
Stochastic Foundations of Decision-Aware Learning Mini-Course 2022

Lecture 1: Proxy-Objectives and Decision-Aware Learning

Instructor: Vishal Gupta guptavis@usc.edu

Disclaimer: These notes may contain typos and errors. Please do not distribute without written

permission of the Instructor.

1. Course Overview

“Decision-aware” learning (also known as optimization-aware learning, end-to-end learning, task-

based learning, decision-focused learning, and operational statistics) is an increasingly popular

research area within data-driven optimization. Indeed, empirical studies of “decision-aware” algo-

rithms often show they can substantially outperform traditional “predict-then-optimize” approaches

to decision-making under uncertainty, but a complete theoretical understanding of their strengths

and weaknesses is still developing.

This mini-course is meant as a quick & dirty introduction to the use of proxy-objectives for

decision-aware learning, and analyzing those proxy-objectives via empirical process theory. Our

focus is on how to use the theory to prove performance guarantees about various methods. The

aim is to empower students to use these methods in their own research.

2. Warm-Up: Sample Average Approximation (SAA)

Traditional Stochastic Optimization studies:

x⇤ 2 argmin
x2X

E [c(x, ⇠)] , (1-1)

where

• x is our decision variable,

• X is a known feasible region,

• c(·, ·) is a known cost function,

• and ⇠ ⇠ P is an exogenous random variable.

Exercise: Describe some applications of stochastic optimization as described below. Be specific.

What do each of x, ⇠, c(·, ·) and X model?

Importantly, in the data-driven setting, P is unknown, so we cannot compute x⇤ directly. Rather,

we have access to data {⇠̂1, . . . , ⇠̂n} drawn i.i.d. from P.
With these data, we might use the Sample Average Approximation (SAA) (also called Empirical

Risk Minimization or ERM):

xn 2 argmin
x2X

1

n

nX

j=1

c(x, ⇠̂j). (1-2)

1-1

How should we assess the quality of xn? Since xn is feasible in Problem (1-1) by construction,

we often just upper bound its out-of-sample performance E
h
c(xn, ⇠) | ⇠̂1:n

i
.

IMPORTANT: Out-of-sample performance is a random variable. (Why?) Hence, an upper

bound is usually bounds its expectation or (better) its tail behavior.

This upper bound is usually computed relative to a suitable oracle benchmark. For example, in

a few sessions, we will prove the following theorem:

Theorem 1.1 (SAA for Discrete Feasible Regions). Suppose |X | < 1, and maxx2X |c(x, ⇠)| cmax

almost surely. Then there exists a universal constant C > 0 such that for any 0 < � < 1, with

probability at least 1� �,

0 E
h
c(xn, ⇠) | ⇠̂1:n

i
� E [c(x⇤, ⇠)] C · cmax

r
log(2/�) log(|X |)

n
.

Here the “oracle benchmark” is the performance of x⇤, i.e., the performance we would have

gotten had we known P upfront. Thus, in words, the theorem says that with high probability, the

out-of-sample performance is not much worse than the best possible performance, provided n is

much larger that log(|X |). Note that we can provide this bound, even though we can’t evaluate x⇤!

3. The Proxy-Objective Perspective

SAA is our first example of the use of a proxy-objective in decision-aware learning. Specifically,

• We would like to solve Problem (1-1) but we cannot because we don’t know P, and thus

don’t know the objective function.

• Instead, we solve a di↵erent optimization problem (i.e., Problem (1-2)) with an objective

function built from the data and meant to approximate the unknown objective function.

• We provide a performance guarantee on the suboptimality of our proxy problem’s solution

in the original problem.

Many methods in data-driven optimization follow this loose structure and, consequently, can be

analyzed using a small set of similar tools. We next give some other examples.

3.1. Parametric Probability Models. Suppose we believe the unknown P follows some para-

metric model, e.g., that it is a multivariate normal distribution with known covariance equal to the

identity.

Then, leting P = P✓⇤ for some parameters ✓⇤ 2 ⇥, we rewrite Problem (1-1) as

x(✓⇤) 2 argmin
x2X

EP✓⇤ [c(x, ⇠)] . (1-3)

We might then use our favorite statistical learning procedure (e.g. Maximum Likelihood) to form

an estimate ✓̂n = ✓̂n(⇠̂1:n) from the data and compute a predict-then-optimize decision:

x(✓̂n) 2 argmin
x2X

EP✓̂n [c(x, ⇠)] (1-4)

1-2

In other words, we use Problem (1-4) as a proxy for Problem (1-3). We might then seek high

probability bounds on

E
h
c(x(✓̂n), ⇠) | ⇠̂1:n

i
� E [c(x(✓⇤), ⇠)]

to establish a performance guarantee.

3.2. Policy Classes and Best-in-Class Policies. What happens if n if the same order as

log(|X |)in Theorem 1.1? Our performance guarantee is not informative since it’s proportional

cmax and 2cmax is a trivial performance guarantee.

This observation isn’t a weakness in our analysis.

Exercise: Construct an example of binary optimization of the form Problem (1-1) where the

performance of SAA is (with high probability) far from the full-information optimum when the

number of data points is equal to the number of binary variables.

In fact, in certain data settings, e.g., when data are scarce, every method has a large sub-

optimality gap relative to the full-information optimal solution.

So what do we do in these cases? Since, full-information isn’t achievable, it makes sense to

consider a weaker oracle benchmark. Inspired by Theorem 1.1, one approach might be to identify

a subset X0 ✓ X of the feasible region, and limit attention to solutions in X0.

Following this line of reasoning, we define

x⇤
0 = x⇤

0(⇠1:n) 2 argmin
x2X0

E [c(x, ⇠)] (1-5)

to be the best solution in X0. The “best-in-class” solution cannot be computed because P is

unknown, but performs (path by path) every other policy with values in X0.

Since we can’t solve Problem (1-5), we proxy it by

x̂0 = x̂0(⇠̂1:n) 2 argmin
x2X0

1

n

nX

j=1

c(x, ⇠̂j), (1-6)

i.e., the “corresponding” SAA solution. Theorem 1.1 then gives a performance guarantee: with

probability at least 1� �,

0 E
h
c(x̂0, ⇠) | ⇠̂1:n

i
� E [c(x⇤

0, ⇠)] C · cmax

r
log(2/�) log(|X0|

n
. (1-7)

Thus, if log(|X0|) ⌧ n, we can learn a solution x̂0 whose performance is comparable to the best-

in-class solution x0.

Of course, there are no free lunches. The above result tells us nothing about the gap E [c(x0, ⇠)]�
E [c(x⇤, ⇠)]. If |X0| is small, we might expect this gap to be big. But, if |X0| is big, then the

performance guarantee Eq. (1-7) will be poor and our previous exercise suggests it may be hard to

learn a best-in-class policy. This tension is somehow unavoidable.

