
This article was downloaded by: [45.48.250.70] On: 20 September 2016, At: 22:27
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

INFORMS Transactions on Education

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

A Course on Advanced Software Tools for Operations
Research and Analytics
Iain Dunning, Vishal Gupta, Angela King, Jerry Kung, Miles Lubin, John Silberholz

To cite this article:
Iain Dunning, Vishal Gupta, Angela King, Jerry Kung, Miles Lubin, John Silberholz (2015) A Course on Advanced Software
Tools for Operations Research and Analytics. INFORMS Transactions on Education 15(2):169-179. http://dx.doi.org/10.1287/
ited.2014.0131

Full terms and conditions of use: http://pubsonline.informs.org/page/terms-and-conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2015, INFORMS

Please scroll down for article—it is on subsequent pages

INFORMS is the largest professional society in the world for professionals in the fields of operations research, management
science, and analytics.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
http://dx.doi.org/10.1287/ited.2014.0131
http://dx.doi.org/10.1287/ited.2014.0131
http://pubsonline.informs.org/page/terms-and-conditions
http://www.informs.org

I N F O R M S
Transactions on Education

Vol. 15, No. 2, January 2015, pp. 169–179
ISSN 1532-0545 (online)

http://dx.doi.org/10.1287/ited.2014.0131
© 2015 INFORMS

A Course on Advanced Software Tools for
Operations Research and Analytics

Iain Dunning, Vishal Gupta, Angela King, Jerry Kung, Miles Lubin, John Silberholz
Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139,

{idunning@mit.edu, vgupta1@mit.edu, aking10@mit.edu, jkung@mit.edu, mlubin@mit.edu, josilber@mit.edu}

It is increasingly important for researchers and practitioners to be familiar with methods and software tools
for analyzing large data sets, formulating and solving large-scale mathematical optimization models, and

sharing solutions using interactive media. Unfortunately, advanced software tools are seldom included in cur-
ricula of graduate-level operations research (OR) and analytics programs. We describe a course consisting of
eight three-hour modules intended to introduce master’s and Ph.D. students to advanced software tools for
OR and analytics: machine learning in R, data wrangling, visualization, big data, algebraic modeling with
JuMP, high-performance and distributed computing, Internet and databases, and advanced mixed integer linear
programming (MILP) techniques. For each module, we outline content, provide course materials, summarize
student feedback, and share lessons learned from two iterations of the course. Student feedback was very posi-
tive, and all students reported that the course equipped them with software skills useful for their own research.
We believe our course materials could serve as a template for the development of effective OR and analytics
software tools courses and discuss how they could be adapted to other educational settings.

Keywords : active learning; teaching analytics; teaching optimization; teaching statistics; teaching with
technology; visualization

History : Received: May 2014; accepted: August 2014.

1. Introduction
Advanced software tools are a critical part of mod-
ern operations research (OR) and analytics practice.
Often, “data wrangling” and visualization with a sta-
tistical package like R (R Core Team 2014) or Python’s
pandas package (McKinney 2012) are some of the
first steps taken when handling the large, complex
data sets that are encountered in real-world applica-
tions. State-of-the-art optimization solvers like CPLEX
(IBM 2013) or Gurobi (Gurobi Optimization 2014) are
often needed to efficiently solve mathematical pro-
grams. Parallel and distributed computation using a
cluster of computers is sometimes the only way to
feasibly complete a large-scale analysis. Finally, con-
veying insights to make an impact with a nontechni-
cal collaborator frequently requires representing solu-
tions with interactive media or distributing them over
the Internet. The end-to-end workflow of modern OR
and analytics practice requires fluency with a spec-
trum of software tools.

Although some OR programs have begun inte-
grating computational elements into their curricula
(Alpers and Trotter 2009), few formally introduce stu-
dents to a broad range of software tools. For exam-
ple, we reviewed the course descriptions for eight

top OR programs1 for coursework pertaining to solv-
ing large-scale linear optimization problems. Large-
scale linear optimization is one of the cornerstones
of OR practice and a clear opportunity for teach-
ing advanced software tools. Thirteen courses men-
tion techniques for solving large-scale linear optimiza-
tion problems in their course description. However,
of the nine courses with publicly available syllabi,
only five (56%) covered using software tools for opti-
mization, and of the four courses with publicly avail-
able homework assignments, only one (25%) required
students to implement computational techniques for
large-scale linear optimization.

On the other hand, some of these tools are cov-
ered by courses offered by other departments out-

1 Industrial and Systems Engineering at the Georgia Institute of
Technology; Operations Research and Industrial Engineering at Cor-
nell University; Industrial Engineering and Operations Research
at Columbia University; Industrial Engineering at the Univer-
sity of California, Berkeley; Decisions, Operations and Technology
Management at the University of California, Los Angeles; Man-
agement Science and Engineering at Stanford University; Opera-
tions Research and Financial Engineering at Princeton University;
and Industrial and Operations Engineering at the University of
Michigan.

169

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

45
.4

8.
25

0.
70

]
on

 2
0

Se
pt

em
be

r
20

16
, a

t 2
2:

27
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

mailto:idunning@mit.edu
mailto:vgupta1@mit.edu
mailto:aking10@mit.edu
mailto:jkung@mit.edu
mailto:mlubin@mit.edu
mailto:josilber@mit.edu

Dunning et al.: Advanced Software Tools for OR and Analytics
170 INFORMS Transactions on Education 15(2), pp. 169–179, © 2015 INFORMS

side of OR programs. For instance, many computer
science programs offer courses on visualization,2 and
numerical computation programs offer courses on
distributed and parallel computation.3 Individually,
however, these courses fail to fully cover the spectrum
of tools required in OR and analytics practice. More-
over, these computer science and numerical computa-
tion courses typically focus on theoretical issues and
implementation challenges as seen through the lens
of those fields, whereas often OR and analytics prac-
titioners are seeking a more applied “How do I use
this tool?” perspective. Finally, these sorts of courses
are not universally available for students; for instance,
our university, the Massachusetts Institute of Technol-
ogy (MIT), does not offer regular semester-long data
science or visualization courses.

