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SUMMARY

We consider a method for estimating a covariance matrix on the basis of a sample of vectors

drawn from a multivariate normal distribution. In particular, we penalize the likelihood with a

lasso penalty on the entries of the covariance matrix. This penalty plays two important roles: it

reduces the effective number of parameters, which is important even when the dimension of the

vectors is smaller than the sample size since the number of parameters grows quadratically in the

number of variables, and it produces an estimate which is sparse. In contrast to sparse inverse

covariance estimation, our method’s close relative, the sparsity attained here is in the covari-

ance matrix itself rather than in the inverse matrix. Zeros in the covariance matrix correspond

to marginal independencies; thus, our method performs model selection while providing a pos-

itive definite estimate of the covariance. The proposed penalized maximum likelihood problem

is not convex, so we use a majorize-minimize approach in which we iteratively solve convex

approximations to the original non-convex problem. We discuss tuning parameter selection and

demonstrate on a flow-cytometry dataset how our method produces an interpretable graphical

display of the relationship between variables. We perform simulations that suggest that simple
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2 J. BIEN AND R. TIBSHIRANI

elementwise thresholding of the empirical covariance matrix is competitive with our method for

identifying the sparsity structure. Additionally, we show how our method can be used to solve a

previously studied special case in which a desired sparsity pattern is prespecified.

Some key words: Concave-convex procedure; Covariance graph; Covariance matrix; Generalized gradient descent;

Lasso; Majorization-minimization; Regularization; Sparsity.

1. INTRODUCTION

Estimation of a covariance matrix on the basis of a sample of vectors drawn from a multivariate

Gaussian distribution is among the most fundamental problems in statistics. However, with the

increasing abundance of high-dimensional datasets, the fact that the number of parameters to

estimate grows with the square of the dimension suggests that it is important to have robust

alternatives to the standard sample covariance matrix estimator. In the words of Dempster (1972),

“The computational ease with which this abundance of parameters can be estimated

should not be allowed to obscure the probable unwisdom of such estimation from

limited data.”

Following this note of caution, many authors have developed estimators which mitigate the sit-

uation by reducing the effective number of parameters through imposing sparsity in the inverse

covariance matrix. Dempster (1972) suggests setting elements of the inverse covariance matrix

to zero. Meinshausen & Bühlmann (2006) propose using a series of lasso regressions to identify

the zeros of the inverse covariance matrix. More recently, Yuan & Lin (2007), Banerjee et al.

(2008), and Friedman et al. (2007) frame this as a sparse estimation problem, performing penal-

ized maximum likelihood with a lasso penalty on the inverse covariance matrix; this is known

as the graphical lasso. Zeros in the inverse covariance matrix are of interest because they corre-

spond to conditional independencies between variables.
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Sparse Covariance Estimation 3

In this paper, we consider the problem of estimating a sparse covariance matrix. Zeros in a

covariance matrix correspond to marginal independencies between variables. A Markov network

is a graphical model that represents variables as nodes and conditional dependencies between

variables as edges; a covariance graph is the corresponding graphical model for marginal inde-

pendencies. Thus, sparse estimation of the covariance matrix corresponds to estimating a covari-

ance graph as having a small number of edges. While less well-known than Markov networks,

covariance graphs have also been met with considerable interest (Drton & Richardson, 2008).

For example, Chaudhuri et al. (2007) consider the problem of estimating a covariance matrix

given a prespecified zero-pattern; Khare and Rajaratnam, in an unpublished 2009 technical report

available at http://statistics.stanford.edu/∼ckirby/techreports/GEN/2009/2009-01.pdf, formulate

a prior for Bayesian inference given a covariance graph structure; Butte et al. (2000) introduce

the related notion of a relevance network, in which genes with pairwise correlation exceeding

a threshold are connected by an edge; also, Rothman et al. (2009) consider applying shrinkage

operators to the sample covariance matrix to get a sparse estimate. Most recently, Rothman et al.

(2010) propose a lasso-regression based method for estimating a sparse covariance matrix in the

setting where the variables have a natural ordering.

