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Summary. We consider rules for discarding predictors in lasso regression and related prob-
lems, for computational efficiency. El Ghaoui et al. (2010) propose “SAFE” rules, based on
univariate inner products between each predictor and the outcome, that guarantee a coeffi-
cient will be zero in the solution vector. This provides a reduction in the number of variables
that need to be entered into the optimization. In this paper, we propose strong rules that are
very simple and yet screen out far more predictors than the SAFE rules. This great practical
improvement comes at a price: the strong rules are not foolproof and can mistakenly discard
active predictors, that is, ones that have nonzero coefficients in the solution. We therefore
combine them with simple checks of the Karush-Kuhn-Tucker (KKT) conditions to ensure that
the exact solution to the convex problem is delivered. Of course, any (approximate) screening
method can be combined with the KKT conditions to ensure the exact solution; the strength of
the strong rules lies in the fact that, in practice, they discard a very large number of the inactive
predictors and almost never commit mistakes. We also derive conditions under which they
are foolproof. Strong rules provide a substantial savings in computational time for a variety of
statistical optimization problems.

1. Introduction

Our focus here is statistical models fit using ℓ1 penalization, starting with penalized linear
regression. Consider a problem with N observations and p predictors. Let y denote the
N -vector of outcomes, and X be the N × p matrix of predictors, with ith row xi and jth
column xj . For a set of indices A = {j1, . . . jk}, we write XA to denote the N×k submatrix
XA = [xj1 , . . .xjk ], and we write bA = (bj1 , . . . bjk) for a vector b. We assume that the
predictors and outcome have been centered, so that we can omit an intercept term from the
model. The lasso (Tibshirani (1996), Chen et al. (1998)) optimization problem is

β̂ = argmin
β∈Rp

1

2
‖y−Xβ‖22 + λ‖β‖1, (1)
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where λ ≥ 0 is a tuning parameter.
There has been considerable work in the past few years deriving fast algorithms for this

problem, especially for large values of N and p. A main reason for using the lasso is that
the ℓ1 penalty tends to set some entries of β̂ to exactly zero, and therefore it performs a
kind of variable selection. Now suppose we knew, a priori to solving (1), that a subset of
the variables D ⊆ {1, . . . p} will be inactive at the solution, that is, they will have zero

coefficients: β̂D = 0. ‡ Then we could discard the variables in D from the optimization,
replacing the design matrix in (1) by XDc , Dc = {1, . . . p} \ D, and just solve for the

remaining coefficients β̂Dc . For a relatively large set D, this would result in a substantial
computational savings.

El Ghaoui et al. (2010) construct such a set of discarded variables by looking at the
univariate inner products of each predictor with the response. Namely, their “SAFE” rule
discards the jth variable if

|xT
j y| < λ− ‖x‖2‖y‖2

λmax − λ

λmax

, (2)

where λmax = maxi |xT
i y| is the smallest tuning parameter value for which all coefficients in

the solution are zero. In deriving this rule, the authors prove that any predictor satisfying
(2) must be inactive at the solution; said differently, condition (2) implies that β̂j = 0.
(Their proof relies on the dual of problem (1); it has nothing to do with the rest of this
paper, but we summarize it in the Appendix because we find it interesting.) The authors
then show that applying the SAFE rule (2) to discard predictors can save both time and
memory in the overall computation, and also derive analogous rules for ℓ1-penalized logistic
regression and ℓ1-penalized support vector machines.

The existence of any such rule is surprising (at least to us), and the work presented
here was inspired by the SAFE work. In this paper, we propose strong rules for discarding
predictors in the lasso and other problems that involve lasso-type penalties. The basic
strong rule for the lasso looks like a modification of (2), with ‖xj‖2‖y‖2/λmax replaced by
1: it discards the jth variable if

|xT
j y| < λ− (λmax − λ) = 2λ− λmax. (3)

The strong rule (3) tends to discard more predictors than the SAFE rule (2). For stan-
dardized predictors (‖xj‖2 = 1 for all j), this will always be the case, as ‖y‖2/λmax ≥ 1
by the Cauchy–Schwartz inequality. However, the strong rule (3) can erroneously discard
active predictors, ones that have nonzero coefficients in the solution. Therefore we rely on
the Karush-Kuhn-Tucker (KKT) conditions to ensure that we are indeed computing the
correct coefficients in the end. A simple strategy would be to add the variables that fail
a KKT check back into the optimization. We discuss more sophisticated implementation
techniques, specifically in the context of our glmnet algorithm, in Section 7 at the end of
the paper.

The most important contribution of this paper is a version of the strong rules that can
be used when solving the lasso and lasso-type problems over a grid of tuning parameter
values λ1 ≥ λ2 ≥ . . . ≥ λm. We call these the sequential strong rules. For the lasso, having

‡If X does not have full column rank, which is necessarily the case when p > N , then there
may not be a unique lasso solution; we don’t pay special attention to this case, and will write “the
solution” when we really mean “a solution”.

2



already computed the solution β̂(λk−1) at λk−1, the sequential strong rule discards the jth
predictor from the optimization problem at λk if

∣

∣xT
j

(

y −Xβ̂(λk−1)
)∣

∣ < 2λk − λk−1. (4)

The sequential rule (4) performs much better than both the basic rule (3) and the SAFE
rule (2), as we demonstrate in Section 2. El Ghaoui et al. (2011) also propose a version of
the SAFE rule that can be used when considering multiple tuning parameter values, called
“recursive SAFE”, but it too is clearly outperformed by the sequential strong rule. Like its
basic counterpart, the sequential strong rule can mistakenly discard active predictors, so it
must be combined with a check of the KKT conditions (see Section 7 for details).

At this point, the reader may wonder: any approximate or non-exact rule for discard-
ing predictors can be combined with a check of the KKT conditions to ensure the exact
solution—so what makes the sequential strong rule worthwhile? Our answer is twofold:

(a) In practice, the sequential strong rule is able to discard a very large proportion of
inactive predictors, and rarely commits mistakes by discarding active predictors. In
other words, it serves as a very effective heuristic.

(b) The motivating arguments behind the sequential strong rule are quite simple and the
same logic can be used to derive rules for ℓ1-penalized logistic regression, the graphical
lasso, the group lasso, and others.