To address the need for courses covering advanced
software tools for these topics, we developed 15.S602
Software Tools for Operations Research, an MIT course
devoted entirely to these tools and the end-to-end
workflow of OR and analytics practice. The course,
a series of three-hour modules designed and taught
by graduate students, launched during the 2013 win-
ter term and ran a second time during the 2014
winter term. The course is targeted at doctoral and
master’s students, though two advanced undergrad-
uate students have completed the course. Participants
are expected to have already taken coursework in
machine learning and optimization, and all students
are required to have taken a graduate-level course
in optimization in order to register. The course is
designed as an introduction to advanced software
tools for OR and analytics but not as an introduction
to programming; participants are required to have
familiarity with some programming language.

In this paper, we describe the curriculum and
lessons learned from two iterations of this course. In
§2, we describe our course design philosophy, citing
relevant educational literature that informed our deci-
sions. In §3, we detail the individual course mod-
ules and summarize student feedback about these
modules. In §4, we describe lessons learned from
the second iteration of the course. Finally, in §5 we
review overall course feedback and discuss how our
course materials could be adapted for use in another
program. The supplemental files (course_content.zip)
for this paper (available as supplemental material

2 Examples include the Georgia Institute of Technology’s CS 7450,
Harvard University’s CS 171, the University of California, Berke-
ley’s CS 294-10, Stanford University’s CS 448B, and Indiana
University’s Massive Open Online Course (MOOC) Information
Visualization.
3 Examples include Cornell University’s CS 5460, the Georgia Insti-
tute of Technology’s CSE 6220, Harvard University’s CS 264,
Princeton University’s COS 598A, and University of Illinois at
Urbana–Champaign’s ECE 408.

at http://dx.doi.org/10.1287/ited.2014.0131) include
a full set of course materials from the second iteration
of the course, including lecture slides, assignments
and solutions, and heavily commented example code.

2. Design Philosophy
Before delving into the details of the content of each
module, we summarize our overall design philoso-
phy, drawing attention to issues many educators may
face when creating a course on state-of-the-art soft-
ware tools. Our ultimate focus was on creating a prag-
matic course to empower students to use software in
their own research and projects. This design philoso-
phy, in turn, helped shape the structure and content
of the course.

2.1. Active Learning and a Workshop
Environment

Perhaps the most critical element of our design phi-
losophy was to create a workshop environment that
would promote active learning and enable students
to be highly engaged with their own learning pro-
cesses. Active learning has been defined as “instruc-
tional activities involving students in doing things
and thinking about what they are doing” (Bon-
well and Eison 1991). This well-studied pedagogical
method has been shown to enhance deeper, more
meaningful learning (Smith et al. 2005). OR educators
have reported success in using active learning in top-
ics such as service operations management (Behara
and Davis 2010) and linear programming (Devia and
Weber 2012, Kydd 2012).

To facilitate an active learning environment
throughout our course, students were required to
bring laptops to each module. Class time was a mix
of lecturing to introduce the new tool, group coding
exercises during which the instructor would live-code
on a projected screen, and short exercises for which
students would break off into small teams while
the instructor circulated to give one-on-one feedback.
By working in class, students could collaborate with
partners, providing an opportunity for students with
weaker programming skills to learn from classmates
with stronger skills. Moreover, technical and syntacti-
cal issues were easily addressed by the instructor in
real time, allowing students to focus on the higher-
level learning objective of the exercise. Nearly all in-
class exercises were accompanied by a more chal-
lenging “bonus exercise,” which provided the most
advanced students in the course with an opportunity
to further hone their skills. Student feedback substan-
tiated our opinion that the workshop format for the
course was more effective than a traditional lecture
format would have been.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

45
.4

8.
25

0.
70

]
on

 2
0

Se
pt

em
be

r
20

16
, a

t 2
2:

27
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

http://dx.doi.org/10.1287/ited.2014.0131

Dunning et al.: Advanced Software Tools for OR and Analytics
INFORMS Transactions on Education 15(2), pp. 169–179, © 2015 INFORMS 171

2.2. Balancing Modularity and Integration
By nature, a software tools course covering a range of
tools and concepts will take on a modular design—
each module will cover a specific tool or technique.
Specifically, we structured our course as a series of
eight three-hour modules detailed in §3. This modu-
larity provides a number of advantages:

Simplified course updates. As technology evolves,
state-of-the-art tools necessarily change, and to keep
up to date, course content must be updated. Indeed,
between the first and second iterations of our course,
one module was dropped, two were added, two
were substantially changed, and four remained simi-
lar. Modular design simplifies the process of updating
some content while leaving other content unchanged.

Facilitating repeat enrollment. Changing the modules
taught each year encourages students who previously
took the course to reenroll or audit select modules
again in later iterations. Of the students who attended
the first iteration, approximately 20% attended at least
one module in the second iteration.

Simplified development with multiple instructors. Soft-
ware tools courses are well suited for multiple instruc-
tors. With seven instructors for eight modules, we
were able to ensure instructors were resident experts
in the material they taught, often having exten-
sive industrial experience with the tools they were
covering. Modular course design limits the depen-
dency between material, streamlining and simplify-
ing the course development process with multiple
instructors.

Despite the advantages of modular design, there
is evidence that integrated curricula can improve

Figure 1 Connecting Modules throughout the Course

Big data

High-performance
computing

Algebraic
modeling

with JuMP

Machine
learning in R

Data
wrangling

Visualization

Project Part I:
Internet and
databases

Project Part II:
Advanced MILP

techniques

Note. Course content was reinforced through small exercises that relied on material from previous modules. An arrow from module A to module B indicates
that module B relies on material from module A.

educational outcomes (Vars 1991, Bransford et al.
2000). Consequently, we employed four techniques to
partially link the modules together, while retaining
the benefits of modularity. Figure 1 summarizes how
modules were interconnected; an arrow from mod-
ule A to module B indicates that module B relies on
material from module A.