In summary, in settings where the data are rich/plentiful enough, we should try to learn a policy

with performance similar to the full-information solution x⇤. In setting where this is not possible,

we should instead use our domain knowledge to restrict attention to a smaller set of policies, and
1-3

try to learn a policy with performance comparable to the best policy in that set. There are of

course many ways to choose the “smaller set of policies,” and a good choice is typically application

dependent.

For now, what I want to stress it that this example again follows our proxy-objective framework.

We proxy Problem (1-5) by Problem (1-6) and prove a performance guarantee on the gap to best-

in-class.

Remark 1.2 (Error from Policy Restriction). After class, a smart student asked about bounding

the gap E [c(x⇤
0
, ⇠)]�E [c(x⇤, ⇠)]. In some very special situations, it is possible to bound this error,

however, this is usually the exception, not the rule. In this course, we will focus on the cases where

X0 is determined by domain knowledge and practical considerations, and focus simply on learning

a best-in-class policy.

3.3. Plug-In Policy Classes. Above, the set X0 does not depend on the data. (But, both the

policies x⇤
0
and x̂0 do depend on the data. Why?) Identifying a good X0 so that |X0| is small but

still su�ciently rich so that E [c(x0, ⇠)] � E [c(x⇤, ⇠)] is small from just prior domain knowledge

might be tricky.

We next introduce a particular class of policies called “plug-in policies” that take values in a

set X0(⇠̂1:n) which does depend on the data. These policies have some nice practical features. For

example, plug-in policies generalize the popular “estimate-then-optimize” approach to a decision-

aware setting. Some authors prefer the term “smart predict-then-optimize” to describe best-in-class

plug-in policies [EG22].

To that end, rewrite the full-information optimal solution to Problem (1-1) as

x(P) 2 argmin
x2X

E⇠⇠P [c(x, ⇠)] ,

to stress the dependence on P. That is, x(P) is the optimal solution when the data follows distri-

bution P.
More generally, when ⇠ ⇠ Q, define the plug-in policy for Q,

x(Q) 2 argmin
x2X

E⇠⇠Q [c(x, ⇠)] . (1-8)

These policies essentially “plug-in” Q for the unknown P and solve the optimization problem.

We can now define a class of plug-in policies. Consider a set of probability distributions (de-

pendent on data) {P̂⌧ (⇠̂1:n) : ⌧ 2 T }, where for each ⌧ , P̂⌧ (⇠̂1:n) refers to a di↵erent way to fit

a probability distribution to the observed data For example, one ⌧ might correspond to fitting a

mixture of normal distributions to the data, while another might correspond to simply using the

empirical distribution.

This set induces a set of (data-dependent) plug-in policies

X0(⇠̂1:n) =
n
x(Q) : Q 2 {P̂⌧ (⇠̂1:n) : ⌧ 2 T }

o
=
n
x(P⌧ (⇠̂1:n)) : ⌧ 2 T

o
.

Both the policy class X0(⇠̂1:n) and each plug-in policy x(P⌧ (⇠̂1:n)) 2 X0(⇠̂1:n) depend on the data.
1-4

We define the (oracle) best-in-class decision x(P⌧OR(⇠̂1:n)), where

⌧OR 2 argmin
⌧2T

E
h
c(x(P⌧ (⇠̂1:n)), ⇠) | ⇠̂1:n

i
. (1-9)

By construction, this oracle benchmark outperforms any other plug-in policy in X0(⇠̂1:n). However,

it is an “oracle” benchmark because one must know the distribution P to compute ⌧OR.

Since we can’t solve Problem (1-9) directly, we create a proxy. One natural proxy might be the

leave-one-out objective:

⌧LOO 2 argmin
⌧2T

nX

j=1

c(x(P̂⌧ (⇠̂�j), ⇠̂j), (1-10)

where ⇠̂�j is the data ⇠̂1:n excluding data point j.

Thus, we have proxied Problem (1-9) by Problem (1-10). We might then seek to bound

E
h
c(x(⇠̂1:n, ⌧

LOO), ⇠)
i
� E

h
c(x(⇠̂1:n, ⌧

OR), ⇠)
i

to provide a performance guarantee of our method relative to the best-in-class plug-in policy.

The notation in this example is a bit heavy. For now, things I want to stress:

• When considering “best-in-class” learning, we need to create a proxy for the best-in-class

optimization problem. By contrast, in our example in Section 2 needed to create a proxy

for the full-information problem. You should look to see how this di↵erence also changes

the kind of performance guarantee we seek.

• The optimization Problem (1-10) can be quite di�cult unless T and x(⇠̂1:n, ⌧) both have

some nice structure.

Let’s consider a specific example of the above framework.

Example 1.3 (Decision-Aware Regularization). Suppose c(x, ⇠) = (x � ⇠)+ + (⇠ � x)+ is the

newsvendor (a.k.a. pinball loss) function.

We let T = R+, and for each ⌧ 2 T , consider fitting an exponential distribution1 to ⇠̂1:n with

regularized maximum likelihood. Recall, the negative log-likelihood of the data is given by

�loglik(�; ⇠̂1:n) = �n log(�) + �
X

j

⇠̂j .

We will use a regularization proportional to log(�) which essentially shrinks towards 0.

The regularized maximum likelihood estimate is then

�̂(⌧) = �̂(⌧, ⇠̂1:n) 2 argmin
��0

�n log(�) + �
nX

j=1

⇠̂j + ⌧ log(�)

=
(n� ⌧)+
P

j ⇠̂j
.

Hence, we take P̂⌧ to be an Exp

✓
(n�⌧)+P

j ⇠̂j

◆
distribution.

1Recall ⇠ ⇠ Exp(�) means that E [⇠] = 1/�.

1-5

Notice then that x(P̂⌧ (⇠̂1:n)) =
log 2

P
j ⇠̂j

n�⌧ and, similarly, x(⇠̂�j , ⌧) =
log 2

P
i 6=j ⇠̂i

n�⌧ . Both of these

are very easy to compute, because of the way we picked our policy class.

Since we don’t know P, we can’t evaluate ⌧OR. But, we can numerically find ⌧LOO by

⌧LOO 2 argmin
0⌧n

nX

i=1

"
log 2

P
i 6=j ⇠̂i

n� ⌧
� ⇠̂i

#+
+

"
⇠̂i �

log 2
P

i 6=j ⇠̂i

n� ⌧

#+
.

This problem is a simple one dimensional optimization that we can (approximately) solve by enu-

meration.

Remark 1.4 (Benefits of Plug-in Policies). As mentioned, plug-in policy classes are only one type

of policy class. There are many others. There are at least three important benefits of plug-in policies.

First, Eq. (1-8) is of the same form as Problem (1-1). Thus, if one already has a specialized

algorithm for solving problems of the form Problem (1-1), we can leverage the same algorithm for

computing our plug-in policies. This benefit is especially important in large-scale settings.

Second, tied to the previous point, the “structure” of the plug-in policy x(Q) is often similar to

the “structure” of x(P) which can be important in practice. For example, when X is a polyhedron

and c(x, ⇠) = x>⇠, both x(P) and x(Q) will be extreme points. Other, regularization or robust

optimzation approaches, might not enforce this structure. In network optimization problems, e.g.,

this distinction can be important, since we often need our solution to be an extreme point to be

interpretable as a path or spanning tree.

