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This technical note provides an alternate proof of Gupta and Rusmevichientong (2021, Theorem 4.3). The

proof presented here is more general, and substantively simpler. It hinges on a new approach to bounding

the dependence between different components of the solution of a random linear optimization problem by

considering worst-case dual realizations.

1. Introduction

In Gupta and Rusmevichientong (2021), the authors present an analysis of their Stein-

Correction for debiasing in-sample performance in the small-data, large-scale optimization

regime. Specifically, Theorem 4.3 of that work establishes a high-probability bound on

the error of the estimator in a certain linear optimization setting. The proof focuses on

the dual optimization problem and establishes that (under suitable conditions) the dual

optimal solution converges to a deterministic function, uniformly over a specific policy

class, at a sufficiently fast rate in the small-data, large-scale limit. As the authors explain,

this argument is necessary to establish that certain sums of dependent random variables

are not “too dependent,“ and hence still concentrate uniformly.

Similar in spirit, Gupta, Huang, and Rusmevichientong (2022a) present a different

approach to debiasing linear optimization problems in this regime. They also study the

dual optimization problem and show it satisfies an “approximate strong-convexity” prop-

erty. They then leverage this property in order to establish a similar convergence of the

dual optimal solutions to a deterministic function, at a sufficiently fast rate.

Both arguments are mathematically onerous and require a number of regularity assump-

tions. Indeed, while it is somewhat straightforward to show that the dual optimal solutions

converge to deterministic value pointwise for each member of a policy class, it is much
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more challenging to show this convergence holds uniformly and occurs sufficiently fast for

the remainder of the argument to go through.

The key idea of this technical note is to simplify this dual analysis by instead considering

worst-case performance over all possible values for the dual optimal solution. This worst-

case perspective substantially simplifies the proof without affecting the overall bound on

estimation error. In our opinion, it also makes the dependence between the optimization

structure and the convergence rate of the estimator more transparent.

For simplicity of exposition, we present this new proof idea in context of a generalization

of Theorem 4.3 of Gupta and Rusmevichientong (2021), but the same idea can be applied

to other data-driven optimization algorithms, including the so-called Variance Gradient

Correction (Gupta, Huang, and Rusmevichientong, 2022a, Theorem 4.7). We leave a full

discussion of these generalizations for our current working paper (Gupta, Huang, and

Rusmevichientong, 2022b).

2. Model Setup and Main Result

Our problem of interest is

max
x∈[0,1]n

µ⊤x (1)

s.t.
n∑

j=1

Ajxj ≤ b,

where b∈Rm and Aj ∈Rm for j = 1, . . . , n. We assume throughout that n≥ 2, Problem (1)

is feasible, and that the columns Aj are in general position. Recall, a set of points in Rd

is in general position if no k of them lie in a (k− 2)-dimensional flat for k = 2, . . . , d+1.

Observe that any set of columns Aj can be placed in general position by perturbing them

by an arbitrarily small amount, so that this last assumption is almost without loss of

generality.

Our data are Gaussian corruptions of the true µ, i.e.,

Zj ∼N (µj,1/νj) j = 1, . . . , n,

drawn independently across j, where νj is known for each j. (Extending the results below to

the “near-Gaussian” setting of Gupta and Rusmevichientong (2021) is straightforward but

tedious.) We also observe a fixed (non-random) covariateWj ∈W for each j = 1, . . . , n, and,

without loss of generality, the first component of Wj is νj. Finally, let νmin ≡minj=1,...n, νj.
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We consider a class of policies indexed by functions f ∈F ⊆RR×W . Namely, given f ∈F ,

define

x(f,Z)∈ argmax
x∈[0,1]n

n∑
j=1

f(Zj,Wj)xj (2)

s.t.
n∑

j=1

Ajxj ≤ b,

where ties are broken arbitrarily.

Problem (2) admits the dual linear optimization problem

(λ(f,Z),θ(f,Z))∈ argmin
λ≥0,θ≥0

b⊤λ+ e⊤θ (3)

s.t. θj ≥ f(Zj,Wj)−A⊤
j λ j = 1, . . . , n.

