949).

We can now prove the theorem.

Proof of Theorem 2.7: Write

inf
µ2{�1,+1}n

1

n
µ>x(µ̂)

Z⇤(µ)
= 1� sup

µ2{�1,+1}n

Z⇤(µ)� 1

n
µ>x(µ̂)

Z⇤(µ)
 1� sup

µ2{�1,+1}n
Z⇤(µ)� 1

n
µ>x(µ̂),

where the inequality follows because Xn = [0,1]n, so Z⇤(µ) 1 for all µ2 {�1,+1}n. We will lower

bound this supremum.

Take a Rademacher prior ⇡ for Y ; that is, for all j, P{Yj = 1}= P{Yj =�1}= 1

2
, and Y1, . . . , Yn

are independent. Then,

sup
µ2{�1,+1}n

Z⇤(µ)� 1

n
µ>x(µ̂) = sup

µ2{�1,+1}n

⇢
1

n
µ>x⇤(µ)�E


1

n
Y >x(W )| |Y =µ

��

�E


1

n
Y >x⇤(Y )� 1

n
Y >x(W )

�
(B.2)

=E


1

n
Y >x⇤(Y )

�
�E


1

n
Y >x(W )

�

�E


1

n
Y >x⇤(Y )

�
�E


1

n
Y >xBayes(⇡,W )

�
, (B.3)

where inequality (B.2) follows because the supremum exceeds the average, and inequality (B.3)

follows from Lemma B.1.

By inspection x⇤
j (Y ) = I(Yj � 0), so E

⇥
1

n
Y >x⇤(Y )

⇤
= 1

n

Pn
i=1

E
⇥
Y +

j

⇤
= 1

2
.

It only remains to upper bound the Bayesian policy. Again, by inspection, xBayes
j (⇡,W ) = I(E[Yj |

W ]� 0). Note that

P{Yj = +1 |Wj}=
�(Wj � 1)

�(Wj � 1) +�(Wj + 1)
and P{Yj =�1 |Wj}=

�(Wj + 1)

�(Wj � 1) +�(Wj + 1)
,

so

E [Yj|W ] =E [Yj|Wj] =
�(Wj � 1)��(Wj + 1)

�(Wj � 1) +�(Wj + 1)
= tanh(Wj) ,

and, therefore E [Yj|W ]� 0 if and only Wj � 0. Thus, xBayes
j (⇡,W ) = I(Wj � 0), and

1

n

nX

j=1

E [Yj|W ]xBayes
j (⇡,W ) =

1

n

nX

j=1

�(Wj � 1)��(Wj + 1)

�(Wj � 1) +�(Wj + 1)
I(Wj � 0).

Finally, note that the density function of each Wj is t 7! 1

2
(�(t� 1) +�(t+ 1)), so by symmetry,

1

n
E
"

nX

j=1

E [Yj|W ]xBayes
j (⇡,W )

#
= E


�(W1 � 1)��(W1 + 1)

�(W1 � 1) +�(W1 + 1)
I(W1 � 0)

�
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=
1

2

Z 1

0

(�(w� 1)��(w+ 1))dw

=
�(1)��(�1)

2
,

which implies that supµ2{�1,+1}n
�
Z⇤(µ)� 1

n
E [µ>x(µ̂)]

 
� 1

2
� �(1)��(�1)

2
=�(�1). Thus,

inf
µ2{�1,+1}n

1

n
µ>x(µ̂)

Z⇤(µ)
 1��(�1)< 0.842 .

⇤

Appendix C: Proof of the Results in Section 3

We now present proofs of the results in Section 3. Often we will optimize an approximation to a

target function instead of optimizing the target function directly. The following lemma quantifies

the sub-optimality induced in the solution by the approximation. We will use this lemma repeatedly

throughout.

Lemma C.1 (Uniform Approximation) Let f1 : T 7! R and f2 : T 7! R be two functions, and

let t1 2 argmaxt2T f1(t) and t2 2 argmaxt2T f2(t) be their respective maximizers. Then,

0 f1(t1)� f1(t2) 2 sup
t2T

|f1(t)� f2(t)| .

Proof: The first inequality follows from optimality of t1. For the second, note that

f1(t1)� f1(t2) = f1(t1)� f2(t1) + f2(t1)� f2(t2) + f2(t2)� f1(t2) 2 sup
t2T

|f1(t)� f2(t)| ,

where we use the optimality of t2 to drop the second term. ⇤

Proof of Lemma 3.1: As in Example 3.4, we have that there exists ✓SAA 2 ⇥ such that

x(✓SAA, µ̂) = xSAA(µ̂) and ✓SAA 2 argmax✓2⇥
1

n
µ̂>x(✓, µ̂). Furthermore, the bias correction

B(✓, h, µ̂) is uniformly bounded because xj(·)2 [0,1] and

sup
✓�⇥

�����
1

n

nX

j=1

1

2h
p
⌫j


xj

⇣
✓, µ̂+

h
p
⌫j
ej

⌘
�xj

⇣
✓, µ̂� h

p
⌫j
ej

⌘������  1

2h
p
⌫min

.

Thus, the objective of Eq. (3.3) is a uniform approximation to the objective of sup✓2⇥
1

n
µ̂>x(✓, µ̂).

Applying Lemma C.1 completes the proof. ⇤

Proof of Lemma 3.6 By definition of x⇤(µ), Z⇤(µ) � 1

n
µ>x(✓̂, µ̂) = 1

n
µ>(x⇤(µ)�x(✓̂, µ̂))� 0.

Moreover,

µ>(x⇤(µ)�x(✓̂, µ̂)) = (µ� µ̂)>x⇤(µ) + µ̂> �x⇤(µ)�xSAA(µ̂)
�

+ µ̂>
⇣
xSAA(µ̂)�x(✓̂, µ̂)

⌘
+ (µ̂�µ)>x(✓̂, µ̂)

 2 sup
x2X

��(µ� µ̂)>x
��+ n

h
p
⌫min

 2kµ� µ̂k1 +
n

h
p
⌫min

,
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where the first inequality uses the optimality of xSAA(µ̂) and Lemma 3.1, and the second inequality

follows from Cauchy-Schwarz inequality and X ✓ [0,1]n. By Jensen’s Inequality,

E[kµ� µ̂k1 =
nX

j=1

E[|µ̂j �µj|] =
nX

j=1

E
q

(µ̂j �µj)
2

�
 n

p
⌫min

,

and putting everything together proves the lemma. ⇤

C.1. Proof of Theorem 3.5

The proof of Theorem 3.5 makes use of Lemma C.1 (above). Indeed, this lemma suggests we bound

2 sup✓2⇥
�� 1
n
(µ̂�µ)>x(✓, µ̂)�B(✓, h, µ̂)

�� to prove Theorem 3.5.

The key idea in bounding this suprema is an approximate version of Stein’s Lemma. For any dif-

ferentiable function f , Stein’s Lemma asserts E[⇣f(⇣)] =E[f 0(⇣)] whenever ⇣ is a standard normal

random variable. In Appendix B, we prove an extension for random variables that are approxi-

mately Gaussian, and replace the derivative by a first order finite di↵erence. We consider almost

everywhere (rather than everywhere) di↵erentiable functions in order to handle discontinuous func-

tions such as indicators, such as in the proof of Theorem 4.3 in Section 4.

Lemma C.2 (Approximate Stein’s Lemma) Let 0 < h < 1 and ⇠ be a mean-zero, sub-

Gaussian random variable with variance proxy at most �2. Suppose that E[⇠2] = 1 and that ⇠ admits

a density, denoted �(·). Suppose further that f is almost everywhere di↵erentiable. Then,
����E[⇠f(⇠)]�E


1

2h
(f(⇠ +h)� f(⇠�h))

����� 4kfk1h2

+ k���k1kfk1
�
h�1 + 24�2 � log

�
k���k1

��
.

When k���k1 = 0, i.e., when ⇠ is Gaussian, the di↵erence in expectations is bounded by 4h2kfk1.

If, in addition, h! 0, the di↵erence converges to 0, recovering the original Stein Lemma. The proof

of this lemma is given in Section C.2.

Equipped with these two lemmas, we can prove Theorem 3.5.

Proof of Theorem 3.5: By definition,

✓OR

n 2 argmax
✓2⇥

1

n
µ>x(✓, µ̂) and ✓̂ 2 argmax

✓2⇥

1

n
µ̂>x(✓, µ̂)�B(✓, h, µ̂) .

By Lemma C.1, it su�ces to bound sup✓2⇥
�� 1
n
(µ̂�µ)>x(✓, µ̂))�B(✓, h, µ̂)

��. By triangle inequality,

sup
✓2⇥

����
1

n
(µ̂�µ)>x(✓, µ̂)�B(✓, h, µ̂)

���� sup
✓2⇥

����
1

n
(µ̂�µ)>x(✓, µ̂)� 1

n
E
h
(µ̂�µ)>x(✓, µ̂)

i����

+ sup
✓2⇥

����
1

n
E
h
(µ̂�µ)>x(✓, µ̂)

i
�E

h
B(✓, h, µ̂)

i����

+ sup
✓2⇥

���E
h
B(✓, h, µ̂)

i
�B(✓, h, µ̂)

��� .
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We focus on the second term. For each ✓ 2⇥,
����
1

n
E
h
(µ̂�µ)>x(✓, µ̂)

i
�E

h
B(✓, h, µ̂)

i����

 1

n

nX

j=1

����E
h
(µ̂j �µj)xj(✓, µ̂)

i
�E


1

2h
p
⌫j

✓
xj

⇣
✓, µ̂+

h
p
⌫j
ej

⌘
�xj

⇣
✓, µ̂� h

p
⌫j
ej

⌘◆�����

=
1

n

nX

j=1

����E [⇣jfj(⇣j)]�E


1

2h
(fj(⇣j +h)� fj(⇣j �h))

����� ,

where for all j, ⇣j = (µ̂j �µj)
p
⌫j and fj :R!R is defined by

fj(t) =
1

p
⌫j
E
"
xj

⇣
✓,
⇣ t
p
⌫j

+µj

⌘
ej +

X

` 6=j

µ̂`e`

⌘ ���� µ̂j =
t

p
⌫j

+µj

�
.

Note that ⇣j has mean-zero, variance 1, and is sub-Gaussian with variance proxy at most �2.

Moreover, kfk1  1p⌫j
since xj(·)2 [0,1]. By Lemma C.2, we have that

�����
1

n
E[(µ̂�µ)>x(✓, µ̂))]�E[B(✓, h, µ̂)]

�����

 1

n

nX

j=1

4h2

p
⌫j

+
1

p
⌫j
k�j ��k1

✓
1

h
+ 24�2 � log(k�j ��k1)

◆

 4h2

p
⌫min

+
(h�1 + 24�2)

p
⌫min

· 1

n

nX

j=1

k�j ��k1 �
1

n
p
⌫min

nX

j=1

k�j ��k1 log(k�j ��k1)

We can “clean up” the bound slightly. Let c = h�1 + 24�2, so that h < 1 implies c > 1.

Note t 7! �t log(t) is concave, so by Jensen’s inequality � 1

n

Pn
j=1

k�j � �k1 log(k�j � �k1) 

�2TV log(2TV) 2TV log
�

1

2TV

�
 2cTV log

�
e
TV

�
. Substituting above and simplifying yields

4h2

p
⌫min

+
2cTV
p
⌫min

+
2cTV log(e/TV)

p
⌫min

.

Finally note that 0  TV  1 implies that TV  TV log(e/TV), so this quantity is at most
4h2

p
⌫min

+ 4cTV log(e/TV)p
⌫min

. Replacing the value of c yields the result. ⇤

C.2. Proof of Lemma C.2

Proof: The lemma is trivial if kfk1 = 1, so assume that kfk1 <1. We first prove the lemma

in the special case that ⇠ has a standard normal distribution. In this case, �= �, so k���k1 = 0,

and the last two terms of the bound are zero.

Let K(t) = 1

2
I(|t| 1) denote the box kernel. Write

Z

z2R
�(z)

1

2h
(f(z +h)� f(z�h))dz =

Z

z2R
�(z)

Z

t2R
f 0(t)K

✓
t� z

h

◆
h�1dtdz

=

Z

t2R
f 0(t)

Z

z2R
�(z)K

✓
z� t

h

◆
h�1dzdt
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=

Z

t2R
f 0(t)

1

2h
(�(t+h)��(t�h))dt

=�
Z

t2R
f(t)

1

2h
(�(t+h)��(t�h))dt.

The second equality follows from Fubini’s theorem, since
���(z)f 0(t)K

�
t�z
h

�
h�1
��  �(z)h�1f 0(t),

which is integrable. The last equality is integration by parts.

Now bound the di↵erence in expectations from the lemma as
Z

t2R
f(t)

✓
t�(t) +

1

2h
(�(t+h)��(t�h))

◆
dt kfk1

Z

t2R

����t�(t) +
1

2h
(�(t+h)��(t�h))

����dt.

= kfk1
Z

t2R

�����
0(t)� 1

2h
(�(t+h)��(t�h))

����dt,

where the last equality follows from ��0(t) = t�(t).

From a Taylor expansion and mean-value theorem, we have for some t1 2 [t, t+h], t2 2 [t�h, t],
�����

0(t)� 1

2h
(�(t+h)��(t�h))

����
h2

2 · 3!

���(3)(t1)��3(t2)
�� h2

3!
sup

s2[t�h,t+h]

���(3)(s)
�� ,

where �(3)(s) is the third derivative of the normal density. A direct computation shows that
���(3)(s)

��= �(s) |s| |3� s2|. Thus, using 0<h< 1 and that �(s) is decreasing in |s|, we bound
�����

0(t)� 1

2h
(�(t+h)��(t�h))

����
h2

2 · 3!
�(|t|� 1)(|t|+ 1)(3+ (|t|+ 1)2).

Numerically integrating the right-hand side over t shows that it is at most 4h2, proving the lemma

when ⇠ is a standard normal.

We now consider the case that ⇠ is not normal. Let ⇣ ⇠N (0,1). We will bound the error incurred

by replacing ⇠ by ⇣ in the expectations of the lemma. Specifically, for any T > 0, write
��E
⇥
⇠f(⇠)

⇤
�E

⇥
⇣f(⇣)

⇤�� 
��E
⇥
⇠f(⇠) · I{|⇠| T}

⇤
�E

⇥
⇣f(⇣) · I{|⇣| T}

⇤��

+
��E
⇥
⇠f(⇠) · I{|⇠|>T}

⇤��+
��E
⇥
⇣f(⇣) · I{|⇣|>T}

⇤��

=

����
Z

t:|t|T

tf(t)(�(t)��(t))dt

����

+
��E
⇥
⇠f(⇠) · I{|⇠|>T}

⇤��+
��E
⇥
⇣f(⇣) · I{|⇣|>T}

⇤��


Z

t:|t|T

|tf(t)|
���(t)��(t)

��dt

+E
⇥
|⇠f(⇠)| · I{|⇠|>T}

⇤
+E

⇥
|⇣f(⇣)| · I{|⇣|>T}

⇤

 Tkfk1k���k1 + kfk1E
⇥
|⇠| I{|⇠|>T}

⇤
+ kfk1E

⇥
|⇣| · I{|⇣|>T}

⇤

We bound E
⇥
|⇠| I{|⇠|>T}

⇤
using the tail integral for expectation:

E
⇥
|⇠| I{|⇠|>T}

⇤
=

Z 1

0

P (|⇠| I{|⇠|>T}> t)dt

=

Z 1

0

P (|⇠|> t and |⇠|>T )dt

= TP (|⇠|>T ) +

Z 1

T

P (|⇠|> t)dt,
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where the first equality follows because t is nonnegative, and the second equality follows from

splitting the integral at T . Since ⇠ is sub-Gaussian, we can bound both probabilities,

E
⇥
|⇠| I{|⇠|>T}

⇤
 2Te�

T2

2�2 + 2

Z 1

T

e�
t2

2�2 dt

= 2Te�
T2

2�2 + 2�
p

2⇡(1��(T/�))

 2Te�
T2

2�2 + 2�
p

2⇡e�
T2

2�2 ,

where second equality follows by evaluating the Gaussian integral and the last from a standard tail

bound for the normal cdf �(·).
Next, we claim that ⇣ is sub-Gaussian with variance proxy �2. Indeed, ⇣ is sub-Gaussian with vari-

ance proxy 1. However, since the variance of ⇠ is 1, it must be that �2 > 1 (see Wainwright (2015)),

proving the claim. It follows that E
⇥
|⇣| I{|⇣|>T}

⇤
is also bounded by 2Te�

T2

2�2 + 2�
p

2⇡e�
T2

2�2 .

