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1 A detailed look at the optimization problem (2.3) in

the main paper
1.1 Roadmap for supplement

Our procedure is based on the following optimization problem:

Minimize
1

2

p∑
j=1

(wj − (β+
j − β−j ))2 +

1

2

p∑
j=1

∑
j 6=k

(zjk − θjk)2 + λ1

p∑
j=1

[β+
j + β−j ] + λ2

p∑
j=1

∑
k 6=j

|θjk|

s.t. β±j ≥ 0,
∑
k 6=j

|θjk| ≤ β+
j + β−j for j = 1, . . . , p.

Although we take λ1 = λ2 = λ for our testing procedure, we study this slightly more
general version of the optimization problem in the supplement. Observe that this problem
decouples into p separate problems, one for each j, involving the variables (β+

j , β
−
j , θj·).

For notational simplicity, let w ≡ wj, z ≡ (zj1, . . . , zj,j−1, zj,j+1, . . . , zjp)
T , β± ≡ β±j , and

θ ≡ (θj1, . . . , θj,j−1, θj,j+1, . . . , θjp)
T . We adhere to this notation for the rest of Section 1, and

then for clarity in Section 2 we rephrase our results in terms of the notation of the original
problem. The jth problem, whose solution is (β̂+

j , β̂
−
j , θ̂j·), is

Minimizeβ±∈R, θ∈Rp−1

1

2
(w − (β+ − β−))2 +

1

2
‖z − θ‖2 + λ1(β

+ + β−) + λ2‖θ‖1 (1)

s.t. β± ≥ 0, ‖θ‖1 ≤ β+ + β−.

Because our original problem decouples into p separate problems involving the jth main
effect and the associated p − 1 interactions with that variable, we will study problem (1)
throughout Section 1. Once this “jth-row” problem is well-understood, we will by direct
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extension have studied the original problem. Therefore, for the rest of Section 1 the “inputs”
to the problem will be thought of as w ∈ R and z ∈ Rp−1 and the solution is denoted by
(β̂+, β̂−, θ̂) ∈ R2+(p−1), which in the rest of the paper is denoted by (β̂+

j , β̂
−
j , θ̂j·). In Section

2, we apply the results of Section 1 to the paper’s main problem. Here is an overview of the
main elements of Section 1:

• We write out the Karush-Kuhn Tucker (KKT) conditions for problem (1) and observe
that this leads to a very simple characterization of the (primal) solution in terms of
the optimal dual variables (γ̂+, γ̂−, α̂).

• We prove that the solution is unique (Lemma 2). This is important for establishing
that our test statistics are well-defined (since they are defined as the largest λ for which
a primal variable becomes nonzero).

• We characterize the solution path in Proposition 1. It turns out that the path is
conveniently described by distinguishing among three cases: the first is the “Big main
effect” case, in which w > ‖z‖1; the second is the “Moderate main effect” case, in
which ‖z‖∞ ≤ w ≤ ‖z‖1; the third is the “Big interaction” case, in which w < ‖z‖∞.
The path is described in terms of some special values of λ that are defined in Lemma 3.
This Lemma breaks down by case whether these values are finite and if so the relative
size of these values. The description of the path in Proposition 1 is not completely
closed-form, but it turns out that our characterization of the path is precise enough
for our purposes.

• In particular, our test statistics only depend on when the solution paths become
nonzero. Proposition 3 describes these values in closed form and Corollary 1, which
is the ultimate goal of Section 1, provides a very simple expression for the points at
which the solution path becomes nonzero.

1.2 KKT conditions, a primal-dual relation, and uniqueness
The Lagrangian associated with problem (1) is

L(β±, θ; γ±, α) =
1

2
(w − (β+ − β−))2 +

1

2
‖z − θ‖2 + (λ2 + α)‖θ‖1

+ (λ1 − γ+ − α)β+ + (λ1 − γ− − α)β−,
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where γ±, α ≥ 0 are dual variables corresponding to the constraints. The KKT conditions
are

(β+ − β− − w) + λ1 − γ+ − α = 0

−(β+ − β− − w) + λ1 − γ− − α = 0

θ − z + (λ2 + α)s = 0

γ+β+ = 0

γ−β− = 0

α(‖θ‖1 − β+ − β−) = 0

‖θ‖1 ≤ β+ + β−; β+, β− ≥ 0

γ+, γ−, α ≥ 0

where sk is a subgradient of |θk| evaluated at the solution.