Since the primal is bounded and feasible, a dual optimal solution exists, and we require

(λ(f,Z),θ(,Z)) be chosen to be a basic feasible optimal solution. Observe that in any

optimal solution, θj(f,Z) = [f(Zj,Wj)−A⊤
j λ(f,Z)]+.

Our goal is to provide an estimator for µ⊤x(f,Z) and bound the error of this estimator

uniformly over all f ∈F . To that end, we generalize the Stein Correction from Gupta and

Rusmevichientong (2021) to our setting. Namely, inspired by complementary slackness, let

xj(f, z,λ) = I
{
f(z,Wj)−A⊤

j λ≥ 0
}
. With some overloading of notation, we let x(f,Z,λ)

be the vector-valued function whose jth component is xj(f,Zj,λ).

While the vanilla Stein correction of Gupta and Rusmevichientong (2021) is formed using

a central finite diference of the component functions xj(f,Z), we instead use a central finite

difference of the component functions xj(f,Zj,λ). Specifically, for any h> 0, we define

B(f,Z,λ)≡ 1

2h

n∑
j=1

1
√
νj

(
xj(f,Zj +

h
√
νj
,λ)−xj(f,Zj −

h
√
νj
,λ)

)
. (4)

We then propose estimating the unknown out of sample performance µ⊤x(f,Z) by the

data-driven quantity Z⊤x(f,Z)−B(f,Z,λ(f,Z)).

2.1. Main Results

To rigorously state our main result, we must introduce a few more assumptions on F .

First, given F , we define a class of binary-valued functions with domain R×W×Rm

R(F) = {(z,W ,A) 7→ I
{
f(z,W )−A⊤λ≥ 0

}
: f ∈F ,λ∈Rm

+}. (5)
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Assumption 1 (Bounded Complexity). The class F is such that R(F) in Eq. (5) has

VC dimension at most V .

Moreover, to avoid some technical issues around non-uniqueness of the solution to Prob-

lem (1) we will make the following assumption:

Assumption 2 (Almost Sure Dual Non-Degeneracy). We have

P ((λ(f,Z),θ(f,Z)) is a non-degenerate basic feasible solution for all f ∈F) = 1.

Notice that dual non-degeneracy implies primal uniqueness, so that Assumption 2 ensures

x(f,Z) is uniquely defined for all f ∈F almost surely (Bertsimas and Tsitsiklis, 1997).

Our main result is

Theorem 1 (Uniform Bound on Estimation Error). Under Assumptions 1 and 2,

there exists a universal constant C such that for any 0<h< 1 and any 0< ϵ< 1,

sup
f∈F

∣∣Z⊤x(f,Z)−B(f,Z,λ(f,Z))−µ⊤x(f,Z)
∣∣︸ ︷︷ ︸

Estimation Error

≤C
h2n
√
νmin

+C

(
m+

√
V n

h

)√
logn

νmin

log

(
2

ϵ

)
.

We compare Theorem 1 to Gupta and Rusmevichientong (2021, Theorem 4.3) in Section 4.

For now, observe that we can optimize the rate of convergence in the theorem by choosing

h= (V/n)1/6, yielding a bound of the form

C
(
m+V 1/3n2/3

)√ logn

νmin

log

(
2

ϵ

)
.

In practice, verifying Assumption 2 may be difficult. We can replace Assumption 2 with

a simpler condition on F . Define

S(f,Z)≡


f(Zj,Wj)

Aj

 : j = 1, . . . n

∪{0} ⊆Rm+1.

Assumption 3 (Induced Cost Vectors in General Position). We have

P (S(f,Z) are in general position for all f ∈F) = 1.

Theorem 2 (Uniform Bound on Estimation Error (II)). Under Assumptions 1

and 3, the conclusion of Theorem 1 holds.

Because the bounds in Theorems 1 and 2 hold uniformly, optimizing our estimator yields

a nearly best-in-class policy.
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Corollary 1 (Near Best-in-Class Performance). Let

fOR ∈ argmax
f∈F

µ⊤x(f,Z) and f̂ ∈ argmax
f∈F

Z⊤x(f,Z)−B(f,Z,λ(f,Z)),

with h= (V/n)1/6. Then, under the assumptions of either Theorem 1 or Theorem 2, there

exists a universal constant C such that for any 0< ϵ< 1

µ⊤(x(fOR,Z)−x(f̂ ,Z))≤C
(
m+V 1/3n2/3

)√ logn

νmin

log

(
2

ϵ

)
.

