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Abstract

In most public companies in China, there are two thirds of shares that cannot be

traded freely in the secondary market. These illiquid shares, however, may be allowed to

circulate unexpectedly one day. This paper delves into the investor’s financial decision-

making with restricted stock in a continuous-time framework. Accordingly, this paper

assumes that removal of trade restriction arrives as a Poisson process. In the spirit of

[Rev. Econom. Statist. 51 (1969) 247; J. Econom. Theory 3 (1971) 373], an analytical

solution to the investor’s optimal portfolio problem is derived and the price (or cost) of

illiquidity can be calculated using numerical method. Furthermore, the value of infor-

mation is discussed in this framework. Numerical simulation shows that illiquidity has

an important influence on the investor’s optimal strategy. This model may provide a

theoretical framework to assess the cost of state-owned equities (SOEs).
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1. Introduction

Statistics show that among 1000-odd listed companies in China, non-

circulating shares held by the Administration of State-Owned Property and
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State-Owned Corporation bodies account for more than 60% of all the shares,

while circulating shares held by general investors stand at only 30%. Such an
ownership structure results in a thin stock market. What makes things even

worse, in our view, is the possibility that those illiquid shares may be circulated

unexpectedly one day, which we call a kind of event risk. So, we delve into the

investor’s financial decision-making with restricted stocks in a continuous-time

framework. You may imagine this investor as the state who owns the restricted

stocks. Our main purpose henceforth is to show the cost of holding these re-

stricted shares, and in another view, to price the illiquid shares among many

other works in this field. Accordingly, we can postulate that the relaxing arrives
as a Poisson process. In the spirit of Merton [10,11], we then derive an ana-

lytical solution to the investor’s optimal portfolio problem. Under our speci-

fications, the price (or cost) of illiquidity can be calculated using numerical

method. Furthermore, we discover the value of information on the event using

this framework. Our numerical simulation illustrates that illiquidity has an

important influence on the investor’s optimal strategy. And we do think this

model provides us a theoretical framework to assess the cost of state-owned

equities (SOEs).
In other related works, Liu et al. [8] investigate the investor’s dynamic asset

allocation using the event risk framework of Duffie et al. [3]. At the first sight,

our work seemingly resembles theirs; our basic structure, however, is greatly

different from that, although we are both in the spirit of Merton [10,11]. In

their specification, all the shares are the same, and an exogenous shock brings

to an event risk. So, they specify that the price dynamics follow a Brown

process with drift plus an Poisson process. That is to say, the event risk is

formulated in the stochastic differential equation of the stock price dynamics.
In contrast, we take a new perspective of the illiquid shares and the occurrence

of event risk, similar to that of Kahl et al. [6]. Suppose that we do hold these

illiquid shares in our portfolio, it means that we are restricted to sell them until

the arrival of event risk. Under this specification, we can calculate the implied

value of restricted stock as a fraction of its unrestricted market value using the

method of Longstaff [9]. Probably our structure is much closer to that of Kahl

et al. [6]. The time horizon, however, in our model is stochastic and follows a

Poisson process, which makes our model fit for the pricing of SOEs since we do
not know when these shares can be freely traded for certainty. And we think

the structure in Liu et al. [8] may be more suitable for the pricing of default

bonds, where the price follows an affine jump-diffusion (henceforth AJD). We

cannot see much reason in specifying that stock price follow an AJD in our

circumstance.

The remainder of this paper is organized as follow: Section 2 presents the

basic model; Section 3 models the dynamic portfolio choice with restricted

stock where the time of removing such restriction follows a Poisson process; in
Section 4, we examine the effects of liquidity restrictions on welfare and opti-
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mal portfolio decision using numerical simulation; and within this framework,

we investigate the value of information. Section 5 concludes.
2. The basic model

Throughout this article we are assuming a probability space ðX;F; P Þ and a
filtration fFtg. Uncertainty in this model is generated by two standard one