The purpose of this present work is to develop a method which, in contrast to pre-existing

methods, estimates both the non-zero covariances and the graph structure, i.e., the locations of

the zeros, simultaneously. In particular, our method is permutation invariant in that it does not

assume an ordering to the variables (Rothman et al., 2008). In other words, our method does

for covariance matrices what the graphical lasso does for inverse covariance matrices. Indeed, as

with the graphical lasso, we propose maximizing a penalized likelihood.
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4 J. BIEN AND R. TIBSHIRANI

2. THE OPTIMIZATION PROBLEM

Suppose that we observe a sample of n multivariate normal random vectors,

X1, . . . , Xn ∼ Np(0,Σ). The log-likelihood is

`(Σ) = −np
2

log 2π − n

2
log det Σ− n

2
tr(Σ−1S),

where we define S = n−1
∑n

i=1XiX
T
i . The lasso (Tibshirani, 1996) is a well-studied regularizer

which has the desirable property of encouraging many parameters to be exactly zero. In this

paper, we suggest adding to the likelihood a lasso penalty on P ∗ Σ, where P is an arbitrary

matrix with non-negative elements and ∗ denotes elementwise multiplication. Thus, we propose

the estimator that solves

MinimizeΣ�0

{
log det Σ + tr(Σ−1S) + λ‖P ∗ Σ‖1

}
, (1)

where for a matrix A, we define ‖A‖1 = ‖vecA‖1 =
∑

ij |Aij |. Two common choices for P

would be the matrix of all ones or this matrix with zeros on the diagonal to avoid shrinking di-

agonal elements of Σ. Lam & Fan (2009) study the theoretical properties of a class of problems

including this estimator but do not discuss how to solve the optimization problem. Additionally,

while writing a draft of this paper, we learned of independent and concurrent work by Khare

and Rajaratnam, presented at the 2010 Joint Statistical Meetings, in which they propose solving

(1) with this latter choice for P . Another choice is to take Pij = 1{i 6= j}/|Sij |, which is the

covariance analogue of the adaptive lasso penalty (Zou, 2006). In Section 6, we will discuss an-

other choice of P that provides an alternative method for solving the prespecified zeros problem

considered by Chaudhuri et al. (2007).

In words, (1) seeks a matrix Σ under which the observed data would have been likely and for

which many variables are marginally independent. The graphical lasso problem is identical to

(1) except that the penalty takes the form ‖Σ−1‖1 and the optimization variable is Σ−1.
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Sparse Covariance Estimation 5

Solving (1) is a formidable challenge since the objective function is non-convex and therefore

may have many local minima. A key observation in this work is that the optimization problem,

although non-convex, possesses special structure that suggests a method for performing the opti-

mization. In particular, the objective function decomposes into the sum of a convex and a concave

function. Numerous papers in fields spanning machine learning and statistics have made use of

this structure to develop specialized algorithms: difference of convex programming focuses on

general techniques to solving such problems both exactly and approximately (Horst & Thoai,

1999; An & Tao, 2005); the concave-convex procedure (Yuille & Rangarajan, 2003) has been

used in various machine learning applications and studied theoretically (Yuille & Rangarajan,

2003; Argyriou et al., 2006; Sriperumbudur & Lanckriet, 2009); majorization-minimization al-

gorithms have been applied in statistics to solve problems such as least-squares multidimensional

scaling, which can be written as the sum of a convex and concave part (de Leeuw & Mair, 2009);

most recently, Zhang (2010) approaches regularized regression with non-convex penalties from

a similar perspective.

3. ALGORITHM FOR PERFORMING THE OPTIMIZATION

3·1. A majorization-minimization approach

While (1) is not convex, we show in Appendix 1 that the objective is the sum of a convex

and concave function. In particular, tr(Σ−1S) + λ‖P ∗ Σ‖1 is convex in Σ while log det Σ is

concave. This observation suggests a majorize-minimize scheme to approximately solving (1).

Majorize-minimize algorithms work by iteratively minimizing a sequence of majorizing func-

tions (e.g., chapter 6 of Lange 2004; Hunter & Li 2005). The function f(x) is said to be ma-

jorized by g(x | x0), if f(x) ≤ g(x | x0) for all x and f(x0) = g(x0 | x0). To minimize f , the

algorithm starts at a point x(0) and then repeats until convergence, x(t) = argminxg(x | x(t−1)).
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6 J. BIEN AND R. TIBSHIRANI

This is advantageous when the function g(· | x0) is easier to minimize than f(·). These updates

have the favorable property of being non-increasing, i.e., f(x(t)) ≤ f(x(t−1)).

A common majorizer for the sum of a convex and a concave function is to replace the latter part

with its tangent. This method has been referred to in various literatures as the concave-convex

procedure, the difference of convex functions algorithm, and multi-stage convex relaxations.