In summary, we have shown that for any T > 0,

��E
⇥
⇠f(⇠)

⇤
�E

⇥
⇣f(⇣)

⇤�� Tkfk1k���k1 + 4kfk1e�
T2

2�2 (T +�
p

2⇡).

On the other hand,
�� 1

2h
(f(t+h)� f(t�h))

�� kfk1
h

, so that
����E


1

2h
(f(⇠ +h)� f(⇠�h))

�
�E


1

2h
(f(⇣ +h)� f(⇣ �h))

�����
kfk1
h

k���k.

Combining, we conclude that for any T � 0,

E
⇥
⇠f(⇠)

⇤
�E


1

2h
(f(⇠ +h)� f(⇠�h))

�

E
⇥
⇣f(⇣)

⇤
�E


1

2h
(f(⇣ +h)� f(⇣ �h))

�
+ kfk1

✓
(h�1 +T )k���k1 + 4e�

T2

2�2 (T +�
p

2⇡)

◆

 4h2kfk1 + kfk1
✓

(h�1 +T )k���k1 + 4e�
T2

2�2 (T +�
p

2⇡)

◆
,

where the last line follows from the special case of normally distributed random variables.

Thus, to complete the lemma, it su�ces to show that

min
T>0

⇢
(h�1 +T )k���k1 + 4e�

T2

2�2 (T +�
p

2⇡)

�
 k���k1

�
h�1 + 24�2 � log

�
k���k1

��
.

This optimization does not admit a simple closed-form solution, so we instead first upper bound

the objective before optimizing. To this end, write

4e�
T2

2�2 (T +�
p

2⇡) = exp

✓
� T 2

2�2
+ log(4T + 4�

p
2⇡)

◆

 exp

✓
� T 2

2�2
+ 4T + 4�

p
2⇡� 1

◆
(since log(t)< t� 1)

= exp

✓
� T 2

2�2
+ 5T + 4�

p
2⇡� 1�T

◆

 exp

✓
25

2
�2 + 4�

p
2⇡� 1�T

◆
,
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where we’ve used the fact that the quadratic � T2

2�2 +5T is maximized at T ⇤ = 5�2. We further bound

this quantity noting that since �2 > 1, 25

2
�2 + 4�

p
2⇡ � 1  ( 25

2
+ 4

p
2⇡)�2  23�2. Substituting

above we have that

min
T>0

⇢
(h�1 +T )k���k1 + 4e�

T2

2�2 (T +�
p

2⇡)

�
 min

T>0

n
(h�1 +T )k���k1 + e�T+23�2

o
.

The solution to this second optimization can be found by di↵erentiation, and is

T ⇤ = 23�2 � log
�
k���k1

�
. Substituting in shows,

min
T>0

⇢
(h�1 +T )k���k1 + 4e�

T2

2�2 (T +�
p

2⇡)

�
 k���k1

�
1+h�1 + 23�2 � log

�
k���k1

��
.

Upperbounding 1 by �2 proves the theorem. ⇤

Appendix D: Proofs of the Results in Section 4

In Section D.1 below, we prove Theorem 4.3. The proof requires some auxiliary results, which are

proven in Section D.2.

D.1. Proof of Theorem 4.3.

In this section, we say a constant C is dimension-independent if C does not depend

on {n,m, �, h} but may depend on {⌫min,⌫max,Cµ,CA,�, s0,�min,�max}. The constants C1,C2

in Theorem 4.3 are dimension-independent. By Lemma C.1, it su�ces to bound

sup⌧�0

��µ̂>x(⌧, µ̂)�BBayes
n (⌧, h, µ̂)�µ>x(⌧, µ̂)

��. By the triangle inequality,

sup
⌧�0

����
1

n
(µ̂�µ)>x(⌧, µ̂)�BBayes

n (⌧, h, µ̂)

����Error from Rounding Primal Solution

+ Error from Approximating Dual Solution

+ Error from ULLN for Dual Approximation

+ Error from Approximating Stein’s Lemma

+ Error from ULLN for Bias Approximation

+ Error from Approximating Dual Solution in Bias

where

Error from Rounding Primal Solution:

sup
⌧�0

�����
1

n

nX

j=1

(µ̂j �µj)
�
xj(⌧, µ̂)� I(rj(⌧, µ̂j)>A>

j �(⌧, µ̂))
�
�����

Error from Approximating Dual Solution:

sup
⌧�0

�����
1

n

nX

j=1

(µ̂j �µj)
�
I(rj(⌧, µ̂j)>A>

j �(⌧, µ̂))� I(rj(⌧, µ̂j)>A>
j �(⌧))

�
�����

Error from ULLN for Dual Approximation:
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sup
⌧�0

�����
1

n

nX

j=1

(µ̂j �µj)I(rj(⌧, µ̂j)>A>
j �(⌧))�E[(µ̂j �µj)I(rj(⌧, µ̂j)>A>

j �(⌧))]

�����

Error from Approximating Stein’s Lemma:

sup
⌧�0

�����
1

n

nX

j=1

E[(µ̂j �µj)I(rj(⌧, µ̂j)>A>
j �(⌧))]� 1

2h
p
⌫j

P{
��rj(⌧, µ̂j)�A>

j �(⌧)
�� hj(⌧)}

�����

Error from ULLN for Bias Approximation:

sup
⌧�0

�����
1

n

nX

j=1

1

2h
p
⌫j

⇣
P
���rj(⌧, µ̂j)�A>

j �(⌧)
�� hj(⌧)

 
� I(

��rj(⌧, µ̂j)�A>
j �(⌧)

�� hj(⌧))
⌘�����

Error from Approximating Dual Solution in Bias:

sup
⌧�0

�����
1

n

nX

j=1

1

2h
p
⌫j

�
I(
��rj(⌧, µ̂j)�A>

j �(⌧)
�� hj(⌧))� I(

��rj(⌧, µ̂j)�A>
j �(⌧, µ̂)

�� hj(⌧))
�
�����

Lemmas D.6, D.7, D.8, D.9, D.10, and D.11 below bound each of these sources of error. In

particular, there exists a positive, dimension-independent constant C1 such that

sup
⌧�0

�����
1

n
(µ̂�µ)>x(⌧, µ̂)�BBayes

n (⌧, h, µ̂)

����� C1

✓
h2 +

�

h
+

TV

h
�TV log(TV)

◆
+R0 +R1 +R2 +R3 +R4

where R0, . . . ,R4 are the stochastic remainders from these lemmas, and C1 is the maximum of

the relevant constants from these lemmas. In this bound, we have also used the fact that h< 1 to

bound �< �/h and TV<TV/h.

Next, define the dimension-independent constant

�max ⌘
2

s0

✓
⌫max

⌫min

✓
Cµ +

1
p
⌫max

◆
+ 1

◆
,

where s0 is the slack parameter from Assumption 4.1, and the event

E =

⇢
sup
⌧�0

k�(⌧, µ̂)k1  �max, sup
⌧�0

k�(⌧, µ̂)��(⌧)k  �, and sup
⌧�0

k�(⌧)k1  �max

�
, (D.1)

Then Lemmas D.6, D.7, D.8, D.9, D.10, and D.11 also provide explicit, positive, dimension-

independent constants C3, . . . ,C7 such that

P{R0 +R1 +R2 +R3 +R4 > 6✏}

 P{Ec}+P{R0 +R1 +R2 +R3 +R4 > 6✏ and E}

 85exp

 
� C3�

p
n

(m+ 1)
p

log(m+ 1)

!
log

 
1+

(m+ 1)
p

log(m+ 1)

C3�
p
n

!
+ 5exp

✓
� n2✏2⌫min

32�2m2 logn

◆

+ 25exp

 
� C4✏

p
np

(m+ 1) log(m+ 1)

!
+ 25exp

 
� C5✏

p
np

(m+ 1) log(m+ 1)

!

+ 25exp

 
� C6✏h

p
np

(m+ 1) log(m+ 1)

!
+ 50exp

 
� C7✏h

p
np

(m+ 1) log(m+ 1)

!
.
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We can simplify this bound by letting C2 = min(C3, . . . ,C7,
⌫min

32�2 ) and using the fact that h < 1

to combine the last 4 terms. Moreover,

✏� (m+ 1)3/2 logn

n3/2
p

log(m+ 1)
=) ✏� m2 logn

n3/2
p

(m+ 1) log(m+ 1)
() ✏2n2

m2 logn
� ✏

p
np

(m+ 1) log(m+ 1)

Consequently, we can upperbound the second term by 5exp

✓
� C2✏h

p
np

(m+1) log(m+1)

◆
. Combining yields,

sup
⌧�0

����
1

n
(µ̂�µ)>x(⌧, µ̂)�BBayes

n (⌧, h, µ̂)

����C1

✓
h2 +

�

h
+

TV

h
�TV log(TV)

◆
+R,

where

P{R> 6✏} 130

 
exp

 
�C2�

p
n

(m+ 1)
p

log(m+ 1)

!
log

 
1+

(m+ 1)
p

log(m+ 1)

C2�
p
n

!
+ exp

 
� C2✏h

p
np

(m+ 1) log(m+ 1)

!!
.

⇤

D.2. Auxiliary Lemmas for Theorem 4.3.

We first establish the pseudo-dimension of several di↵erent sets that arise in the proof. This lemma

will be used to prove the uniform convergence of various quantities.

Lemma D.1 (Pseudo-dimensions of Key Sets) For each µ̂ 2 Rn, A 2 Rm⇥n, c 2 Rn, h 2 R,
and K 2R, the pseudo-dimension of

i)
n�

I(rj(⌧, µ̂1)�A>
j �> cj) | j = 1, . . . , n

�
2 {0,1}n : �2Rm, ⌧ 2R

o
is at most 2m+ 2,

ii)
��

rj(⌧, µ̂j)�A>
j � | j = 1, . . . , n

�
2Rn : �2Rm, ⌧ 2R

 
is at most 2m+ 2,

iii)
n⇣

I
���rj(⌧, µ̂j)�A>

j �
�� cj

�
2 {0,1}n | j = 1, . . . , n

⌘
: �2Rm, ⌧ 2R

o
is at most 10(2m+ 2),

iv)
��

(µ̂j �µj)I(rj(⌧, µ̂j)�A>
j �> cj) | j = 1, . . . , n

�
2Rn : �2Rm, ⌧ 2R

 
is at most 2m+ 2,

v)
n⇣

I
���rj(⌧, µ̂j)�A>

j �
�� rj(⌧, h) +K

�
| j = 1, . . . , n

⌘
2 {0,1}n : �2Rm, ⌧ 2R

o
is at most

10(2m+ 2).

vi)
n⇣

I
�
rj(⌧, h)

��rj(⌧, µ̂j)�A>
j �
�� rj(⌧, h) +K

�
| j = 1, . . . , n

⌘
2 {0,1}n : �2Rm, ⌧ 2R

o
is

at most 100(2m+ 2).

Proof: i) Note that I
�
rj(⌧, µ̂j)�A>

j �> cj
�

= I(⌫j(µ̂j � cj)� (
⌫j µ̂j

⌫min

� cj)⌧ � ⌫jA>
j �� ⌧A>

j �> 0),

and that

⇢✓
⌫j(µ̂j � cj)�

✓
⌫jµ̂j

⌫min

� cj

◆
⌧ � ⌫jA

>
j �� ⌧A>

j � | j = 1, . . . , n

◆
2Rn : �2Rm, ⌧ 2R

�

lives in an a�ne subspace of dimension at most 2m + 2. By Lemma 4.4 in Pollard (1990), the

pseudo-dimension of the set
n�

I(rj(⌧, µ̂1)�A>
j �> cj) | j = 1, . . . , n

�
2 {0,1}n : � 2Rm, ⌧ 2R

o
is

therefore at most 2m+ 2.
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ii) Suppose by contradiction the statement were false. Then, there exists J ✓ {1, . . . , n} with

|J |= 2m+ 3 and c2Rn such that

�� ��I(rj(⌧, µ̂j)�A>
j �> cj) | j 2J

�
2 {0,1}|J | : �2Rm, ⌧ 2R

 ��= 22m+3

We then claim that for the set defined in part i) with this c, 0 is a witness to the shattering of J .

In particular, observe, that

����I
�
I(rj(⌧, µ̂j)�A>

j �> cj)> 0
�
| j 2J

�
2 {0,1}|J | : �2Rm, ⌧ 2R

 ��

=
��� �I(rj(⌧, µ̂j)�A>

j �> cj) | j 2J
�
2 {0,1}|J | : �2Rm, ⌧ 2R

 �� = 22m+3,

which contradicts part i).

iii) For any (⌧,�), the binary vector
�
I(
��rj(⌧, µ̂j)�A>

j �
�� cj) | j = 1, . . . , n

�
is the pointwise min-

imum of
�
I(rj(⌧, µ̂j)�A>

j � cj) | j = 1, . . . , n
�

and
�
I(�rj(⌧, µ̂j) +A>

j � cj) | j = 1, . . . , n
�
. By

part i), the pseudo-dimension of
��

I(rj(⌧, µ̂j)�A>
j �> cj) | j = 1, . . . , n

�
2 {0,1}n :�2Rm, ⌧ 2R

 

is at most 2m+ 2. Analogous arguments show the pseudo-dimesion of these two sets are at most

2m+ 2. By Lemma 5.1 in Pollard (1990), the pseudo-dimension of the pointwise minimum is at

most 10(2m+ 2).

iv) Suppose by contradiction the statement were false. Then, there exists J ✓ {1, . . . , n} with

|J |= 2m+ 3 and c2Rn such that
���
n ⇣

I
⇣
(µ̂j �µj)I(rj(⌧, µ̂j)�A>

j �> cj) > cj
⌘ �� j 2J

⌘
2 {0,1}|J | :�2Rm, ⌧ 2R

o���= 22m+3

This would imply that the vector (cj/(µ̂j �µj) | j 2J ) witnesses the shattering of J for the set

defined in part i), a contradiction.

v) This set is the pointwise minimum of the following two subsets:

��
I(rj(⌧, µ̂j)�A>

j ���rj(⌧, h)�K) | j = 1, . . . , n
�
2 {0,1}n : �2Rm, ⌧ 2R

 

��
I(rj(⌧, µ̂j)�A>

j � rj(⌧, h) +K) | j = 1, . . . , n
�
2 {0,1}n : �2Rm, ⌧ 2R

 

Consider the first set. Since rj(⌧, µ̂j) + rj(⌧, h) = rj(⌧, µ̂j +h), this set is of the form considered in

part i), so its pseudo-dimension is at most 2m+2. An analogous argument holds for the second set.

By Lemma 5.1 in Pollard (1990), the pointwise minimum has pseudo-dimension at most 10(2m+2).

vi) This set is the pointwise minimum of the following two subsets:
n⇣

I
���rj(⌧, µ̂j)�A>

j �
�� rj(⌧, h) +K

�
| j = 1, . . . , n

⌘
2 {0,1}n : �2Rm, ⌧ 2R

o

n⇣
I
�
rj(⌧, h)

��rj(⌧, µ̂j)�A>
j �
��� | j = 1, . . . , n

⌘
2 {0,1}n : �2Rm, ⌧ 2R

o
.

Part v) proves the first set has pseudo-dimension at most 10(2m + 2). An analogous argument

applies to the second. By Lemma 5.1 in Pollard (1990), the pseudo-dimension of the pointwise

minimum is at most 100(2m+ 2). ⇤
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We also require the following concentration result. Note that
�� 1
n
r(⌧, µ̂)>x(⌧, µ̂)

�� 
1

n

Pn
j=1

|rj(⌧, µ̂)| (since xj(⌧, µ̂) 2 [0,1]), so this result e↵ectively bounds the objective value of

Eq. (3.1).

Lemma D.2 (Concentration of kr(⌧, µ̂)k1) For all ⌧ � 0,

i) 1

n

Pn
j=1

E[|rj(⌧, µ̂)|] ⌫max

⌫min

�
Cµ + 1/

p
⌫max

�
.

ii) P
⇣
sup⌧�0

��� 1n
Pn

j=1
(|rj(⌧, µ̂)|�E[|rj(⌧, µ̂)|])

���> t
⌘

 2exp
⇣
� n⌫3

min
t2

72⌫2max �2

⌘
.