dimensional Brownian motions B1 and B2 defined on the filtered probability

space ðX;F; ðFtÞ; P Þ. The correlation coefficient between dB1 and dB2 is q and

�1 < q < 1.
There are three types of assets in our portfolio choice framework. The first

asset (‘‘the bond’’) is a money market account growing at a continuously

compounded, constant rate r. Let bt denote the value at time t of a riskless

bond or money market fund with dynamic given by
dbt ¼ rbt dt: ð1Þ
The second asset is a stock index fund. Let Mt denote the value of this risky

asset which can be viewed either as the stock market or a share in a stock index

fund. The dynamics of Mt are given by
dMt ¼ ðr þ lÞMt dt þ rMt dB1; ð2Þ
where l is the market risk premium and r is the volatility of returns. Both l
and r are positive constants.

The third asset is a restricted stock of one firm. Our investor is not allowed

to trade his shares in this firm, but the shares of this firm can be traded by

others who are not subjected to the restriction. Let St denote the market value
of a share of the firm’s stock. We assume that the dynamics of St are given by
dSt ¼ ðr þ gÞSt dt þ mSt dB2; ð3Þ
where g is the excess expected return for the firm and m is its volatility. Fur-

thermore, we make the simplified assumption that the risk premium g is given
by the Capital Asset Pricing Model, implying that g ¼ lqm

r . This financial

market is originated in the paper by Kahl et al. [6].

2.1. The investor’s problem

In our specification, the time of removal of trade restriction is random and

follows a Poisson process, while in that of Kahl et al. [6], it is a deterministic

point of time. As we have emphasized in Section 1, this generalization enables
us to tackle the pricing of SOEs, so its economic implication is intuitive.

The investor has an invest horizon of T < þ1, and at time zero, is given N
shares of restricted stock in the firm. Our investor is not allowed to trade his
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shares in this firm until time s6 T . After time s, the investor can trade his

shares in the firm without restriction. Let Xt ¼ NSt
Wt

denote the portfolio weight
for his illiquid stockholding, where Wt denotes his total wealth at time t. Let /t

denote the portfolio weight for the stock index fund. So, the portfolio weight

for the riskless asset is 1� /t � Xt. Following Merton [10,11] and recently Kahl

et al. [6], the investor’s wealth follows the dynamic process:
dWt ¼ ðr þ l/ þ gX ÞWt dt þ r/Wt dB1 þ mXWt dB2: ð4Þ
We assume the utility of an investor only depends on the market value of his

portfolio at time T just as earlier models in the literature (e.g., Brennan et al.

[1], Dumas and Luciano [4], Liu and Loewenstein [7]). The investor’s problem
is to choose trading strategy / so as to maximize EðUðWT ÞÞ. We assume that

the investor has CRRA preference, that is, UðWtÞ ¼ W 1�c
t
1�c for c > 0, and c 6¼ 1.

To solve this problem, we define the value function at time t as
JðW ;X ; tÞ ¼ max
/

E
W 1�c

t

1� c

����Ft

" #
! JðW ;X ; tÞ ¼ max

/
E

W 1�c
T

1� c

����Ft

" #
: ð5Þ
2.2. Optimal policies of an unconstrained investor

Due to the assumptions in Section 2.1, the unconstrained investor would

want to hold the firm’s stock only to the extent that it appears in the stock

index. So, the investor’s problem is just as Merton [11] when there are no re-

stricted stock ðN ¼ 0Þ. Now we present results in this case for the purpose of

comparison. The investor’s problem can be written as
JðW ; 0; 0Þ ¼ max
/

E
W 1�c

T

1� c

" #
subject to
dWt ¼ ðr þ l/ÞWt dt þ r/Wt dB1: ð6Þ
In his seminal paper, Merton [11] solved this problem and the optimal portfolio

selection rules is
/ðtÞ ¼ 1

r� þ 1
ð7Þ
for all 0 < t < T , where the ‘‘Merton line’’ r� is given by
r� ¼ r2c
l

� 1: ð8Þ
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The lifetime expected utility is
JðW ; 0; 0Þ ¼ eqT W
1�c

1� c
; ð9Þ
where
q ¼ ð1� cÞ r
�

þ j
c

�
ð10Þ
and
j ¼ l2

2r2
: ð11Þ
Obviously, these calculation simply works as a benchmark for the solution of

optimal policies with restricted stocks.