The mistakes mentioned in (a) are so rare that for a while a group of us were trying to
prove that the sequential strong rule for the lasso was foolproof, while others were trying
to find counterexamples (hence the large number of coauthors!). We finally did find some
counterexamples of the sequential strong rule and one such counterexample is given in
Section 3, along with some analysis of rule violations in the lasso case. Furthermore, despite
the similarities in appearance of the basic strong rule (3) to the SAFE rule (2), the arguments
motivating the strong rules (3) and (4) are entirely different, and rely on a simple underlying
principle. In Section 4 we derive analogous rules for the elastic net, and in Section 5 we
derive rules for ℓ1-penalized logistic regression. We give a version for more general convex
problems in Section 6, covering the graphical lasso and group lasso as examples.

Finally, we mention some related work. Wu et al. (2009) study ℓ1 penalized logistic
regression and build a screened set S based on the inner products between the outcome
and each feature. As with the strong rules, their construction does not guarantee that the
variables in S actually have zero coefficients in the solution, and so after fitting on XSc , the
authors check the KKT optimality conditions for violations. In the case of violations, they
weaken their set S, and repeat this process. Also, Fan & Lv (2008) study the screening of
variables based on their inner products in the lasso and related problems, but not from an
optimization point of view; their screening rules may again set coefficients to zero that are
nonzero in the solution, however, the authors argue that under certain situations this can
lead to better performance in terms of estimation risk.

2. Strong rules for the lasso

2.1. Definitions and simulation studies
As defined in the introduction, the basic strong rule for the lasso discards the jth predictor
from the optimization problem if

|xT
j y| < 2λ− λmax, (5)
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where λmax = maxj |xT
j y| is the smallest tuning parameter value such that β̂(λmax) = 0.

If we are interested in the solution at many values λ1 ≥ . . . ≥ λm, then having computed
the solution β̂(λk−1) at λk−1, the sequential strong rule discards the jth predictor from the
optimization problem at λk if

∣

∣xT
j

(

y −Xβ̂(λk−1)
)

| < 2λk − λk−1. (6)

Here we take λ0 = λmax. As β̂(λmax) = 0, the basic strong rule (5) is a special case of the
sequential rule (6).

First of all, how does the basic strong rule compare to the basic SAFE rule (2)? When
the predictors are standardized (meaning that ‖xi‖2 = 1 for every i), it is easy to see that
the basic strong bound is always larger than the basic SAFE bound, because ‖y‖2/λmax ≥ 1
by the Cauchy-Schwartz inequality. When the predictors are not standardized, the ordering
between the two bounds is not as clear, but in practice the basic strong rule still tends to
discard more predictors unless the marginal variances of the predictors are wildly different
(by factors of say 10 or more). Figure 1 demonstrates the bounds for a simple example.

0.00 0.05 0.10 0.15 0.20 0.25

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

1

2

3

4

5

6

7

8

9

10

Basic SAFE bound

Basic strong bound

Basic SAFE bound

Basic strong bound

λ

x
T j

(

y
−
X
β̂
(λ
))

Fig. 1. Basic SAFE and basic strong bounds in a simple example with 10 predictors, labelled at the
right. The plot shows the inner product of each predictor with the current residual, xT

j

(

y −Xβ̂(λ)
)

,
as a function of λ. The predictors that are in the model are those with maximal (absolute) inner
product, equal to ±λ. The dotted vertical line is drawn at λmax; the dashed vertical line is drawn at
some value λ = λ′ at which we want to discard predictors. The basic strong rule keeps only predictor
number 3, while the basic SAFE rule keeps predictors 8 and 1 as well.

More importantly, how do the rules perform in practice? Figures 2 and 3 attempt to
answer this question by examining several simulated data sets. (A few real data sets are
considered later in Section 3.2.) In Figure 2, we compare the performance of the basic
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SAFE rule, recursive SAFE rule, basic strong rule, and sequential strong rule in discarding
predictors for the lasso problem along a sequence of 100 tuning parameter values, equally
spaced on the log scale. The three panels correspond to different scenarios for the model
matrix X; in each we plot the number of active predictors in the lasso solution on the
x-axis, and the number of predictors left after filtering with the proposed rules (i.e. after
discarding variables) on the y-axis. Shown are the basic SAFE rule, the recursive SAFE
rule, the global strong rule and the sequential strong rule. The details of the data generation
are given in the Figure caption. The sequential strong rule is remarkably effective.

It is common practice to standardize the predictors before applying the lasso, so that
the penalty term makes sense. This is what was done in the examples of Figure 2. But
in some instances, one might not want to standardize the predictors, and so in Figure 3
we investigate the performance of the rules in this case. In the left panel the population
variance of each predictor is the same; in the right panel it varies by a factor of 50. We see
that in the latter case the SAFE rules outperform the basic strong rule, but the sequential
strong rule is still the clear winner. There were no violations of either of the strong rules
in either panel.

After seeing the performance of the sequential strong rule, it might seem like a good
idea to combine the basic SAFE rule with the sequential strategy; this yields the sequential

SAFE rule, which discards the jth predictor at the parameter value λk if

∣

∣xT
j

(

y −Xβ̂(λk−1)
)∣

∣ < λk − ‖xj‖2‖y−Xβ̂(λk−1)‖2
λk−1 − λk

λk−1

. (7)

We believe that this rule is not foolproof, in the same way that the sequential strong rule
is not foolproof, but have not yet found an example in which it fails. In addition, while
(7) outperforms the basic and recursive SAFE rules, we have found that it is not nearly as
effective as the sequential strong rule at discarding predictors and hence we do not consider
it further.

2.2. Motivation for the strong rules
We now give some motivation for the sequential strong rule (6). The same motivation also
applies to the basic strong rule (5), recalling that the basic rule corresponds to the special

case λ0 = λmax and β̂(λmax) = 0.
We start with the KKT conditions for the lasso problem (1). These are

xT
j (y −Xβ̂) = λγj for j = 1, . . . p, (8)

where γj is the jth component of the subgradient of ‖β̂‖1:

γj ∈











{+1} if β̂j > 0

{−1} if β̂j < 0

[−1, 1] if β̂j = 0.