Proof: Notice 0<
⌫j

⌫j+⌧
· ⌫min+⌧

⌫min

 ⌫j
⌫min

. Hence,

|rj(⌧, µ̂)| ⌫j
⌫min

|µ̂j|
⌫j
⌫min

(|µ̂j �µj|+ |µj|)
⌫j
⌫min

(|µ̂j �µj|+Cµ) ,

where second inequality is the triangle inequality. Then, by Jensen’s inequality,

E[|µ̂j �µj|] =E
q

(µ̂j �µj)2
�

q

E [(µ̂j �µj)2] = 1/
p
⌫j.

Combining shows E[|rj(⌧, µ̂)|]  ⌫j
⌫min

�
Cµ + 1/

p
⌫j
�
 ⌫max

⌫min

�
Cµ + 1/

p
⌫max

�
. Averaging over j proves

the first claim.

For the second claim, first consider the special case ⌧ = 0, i.e., P
⇣

1

n

���
Pn

j=1
(|µ̂j|�E[|µ̂j|])

���> t
⌘
.

We will first prove that |µ̂j|�E[|µ̂j|] is sub-Gaussian with variance proxy at most 36�2/⌫j. Let µ̃j

be an i.i.d. copy of µ̂j. Then, for any a> 0,

E
h
exp

⇣
a (|µ̂j|�E[|µ̂j|])2

⌘i
E

h
exp

⇣
a (|µ̂j|� |µ̃j|)2

⌘i
(Jensen’s Inequality)

E
h
exp

⇣
a (|µ̂j � µ̃j|)2

⌘i
(Triangle-Inequality)

= 1+

Z 1

1

P
⇣
ea(µ̂j�µ̃j)

2
> t
⌘
dt (Tail Formula for Expectation)

= 1+

Z 1

1

P
 
|µ̂j � µ̃j|>

r
log t

a

!
dt

Note that because µ̂j and µ̃j are i.i.d., µ̂j � µ̃j is mean-zero, and sub-Gaussian with variance proxy

at most 2�2/⌫j. From the usual sub-Gaussian tail-bound then,

E
h
exp

⇣
a (|µ̂j|�E[|µ̂j|])2

⌘i
 1+ 2

Z 1

1

e�⌫j
log t
4a�2 dt = 1+ 2

Z 1

1

t
�⌫j
4a�2 dt

For a = ⌫j/12�2, this integral converges and can be evaluated explicitly, yielding

E
h
exp

⇣
a (|µ̂j|�E[|µ̂j|])2

⌘i
 2. By (Rivasplata 2012, Theorem 3.1, Part 3)), it follows that |µ̂j|�

E[|µ̂j|] is sub-Gaussian with variance proxy at most 3/a= 36�2/⌫j.

The standard sub-Gaussian concentration shows

P

 �����
1

n

nX

j=1

⇣
|µ̂j|�E [|µ̂j|]

⌘�����> t

!
 2exp

✓
�n⌫min t2

72�2

◆
(D.2)
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Finally, since

||rj(⌧, µ̂j)|�E[|rj(⌧, µ̂j)|]|  ⌫j
⌫min

·
��� |µ̂j|�E[|µ̂j|]

���  ⌫max

⌫min

·
��� |µ̂j|�E[|µ̂j|]

���,

we have

P
 

sup
⌧�0

�����
1

n

nX

j=1

�
|rj(⌧, µ̂)|�E [|rj(⌧, µ̂)|]

�
�����> t

!
 P

 �����
1

n

nX

j=1

�
|µ̂j|�E [|µ̂j|]

�
�����>

⌫mint

⌫max

!

 2exp

✓
� n⌫3

min
t2

72⌫2
max

�2

◆
.

This completes the proof.

⇤
As the first step in the proof of Theorem 4.3, we observe that the solutions to the original dual

problem min��0Dµ̂(�, ⌧) and the “average” dual problem min��0D(�, ⌧) are uniformly bounded,

and are uniformly close to one another with high probability. Recall from the proof of Theorem 4.3

the dimension-independent constant

�max ⌘
2

s0

✓
⌫max

⌫min

✓
Cµ +

1
p
⌫max

◆
+ 1

◆
,

and event

E =

⇢
sup
⌧�0

k�(⌧, µ̂)k1  �max, sup
⌧�0

k�(⌧, µ̂)��(⌧)k  �, and sup
⌧�0

k�(⌧)k1  �max

�
.

We will show that E occurs with high probability in three steps. In Lemma D.3, we show that the

optimal solutions to both dual problems are uniformly bounded by �max with high probability. We

then prove the strong convexity of � 7!D(�, ⌧) (Lemma D.4), and we will use that result to show

that E occurs with high probability (Lemma D.5).

Lemma D.3 (Optimal Dual Variables Bounded)

i) sup⌧�0
k�(⌧)k1 < �max.

ii) P
⇢

sup
⌧�0

k�n(⌧, µ̂)k1 � �max

�
 2exp

✓
� n⌫3

min

72⌫2
max

�2

◆
.

Proof: By optimality, D(⌧,�(⌧)) D(⌧,0)  1

n
E [kr(⌧, µ̂)k1]. Since �(⌧) � 0, we have k�(⌧)k1 =

e>�(⌧). Thus,

k�(⌧)k1 max
��0

e>�

s.t. b>�+
1

n

nX

j=1

E
⇥
(rj(⌧, µ̂)�A>

j �)+
⇤
 1

n
E[kr(⌧, µ̂)k1].
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Since X is s0-strictly feasible, by Lagrangian duality

k�(⌧)k1 max
��0

e>�+
1

s0

 
1

n
E[kr(⌧, µ̂)k1]� b>�� 1

n

nX

j=1

E[(rj �A>
j �)+]

!

= max
��0

e>�+
1

s0

 
1

n
E[kr(⌧, µ̂)k1]� b>�� 1

n

nX

j=1

E[ max
xj2[0,1]

xj(rj �A>
j �)]

!

max
��0

e>�+
1

s0

 
1

n
E[kr(⌧, µ̂)k1]� b>�� 1

n

nX

j=1

E[x0

j(rj �A>
j �)]

!

= max
��0

✓
e� 1

s0
b+

1

ns0
Ax0

◆>

�+
1

ns0

�
E[kr(⌧, µ̂)k1]�E

⇥
r(⌧, µ̂)>x0

⇤�

By Assumption 4.1, 1

n
Ax0+s0e b () e� 1

s0
b+ 1

ns0
Ax0  0, which implies that �= 0 is optimal

for this last optimization problem. Thus, for all ⌧ � 0,

k�(⌧)k1 =
1

ns0

�
E[kr(⌧, µ̂)k1]�E

⇥
r(⌧, µ̂)>x0

⇤�
,

 2

ns0
E[kr(⌧, µ̂)k1] (since x0 2 [0,1]n)

 �max (by Lemma D.2).

This proves the first statement.

For the second statement, we follow an identical sequence of steps using Dµ̂(⌧,�(⌧, µ̂)) to con-

clude that k�(⌧, µ̂)k1  2

ns0
kr(⌧, µ̂)k1. Then, by definition of �max and Lemma D.2,

P
✓

sup
⌧�0

k�(⌧, µ̂)k1 > �max

◆
 P

✓
sup
⌧�0

1

n
kr(⌧, µ̂)k1 >

⌫max

⌫min

(Cµ + 1/
p
⌫max) + 1

◆

 P
✓

sup
⌧�0

1

n

�
kr(⌧, µ̂)k1 �E [kr(⌧, µ̂)k1]

�
> 1

◆

 2exp

✓
� n⌫3

min

72⌫2
max

�2

◆

This completes the proof. ⇤

Lemma D.4 (Strong Convexity of Average Dual) There exists a dimension-independent

constant  > 0 such that the function � 7!D(⌧,�) is -strongly convex for all � 2 Rm
+

such that

k�k1  �max.

Proof: The Hessian (in terms of �) of D(⌧,�) is

H� �D(⌧,�) =
1

n

nX

j=1

@2

@s2
E[(rj(⌧, µ̂j)� s)+]

�����
s=A>

j �

·AjA
>
j .

To show this matrix is strictly positive definite, we first study the function s 7! E[(rj(⌧, µ̂j) �

s)+]. Intuitively, this function is not strongly convex over the whole real line (at the extremes it
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approaches linear), but it is strongly convex on any bounded interval. By di↵erentiating under the

integral sign

@2

@s2
E[(rj(⌧, µ̂j)� s)+] = P (rj(⌧, µ̂j) = s)

= P
✓
µ̂j =

⌫min

⌫min + ⌧

⌫j + ⌧

⌫j
s

◆

= P
✓
p
⌫j(µ̂j �µj) =

✓
⌫min

⌫min + ⌧

⌫j + ⌧

⌫j
s�µj

◆
p
⌫j

◆
.

Furthermore, for k�k1  �max,

����
p
⌫j

✓
⌫min

⌫min + ⌧

⌫j + ⌧

⌫j
s�µj

◆����

�����
s=A>

j �

p
⌫j
���A>

j �
��+ |µj|

�

p
⌫max (CA�max +Cµ) ,

by the Cauchy-Schwarz inequality and assumptions on parameters. By Assumption 4.2, then,

@2

@s2
E[(rj(⌧, µ̂j)�s)+]

�����
s=A>

j �

= P
✓
µ̂j =

⌫min

⌫min + ⌧

⌫j + ⌧

⌫j
s

◆�����
s=A>

j �

� �min (
p
⌫max (CA�max +Cµ)) > 0.

Now let �min(·) denote the minimal eigenvalue of a symmetric, positive definite matrix. Then,

in light of the above,

�min (H� �D(⌧,�))� �min (
p
⌫max (CA�max +Cµ))�min

 
1

n

nX

j=1

AjA
>
j

!

� �min (
p
⌫max (CA�max +Cµ))�.

Take  to be �min

�p
⌫max (CA�max +Cµ)

�
� to complete the proof.

⇤
We can now prove that E defined in Equation (D.1) occurs with high probability.

Lemma D.5 (Uniform Convergence of Dual Solutions) There exists a positive, dimension-

independent constant C such that

P{Ec} 86exp

 
�C�

p
n

(m+ 1)
p

log(m+ 1)

!
log

 
1+

(m+ 1)
p

log(m+ 1)

C�
p
n

!
.

Proof: If sup⌧�0
k�(⌧, µ̂)k1  �max, then, combining strong convexity (Lemma D.4) with

Dµ̂(⌧,�(⌧, µ̂))Dµ̂(⌧,�(⌧)), write

D(⌧,�(⌧, µ̂))�Dµ̂(⌧,�(⌧, µ̂))� (D(⌧,�(⌧))�Dµ̂(⌧,�(⌧)))� 

2
k�(⌧, µ̂)��(⌧)k2

2
. (D.3)

For k in the integers, define the set of functions

Sk =

⇢
h :R+ 7!Rm

+
| 2k�1 

p
n sup

⌧�0

kh(⌧)��(⌧)k2 < 2k

�
.
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If �(·, µ̂)2 Sk, then Equation (D.3) implies

sup
⌧,h(·)2Sk

|D(⌧,h(⌧))�Dµ̂(⌧,h(⌧))� (D(⌧,�(⌧))�Dµ̂(⌧,�(⌧)))| � 22k�2

2n
. (D.4)

We first bound the probability of this event by bounding the increments of the stochastic process

(⌧,h(·)) 7!Dµ̂(⌧,�(⌧))�Dµ̂(⌧,h(⌧))�
�
D(⌧,�(⌧))�D(⌧,h(⌧))

�
.

By writing out the definitions of Dµ̂ and D, we recognize this stochastic process as the di↵erence

between an empirical average and its expectation. We will apply the first part of Theorem A.2.

Let Fj(µ̂j) =CA2k
p
m/n for all j. Note that Fj(·) is a constant function. We will show that it

is an envelope. Note that

��[rj(⌧, µ̂j)�A>
j �(⌧)]+ � [rj(⌧, µ̂j)�A>

j h(⌧)]+
��


��A>

j (�(⌧)�h(⌧))
��  kAjk22k/

p
n  CA2k

p
m/n = Fj(µ̂j),

so that kkF (µ̂)k2k CA2k
p
m by Lemma A.1. Let

F1 ⌘
��

[rj(⌧, µ̂j)�A>
j �(⌧)]+ � [rj(⌧, µ̂j)�A>

j h(⌧)]+ | j = 1, . . . , n
�
2Rn : ⌧ 2R,h(·)2 Sk

 

F2 ⌘
��

[rj(⌧, µ̂j)�A>
j �]+ � [rj(⌧, µ̂j)�A>

j h]+ | j = 1, . . . , n
�
2Rn : ⌧ 2R,�2Rm,h2Rm

 
.

We next show that Equation (A.2) holds for F1 and determine an upper bound for V (A,W ).

Observe that since F1 ✓ F2, it follows that M(✏kF (µ̂)k2,F1) M(✏kF (µ̂)k2,F2). To bound the

packing number for F2, note that F2 is a pointwise di↵erence of sets of the form,

F3 ⌘
��

[rj(⌧, µ̂j)�A>
j �]+ | j = 1, . . . , n

�
2Rn : ⌧ 2R,�2Rm

 
.

so by Page 22 in Pollard (1990), M(✏kF (µ̂)k2,F2)M(✏kF (µ̂)k2/4,F3)2.

The function (f1, . . . , fn) 7! (f+

1
, . . . , f+

n ) is a contraction mapping from Rn 7!Rn. Thus, by (Pol-

lard 1990, pg. 23-24), the packing numbers of F3 are upperbounded by the packing numbers of

��
[rj(⌧, µ̂j)�A>

j �] | j = 1, . . . , n
�
2Rn : ⌧ 2R,�2Rm

 
.

Part ii) of Lemma D.1 shows the pseudo-dimension of this last set is at most 2m+2. Theorem A.3

shows that for V = 2m + 2, Wm = 4V , Am = V 6V , we have M(✏kF (µ̂)k2/4,F3)  Am22Wm✏�Wm .

Substituting back yields M(✏kF (µ̂)k2,F1) A2

m24Wm✏�2Wm , which proves that F1 satisfies Equa-

tion (A.2) with A=A2

m24Wm and W = 2Wm.

To bound V (A,W ), note that

logA = 4Wm log 2+ 2 logAm = 16V log 2+ 12V logV.
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Moreover, W = 2Wm = 8V . Hence,

V (A,W ) =
W + logAp

logA

=
(8+ 16 log 2)V + 12V logVp

16V log 2+ 12V logV

 20V + 12V logVp
12V logV

 52p
12

p
V logV (since 2 logV � 1 for V � 2)

 16
p
V logV

 32
p

(m+ 1) log(m+ 1),

where the last line uses the fact that V = 2(m+ 1) and m� 1. Finally, applying Theorem A.2 to

Equation (D.4) proves

P
⇢

sup
⌧�0

k�(⌧, µ̂)k1 �max and �(·, µ̂)2 Sk,n

�
 25exp

 
�C12k

(m+ 1)
p

log(m+ 1)

!
.

where C1 = 
23·9·32CA

.

We use the above bound to decompose the P{Ec} into “peels” indexed by k:

P
⇢

sup
⌧�0

k�(⌧, µ̂)k  �max and sup
⌧�0

k�(⌧)��(⌧, µ̂)k2 � �

�


1X

k=dlog2(�
p
n)e

P
⇢

sup
⌧�0

k�(⌧, µ̂)k  �max and �(·, µ̂)2 Sk,n

�

 25
1X

k=dlog2(�
p
n)e

exp

 
�C12k

(m+ 1)
p

log(m+ 1)

!

 25

Z 1

log2(�
p
n)

exp

 
�C12x

(m+ 1)
p

log(m+ 1)

!
dx =

25

log 2

Z 1

C1�
p
n

(m+1)
p

log(m+1)

exp(�u)
du

u
,

where the last inequality follows by making the change of variables u = C1

(m+1)

p
log(m+1)

2x. We

recognize the last integral as the exponential integral which admits the bound
Z 1

x

exp(�t)
dt

t
 exp(�x) log(1+ 1/x) for x> 0.

Applying this bound and combining with Lemma D.3 yields:

P{Ec} 25

log 2
exp

 
�C1�

p
n

(m+ 1)
p

log(m+ 1)

!
log

 
1+

(m+ 1)
p

log(m+ 1)

C1�
p
n

!
+ 2exp

✓
� n⌫3

min

72⌫2
max

�2

◆
.