Recall through in-class exercises. In most modules, we
incorporated programming exercises (described in §3)
that relied on a previous module but that were simple
enough that students who had not attended the pre-
vious module could seek assistance and still benefit
from the exercise. We felt, and noticed in course feed-
back, that these small exercises helped students link
together the modules and increase retention through
knowledge recall and repetition.

Reusing programming languages. In the second iter-
ation of our course, we limited instruction to the R
(R Core Team 2014) and Julia (Bezanson et al. 2012)
programming languages. Though this decision intro-
duced dependencies to the modules where we intro-
duced these two languages and limited the software
tools we could teach, students reported the continuity
in programming language to be beneficial. During our
first iteration of the course, we taught using five pro-
gramming languages over seven modules, and stu-
dents complained that this led to cognitive overload.

A single, consistent data set. We used the Hubway
Data Visualization data set (Hubway 2012), an open-
source data set released by Hubway (Boston’s bike-
sharing program) as part of a visualization challenge
in 2012, in all modules. It is a clean, moderate-sized

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

45
.4

8.
25

0.
70

]
on

 2
0

Se
pt

em
be

r
20

16
, a

t 2
2:

27
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Dunning et al.: Advanced Software Tools for OR and Analytics
172 INFORMS Transactions on Education 15(2), pp. 169–179, © 2015 INFORMS

(550,000 trips) data set that includes geospatial, time-
series, and demographic information. The continuity
that arose from using one data set throughout the
course, including in the optimization-focused mod-
ules, highlighted the various capabilities of the tools
taught and how they might be used in tandem.

Capstone project. Finally, the course culminated with
a two-part capstone project. This capstone project
(detailed in §§3.7–3.8) drew on tools from each mod-
ule and illustrated how they can be used in concert to
formulate, solve, and deliver a high-quality solution
to an OR problem. Our goal with the project was to
contextualize these tools in the problem-solving pro-
cess for students.

2.3. Essential Role of Feedback
A third aspect of our design philosophy was lever-
aging a cycle of continuous feedback from students—
before the course began, during the course, and after
the course.

For both iterations of the course, we performed a
pre-course survey to identify new techniques students
would most like to learn and determine the list of
modules to be taught. Additionally, in the second iter-
ation, we reviewed the previous year’s feedback on
which existing modules were most useful to students.
These surveys were instrumental in choosing topics
that were relevant to our student body and presenting
those topics at an appropriate level of difficulty.

During the course, we solicited feedback on each
individual module. To reduce the burden on students,
we used Google Forms to distribute an anonymous,
online course evaluation at the end of each session
via hyperlink; this is a popular platform for collecting
feedback for each lecture in a course (Gehringer and
Cross 2010). Google provides basic, real-time analysis

Figure 2 Feedback Collected at the Conclusion of Each Module

2.7
1.9 1.9 1.7

2.1
1.6

2.2 2.4

3.9 4.3 4.3
3.83.7

3.2
4.1 4.1

2.2
2.8 2.9

3.7
2.7

3.6 3.3 3.1

3.9 4.3 4.2
3.64.0

3.2
4.1 4.1

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

How much did you know
 about this topic beforehand?

How interesting did you
 find this module?

How difficult did you
 find this module?

How useful do you think
 this module will be to

you in the future?

ML
w/ R

Data
Wrangling

Visual-
ization

Modeling
w/ JuMP

Big
Data

HPC Proj.
Part 1

Proj.
Part 2

Note. All responses were on a 1-to-5 scale (5 being the highest), and the numbers presented here are the average across respondents.

on these surveys. We used this feedback both to iden-
tify misconceptions from previous lectures that could
be addressed with a short discussion at the begin-
ning of the next module and to provide comments
to instructors, which they could use to improve their
own teaching style and techniques.

Finally, at the conclusion of the course we solicited
feedback on the overall course structure and mod-
ules, including questions on how difficult each mod-
ule was, which modules were most useful to students,
and what other topics they wished were covered. We
will use this feedback next year to help redesign the
modules included in the course. See §3 for excerpts
of student feedback at the module level and §5 for
feedback at the course level.

3. Course Modules
Our key course objective was to provide students
with expertise in the wide range of advanced soft-
ware tools for OR and analytics. In this section, we
summarize the content of each module taught in the
second year of the course and provide excerpts from
the student evaluations for that module. Figure 2
summarizes student feedback for each module. The
supplemental files (course_content.zip) provide more
detailed information about the content of the mod-
ules, including slides and heavily commented code.

3.1. Machine Learning in R
Machine learning algorithms are used to detect pat-
terns in and make predictions from data. These meth-
ods form a core part of how analytics practition-
ers use empirical data to build models. The goal of
this module was to teach students how to run many
common machine learning algorithms by using freely

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

45
.4

8.
25

0.
70

]
on

 2
0

Se
pt

em
be

r
20

16
, a

t 2
2:

27
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Dunning et al.: Advanced Software Tools for OR and Analytics
INFORMS Transactions on Education 15(2), pp. 169–179, © 2015 INFORMS 173

available packages for the statistical computing lan-
guage R (folder IntroR within course_content.zip).

We first taught students how to read a comma-
separated value file into R and how to use built-in
functions to quickly extract summary statistics from a
data set. We then taught them how to execute com-
mon algorithms such as linear and logistic regression,
classification and regression trees, random forests,
clustering, and support vector machines. We empha-
sized the importance of out-of-sample model evalu-
ation and validation as well as how to calculate the
coefficient of determination, interpret variable signif-
icance reports, generate confidence intervals, display
confusion matrices for classification problems, and
examine properties of clusters.

Most students had previously taken a machine
learning or statistics course and therefore appreciated
the module’s focus on software instead of detailed
descriptions of methods, with one commenting, “I
like the fact that the class went fast and covered many
common analytics tools without dwelling on explain-
ing them.” This was generally regarded as the easiest
module, though all students found it interesting and
a large majority thought it would be useful in their
future.