(9)

Let cj(λ) = xT
j (y−Xβ̂(λ)), where we emphasize the dependence on λ. The key idea behind

the strong rules is to assume that each cj(λ) is non-expansive in λ, that is,

|cj(λ) − cj(λ̃)| ≤ |λ− λ̃| for any λ, λ̃, and j = 1, . . . p. (10)
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Fig. 2. Lasso regression: results of different rules applied to three different scenarios. Shown are
the number of predictors left after screening at each stage, plotted against the number of predictors
in the model for a given value of λ. The value of λ is decreasing as we move from left to right. There
are three scenarios with various values of N and p; in the first two panels the X matrix entries are
i.i.d. standard Gaussian with pairwise correlation zero (left), and 0.5 (middle). In the right panel, one
quarter of the pairs of features (chosen at random) had correlation −0.8. In the plots, we are fitting
along a path of 100 decreasing λ values equally spaced on the log-scale, A broken line with unit
slope is added for reference. The proportion of variance explained by the model is shown along the
top of the plot. There were no violations of either of the strong rules any of the three scenarios.
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Fig. 3. Lasso regression: results of different rules when the predictors are not standardized. The
scenario in the left panel is the same as in the top left panel of Figure 2, except that the features are
not standardized before fitting the lasso. In the data generation for the right panel, each feature is
scaled by a random factor between 1 and 50, and again, no standardization is done.

This condition is equivalent to cj(λ) being differentiable almost everywhere, and satisfying
|c′j(λ)| ≤ 1 wherever this derivative exists, for j = 1, . . . p. Hence we call (10) the “unit
slope” bound.

Using condition (10), if we have |cj(λk−1)| < 2λk − λk−1, then

|cj(λk)| ≤ |cj(λk)− cj(λk−1)|+ |cj(λk−1)|
< (λk−1 − λk) + (2λk − λk−1)

= λk,

which implies that β̂j(λk) = 0 by the KKT conditions (8) and (9). But this is exactly the

sequential strong rule (6), because cj(λk) = xT
j (y −Xβ̂(λk)). In words: assuming that we

can bound the amount that cj(λ) changes as we move from λk−1 to λk, if the initial inner
product cj(λk−1) is too small, then it cannot “catch up” in time. An illustration is given
in Figure 4.

The arguments up until this point do not really depend on the Gaussian lasso problem in
any critical way, and similar arguments can be made to derive strong rules for ℓ1-penalized
logistic regression and more general convex problems. But in the specific context of the
lasso, the strong rules, and especially the unit slope assumption (10), can be explained
more concretely. For simplicity, the arguments provided here assume that rank(X) = p, so
that necessarily p ≤ N , although similar arguments can be used motivate the p > N case.
Let A denote the set of active variables in the lasso solution,

A = {j : β̂j 6= 0}.
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Fig. 4. Illustration of the slope bound (10) leading to the strong rules (5) and (6). The inner product
(thick line) cj is plotted in as a function of λ, restricted to only one predictor for simplicity. The slope
of cj between λk−1 and λk is bounded in absolute value by 1, so the most it can rise over this interval
is λk−1 − λk. Therefore, if it starts below λk − (λk−1 − λk) = 2λk − λk−1, it cannot possibly reach
the critical level by λk.

Also let s = sign(β̂A). Note that A, s are implicitly functions of λ. It turns out that we
can express the lasso solution entirely in terms of A and s:

β̂A(λ) = (XT
AXA)

−1(XT
Ay − λs) (11)

β̂Ac(λ) = 0, (12)

where we write XT
A to mean (XA)

T . On an interval of λ in which the active set doesn’t
change, the solution (11), (12) is just linear in λ. Also, the solution (11), (12) is continuous
at all values of λ at which the active set does change. (For a reference, see Efron et al.
(2004).) Therefore the lasso solution is a continuous, piecewise linear function of λ, as is

cj(λ) = xT
j (y−Xβ̂(λ)). The critical points, or changes in slope, occur whenever a variable

enters or leaves the active set. Each cj(λ) is differentiable at all values of λ that are not
critical points, which means it is differentiable almost everywhere (since the set of critical
points is countable and hence has measure zero). Further, c′j(λ) is just the slope of the
piecewise linear path at λ, and hence (10) is really just a slope bound. By expanding (11),
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(12) in the definition of cj(λ), it is not hard to see that the slope at λ is

c′j(λ) =

{

sj for j ∈ A
xT
j XA(X

T
AXA)

−1s for j /∈ A.
(13)

Therefore the slope condition |c′j(λ)| ≤ 1 is satisfied for all active variables j ∈ A. For
inactive variables it can fail, but is unlikely to fail if the correlation between the variables
in A and Ac is small (thinking of standardized variables). From (13), we can rewrite the
slope bound (10) as

‖XT
AcXA(X

T
AXA)

−1sign(β̂A(λ))‖∞ ≤ 1 for all λ. (14)

In this form, the condition looks like the well-known “irrepresentable condition”, which we
discuss in the next section.

2.3. Connection to the irrepresentable condition
A common condition appearing in work about model selection properties of lasso is the
“irrepresentable condition” Zhao & Yu (2006), Wainwright (2009), Candes & Plan (2009),
which is closely related to the concept of “mutual incoherence” Fuchs (2005), Tropp (2006),
Meinhausen & Buhlmann (2006). If T is the set of variables present in the true (underlying)
linear model, that is

y = XT βT + z

where βT ∈ R
|T | is the true coefficient vector and z ∈ R

n is noise, then the irrepresentable
condition is that

‖XT
T cXT (X

T
T XT )

−1sign(βT )‖∞ ≤ 1− ǫ (15)

for some 0 < ǫ ≤ 1.
The conditions (15) and (14) appear extremely similar, but a key difference between the

two is that the former pertains to the true coefficients generating the data, while the latter
pertains to those found by the lasso optimization problem. Because T is associated with
the true model, we can put a probability distribution on it and a probability distribution
on sign(βT ), and then show that with high probability, certain design matrices X satisfy
(15). For example, Candes & Plan (2009) show that if |T | is small, T is drawn from the
uniform distribution on |T |-sized subsets of {1, . . . p}, and each entry of sign(βT ) is equal
to ±1 with equal probability, then designs X with maxj 6=k |xT

j xk| = O(1/ log p) satisfy the
irrepresentable condition (15) with very high probability. Unfortunately the same types of
arguments cannot be applied directly to (14). A distribution on T and sign(βT ) induces a

different distribution on A and sign(β̂A), via the lasso optimization procedure. Even if the

distributions of T and sign(βT ) are very simple, the distributions of A and sign(β̂A) are
likely to be complicated.

Under the same assumptions as those described above, and an additional assumption
that the signal-to-noise ratio is high, Candes & Plan (2009) prove that for λ = 2

√
2 log p

the lasso solution satisfies

A = T and sign(β̂A) = sign(βT )

with high probability. In this event, conditions (14) and (15) identical; therefore the work
of Candes & Plan (2009) proves that (14) also holds with high probability, under the stated
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assumptions and only when λ = 2
√
2 log p. For our purposes, this is not incredibly useful

because we want the slope bound to hold along the entire path, that is, for all λ. But still,
it seems reasonable that confidence in (15) should translate to some amount of confidence
in (14). And luckily for us, we do not need the slope bound (14) to hold exactly or with any
specified level of probability, because we are using it as a computational tool and revert to
checking the KKT conditions when it fails.