Finally, plug-in policies generalize estimate-then-optimize procedures. We often are interested in

the benefits of a decision-aware approach over estimate-then-optimize. By construction, our oracle

benchmark is necessarily no worse than the predict-then-optimize policy, and so might o↵er a way

to try and quantify the benefit of decision-aware approaches. Indeed, the if P̂⌧ corresponds to a

traditional statistical estimator for P, then the gap E
h
c(x(P̂⌧), ⇠)

i
�E

h
c(x(P̂OR

⌧), ⇠)
i
quantifies the

potential benefits of decision-aware learning for the problem structure and class T in an algorithm-

independent way.

3.4. Other Examples. Many, many other algorithms in data-driven optimization can be seen

through the lens of proxy-objectives including:

• The SPO+ Surrogate loss [EG22]

• The Stein Correction for Small-Data, Large-Scale Linear Optimization Problems [GR21]

• The Variance Gradient Correction [GHR22]

• The Predictive to Prescriptive Method [BK20]

• Policy Learning with Doubly Robust Estimates [DLL11]

• and more.

That said, other popular algorithms are not (easily) seen as proxy-objective methods, e.g. ap-

plying stochastic gradient descent directly to Problem (1-1). These lecture notes exclusively focus

on proxy-objective methods.
1-6

4. Overview of Analysis Technique

Our goal in viewing these varied algorithms through a common lens of proxy-objectives was

to (hopefully) develop some common tools for their analysis. To that end, we next sketch the

fundamental lemma that we will use throughout this course to prove performance guarantees for

methods based on proxy-objectives.

To express the idea in a general setting, suppose we are interested in the target optimization

problem

x⇤ 2 argmin
x2X

f(x),

but we instead solve the proxy objective problem

x̂ 2 argmin
x2X

f̂(x).

We then bound the suboptimality of x̂ by the approximation quality of this proxy.

Lemma 1.5 (Bounding Suboptimality by Uniform Error). We have

0 f(x̂)� f(x⇤) 2 sup
x2X

���f(x)� f̂(x)
��� .

Proof. The first inequality is clear by optimality of x⇤. For the second, note that

f(x̂)� f(x⇤) = f(x̂)� f̂(x̂) + f̂(x̂)� f̂(x⇤)| {z }
0 by optimality of x̂

+f̂(x⇤)� f(x⇤)

���f(x̂)� f̂(x̂)

���+
���f(x⇤)� f̂(x⇤)

���

 2 sup
x2X

���f(x)� f̂(x)
��� .

This concludes the proof. ⇤

Thus, to provide a performance guarantee on a proxy-objective method, it su�ces to show that

the proxy is a good approximation to the true function everywhere over the domain. Notice the

lemma makes no assumptions on the structure of X or the convexity/continuity/regularity of f or

f̂ .

The above lemma crucially uses the optimality of x̂ and x. (Make sure you know where.) But it

does not leverage much else about the structure of x̂ or x, other than x̂,x 2 X . As a consequence,

in some data-driven settings, the bound can be quite bad.

Exercise: Draw a picture of f(·) and f̂(·) where x = x̂ but supx2X

���f(x)� f̂(x)
��� = 1.

Exercise: Look back at our plug-in policy class example (cf. Example 1.3). How would we apply

the lemma? What are f(·), f̂(·) and supx2X

���f(x)� f̂(x)
��� for that example?

1-7

References

[BK20] Dimitris Bertsimas and Nathan Kallus. “From predictive to prescriptive analytics”. In:

Management Science 66.3 (2020), pp. 1025–1044.

[DLL11] Miroslav Dud́ık, John Langford, and Lihong Li. “Doubly robust policy evaluation and

learning”. In: arXiv preprint arXiv:1103.4601 (2011).

[EG22] Adam N Elmachtoub and Paul Grigas. “Smart “Predict, then Optimize””. In: Manage-

ment Science 68.1 (2022), pp. 9–26.

[GHR22] Vishal Gupta, Michael Huang, and Paat Rusmevichientong. “Debiasing in-sample policy

performance for small-data, large-scale optimization”. In: Operations Research (2022).

Forthcoming.

[GR21] Vishal Gupta and Paat Rusmevichientong. “Small-data, large-scale linear optimization

with uncertain objectives”. In: Management Science 67.1 (2021), pp. 220–241.

1-8

Stochastic Foundations of Decision-Aware Learning Mini-Course 2022

Lecture 2: Introduction to Concentration

Instructor: Vishal Gupta guptavis@usc.edu

Disclaimer: These notes may contain typos and errors. Please do not distribute without written

permission of the Instructor.

1. Some Notation

To simplify many proofs, we will write a . b to mean that there exists a universal constant C

(not depending on any problem data) such that a Cb.

So for example, when d � 2, we have that log(2d) . log(d). (Why?) But, if we only knew that

d > 1, we cannot say that log(2d) . log(d). (Why?)

2. Review of the Chernoff Technique

Recall Markov’s Inequality: For any nonnegative random variableX, P (X > t) E [X] /t. Often

we establish tail bounds on a random variable by applying Markov’s inequality to a monotone

transformation f(X). The most common transformation is f(t) = exp(✓t) for some (well-chosen)

✓ > 0. This technique is usually called the Cherno↵ technique in textbooks. The Cherno↵ technique

is a great general purpose approach that generally turns a bound on the mgf of a random variable

E [exp(✓X)] into a tail bound.

Example 2.1 (Cherno↵ Bound for the Normal Distribution). Suppose X ⇠ N (0,�2). Then, for

any ✓ > 0,

P (X > t) = P (exp(✓X) > exp(✓t))

 exp(�✓t)E [exp(✓X)]

= exp(�✓t+
✓2�2

2
),

where we’ve used the MGF of a normal distribution. We then optimize ✓ to obtain the best possible

bound. Choosing ✓ = t/�2 yields the bound

P (X > t) exp

✓
� t2

2�2

◆
.

Said di↵erently, for any 0 < � < 1, with probability at least 1� � we have

X . �
p
log(2/�).

There are tighter bounds for the tails of a normal distribution, but this bound is fairly tight.

The Cherno↵ technique motivates us to consider classes of random variables that admit “nice”

bounds on their mgf, since we can turn such bounds into tail bounds. We next introduce a particular

class of random variables with “nice” mgfs.
2-1

3. SubGaussian Random Variables

Definition 2.2. A mean-zero random variable X is subGaussian with variance proxy �2 if

E
h
e✓X

i
 e

✓2�2

2 8✓ 2 R.

As desired, this class of random variables admit a nice tail bound:

Lemma 2.3. If X�E [X] is subGaussian with variance proxy �2, then for any 0 < � < 1, we have

with probability at least 1� �,

X � E [X] �
p
log(2/�).