To “clean up” the right-hand side, observe that for 0  �  1, �

(m+1)

p
log(m+1)

 1 and, for n �

2,
p
n  n, so we can bound the second term by 2exp

✓
� ⌫3

min
�
p
n

72⌫2max�2(m+1)

p
log(m+1)

◆
. Then, let

C = min

✓
C1,

⌫3

min

72⌫2
max

�2

◆
and note that 25/ log(2) + 2< 86 to prove the lemma. ⇤



ec22 e-companion to Small-Data, Large-Scale Linear Optimization

We can now proceed to bound the various terms in the proof of Theorem 4.3.

Lemma D.6 (Rounding the Primal Solution)

sup
⌧�0

�����
1

n

nX

j=1

(µ̂j �µj)
�
xj(⌧, µ̂)� I(rj(⌧, µ̂j)>A>

j �(⌧, µ̂))
�
�����R0,

where P{R0 � ✏} 5exp
⇣

�n2✏2⌫min

32�2m2 logn

⌘
.

Proof: By complementary slackness, xj(⌧, µ̂) = I(rj(⌧, µ̂j)>A>
j �(⌧, µ̂)) except possibly for m frac-

tional terms. These fractional terms contribute at most m
n

maxj |µ̂j �µj| m
n
p
⌫min

maxj |⇣j| where ⇣j

are each standardized random variables with sub-Gaussian parameter �2. Let R0 = m
n
p
⌫min

maxj |⇣j|.
Then, by Markov’s inequality, for any C > 0,

P (R0 > t) = P
✓

max
j

|⇣j|>
tn
p
⌫min

m

◆
= P

✓
 

✓
max

j
|⇣j|/C

◆
> 

✓
tn
p
⌫min

Cm

◆◆

 5exp

✓
�n2t2⌫min

m2C2

◆
·E

 

✓
maxj |⇣j|

C

◆�
,

where again  (t) = 1

5
exp(t2) defines an Orlicz-norm. Let C = 2�

p
2+ logn. Then, by part iii) of

Lemma A.1 it follows that

P (R0 > ✏) 5exp

✓
�n2✏2⌫min

4�2m2(2+ logn)

◆
.

We can simplify this result slightly since n� 2 implies (2+ logn) 8 logn. Substituting this upper

bound and simplifying completes the lemma. ⇤

Lemma D.7 (Approximating the Dual Solution) Recall E defined in Equation (D.1). There

exist positive dimension-independent constants C1,C2 such that,

sup
⌧�0

�����
1

n

nX

j=1

(µj � µ̂j)
⇣
I(rj(⌧, µ̂j)>A>

j �(⌧, µ̂)) � I(rj(⌧, µ̂j)>A>
j �(⌧))

⌘�����  C1�+R1 (D.5)

where P{E and R1 > ✏} 25exp

✓
�C2✏

p
np

(m+1) log(m+1)

◆
.

Proof: Restrict attention to paths where E occurs. Only terms where the two indicator functions

di↵er in Equation (D.5) contribute to the sum. If the first indicator is 1 while the second is zero,

then

A>
j �(⌧, µ̂)< rj(⌧, µ̂j)A>

j �(⌧) =) A>
j �(⌧)�CA� rj(⌧, µ̂j)A>

j �(⌧) +CA�.

If the first indicator is zero, while the second is one, a similar implication holds. Consequently,

���(µj � µ̂j)
⇣
I(rj(⌧, µ̂j)>A>

j �(⌧, µ̂)) � I(rj(⌧, µ̂j)>A>
j �(⌧))

⌘��� |µj � µ̂j| I
���rj(⌧, µ̂)�A>

j �(⌧)
��CA�

�
.
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Next, note
⌫j+⌧

⌫j

⌫min

⌫min+⌧
 1 for all ⌧ � 0. Hence,

��rj(⌧, µ̂)�A>
j �(⌧)

��CA� ()
����µ̂j �

⌫j + ⌧

⌫j

⌫min

⌫min + ⌧
A>

j �(⌧)

����CA�
⌫j + ⌧

⌫j

⌫min

⌫min + ⌧

=) |µ̂j|
⌫j + ⌧

⌫j

⌫min

⌫min + ⌧

�
CA�+

��A>
j �(⌧)

���

=) |µ̂j|CA�+
��A>

j �(⌧)
��

=) |µ̂j|CA(�+�max),

Let K0 ⌘Cµ +CA(�max + �). Then, these implications prove that if
��rj(⌧, µ̂)�A>

j �(⌧)
��CA�, then

|µj � µ̂j|  Cµ + |µ̂j|  Cµ +CA(�max + �) = K0.

We combine these observations to simplify our original supremum:

sup
⌧�0

�����
1

n

nX

j=1

(µj � µ̂j)
⇣
I(rj(⌧, µ̂j)>A>

j �(⌧, µ̂)) � I(rj(⌧, µ̂j)>A>
j �(⌧))

⌘�����

 K0 sup
⌧�0

1

n

nX

j=1

I(
��rj(⌧, µ̂)�A>

j �(⌧)
��CA�)

 K0 sup
⌧�0

1

n

nX

j=1

P{
��rj(⌧, µ̂j)�A>

j �(⌧)
��CA�}

+K0 sup
⌧�0

�����
1

n

nX

j=1

I(
��rj(⌧, µ̂j)�A>

j �(⌧)
��CA�)�P

���rj(⌧, µ̂j)�A>
j �(⌧)

��CA�
 
����� .

We will now bound each of these two supremums. Let ⇣j =
p
⌫j(µ̂j � µj) be a standardized

increment. Then, P{
��rj(⌧, µ̂j)�A>

j �(⌧)
��  CA�} = P{|⇣j � s|  CA�

⌫j+⌧

⌫j

⌫min+⌧
⌫min

p
⌫j}, where s =

p
⌫j
⇣
A>

j �(⌧)
⌫j+⌧

⌫j

⌫min+⌧
⌫min

�µj

⌘
. For any ⌧ � 0,

⌫j+⌧

⌫j

⌫min+⌧
⌫min

p
⌫j 

p
⌫max. By Assumption 4.2, this

probability is thus at most 2CA�max
p
⌫max, and thus the first supremum is bounded by C1� where

C1 = 2K0CA�max
p
⌫max.

We use Theorem A.2 to bound the probability that the second supremum exceeds ✏. Take the

envelopes Fj(µ̂j) to be K0 so that kkF (µ̂)k2k = K0

p
n by Lemma A.1. Part iii) of Lemma D.1

shows that the pseudo-dimension of
��

I(
��rj(⌧, µ̂)�A>

j �(⌧)
��CA�) | j = 1, . . . , n

�
2Rn : ⌧ � 0

 
is

at most 10(2m+ 2), so that, for m� 1,

V (A,W )  6
p

20(m+ 1) log(20(m+ 1))  6
p

40
p

(m+ 1) log(m+ 1)  38
p

(m+ 1) log(m+ 1),

where the last inequality follows because m� 1. Applying Theorem A.2 shows that

P
(
K0 sup

⌧�0

�����
1

n

nX

j=1

I(
��rj(⌧, µ̂j)�A>

j �(⌧)
��CA�)�P

���rj(⌧, µ̂j)�A>
j �(⌧)

��CA�
 
�����> ✏

)

 25exp

 
�C2✏

p
np

(m+ 1) log(m+ 1)

!
,

where C2 = (9K0 · 38)�1. This completes the proof. ⇤
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Lemma D.8 (ULLN for Dual Approximation) There exists a positive, dimension-

independent constant C such that

sup
⌧�0

�����
1

n

nX

j=1

(µj � µ̂j)I(rj(⌧, µ̂j)>A>
j �(⌧))�E

⇥
(µj � µ̂j)I(rj(⌧, µ̂j)>A>

j �(⌧))
⇤
�����R2

where P{R2 > ✏} 25exp

✓
� C✏

p
np

(m+1) log(m+1)

◆
.

Proof: We apply Theorem A.2 with envelopes Fj(µ̂j) ⌘ |µj � µ̂j|. From Lemma A.1,

kkF (µ̂)k2k  �
q

2

⌫min

p
n. Part iv) of Lemma D.1 shows the the pseudo-dimension of the set

n⇣
(µj � µ̂j)I(rj(⌧, µ̂j)>A>

j �(⌧)) | j = 1, . . . , n
⌘
2Rn : ⌧ � 0

o
is at most 2(m + 1). By Theorem

A.3, its packing numbers satisfy Equation (A.2), and, since m� 1,

V (A,W )  6
p

2(m+ 1) log(2(m+ 1))  12
p

(m+ 1) log(m+ 1).

Substituting in these numbers proves the lemma for C =
p
⌫min

9·12�
p
2
. ⇤

Lemma D.9 (Approximating Stein’s Lemma) For any 0 < h < 1, let hj(⌧) =
(⌫min+⌧)p⌫j
⌫min(⌫j+⌧)

h =

rj(⌧, h/
p
⌫j). Then, for each j = 1, . . . , n,
����E
⇥
(µj � µ̂j)I(rj(⌧, µ̂j)>A>

j �(⌧))
⇤
+

1

2h
p
⌫j
P
���rj(⌧, µ̂j)�A>

j �(⌧)
�� hj(⌧)

 ����

 4h2

p
⌫min

+
k�j ��k1p

⌫min

�
h�1 + 24�2 � log (k�j ��k1)

�
.

Moreover,

1

n

nX

j=1

����E
⇥
(µj � µ̂j)I(rj(⌧, µ̂j)>A>

j �(⌧))
⇤
+

1

2h
p
⌫j
P
���rj(⌧, µ̂j)�A>

j �(⌧)
�� hj(⌧)

 ����

 4h2

p
⌫min

+
2TV
p
⌫min

�
h�1 + 24�2 � log (2TV)

�
.

Proof: Let ⇣j =
p
⌫j(µ̂j �µj), and define the function

f(t) =
�1
p
⌫j
I(rj(⌧, t/

p
⌫j +µj)>A>

j �(⌧)).

Then, E
⇥
(µj � µ̂j)I(rj(⌧, µ̂j)>A>

j �(⌧))
⇤
=E[⇣jf(⇣j)]. We apply Lemma C.2 to this function. It is

bounded by 1/
p
⌫j. Moreover

E


1

2h

�
f(⇣j +h)� f(⇣j �h)

��
=

1

2h
p
⌫j
E

I
�
rj(⌧, ⇣j/

p
⌫j +µj)�A>

j �(⌧)>�rj(⌧, h/
p
⌫j)
�

� I
�
rj(⌧, ⇣j/

p
⌫j +µj)�A>

j �(⌧)> rj(⌧, h/
p
⌫j)
��

=
1

2h
p
⌫j
P
n��rj(⌧, ⇣j/

p
⌫j +µj)�A>

j �(⌧)
�� rj(⌧, h/

p
⌫j)
o

=
1

2h
p
⌫j
P
n��rj(⌧, µ̂j)�A>

j �(⌧)
�� hj(⌧)

o
.
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Applying Lemma C.2 yields the first result. The second follows by summing and applying Jensen’s

inequality. ⇤

Lemma D.10 (ULLN for Bias Approximation) There exists a positive, dimension-

independent constant C such that

sup
⌧�0

�����
1

n

nX

j=1

1

2h
p
⌫j

�
I(
��rj(⌧, µ̂j)�A>

j �(⌧)
�� hj(⌧))�P

���rj(⌧, µ̂j)�A>
j �(⌧)

�� hj(⌧)
 �
�����<R3

where P{R3 > ✏} 25exp

✓
�C✏h

p
np

(m+1) log(m+1)

◆
.

Proof: We again apply Theorem A.2. Take the envelope to be 1

2h
p
⌫min

, so

that kkF (µ̂)k2k 
p
n

2h
p
⌫min

. By Lemma D.1 part v), the pseudo-dimension of
��

I(
��rj(⌧, µ̂j)�A>

j �(⌧)
�� hj(⌧)) | j = 1, . . . , n

�
2Rn : �2Rm, ⌧ 2R

 
is at most 20(m+ 1). By

Theorem A.3, Equation (A.2) is satisfied and, for m� 1,

V (A,W )  6
p

20(m+ 1) log(20(m+ 1))  6
p

40
p

(m+ 1) log(m+ 1)  38
p

(m+ 1) log(m+ 1).

Applying the theorem yields the result for C = 2⌫min

9·38 . ⇤

Lemma D.11 (Approximating Dual Solution in Bias) There exist positive, dimension-

independent constants C1,C2 such that

sup
⌧�0

�����
1

n

nX

j=1

1

2h
p
⌫j

�
I(
��rj(⌧, µ̂j)�A>

j �(⌧)
�� hj(⌧))� I(

��rj(⌧, µ̂j)�A>
j �(⌧, µ̂)

�� hj(⌧))
�
�����

is at most C1
�
h

+R4, where

P{R4 > 2✏ and E} 50exp

 
� C2h✏

p
np

(m+ 1) log(m+ 1)

!
.

Proof: Restrict attention to paths where E occurs. Only terms where the indicators di↵er con-

tribute to the sum. We have two cases: If the first indicator is 1 and the second is 0, then

hj(⌧)
��rj(⌧, µ̂j)�A>

j �(⌧, µ̂)
��
��rj(⌧, µ̂j)�A>

j �(⌧)
��+CA�,

so that hj(⌧)�CA� 
��rj(⌧, µ̂j)�A>

j �(⌧)
�� hj(⌧). Similarly, if the second indicator is 1 and the

first is 0, then,

hj(⌧)�
��rj(⌧, µ̂j)�A>

j �(⌧, µ̂)
���
��rj(⌧, µ̂j)�A>

j �(⌧)
���CA�,
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so that hj(⌧)
��rj(⌧, µ̂j)�A>

j �(⌧)
��CA�+hj(⌧). Combining the above inequalities, we obtain

I
⇣��rj(⌧, µ̂j)�A>

j �(⌧)
�� hj(⌧)

⌘
� I
⇣��rj(⌧, µ̂j)�A>

j �(⌧, µ̂)
�� hj(⌧)

⌘

 I
⇣
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j �(⌧)

�� hj(⌧)
⌘

+ I
⇣
hj(⌧)

��rj(⌧, µ̂j)�A>
j �(⌧)

��CA�+hj(⌧)
⌘
.

Thus, by the triangle inequality,
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⌧�0
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1

n
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j=1

1

2h
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⌫j

�
I(
��rj(⌧, µ̂j)�A>

j �(⌧)
�� hj(⌧))� I(
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�� hj(⌧))
�
�����
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⌧�0

�����
1

n

nX

j=1

1

2h
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⌫j
I
�
hj(⌧)�CA�

��rj(⌧, µ̂j)�A>
j �(⌧)

�� hj(⌧)
�
�����

+ sup
⌧�0

�����
1

n

nX

j=1

1

2h
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⌫j
I
�
hj(⌧)

��rj(⌧, µ̂j)�A>
j �(⌧)

��CA�+hj(⌧)
�
����� .

We will focus on bounding sup⌧�0

��� 1n
Pn

j=1

1

2hp⌫j
I
�
hj(⌧)�CA�

��rj(⌧, µ̂j)�A>
j �(⌧)

�� hj(⌧)
����.

The same argument applies to the other term. Note that

sup
⌧�0

�����
1

n

nX

j=1

1

2h
p
⌫j
I
⇣
hj(⌧)�CA�
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j �(⌧)

�� hj(⌧)
⌘�����

 sup
⌧�0

1

n

nX

j=1

1

2h
p
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P
n
hj(⌧)�CA�

��rj(⌧, µ̂j)�A>
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�� hj(⌧)
o

+ sup
⌧�0

(
1

2h
p
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�����

nX

j=1

I(hj(⌧)�CA�
��rj(⌧, µ̂j)�A>

j �(⌧)
�� hj(⌧))

�P
n
hj(⌧)�CA�

��rj(⌧, µ̂j)�A>
j �(⌧)

�� hj(⌧)
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)

Now consider P
n
hj(⌧)�CA� 

��rj(⌧, µ̂j)�A>
j �(⌧)

�� hj(⌧)
o

. Rewrite the probability in terms

of the standardized increment ⇣j =
p
⌫j(µ̂j �µj), yielding P

n
h�CA�

p
⌫j

⌫j+⌧

⌫j

⌫min

⌫min+⌧
 |⇣j � s| h

o

where s=
p
⌫j
⇣

⌫j+⌧

⌫j

⌫min

⌫min+⌧
A>

j �(⌧)
⌘
. This probability is bounded by the probability that ⇣j belongs

to an interval of length at most 2CA�
p
⌫j

⌫j+⌧

⌫j

⌫min

⌫min+⌧
 2CA

p
⌫max. Thus, the first supremum is

bounded by C1�
h

where C1 = 2CA�max
p
⌫max..