3. Violations of the strong rules

3.1. A simple counterexample
Here we demonstrate a counterexample of both the slope bound (10) and the sequential
strong rule (6). We chose N = 50 and p = 30, with the entries of y and X drawn indepen-
dently from a standard normal distribution. Then we centered y and the columns of X,
and scaled the columns of X to have unit norm. As Figure 5 shows, for predictor j = 2, the
slope of cj(λ) = xT

j (y −Xβ̂(λ)) is c′j(λ) = −1.586 for all λ ∈ [λ2, λ1], where λ2 = 0.0244,
λ1 = 0.0259. Moreover, if we were to use the solution at λ1 to eliminate predictors for the
fit at λ2, then we would eliminate the 2nd predictor based on the bound (6). But this is
clearly a problem, because the 2nd predictor enters the model at λ2. By continuity, we can
choose λ2 in an interval around 0.0244 and λ1 in an interval around 0.0259, and still break
the sequential strong rule (6).

We believe that a counterexample of the basic strong rule (5) can also be constructed,
but we have not yet found one. Such an example is somewhat more difficult to construct
because it would require that the average slope exceed 1 from λmax to λ, rather than
exceeding 1 for short stretches of λ values.

3.2. Numerical investigation of violations
We generated Gaussian data with N = 100, and the number predictors p varying over the
set {20, 50, 100, 500, 1000}. The predictors had pairwise correlation 0.5. (With zero pairwise
correlation, XTX would be orthogonal in the population and hence “close to” orthogonal
in the sample, making it easier for the strong rules to hold—see the next section. Therefore
we chose pairwise correlation 0.5 in order to challenge the rules.) For each value of p, we
chose one quarter variables uniformly at random, assigned them coefficient values equal
to ±2 with equal probability, and added Gaussian noise to the true signal to generate y.
Then we standardized y and the columns of X. We ran the R package glmnet v1.5, which
uses a path of 100 values of λ spanning the entire operating range, equally spaced on a log
scale. This was used to determine the exact solutions, and then we recorded the number of
violations of the sequential strong rule.

Figure 6 shows the results averaged over 100 draws of the simulated data. We plot the
percent variance explained on the x-axis (instead of λ, since the former is more meaningful),
and the total number of violations (out of p predictors) the y-axis. We see that violations
are quite rare, in general never averaging more than 0.3 erroneously discarded predictors!
They are more common at the unregularized (small λ) end of the path and also tend to
occur when p is fairly close to N .§ When p ≫ N (p = 500 or 1000 here), there were no
violations in any of 100 the simulated data sets. It is perhaps not surprisingly, then, that

§When p = N , the model is able to produce a saturated fit, but only “just”. So for this scenario,
the coefficient paths are somewhat erratic near the end of the path.
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Fig. 5. Example of a violation of the slope bound (10), which breaks the sequential strong rule
(6). The entries of y and X were generated as independent, standard normal random variables
with N = 50 and p = 30. (Hence there is no underlying signal.) The lines with slopes ±λ are the
envelopes of maximal inner products achieved by predictors in the model for each λ. For clarity
we only show a short stretch of the solution path. The dashed vertical line is drawn at λ1, and we
are considering the the solution at a new value λ2 < λ1, the dotted vertical line to its left. The
dotted horizontal line is the bound (6). In the top right part of the plot, the inner product path for the
predictor j = 2 and starts below the bound, but enters the model at λ2. The slope of path for predictor
2 between λ1 and λ2 is -1.586. A broken line of slope -1 is drawn beside it for reference. The plot
contains other examples of large slopes leading to rule violations, for example, around λ = 0.007.
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there were no violations in the examples shown in Figures 2 and 3 since there we had p≫ N
as well.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Percent variance explained

To
ta

l n
um

be
r 

of
 v

io
la

tio
ns

11111111111111111111
1
1111111111111111111111122222222222222222222222222222222222

22222

2

2
2222

22
2
2

2

22
2

22

22222222

2

22223333333333333333333333333333333333333333333333333333333333
333

3

3
3

33

3

3

3

3

3
3

3

3

3

3

3

3

334444444444444444444444444444444444444444444444444444444444444444444444444444444455555555555555555555555555555555555555555555555555555555555555555555555555555555

1
2
3
4
5

p=20
p=50
p=100
p=500
p=1000

Fig. 6. Total number of violations (out of p predictors) of the sequential strong rule, for simulated data
with N = 100 and different values of p. A sequence of models is fit, over 100 decreasing values of
λ as we move from left to right. The features are drawn from a Gaussian distribution with pairwise
correlation 0.5. The results are averages over 100 draws of the simulated data.

In Table 1 we applied the strong rules to three large datasets from the UCI machine
learning repository, and a standard microarray dataset. As before, we applied glmnet

along a path of about 100 values of λ values. There were no violations of the rule in any of
the solution paths, and a large fraction of the predictors were successfully discarded. We
investigate the computational savings that result from the strong rule in Section 7.

3.3. A sufficient condition for the slope bound
Tibshirani & Taylor (2011) prove a general result that can be used to give the following
sufficient condition for the unit slope bound (10). Under this condition, both basic and
sequential strong rules will never discard active predictors. Recall that an m ×m matrix
A is diagonally dominant if |Aii| ≥

∑

j 6=i |Aij | for all i = 1, . . .m. Their result gives us the
following:

Theorem 1. Suppose that X has full column rank, that is, rank(X) = p. If

(XTX)−1 is diagonally dominant, (16)

then the slope bound (10) holds, and hence the strong rules (5), (6) never produce violations.

Proof. Tibshirani & Taylor (2011) consider a problem

α̂ = argmin
α∈Rn

1

2
‖y −α‖22 + λ‖Dα‖1, (17)
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where D is a general m × n penalty matrix. They derive the dual problem corresponding
to (17), which has a dual solution û(λ) relating to the primal solution α̂(λ) by

α̂(λ) = y −DT û(λ).