Proof. The proof follows directly from Theorem 1 or Theorem 2 after specifying h and

invoking Gupta and Rusmevichientong (2021, Lemma C.1). □

3. Proof of Theorem 1.

Before presenting the proof, we recall the definition of the Ψ-Orlicz norm. Let Ψ(t) =

1
5
exp(t2). Then, for any random variable Y , we define

∥Y ∥Ψ ≡ inf{C > 0 : Ψ(Y/C)≤ 1}.

Mean-zero random variables with finite Ψ-Orlicz norm are sub-Gaussian.

We use the notation a≲ b to mean there exists a universal constant C (not depending

on problem parameters) such that a≤Cb.

Proof of Theorem 1. Fix some f ∈F . By triangle inequality, we have the upper bound∣∣Z⊤x(f,Z)−B(f,Z,λ(f,Z))−µ⊤x(f,Z)
∣∣

≤
∣∣(Z −µ)⊤(x(f,Z)−x(f,Z,λ(f,Z)))

∣∣+ ∣∣(Z −µ)⊤x(f,Z,λ(f,Z))−B(f,Z,λ(f,Z))
∣∣ .

The first term on the right can be bounded exactly as in (Gupta and Rusmevichientong,

2021). Specifically, by Lemma 1 below, x(f,Z) equals x(f,Z,λ(f,Z)) except possibly at

m components, and since both x(f,Z) and x(f,Z,λ(f,Z)) are in [0,1]n,∣∣(Z −µ)⊤(x(f,Z)−x(f,Z,λ(f,Z)))
∣∣ ≤ m∥Z −µ∥∞.

Replacing this upper bound and taking the supremum over f ∈F of both sides yields

sup
f∈F

∣∣(Z −µ)⊤x(f,Z)−B(f,Z,λ(f,Z))
∣∣ (6)

≤ m∥Z −µ∥∞ +sup
f∈F

∣∣(Z −µ)⊤x(f,Z,λ(f,Z))−B(f,Z,λ(f,Z))
∣∣ .
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Notice that the argument of the supremum on the right can be seen as a sum of n random

variables, however these random variables are dependent because λ(f,Z) depends on the

entire vector Z. The proof of (Gupta and Rusmevichientong, 2021) thus proceeds by

studying λ(f,Z) to bound this dependence.

We take a different approach. Instead of analyzing the function λ(f,Z) directly, we

further upperbound the right hand side by considering the worst-case realization of λ(f,Z),

namely we upper bound the second term on right side of Eq. (6) by

sup
f∈F ,λ∈Rm

+

∣∣(Z −µ)⊤x(f,Z,λ)−B(f,Z,λ)
∣∣ .

Applying the triangle inequality and substituting above yields the bound

sup
f∈F

∣∣(Z −µ)⊤x(f,Z)−B(f,Z,λ(f,Z))
∣∣

≤ m∥Z −µ∥∞ (7a)

+ sup
f∈F ,λ∈Rm

+

∣∣(Z −µ)⊤x(f,Z,λ)−E
[
(Z −µ)⊤x(f,Z,λ)

]∣∣ (7b)

+ sup
f∈F ,λ∈Rm

+

|B(f,Z,λ)−E [B(f,Z,λ)]| (7c)

+ sup
f∈F ,λ∈Rm

+

∣∣E [(Z −µ)⊤x(f,Z,λ)
]
−E [B(f,Z,λ)]

∣∣ . (7d)

Writing the inner product in each of Eqs. (7b) and (7c) as a sum shows that both terms

are now the maximum of a sum of independent, mean-zero random variables. Such sums

can be analyzed using standard techniques from empirical processes. See Lemmas 2 and 3

below. This is the key idea behind our simplified proof.