2.3. Optimal policies with restricted stock

In the case where N > 0, the problem is considerably more complicated.

Here we give a result derived by Kahl et al. [6]. When s is a determinate

number, i.e., the investor’s problem is
JðW ;X ; 0Þ ¼ max
/

E
W 1�c

s

1� c

� �
subject to
dWt ¼ ðr þ l/ þ gX ÞWt dt þ r/Wt dB1 þ mXWt dB2:
In this case, JðW ;X ; tÞ can be expressed in the form
JðW ;X ; tÞ ¼ W 1�c

1� c
F ðX Þ ð12Þ
and the optimal policy of investor is
/ðtÞ ¼ �ðl=r2Þð1� cÞF þ ðcqm=r þ l=r2ÞXFX þ ðqm=rX Þ2FXX Þ
�cð1� cÞF þ 2cXFX þ X 2FXX

� qm
r
X ;

ð13Þ
where F ðX Þ is the solution to a boundary value problem (see Kahl et al. [6]).

By this modelling, Kahl et al. [6] show that trade restriction (illiquidity) has

significant effects on the optimal investment and consumption strategies be-

cause of the need to hedge the illiquid stock position and smooth consumption
in anticipation of the eventual lapse of the restriction. Their framework is

convenient to analyze the real value of restricted stocks usually largely held by

entrepreneurs and managers as a mechanism to align their interests with out-
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side investors. When it comes to the pricing of SOEs, it does not make sense

any more. The reason is straightforward: who knows when these restrictions
will be relaxed? For deriving a solution to our problem specified above, we do

need go further, and we do need some innovations to their structure.
3. Exponentially distributed horizon

In this section, we consider the situation when the time of removal of

restrictions is random and follows a Poisson process. From the perspective of

modelling, we can formulate it as our investor has a uncertain horizon. In

particular, the investor’s problem is now to choose admissible trading strate-

gies so as to maximize E½W 1�c
s =ð1� cÞ for an event which occurs at the first

jump time s of a standard, independent Poisson process with intensity k. s is

thus exponentially distributed with parameter k, that is
Pfs 2 dtg ¼ ke�kt dt: ð14Þ
3.1. Optimal policies without restricted stocks

Again, for purpose of comparison, let us first consider the case without

restricted stocks ðN ¼ 0Þ. In this case, the investor’s problem becomes
JðW ; 0; 0Þ ¼ sup
/

E
Z 1

0

ke�kt W
1�c
t

1� c
dt

" #
ð15Þ
subject to the self-financing condition
dWt ¼ ðr þ l/ÞWt dt þ r/Wt dB1:
The above problem was solved by Merton [10,11] and Liu and Loewenstein [7].

A condition on the parameters is required for the existence of the optimal

solution.

Assumption 1. The investor’s expected horizon parameter k satisfies
k > ð1� cÞ r
�

þ j
c

�
;

where j is as defined in Eq. (11).

Now, we give the result without proof.

Lemma 1. Suppose that N ¼ 0. Under the Assumption 1, the optimal investment
policy is Eqs. (7) and (8). Moreover, the lifetime expected utility is
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JðW ; 0; 0Þ ¼ k
k � q

W 1�c

1� c
;

where q is as defined in Eq. (10).

3.2. Optimal policies with restricted stocks

Now, suppose that N > 0.