3.2. Data Wrangling
Data Wrangling, the second module in R, focused
on teaching students how to manipulate and reshape
data sets to facilitate analysis (folder DataWrangling
within course_content.zip). This critical and often
frustrating step is usually one of the first parts of the
modeling process. We chose to wait until the second
module in the course to address these topics, how-
ever, as we wanted to first expose students to the
variety of machine learning packages in R to contex-
tualize why cleaning and reshaping data is important.

In this module we showed students how to iden-
tify and deal with outliers, handle missing data, and
manage date or time information within a data set.
Students built upon their knowledge of built-in R
functions from the Machine Learning in R module

Figure 3 In-Class Exercise from the Data Wrangling Module Covering Split-Apply-Combine

In-Class Exercise
Given the data frame trips containing all trips taken on
Hubway bicycles:

1. Split the trips based on the bicycle used
2. Apply a function to each subset to extract the bicycle id,

mean and standard deviation of trip durations, and
total number of trips

3. Combine the results into a data frame with one row for
each bicycle

Solution in R
spl <- split(trips, trips$bike.nr)
process.bike <- function(x) {

bike.nr <- x$bike.nr[1]
mean.duration <- mean(x$duration)
sd.duration <- sd(x$duration)
num.trips <- nrow(x)
return(data.frame(bike.nr, mean.duration,

sd.duration, num.trips))
}
processed <- lapply(spl, process.bike)
bicycle.info <- do.call(rbind, processed)

Note. Pages 19–20 of script.pdf and exercise3_full.r, both within the DataWrangling folder of course_content.zip.

by learning how to use them inside the tapply func-
tion, an R function that works like the pivot table
operation in Excel. Students learned how to reor-
ganize data contained in multiple files by merging
data sets together on unique identifiers and learned
about data reshaping through the split-apply-combine
paradigm (Wickham 2011). The split-apply-combine
framework takes a large problem and splits it into
manageable pieces, applies some sort of operation on
each piece independently, and combines the pieces
back together (for an example exercise from the
course, see Figure 3). Many students mentioned this
framework of data analysis as a particular highlight,
which suggests it is an essential component for future
data wrangling classes.

This module was regarded by students on average
as the most enjoyable, and was selected by no stu-
dents as their easiest or hardest class (Table 1). All
students thought it would be at least somewhat use-
ful in their futures, and most felt that one class was
long enough to cover the topic in sufficient depth.
Some students expressed interest in understanding
how these techniques scaled for larger data sets and
how they related to databases, but we feel these top-
ics were covered sufficiently in the later modules in
the course.

3.3. Visualization
Visual representations of data and models can facili-
tate deep understanding at a glance. The goal of this
module was to teach students how to take advan-
tage of the power of visualization throughout the
modeling process: to conduct initial exploration of
a data set, to interpret a model, and to communi-
cate with an audience (folder VisualizationR within
course_content.zip).

Students learned how to create visualizations in R
by using the ggplot2 R package (Wickham 2009). We
taught them to conduct data exploration by mak-
ing scatterplots, plotting geospatial data on a map
(see Figure 4 for an example exercise), making his-
tograms, and making heat maps. Students practiced

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

45
.4

8.
25

0.
70

]
on

 2
0

Se
pt

em
be

r
20

16
, a

t 2
2:

27
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Dunning et al.: Advanced Software Tools for OR and Analytics
174 INFORMS Transactions on Education 15(2), pp. 169–179, © 2015 INFORMS

Table 1 Summary of Final Course Feedback with 28 Responses

ML Data Modeling Big Proj. Proj.
w/ R Wrangling Visualization w/ JuMP Data HPC Part 1 Part 2

Most enjoyable module? 0 29 25 11 7 0 14 11
Least enjoyable module? 0 0 0 14 11 61 4 4
Easiest module? 57 0 18 14 4 0 0 4
Hardest module? 0 0 0 11 21 29 14 18
Which module would you 0 0 0

extend? 4 11 32 14 11 0 14 7
remove? 7 4 0 7 11 54 7 7

Note. All numbers are percentages and the values may not sum to 100% as students could select “no module.”

interpreting models visually by drawing regression
lines and confidence bands, plotting convex hulls of
clusters, and coloring a map based on predicted val-
ues. The use of visualization to convey uncertainty in
model results was stressed. We presented principles
of effective visualization, and we used examples of
both good and bad visualizations to illustrate these
concepts.

This content was new material for most students,
and this was one of the most popular modules in
the course (Table 1). Many students singled out the
visualizations that employed maps as the highlight of
the class, with one student stating that they, “…didn’t
realize it was so easy to make such a nice-looking
visualization,” and another simply saying, “maps are
cool.” The comparison of good and bad visualizations
was polarizing—one student described it as “defi-
nitely appreciated,” and another described it as “too
sweeping and general.” The breadth of possible top-
ics that could be covered in this area was evident
with one-third of the students selecting this class as
the class they would most like to see extended—
substantially more than any other class. The visu-
alization of graphs, perhaps with Graphviz (Ellson

Figure 4 In-Class Exercise from the Visualization Module

Implementation in R
freq.start.table <- table(trips$start_station)
freq.start <- as.data.frame(freq.start.table)
names(freq.start) <- c("id", "freq")
freq.stations <- merge(stations, freq.start,

by = "id")
boston <- get_map(location = "boston",

zoom = 13)
ggmap(boston) + geom_point(data = freq.stations,

aes(x = lon, y = lat, size = freq))

Note. Students were asked to plot Hubway stations on a map of Boston, with station size relative to the frequency of trips departing from that station. Lines
217–226 of script.R within the VisualizationR folder of course_content.zip.

et al. 2002), and tools to create interactive plots like
D3 (Bostock et al. 2011) and Shiny (RStudio and Inc.
2014) were consistently mentioned in the long-form
text feedback.