Since log det Σ is concave, it is majorized by its tangent plane: log det Σ ≤ log det Σ0 +

tr{Σ−1
0 (Σ− Σ0)}. Therefore, the objective function of (1),

f(Σ) = log det Σ + tr(Σ−1S) + λ‖P ∗ Σ‖1,

is majorized by g(Σ | Σ0) = log det Σ0 + tr(Σ−1
0 Σ)− p+ tr(Σ−1S) + λ‖P ∗ Σ‖1. This sug-

gests the following majorize-minimize iteration to solve (1):

Σ̂(t) = argminΣ�0

[
tr{(Σ̂(t−1))−1Σ}+ tr(Σ−1S) + λ‖P ∗ Σ‖1

]
. (2)

To initialize the above algorithm, we may take Σ̂(0) = S or Σ̂(0) = diag(S11, . . . , Spp). We have

thus replaced a difficult non-convex problem by a sequence of easier convex problems, each of

which is a semidefinite program. The value of this reduction is that we can now appeal to algo-

rithms for convex optimization. A similar stategy was used by Fazel et al. (2003), who pose a

non-convex log det-minimization problem. While we cannot expect (2) to yield a global mini-

mum of our non-convex problem, An & Tao (2005) show that limit points of such an algorithm

are critical points of the objective (1).

In the next section, we propose an efficient method to perform the convex minimization in

(2). It should be noted that if S � 0, then by Proposition 1 of Appendix 2, we may tighten the

constraint Σ � 0 of (2) to Σ � δIp for some δ > 0, which we can compute and depends on the

smallest eigenvalue of S. We will use this fact to prove a rate of convergence of the algorithm

presented in the next section.
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Sparse Covariance Estimation 7

3·2. Solving (2) using generalized gradient descent

Problem (2) is convex and therefore any local minimum is guaranteed to be the global

minimum. We employ a generalized gradient descent algorithm, which is the natural exten-

sion of gradient descent to non-differentiable objectives (e.g., Beck & Teboulle 2009). Given

a differentiable convex problem minx∈C L(x), the standard projected gradient step is x =

PC{x− t∇L(x)} and can be viewed as solving the problem x = argminz∈C(2t)
−1‖z − {x−

t∇L(x)}‖2. To solve minx∈C L(x) + p(x) where p is a non-differentiable function, generalized

gradient descent instead solves x = argminz∈C(2t)
−1‖z − {x− t∇L(x)}‖2 + p(z).

In our case, we want to solve

MinimizeΣ�δIp
{

tr(Σ−1
0 Σ) + tr(Σ−1S) + λ‖P ∗ Σ‖1

}
,

where for notational simplicity we let Σ0 = Σ̂(t−1) be the solution from the previous iteration

of (2). Since the matrix derivative of L(Σ) = tr(Σ−1
0 Σ) + tr(Σ−1S) is dL(Σ)/dΣ = Σ−1

0 −

Σ−1SΣ−1, the generalized gradient steps are given by

Σ = argminΩ�δIp
{

(2t)−1‖Ω− Σ + t(Σ−1
0 − Σ−1SΣ−1)‖2F + λ‖P ∗ Ω‖1

}
. (3)

Without the constraint Ω � δIp, this reduces to the simple update

Σ← S
{

Σ− t(Σ−1
0 − Σ−1SΣ−1), λtP

}
,

where S is the elementwise soft-thresholding operator defined by S(A,B)ij = sign(Aij)(Aij −

Bij)+. Clearly, if the unconstrained solution to (3) happens to have minimum eigenvalue greater

than or equal to δ, then the above expression is the correct generalized gradient step. In practice,

we find that this is often the case, meaning we may solve (3) quite efficiently; however, when

we find that the minimum eigenvalue of the soft-thresholded matrix is below δ, we perform the

optimization using the alternating direction method of multipliers (e.g., Boyd et al. 2011), which

is given in Appendix 3.
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8 J. BIEN AND R. TIBSHIRANI

Generalized gradient descent is guaranteed to get within ε of the optimal value inO(ε−1) steps

as long as dL(Σ)/dΣ is Lipschitz continuous (Beck & Teboulle, 2009). While this condition is

not true of our objective on Σ � 0, we show in Appendix 2 that we can change the constraint

to Σ � δIp for some δ > 0 without changing the solution. On this set, dL(Σ)/dΣ is Lipschitz,

with constant 2‖S‖2δ−3, thus establishing that generalized gradient descent will converge with

the stated rate.

In summary, Algorithm 1 presents our algorithm for solving (1). It has two loops: an outer loop

in which the majorize-minimize algorithm approximates the non-convex problem iteratively by

a series of convex relaxations; and an inner loop in which generalized gradient descent is used to

solve each convex relaxation. The first iteration is usually simple soft-thresholding of S, unless

the result has an eigenvalue less than δ. Generalized gradient descent belongs to a larger class of

Algorithm 1 Basic Algorithm for solving (1)
1: Σ← S

2: repeat

3: Σ0 ← Σ

4: repeat

5: Σ← S
{

Σ− t(Σ−1
0 − Σ−1SΣ−1), λtP

}
where S denotes elementwise soft-

thresholding. If Σ 6� δIp, then instead perform alternating direction method of

multipliers given in Appendix 3.