The analysis of Eq. (7a) and Eq. (7d) follows (Gupta and Rusmevichientong, 2021)

closely. Specifically, consider Eq. (7a). For each j, ∥Zj −µj∥Ψ ≲
√

1/νj ≲
√

1/νmin. Hence,

by (Pollard, 1990, Lemma 3.2), ∥∥Z−µ∥∞∥Ψ ≲
√

logn
νmin

. Thus, by Markov’s inequality, with

probability at least 1− ϵ, ∥Z −µ∥∞ ≲
√

logn log(2/ϵ)
νmin

.

Similarly, expanding Eq. (7d) yields

sup
f∈F ,λ∈Rm

+

∣∣∣∣∣
n∑

j=1

E
[
(Zj −µj)xj(f,Zj,λ)−

1

2h
√
νj

(
xj(f,Zj +

h
√
νj
,λ)−xj(f,Zj −

h
√
νj
,λ)

)]∣∣∣∣∣ .
We apply an Approximate Stein’s Lemma (c.f. (Gupta and Rusmevichientong, 2021,

Lemma C.2)). Specifically, let ξj = νj(Zj−µj) be a standard normal increment. Expressing
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the inner expectation in terms of ξj and applying (Gupta and Rusmevichientong, 2021,

Lemma C.2) shows Eq. (7d) is at most

4h2

n∑
j=1

√
1

νj
≤ 4h2n

√
νmin

,

by Jensen’s Inequality.

Combining the above bounds with Lemmas 2 and 3 below shows that for any 0< ϵ< 1,

with probability at least 1− ϵ,

sup
f∈F

∣∣Z⊤x(f,Z)−B(f,Z,λ(f,Z))−µ⊤x(f,Z)
∣∣

≲ m

√
logn log(2/ϵ)

νmin

+
h2n
√
νmin

+

√
V n logn log(2/ϵ)

h
√
νmin

+

√
V n logn

νmin

log

(
2

ϵ

)
≲

h2n
√
νmin

+

(
m+

√
V n

h

)√
logn

νmin

log

(
2

ϵ

)
.

This proves the theorem. □

The proof of Theorem 2 is identical to the proof of Theorem 1 since we can use Assump-

tion 3 instead of Assumption 2 to invoke Lemma 1. The details are omitted.

We now prove the missing lemmas from the above proof. The first lemma is a direct

consequence of linear optimization duality.

Lemma 1 (Relating x(f,Z) and x(f,Z,λ(f,Z))). Under either Assumption 2 or

Assumption 3,

|{j : xj(f,Z) ̸= xj(f,Z,λ(f,Z))}| ≤m a.s.

In other words, x(f,Z) and x(f,Z,λ(f,Z)) agree in all except at most m components

almost surely.

Proof. To streamline notation, fix some f ∈F and let f = (f(Z1,W1), . . . , f(Zn,Wn))
⊤,

λ∗ =λ(f,Z) and θ∗ = θ(f,Z).

We first claim that x(f,Z) and x(f,Z,λ∗) can only differ at components j such that

A⊤
j λ

∗ = fj. To prove this claim, recall that at optimality, we must have θ∗j = (fj −A⊤
j λ

∗)+.

Hence,

fj >A⊤
j λ

∗ =⇒ θ∗ > 0 =⇒ xj(f,Z) = 1= xj(f,Z,λ∗),

where the last implication follows by complementary slackness. Similarly,

fj <A⊤
j λ

∗ =⇒ θ∗ > fj −A⊤
j λ

∗ =⇒ xj(f,Z) = 0= xj(f,Z,λ∗),
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where again the last implication follows by complementary slackness. Thus, to prove the

lemma, it suffices to bound
∣∣{j :A⊤

j λ
∗ = fj}

∣∣.
Now assume that Assumption 2 holds, i.e., that λ∗,θ∗ are non-degenerate almost surely.

Define the following sets

J> = {j : fj >A⊤
j λ

∗, θ∗j = fj −A⊤
j λ

∗}

J< = {j : fj <A⊤
j λ

∗, θ∗j = 0}

J= = {j : fj =A⊤
j λ

∗, θ∗j = fj −A⊤
j λ

∗, θj = 0}

I0 = {i : λ∗
i = 0}.

Since (λ∗,θ∗) is a non-dengenerate, basic feasible solution, we must have that

|J>|+ |J<|+2 |J=|+ |I0|= n+m =⇒ |J=|+ |I0|=m.