3.4. Algebraic Modeling with JuMP
Optimization is a core skill in the OR and analytics
toolboxes, and many options are available to model
optimization problems, such as spreadsheets or raw
matrix-based approaches such as MATLAB’s linprog
function. As these approaches do not scale well and
are not appropriate for implementing advanced algo-
rithmic approaches, we elected to use JuMP (Lubin
and Dunning 2014), an algebraic modeling language
(AML). JuMP is a package for Julia and was chosen as
it is the only freely available AML that is both solver
independent and supports advanced techniques such
as callbacks for mixed-integer programming solvers.
Although a number of both commercial and open-
source AMLs would be suitable for the material in
this module, in subsequent modules we took signif-
icant advantage of JuMP’s advanced solver features
and its being embedded in a general-purpose high-
level language.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

45
.4

8.
25

0.
70

]
on

 2
0

Se
pt

em
be

r
20

16
, a

t 2
2:

27
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Dunning et al.: Advanced Software Tools for OR and Analytics
INFORMS Transactions on Education 15(2), pp. 169–179, © 2015 INFORMS 175

The module was an introduction to both Julia as
a programming language and JuMP as an AML for
linear and mixed-integer programming (folder Mod-
elling within course_content.zip). The class covered
basic syntax, aimed toward students already famil-
iar with languages such as MATLAB or Python. We
asked students to implement a basic facility location
model as an in-class exercise. As a more advanced
exercise, we then asked students to enumerate the
four best solutions to the facility location problem by
iteratively solving the model and adding a constraint
to cut off the optimal solution each time. Focusing
on the simple-to-state but sufficiently complex facil-
ity location problem was motivational for many stu-
dents, with one student summarizing it as, “challeng-
ing, but 0 0 0 it tied the whole class together.”

Most students found this module relatively easy
but expected the content of the module to be useful
in their futures. Many students found the first third
of the module that focused on teaching the Julia lan-
guage better suited to a pre-class homework assign-
ment. The concept of an AML was fairly novel for
some students, as an alternative to, “0 0 0 [creating] a
large matrix and [keeping] track of the indices.”

3.5. Big Data
Recent years have witnessed an increased prevalence
of huge data sets in data analytics (Lohr 2012). This
module was designed to highlight the differences in
exploration and modeling for these large-scale prob-
lems (folder BigData within course_content.zip).

We reviewed fundamentals of data storage and
proposed a taxonomy to distinguish between “small
data” (fits in memory of a personal computer),
“medium data” (cannot fit into memory completely,
but can be filtered or partially loaded), and what is
truly “big data” (may not even fit on a single com-
puter). This taxonomy was generally described as
empowering, with one student saying that they had
“never known how to answer the ‘how big is big’
question [before].” We discussed techniques appro-
priate for the medium-data case with an emphasis

Figure 5 Example of a “Big Data Algorithm” from the Big Data Module That Will Scale Well for Very Large Lists or Operate on a Stream of Data

Challenge
Write code that samples one item from a list of
unknown size, where each item is equally likely to
be selected, and the list can only be traversed once.

Solution
Take the first item as the incumbent. For item
i = 21 0 0 0, replace the incumbent with probability
1/i. If we check for n= 3 we see that item 1 is
selected with probability 41 − 1

2 541 − 1
3 5 = 1

3 and
item 2 is selected with probability 4 1

2 541 −
1
3 5=

1
3 .

Implementation in Julia
function sample(datastream)

count_so_far = 0
selected_item = nothing
for item in datastream

count_so_far += 1
if rand() <= 1/count_so_far

selected_item = item
end

end
return selected_item

end

Note. Slides 25–28 of bigdataslides.pdf and exercise3_sol.jl, both within the BigData folder of course_content.zip.

on partial file loading and R packages for operating
on data sets larger than memory capacity such as
biglm (Lumley 2013). We then moved on to stream-
ing and sketching algorithms used in big-data appli-
cations, such as reservoir sampling algorithms (see
Figure 5). This small section was disproportionately
popular in the feedback, with one student stating they
had, “never thought about sampling in that way.”
Finally we introduced the concepts of the MapReduce
(Dean and Ghemawat 2008) framework, a method-
ology for addressing very large distributed data sets
that is similar to the split-apply-combine framework.

This module was described as one of the hardest
modules of the course, and the majority of the stu-
dents knew little about the topic beforehand. A rel-
atively high number of students were not confident
it would be useful to them in the future. The pre-
sentation of MapReduce as a methodology was well
received but many found the implementation exer-
cises too challenging. In contrast, the earlier exercises
on performing operations on data sets iteratively were
generally described positively.

3.6. High-Performance and Distributed
Computing

It is valuable for students to be able to transform their
theoretical understanding of algorithms into efficient,
high-performance code. Additionally, because of the
wider availability of academic computing clusters and
computing as a commodity in the “cloud,” we believe
it is important for students to be aware of both
the capabilities and limitations of such systems for
solving large-scale OR and analytics problems. This
module focused on both aspects of high-performance
and distributed computing (folder DistribComputing
within course_content.zip).

The first section of this module proceeded through
a basic implementation of the classical gradient
descent method, introducing students to important
considerations in modern computing architectures,
which are more often bound by slow memory access
than by speed of computation. The BLAS (Dongarra

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

45
.4

8.
25

0.
70

]
on

 2
0

Se
pt

em
be

r
20

16
, a

t 2
2:

27
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Dunning et al.: Advanced Software Tools for OR and Analytics
176 INFORMS Transactions on Education 15(2), pp. 169–179, © 2015 INFORMS

et al. 1988) and LAPACK (Anderson et al. 1999)
libraries for linear algebra operations were covered
in this section, as they remain important for high-
performance codes. The second section focused on
distributed and parallel computing. We presented a
case study of solving a large-scale stochastic program-
ming problem in parallel by using Benders’ decom-
position (Benders 1962), with scenarios drawn from
historical data in the Hubway data set.

This was expected to be one of the more demanding
modules, and it was reported as the hardest module
in the course. The step-by-step guide to improving
the performance of the algorithm was popular, but
many students found the distributed computing con-
cepts difficult to grasp within the time frame and felt
the compromises required to teach it made it feel “too
hands off” and “too high level.”