6: until convergence

7: until convergence

first-order methods, which do not require computing the Hessian. Nesterov (2005) shows that a

simple modification of gradient descent can dramatically improve the rate of convergence so that

a value within ε of optimal is attained within only O(ε−1/2) steps (e.g., Beck & Teboulle 2009).
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Sparse Covariance Estimation 9

Due to space restrictions, we do not include this latter algorithm, which is a straightforward

modification of Algorithm 1. Running our algorithm on a sequence of problems in which Σ = Ip

and with λ chosen to ensure an approximately constant proportion of non-zeros across differently

sized problems, we estimate that the run time scales approximately like p3. We will be releasing

an R package which implements this approach to the `1-penalized covariance problem.

For a different perspective of our minimize-majorize algorithm, we rewrite (1) as

MinimizeΣ�0,Θ�0

{
tr(Σ−1S) + λ‖P ∗ Σ‖1 + tr(ΣΘ)− log det Θ

}
. (4)

This is a biconvex optimization problem in that the objective is convex in either variable holding

the other fixed; however, it is not jointly convex because of the tr(ΣΘ) term. The standard al-

ternate minimization technique to this biconvex problem reduces to the algorithm of (2). To see

this, note that minimizing over Θ while holding Σ fixed gives Θ̂ = Σ−1.

3·3. A note on the p > n case

When p > n, S cannot be full rank and thus there exists v 6= 0 such that Sv = 0. Let V = [v :

V⊥] be an orthogonal matrix. Denoting the original problem’s objective as f(Σ) = log det Σ +

tr(Σ−1S) + λ‖P ∗ Σ‖1, we see that

f(αvvT + V⊥V
T
⊥ ) = logα+ tr(V T

⊥ SV⊥) + λ‖P ∗ (αvvT + V⊥V
T
⊥ )‖1 → −∞, α→ 0.

Conversely, if S � 0, then, writing the eigenvalue decomposition of Σ =
∑p

i=1 λiuiu
T
i with

λ1 ≥ · · · ≥ λp > 0, we have

f(Σ) ≥ log det Σ + tr(Σ−1S) = constant + log λp + uTp Sup/λp →∞

as λp → 0 since uTp Sup > 0.

Thus, if S � 0, the problems infΣ�0 f(Σ) and infΣ�0 f(Σ) are equivalent, while if S is not

full rank then the solution will be degenerate. We therefore set S = S + εIp for some ε > 0 when
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10 J. BIEN AND R. TIBSHIRANI

S is not full rank. In this case, the observed data lies in a lower dimensional subspace of Rp, and

adding εIp to S is equivalent to augmenting the dataset with points that do not lie perfectly in the

span of the observed data.

3·4. Using the sample correlation matrix instead of the sample covariance matrix

Let D = diag(S11, . . . , Spp) so that R = D−1/2SD−1/2 is the sample correlation matrix.

Rothman et al. (2008) suggest that, in the case of estimating the concentration matrix, it can

be advantageous to use R instead of S. In this section, we consider solving

Θ̂(R,P ) = argminΘ�0

{
log det Θ + tr(Θ−1R) + λ‖P ∗Θ‖1

}
, (5)

and then taking Σ̃ = D1/2Θ̂(R,P )D1/2 as an estimate for the covariance matrix. Expressing the

objective function in (5) in terms of Σ = D1/2ΘD1/2 gives, after some manipulation,

−
p∑
i=1

log(Sii) + log det Σ + tr(Σ−1S) + λ‖(D−1/2PD−1/2) ∗ Σ‖1.

Thus, the estimator Σ̃ based on the sample correlation matrix is equivalent to solving (1)

with a rescaled penalty matrix: Pij ← Pij/(SiiSjj)
1/2. This gives insight into (5): it applies a

stronger penalty to variables with smaller variances. For n large, Sii ≈ Σii, and so we can think

of this modification as applying the lasso penalty on the correlation scale, i.e., ‖P ∗ Ω‖1 where

Ωij = Σij(ΣiiΣjj)
−1/2, rather than on the covariance scale. An anonymous referee points out

that this estimator has the desirable property of being invariant to both scaling of variables and

to permutation of variable labels.

4. CROSS-VALIDATION FOR TUNING PARAMETER SELECTION

In applying this method, one will usually need to select an appropriate value of λ. Let

Σ̂λ(S) denote the estimate of Σ we get by applying our algorithm with tuning parame-

ter λ to S = n−1
∑n

i=1XiX
T
i where X1, . . . , Xn are n independent Np(0,Σ) random vec-
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Fig. 1. Tuning parameter selection via cross-validation:

Each dashed line is a realization of α̂CV (λ) and the solid

line is α(λ). Each open circle shows a realization of λ̂CV ;

the solid circle shows argmaxλα(λ).

tors. We would like to choose a value of λ that makes α(λ) = `{Σ̂λ(S); Σ} large, where

`(Σ1; Σ2) = − log det Σ1 − tr(Σ2Σ−1
1 ). If we had an independent validation set, we could sim-

ply use α̂(λ) = `{Σ̂λ(S);Svalid}, which is an unbiased estimator of α(λ); however, typically this

will not be the case, and so we use a cross-validation approach instead: For A ⊆ {1, . . . , n}, let

SA = |A|−1
∑

i∈A xix
T
i and let Ac denote the complement of A. Partitioning {1, . . . , n} into k

subsets, A1, . . . ,Ak, we then compute α̂CV (λ) = k−1
∑k

i=1 `{Σ̂λ(SAci );SAi}.