Hence, |J=| ≤ m, which proves the lemma when Assumption 2 holds since f ∈ F was

arbitrary.

Now assume Assumption 3 holds instead. By the same argument above, it suffices to

bound {j :A⊤
j λ

∗ = fj}. Suppose by contradiction this set is of size at least m+1. Then,

after permuting the indices, we have that fj

Aj

⊤−1

λ∗

= 0 j = 1, . . . ,m+1.

These equalities show that the m+2 points
 fj

Aj

 : j = 1, . . . ,m+1

∪{0}

lie in an m-dimensional flat and thus are not in general position, a contradiction. This

concludes the lemma. □

The remaining two lemmas both follow directly from standard tools in empirical processs.

Lemma 2 (Uniform Convergence of the In-Sample Bias). Under the assumptions

of Theorem 1, there exists a universal constant C such that for any 0< ϵ< 1, with proba-

bility at least 1− ϵ,

sup
f∈F ,λ∈Rm

+

∣∣(Z −µ)⊤x(f,Z,λ)−E
[
(Z −µ)⊤x(f,Z,λ)

]∣∣ ≤ C

√
V n logn

νmin

log

(
2

ϵ

)
.
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Proof. Using the definition of xj(f,Zj,λ), the above supremum is

sup
f∈F ,λ∈Rm

+

∣∣∣∣∣
n∑

j=1

(Zj −µj)I
{
f(Zj,Wj)−A⊤

j λ≥ 0
}
−E

[
(Zj −µj)I

{
f(Zj,Wj)−A⊤

j λ≥ 0
}]∣∣∣∣∣ .

This is the maximal deviation of an empirical process. Notice that the vector

(|Z1−µ1| , . . . , |Zn −µn|) is an envelope for the process, and by (Gupta and Rusmevichien-

tong, 2021, Lemma A.1), ∥∥Z −µ∥2∥Ψ ≲
√

n
νmin

.

Furthermore,∣∣∣{((Zj −µj)I
{
f(Zj,Wj)−A⊤

j λ≥ 0
})n

j=1
: f ∈F ,λ∈Rm

+}
∣∣∣

≤
∣∣∣{(I{f(Zj,Wj)−A⊤

j λ≥ 0
})n

j=1
: f ∈F ,λ∈Rm

+}
∣∣∣ ,

and by assumption on the VC dimension of the class of functions R, we have that the

cardinality of this last set is at most (n+1)V (see (Wainwright, 2019, Prop. 4.18)). Applying

the argument leading up to (Pollard, 1990, Eq. 7.4) thus shows that with probability at

least 1− ϵ,

sup
f∈F ,λ∈Rm

+

∣∣(Z −µ)⊤x(f,Z,λ)−E
[
(Z −µ)⊤x(f,Z,λ)

]∣∣ ≲

√
V n logn

νmin

log

(
2

ϵ

)
.

This completes the proof. □

Lemma 3 (Uniform Convergence of the Stein Correction). Under the assump-

tions of Theorem 1, there exists a universal constant C such that for any 0< ϵ < 1, with

probability at least 1− 2ϵ,

sup
f∈F ,λ∈Rm

+

|B(f,Z,λ)−E [B(f,Z,λ)]| ≤ C

√
V n logn log(2/ϵ)

h
√
νmin

.

Proof. Write out the definition of B(f,Z,λ) and apply the triangle inequality to upper

bound

sup
f∈F ,λ∈Rm

+

|B(f,Z,λ)−E [B(f,Z,λ)]|

≤ sup
f∈F ,λ∈Rm

+

∣∣∣∣∣
n∑

j=1

1

2h
√
νj

(
xj(f,Zj +

h
√
νj
,λ)−E

[
xj(f,Zj +

h
√
νj
,λ)

])∣∣∣∣∣ (8a)

+ sup
f∈F ,λ∈Rm

+

∣∣∣∣∣
n∑

j=1

1

2h
√
νj

(
xj(f,Zj −

h
√
νj
,λ)−E

[
xj(f,Zj −

h
√
νj
,λ)

])∣∣∣∣∣ (8b)
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We bound each of these suprema separately.