3.7. Project Part I—Internet & Databases
The capstone project linked together many of the data
and optimization techniques learned throughout the
entire course. The goal was to create an Internet ser-
vice that solves a traveling salesman problem (TSP)
on demand by accessing data that are requested from
a database using the architecture depicted in Fig-
ure 6. It was developed over two modules: the first
addressed the Internet and database aspects of the
project, and the second covered the advanced tech-
niques required to solve the TSP (folder ProjectPart1
within course_content.zip). We chose to address Inter-
net services as they are a modern way to share
data, models, and results. They eliminate the need for
model deployment on individual computers, which is
often a barrier to the implementation of OR and ana-
lytics solutions in practice.

The first topic covered was an overview of how
the Internet is structured and how clients and servers
interact. Students created a simple service that would
return different messages based on the input and
would solve simple arithmetic problems. The sec-
ond topic was an introduction to databases, the

Figure 6 Design of the TSP Web Service That Students Implemented
During the Capstone Project Modules

User
request

Julia server

Hubway
SQLite

database
TSP solver

User
response

(lat1, lng1)
(lat2, lng2)

Search
box

Matching
stations

Distance
matrix

Tour

Tour graphic

main data storage tool in the industry. This intro-
duction included both relational and “NoSQL”-style
databases. Students learned the basics of using SQL to
interact with a relational database, in this case SQLite.
In-class exercises included joining the Hubway trip
and station data sets together and filtering based on
text patterns. Finally, we combined the two topics
taught in this module to build an Internet service that
would take all Hubway stations within user-specified
latitude and longitude ranges and return the pairwise
distances between them.

On average, students found the module interest-
ing, and many students were surprised at how easy
it was to create an Internet service. A substantial por-
tion of the class was familiar with the structure of
the Internet, especially those with computer science
backgrounds. Many students had prior exposure to
SQL or were familiar with the concept, but feedback
indicated that in general they enjoyed the high-level
review of the topic regardless of previous exposure.

3.8. Project Part II—Advanced MILP Techniques
The second project module focused on complement-
ing the theoretical knowledge of combinatorial opti-
mization learned in other courses (folder ProjectPart2
within course_content.zip). Although most students
were familiar with the concept of branch and bound
as a way to solve integer programs, we illustrated in
detail the computational structure of modern mixed-
integer linear programming (MILP) solvers and how
users can interact with them by using callbacks.

We first presented a simple example to introduce
using callbacks to enforce an implicit, or lazy, con-
straint in a model by checking if it is violated within
a user-defined callback (see Figure 7). As a more com-
plex example, we asked students to constrain a deci-
sion vector within a Euclidean ball. As the Euclidean
ball can be represented as an infinite number of lin-
ear constraints, tangent approximations can be added
dynamically (lazily) to enforce the constraint. We pre-
sented a standard formulation for the TSP, which has
an exponential number of subtour elimination con-
straints. Students implemented this exponential fam-
ily of constraints as lazy constraints. Finally, the TSP
solver was integrated into the existing Internet ser-
vice created in the previous module to complete the
project.

The TSP is a classical problem in OR. Indeed,
Lee and Raffensperger (2006) discussed teaching the
methods to solve the TSP using AMPL scripts. In
contrast to their work, where TSPs are modeled and
solved in isolation, we used the TSP primarily as an
example of a nontrivial optimization problem that can
be integrated with databases and Web servers in a
realistic, modern architectural design.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

45
.4

8.
25

0.
70

]
on

 2
0

Se
pt

em
be

r
20

16
, a

t 2
2:

27
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Dunning et al.: Advanced Software Tools for OR and Analytics
INFORMS Transactions on Education 15(2), pp. 169–179, © 2015 INFORMS 177

Figure 7 Example Used to Introduce Lazy Constraints to Students in JuMP

Simple Lazy IP:
max x1 + 2x2

subject to: x11x2 ∈ 80119
lazy: x1 + x2 ≤ 1

Implementation in JuMP:
m = Model(solver=GurobiSolver())
@defVar(m, x[1:2], Bin)
@setObjective(m,Max, x[1] + 2x[2])
function lazy(cb)

xVal = getValue(x)
if xVal[1] + xVal[2] > 1 + 1e-4

@addLazyConstraint(cb, x[1] + x[2] <= 1)
end

end
setLazyCallback(m, lazy)
solve(m)

Notes. Slides 30–31 of projectPartII.pdf in the ProjectPart2 folder of course_content.zip. Users define a function that checks if the constraint x1 + x2 ≤ 1 is
violated by the current solution (up to a tolerance), and if so, adds this constraint to the model at runtime.

The second part of the project was regarded as one
of the harder classes, but students derived satisfac-
tion from bringing all the components of the course
together, with one describing it as “a good capstone
class.” Students found the concept of MILP callbacks
mostly understandable, and the escalation of com-
plexity allowed them to appreciate the mechanics. The
module also served as a refresher for the content of
the Algebraic Modeling with JuMP module, as well as
general programming practice. All students strongly
agreed that the final project accomplished the goal of
showing how to combine concepts and tools into a
complete application, and 86% of the students were
motivated by the topic of the project.

4. Lessons Learned
In addition to the specific feedback about modules
detailed in §3, we learned several lessons during the
second iteration of our course that will affect future
iterations.

Workshop Environment. We employed active learn-
ing instead of a more traditional lecture format as we
felt it to be particularly appropriate to the teaching of
software tools. One potential problem with this work-
shop style is the increased demands on the instructor
because of the higher degree of interaction between
the instructor and students. We found that this was
not an issue for our class sizes (approximately 40 stu-
dents), especially as there was usually an additional
instructor present to address technical issues and to
help students who were lagging behind the rest of
the class. We believe that the workshop format could
scale to a larger number students if additional teach-
ing assistants were used.