Proof. Left for the reader. (Should be immediate.) ⇤

Example 2.4 (Normal Random Variables). If X ⇠ N (µ,�2), then X �E [X] is subGaussian with

variance proxy �2. (Why?)

Example 2.5 (Rademacher Random Variables). Consider a Rademacher random variable ⌘, i.e.

P (⌘ = 1) = P (⌘ = �1) = 1/2. On HW 1, you proved that ⌘ is subGaussian with variance proxy 1.

Interestingly, any bounded variable is subGaussian.

Theorem 2.6 (Hoe↵ding’s Inequality). Suppose X is a random variable such that a X b

almost surely. Then X � E [X] is subGaussian with variance proxy �2 satisfying � . (b� a).

Proof. Our proof uses a technique called “symmetrization” to reduce the analysis of a complicated

random to the analysis of a Rademacher variable.

Let ⌘ be a Rademacher random variable and let X̄ be an i.i.d. copy of X. Then, for any ✓,

E [exp(✓(X � E [X]))] E
⇥
exp(✓(X � X̄))

⇤
(Jensen’s Inequality)

= E
⇥
exp

�
✓⌘
��X � X̄

���⇤ .

Notice crucially how the last line uses the fact that X � X̄ is symmetric.

Now consider conditioning on X, X̄, and apply our bound on the mgf of a Rademacher random

variable to obtain,

E [exp(✓(X � E [X]))] E

exp

✓
✓2

(X � X̄)2

2

◆�
.

Finally, note that a X b almost surely implies that
��X � X̄

�� (b � a). Hence, this last

expectation is at most exp
⇣
✓2(b�a)2

2

⌘
. In other words, X � E [X] is subGaussian, and its variance

proxy is at most (b� a)2.

⇤

Remark 2.7. Our proof bounded the variance proxy up to a constant. This constant is not tight.

See [BLM13].

Linear combinations of subGaussian random variables are subGaussian.

Theorem 2.8 (Linear Combinations of SubGaussian Random Variables). Suppose Xi for i =

1, . . . , d < 1 are a set of mean-zero subGaussian random variables with variance proxies �2
i . Then,

2-2

(1) For any a 2 R, the r.v. aX1 is subGaussian with variance proxy a2�2
1
.

(2) If the Xi are independent, then
Pd

i=1
Xi is subGaussian with variance proxy

Pd
i=1

�2

i .

Proof. You’ll prove parts ii) on your homework. Part i) is immediate from the definition. (Convince

yourself of this.) ⇤

4. Orlicz Norms

There are many equivalent definitions of subGaussian random variables. One equivalence I find

useful relates subGaussian random variables to random variables with finite -Orlicz norms.

Definition 2.9 (The -Orlicz Norm). Let (t) = 1

5
exp(t2). For any random variable X, the

 -Orlicz Norm of X, denoted kXk , is given by

inf{C > 0 : E [(X/C)] 1}.

Importantly, k ·k is a norm on random variables, so it satisifes the “usual” properties of a norm

(e.g., triangle-inequality). Orlicz norms can be defined with respect to other functions, but we will

only focus on the case of (·). Some authors define (·) with a di↵erent constant than 1

5
. Note,

X need not be mean-zero in this definition.

From Markov’s inequality, we have that for any random variable X, with probability at least

1� �,

|X| . kXk
p
log(2/�).

This observation motivates the following fact that you will prove on your homework:

Theorem 2.10 (Relating SubGaussian R.V.s and the k ·k .). Suppose X is a mean-zero subGaus-

sian random variable with variance proxy �2. Then, kXk . �. Conversely, if X is mean-zero

and kXk < 1, then X is subGaussian with variance proxy �2 such that � . kXk .

One of the most important features of the -Orlicz Norms is that it behaves nicely under the

max operation.

Theorem 2.11 (Orlicz Norm of the Max). Suppose Xi for i = 1, . . . , d < 1 are (not necessarily

independent) random variables such that kXik < 1 for all i. Define Xmax = maxiXi. Then, for

d � 2, kXmaxk . (maxi kXik)
p
log d.

Proof. Fix some C,K > 0 to be specified later. From fundamental theorem of calculus,

 (Xmax/C) = (1) +

Z Xmax

C

1

 0(t)dt

=
e

5
+

Z 1

1

I
⇢
t Xmax

C

�
 0(t)dt

Now note that because (·) is increasing,

t Xmax

C
=) (Kt)

✓
KXmax

C

◆
=)

�
KXmax

C

�

 (Kt)
� 1.

2-3

So, increasing the integrand, we have

 (Xmax/C) e

5
+

Z 1

1

✓
KXmax

C

◆
 0(t)

 (Kt)
dt

 e

5
+

dX

i=1

Z 1

1

✓
KXi

C

◆
 0(t)

 (Kt)
dt,

by bounding the max by the sum. Now let C = Kmaxi kXik and take expectations of both sides.

We can pass the expectation inside the integral by the montone convergence theorem. We thus

have,

E [(Xmax/C)] e

5
+ d

Z 1

1

 0(t)

 (Kt)

=
e

5
+ 2d

Z 1

1

te�(K2�1)t2dt

=
e

5
+

d

K2 � 1
e�(K2�1).

Taking K =
p
2 + log d makes this last expression at most 1. This shows kXmaxk

p
2 + log d ⇠p

log d. ⇤

Next week, we will show how to use the above tools to bound prove a performance guarantee for

SAA. For now, let’s see a quick toy example.

Example 2.12. Suppose X1 ⇠ N (10,�2) and X2 ⇠ Unif[�3�, 3�], not necessarily independent

with � � 1. Define Y = |X1|+ 2X2. We will prove a tail bound for Y .

Our strategy will be to bound kY k and then use Theorem 2.10. Then, by triangle inequality,

kY k k |X1| k + 2kX2k .

By Hoe↵ding’s inequality, X2 is subGaussian with variance proxy . �2, so Theorem 2.10 shows

kX2k . �.

Similarly, if we let Z ⇠ N (0,�2), then |X1| 10+|Z|. By Theorem 2.10 k |Z| k = kZk . �.

Hence k |X| k . 10 + � . �.

Combining shows kY k ⇠ �, so that with proability at least 1� �,

|Y | . �
p

log(1/�).

5. (Time Permitting): McDiarmid’s Inequality

McDiarmid’s Inequality is one of the most fundamental results in concentration. It is one way

to formalize an important intuition in concentration: a function of many independent random

variables that doesn’t depend too strongly on any one variable will concentrate at its expectation.

Before stating McDiarmid’s inequality, we need to define a function with bounded di↵erences.

Definition 2.13 (Bounded Di↵erences). Suppose f(x1, . . . ,xn) is a function of n random variables

where xi 2 Xi for each i. We say f(·) satisfies the bounded di↵erences condition with respect to
2-4

constants c1, . . . , cn if for each i = 1, . . . , n

sup
x̄2Xi

|f(x1, . . . ,xn)� f(x1, . . . ,xi�1, x̄,xi+1, . . . , n)| ci.