In the proof of their “boundary lemma”, Lemma 1, they show that if DDT is diagonally
dominant, then the dual solution satisfies

|ûj(λ)− ûj(λ̃)| ≤ |λ− λ̃| for any λ, λ̃ and j = 1, . . .m. (18)

Now we show that when rank(X) = p, we can transform the lasso problem (1) into a
problem of the form (17), and apply this lemma to get the desired result. First, we let
α = Xβ and D = (XTX)−1XT . Then the lasso problem (1) can be solved by instead
solving

α̂ = argmin
α∈Rn

1

2
‖y −α‖22 + λ‖Dα‖1 subject to α ∈ col(X), (19)

and taking β̂ = (XTX)−1XT α̂. For the original lasso problem (1), we may assume without
a loss of a generality that y ∈ col(X), because otherwise we can replace y by y′, its
projection onto col(X), and the loss term decouples: ‖y−Xβ‖22 = ‖y−y′‖22+ ‖y′−Xβ‖22.
Therefore we can drop the constraint α ∈ col(X) in (19), because by writing α = α′ + α′′

for α′ ∈ col(X) and α′′ ⊥ col(X), we see that the loss term is minimized when α′′ = 0
and the penalty term is unaffected by α′′, as Dα′′ = (XTX)−1XTα′′ = 0. Hence we have
shown that the lasso problem (1) can be solved by solving (17) with D = (XTX)−1XT (and

taking β̂ = (XTX)−1XT α̂).
Now, the solution û(λ) of the dual problem corresponding to (17) satisfies

α̂(λ) = y −X(XTX)−1û(λ),

and so
û(λ) = XT (y − α̂) = XT

(

y −Xβ̂(λ)
)

.

Thus we have exactly ûj(λ) = cj(λ) for j = 1, . . . p, and applying the boundary lemma (18)
completes the proof.

We note a similarity between condition (16) and the positive cone condition used in
Efron et al. (2004). It is not difficult to see that the positive cone condition implies (16),
and actually (16) is easier to verify because it doesn’t require looking at every possible
subset of columns.

A simple model in which diagonal dominance holds is when the columns of X are or-
thonormal, because then XTX = I. But the diagonal dominance condition (16) certainly
holds outside of the orthonormal design case. We finish this section by giving two such
examples below.

• Equi-correlation model. Suppose that ‖xj‖2 = 1 for all j = 1, . . . p, and xT
j xk = τ for

all j 6= k. Then the inverse of XTX is

(XTX)−1 =
1

1− τ

(

I − τ

1 + τ(p− 1)
11T

)

where 1 ∈ R
p is the vector of all ones. This is diagonally dominant as along as τ ≥ 0.
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• Haar basis model. Suppose that

X =











1 0 . . . 0
1 1 . . . 0
...
1 1 . . . 1











, (20)

the lower triangular matrix of ones. Then (XTX)−1 is diagonally dominant. This
arises, for example, in the one-dimensional fused lasso where we solve

argmin
β∈Rn

1

2

N
∑

i=1

(yi − βi)
2 + λ

N
∑

i=2

|βi − βi−1|.

If we transform this problem to the parameters α1 = 1, αi = βi−βi−1 for i = 2, . . . N ,
then we get a lasso with design X as in (20).

4. Strong rules for the elastic net

In the elastic net (Zou & Hastie (2005)) we solve the problem ¶

β̂ = argmin
β∈Rp

1

2
‖y −Xβ‖22 + λ1‖|β‖1 +

1

2
λ2‖β‖22. (21)

Letting

X̃ =

(

X√
λ2 · I

)

, ỹ =

(

y

0

)

,

we can rewrite (21) as

β̂ = argmin
β∈Rp

1

2
‖ỹ − X̃β‖22 + λ1‖β‖1. (22)

In this (standard lasso) form we can apply SAFE and strong rules to discard predictors.
Notice |x̃T

j ỹ| = |xT
j y|, ‖x̃j‖2 =

√

‖xj‖22 + λ2, ‖ỹ‖2 = ‖y‖2. Hence the basic SAFE rule for
discarding predictor j is

|xT
j y| < λ1 − ‖y‖2 ·

√

‖xj‖22 + λ2 ·
λ1,max − λ1

λ1,max

.

The glmnet package uses the parametrization (αλ, (1− α)λ) instead of (λ1, λ2). With this
parametrization the basic SAFE rule has the form

|xT
j y| < αλ− ‖y‖2 ·

√

‖xj‖2 + (1− α)λ · λmax − λ

λmax

. (23)

The strong screening rules have a simple form under the glmnet parametrization for the
elastic net. The basic strong rule for discarding predictor j is

|xT
j y| < α(2λ− λmax), (24)

¶This is the original form of the “naive” elastic net proposed in Zou & Hastie (2005), with
additional the factors of 1/2, just for notational convenience.
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while the sequential strong rule is

|xT
j

(

y −Xβ̂(λk−1)
)∣

∣ < α(2λk − λk−1). (25)

Figure 7 shows results for the elastic net with standard independent Gaussian data with
N = 100, p = 1000, for three values of α. There were no violations in any of these figures,
that is, no predictor was discarded that had a nonzero coefficient at the actual solution.
Again we see that the strong sequential rule performs extremely well, leaving only a small
number of excess predictors at each stage.
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Fig. 7. Elastic net: results for the different screening rules (23), (24), (25) for three different values
of the mixing parameter α. In the plots, we are fitting along a path of decreasing λ values and the
plots show the number of predictors left after screening at each stage. The proportion of variance
explained by the model is shown along the top of the plot. There were no violations of any of the
rules in the 3 scenarios.

5. Strong rules for logistic regression

In this setting, we have a binary response yi ∈ {0, 1} and we assume the logistic model

Pr(Y = 1|x) = p(β0,β) = 1/(1 + exp(−β0 − xTβ)).

Letting pi = Pr(Y = 1|xi), we seek the coefficient vector β̂ that minimizes the penalized
(negative) log-likelihood,

β̂0, β̂ = argmin
β0∈R,β∈Rp

−
∑

i=1n

(

yi log pi + (1− yi) log(1− pi)
)

+ λ‖β‖1. (26)
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(We typically do not penalize the intercept β̂0.) El Ghaoui et al. (2010) derive a SAFE rule
for discarding predictors in this problem, based on the inner products between y and each
predictor, and derived using similar arguments to those given in the Gaussian case.