We bound the second supremum using Theorem A.2. Take the envelopes to be 1

2h
p
⌫min

. Lemma

D.1 bounds the pseudo-dimension of the relevant set to be at most 100(2m+ 2). Thus, for m� 1

V (A,W )  6
p

200(m+ 1) log(200(m+ 1))  6
p

400
p

(m+ 1) log(m+ 1)
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and by Theorem A.2,

P
(

sup
⌧�0

�����
1

n

nX

j=1

1

2h
p
⌫j
I
�
hj(⌧)�CA�

��rj(⌧, µ̂j)�A>
j �(⌧)

�� hj(⌧)
�
����� >

C1�

h
+ ✏

)

is at most 25exp

✓
� C2✏h

p
np

(m+1) log(m+1)

◆
, for C2 = 2

p
⌫min

9·120 . An analogous argument shows that

P
(

sup
⌧�0

�����
1

n

nX

j=1

1

2h
p
⌫j
I
�
hj(⌧)

��rj(⌧, µ̂j)�A>
j �(⌧)

��CA�+hj(⌧)
�
����� >

C1�

h
+ ✏

)

is at most 25exp

✓
� C2✏h

p
np

(m+1) log(m+1)

◆
, and combining the two bounds completes the proof. ⇤

D.3. Proof of Corollary 4.4

Proof: If we take �n =
p
hn/n1/4. Then, �n

p
n=

p
hn

p
n!1 and �n/hn = 1/

p
hn

p
n! 0. With

these choices and the normality of µ̂j, the deterministic errors in Theorem 4.3 tends to zero, and the

stochastic error R tends to 0 in probability, so the suboptimality gap between our procedure and

the oracle procedure converges to zero. Moreover, for this scaling, these probabilities are summable,

and by Borel-Cantelli’s Lemma, the suboptimality gap also converges to zero almost surely, proving

the desired result. ⇤

Appendix E: Proof of the Results in Section 5 for the Regularization Policies

In this section, we first show our regularization policies can be reinterpreted via the lens of robust

optimization. We then provide the proof of Theorem 5.2, which is given in Section E.2. The proof

depends on Lemma E.2 below and the auxiliary results given in Section E.3. We also discuss

performance of our regularized policy in the large-sample regime in Section E.5.

E.1. Relationship to Robust Optimization

The class XReg(µ̂) can alternatively be motivated through the lens of robust optimization. The

robust optimization approach to Pn creates an uncertainty set U(µ̂) and then solves

x (U(µ̂))2 argmax
x2X

min
u2U(µ̂)

1

n
u>x. (E.1)

There are a variety of proposals in the literature for constructing U(µ̂) that leverage a priori

knowledge on the distribution of µ̂ to ensure that the resulting solution x (U(µ̂)) enjoys desirable

statistical properties; see Bertsimas et al. (2018) for a recent treatment.

When µ̂ is independent and multivariate gaussian, a natural choice for U(µ̂) might be the ellipse

UE(µ̂, r) = {µ :
Pn

j=1
⌫j(µj � µ̂j)2  r2} because it corresponds to the level set of the relevant normal

distribution. Setting r to be the 1� ✏ quantile of a �2 random variable with n degrees of freedom

guarantees that µ 2 U(µ̂) with probability at least 1 � ✏. Many authors advocate for elliptical
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uncertainty sets (with di↵erent values of r) more generally, even when µ̂ is non-gaussian. Ben-Tal

and Nemirovski (2000) and Gupta (2019) provide some probabilistic justifications in frequentist

and Bayesian settings, respectively. The wide success of elliptical uncertainty sets with various radii

within the robust optimization community suggests that the class of policies {x (UE(µ̂, r)) : r� 0}
is an interesting class for Pn and that its oracle policy should perform well in practice. Interestingly,

this policy class essentially coincides with our proposed regularization class.

Lemma E.1 (Correspondence between Regularization and Uncertainty Sets) For each

µ̂ 2 Rn, {x (UE(µ̂, r)) : r� 0}= {xR(�, µ̂) : �� 0}.

The above correspondence has two important implications. First, it gives an alternative intuition

for the policy class XReg
n (µ̂), supporting the idea that xR(�OR, µ̂) should have good performance in

practice. Second, our search for a best-in-class policy for XReg
n (µ̂) can equivalently be interpreted

as searching for the “best-in-class radius” for an elliptical uncertainty set. As seen in Sec. 6, the

resulting radius is often quite di↵erent from those suggested by traditional robust optimization

guidelines and o↵ers significant benefits in the small-data, large-scale regime.13

E.2. Proof of Theorem 5.2

Recall from Section 5 that

XReg(µ̂) =
�
xR(�, µ̂) : �� 0

 
where xR(�, µ̂) 2 argmax

x2X

1

n
µ̂>x�

�
p
⌫min

2n

nX

j=1

x2

j

2⌫j
,

and for each j, define

wj(�, t) =

8
>>><

>>>:

0 if t < 0,
⌫j

2�
p
⌫min

t2 if 0 t �
p
⌫min

⌫j

t� �
p
⌫min

2⌫j
if �

p
⌫min

⌫j
< t

The following lemma gives and explicit formula for xR(�, µ̂) and characterizes the associated

optimal dual variables �R(�, µ̂).

Lemma E.2 (Dual to Regularized Problem) For j = 1, . . . , n,

xR
j (�, µ̂) =

⌫j
�
p
⌫min

 
⇥
µ̂j �A>

j �
R(�, µ̂)

⇤+ �

µ̂j �A>

j �
R(�, µ̂)�

�
p
⌫min

⌫j

�+!
.

Moreover, the corresponding optimal dual variables �R(�, µ̂) is given by

�R(�, µ̂)2 argmin
��0

DR
µ̂ (�,�), where DR

µ̂ (�,�)⌘ b>�+
1

n

nX

j=1

wj(�, µ̂j �A>
j �),

13 Furthermore, we remark that the above correspondence is not specific to our choice of regularizer; many regu-
larization problems admit interpretations as robust optimization problems under a well-chosen uncertainty set that
depends on the specific regularizer; see Xu et al. (2009), Ben-Tal et al. (2015), Lam (2016), Fertis (2009), Bertsimas
and Copenhaver (2018), and the references therein.
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Proof: The proof uses standard results in convex optimization. Dualizing the constraints in the

optimization defining xR(�, µ̂) yields:

min
��0,✓�0

b>�+
1

n
e>✓+

1

n

nX

j=1

max
xj�0

(µ̂j �A>
j �� ✓j)xj �

�
p
⌫min

2⌫j
x2

j .

The optimization in xj can be solved explicitly, yielding x⇤
j =

⌫j
�
p
⌫min

(µ̂j �A>
j �� ✓j)+. Substitute

in this value. The resulting optimization becomes

min
��0,✓�0

b>�+
1

n
e>✓+

1

n

nX

j=1

⌫j
2�

p
⌫min

�
[µ̂j �A>

j �� ✓j]
+
�2

= min
��0

b>�+
1

n

nX

j=1

min
✓j�0

✓j +
⌫j

2�
p
⌫min

�
[µ̂j �A>

j �� ✓j]
+
�2

= min
��0

b>�+
1

n

nX

j=1

wj(�, µ̂j �A>
j �) ,

where the last equality follows from the fact wj(�, t) = minz�0 z +
⌫j

2�
p
⌫min

([t� z]+)2 and the corre-

sponding optimizer is given by z⇤(t) =
h
t� �

p
⌫min

⌫j

i+
. Finally, substituting in the optimal value of

✓j into x⇤
j yields the form given in the theorem. ⇤

We next define an “average” dual:

�R(�)2 argmin
��0

DR(�,�), where DR(�,�)⌘ b>�+
1

n

nX

j=1

E[wj(�, µ̂j �A>
j �)].

The remainder of the proof follows the proof of Theorem 4.3 very closely in structure. In this

section, we will say a constant C is dimension-independent if C does not depend on {n,m, �} but

may depend on any other problem parameters. In light of Lemma E.2, we define the function

gj(�,�) =
⌫j

�
p
⌫min

 
[µ̂j �A>

j �]+ �

µ̂j �A>

j ��
�
p
⌫min

⌫j

�+!
, (E.2)

so that xR(�, µ̂) = gj(�,�R(�, µ̂)).

Here is the proof of Theorem 5.2.

Proof of Theorem 5.2: It su�ces to bound sup
�2[�min,�max]

�� 1
n
(µ̂�µ)>xR(�, µ̂)�BReg

n (�, µ̂)
�� (see

Lemma C.1). By triangle inequality,

sup
�2[�min,�max]

����
1

n
(µ̂�µ)>x(�, µ̂)�BReg

n (�, µ̂)

����Error from Approximating Dual Solution

+ Error from ULLN for Dual Approximation

+ Error from Approximating Stein’s Lemma

+ Error from ULLN for Bias Approximation

+ Error from Approximating Dual in Bias,
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where

Error from Approximating Dual Solution:

sup
�2[�min,�max]

�����
1

n

nX

j=1

(µ̂j �µj)
�
gj(�,�

R(�, µ̂))� gj(�,�
R(�)

�
�����

Error from ULLN for Dual Approximation:

sup
�2[�min,�max]

�����
1

n

nX

j=1

(µ̂j �µj)gj(�,�
R(�))�E[(µ̂j �µj)gj(�,�

R(�))]

�����

Error from Stein’s Lemma:

sup
�2[�min,�max]

�����
1

n

nX

j=1

E[(µ̂j �µj)gj(�,�
R(�))]� 1

�
p
⌫minn

nX

j=1

P
⇢

0 µ̂j �A>
j �

R(�)
�
p
⌫min

⌫j

������

Error from ULLN for Bias Approximation:

sup
�2[�min,�max]

�����
1

�
p
⌫minn

nX

j=1

P
⇢

0 µ̂j �A>
j �

R(�)
�
p
⌫min

⌫j

�
� I
✓

0 µ̂j �A>
j �

R(�)
�
p
⌫min

⌫j

◆�����

Error from Approximating Dual in Bias:

sup
�2[�min,�max]

�����
1

�
p
⌫minn

nX

j=1

I
✓

0 µ̂j �A>
j �

R(�)
�
p
⌫min

⌫j

◆
� I
✓

0 µ̂j �A>
j �

R(�, µ̂)
�
p
⌫min

⌫j

◆�����

Lemmas E.6, E.7, E.8, E.9, and E.10 below bound each of these sources of error. In particular,

there exists a positive, dimension-independent constant C1 such that

sup
��0

�����
1

n
(µ̂�µ)>x(�, µ̂)�B(�)

�����C1 (TV�TV log(TV) + �) +R1 +R2 +R3 +R4,

where R1, . . . ,R4 are the stochastic remainders from Lemmas E.6, E.7, E.9, and E.10 and C1 is the

maximum of the relevant constants from these lemmas. Moreover, these lemmas prove that there

exist positive, dimension-independent constants C5, . . . ,C13 such that

P{R1 +R2 +R3 +R4 > 4✏}

 P{Ec}+P{R1 +R2 +R3 +R4 > 4✏ and E}

 C5 exp

 
�C6�

p
n

(m+ 1)
p

log(m+ 1)

!
log

 
1+

(m+ 1)
p

log(m+ 1)

C6�
p
n

!

+ 2exp

✓
�C7✏2n

�2

◆
+C8 exp

✓
�C9✏

p
np

m+ 1

◆
+C10 exp

 
�C11✏

p
np

(m+ 1) log(m+ 1)

!

+C12 exp

 
� C13✏

p
np

(m+ 1) log(m+ 1)

!
,

where the event E is defined in the next section in Equation (E.3). We simplify this bound by first

noting that for ✏ > �2/
p
n, we have ✏2n

�2
> ✏

p
n. This simplification allows us to combine the last

4 exponential terms (replacing dimension-independent constants as appropriate). Simplifying then

yields the result. ⇤
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E.3. Auxiliary Proofs for Theorem 5.2.

Just as in the proof of Theorem 4.3, we first argue that �R(�, µ̂) and �R(�) are uniformly close

with high probability. Define the dimension-independent constant

�R
max

⌘ 2

s0

✓
Cµ +

1
p
⌫min

◆
+

�max

2
p
⌫min

+ 1

and the event

E =

(
sup

�2[�min,�max]

k�R(�, µ̂)k1  �R
max

, sup
�2[�min,�max]

k�R(�, µ̂)��R(�)k1  �,

sup
�2[�min,�max]

k�R(�)k1  �R
max

)
. (E.3)

Lemma E.3 (Dual Variables Are Bounded)

i) sup
�2[�min,�max]

k�R(�)k1  �R
max

ii) P
�
sup

�2[�min,�max]
k�R(�, µ̂)k1 > �R

max

 
 2exp

�
�n⌫min

72�2

�

Proof: The proof is very similar to Lemma D.3. First

DR(�,�(�))DR(�,0) =
1

n

nX

j=1

E [wj (�, µ̂j)]
1

n

nX

j=1

E
⇥
µ̂+

j

⇤
 1

n

nX

j=1

E |µ̂j| ,

where the last two inequalities follow because wj(�, µ̂j) [µ̂j]+  |µ̂j| for all �. Hence,

k�R(�)k1 max
��0

e>�

s.t. b>�+
1

n

nX

j=1

E
⇥
wj

�
�, µ̂j �A>

j �
�⇤

 1

n
E [kµ̂k1] .

Using (x0, s0) from Assumption 4.1 and Lagrangian duality,

k�R(�)k1 max
��0

(
e>�+

1

s0

 
1

n
E [kµ̂k1]� b>�� 1

n

nX

j=1

E
⇥
wj

�
�, µ̂j �A>

j �
�⇤
!)

=
1

ns0
E [kµ̂k1] + max

��0

(
(e� 1

s0
b)>�� 1

ns0

nX

j=1

E
⇥
wj

�
�, µ̂j �A>

j �
�⇤
)

Rewrite wj(·) as

wj(�, µ̂j �A>
j �) = max

xj2[0,1]
(µ̂j �A>

j �)xj �
�
p
⌫min

2

x2

j

⌫j

� (µ̂j �A>
j �)x0

j �
�
p
⌫min

2

x0

j
2

⌫j
,
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since xj
0
2 [0,1]. Take expectations of both sides and substitute above:

k�R(�)k1 
1

ns0
E [kµ̂k1] + max

��0

(e� 1

s0
b)>�� 1

ns0

nX

j=1

(µ̂j �A>
j �)x0

j �
�
p
⌫min

2

x0

j
2

⌫j

=
1

ns0
E [kµ̂k1] + max

��0

(e� 1

s0
b+

1

ns0
Ax0)>�� 1

ns0

nX

j=1

µ̂jx
0

j �
�
p
⌫min

2

x0

j
2

⌫j

By Assumption 4.1, 1

n
Ax0+s0e b () e� 1

s0
b+ 1

ns0
Ax0  0, which implies that �= 0 is optimal

for this last optimization problem. Thus,

k�R(�)k1 
1

ns0
E [kµ̂k1]�

1

ns0

nX

j=1

µ̂jx
0

j �
�
p
⌫min

2

x0

j
2

⌫j

 2

ns0
E [kµ̂k1] +

�max

2
p
⌫min

,

since, again, x0 2 [0,1]n. Finally, use the fact that E[|µ̂j|]  Cµ + 1p⌫j
 Cµ + 1p

⌫min

to simplify,

yielding

k�R(�)k1  2

s0

✓
Cµ +

1
p
⌫min

◆
+

�max

2
p
⌫min

 �R
max

.

This proves the first claim.

For the second, we can follow an essentially identical series of steps using DR
µ̂ (�,�R(�, µ̂)) to

prove that

k�R(�, µ̂)k1 
2

ns0
kµ̂k1 +

�max

2
p
⌫min

.

From Equation (D.2), 1

n
kµ̂k1  1

n

Pn
j=1

E[|µ̂j|] +R with P(R> t)  2exp
⇣
�nt2⌫min

72�2

⌘
. Moreover, as

in the previous part E[|µ̂j|]Cµ + 1p
⌫min

. Substituting and simplifying yields,

k�R(�, µ̂)k1 
2

s0

✓
Cµ +

1
p
⌫min

◆
+

�max

2
p
⌫min

+R.

Using the definition of �R
max

and the tail inequality on R proves the second statement. ⇤

Lemma E.4 (Strong Convexity of the Average Dual) There exists a dimension-

independent constant > 0 such that for any �� �min, the function � 7! �DR(�,�) is -strongly

convex in � for all �2Rm
+

such that k�k1  �R
max

.