In this case, the investor makes investment decision with the restricted

stocks. Now the investor’s problem becomes
JðW ;X ; 0Þ ¼ sup
/

E
Z 1

0

ke�kt W
1�c
t

1� c
dt

" #
ð16Þ
subject to the self-financing condition
dWt ¼ ðr þ l/ þ gX ÞWt dt þ r/Wt dB1 þ mXWt dB2:
The Appendix A shows that JðW ;X ; tÞ can be expressed in the form
JðW ;X Þ ¼ W 1�c

1� c
GðX Þ ð17Þ
and the optimal investment in the stock market / is
/� ¼ �ðl=r2Þð1� cÞGþ ðcqm=r þ l=r2ÞXGX þ ðqm=rÞX 2GXX

�cð1� cÞGþ 2cXGX þ X 2GXX
� qm

r
X ;

ð18Þ
where the function GðX Þ satisfies a Hamilton–Jacobi–Bellman equation:
1

2
ðqrm/�X þ m2X 2Þð�cð1� cÞGþ 2cXGX þ X 2GXX Þ

þ qrm
2

/�X
	

þ m2X 2


ð�cGX � XGXX Þ þ

m2X 2

2
GXX þ r

�
þ l/�

2
þ gX

�
� ðð1� cÞG� XGX Þ þ ðr þ gÞXGX þ kGþ k ¼ 0: ð19Þ
with the condition
Gð0Þ ¼ k
k � q

; ð20Þ

GX ð0Þ ¼ 0: ð21Þ
To our knowledge, the function of GðX Þ cannot be solved in closed form. We

can, however, use simulation techniques to offer numerical solutions to
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JðW ;X Þ and the optimal weight in stock index /� since this is just a ordinary

differential equation.
4. Simulation

In this section, we study the effects of liquidity restriction on the investor

through numerical simulation and then derive some implications of our model.

We focus firstly on investor’s optimal portfolio strategy in the presence of

restricted stocks, and investigate how the intensity of the arrival of relaxing

restriction affects his optimal demand for risky assets. Then, we investigate the

welfare effects of trade restriction and calculate numerically their economic

costs, which we interpret as the illiquidity cost or the price of illiquidity. We

further delve into the relationship between the share of illiquid equities X and
the discount on illiquid equities. Finally, we discuss the value of information on

the relaxation of SOEs.

In our simulation, the riskless rate is 5%, the expected premium on the stock

market is 5%, the volatility of returns on the stock market is 20%, and the rate

of time preference equals the riskless rate.
4.1. The optimal portfolio strategy

In Eq. (18), the optimal weight in stock index is given analytically wherein
the function GðX Þ has to be solved through numerical simulation. Compared

with the situation where there is no restriction, we can observe that the optimal

weight invested in stock index is no longer a constant fraction of the investor’s

wealth which is given in the classic papers of Merton [10,11]. Now, the optimal

weight /� depends in a complicated way on the fraction of his wealth. We

perform the numerical simulation on the optimal weight, with the result given

in Fig. 1 below.

Fig. 1 shows that the optimal weight in stock index is decreasing on the
illiquid fraction, given others constant. This conclusion is easily interpreted in

economics. With more weight on illiquid assets, the optimal strategy for the

investor to hedge the risk is to invest less in the stock index while keeping more

safe assets.

Furthermore, with the rise in the intensity, the optimal weight in stock index

also decreases significantly, which can be explained as follows: The later the

event will come, the more the investor will choose to invest in the safe assets.

Interestingly, in some case, the restriction can lead to the investor taking a
short position in the stock index that would not appear in the situation of no

restriction. For example, in the case of k ¼ 5 and b ¼ 1, when the illiquidity

fraction is close to 1, the optimal weight may be below zero, which means a
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Fig. 1. Optimal stock market portfolio weight.
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short position in the stock index. The reason, as has been explained in Kahl

et al. [6], is that the investor partially gainsaid the illiquidity effects by taking

an offsetting position in the stock index.
4.2. The cost of liquidity restrictions