Here we investigate the analogue of the strong rules (5) and (6). The KKT conditions
for problem (26) are

xT
j

(

y − p(β̂0, β̂)
)

= λγj for j = 1, . . . p, (27)

where γj is the jth component of the subgradient of ‖β̂‖1, the same as in (9). Immediately

we can see the similarity between (8) and (9). Now we define cj(λ) = xT
j

(

y − p(β̂(λ))
)

,
and again we assume (10). This leads to the basic strong rule, which discards predictor j if

|xT
j (y − p̄)| < 2λ− λmax, (28)

where p̄ = 1ȳ and λmax = maxi |xT
i (y − p̄)|. It also leads to the sequential strong rule,

which starts with the fit p(β̂0(λk−1), β̂(λk−1)) at λk−1, and discards predictor j if
∣

∣

∣x
T
j

(

y − p(β̂0

(

λk−1), β̂(λk−1)
)

)∣

∣

∣ < 2λ− λ0. (29)

Figure 8 shows the result of applying these rules to the newsgroup document classifi-
cation problem (Lang 1995). We used the training set cultured from these data by Koh
et al. (2007). The response is binary, and indicates a subclass of topics; the predictors are
binary, and indicate the presence of particular tri-gram sequences. The predictor matrix has
0.05% nonzero values. Results are shown for the basic strong rule (28) and the sequential
strong rule (29). We were unable to compute the basic SAFE rule for penalized logistic
regression for this example, as this had a very long computation time, using our R language
implementation. But in smaller examples it performed much like the basic SAFE rule in
the Gaussian case. Again we see that the sequential strong rule (29), after computing the
inner product of the residuals with all predictors at each stage, allows us to discard the
vast majority of the predictors before fitting. There were no violations of either rule in this
example.

Some approaches to penalized logistic regression such as the glmnet package use a
weighted least squares iteration within a Newton step. For these algorithms, an alternative
approach to discarding predictors would be to apply one of the Gaussian rules within the
weighted least squares iteration. However we have found rule (29) to be more effective for
glmnet.

Finally, it is interesting to note a connection to the work of Wu et al. (2009). These
authors used |xT

j (y − p̄)| to screen predictors (SNPs) in genome-wide association studies,
where the number of variables can exceed a million. Since they only anticipated models
with say k ≤ 15 terms, they selected a small multiple, say 10k, of SNPs and computed the
lasso solution path to k terms. All the screened SNPs could then be checked for violations
to verify that the solution found was global.

6. Strong rules for general problems

Suppose that we are interested in a convex problem of the form

β̂ = argmin
β

f(β) + λ

r
∑

j=1

cj‖βj‖pj
. (30)
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Fig. 8. Penalized logistic regression: results for newsgroup example, using the basic strong rule (28)
the strong sequential strong rule (29). The broken curve is the 1-1 line, drawn on the log scale.

Here f is a convex and differentiable function, and β = (β1,β2, . . .βr) with each βj being a
scalar or a vector. Also λ ≥ 0, and cj ≥ 0, pj ≥ 1 for each j = 1, . . . r. The KKT conditions
for problem (30) are

−∇jf(β̂) = λcjθj for j = 1, . . . r, (31)

where ∇jf(β̂) = (∂f(β̂)/∂βj1 , . . . ∂f(β̂)/∂βjm) if βj = (βj1 , . . . βjm) (and is simply the

jth partial derivative if βj is a scalar). Above, θj is a subgradient of ‖β̂j‖pj
, and satisfies

‖θj‖qj ≤ 1, where 1/pj + 1/qj = 1. In other words, ‖ · ‖pj
and ‖ · ‖qj are dual norms.

Furthermore, ‖θj‖qj < 1 implies that β̂j = 0.

The strong rules can be derived by starting with the assumption that each ∇jf(β̂(λ))
is a Lipschitz function of λ with respect to the ℓqj norm, that is,

∥

∥∇jf
(

β̂(λ)
)

−∇jf
(

β̂(λ̃)
)∥

∥

qj
≤ cj |λ− λ̃| for any λ, λ̃ and j = 1, . . . r. (32)

Now the sequential strong rule can be derived just as before: suppose that we know the
solution β̂(λk−1) at λk−1, and are interested in discarding predictors for the optimization
problem (30) at λk < λk−1. Observe that for each j, by the triangle inequality,

∥

∥∇jf
(

β̂(λk)
)∥

∥

qj
≤

∥

∥∇jf
(

β̂(λk−1)
)∥

∥

qj
+
∥

∥∇jf
(

β̂(λk)
)

−∇jf
(

β̂(λk−1)
)∥

∥

qj

<
∥

∥∇jf
(

β̂(λk−1)
)∥

∥

qj
+ cj(λk−1 − λk), (33)

the second line following from the assumption (32). The sequential strong rule for discarding
predictor j is therefore

∥

∥∇jf
(

β̂(λk−1)
)∥

∥

qj
< cj(2λk − λk−1). (34)
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Why? Using (33), the above inequality implies that

∥

∥∇jf
(

β̂(λk)
)∥

∥

qj
< cj(2λk − λk−1) + cj(λk−1 − λk) = cjλk,

hence ‖θj‖qj < 1, and β̂j = 0. The basic strong rule follows from (34) by taking λk−1 =
λmax = maxi{‖∇if(0)‖qi/ci}, the smallest value of the tuning parameter for which the
solution is exactly zero.

The rule (34) has many potential applications. For example, in the graphical lasso
for sparse inverse covariance estimation (Friedman et al. 2007), we observe N multivariate
normal observations of dimension p, with mean 0 and covariance Σ. Let S be the observed
empirical covariance matrix, and Θ = Σ−1. The problem is to minimize the penalized
(negative) log-likelihood over nonnegative definite matrices Θ,

Θ̂ = argmin
Θ�0

− log detΘ+ tr(SΘ) + λ‖Θ‖1. (35)

The penalty ‖Θ‖1 sums the absolute values of the entries of Θ; we assume that the diagonal
is not penalized. The KKT conditions for (35) can be written in matrix form as

Σ̂− S = λΓ, (36)

where Γij is the (i, j)th component of the subgradient of ‖Θ̂‖1. Depending on how we choose
to make (36) fit into the general KKT conditions framework (31), we can obtain different
sequential strong rules from (34). For example, by treating everything elementwise we
obtain the rule: |Sij−Σ̂ij(λk−1)| < 2λk−λk−1, and this would be useful for an optimization
method that operates elementwise. However, the graphical lasso algorithm proceeds in a
blockwise fashion, optimizing over one whole row and column at a time. In this case, it is
more effective to discard entire rows and columns at once. For a row i, let s12, σ12, and
Γ12 denote Si,−i, Σi,−i, and Γi,−i, respectively. Then the KKT conditions for one row can
be written as

σ12 − s12 = λΓ12. (37)

Now given two values λk < λk−1, and the solution Σ̂(λk−1) at λk−1, we have the sequential
strong rule

‖σ̂12(λk−1)− s12‖∞ < 2λk − λk−1. (38)

If this rule is satisfied, then we discard the entire ith row and column of Θ, and hence
set them to zero (but retain the ith diagonal element). Figure 9 shows an example with
N = 100, p = 300, and standard independent Gaussian variates. No violations of the rule
occurred.