Proof: Let ⇣j ⌘
p
⌫j(µ̂j � µj). Using the definition of wj(�, µ̂j � s) and by di↵erentiating under

the integral sign,

@2

@s2
E[�wj(�, µ̂j � s)] =

⌫jp
⌫min

P
⇢

0< µ̂j � s <
�
p
⌫min

⌫j

�

=
⌫jp
⌫min

P
⇢

(s�µj)
p
⌫j < ⇣j < (s�µj)

p
⌫j +

�
p
⌫minp
⌫j

�

� ⌫jp
⌫min

P
⇢

(s�µj)
p
⌫j < ⇣j < (s�µj)

p
⌫j +

�min

p
⌫minp

⌫j
)

�
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Furthermore,

max

⇢��(s�µj)
p
⌫j
�� ,
����(s�µj)

p
⌫j +

�min

p
⌫minp

⌫j
)

����

�
 (|s|+Cµ)

p
⌫max +�min.

Consequently, by Assumption 4.2, for |s|CA�R
max

,

@2

@s2
E[�wj(�, µ̂j � s)]� �min

�
(CA�

R
max

+Cµ)
p
⌫max +�min

�
.

Let 0 ⌘ �min

�
(CA�R

max
+Cµ)

p
⌫max +�min

�
. The remainder of the proof now parallels the proof of

Lemma D.4. ⇤

Lemma E.5 (Uniform Convergence of Dual Solutions) There exists a positive, dimension-

independent constant C such that

P{Ec} 86exp

 
�C�

p
n

(m+ 1)
p

log(m+ 1)

!
log

 
1+

(m+ 1)
p

log(m+ 1)

C�
p
n

!
.

Proof: We will follow the approach in the proof of Lemma D.5. If sup
�2[�min,�max]

k�R(�, µ̂)k1 
�R
max, then, using the fact that DR

µ̂ (�,�R(�, µ̂))DR
µ̂ (�,�R(�)), we have

⇥
DR(�,�R((�, µ̂))�DR

µ̂ (�,�R(�, µ̂))
⇤
�
⇥
DR(�,�R(�))�DR

µ̂ (�,�R(�))
⇤

� DR(�,�R((�, µ̂))�DR(�,�R(�)) � 

2�max

k�R(�, µ̂)��R(�)k2
2
,

where the last inequality follows from the strong convexity of � 7! �DR(�,�) from Lemma D.4.

For k in the integers, define the set of functions

Sk =

(
h :R+ 7!Rm

+
| 2k�1 

p
n sup
�2[�min , �max]

kh(�)��R(�)k2 < 2k

)
.

If �R(·, µ̂)2 Sk, then it follows that

sup
�,h(·)2Sk

��⇥DR(�,h(�))�DR
µ̂ (�,h(�))

⇤
�
⇥
DR(�,�(�))�DR

µ̂ (�,�(�))
⇤�� � 22k�2

2n�max

. (E.4)

Consider the mapping

(�,h(·)) 7!
⇥
DR

µ̂ (�,�(�))�DR
µ̂ (�,h(�))

⇤
�
⇥
DR(�,�(�))�DR(�,h(�))

⇤
.

Using the definitions of DR
µ̂ and DR, this mapping is the di↵erence between an empirical average

and its expectation. We will apply the first part of Theorem A.2. Let Fj(µ̂j) = CA2k
p

m/n for

all j. Note that Fj(·) is a constant function, and thus, kkF (µ̂)k2k CA2k
p
m by Lemma A.1. We

will show that it is an envelope. By definition, 0 d
dt
wj(�, t) 1 for all t, so that function wj(�, ·)

is non-expansive, and thus,

��[wj

�
�, µ̂j �A>

j �
R(�)

�
�wj

�
�, µ̂j �A>

j h(�)
���

��A>
j

�
�R(�)�h(�)

���  kAjk22k

p
n

 Fj(µ̂j) .
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Let

F1 ⌘
��

wj

�
�, µ̂j �A>

j �
R(�)

�
�wj

�
�, µ̂j �A>

j h(�)
�
| j = 1, . . . , n

�
2Rn : �2 [�min,�max] ,h(·)2 Sk

 

F2 ⌘
��

wj

�
�, µ̂j �A>

j �
�
�wj

�
�, µ̂j �A>

j h
�
| j = 1, . . . , n

�
2Rn : �2 [�min,�max] , �,h2Rm

 
.

Our goals are to show that Equation (A.2) holds for F1 and to determine an upper bound for

V (A,W ). Observe that since F1 ✓ F2, it follows that M(✏kF (µ̂)k2,F1)  M(✏kF (µ̂)k2,F2). To

bound the packing number for F2, note that F2 is a pointwise di↵erence of sets of the form

F3 ⌘
��

wj

�
�, µ̂j �A>

j �
�
| j = 1, . . . , n

�
2Rn : �2 [�min,�max] ,�2Rm

 
.

Thus, by Page 22 in Pollard (1990), M(✏kF (µ̂)k2,F2)M(✏kF (µ̂)k2/4,F3)2. We will now bound

the pseudo-dimension of F3.

For j = 1, . . . , n, let aj =
p
⌫min/⌫j. Considering an arbitrary c2Rn, let

F4 ⌘
��

I
�
wj

�
�, µ̂j �A>

j �
�
> cj

�
| j = 1, . . . , n

�
2 {0,1}n : �2 [�min,�max] ,�2Rm

 
.

It is easy to verify that the psuedo-dimensions of F3 and F4 are the same. Recall that

wj(�, t) =

8
>>><

>>>:

0 if t < 0,

t2

2�aj
if 0 t �aj

t� �aj
2

if �aj < t.

,

For any j, consider splitting on the events {cj < 0},
n

0 cj 
�aj
2

o
and

n
cj >

�aj
2

o
. Then,

I
⇣
wj

�
�, µ̂j �A>

j �
�
> cj

⌘

= I (cj < 0) + I
✓

0 cj 
�aj

2
, µ̂j �A>

j �>
p

2�ajcj

◆
+ I
✓
cj >

�aj

2
, µ̂j �A>

j �>
�aj

2
+ cj

◆

= I (cj < 0) + max

⇢
I
✓

0 cj 
�aj

2
, µ̂j �A>

j �>
p

2�ajcj

◆
, I
✓
cj >

�aj

2
, µ̂j �A>

j �>
�aj

2
+ cj

◆�

= I (cj < 0) + max

⇢
min

⇢
I
✓

0 cj 
�aj

2

◆
, I
⇣
µ̂j �A>

j �>
p

2�ajcj
⌘�

,

min

⇢
I
✓
cj >

�aj

2

◆
, I
✓
µ̂j �A>

j �>
�aj

2
+ cj

◆� �
.

Now, let

G1 ⌘
⇢✓

I
✓

0 cj 
�aj

2

◆
| j = 1, . . . , n

◆
2 {0,1}n : �2 [�min,�max]

�
,

G2 ⌘
⇢✓

I
✓
cj >

�aj

2

◆
| j = 1, . . . , n

◆
2 {0,1}n : �2 [�min,�max]

�
,

G3 ⌘
n⇣

I
⇣
µ̂j �A>

j �>
p

2�ajcj
⌘

| j = 1, . . . , n
⌘
2 {0,1}n : �2 [�min,�max] ,�2Rm

o
,

G4 ⌘
⇢✓

I
✓
µ̂j �A>

j �>
�aj

2
+ cj

◆
| j = 1, . . . , n

◆
2 {0,1}n : �2 [�min,�max] ,�2Rm

�
.
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Note that the pseudo-dimensions of G1 and G2 are at most one, while the pseudo-dimensions of G3

and G4 are at most m+2. Let ^ and _ denote the pointwise minimum and maximum, respectively.

Therefore, by Lemma 5.1 in Pollard (1990), the pseudo-dimension of G1 ^G3 is at most 10(m+2).

Similarly, the pseudo-dimension of G2 ^ G4 is at most 10(m+ 2). Therefore, pseudo-dimension of

(G1^G3)_ (G2^G4) is at most 100(m+2). Moreover, the above argument shows that a translation

of F4 by a constant vector is a subset of (G1 ^G3)_ (G2 ^G4). Therefore, the pseudo-dimension of

F4, and thus F3, is at most 100(m+ 2).

Let V = 100(m+ 2). Therefore, it follows from Theorem A.3 that

M(✏kF (µ̂)k2,F1)M(✏kF (µ̂)k2,F2)  M
⇣ ✏

4
kF (µ̂)k2,F3

⌘2


"
V 6V 44V

✓
1

✏

◆4V
#2

= V 12V 48V

✓
1

✏

◆8V

,

and thus, F1 satisfies Equation (A.2) with A= V 12V 48V and W = 8V . Thus,

V (A,W ) =
W + logAp

logA
=

8V + 8V log 4+ 12V logVp
8V log 4+ 12V logV

 (8+ 8 log 4)V + 12V logVp
12V logV

 39+ 12p
12

p
V logV ,

where the last line follows because V � 2 implies 2V logV � 1. Note that 39+12p
12

 15. Then

because V  200(m + 1), we can simplify 15
p
V logV  15

p
200(m+ 1) log(200(m+ 1)) 

300
p

(m+ 1) log(m+ 1), since m� 1.

Finally, applying Theorem A.2 to Equation (E.4) proves that

P
⇢

sup
��0

k�(�, µ̂)k1 �max and �(·, µ̂)2 Sk,n

�
 25exp

 
�C12k

�max(m+ 1)
p

log(m+ 1)

!
,

where C1 = 
23·9·300CA

.

As before, we use the above bound to decompose the P{Ec} into “peels:”

P
⇢

sup
��0

k�(�, µ̂)k  �max and sup
��0

k�(�)��(�, µ̂)k2 � �

�


1X

k=dlog2(�
p
n)e

P
⇢

sup
��0

k�(�, µ̂)k  �max and �(·, µ̂)2 Sk,n

�

 25
1X

k=dlog2(�
p
n)e

exp

 
�C12k

�max(m+ 1)
p

log(m+ 1)

!

 25

Z 1

log2(�
p
n)

exp

 
�C12x

�max(m+ 1)
p

log(m+ 1)

!
dx =

25

log 2

Z 1

C1�
p
n

�max(m+1)
p

log(m+1)

exp(�u)
du

u
,

where the last inequality follows by making the change of variables u = C1

�max(m+1)

p
log(m+1)

2x. We

recognize the last integral as the exponential integral, which admits the bound
Z 1

x

exp(�t)
dt

t
 exp(�x) log(1+ 1/x) for x> 0.
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Applying this bound and combining with Lemma E.3 yields:

P{Ec} 25

log 2
exp

 
�C1�

p
n

�max(m+ 1)
p

log(m+ 1)

!
log

 
1+

�max(m+ 1)
p

log(m+ 1)

C1�
p
n

!
+2exp

⇣
�n⌫min

72�2

⌘
.

To “clean up” the right-hand side, observe that for 0  �  1, �

(m+1)

p
log(m+1)

 1 and, for

n� 2,
p
n  n, so we can bound the second term by exp

✓
� �⌫min

p
n

72�2(m+1)

p
log(m+1)

◆
. Then, let C =

min
⇣

C1
�max

, ⌫min

72�2

⌘
and note that 25/ log(2) + 2< 86 to prove the lemma. ⇤

Lemma E.6 (Approximating the Dual Solution) There exist dimension-independent con-

stants C1,C2 such that

sup
�2[�min,�max]

�����
1

n

nX

j=1

(µ̂j �µj)
�
gj(�,�

R(�, µ̂))� gj(�,�
R(�))

�
�����C1�+R1,

where P{E and R1 > ✏} 2exp
⇣
�C2✏

2n
�2

⌘
.

Proof: Recall from Equation (E.2) that

gj(�,�) =
⌫j

�
p
⌫min

 
[µ̂j �A>

j �]+ �

µ̂j �A>

j ��
�
p
⌫min

⌫j

�+!
.

We claim that gj(�,�) is
⇣

2⌫j
�min

p
⌫min

CA

⌘
-Lipschitz in � with respect to the `1-norm. Indeed,

|gj(�,�1)� gj(�,�2)|
⌫j

�
p
⌫min

��(µ̂j �A>
j �1)

+ � (µ̂j �A>
j �2)

+
��

+
⌫j

�
p
⌫min

�����

✓
µ̂j �A>

j �1 �
�
p
⌫min

⌫j

◆+

�
✓
µ̂j �A>

j �2 �
�
p
⌫min

⌫j

◆+
�����

 2⌫j
�min

p
⌫min

��A>
j (�1 ��2)

��  2⌫j
�min

p
⌫min

CAk�1 ��2k1 .

Now restrict attention to paths where E occurs. It follows that

���
1

n

nX

j=1

(µ̂j �µj)
�
gj(�,�

R(�, µ̂))� gj(�,�
R(�))

� ���  2�⌫max

�min

p
⌫min

CA
1

n

nX

j=1

|µ̂j �µj| .

Write

1

n

nX

j=1

|µ̂j �µj|Cµ +
1

n

nX

j=1

|µ̂j|

Cµ +
1

n

nX

j=1

E[|µ̂j|] +
1

n

nX

j=1

|µ̂j|�E[|µ̂j|]

 2Cµ +
1

p
⌫min

+R,

where P(R > t)  2exp
⇣
�nt2⌫min

72�2

⌘
by Equation (D.2). Substituting above and letting

R1 = 2�⌫max

�min

p
⌫min

CAR proves the theorem for C1 = 2⌫max

�min

p
⌫min

CA

⇣
2Cµ + 1p

⌫min

⌘
and C2 = �

2
min

⌫2
min

4·72C2
A�2⌫2max

. ⇤
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Lemma E.7 (ULLN for Dual Approximation) There exist positive, dimension-independent

constants C1,C2 such that

sup
�2[�min,�max]

�����
1

n

nX

j=1

(µ̂j �µj)gj(�,�
R(�))�E[(µ̂j �µj)gj(�,�

R(�))]

�����R,

where P{R> ✏}C1 exp
⇣

�C2✏
p
np

m+1

⌘
.

Proof: We apply Theorem A.2. For an envelope, it follows from the definition of gj(�,�) in

Equation (E.2) that |(µ̂j �µj)gj(�,�R(�))|  |µ̂j �µj| ⌘ Fj(µ̂). Then, kkF (µ̂)k2k  �
q

2n
⌫min

by

Lemma A.1.

Next, we show that the packing numbers satisfy Equation (A.2). Let F(µ̂) =

{(µ̂j �µj)gj(�,�) : �2 [�min,�max], k�k1  �R
max

}.
Observe that, almost everywhere,

����
@

@�
gj(�, µ̂j,�)

����=
����

1

�
p
⌫min

(I(µ̂j �A>
j �>

�
p
⌫min

⌫j
)� gj(�,�))

����
1

�min

p
⌫min

kr�gj(�, µ̂j,�)k1 =

����
⌫j

�
p
⌫min

AjI
✓

0 µ̂j �A>
j �<

�
p
⌫min

⌫j

◆����
1
 ⌫max

�min

p
⌫min

CA.

Consequently,

��gj(�1,�
1)� gj(�2,�

2)
��  1

�min

p
⌫min

|�1 ��2|+
⌫max

�min

p
⌫min

CAk�1 ��2k1

 C3(|�1 ��2|+ k�1 ��2k1),

where C3 = 1

�min

p
⌫min

+ ⌫max

�min

p
⌫min

CA. This further implies that

���(µ̂j �µj)(gj(�1,�
1)� gj(�2,�

2)) | j = 1, . . . , n
���

2
C3(|�1 ��2|+ k�1 ��2k1)kµ̂�µk2

=C3(|�1 ��2|+ k�1 ��2k1)kF (µ̂)k2.

Now, returning to the packing numbers, M(✏kF (µ̂)k2,F(µ))N( ✏
2
kF (µ̂)k2,F(µ)). Consider an

✏
2C3

covering with respect to the `1-norm of [�min,�max] ⇥ {k�k1  �R
max

}. Then, from above, this

yields a ✏
2
kF (µ̂)k2 covering of F as was desired. Since [�min,�max] ⇥ {k�k1  �R

max
} is contained

within an `1 ball of radius �max + �R
max

 2�max, we have from a standard result that the `1-norm

covering of [�min,�max]⇥ {k�k1  �R
max

} is at most
�
3·2·2�maxC3

✏

�m+1

, whereby

M(✏kF (µ̂)k2,F(µ))
✓
C4�max

✏

◆m+1

,

where C4 = 12C3. This proves that the packing numbers satisfy Equation (A.2) with W = m+ 1

and logA= (m+ 1) log(C4�max), so that

V (A,W ) =
W + logAp

logA
=

(m+ 1) + (m+ 1) log(C4�max)p
(m+ 1) log(C4�max)

=

 
(1+ log(C4�max))p

log(C4�max)

!
p
m+ 1.