Theorem 2.14 (McDiarmid’s Inequality). Suppose Xi 2 Xi for i = 1, . . . , n are independent

random variables (not necessarily identically distributed) and consider a function f(X1, . . . Xn).

Suppose f(·) satisfies the bounded di↵erence inequality with respect to a constants ci for i = 1, . . . , n.

Then, f(X1, . . . ,Xn)� E [f(X1, . . . ,Xn)] is subGaussian with variance proxy . kck2
2
.

In particular, for any 0 < � < 1, with probability at least 1� �

|f(X1, . . . ,Xn)� E [f(X1, . . . ,Xn)]| . kck2
p
log(1/�).

Proof. We provide an elementary proof based on the Doob martingale. Define

Zi = E [f(X1, . . . ,Xn) | X1:i]� E
⇥
f(X1, . . . , Xn) | X1:(i�1)

⇤
.

Then, f(X1, . . . ,Xn)�E [f(X1, . . . ,Xn)] =
Pn

i=1
Zi. (Check this!). Moreover, Zi is only a function

of X1:i.

Now let X̄i be an i.i.d copy of Xi. Then, because of the independence,

Zi = E
⇥
f(X1, . . . ,Xn)� f(X1, . . . ,Xi�1, X̄i,Xi+1, . . . ,Xn) | X1:i

⇤
,

and by the bounded di↵erences condition, |Zi| ci.

By the tower rule,

E
"
exp(✓

nX

i=1

Zi)

#
= E

"
exp(✓

n�1X

i=1

Zi)E
⇥
exp(✓Zn) | X1:(n�1)

⇤
#
.

We can then apply Hoe↵ding’s inequality (conditionally) to conclude there exists a universal con-

stant C such that

E
"
exp(✓

n�1X

i=1

Zi)E
⇥
exp(✓Zn) | X1:(n�1)

⇤
#

 eC✓2c2iE
"
exp(✓

n�1X

i=1

Zi)

#
.

We apply this process repeatedly and conclude that

E [exp(✓(f(X1:n)� E [f(X1:n)]))] exp(C✓2kck22).

This completes the proof. ⇤

6. Some Remarks

The theory of subGaussian random variables is incredibly rich. I highly encourage you to read

the “Equivalent Characterizations of SubGaussian Random Variables’ in [Wai19]. While I don’t

often use this theorem directly, it’s very good for developing intuition about when something might

subGaussian.

Orlicz norms are a handy tool (in my opinion) for manipulating potentially non-independent

random variables using reasoning based on norms. While we focus on the k · k , Orlicz norms for

other functions are often necessary when the tails don’t have subGaussian behavior. Other common
2-5

Orlicz Norms used in the literature correspond to the functions (t) = exp(t) or (t) = tp for some

p � 1. We won’t use these other norms in this class.

Not all random variables are subGaussian. A much richer class of random variables are those

with finite moment generating function, and such random variables are described subExponential or

subGamma. [BLM13] treats subGamma random variables fairly well, and shows why you sometimes

need to consider them. Essentially, if you start ending up with tail bounds that depend on log(1/�)

instead of
p

1/ log(�), you probably need to work with subGamma random variables.

There are many generalizations of McDiarmid’s inequality. [BLM13] has some good ones, but

there are still new ones being published in modern conferences (e.g. [MP21]). One of the ones I’ve

found most useful in my research is [Com15]. The proof is particularly simple and beautiful (and

short!). [Wai19] gives some excellent examples of how to use McDiarmid’s inequality.

2-6

References

[BLM13] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities: A

nonasymptotic theory of independence. Oxford university press, 2013.

[Com15] Richard Combes. “An extension of McDiarmid’s inequality”. In: arXiv preprint arXiv:1511.05240

(2015).

[MP21] Andreas Maurer and Massimiliano Pontil. “Concentration inequalities under sub-Gaussian

and sub-exponential conditions”. In: Advances in Neural Information Processing Systems

34 (2021), pp. 7588–7597.

[Wai19] Martin JWainwright. High-Dimensional Statistics: A Non-Asymptotic Viewpoint. Vol. 48.

Cambridge University Press, 2019.

2-7

Stochastic Foundations of Decision-Aware Learning Mini-Course 2022

Lecture 3: Towards Performance Bounds: Packing

Instructor: Vishal Gupta guptavis@usc.edu

Disclaimer: These notes may contain typos and errors. Please do not distribute without written

permission of the Instructor.

1. Performance Bound: SAA for Finite Feasible Regions

Using the tools we’ve developed so far, we prove a performance bound on SAA. Recall, our target

optimization is

x⇤ 2 argmin
x2X

E [c(x, ⇠)]

where ⇠ ⇠ P, and P is unknown. We have access to data ⇠̂j ⇠ P i.i.d. for j = 1, . . . , n. We consider

the SAA policy

x̂n 2 argmin
x2X

1

n

nX

j=1

c(x, ⇠̂j).

We prove the following theorem from our first lecture.

Theorem 3.1 (SAA for Finite Feasible Regions). Suppose |X | < 1 and that there exists cmax < 1
such that maxx2X |c(x, ⇠)| cmax almost surely. Then, for any 0 < � < 1, with probability at least

1� �,

0 E
h
c(x̂n, ⇠) | ⇠̂1:n

i
� E [c(x⇤, ⇠)] . cmax

r
log(|X |) log(2/�)

n
.

Proof of Theorem 3.1. By Lemma “Bounding Suboptimality by Uniform Error” from Lecture 1, it

su�ces to bound

max
x2X

������
1

n

nX

j=1

c(x, ⇠̂j)� E [c(x, ⇠)]

������
= max

x2X

������
1

n

nX

j=1

⇣
c(x, ⇠̂j)� E

h
c(x, ⇠̂j)

i⌘
������
.

Fix some x 2 X . Note that for each j,
���c(x, ⇠̂j)

��� . cmax. Hence, by Hoe↵ding’s inequality,

c(x, ⇠̂j)� E
h
c(x, ⇠̂j)

i
is subGaussian with variance proxy . c2max. Since the j are independent, it

follows that 1

n

Pn
j=1

c(x, ⇠̂j)� E
h
c(x, ⇠̂j)

i
is subGaussian with variance proxy . c2max/n. (Why?)

By the relation between subGaussian variables and the -Orlicz norm,
������
1

n

nX

j=1

c(x, ⇠̂j)� E
h
c(x, ⇠̂j)

i
������

. cmax/
p
n.

3-1

From the maxima of Orlicz Norms, it follows that
������
max
x2X

������
1

n

nX

j=1

⇣
c(x, ⇠̂j)� E

h
c(x, ⇠̂j)

i⌘
������

������

. cmax

r
log(|X |)

n
.

The result then follows from the tail bound of a r.v. with finite -norm. ⇤

It’s worth stressing how short and simple the above proof is. You should compare it to the proof

in [KSH02] which establishes (qualitatively) similar results.

1.1. An Alternate Proof Based on Symmetrization. Before proceeding, we present a di↵erent

proof of the above theorem. This alternate version more closely mirrors traditional proofs in the

literature and paves the way for more advanced results in the course.