A better screening rule for the graphical lasso was found by Witten & Friedman (2011),
after this article was completed. It has the simple form

||s12||∞ < λ. (39)

In other words, we discard a row and column if all elements in that row and column are
less than λ. This simple rule is safe: it never discards predictors erroneously.

As another example, the group lasso (Yuan & Lin 2007) solves the optimization problem

β̂ = argmin
β∈Rp

1

2

∥

∥

∥y −
G
∑

g=1

Xgβg

∥

∥

∥

2

2

+ λ

G
∑

g=1

√
ng‖βg‖2, (40)
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Fig. 9. Graphical lasso: results for applying the basic and sequential strong rules (38). A broken line
with unit slope is added for reference.

where Xg is the N × ng data matrix for the gth group. The KKT conditions for (40) are

XT
g

(

y −
G
∑

ℓ=1

Xℓβ̂ℓ

)

= λ
√
ngθg for g = 1, 2, . . .G,

where θg is a subgradient of ‖β̂g‖2. Hence, given the solution β̂(λk−1) at λk−1, and con-
sidering a tuning parameter value λk < λk−1, the sequential strong rule discards the gth
group of coefficients entirely (that is, it sets β̂g(λk) = 0) if

∥

∥

∥X
T
g

(

y −
G
∑

ℓ=1

Xℓβ̂ℓ(λk−1)
)∥

∥

∥

2

<
√
ng(2λk − λk−1).

7. Implementation and numerical studies

The strong sequential rule (34) can be used to provide potential speed improvements in

convex optimization problems. Generically, given a solution β̂(λ0) and considering a new
value λ < λ0, let S(λ) be the indices of the predictors that survive the screening rule (34):
we call this the strong set. Denote by E the eligible set of predictors. Then a useful strategy
would be

(a) Set E = S(λ).
(b) Solve the problem at value λ using only the predictors in E .
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(c) Check the KKT conditions at this solution for all predictors. If there are no violations,
we are done. Otherwise add the predictors that violate the KKT conditions to the
set E , and repeat steps (b) and (c).

Depending on how the optimization is done in step (b), this could be quite effective.
First we consider a generalized gradient procedure for fitting the lasso. The basic itera-

tion is

β̂ ← Stλ

(

β̂ + t ·XT (y −Xβ̂)
)

where Stλ(x) = sgn(x)(|x| − tλ)+ is the soft-threshold operator, and t is a stepsize. When
p > N , the strong rule reduces the Np operations per iteration to ≈ N2. As an example,
we applied the generalized gradient algorithm with approximate backtracking to the lasso
with N = 100, over a path of 100 values of λ spanning the entire relevant range. The results
in Table 3 show the potential for a significant speedup.

Next we consider the glmnet procedure, in which coordinate descent is used, with warm
starts over a grid of decreasing values of λ. In addition, an “ever-active” set of predictors
A(λ) is maintained, consisting of the indices of all predictors that have had a nonzero
coefficient for some λ′ greater than the current value λ under consideration. The solution
is first found for this set, then the KKT conditions are checked for all predictors. If there
are no violations, then we have the solution at λ; otherwise we add the violators into the
active set and repeat.

The existing glmnet strategy and the strategy outlined above are very similar, with one
using the ever-active set A(λ) and the other using the strong set S(λ). Figure 10 shows the
active and strong sets for an example. Although the strong rule greatly reduces the total
number of predictors, it contains more predictors than the ever-active set; accordingly, the
ever-active set incorrectly excludes predictors more often than the strong set. This effect
is due to the high correlation between features and the fact that the signal variables have
coefficients of the same sign. It also occurs with logistic regression with lower correlations,
say 0.2.

In light of this, we find that using both A(λ) and S(λ) can be advantageous. For glmnet
we adopt the following combined strategy:

(a) Set E = A(λ).
(b) Solve the problem at value λ using only the predictors in E .
(c) Check the KKT conditions at this solution for all predictors in S(λ). If there are

violations, add these predictors into E , and go back to step (a) using the current
solution as a warm start.

(d) Check the KKT conditions for all predictors. If there are no violations, we are done.
Otherwise add these violators into A(λ), recompute S(λ) and go back to step (a)
using the current solution as a warm start.

Note that violations in step (c) are fairly common, while those in step (d) are rare. Hence
the fact that the size of S(λ) is ≪ p makes this an effective strategy.

We implemented this strategy and compare it to the standard glmnet algorithm in a
variety of problems, shown in Tables 2 and 4. We see that the new strategy offers a speedup
factor of 20 or more in some cases, and never seems to slow the computations substantially.

The strong sequential rules also have the potential for space savings. With a large
dataset, one could compute the inner products with the residual offline to determine the
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Fig. 10. Gaussian lasso setting, N = 200, p = 20, 000, pairwise correlation between features of 0.7.
The first 50 predictors have positive, decreasing coefficients. Shown are the number of predictors
left after applying the strong sequential rule (6) and the number that have ever been active (that is,
had a nonzero coefficient in the solution) for values of λ larger than the current value. A broken line
with unit slope is added for reference. The right-hand plot is a zoomed version of the left plot.

strong set of predictors, and then carry out the intensive optimization steps in memory
using just this subset of the predictors.

The newest versions of the glmnet package, available on the CRAN archive, incorporate
the strong rules discussed in this paper. In addition, R language scripts for the examples in
this paper will be made freely available at the url http://www-stat.stanford.edu/∼tibs/strong.