Perhaps the most important issue for us to address is the welfare effects of

the investor with restricted stocks. We calculate the welfare costs of illiquidity

by comparing the investor’s derived utility of wealth JðW ;X ; tÞ with restricted

stocks with that in the case of no such restriction.
The method we use herein is intuitive. Suppose that you have 10 RMB, and

if you choose to buy N shares of restricted stocks, then you obtain the maxi-

mum utility of A; now suppose you choose to buy unrestricted shares, to say, X
shares with the market price P , and you also achieve the same maximum utility

of A. Given these conditions, you can surely derive the price of restricted

stocks, to say Pil, so Pil ¼ XP
N . We call this method ‘‘Utility Equivalence Theo-

rem’’, which is also adopted in Longstaff [9].
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Using this method, we can calculate the implied value of restricted stock as a

fraction of its unrestricted market value. Fig. 2 reports the simulation results

for different value of the beta of the firm, which is given by b ¼ qm
r , and for

different level of X and the intensity of Poisson process.

From Fig. 2, we can see that the implied value of restricted stock to an

investor can be significantly less than its market value without restriction. For

example, when the fraction of illiquid stocks account for 50% of the total

wealth, and the intensity of Poisson process is equal to 5 and b ¼ �1, then the

implied value of restricted stock is only near 40% of its unrestricted market

value. Furthermore, as illustrated in Fig. 2, the costs of illiquidity can be

greatly larger when the illiquid share account for most of the investor’s wealth,
that is when X is near 1, as can be observed from the figure above: when X ¼ 1

and k ¼ 5, b ¼ �1, the implied value of restricted stocks is almost near 0.1.

And the price of illiquidity is a increasing function of X for the implies value

of restricted stock is decreasing on X . This conclusion is also intuitive, since the
more the amount of restricted stocks, the more constraint when you re-balance

your portfolio continuously. These conclusion has implication for the SOEs.

Based on our model, the more the SOEs, the larger the discount on illiquidity,

which means great loss in welfare of the state. In China, because of the great
difference in the cost of restricted stocks and unrestricted stocks, however, the

state as a matter of fact obtains much from the illiquidity of the SOEs if we
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take the state as a self-interest body. When it comes to the social welfare,

however, it is a great loss for the illiquid SOEs to exist in the economy
according to our simulation results.

Finally, as shown in Fig. 2, when the correlation between the return of the

firm and the return of the market vary, the implied value of restricted stock

also changes significantly. For example, when X ¼ 0:5, k ¼ 5, the implied value

ranges from 0.62 to 0.7 with the value of b from )1 to 1. Obviously, it reflects

the ability for the investor to hedge the risk of restricted stockholding. When

the correlation coefficient is equal to 1, the investor can then hedge the risk of

illiquidity by investing in the stock index, so the implied value is priced higher
than that of b equal 0 or )1.

The most interesting thing we do think is that when the intensity is given the

value of 5 years, the implied value ranges from 0.2 to 0.3, this result is close to

the empirically estimated price of SOEs by Chen and Xiong [2].
4.3. The value of information

In this section, we try to investigate the value of information. In the field of

finance, ‘‘information’’ is always a key word for academies which may date

back to the work of Hayek [5] and many others. With prior information, we

can profit much in the stock market––of course, we should pay for the infor-

mation––thus, bringing to an efficient market.
In our specifications herein, we refer the information to news on the time

you know exactly when the restricted stocks can be circulated, comparing with

the case in which you only know the intensity of the arrival. Obviously, in the

former case, you can profit more with the information.

We also perform numerical simulation on the value of information

according to our specification above, with the result of Fig. 3 below.

First we shall explain the curves in the Fig. 3. Take the first as example when

b ¼ �1. The real line of k ¼ 5 reflect the value of information when we do
know that the time of removal of restriction is in 5 years, comparing with the

case in which we only know the expected value is 5. Obviously, when we know

the exact time, we know more information.

As shown in Fig. 3, the value of information increases with the illiquidity

fraction in most time. This result is easily to explain. With more illiquid assets

in the portfolio, the investor will encounter more risk, so the information is

more valuable for him.