Before establishing the proof, we establish the following auxiliary lemma that is of independent

interest.

Lemma 3.2 (Symmetrization Lemma). For any convex, increasing function �(·),

E

2

4�

0

@max
x2X

������
1

n

nX

j=1

⇣
c(x, ⇠̂j)� E

h
c(x, ⇠̂j)

i⌘
������

1

A

3

5 E

2

4�

0

@2max
c2F

������
1

n

nX

j=1

⌘jcj

������

1

A

3

5 , (3-11)

where ⌘j for j = 1, . . . , n are independent Rademacher random variables and

F = F(⇠̂1:n) = {(c(x, ⇠̂1), . . . , c(x, ⇠̂n))> : x 2 X} ✓ Rn.

Proof of Lemma. Let ⇠̄j for j = 1, . . . , n be a second i.i.d. sample from P and fix the function �(·).
Then,

E

2

4�

0

@max
x2X

������
1

n

nX

j=1

⇣
c(x, ⇠̂j)� E

h
c(x, ⇠̂j)

i⌘
������

1

A

3

5

= E

2

4�

0

@max
x2X

������
1

n

nX

j=1

⇣
c(x, ⇠̂j)� E

h
c(x, ⇠̄j) | ⇠̂1:n

i⌘
������

1

A

3

5

 E

2

4�

0

@max
x2X

������
1

n

nX

j=1

⇣
c(x, ⇠̂j)� c(x, ⇠̄j)

⌘
������

1

A

3

5 (Jensen’s Inequality).

E

2

4�

0

@max
x2X

������
1

n

nX

j=1

⇣
c(x, ⇠̂j)� c(x, ⇠̄j)

⌘
������

1

A

3

5 E

2

4�

0

@max
x2X

������
1

n

nX

j=1

⌘j
⇣
c(x, ⇠̂j)� c(x, ⇠̄j)

⌘
������

1

A

3

5

3-2

Now, focus on the argument of �(·). Observe

max
x2X

������
1

n

nX

j=1

⌘j
⇣
c(x, ⇠̂j)� c(x, ⇠̄j)

⌘
������
 max

x2X

������
1

n

nX

j=1

⌘j (̧x, ⇠̂j)

������
+max

x2X

������
1

n

nX

j=1

⌘j (̧x, ⇠̄j)

������

=
1

2

0

@2max
x2X

������
1

n

nX

j=1

⌘j (̧x, ⇠̂j)

������
+ 2max

x2X

������
1

n

nX

j=1

⌘j (̧x, ⇠̄j)

������

1

A

Hence, increasing the argument of �(·) and using convexity shows that

E

2

4�

0

@max
x2X

������
1

n

nX

j=1

⌘j
⇣
c(x, ⇠̂j)� c(x, ⇠̄j)

⌘
������

1

A

3

5

 1

2
E

2

4�

0

@2max
x2X

������
1

n

nX

j=1

⌘jc(x, ⇠̂j)

1

A

������

3

5+
1

2
E

2

4�

0

@2max
x2X

������
1

n

nX

j=1

⌘jc(x, ⇠̄j)

1

A

������

3

5

= E

2

4�

0

@2max
x2X

������
1

n

nX

j=1

⌘jc(x, ⇠̂j)

1

A

������

3

5 .

This completes the proof. ⇤

Lemma 3.2 is used regularly in the literature when analyzing sums of independent random

variables. You should study the set F defined in the lemma. This set is random (it depends on the

data) and also depends on the particular cost function and feasible region.

IMPORTANT: Our lemma did not require that |X | < 1!

Equipped with the Lemma 3.2, we provide our alternate proof of Theorem 3.1.

Alternate Proof of Theorem 3.1. We again focus on bounding the Orlicz norm of

max
x2X

������
1

n

nX

j=1

c(x, ⇠̂j)� E
h
c(x, ⇠̂j)

i
������
.

Motivated by Eq. (3-11), we’ll first study

max
c2F(⇠̂1:n)

����
1

n
c>⌘

���� .

There are two sources of randomness here: ⇠̂1:n and the Rademacher variables ⌘1:n. We first argue

conditionally, conditioning on ⇠̂1:n.

Specifically, for any fixed c, 1

n⌘
>c is subGaussian and k 1

n⌘
>ck . 1

nkck2. (Why?)

Hence, from our result on the Orlicz norm of the max, it follows that the conditional Orlicz norm

satisfies
������
max
c2F

������
1

n

nX

j=1

⌘jcj

������

������
 |⇠̂1:n

.
p
log |F|
n

·max
c2F

kck2 . cmax

r
log |F|

n
.

3-3

Said di↵erently, there exists a universal constant K such that
������
max
c2F

������
1

n

nX

j=1

⌘jcj

������

������
 |⇠̂1:n

= Kcmax

r
log |F|

n
.

For convenience, let J = J(⇠̂1:n) = Kcmax

q
log|F|

n . Then, taking an expectation of the definition of

the Orlicz Norm, we’ve thus far shown

E

2

64exp

0

B@
maxc2F

⇣
1

n

Pn
j=1

⌘jcj
⌘2

J(⇠̂1:n)2

1

CA

3

75 5. (3-12)

It would be great at this point if we could apply Lemma 3.2 with the convex function t 7!
exp

⇣
t2

2J2

⌘
and then use Eq. (3-12) to finish the proof. Unfortunately, we can’t do this because

J = J(⇠̂1:n) is random. However, since

|F| |X | , (3-13)

J is upper bounded by Kcmax

q
log|X |

n . Hence, we can instead take

�(t) ⌘ exp

t2

2K2c2max

log|X |
n

!
.

Then, applying Lemma 3.2 with this convex, increasing function, and using Eq. (3-12) shows

E

2

4�

0

@max
x2X

������
1

n

nX

j=1

⇣
c(x, ⇠̂j)� E

h
c(x, ⇠̂j)

i⌘
������

1

A

3

5 5.

Applying Markov’s Inequality completes the proof. ⇤

The above proof might look a lot more complicated, but really the only “hard” part is establishing

Lemma 3.2.

Philosophically, the advantage of the above proof is we replaced the analysis of a (potentially

complicated) random variable c(x, ⇠̂j) with analysis of i) Rademacher random variables ⌘j and ii)

the set F(⇠̂1:n). The Rademacher random variables are simple to analyze, and in most arguments

of this form, understanding F(⇠̂1:n) comes down to geometry instead of probability.

Practically, the above proof really relies on the size of the set F , not the size of the set X . In

some cases, it’s easier to analyze one set rather than the other. On your homework, you’ll see an

example where |X | = 1, but |F| < 1, so in fact you have to analyze things with the second proof.

The downside of the alternate proof is that Eq. (3-11) heavily leverages the fact that we’re

looking at a sum of independent random variables. By contrast, our first proof just required us to

manipulate tail bounds and might be adapted more easily to other settings.
3-4

2. Beyond Finite Feasible Regions: Packing in Metric Spaces

A lot of the theory of uniform laws of large numbers involves generalizing the machinery of the

above proofs to the case where X (or F) is not finite by approximating it by a finite subset. To

this end, we introduce the notion of a packing and covering in Euclidean spaces.