8. Discussion

The global strong rule (3) and especially the sequential strong rule (4) are extremely useful
heuristics for discarding predictors in lasso-type problems. In this paper we have shown how
to combine these rules with simple checks of the Karush-Kuhn-Tucker (KKT) conditions
to ensure that the exact solution to the convex problem is delivered, while providing a
substantial reduction in computation time. We have also derived more general forms of
these rules for logistic regression, the elastic net, group lasso, graphical lasso, and general
p-norm regularization. In future work it would be important to understand why these rules
work so well (rarely make errors) when p≫ N .
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Appendix: Derivation of the SAFE rule

The basic SAFE rule of El Ghaoui et al. (2010) for the lasso is defined as follows: fitting at
λ, we discard predictor j if

|xT
j y| < λ− ‖xj‖2‖y‖2

λmax − λ

λmax

, (41)

where λmax = maxj |xT
j y| is the smallest λ for which all coefficients are zero. The authors

derive this bound by looking at a dual of the lasso problem (1). This dual has the following
form. Let G(θ) = 1

2
‖y‖22 − 1

2
‖y + θ‖22. Then the dual problem is

θ̂ = argmax
θ

G(θ) subject to |xT
j θ| ≤ λ for j = 1, . . . p. (42)

The relationship between the primal and dual solutions is θ̂ = Xβ̂ − y, and

xT
j θ̂ ∈











{+λ} if β̂j > 0

{−λ} if β̂j < 0

[−λ, λ] if β̂j = 0

(43)

for each j = 1, . . . p.
Here is the argument that leads to (41). Suppose that we have a dual feasible point θ0:

that is, |xT
j θ| ≤ λ for j = 1, 2, . . . p. Below we discuss specific choices for θ0. Let γ = G(θ0)

Hence γ represents a lower bound for the value of G at the solution θ̂. Therefore we can
add the constraint G(θ) ≥ γ to the dual problem (42) and problem is changed. Then for
each predictor j, we find

mj = max
θ
|xT

j θ| subject to G(θ) ≥ γ. (44)

If mj < λ (note the strict inequality), then we know that at the solution |xT
j θ̂| < λ, which

implies that β̂j = 0 by (43). In other words, if the inner product |xT
j θ| never reaches the

level λ over the set feasible set G(θ) ≥ γ, then the coefficient β̂j must equal zero.
Now for a given lower bound γ, the problem (44) can be solved explicitly, and this gives

mj = |xT
j y|+

√

yTy − 2γ · ||xj ||2. Then the rule mj < λ is equivalent to

|xT
j y| < λ−

√

yTy − 2γ · ||xj ||2 (45)

To make this usable in practice, we need to find a dual feasible point θ0 and substitute
the resulting lower bound γ = G(θ0) into expression (45). A simple dual feasible point
is θ0 = y · (λ/λmax) and this yields γ = (1/2)yTy(1 − (1 − λ/λmax)

2); substituting into
expression (45) gives the basic SAFE rule (41).

A better feasible point θ0 (that is, giving a higher lower bound) will yield a rule in (45)
that discards more predictors. For example, the recursive SAFE rule starts with a solution
β̂(λ0) for some λ0 > λ and the corresponding dual point θ0 = Xβ̂(λ0) − y. Then θ0 is
scaled by the factor λ/λ0 to make it dual feasible and this leads to the recursive SAFE rule
of the form

|xT
j y| < λ− c (46)
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where c is a function of y, λ, λ0 and θ0. Although the recursive SAFE rule has the same
flavor as the sequential strong rule, it is interesting that it involves the inner products xT

j y

rather than xT
j r, with r being the residual y −Xβ̂(λ0), Perhaps as a result, if discards far

fewer predictors than the sequential strong rule.
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Table 1. Results for sequential strong rule on three large classification datasets from the UCI
machine learning repository (http: // archive. ics. uci. edu/ ml/ ), and a standard microarray
dataset. glmnet was run with the default path of 100 λ values, in both regression and classifica-
tion mode. Shown are the average number of predictors left after screening by the strong rule,
(averaged over the path of λ values). There were no violations of the screening rule in any of the
runs.

Dataset Model N p Average number remaining Number of violations
after screening

Arcene Gaussian 100 10, 000 189.8 0
Logistic 153.4 0

Dorothea Gaussian 800 100, 000 292.4 0
Logistic 162.0 0

Gisette Gaussian 6000 5000 1987.3 0
Logistic 622.5 0

Golub Gaussian 38 7129 60.8 0
Logistic 125.5 0

Table 2. Glmnet timings (seconds) for the datasets of Table 1.
Dataset N p Model Without strong rule With strong rule

Arcene 100 10, 000 Gaussian 0.32 0.25
Binomial 0.84 0.31

Gisette 6000 5000 Gaussian 129.88 132.38
Binomial 70.91 69.72

Dorothea 800 100, 000 Gaussian 24.58 11.14
Binomial 55.00 11.39

Golub 38 7129 Gaussian 0.09 0.08
Binomial 0.23 0.35

Table 3. Timings (seconds) for the generalized gradi-
ent procedure for solving the lasso (Gaussian case).
N = 100 samples are generated in each case, with
all entries N(0, 1) and no signal (regression coeffi-
cients are zero). A path of 100 λ values are used,
spanning the entire operating range. Values shown
are the mean and standard deviation of the mean,
over 20 simulations. The times are somewhat large,
because the programs were written in the R lan-
guage, which is much slower than C or Fortran. How-
ever the relative timings are informative.

p Without strong rule With strong rule

200 10.37 (0.38) 5.50 (0.26)
500 23.21 (0.69) 7.38 (0.28)
1000 43.34 (0.85) 8.94 (0.22)
2000 88.58 (2.73) 12.02 (0.39)
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Table 4. Glmnet timings (seconds) for fitting a lasso problem in differ-
ent settings. There are p = 20, 000 predictors, N = 200 observations.
Values shown are mean and standard error of the mean over 20 sim-
ulations. For the Gaussian model the data were generated as stan-
dard Gaussian with pairwise correlation 0 or 0.4, and the first 20 regres-
sion coefficients equalled to 20, 19, . . . 1 (the rest being zero). Gaussian
noise was added to the linear predictor so that the signal-to-noise ra-
tio was about 3.0. For the logistic model, the outcome variable y was
generated as above, and then transformed to (sign(y) + 1)/2. For the
survival model, the survival time was taken to be the outcome y from
the Gaussian model above and all observations were considered to be
uncensored.

Setting Correlation Without strong rule With strong rule

Gaussian 0 0.99 (0.02) 1.04 (0.02)
0.4 2.87 (0.08) 1.29 (0.01)

Binomial 0 3.04 (0.11) 1.24 (0.01)
0.4 3.25 (0.12) 1.23 (0.02)

Cox 0 178.74 (5.97) 7.90 (0.13)
0.4 120.32 (3.61) 8.09 (0.19)

Poisson 0 142.10 (6.67) 4.19 (0.17)
0.4 74.20 (3.10) 1.74 (0.07)
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