Applying Theorem A.2 and collecting dimension-independent constants yields the result. ⇤
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Instead of applying Lemma C.2 directly, we will use the explicit form of xR(�, µ̂) from Lemma E.2

to avoid the finite di↵erencing and develop a more computationally e�cient bias correction.

Lemma E.8 (Approximating Stein’s Lemma) For each j = 1, . . . , n,

E
⇥
(µ̂j �µj)gj(�,�

R(�))
⇤
=

1

�
p
⌫min

P
⇢

0 µ̂j �A>
j �

R(�)
�
p
⌫min

⌫j

�

+
1

p
⌫min

k���jk1
✓

1

2�
+ 24�2 � log k���jk1

◆
,

so that the Error from Approximating Stein’s Lemma in Theorem 5.2 is at most

2TV
p
⌫min

✓
1

2�min

+ 24�2 � log(2TV)

◆
.

Proof: First consider the special case where µ̂j is gaussian so that k�j ��k1 = 0. Then, it follows

from Stein’s Lemma that

E[(µ̂j �µj)gj(�,�
R(�))] =

1

⌫j
E


@

@µj
gj(�,�

R(�))

�

=
1

�
p
⌫min

P
✓

0 µ̂j �A>
j �

R(�)
�
p
⌫min

⌫j

◆
,

where the last equality follows because gj(�,�) =
⌫j

�
p
⌫min

✓
[µ̂j �A>

j �]+ �
h
µ̂j �A>

j �� �
p
⌫min

⌫j

i+◆
,

so
@

@µj
gj(�,�

R(�)) =
⌫j

�
p
⌫min

I
✓

0 µ̂j �A>
j �

R(�)
�
p
⌫min

⌫j

◆
a.e.

Next consider the case that µ̂j is non-gaussian. Let µj ⇠ N (µj,1/⌫j). Similar to the proof of

Lemma C.2, we use the sub-Gaussian tails of µ̂j to bound the di↵erence in expectations when

replacing µ̂j by µj. Specifically, by following the same steps in Lemma C.2, we have for any T > 0,

��E[(µ̂j �µj)gj(�,�
R(�))]�E[(µj �µj)gj(�,�

R(�))]
�� 1

p
⌫j


Tkgjk1k�j ��k1 + 4kgjk1e�

T2

2�2 (T +�
p

2⇡)

�

 1
p
⌫min


Tk�j ��k1 + 4e�

T2

2�2 (T +�
p

2⇡)

�
.

On the other hand,
����

1

�
p
⌫min

P
✓

0 µ̂j �A>
j �

R(�)
�
p
⌫min

⌫j

◆
� 1

�
p
⌫min

P
✓

0 µj �A>
j �

R(�)
�
p
⌫min

⌫j

◆����

 1

2�
p
⌫min

k�j ��k1.

Adding these two inequalities and applying the triangle inequality shows
����E[(µ̂j �µj)gj(�,�

R(�))]� 1

�
p
⌫min

P
✓

0 µ̂j �A>
j �

R(�)
�
p
⌫min

⌫j

◆����

 1
p
⌫min

✓
T +

1

2�

◆
k�j ��k1 + 4e�

T2

2�2 (T +�
p

2⇡)

�
.
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We can now follow an identical argument to Lemma C.2 to upperbound this function and then

optimize T by letting 1

2�
play the role of h�1. This argument yields the first expression in the

theorem. The second follows from Jensen’s inequality and the definition of TV. ⇤

Lemma E.9 (ULLN for Bias Approximation) There exist positive, dimension-independent

constants C1,C2, such that

sup
�2[�min,�max]

�����
1

�
p
⌫minn

nX

j=1

P
⇢

0 µ̂j �A>
j �

R(�)
�
p
⌫min

⌫j

�
� I
✓

0 µ̂j �A>
j �

R(�)
�
p
⌫min

⌫j

◆����� ,

where P{R> ✏}C1 exp

✓
� C2✏

p
np

(m+1) log(m+1)

◆
.

Proof: We apply Theorem A.2. Take 1 as an envelope. To bound the packing numbers, note that

I
⇣
0 µ̂j �A>

j �
R(�) �

p
⌫min

⌫j

⌘
= min

⇣
I
�
0 µ̂j �A>

j �
R(�)

�
, I
⇣
µ̂j �A>

j �
R(�) �

p
⌫min

⌫j

⌘⌘
, so it

su�ces to compute the pseudo-dimension of the two families:

⇢✓
I
✓
µ̂j �A>

j �
R(�)

�
p
⌫min

⌫j

◆
| j = 1, . . . , n

◆
: �2 [�min,�max],k�k1  �R

max

�
,

��
I
�
0 µ̂j �A>

j �
R(�)

�
| j = 1, . . . , n

�
: �2 [�min,�max],k�k1  �R

max

 
.

To bound the first, note that
n⇣

µ̂j �A>
j �

R(�) �
p
⌫min

⌫j
| j = 1, . . . , n

⌘
: �2R,�2Rm

o
is

contained within an m + 2 dimensional vector subspace, and, thus, by Lemma 4.4

in Pollard (1990), the pseudo-dimension of the first set is at most m + 2. A sim-

ilar computation holds for the second set. It follows that the pseudo-dimension ofn⇣
I
⇣
0 µ̂j �A>

j �
R(�) �

p
⌫min

⌫j

⌘
| j = 1, . . . , n

⌘
: �2 [�min,�max],k�k1  �R

max

o
is at most 10(m +

2) 20(m+ 1), so that Equation (A.2) is satisfied with V (A,W ) 6
p

20(m+ 1) log(20(m+ 1))

6
p

40
p

(m+ 1) log(m+ 1). Collecting dimension-independent constants yields the result. ⇤

Lemma E.10 (Approximating Dual in Bias) There exist positive, dimension-independent

constants C1,C2,C3 such that

sup
�2[�min,�max]

�����
1

�
p
⌫minn

nX

j=1

I
✓

0 µ̂j �A>
j �

R(�)
�
p
⌫min

⌫j

◆
� I
✓

0 µ̂j �A>
j �

R(�, µ̂)
�
p
⌫min

⌫j

◆�����

is at most C1�+R, where P{R> ✏}C2 exp

✓
�C3✏

p
np

(m+1) log(m+1)

◆
.

Proof: Restrict attention to paths where E holds. The only non-zero terms are where the indicators

di↵er. We have 4 cases corresponding to which indicator is positive and which inequality is violated

in the other indicator:

• Case 1: 0 µ̂j �A>
j �

R(�) �
p
⌫min

⌫j
and µ̂j �A>

j �
R(�, µ̂)< 0.
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• Case 2: 0 µ̂j �A>
j �

R(�) �
p
⌫min

⌫j
and µ̂j �A>

j �
R(�, µ̂)> �

p
⌫min

⌫j
.

• Case 3: 0 µ̂j �A>
j �

R(�, µ̂) �
p
⌫min

⌫j
and µ̂j �A>

j �
R(�)< 0.

• Case 4: 0 µ̂j �A>
j �

R(�, µ̂) �
p
⌫min

⌫j
and µ̂j �A>

j �
R(�)> �

p
⌫min

⌫j
.

Consider Case 1. Note µ̂j �A>
j �

R(�, µ̂)< 0 =) µ̂j �A>
j �

R(�)CA�. Thus, µ̂j belongs to an

interval of length CA�, namely, 0  µ̂j �A>
j �

R(�)  CA�. In each of the remaining cases we can

also argue that in any non-zero term, µ̂j belongs to an interval of length CA�. Combining the four

cases and “distributing” the supremum, we bound the supremum in the theorem by

sup
�2[�min,�max]

1

�min

p
⌫minn

nX

j=1

I
�
0 µ̂j �A>

j �
R(�)CA�

�
(Case 1)

+ sup
�2[�min,�max]

1

�min

p
⌫minn

nX

j=1

I
✓
�
p
⌫min

⌫j
�CA� µ̂j �A>

j �
R(�)

�
p
⌫min

⌫j

◆
(Case 2)

+ sup
�2[�min,�max]

1

�min

p
⌫minn

nX

j=1

I
�
�CA� µ̂j �A>

j �
R(�) 0

�
(Case 3)

+ sup
�2[�min,�max]

1

�min

p
⌫minn

nX

j=1

I
✓
�
p
⌫min

⌫j
 µ̂j �A>

j �
R(�)

�
p
⌫min

⌫j
+ �

◆
. (Case 4)

We will bound the contributions from each case separately. For the first case, break the contri-

bution into two supremums

sup
�2[�min,�max]

1

�min

p
⌫minn

nX

j=1

I
�
0 µ̂j �A>

j �
R(�)CA�

�

 sup
�2[�min,�max]

1

�min

p
⌫minn

nX

j=1

P
�
0 µ̂j �A>

j �
R(�)CA�

�

+ sup
�2[�min,�max]

(����
1

�min

p
⌫minn

nX

j=1

I
�
0 µ̂j �A>

j �
R(�)CA�

�

�P
�
0 µ̂j �A>

j �
R(�)CA�

�����

�
.

Define the standardized increment ⇣j ⌘
p
⌫j(µ̂j �µj). Then

P
�
0 µ̂j �A>

j �
R(�)CA�

�
= P

�
0 ⇣j +

p
⌫j
�
µj �A>

j �
R(�)

�
CA

p
⌫j�
�
.

By Assumption 4.2, this last probability is at most �maxCA
p
⌫max�. Thus, the first supremum in

the contribution from Case 1 is at most �maxCA
p
⌫max

�min

p
⌫min

�.

We bound the second supremum in the contribution from Case 1 by applying Theorem A.2. The

envelopes are 1

�min

p
⌫min

. The packing numbers can be computed entirely analogously to Lemma E.9,

which shows that V (A,W )C4

p
(m+ 1) log(m+ 1) for some dimension-independent C4.
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Combining both supremums proves that the contributions from Case 1 are bounded by
�maxCA

p
⌫max

�min

p
⌫min

� +R1, where P{R1 > ✏}C5 exp

✓
� C6✏

p
np

(m+1) log(m+1)

◆
for dimension independent con-

stants C5,C6.

The contributions from the three remaining cases are similar. Combining all of them and col-

lecting dimension-independent constants proves the theorem. ⇤

E.4. Proofs of Lemma E.1, Theorem 5.1, and Corollary 5.3

Proof of Lemma E.1: When �= r = 0, the problems defining xR(�, µ̂) and x (U(µ̂, r)) are identi-

cal, and hence their solutions must coincide. Thus, assume �> 0 and r > 0. Then, since objective

functions of the optimization problems defining xR(�, µ̂) and x (UE(µ̂, r)) are both strictly convex,

both optimizers are unique.

First consider the optimization defining x (UE(µ̂, r)). For any fixed x, the inner optimization can

be solved in closed-form, yielding minµ2UE(µ̂,r)
1

n
µTx= µ̂Tx� r

n

qPn
j=1

x2

j/⌫j. Thus,

x (UE(µ̂, r)) = argmax
x2X

1

n
µ̂Tx� r

n

vuut
nX

j=1

x2

j/⌫j.

Now, the first-order optimality conditions for this optimization problem and the problem defining

xR(�, µ̂) are, respectively,

0

@µ̂� rqPn
j=1

xj (UE(µ̂, r))2 /⌫j
V �1x (UE(µ̂, r))

1

A
>

(x (UE(µ̂, r))�x)� 0, 8x2X ,

�
µ̂��

p
⌫min V �1xR(�, µ̂)

�> �
xR(�, µ̂)�x

�
� 0, 8x2X ,

where V = diag(⌫1, . . . ,⌫n). One can now verify directly that given any �, xR(�, µ̂) satisfies the

optimality conditions for the robust problem for the parameter r = �
p
⌫min

qPn
j=1

xR
j (�, µ̂)2/⌫j.

Similarly, given any r, x (UE(r, µ̂)) satisfies the optimality conditions for the regularized problem

with �= rq
⌫min

Pn
j=1 xj(UE(µ̂,r))2/⌫j

. ⇤

Proof of Theorem 5.1. We construct µ̂n as in Example 2.2. Specifically, suppose suppose ⇠lj ⇠

N (µj,1/⌫0) for all j = 1, . . . , n, l = 1, . . . ,S. Then, by construction

µ̂j ⇠N
✓
µj,

1

S⌫0

◆
, µ�k

j ⇠N
✓
µj,

1

S⌫0

K

K � 1

◆
, µk

j ⇠N
✓
µj,

1

S⌫0
K

◆
. (E.5)

To complete the instances, take X n = [0,1]n, ⌫0 = .114, �min = 10�6, �max = 100 and

µj =

(
0.0408 if j is odd

�1.96 if j is even.
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The optimization defining xK,n(�, µ�k) decouples across j yielding,

xK,n
j (�, µ�k) = min

 
1,max

 
0,

p
S⌫0
�

r
K � 1

K
µ�k
j

!!
,

so that �K�fold,n solves

�K�fold,n 2 arg max
�2[�min ,�max]

1

K

KX

k=1

1

n

nX

j=1

µk
j min

 
1,max

 
0,

p
S⌫0
�

r
K � 1

K
µ�k
j

!!
. (E.6)

Consider the kth element of the outer-summand. This is an average of n, independent terms (indexed

by j). Each of these terms is continuous in �, and the jth term upperbounded by
��µk

j

��, which

is integrable. Hence, by (Van der Vaart 2000, Ex. 19.8), the kth element of the outer-summand

converges almost surely to its expectation, uniformly over � 2 [�min,�max] as n ! 1. Since K is

fixed, it follows that the overall objective also converges almost surely to its expectation. This

motivates defining a limiting optimization and optimizer. For each j, let Zj ⇠N (
p
S⌫0
q

K�1

K
µj,1).

Then, define

�K�fold,1 2 arg max
�2[�min,�max]

1

K

KX

k=1

1

n

nX

j=1

E
"
µk
j min

 
1,max

 
0,

p
S⌫0
�

r
K � 1

K
µ�k
j

!!#

2 arg max
�2[�min,�max]

1

n

nX

j=1

µjE

min

✓
1,

1

�
Z+

j

◆�

2 arg max
�2[�min,�max]

1

2
µ1E


min

✓
1,

1

�
Z+

1

◆�
+

1

2
µ2E


min

✓
1,

1

�
Z+

2

◆�
,

where the first equality follows by the definition of Zj and Eq. (E.5), and the second equality uses

the odd-even structure of the µj to simplify.

One can confirm numerically that for K 2 {2,5,10} and the parameters given earlier, the above

optimization has a unique minimizer �K�fold,1 = �max for K 2 {2,5,10}. See also Fig. EC.1. Since the

optimization objective defining �K�fold,n converges uniformly to the optimization objective defining

�K�fold,1 and the latter has a unique minimizer, it follows that �K�fold,n ! �K�fold,1 as n!1.

An entirely similar argument shows that

�OR,n 2 arg max
�2[�min ,�max]

1

n

nX

j=1

µj min

✓
1,max

✓
0,

p
S⌫0
�

µ̂j

◆◆
.

We define

�OR,1 2 arg max
�2[�min ,�max]

1

2
µ1E


min

✓
1,

1

�
W+

1

◆�
+

1

2
µ2E


min

✓
1,

1

�
W+

2

◆�
,

where Wj ⇠ N (
p
S⌫0µj,1). Arguing identically to the above, �OR,1 is a unique minimizer, the

objective of the first optimization converges uniformly to the second, and hence, �OR,n ! �OR,1.

Numerically, �OR,1 ⇡ 1.64.
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Figure EC.1 Limiting Functions in Theorem 5.1.

“K2”, “K5”, “K10”, ”OR” refer the limit of

the hold-out, 5-fold, LOO and Oracle curves as

n!1, respectively. Each curve has a unique

minimizer on the region. Notice the cross-

validation curves are poor approximations to

the oracle curve, and the oracle curve is not

very flat at its optimum, which causes the per-

formance of �K�fold,n to di↵er from �OR,n as

n!1.

To complete the proof, we note that by the above uniform convergence

lim
n!1

n�1µ>xR(µ̂,�OR,n)

n�1µ>xR(µ̂,�K�fold,n)
=

µ1E
⇥
min

�
1, 1

�OR,1W+

1

�⇤
+µ2E

⇥
min

�
1, 1

�OR,1W+

2

�⇤

µ1E
h
min

⇣
1, 1

�max
W+

1

⌘i
+µ2E

h
min

⇣
1, 1

�max
W+

2

⌘i ,

< .03,

where the last line follows from numerical integration. For this example, observe that LOO valida-

tion correspond to K = 10.

