Documentation for the R code to implement the FAME methodology in “Functional Adaptive Model Estimation”

The R script contains the function to fit the FAME estimator. The main function is `fame`.

Description

This function fits the FAME estimator for regression with a functional covariate and a scalar response according to the procedure outlined in the paper. It also provides an option to include scalar covariates.

fame

This is the main function that fits the FAME estimator.

Arguments

`data` : a list with four or five components defined as follows

- `x` : a vector \((x_1^T, x_2^T, ..., x_N^T)^T\) that contains each of the evaluated points of the functional predictor. Each \(x_i\) is a vector containing the observations from curve \(i\). Note that each curve can have observations at different time points.
- `y` : a length \(N\) vector that contains the scalar response
- `z` : a matrix that contains the scalar predictors (optional)
- `time` : a vector that specifies the time points that the corresponding component of `x` is measured at. It has the same length as `x`.
- `curve` : a vector of the form \((1, 1, ..., 1, 2, 2, ...2...)\), assuming that the first points in `x` come from curve 1, then the next points from curve 2 etc. It has the same length as `x`.
- `q` : dimension of cubic B-spline basis \((q \geq 4)\)
- `p` : a lower dimension that the basis coefficients can be projected onto (defaults to 4)
- `r` : number of additive components (integer, \(r \geq 1\))
- `grid` : observation grid of the functional predictor. It includes all `time` elements in `data` and also other time points that future data may be observed at.
- `t_range` : a vector of length 2 that specifies the lower and upper bound of the time domain of the functional predictor
- `maxit` : the maximum number of training iterations (defaults to 3)
- `family` : family of link functions (defaults to `gaussian()`)

1
pertfit : an optional initial fit provided by the user (defaults to NULL)

- **pc** : a logical value indicating if FAME is fitted using FPCs or not (defaults to FALSE)
- **run** : number of iterations to compute the initial fit (defaults to 4)
- **tol** : convergence criterion to stop training on small change in the deviance of log likelihood (defaults to .001)

Value

A list with the following components

- **BaseS** : a matrix of cubic B-spline basis evaluations. Its dimension is the length of grid by q.
- **W** : a q by p matrix that projects the basis to a lower dimensional space
- **alpha** : a N by p matrix of coefficients that project x to a lower dimensional space
- **Theta** : a p by r matrix of coefficients that maps lower dimensional projections of x to $\int x(t)\beta_k(t)dt$ for $k = 1, \ldots, r$. Each column corresponds to the coefficients for each additive component.

gamfit : an object returned by `gam`. This is the fit regressing y on r projections of x.

fame.predict

This is the function to make predictions given test data and an object returned by `fame`.

Arguments

- **obj** : an object returned by `fame`
- **newdata** : a list for test data. It needs to be specified in the same format as `data` in `fame`.
- **type** : type of returned predictions, chosen from "response", "terms", "link", "lpmatrix", and "iterms" (defaults to "response", see documentation of `predict.gam`)

Value

This function returns predicted values depending on **type**. When **type** = "response", it returns a vector of predicted values of the response.