Lemma 1. The solution to (1) may be written as

β̂+ − β̂− = w + (γ̂+ − γ̂−)/2

θ̂ = S(z, λ2 + α̂)

Furthermore, the first expression can be written as

β̂+ − β̂− = S(w, λ1 − α̂).

Proof. The stationarity conditions (first three lines of the optimality conditions) imply the
characterization of θ̂ and the first characterization of β̂+ − β̂−. The second characterization
of β̂+ − β̂− follows from verifying four cases:

• β̂+ > 0, β̂− > 0. In this case, γ̂+ = γ̂− = 0 and thus α̂ = λ1. Therefore, β̂+ − β̂− =
w = S(w, λ1 − α̂).

• β̂+ > 0, β̂− = 0. Then γ̂+ = 0 and β̂+−w+λ1−α̂ = 0. That is, β̂+−β̂− = w−(λ1−α̂) =
S(w, λ1 − α̂). The last equality follows from β̂+ − (w − λ1 − α̂) = γ̂− ≥ 0.

• β̂− > 0, β̂+ = 0. Identical argument as above. β̂+− β̂− = w+ (λ1− α̂) = S(w, λ1− α̂).

• β̂+ = β̂− = 0. Then ±w+λ1− α̂ ≥ 0 or |w| ≤ λ1− α̂. So S(w, λ1− α̂) = 0 = β̂+− β̂−.

Lemma 2. Assume λ1 > 0. Then, the solution to (1) is unique.

Proof. Let (β̂+, β̂−, θ̂) be a solution to (1) with associated dual variables (α̂, γ̂±). Since (1)
is convex, it suffices to show that the solution is unique in a neighborhood around this point.
Noting that the objective function is strongly convex in all directions except for (β+, β−, θ)
for which β+ − β− = β̂+ − β̂−, it remains to consider perturbations of the optimal point of
the form (β+, β−, θ) = (β̂+ + ε, β̂− + ε, θ̂ + δ). If this new point is a solution, it must have a
corresponding set of dual variables (γ+, γ−, α) satisfying the KKT conditions. We begin by
showing in all cases that ε 6= 0 implies θ = θ̂:
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• β̂+ > 0, β̂− > 0: In this case, γ̂+ = γ̂− = 0 and α̂ = λ1. Choosing |ε| small enough
such that β+, β− > 0, we must have γ+ = γ− = 0 and so α = λ1. It follows that θ = θ̂.

• β̂+ > 0, β̂− = 0: In this case, γ̂+ = 0, and ε ≥ 0 for our perturbation to be feasible.
If ε > 0, then β+, β− > 0 and so γ+ = γ− = 0 and α = λ1. Now, β+ − β− = β̂+,
so the first KKT condition for this new point is (β̂+ − w) + λ1 − α = 0; however, the
first KKT condition for our original point is (β̂+ −w) + λ1 − α̂ = 0. This implies that
α̂ = α, and so θ̂ = θ.

• β̂+ = 0, β̂− > 0: Identical argument to previous case.

• β̂+ = β̂− = 0: Again, ε ≥ 0 is required for new point to be feasible. If ε > 0, then
γ+ = γ− = 0 and α = λ1. On the other hand, the KKT conditions for the original
point implies α̂ ≤ λ1 − |w| (since ±w + λ1 − α̂ = γ̂± ≥ 0). Thus, α ≥ α̂. Now, θ̂ = 0
means that ‖z‖∞ ≤ λ2 + α̂ ≤ λ2 + α, and so θ = 0 as well.

Thus, our new point is (β+, β−, θ) = (β̂+ + ε, β̂− + ε, θ̂), and so the objective value at the
two points differs by 2λ1ε. It follows that if ε 6= 0, then one of the points is not optimal.
Therefore, (1) has a unique solution.

1.3 Characterizing the path
We take λ1 = λ2 = λ, and now consider the path of solutions generated by varying λ > 0.

Note that by Lemma 2, it makes sense to speak of “the” path. We assume, without loss of
generality, that w ≥ 0. In studying the path, as we do in the proof of Proposition 1, we find
that there are three “special” values of λ at which the behavior of the path changes. These
are the following:

λ̃1 = min{λ ≥ 0 : ‖S(z, λ)‖1 + λ ≤ w},
λ̃2 = max{λ ≥ 0 : ‖S(z, λ)‖1 + λ ≤ w},
λ̃3 = max{λ ≥ 0 : ‖S(z, 2λ)‖1 ≥ w}.