Distributing Course Content. The course was created
as a series of loosely coupled modules, which enabled
the independent and simultaneous development of all
content. A consequence of this was that the course
materials were frequently updated both before and
even after the course began. To enable the instruc-
tors and students to stay in sync, we stored all course

materials online using the distributed version control
system (VCS) GitHub (GitHub 2014). The benefit of
using a VCS over the Web interface of our university’s
course management software was that both instruc-
tors and students could easily synchronize their com-
puter’s copy of the materials with the master online
copy. However, we found that many students were
unfamiliar with the use of a VCS, requiring us to sup-
plement our course materials with an extra tutorial
on the topic. Collected feedback revealed that more
than half of the students found this tutorial helpful,
and we plan to make it available at the beginning of
the course in the future.

Adjustments to Modules Offered. In future iterations
of the course, we expect to remove the module on
High Performance and Distributed Computing, as
student feedback suggested that course participants
did not have sufficient programming background to
benefit from the material. Though we plan to solicit
suggestions from students before launching the next
iteration of the course to identify potential modules
to add, student feedback suggests that a second mod-
ule covering additional visualization topics would be
well received.

5. Discussion and Conclusion
Both iterations of the course were well attended—in
the second iteration 57 students were registered (38
for credit, 19 as auditors), and on average 38 stu-
dents attended each module. Though most registered
students were graduate students at the MIT Opera-
tions Research Center (73.7%), others included gradu-
ate students at various MIT engineering departments
(7.0%), MIT undergraduates (3.5%), and visiting stu-
dents and postdoctoral fellows (15.8%). A key goal
of this course was to equip students with the skills
they need to conduct research; all 28 students who
responded to the end-of-class survey (partial sum-
mary in Table 1) reported that it did so. Given the
popularity of the course and its success in equipping
students with a range of advanced software tools for

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

45
.4

8.
25

0.
70

]
on

 2
0

Se
pt

em
be

r
20

16
, a

t 2
2:

27
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Dunning et al.: Advanced Software Tools for OR and Analytics
178 INFORMS Transactions on Education 15(2), pp. 169–179, © 2015 INFORMS

OR and analytics, we believe it was effective and
could be used as a template for software tools courses
in other OR and analytics programs.

We believe that others will be able to replicate and
modify our course content. This paper’s supplemental
materials contain the full set of course materials from
the second iteration of our course, including slides
and heavily commented code. The modular design of
the course, detailed in §2.2, will enable others to easily
retain some modules but adjust or replace others to
meet their needs. The modularity also makes it sim-
ple to retain some software tools but to change others,
an important point of flexibility as the choice of soft-
ware tool is often based on an instructor’s expertise.
For instance, between the first and second iterations
of our course we retained R as the statistical soft-
ware package but updated all other modules to use
Julia and JuMP. Instructors might choose to replace
R with another statistical software package like SAS,
Stata, or Python’s pandas package (McKinney 2012),
or they might choose to replace Julia and JuMP with
Python-based interfaces for Gurobi (Gurobi Optimiza-
tion 2014) or CPLEX (IBM 2013), for example.

The modular design of the course also creates flex-
ibility in the course delivery. We delivered the course
with one student instructor per module, but a soft-
ware tools course could also be delivered by one
or two instructors with broad expertise in statistical
software tools and optimization tools. One promising
mode of delivery would be as a massive open online
course (MOOC). By leveraging prerecorded course
content, a MOOC enables course delivery with a large
number of instructors without needing them to all be
available to teach at the same time. A downside of
using a MOOC to deliver the course is that the active
learning component of the course would be lost in
this format.

Because our course was offered during MIT’s Inde-
pendent Activities Period, a four-week January term
that features seminar-style courses, assessment was
limited to a pre-class homework assignment for each
module. In these assignments, we required students
to install the software and add-on packages needed
for the module. Students needed to validate their
installation by running a small snippet of code and
submitting the output for credit. For instance, the pre-
homework assignment for the visualization module
required students to install four R packages and to
plot and submit a scatterplot, country map, and street
map (README.md in the VisualizationR folder of
course_content.zip). These assignments force students
to address installation early, avoiding time-consuming
troubleshooting during class time. A natural oppor-
tunity to expand assessment in the course would
be assigning individual coding tasks following each
module that require students to apply the tools from

that module to a new data set or optimization prob-
lem. The course material is also well suited for a cul-
minating project, in which individuals or groups of
students complete projects involving machine learn-
ing and optimization.

Our second iteration of the course had 24 hours
of class time, which is the ideal length for a univer-
sity with a quarter system and roughly two-thirds of
a semester-long course. However, a number of soft-
ware tools could be added to the course to extend it
to a full semester length. For example, when asked
in the final course feedback to select one module to
extend, approximately one-third of students selected
visualization, indicating demand for more content on
this topic. Other promising areas to add modules
would be in simulation, tools for nonlinear optimiza-
tion such as CVX (Grant and Boyd 2014), and spe-
cialized tools for MapReduce such as Hadoop (White
2009). Alternately, the course could be expanded to
make it accessible to students who have less famil-
iarity with machine learning or optimization than
our participants. More emphasis could be placed on
detailed descriptions of machine learning algorithms
or on the mathematics of advanced optimization tech-
niques such as column generation and lazy constraint
generation. For participants with less programming
experience, modules covering an introduction to pro-
gramming could be added.

The need for education in OR and analytics soft-
ware tools will only increase. Recently, dozens of busi-
ness and engineering schools have created one-year
Master of Science in Business Analytics or Data Sci-
ence programs. These programs focus on training stu-
dents to be effective OR and analytics practitioners,
for which fluency in advanced software tools is essen-
tial. Such programs could especially benefit from a
condensed OR and analytics software tools course
because of their short duration and applied focus. We
believe the materials accompanying this paper could
serve as a template for the development of effective
software tools courses in these and other programs.

Supplemental Material
Supplemental material to this paper is available at
http://dx.doi.org/10.1287/ited.2014.0131.