And the longer the restriction lasts, the more the value of information in
most cases. These conclusion is economically intuitive. With the time to re-

move the restriction prolonged, the variance of Poisson process becomes

larger, so, the information becomes more important and more valuable for

the investor.
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5. Conclusion

This paper studies the portfolio choice with restricted stock and the value of
information in a continuous-time framework. To address these issues, we

model the optimal consumption problem from the perspective of the state

which we just take as a normal agent in the economy. In this framework, the

price of illiquidity can also be calculated relatively easily which may enrich the

literature in pricing liquidity.

In our model, the state is allowed to invest in the stock index and safe assets

to hedge risk and smooth consumption, the cost of illiquidity, however, is still

larger as shown in Fig. 1. And in the case of illiquidity fraction equal 1, the
discount on illiquidity is almost 90% in our simulation.

In a view of practice in the economy, restricted stock may be helpful in

retaining key employees and witful managers, and it can also be used to alle-

viate the agency problem in modern companies, it also can, however, bring

great cost to those people who receive it as a kind of compensation, thus makes

the incentive contract less efficient. For the government of China, SOEs that

are not allowed to trade freely in the secondary market keep the state in charge

of the national economy. According to our model, this restriction surely brings
great costs to the state, making the SOEs less valuable. Furthermore, as has

been emphasized in our companion paper, the SOEs should be responsible for

the thinness in the market. However, to understand the pros and cons of SOEs
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may need more knowledge in politics than we have, so we try to avert this issue

as possible as we can in this model.
We do not add a jump in the price of stock when relaxing the restriction for

the convenience of modelling. This may be suitable for our analysis herein, if

we can adjust the framework in a controllable way. We shall try to do it in

further research. And obviously our model is a partial equilibrium model in

which the price dynamics is specified in advance. And if we endogenize the

price in a meaningful manner, we may get more insight into the illiquidity issue

addressed here.
Appendix A. Optimal portfolio

Using the definition of X , the dynamic budget constraint can be expressed as
dWt ¼ ðr þ l/ þ gX ÞWt dt þ r/Wt dB1 þ mXWt dB2
that is
dWt ¼ ðrWt þ l/Wt þ gNStÞdt þ r/Wt dB1 þ mNSt dB2:
Since W and S form a joint Markov process, the derived utility of wealth

JðW ; S; tÞ satisfies the Hamilton–Jacobi–Bellman equation:
max
/

1

2
ðr2/W 2

�
þ 2qrm/NSW þ m2N 2S2ÞJWW þ 1

2
m2S2JSSÞ

þ ðm2NS2 þ qrm/SW ÞJWS þ ðrW þ l/W þ gNSÞJW

þ ðr þ gÞSJS þ kJ þ k
W 1�c

1� c

�
¼ 0:
Differentiating this formulae with respect to / gives following first-order
conditions
/� ¼ � l
r2

JW
WJWW

� �
� qmS

r
JWS
WJWW

� �
� qmNS

rW
:

We conjecture (and then verify) that the derived utility of wealth function is of

the form
JðW ;X Þ ¼ W 1�c

1� c
GðX Þ:
Differentiating this expression (via the chain rule) with respect to the variables

W , S and substituting into the first-order conditions. So, the following equation
is just Hamilton–Jacobi–Bellman equation:
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1

2
ðqrm/�X þ m2X 2Þð�cð1� cÞGþ 2cXGX þ X 2GXX Þ

þ qrm
2

/�X
	

þ m2X 2


ð�cGX � XGXX Þ þ

m2X 2

2
GXX

þ r
�

þ l/�

2
þ gX

�
ðð1� cÞG� XGX Þ þ ðr þ gÞXGX þ kGþ k ¼ 0:
This equation depends only on GðX Þ and its derivatives with respect to X . So,
our conjecture is verified if we can demonstrate that GðX Þ is independent of W
on the initial values.

Compared to Merton [10], the initial conditions should be
Gð0Þ ¼ k
k � q

;

GX ð0Þ ¼ 0:
In solving for GðX Þ, we compute the function values numerically using a

standard finite difference technique. In particular, we linearize the differential

equation for GðX Þ by evaluating /� using the estimated values of the function

and its derivatives.
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