In Lemma 3, we collect some facts about λ̃1, λ̃2, λ̃3 that will be useful in the rest of the
supplement; however, most readers may prefer to skip directly to Proposition 1, which
describes the solution path.

Lemma 3. Defining |z1| ≥ |z2| ≥ · · · , the following statements hold:

1. ‖z‖∞ ≤ w iff. λ̃1, λ̃2 are finite, in which case λ̃1 ≤ |z2| and λ̃2 = w.

2. ‖z‖1 ≥ w > 0 iff. λ̃3 finite, in which case λ̃3 ≤ (1− w/‖z‖1)‖z‖∞/2.

3. If ‖z‖∞ ≤ w ≤ ‖z‖1, then λ̃3 ≤ λ̃1 ≤ λ̃2.
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Proof. The function f1(λ) = ‖S(z, λ)‖1 + λ is piecewise-linear, convex, and minimized on
λ ∈ [|z2|, |z1|] with minimal value |z1| (where |z1| ≥ |z2| ≥ · · · ). Thus, [λ̃1, λ̃2] defines a
nonempty interval iff. ‖z‖∞ ≤ w. If this holds, then λ̃1 ≤ |z2| and λ̃2 = w. Likewise, λ̃3 is
finite iff. ‖z‖1 ≥ w.

The function f2(λ) = ‖S(z, 2λ)‖1 is a piecewise linear, decreasing convex function with
f2(0) = ‖z‖1 and f2(‖z‖∞/2) = 0. Since f2 is convex, it lies beneath the line L(λ) =
‖z‖1 − 2(‖z‖1/‖z‖∞)λ on the interval λ ∈ [0, ‖z‖∞/2] and so λ̃3 ≤ λ̃ where L(λ̃) = w, i.e.
λ̃ = (1− w/‖z‖1)‖z‖∞/2.

Finally, observe that f1(λ)− f2(λ) = ‖S(z, λ)‖1 − ‖S(z, 2λ)‖1 + λ ≥ λ since ‖S(z, ·)‖1 is
a non-increasing function and 2λ ≥ λ. Thus, for λ > 0, f1(λ) > f2(λ) from which it follows
that λ̃3 < λ̃1. We can only have equality if λ̃1 = λ̃3 = 0, in which case ‖z‖1 = ‖z‖∞ = w (i.e.
z has no more than one nonzero value), which is a 0 probability event under most reasonable
models.

Proposition 1. Let λ̃1, λ̃2, λ̃3 be as defined above, let λ̃4 = (w + ‖z‖∞)/2, and write β̂ =
β̂+ − β̂−. The solution path of (1) depends on the relative size of the main effects and
interactions and is given by the following:

1. Big main effect: ‖z‖∞ ≤ ‖z‖1 < w.

λ ≥ w =⇒ β̂ = 0, θ̂ = 0 [Case III]

λ̃1 ≤ λ < w =⇒ β̂ = w − λ, θ̂ = S(z, λ) [Case I(i)]

λ < λ̃1 =⇒ β̂ = w − λ+ α̂(λ), θ̂ = S(z, λ+ α̂(λ)), α̂(λ) > 0 [Case I(ii)(a)C.]

2. Moderate main effect: ‖z‖∞ ≤ w ≤ ‖z‖1.

λ ≥ w =⇒ β̂ = 0, θ̂ = 0 [Case III]

λ̃1 ≤ λ < w =⇒ β̂ = w − λ, θ̂ = S(z, λ) [Case I(i)]

λ̃3 ≤ λ < λ̃1 =⇒ β̂ = w − λ+ α̂(λ), θ̂ = S(z, λ+ α̂(λ)), α̂(λ) > 0 [Case I(ii)(a)B.]

λ < λ̃3 =⇒ β̂ = w, θ̂ = S(z, 2λ) [Case II]

3. Big interaction: w < ‖z‖∞ ≤ ‖z‖1.

λ ≥ λ̃4 =⇒ β̂ = 0, θ̂ = 0 [Case III]

λ̃3 ≤ λ < λ̃4 =⇒ β̂ = w − λ+ α̂(λ), θ̂ = S(z, λ+ α̂(λ)), α̂(λ) > 0 [Case I(ii)(b) + (a)A.]

λ < λ̃3 =⇒ β̂ = w, θ̂ = S(z, 2λ) [Case II]

Proof. We partition the solution path as follows:

Case I. β̂+ > 0, β̂− = 0.