Acknowledgments
We wish to thank Ross Anderson, André Calmon, Virot Chi-
raphadhanakul, Velibor Mis̆ić, and Allison O’Hair for their
contributions to this course as student instructors. We also
thank Dimitris Bertsimas for his role as faculty sponsor of
the course. This material is based upon work supported
by the National Science Foundation Graduate Research Fel-
lowship [Grant No. 1122374] (J. Kung and J. Silberholz).
Any opinion, findings, and conclusions or recommenda-
tions expressed in this material are ours and do not neces-
sarily reflect the views of the National Science Foundation.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

45
.4

8.
25

0.
70

]
on

 2
0

Se
pt

em
be

r
20

16
, a

t 2
2:

27
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

http://dx.doi.org/10.1287/ited.2014.0131

Dunning et al.: Advanced Software Tools for OR and Analytics
INFORMS Transactions on Education 15(2), pp. 169–179, © 2015 INFORMS 179

M. Lubin was supported by the DOE Computational Sci-
ence Graduate Fellowship [Grant No. DE-FG02-97ER25308].

References
Alpers A, Trotter LE (2009) Teaching computational discrete opti-

mization at the undergraduate level. INFORMS Trans. Ed.
9(2):63–69.

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J,
Du Croz J, et al. (1999) LAPACK Users’ Guide, 3rd ed. (SIAM,
Philadelphia).

Behara RS, Davis MM (2010) Active learning projects in service
operations management. INFORMS Trans. Ed. 11(1):20–28.

Benders JF (1962) Partitioning procedures for solving mixed-
variables programming problems. Numerische Mathematik
4:238–252.

Bezanson J, Karpinski S, Shah VB, Edelman A (2012) Julia:
A fast dynamic language for technical computing. CoRR,
abs/1209.5145.

Bonwell CC, Eison JA (1991) Active learning: Creating excitement
in the classroom. ASHEERIC Higher Education Report No. 1,
George Washington University, Washington, DC.

Bostock M, Ogievetsky V, Heer J (2011) D3 data-driven documents.
IEEE Trans. Visualization Comput. Graphics 17(12):2301–2309.

Bransford JD, Brown AL, Cocking RR, eds. (2000) Learning and
transfer. How People Learn: Brain, Mind, Experience, and School
(National Academy Press, Washington, DC), 51–78.

Dean J, Ghemawat S (2008) MapReduce: Simplified data processing
on large clusters. Comm. ACM 51(1):107–113.

Devia N, Weber R (2012) Active learning exercise: Newspaper page
layout. INFORMS Trans. Ed. 12(3):153–156.

Dongarra JJ, Croz JD, Hammarling S, Hanson RJ (1988) An
extended set of FORTRAN basic linear algebra subprograms.
ACM Trans. Math. Software 14(1):1–17.

Ellson J, Gansner E, Koutsofios L, North SC, Woodhull G (2002)
Graphviz: Open source graph drawing tools. Graph Drawing
(Springer, Berlin, Heidelberg), 483–484.

Gehringer EF, Cross WT (2010) A suite of Google services for daily
course evaluation. 40th Frontiers Ed. Conf. (FIE) (IEEE, Piscat-
away, NJ), F4C-1–F4C-2.

GitHub (2014) GitHub. http://github.com.
Grant MC, Boyd SP (2014) The CVX Users’ Guide Release 2.0.

http://cvxr.com/cvx/doc/CVX.pdf.
Gurobi Optimization, Inc. (2014) Gurobi optimizer reference man-

ual. http://www.gurobi.com.
Hubway (2012) Hubway data visualization challenge. http://

hubwaydatachallenge.org.
IBM (2013) Version 12.6: User’s Manual for CPLEX, http://pic.dhe

.ibm.com/infocenter/cosinfoc/v12r6/.
Kydd CT (2012) The effectiveness of using a Web-based applet to

teach concepts of linear programming: An experiment in active
learning. INFORMS Trans. Ed. 12(2):78–88.

Lee J, Raffensperger JF (2006) Using AMPL for teaching the TSP.
INFORMS Trans. Ed. 7(1):37–69.

Lohr S (2012) The age of big data. New York Times (February 11).
http://www.nytimes.com/2012/02/12/sunday-review/big-datas
-impact-in-the-world.html.

Lubin M, Dunning I (2014) Computing in operations research using
Julia. INFORMS J. Comput. Forthcoming.

Lumley T (2013) Biglm: Bounded memory linear and general-
ized linear models, R package version 0.9-1. http://CRAN.R
-project.org/package=biglm.

McKinney W (2012) Python for Data Analysis (O’Reilly Media,
Sebastopol, CA).

R Core Team (2014) R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna,
Austria. http://www.R-project.org/.

RStudio, Inc (2014) Shiny: Web Application Framework for R,
R package version 0.9.1. http://CRAN.R-project.org/package
=shiny.

Smith KA, Sheppard SD, Johnson DW, Johnson RT (2005) Pedago-
gies of engagement: Classroom-based practices. J. Engrg. Ed.
94(1):87–101.

Vars GF (1991) Integrated curriculum in historical perspective. Edu-
cational Leadership 49(2):14–15.

White T (2009) Hadoop: The Definitive Guide (O’Reilly Media,
Sebastopol, CA).

Wickham H (2009) ggplot2: Elegant Graphics for Data Analysis
(Springer, New York).

Wickham H (2011) The split-apply-combine strategy for data anal-
ysis. J. Statist. Software 40(1):1–29.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

45
.4

8.
25

0.
70

]
on

 2
0

Se
pt

em
be

r
20

16
, a

t 2
2:

27
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

http://github.com
http://cvxr.com/cvx/doc/CVX.pdf
http://www.gurobi.com
http://hubwaydatachallenge.org
http://hubwaydatachallenge.org
http://pic.dhe.ibm.com/infocenter/cosinfoc/v12r6/
http://pic.dhe.ibm.com/infocenter/cosinfoc/v12r6/
http://www.nytimes.com/2012/02/12/sunday-review/big-datas-impact-in-the-world.html
http://www.nytimes.com/2012/02/12/sunday-review/big-datas-impact-in-the-world.html
http://CRAN.R-project.org/package=biglm
http://CRAN.R-project.org/package=biglm
http://www.R-project.org/
http://CRAN.R-project.org/package=shiny
http://CRAN.R-project.org/package=shiny