Consider Eq. (8a). This is maximum deviation of an empirical process. Notice the con-

stant vector ( 1
2h

√
ν1
, . . . , 1

2h
√
ν1
) is an envelope with size at most

√
n

2h
√
νmin

. Furthermore, by

the assumption on the class R,

∣∣∣{(xj(f,Zj +h/
√
νj,λ)

)n
j=1

: f ∈F ,λ∈Rm
+

}∣∣∣
=
∣∣∣{(I{f(Zj +h/

√
νj,Wj)−A⊤

j λ≥ 0
})n

j=1
: f ∈F ,λ∈Rm

+

}∣∣∣
≤ (n+1)V .

Hence, by the argument leading up to (Pollard, 1990, Eq. 7.2), we have that for any

0< ϵ< 1, with probability at least 1− ϵ,

Eq. (8a) ≲

√
V n logn log(2/ϵ)

h
√
νmin

.

A nearly identical argument shows that with probability at least 1− ϵ,

Eq. (8b) ≲

√
V n logn log(2/ϵ)

h
√
νmin

.

Combining proves the lemma. □

4. Comparison to Gupta and Rusmevichientong (2021)

We next compare and contrast Theorems 1 and 2 to Gupta and Rusmevichientong (2021,

Theorem 4.3).

4.1. Specializing to the setting of Gupta and Rusmevichientong (2021)

Gupta and Rusmevichientong (2021, Theorem 4.3) treats a specific “Bayes-Inspired Policy

Class” of the form

x(τ,Z)∈ argmax
x∈[0,1]n

νmin + τ

νmin

n∑
j=1

νj
νj + τ

Zjxj (9)

s.t Ax≤ b. (10)

We assume here that ties are broken such that x(τ,Z) is right continuous.

These policies are subsumed within our setting by letting Wj = 1/νj and F = {(z,W ) 7→
(νmin+τ)W−1

νmin(W−1+τ)
z : τ ≥ 0}. The corresponding class R(F) can be written as

{(z, ν,A) 7→ I
{
νz− νA⊤λ− τA⊤λ≥ 0

}
: τ ≥ 0,λ∈Rm

+ .}
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Since the argument of the indicator belongs to a 2m + 1 dimensional vector space of

functions, the VC dimension of R(F) is at most V = 2m+ 1. Thus, Assumption 1 holds

for this class.

Assumption 3 also holds. Specifically, for any fixed τ , if {Aj : 1≤ j ≤ n}∪{0} are in gen-

eral position, then the set S(f,Z) is in general position almost surely since Z are Gaussian.

If F were countable, this would be enough to ensure Assumption 3 holds. Unfortunately,

F is not countable, however, we can replace it with a countably infinite subset before

applying the theorem. Specifically, since x(τ,Z) is right-continuous, for any τ , there exists

a rational τ0 such that x(τ,Z) =x(τ0,Z). Hence,

sup
f∈F

∣∣(Z −µ)⊤x(f,Z)−B(f,Z,λ(f,Z))
∣∣ = sup

f∈F0

∣∣(Z −µ)⊤x(f,Z)−B(f,Z,λ(f,Z))
∣∣ ,

where F0 = {(z,W ) 7→ W−1

W−1+τ
z : τ ≥ 0, τ is rational}. Then since F0 ⊆F , F0 satisfies both

Assumptions 1 and 3 and we can apply Theorem 2 to F0.

Finally, observe that for the above policy class, our correction B(f,Z,λ(f,Z)) simplifies

to the “custom” Bayes correction BBayes of Gupta and Rusmevichientong (2021).

4.2. Rates of Convergence

In terms of rates, as discussed in (Gupta and Rusmevichientong, 2021), in typical appli-

cations µ⊤x(fOR,Z) =Op(n). In that sense, Corollary 1 shows that the relative regret of

optimizing our estimator is at most

Op

((m
n

+V 1/3n−1/3
)√ logn

νmin

)
.

Since V >m in most settings, this bound shows the relative regret vanishes so long as V ≪
n

log3/2 n
. Moreover, the dependence in n (i.e. Õp(n

−1/3) matches (Gupta and Rusmevichien-

tong, 2021) up to logarithmic factors.
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