Finally, Hold-out validation can be analyzed similarly to the case K = 2. The key observation is

that each of the summands in the outer summation (over k) in Eq. (E.6) converges uniformly to its

expectation. Hence, in particular, when K = 2, the summand corresponding to k = 1 converges to

its expectation, which is again the objective of the optimization defining �K�fold,1. The remainder

of the proof follows the case K = 2.

This completes the proof. ⇤

Proof of Corollary 5.3: Take �n ! 0 such that �n
p
n!1. Then, both the deterministic error and

the tail probability in the theorem tend to zero. In other words, the suboptimality of our policy

tends to zero in the small-data, large-scale regime if the µ̂j are gaussian. Indeed, for this choice

of �n, the tail probability is summable, and hence, by the Borel-Cantelli lemma, the convergence

occurs almost surely as n!1. ⇤

E.5. Performance in the Large-Sample Regime

Regularization in the large-sample regime has been well-studied for a variety of statistical problems,

and, in particular, it is well known that if �S ! 0 at an appropriate rate as S!1, regularized
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methods converge in performance to the full-information optmimum (Negahban et al. 2012). We

next argue that despite the restriction of �̂ to the interval [�min,�max], xR(�̂, µ̂) still converges in

performance to the full-information optimum in the large-sample limit.

Theorem E.11 (Bound to Full-Information Optimum) Let �̂ be a solution to Equa-

tion (5.3). Then, under Assumption 2.1,

E


1

n

���µT (x⇤
n(µ)�xR(�̂, µ̂))

���
�
 2p

⌫
min

✓
�max +

1

�min

+
1

2

◆
.

Proof of Theorem E.11: Define �SAA 2 argmax�2[�min,�max]
1

n
µ̂>xR(�̂, µ̂). By definition, BReg

n (�, µ̂)

is uniformly bounded over �:

sup
�2[�min,�max]

�����
1

�n
p
⌫min

nX

j=1

I
✓

0 µ̂j �A>
j �

R(�, µ̂)
�
p
⌫min

⌫j

◆�����
1

�min

p
⌫min

.

Therefore, the objective of Equation (5.3) is a uniform approximation to the objective defining

�SAA, and by Lemma C.1, we have

0 1

n
µ̂>
⇣
xR(�SAA, µ̂)�xR(�̂, µ̂)

⌘
 2

�min

p
⌫min

.

Note that we can equivalently write

xR(�SAA, µ̂) 2 argmax
x2X

1

n
µ̂>x�

�SAAp⌫min

n

nX

j=1

x2

j⌫j. (E.7)

Moreover, for any x2X ,

�SAAp⌫min

n

nX

j=1

x2

j

⌫j
 �max

n
p
⌫min

kxk2
2
 �maxp

⌫min

,

where the last inequality follows because X ✓ [0,1]n. Thus, the objective in (E.7) is a uniform

approximation to the objective of the SAA problem, i.e., 1

n
µ̂Tx, whereby Lemma C.1 implies

0 1

n
µ̂> �xSAA(µ̂)�xR(�SAA, µ̂)

�
 2�maxp

⌫
min

.

Combining, we get

0  µ>
⇣
x⇤(µ)�xR(�̂, µ̂)

⌘

= (µ� µ̂)>x⇤(µ) + µ̂> �x⇤(µ)�xSAA(µ̂)
�
+ µ̂> �xSAA(µ̂)�xR(�SAA, µ̂)

�

+ µ̂>
⇣
xR(�SAA, µ̂)�xR(�̂, µ̂)

⌘
+ (µ̂�µ)>xR(�̂, µ̂)

 2 sup
x2X

��(µ̂�µ)>x
��+ 2n�maxp

⌫
min

+
2n

�min

p
⌫min

 2kµ̂�µk1 +
2np
⌫
min

✓
�max +

1

�min

◆
,



e-companion to Small-Data, Large-Scale Linear Optimization ec45

● ● ● ● ● ● ● ● ● ● ● ● ●

●

(a) Empirical Bayes-Inspired Policies

Figure EC.2 Performance of various data-driven procedures for Example 4.1, varying n. The error

bars represent 10% and 90% quantiles over 200 simulations. See Section 6 for a description of the

methods.

where the last inequality follows because X 2 [0,1]n. Dividing by n and taking expectations yields

E
����

1

n
µ>
⇣
x⇤(µ)�x(�̂, µ̂)

⌘����

�
 2

n
E [kµ̂�µk1] +

2p
⌫
min

✓
�max +

1

�min

◆
.

Finally,

E [kµ̂�µk1] =
nX

j=1

E[|µ̂j �µj|] =
nX

j=1

E
q

(µ̂j �µj)2
�


nX

j=1

q
E [(µ̂j �µj)2]

nX

j=1

1
p
⌫j

 np
⌫
min

,

where the inequality follows from Jensen’s inequality. Substituting above proves the theorem. ⇤

Appendix F: Additional Figures and Computational Details

F.1. Additional Figures for Example 4.1.

Figure EC.2a shows the performance of all data-driven methods from the Bayes-Inspired policy for

Example 4.1.

F.2. Simulating Advertising Portfolio Optimization Instances from Section 6 and

Computational Details.

We interpret µ as the expected number of clicks per targeting item, i.e., we assume that the revenue-

per-click is constant. The simulation procedure from Pani et al. (2017) can then be summarized as
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follows: The cost and expected number of clicks for item j are, respectively,

cj = 20�j
1
, µj = �j

0
+�j

1
log
�
cj + exp(��j

0
/�j

1
)
�
,

where �j
0
, �j

1
are independent across j and their marginal distributions are �0 ⇠Cauchy(7.96,2.21)

and �1 ⇠ Log(2.21,1.43). The values �0,�1 are dependent, with a Gumbel copula with parameter

2.14 Finally, any product for which �0 62 [�700,100], �1 62 [.5,800], or exp(�0/�1)> 20 are discarded

in the simulation, as they do not correspond well to real targeting items. Intuitively, the logarithmic

dependence between µj and cj reflects the typical dependence observed in real-world targeting

items, while the value of cj represents a typical, viable bid level for the item. Finally, since scaling

µ and c by a constant does not a↵ect the relative performance of the methods, we scale both by

1/200 for simplicity.

Pani et al. (2017) only consider the case of known rewards. Thus, we supplement the above with

a procedure for generating ⌫j, µ̂. Intuitively, we would like to capture the phenomenon if items with

a very large or very small expected-click to cost ratio probably being more rare, and, hence, more

likely to have less data associated with them. They would then have lower precision estimates. To

this end, let F�1

µ/c(µj/cj) be the empirical quantile of the ratio µj/cj among the n items. We take

⌫j =

8
><

>:

.1 if F�1

µ/c(µj/cj) .33

10 if .33<F�1

µ/c(µj/cj)< .66

8 o.w.

Thus, the worst third of items have the least precision, the best third of items have medium

precision, and the middle third of items have high precision. The values .1 and 10 were chosen to

ensure that items with a low ratio had a reasonable probability of being mistaken for a high-ratio

item. Figure EC.3 provides some graphs and summary statistics for the simulated instances.

Notice this procedure only specifies the estimates µ̂j, it does not specify the “raw data” that

generated these estimates. In many ways we feel this set-up well-mirrors this application; often the

estimates are the outputs of sophisticated machine learning algorithms performed by a third-party

(e.g., Adobe, or Google), and the raw data is not available to the decision-maker (the advertiser)

at the time of targeting. Nonetheless, in order to compare our methods to K-fold cross-validation

schemes, we need to also simulate “raw” data. We adopt the perspective in Example 2.2, and

assume µ̂j = 1

S

PS

k=1
⇠kj for all j. Unless otherwise specified, we take S = 10 and ⇠kj ⇠N (µj, S/⌫j).

Specific experiments relax/alter these data generation assumptions (cf. Section F.4 and F.5).

14 Precise parameter values are not available in the published manuscript of Pani et al. (2017) but were obtained via
personal communication (email) with the authors on 8 Sept. 2017.
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Figure EC.3 Summary Statistics of Simulated OPAOP Instances from Section 6. The histograms for

µ, c and µ/c include rug plots on the x-axis to highlight the very long tails.

F.3. Additional Computational Results from Section 6.1.

The two panels of Figure EC.4 show the performance of all data-driven methods from the

Bayes-Inspired policy class and Regularization-Inspired policy class, respectively, for our online-

advertising portfolio case study in Section 6.1.

Figure EC.5 examines the convergence of the optimizing � for various cross-validation procedures

from Section 6.1.

Like our Regularization-Inspired class, cross-validation procedures for the Bayes-Inspired class

perform quite well for our OAPOP instances because the oracle curve is quite flat at its optimum.

Figure EC.6 below shows the convergence of the optimizing ⌧ ’s for various cross-validation proce-

dures for the instances in Section 6.1. Notice that the estimated cross validation and bias-corrected
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(a) Bayes-Inspired Policies

● ● ●
●

●
● ● ● ● ● ● ● ●

●

(b) Regularization-Inspired Policies

Figure EC.4 Performance of all data-driven methods in OAPOP from Section 6. The top panel plots

the performance of x(⌧, µ̂) for various n and data-driven procedures for choosing ⌧ from Section 4.

The bottom panel plots the performance of xR(�, µ̂) along the same sample paths for data-driven

procedures for choosing � from Section 5. The error bars represent 10% and 90% quantiles over 200

simulations.



e-companion to Small-Data, Large-Scale Linear Optimization ec49

(a) Cross-Validation curves
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(b) Convergence of Estimates of �OR,n

Figure EC.5 Comparing Cross-Validation Policies for OAPOP. The left panel plots the curves � !
1
K

PK
k=1µ

k>
xk(�,µ�k) for various forms of cross-validation as well as �!µ>xR(�, µ̂) for a single

realization, when n = 217. The right panel plots the expected value of �K�fold,n, �̂n, and �OR,n

across the 200 simulations as n!1.

curves, themselves, are already quite variable (left panel of Figure EC.6). The result is that even

for large n, e.g., n = 217, the distribution of the optimizing ⌧ ’s is quite disperse (see left panel of

Figure EC.7). Nonetheless, because the oracle curve is quite flat at its optimum, these varying ⌧ ’s

all yield strong performance (see right panel of Figure EC.7).

F.4. Performance in Large-Sample Regime (finite S)

In Section 6.1, we considered the case S= 10 and n!1. In this section we fix n= 217, and consider

the performance of our methods as S increases. We consider a set-up similar to, but distinct from,

Example 2.2. Specifically, for S= 1,2, . . . ,, we take

µ̂j =
1

S

SX

k=1

 s
1

⌫j
⇠jk +µj

!
j = 1, . . . , n, (F.1)

where ⇠jk are i.i.d., random variables with mean 0 and precision 1. The e↵ective precision of µ̂j is

thus S⌫j, i.e., it grows as we acquire more data, and µ̂j eventually converges to a point-mass at µj.

We consider several distributions for ⇠jk, namely, uniform, exponential with rate 1, Student-t (with 3

degrees of freedom), and Pareto with shape 3 and unit scale. (In each case ⇠jk is centered and scaled

to have mean 0 and precision 1.) Notice these distributions include skewed, non-sub-Gaussian and

heavy-tailed (having fewer than 4 moments) instances.
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(a) Cross-Validation curves (b) Convergence of Optimizing ⌧ ’s

Figure EC.6 Comparing Cross-Validation Policies for OAPOP. The left panel plots the cross-validation

curves (in ⌧), the target oracle curve and our bias-corrected approximation for n= 217. The right

panel plots the average value of the optimizing ⌧ ’s across the 200 simulations as n!1.

●

●●

●●●
●

(a) Distribution of Optimizing ⌧ ’s (b) x(⌧, µ̂)

Figure EC.7 Explaining Performance of Cross-Validation for OAPOP. The left panel plots the distri-

bution of the optimizing ⌧ for various methods across the 200 simulations. The right panel plots

the oracle curve ⌧ ! µ>x(⌧, µ̂) for a single realization, when n= 217, with optimizing ⌧ of other

methods indicated.
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(a) Bayes-Inspired Policies
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(b) Regularization-Inspired Policies

Figure EC.8 Large-Sample Performance for OAPOP (Uniform). Each panel plots the performance of

various data-driven procedures as S increases and data is drawn according to (F.1), when ⇠jk is

a centered uniform random variable. The error bars represent 10% and 90% quantiles over 200

simulations.

Figures EC.8-EC.11 below show the performance of each of our methods for these various dis-

tributions. We find several qualitative features that are consistent across these experiments. In

each case, we can see that EB Opt and Reg Opt methods converge to the full-information and

generally outperform SAA and most estimate-then-optimize procedures for both small and large

S. A possible exception is the SURE procedure, which has excellent performance. Across the var-

ious experiments we also see that our optimization procedures have performance comparable to

cross-validation procedures (even when S is small), despite the non-normality of the estimators.

We believe this to be fairly strong evidence that these procedures retain the good large-sample

properties of other methods.

F.5. Robustness to Non-Normality

We next assess the robustness of our methods to increasing departures of normality. We consider

a set-up similar to, but distinct from, Example 2.2. Specifically, for S= 1,3, . . . ,25, we take

µ̂j = µj +

r
⌫0
S⌫j

SX

k=1

⇠jk j = 1, . . . , n, (F.2)

where ⇠jk are i.i.d., mean-zero random variables with precision ⌫0. A straightforward computation

confirms that for any S, E[µ̂j] = µj and E[(µ̂j �µj)2] = 1/⌫j.
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(a) Bayes-Inspired Policies
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(b) Regularization-Inspired Policies

Figure EC.9 Large-Sample Performance for OAPOP (Exponential). Each panel plots the performance

of various data-driven procedures as S increases and data is drawn according to (F.1), when ⇠jk is a

centered Exponential random variable (rate = 1). The error bars represent 10% and 90% quantiles

over 200 simulations.
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(a) Bayes-Inspired Policies
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(b) Regularization-Inspired Policies

Figure EC.10 Large-Sample Performance for OAPOP (Pareto). Each panel plots the performance of

various data-driven procedures as S increases and data is drawn according to (F.1), when ⇠jk is a

centered Pareto random variable (shape = 3, scale = 1). The error bars represent 10% and 90%

quantiles over 200 simulations.
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(a) Bayes-Inspired Policies
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(b) Regularization-Inspired Policies

Figure EC.11 Large-Sample Performance for OAPOP (Student-t). Each panel plots the performance of

various data-driven procedures as S increases and data is drawn according to (F.1), when ⇠jk is a

centered Student-t random variable with three degrees of freedom. The error bars represent 10%

and 90% quantiles over 200 simulations.

We consider several di↵erent distributional choices for ⇠j, namely uniform, Beta distributions

with parameters (2,2) (symmetric), (5,2) (negative skew) and (2,5) (positive skew) and an arcsine

distribution (U -shaped), each of which is first centered and normalized. Note these distributions

are sub-Gaussian and admit a density. As S!1, µ̂j converges in distribution to a Gaussian, but

for small S, it may be far from normal, depending on the distribution of ⇠jk. Figure EC.12 shows the

average total-variation distance, i.e., TV for each of these choices of distributions as S increases.

Notice they converge quite quickly to zero, but do so at di↵erent speeds.

We re-run the experiment of Section 6.1, assuming µ̂j is drawn from the above process for various

choices of ⇠kj , n= 217 and increasing S. For each S and choice of distribution, we plot the average sub-

optimality of our method versus the oracle performance over 200 sample paths. To make the results

comparable across distributions, we plot the results against TV of µ̂ instead of S. Figure EC.13

summarizes the results. Recall our theoretical results suggest each of these sub-optimality gaps in

Figure EC.13 should tend to zero as TV! 0, and indeed, we do see such convergence across all

distributions. These results suggest our method is robust to some non-normality, when noise is still

sub-Gaussian and admits a density.
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Figure EC.12 Data Generation Procedure for

Section F.5. As S increases, the

mean and standard deviation of µ̂j

remain fixed for each j, but the den-

sity becomes more normal by the cen-

tral limit theorem.
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Figure EC.13 Robustness to Non-Normality Average sub-optimality to the oracle performance vs. average

total variation distance from a Gaussian. Performance scaled by the full-information optimum,

computed over 200 sample paths, when µ̂ is drawn as in Equation (F.2), n= 217, and S increasing.
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