To select a value of λ that will generalize well, we choose λ̂CV = argmaxλα̂CV (λ). Figure 1

shows 20 realizations of cross-validation for tuning parameter selection. While α̂CV (λ) appears

to be biased upward for α(λ), we see that the value of λ that maximizes α(λ) is still well-

estimated by cross-validation, especially considering the flatness of α(λ) around the maximum.
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12 J. BIEN AND R. TIBSHIRANI

5. EMPIRICAL STUDY

5·1. Simulation

To evaluate the performance of our covariance estimator, which we will refer to as the `1-

penalized covariance method, we generate X1, . . . , Xn ∼ Np(0,Σ), where Σ is a sparse sym-

metric positive semidefinite matrix. We take n = 200 and p = 100 and consider three types

of covariance graphs, corresponding to different sparsity patterns, considered for example in a

2010 unpublished technical report by Friedman, Hastie, and Tibshirani, available at http://www-

stat.stanford.edu/∼tibs/ftp/ggraph.pdf:

I. CLIQUES MODEL: We take Σ = diag(Σ1, . . . ,Σ5), where Σ1, . . . ,Σ5 are dense matrices.

This corresponds to a covariance graph with five disconnected cliques of size 20.

II. HUBS MODEL: Again Σ = diag(Σ1, . . . ,Σ5), however each submatrix Σk is zero except

for the last row/column. This corresponds to a graph with five connected components each

of which has all nodes connected to one particular node.

III. RANDOM MODEL: We assign Σij = Σji to be non-zero with probability 0·02, indepen-

dently of other elements.

IV. FIRST-ORDER MOVING AVERAGE MODEL: We take Σi,i−1 = Σi−1,i to be non-zero for

i = 2, . . . , p.

In the first three cases, we generate the non-zero elements as ±1 with random signs. In the

moving average model, we take all non-zero values to be 0·4. For all the models, to ensure that

S � 0 when n > p, we then add to the diagonal of Σ a constant so that the resulting matrix has

condition number equal to p as in Rothman et al. (2008). Fixing Σ, we then generate ten samples

of size n.

We compare three approaches for estimating Σ on the basis of S:
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(a) Simple soft-thresholding takes Σ̂ij = S(Sij , c) for i 6= j and Σ̂ii = Sii. This method is a

special case of Rothman et al. (2009)’s generalized thresholding proposal and does not nec-

essarily lead to a positive definite matrix.

(b) The `1-penalized covariance method with Pij = 1{i 6= j} uses Algorithm 1 where an equal

penalty is applied to each off-diagonal element.

(c) The `1-penalized covariance method with Pij = |Sij |−11{i 6= j} uses Algorithm 1 with

an adaptive lasso penalty on off-diagonal elements. This choice of weights penalizes less

strongly those elements that have large values of |Sij |. In the regression setting, this modifi-

cation has been shown to have better selection properties (Zou, 2006).

We evaluate each method on the basis of its ability to correctly identify which elements of Σ

are zero and on its closeness to Σ based on both the root-mean-square error, ‖Σ̂− Σ‖F /p, and

entropy loss, − log det(Σ̂Σ−1) + tr(Σ̂Σ−1)− p. The latter is a natural measure for comparing

covariance matrices and has been used in this context by Huang et al. (2006).

The first four rows of Fig. 2 show how the methods perform under the models for Σ described

above. We vary c and λ to produce a wide range of sparsity levels. From the receiver operating

characteristic curves, we find that simple soft-thesholding identifies the correct zeros with com-

parable accuracy to the `1-penalized covariance approaches (b) and (c). Relatedly, Friedman,