Definition 3.3 (Packing Number). Given a set F ✓ Rn and a norm k · k on Rn, the ✏ packing

number of F (denoted D(✏,F , k · k)) is the maximum number of points in F such that every pair

of points is at least ✏ far apart with respect to k · k.

Definition 3.4 (Covering Number). Given a set F ✓ Rn and a norm k · k on Rn, the ✏-covering

number of F (denoted N(✏,F , k · k)) is the smallest number of closed balls of radius ✏ whose union

contains F .

Exercise: Draw a picture in your notes to understand the definitions.

It’s possible to generalizes both definitions to general metric spaces, but we won’t need it. In this

course, we’ll mostly be concerned with packings, but the two nubmers are closely related. Indeed,

you should prove to yourself that for any set F ,

N(✏,F , k · k) D(✏,F , k · k) N(✏/2,F , k · k).

Example 3.5 (Packing an Interval). What is the ✏ packing number of [0, 1] with respect to `2 norm?

Are you sure?

Exercise: Let F be a compact subset of Rn. Draw a plot where the x-axis is ✏ and the y-axis

is D(✏,F , k · k2).

In our proofs, we will mostly use the `2 packing number. You’ll prove some useful facts about

packing numbers on your homework. For now, one very important fact is the following:

Theorem 3.6 (Packing of Euclidean Balls). The ✏ packing number of a ball of radius R > ✏ in Rd

with respect to `2 satisfies

D(✏, B(0, R), k · k2)
✓
3R

✏

◆d

.

Proof. Consider some packing ofB(0, R) and denote the points as f1, . . . , fm wherem = D(✏, B(0, R), k·
k2k). Now consider balls of radius ✏/2 centered at each fi. By construction, these balls are disjoint.

Their total volume is Km2�d✏d for some constant K.

Now each fi lies within a distance R of f1 because the fi are in B(0, R). Hence, the ball B(fi, ✏/2)

lies within the larger ball B(f1, 3R/2) for each i. This larger ball has volume KRd1.5d. Comparing

completes the proof. ⇤

In class, we’ll leverage packing numbers to extend our proof of SAA to non-finite feasible regions

with small packing numbers.

3-5

References

[KSH02] Anton J Kleywegt, Alexander Shapiro, and Tito Homem-de-Mello. “The sample aver-

age approximation method for stochastic discrete optimization”. In: SIAM Journal on

Optimization 12.2 (2002), pp. 479–502.

3-6

Stochastic Foundations of Decision-Aware Learning Mini-Course 2022

Lecture 4: More Uniform Laws of Large Numbers

Instructor: Vishal Gupta guptavis@usc.edu

Disclaimer: These notes may contain typos and errors. Please do not distribute without written

permission of the Instructor.

1. Review

Let’s recap: So far, we’ve shown how analyzing a data-driven method based on a proxy-

objective reduces to studying the uniform approximation error between the true objective and

proxy-objective. In the case of SAA, this amounted to studying the uniform error between a

sample average and a true expectation over the feasible region.

In this lecture, we’re going to push this idea further to develop stronger bounds on this uniform

error. These will translate into other performance guarantees for SAA.

2. SAA with Bounded Feasible Regions and Lipschitz Cost Functions

As a first example, we’ll study our usual stochastic optimization

x⇤ 2 argmin
x2X

E [c(x, ⇠)]

under the assumptions that x 7! c(x, ⇠) is L-Lipschitz almost surely, and X ✓ Rd is a bounded

feasible region.

Definition 4.1. A set X ✓ Rd is bounded if R ⌘ 1

2
supx,x̄2X kx � x̄k < 1. In that case, we say

R is radius of X .

Recall from our earlier discussion on packing, logD(✏,X) d log(3R/✏). Finally, let

x̂n 2 argmin
x2X

1

n

nX

j=1

c(x, ⇠̂j)

be the SAA solution.

We then have the following theorem:

Theorem 4.2 (SAA for Bounded Feasible Regions, Lipschitz Cost Functions). Suppose X is

bounded with radius R < 1, and x 7! c(x, ⇠) is L-Lipschitz almost surely. Further, assume

maxx2X |c(x, ⇠)| cmax almost surely and n � 2.

Then,
������
max
x2X

������
1

n

nX

j=1

c(x, ⇠̂j)� E
h
c(x, ⇠̂j)

i
������

������

. (L+ cmax

p
log(3R+ 2))

r
d log n

n
.

4-1

Consequently, for any 0 < � < 1, with probability at least 1� �,

0 E
h
c(x̂n, ⇠) | ⇠̂1:n

i
� E [c(x⇤, ⇠)] (L+ cmax

p
log(3R+ 2))

r
d log n

n
·
p
log(2/�).

Proof. By the Symmetrization Lemma, it will su�ce to bound

1

n

����max
x2X

c(x)>⌘

����

where c(x) ⌘ (c(x, ⇠̂1), . . . , c(x, ⇠̂n))> 2 Rn, and ⌘ 2 Rn is a vector of i.i.d. Rademacher random

variables. (Convince yourself this is true.)

Now fix some 0 < ✏ < 1 (to be specified later), and let X0 = {x1, . . . ,xm} be an ✏-packing of X .

By our earlier remarks,

log(m) d log(3R/✏) . d log(e+R) log(2/✏).

Then, for any x 2 X , there exists a xk 2 X0 such that kx � xkk ✏. (Why?) For such a k, we

have that

kc(x)� c(xk)k2 =
nX

j=1

(c(x, ⇠̂j)� c(xk, ⇠̂j))
2

nX

j=1

L2kx� xkk2

 L2✏2n.

This implies kc(x)� c(xk)k2 L✏
p
n.

Now write,

c(x)>⌘ = (c(x)� c(xk))
> ⌘ + c(xk)

>⌘

 L✏
p
nk⌘k+ c(xk)

>⌘ (Cauchy-Schwarz)

 L✏
p
nk⌘k+ max

i=1,...,m
c(xi)

>⌘.

Notice, k⌘k2 =
p
n almost surely. Hence, if we take the maximum over x 2 X of both sides we

have that

max
x2X

c(x)>⌘ L✏n+ max
i=1,...,m

c(xi)
>⌘.

Now take the conditional Orlicz norm (conditional on ⇠̂1:n) of both sides. For each i, kc(xi)>⌘k |⇠̂1:n .
kc(xi)k2 . cmax

p
n. Hence, using our result for the Orlicz Norm of the max, we have that

����max
x2X

c(x)>⌘

����
 |⇠̂1:n

. L✏n+ cmax

p
n logm . L✏n+ cmax

p
nd log(3R) log(2/✏).