Hastie, and Tibshirani, in their 2010 technical report, observe with surprise the effectiveness of

soft-thesholding of the empirical correlation matrix for identifying the zeros in the inverse co-

variance matrix. In terms of root-mean-square error, all three methods perform similarly in the

cliques model (I) and random model (III). In both these situations, method (b) dominates in the

denser realm while method (a) does best in the sparser realm. In the moving average model (IV),

both soft-thresholding (a) and the adaptive `1-penalized covariance method (c) do better in the

sparser realm, with the latter attaining the lowest error. For the hubs model (II), `1-penalized
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covariance (b) attains the best root-mean-square error across all sparsity levels. In terms of en-

tropy loss there is a pronounced difference between the `1-penalized covariance methods and

soft-thresholding. In particular, we find that the former methods get much closer to the truth in

this sense than soft-thresholding in all four cases. This behavior reflects the difference in na-

ture between minimizing a penalized Frobenius distance, as is done with soft-thresholding, and

minimizing a penalized negative-log-likelihood, as in (1). The rightmost plot shows that for the

moving average model (IV) soft-thresholding produces covariance estimates that are not positive

semidefinite for some sparsity levels. When the estimate is not positive definite, we do not plot

the entropy loss. By contrast, the `1-penalized covariance method is guaranteed to produce a

positive definite estimate regardless of the choice of P . The bottom row of Fig. 2 shows the per-

formance of the `1-penalized covariance method when S is not full-rank. In particular, we take

n = 50 and p = 100. The receiver-operating characteristic curves for all three methods decline

greatly in this case, reflecting the difficulty of estimation when p > n. Despite trying a range of

values of λ, we find that the `1-penalized covariance method does not produce a uniform range

of sparsity levels, but rather jumps from being about 33% zero to 99% zero. As with model (IV),

we find that soft-thresholding leads to estimates that are not positive semidefinite, in this case for

a wide range of sparsity levels.

5·2. Cell signalling dataset

We apply our `1-penalized covariance method to a dataset that has previously been used in the

sparse graphical model literature (Friedman et al., 2007). The data consists of flow cytometry

measurements of the concentrations of p = 11 proteins in n = 7466 cells (Sachs et al., 2005).

Figure 3 compares the covariance graphs learned by the `1-penalized covariance method to the

Markov network learned by the graphical lasso (Friedman et al., 2007). The two types of graph

have different interpretations: if the estimated covariance graph has a missing edge between
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Fig. 2. Simulation study: Black and dark-grey curves

are the `1-penalized methods with equal penalty on off-

diagonals and with an adaptive lasso penalty, respectively,

and the light-grey curves are soft-thresholding of the non-

diagonal elements of S. From top to bottom, the rows

show the (I) cliques, (II) hubs, (III) random, and (IV)

first-order moving average, (V) cliques with p > nmodels

for Σ. From left to right, the columns show the receiver-

operating characteristic curves, root-mean-square errors,

entropy loss, and minimum eigenvalue of the estimates.

The horizontal dashed line shows the minimum eigenvalue

of the true Σ.
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two proteins, then we are stating that the concentration of one protein gives no information

about the concentration of another. On the other hand, a missing edge in the Markov network

means that, conditional on all other proteins’ concentrations, the concentration of one protein

gives no information about the concentration of another. Both of these statements assume that

the data are multivariate Gaussian. The right panel of Fig. 3 shows the extent to which similar

protein pairs are identified by the two methods for a series of sparsity levels. We compare the

observed proportion of co-occurring edges to a null distribution in which two graphs are selected

independently from the uniform distribution of graphs having a certain number of edges. The

dashed and dotted lines show the mean and 0·025- and 0·975-quantiles of the null distribution,

respectively, which for k-edge graphs is a Hypergeometric{p(p− 1)/2, k, k}/k distribution.

We find that the presence of edges in the two types of graphs is anti-correlated relative to the

null, emphasizing the difference between covariance and Markov graphical models. It is therefore

important that a biologist understand the difference between these two measures of association

since the edges estimated to be present will often be quite different.

6. EXTENSIONS AND OTHER CONVEX PENALTIES

Chaudhuri et al. (2007) propose a method for performing maximum likelihood over a fixed

covariance graph, i.e., subject to a prespecified, fixed set of zeros, Ω = {(i, j) : Σij = 0}.

This problem can be expressed in our form by taking P defined by Pij = 1 if (i, j) ∈ Ω and

Pij = 0 otherwise, and λ sufficiently large. In this case, (1) is maximum likelihood subject to

the desired sparsity pattern. The method presented in this paper therefore gives an alternative

method for approximately solving this fixed-zero problem. In practice, we find that this method

achieves very similar values of the likelihood as the method of Chaudhuri et al. (2007), which is

implemented in the R package ggm.
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Fig. 3. Cell signalling dataset. (Left) Comparison of our al-

gorithm’s solution to the sparse covariance maximum like-

lihood problem (1) to the graphical lasso’s solution to the

sparse inverse covariance maximum likelihood problem.

Here we adopt the convention of using bi-directed edges

for covariance graphs (e.g., Chaudhuri et al. 2007). Differ-

ent values of the regularization parameter were chosen to

give same sparsity levels. (Right) Each black circle shows

the proportion of edges shared by the covariance graph

from our algorithm to the Markov graph from the graph-

ical lasso at a given sparsity level. The dashed and dotted

lines show the mean and 0·025- and 0·975-quantiles of the

null distribution, respectively.

In deriving the majorize-minimize algorithm of (2), we only used that ‖P ∗ Σ‖1 is convex.

Thus, the approach in (2) extends straightforwardly to any convex penalty. For example, in some

situations we may desire certain groups of edges to be simultaneously missing from the covari-

ance graph. Given a collection of such sets G1, . . . ,GK ⊂ {1, . . . , p}2, we may apply a group

lasso penalty:

MinimizeΣ�0

{
log det Σ + tr(Σ−1S) + λ

K∑
k=1

|Gk|1/2‖vec(Σ)Gk‖2

}
, (6)
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where vec(Σ)Gk denotes the vector formed by the elements of Σ in Gk. For example in some

instances such as in time series data, the variables have a natural ordering and we may desire

a banded sparsity pattern (Rothman et al., 2010). In such a case, one could take Gk = {(i, j) :

|i− j| = k} for k = 1, . . . , p− 1. Estimating the kth band as zero would correspond to a model

in which a variable is marginally independent of the variable k time units earlier.

As another example, we could take Gk = {(k, i) : i 6= k} ∪ {(i, k) : i 6= k} for k = 1, . . . , p.

This encourages a node-sparse graph considered by Friedman, Hastie, and Tibshirani, in their

2010 technical report, in the case of the inverse covariance matrix. Estimating Σij = 0 for all

(i, j) ∈ Gk corresponds to the model in which variable k is independent of all others. It should

be noted however that a variable’s being marginally independent of all others is equivalent to its

being conditionally independent of all others. Therefore, if node-sparsity in the covariance graph

is the only goal, i.e., no other penalties on Σ are present, a better procedure would be to apply

this group lasso penalty to the inverse covariance, thereby admitting a convex problem.

We conclude with an extension that may be worth pursuing. A difficulty with (1) is that it is not

convex and therefore any algorithm that attempts to solve it may converge to a suboptimal local

minimum. Exercise 7·4 of Boyd & Vandenberghe (2004), on page 394, remarks that the log-

likelihood `(Σ) is concave on the convex set C0 = {Σ : 0 ≺ Σ � 2S}. This fact can be verified

by noting that over this region the positive curvature of tr(Σ−1S) exceeds the negative curvature

of log det Σ. This suggests a related estimator that is the result of a convex optimization problem:

Let Σ̂c denote a solution to

Minimize0≺Σ�2S

{
log det Σ + tr(Σ−1S) + λ‖P ∗ Σ‖1

}
. (7)

While of course we cannot in general expect Σ̂c to be a solution to (1), adding this constraint may

not be unreasonable. In particular, if n, p→∞ with p/n→ y ∈ (0, 1), then by a result of Sil-

verstein (1985), λmin(Σ
−1/2
0 SΣ

−1/2
0 )→ (1− y1/2)2 almost surely, where S ∼Wishart(Σ0, n).
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It follows that the constraint Σ0 � 2S will hold almost surely in this limit if (1− y1/2)2 > 0·5,

i.e., y < 0·085. Thus, in the regime that n is large and p does not exceed 0·085n, the constraint

set of (7) contains the true covariance matrix with high probability.
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SUPPLEMENTARY MATERIAL

Included on Biometrika’s website, Supplementary Material shows a simulation evaluating the

performance of our estimator as n increases.

APPENDIX 1

Convex plus concave

Examining the objective of problem (1) term by term, we observe that log det Σ is concave while

tr(Σ−1S) and λ‖Σ‖1 are convex in Σ. The second derivative of log det Σ is−Σ−2, which is negative def-

inite, from which it follows that log det Σ is concave. As shown in example 3·4 of Boyd & Vandenberghe

(2004), on page 76,XT
i Σ−1Xi is jointly convex inXi and Σ. Since tr(Σ−1S) = (1/n)

∑n
i=1X

T
i Σ−1Xi,

it follows that tr(Σ−1S) is the sum of convex functions and therefore is itself convex.
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APPENDIX 2

Justifying the Lipschitz claim

Let L(Σ) = tr(Σ−1
0 Σ) + tr(Σ−1S) denote the differentiable part of the majorizing function of (1).

We wish to prove that dL(Σ)/dΣ = Σ−1
0 − Σ−1SΣ−1 is Lipschitz continuous over the region of the

optimization problem. Since this is not the case for λmin(Σ)→ 0, we begin by showing that the constraint

region can be restricted to Σ � δIp.