4-2

We are now free to choose ✏ > 0 to optimize the bound. Optimizing it exactly seems tricky, so

instead we pick a (suboptimal) choice of ✏ = 1p
n
. This yields,

����max
x2X

c(x)>⌘

����
 |⇠̂1:n

. L
p
n+ cmax

q
nd log(e+R) log(2

p
n)

. (L+ cmax

p
log(e+R))

r
d log n

n
.

By writing out the definition of the conditional -norm above and taking an expectation with

respect to ⇠̂1:n, we find the unconditional -norm above is also bounded by the same quantity.

Applying the Symmetrization Lemma then shows
������
max
x2X

������
1

n

nX

j=1

c(x, ⇠̂j)

������

������

 (L+ cmax

p
log(e+R))

r
d log n

n
.

This proves the first statement. The final statement follows from Markov’s Inequality. ⇤

Some remarks: It’s worth noting that we can view the approximating finite set X0 either as a

packing of X , or we can view the induced set

F0 = {
⇣
c(x, ⇠̂1), . . . , c(x, ⇠̂n)

⌘>
: x 2 X0}

as a L✏
p
n-covering of F(⇠̂1:n). This second perspective is perhaps more illuminating for the results

below.

Secondly, the assumptions on X weren’t strictly necessary. What we really needed was that the

packing numbers of X didn’t grow too rapidly as ✏ ! 0. In the above case, they looked roughly like

✏�d, and this was su�cient so long as d ⌧ n. We could make other assumptions to induce “small”

packing numbers for X , or, equivalently, small packing numbers for F .

3. More Advanced Results

As is hopefully clear by now, many performance guarantees come down to bounding the maximal

deviation of a quantity like

Z = Z(⇠̂1:n) = sup
t2T

������

nX

j=1

fj(t, ⇠̂j)� E
h
fj(t, ⇠̂j)

i
������

(4-14)

for some functions fj and independent random variables ⇠̂j . Below we quote some stronger results

from [Pol90] that bound the tails of Z when the ⇠̂j are independent, but not necessarily identically

distributed. We won’t prove these results – they rely on some ideas we haven’t talked about like

chaining – but they’re useful to know. When you write a paper, you should use these results from

[Pol90].

To state the results, first, recall that symmetrization encouraged us to think about the (random)

set

F = F(⇠̂1:n) =

⇢⇣
f1(t, ⇠̂1), . . . , fn(t, ⇠̂n)

⌘>
: t 2 T

�
.

4-3

We define the entropy integral of F by

J = J(⇠̂1:n) ⌘ 9

Z �

0

p
logD(✏,F)d✏ where � = �(⇠̂1:n) = sup

f2F
kfk2.

On first reading, entropy integrals are intimidating. Remember, though, that this integral is not

defined probabilistically. For a fixed ⇠̂1:n, it’s just an ordinary integral from calculus. Intuitively,

packing numbers measure the complexity of F at scale ✏. The entropy integral measures complexity

at varying scales, and, if the packing numbers “blow up” too fast as ✏ ! 0, then this integral

diverges.

Using a standard change of variables from calculus,

J = 9�

Z
1

0

p
logD(�✏,F)d✏.

Perhaps surprisingly, although this integral depends on the random set F and random “radius” �,

we can often upper bound it by a deterministic constant, so the only randomness in J comes from

the leading � term.

We give one such example below:

Lemma 4.3 (Entropy Integral for Euclidean Classes). Suppose that F is Euclidean, i.e., there

exists constants A and W such that with probability 1,

D(✏�,F) A✏�W 0 < ✏ < 1.

Then,

J . � · logA+W/2p
logA

.

Proof. You’ll prove this on your homework. (It’s just an exercise in evaluating/bounding an inte-

gral!) If you’re really struggling, look at Theorem A.2 in [GR21], but try your best before looking

it up. ⇤

Regardless of whether F is Euclidean, we get nice bounds on Z in terms of bounds on J .

Theorem 4.4 (Bounds on Suprema of Empirical Process). Fix any 0 < � < 1.

(1) (When J bounded by a constant) Suppose there exists a deterministic constant K such that

J K almost surely. Then, with probability at least 1� �,

Z . K
p
log(2/�).

(2) (When J is SubGaussian) Suppose that kJk < 1. Then, with probability at least 1� �,

Z . kJk log(2/�).

(3) (When J has finite pth moment) Suppose that kJkLp ⌘ E [Jp]1/p < 1. Then, with proba-

bility at least 1� �,

Z . p
p��1/pkJkLp .
4-4

Of course, when F is Euclidean we can simplify the results above appropriately. In particular, in

that case the bounds above really depend on the behavior of �, i.e, how big do the largest elements

of the process get? I’ll leave the details to you...

Let’s step back: What have we done? The above theorem is a general purpose tool. It’s important

to us because we can often reduce the analysis of a performance guarantee for an optimization

method to studying the tails of a random variable like Z. and then we can use the above theorem

to get a bound.

You’ll follow this recipe on your homework to reprove a stronger performance guarantee under

the setting of Theorem 4.2. If you do it right, you’ll find the result is only really stronger by

a logarithmic factor.... And this insight is important (to me). Namely, if you use some of the

strongest methods available in empirical process, you often only get small improvements over the

more naive (by-hand) approaches. And it’s often more straightforward to adapt these “by-hand”

approaches when your problem doesn’t exactly match the setting of the theorems in a textbook.

So, don’t be afraid to do things by hand.

4. Optional Remarks

The proof of the above theorem in [Pol90] is very readable (espcially if you ignore the section

on pseudo-dimension which isn’t critical). However, it’s somewhat di↵erent from the “standard”

proofs in other books that generally restrict attention to the case where � is bounded by a constant.

I prefer the extra generality above (since it comes in useful sometimes).

That said, the above theorem isn’t really best possible. To get some intuition, let’s think about

the case where F is Euclidean. Then, in that case, the tails of Z are basically determined by �,

i.e. the maximal value of the process. This is in some ways analogous to Hoe↵ding’s Inequality:

the tails of a bounded random variable are bounded by the maximal size of the support. But we

know that for random variables with small variance, Hoe↵ding’s inequality can be quite loose. In

the same way, for certain processes with small “variance”, the the above theorem can be quite

loose. You can make this heuristic argument rigorous by considering the special case when F is a

singleton in Theorem 4.4 and comparing the given result to Bernstein’s inequality.

[BLM13] present tighter bounds on the random variable Z that leverage “variance” information

to help close the gap. The tightest known bounds are due to Talagrand (Talagrand’s Inequality

for the Suprema of the Empirical Process) but the proof is pretty dense, leverages a lot of special

features, and (to my knowledge) requires ⇠̂1:n to be i.i.d, not just independent.

4-5

References

[BLM13] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities: A

nonasymptotic theory of independence. Oxford university press, 2013.

[GR21] Vishal Gupta and Paat Rusmevichientong. “Small-data, large-scale linear optimization

with uncertain objectives”. In: Management Science 67.1 (2021), pp. 220–241.

[Pol90] David Pollard. “Empirical Processes: Theory and Applications”. In: Ims. 1990.

4-6