PROPOSITION 1. Let Σ̃ be an arbitrary positive definite matrix, e.g., Σ̃ = S. Problem (1) is equivalent

to

MinimizeΣ�δIp
{

log det Σ + tr(Σ−1S) + λ‖P ∗ Σ‖1
}

(A1)

for some δ > 0 that depends on λmin(S) and f(Σ̃).

Proof. Let g(Σ) = log det Σ + tr(Σ−1S) denote the differentiable part of the objective function

f(Σ) = g(Σ) + λ‖P ∗ Σ‖1, and let Σ =
∑p
i=1 λiuiu

T
i be the eigendecomposition of Σ with λ1 ≥ · · · ≥

λp.

Given a point Σ̃ with f(Σ̃) <∞, we can write (1) equivalently as

Minimize f(Σ) subject to Σ � 0, f(Σ) ≤ f(Σ̃).

We show in what follows that the constraint f(Σ) ≤ f(Σ̃) implies Σ � δIp for some δ > 0.

Now, g(Σ) =
∑p
i=1 log λi + uTi Sui/λi =

∑p
i=1 h(λi;u

T
i Sui), where h(x; a) = log x+ a/x. For

a > 0, the function h has a single stationary point at a, where it attains a minimum value of log a+ 1, has

limx→0+ h(x; a) = +∞ and limx→∞ h(x; a) = +∞, and is convex for x ≤ 2a. Also, h(x; a) is increas-

ing in a for all x > 0. From these properties and the fact that λmin(S) = min‖u‖2=1 u
TSu, it follows

that

g(Σ) ≥
p∑
i=1

h{λi;λmin(S)} ≥ h{λp;λmin(S)}+

p−1∑
i=1

h{λmin(S);λmin(S)}

= h{λp;λmin(S)}+ (p− 1){log λmin(S) + 1}.
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Thus, f(Σ) ≤ f(Σ̃) implies g(Σ) ≤ f(Σ̃) and so

h{λp;λmin(S)}+ (p− 1){log λmin(S) + 1} ≤ f(Σ̃).

This constrains λp to lie in an interval [δ−, δ+] = {λ : h{λ;λmin(S)} ≤ c}, where c = f(Σ̃)− (p−

1){log λmin(S) + 1} and δ−, δ+ > 0. We compute δ− using Newton’s method. To see that δ− > 0, note

that h is continuous and monotone decreasing on (0, a) and limx→0+ h(x; a) = +∞.

As λmin(S) increases, [δ−, δ+] becomes narrower and more shifted to the right. The interval also

narrows as f(Σ̃) decreases.

For example, we may take Σ̃ = diag(S11, . . . , Spp) and P = 11T − Ip, which yields

h{λp, λmin(S)} ≤
p∑
i=1

log{Sii/λmin(S)}+ log λmin(S) + 1.

We next show that dL(Σ)/dΣ = Σ−1
0 − Σ−1SΣ−1 is Lipschitz continuous on Σ � δIp by bounding its

first derivative. Using the product rule for matrix derivatives, we have

d

dΣ
(Σ−1

0 − Σ−1SΣ−1) = −(Σ−1S ⊗ Ip)(−Σ−1 ⊗ Σ−1)− (Ip ⊗ Σ−1){(Ip ⊗ S)(−Σ−1 ⊗ Σ−1)}

= (Σ−1SΣ−1)⊗ Σ−1 + Σ−1 ⊗ (Σ−1SΣ−1).

We bound the spectral norm of this matrix:

∥∥∥∥ d

dΣ

dL

dΣ

∥∥∥∥
2

≤ ‖(Σ−1SΣ−1)⊗ Σ−1‖2 + ‖Σ−1 ⊗ Σ−1SΣ−1‖2

≤ 2‖Σ−1SΣ−1‖2‖Σ−1‖2

≤ 2‖S‖2‖Σ−1‖32.

The first inequality follows from the triangle inequality; the second uses the fact that the eigenvalues of

A⊗B are the pairwise products of the eigenvalues of A and B; the third uses the sub-multiplicativity of

the spectral norm. Finally, Σ � δIp implies that Σ−1 � δ−1Ip from which it follows that

∥∥∥∥ d

dΣ

dL

dΣ

∥∥∥∥
2

≤ 2‖S‖2δ−3.
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APPENDIX 3

Alternating direction method of multipliers for solving (3)

To solve (3), we repeat until convergence:

1. Diagonalize {Σ− t(Σ−1
0 − Σ−1SΣ−1) + ρΘk − Y k}/(1 + ρ) = UDUT ;

2. Σk+1 ← UDδU
T where Dδ = diag{max(Dii, δ)};

3. Θk+1 ← S{Σk+1 + Y k/ρ, (λ/ρ)P}, i.e., soft-threshold elementwise;

4. Y k+1 ← Y k + ρ(Σk+1 −Θk+1).
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