Case II. β̂+ > 0, β̂− > 0.
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Case III. β̂+ = 0, β̂− = 0.

Case IV. β̂+ = 0, β̂− > 0.

By Lemma 2, this is a well-defined partition of the path (i.e., for a given λ > 0, only one of
the following cases holds).

Case I. β̂+ > 0, β̂− = 0.

The KKT conditions imply that γ̂+ = 0, β̂+ = w − λ + α̂, and γ̂− = 2(λ − α̂).
The conditions γ̂−, α̂ ≥ 0 and β̂+ > 0 require that

0 ≤ α̂ ≤ λ α̂ > λ− w

and, defining fλ(α) = ‖S(z, λ+ α)‖1 − w + λ− α, they also require that

fλ(α̂) ≤ 0 with α̂fλ(α̂) = 0.

Thus, this case occurs iff. (“if” direction by Lemma 2) there exists α̂ satisfying
these constraints. We consider two subcases:

(i) α̂ = 0. Requires λ − w < 0 and ‖S(z, λ)‖1 + λ ≤ w. In light of Lemma 3,
this subcase happens iff. ‖z‖∞ ≤ w and λ ∈ [λ̃1, w).

(ii) α̂ > 0. Requires fλ(α̂) = 0. Now, fλ is a strictly decreasing function, so to
show that such an α̂ exists with [λ− w]+ < α̂ ≤ λ, it suffices to check that{

(a) fλ(0) > 0 ≥ fλ(λ) if λ− w < 0

(b) fλ(λ− w) > 0 ≥ fλ(λ) if λ− w ≥ 0

Now, 0 ≥ fλ(λ) = ‖S(z, 2λ)‖1−w, so by Lemma 3, this constraint is satisfied
for all λ if ‖z‖1 < w and for λ ≥ λ̃3 when ‖z‖1 ≥ w.

(a) fλ(0) > 0 ⇐⇒ ‖S(z, λ)‖1 + λ > w, which (in light of Lemma 3) is
satisfied for all λ when ‖z‖∞ > w and for λ 6∈ [λ̃1, λ̃2] when ‖z‖∞ ≤ w.
Incorporating this with the constraints from 0 ≥ fλ(λ) and λ < w (and
using that ‖z‖∞ ≤ ‖z‖1 and λ̃2 = w) gives the following cases in which
(a) holds:

A. ‖z‖∞ > w, λ̃3 ≤ λ < w,

B. ‖z‖∞ ≤ w ≤ ‖z‖1, λ̃3 ≤ λ < λ̃1

C. ‖z‖1 < w, λ < λ̃1

(b) We have λ ≥ w and 0 < fλ(λ − w) = ‖S(z, 2λ − w)‖1, which holds as
long as ‖z‖∞ > 2λ− w, i.e. λ < (‖z‖∞ + w)/2.

A. ‖z‖1 < w ≤ λ < (‖z‖∞ + w)/2. But this case can never occur since
it would imply max{w, ‖z‖1} < (‖z‖∞ + w)/2 ≤ (‖z‖1 + w)/2.

B. ‖z‖1 ≥ w, λ ≥ λ̃3, w ≤ λ < (‖z‖∞ + w)/2,
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Case II. β̂+ > 0, β̂− > 0.

In this case, γ̂+ = γ̂− = 0, so we have β̂+ − β̂− = w and α̂ = λ. Now, β̂+ =
w + β̂− > w and so β̂+ + β̂− > w. The only remaining requirement of the KKT
conditions is that ‖S(z, 2λ)‖1 = β̂+ + β̂− > w. This case occurs iff. (again, we use
Lemma 2 for the “if” direction) ‖S(z, 2λ)‖1 > w, which by Lemma 3 is equivalent
to ‖z‖1 ≥ w and λ < λ̃3 (note that λ = λ̃3 could only occur when w = 0, a case
we exclude).

Case III. β̂+ = 0, β̂− = 0.

In this case, γ̂± = λ ± w − α̂ ≥ 0, and so we require 0 ≤ α̂ ≤ λ − w with
‖S(z, λ+ α̂)‖1 ≤ 0. Putting this together gives

[‖z‖∞ − λ]+ ≤ α̂ ≤ λ− w.

This interval is nonempty iff. [‖z‖∞ − λ]+ ≤ λ− w, i.e.

λ ≥ max{w, (‖z‖∞ + w)/2}.

It is interesting to break this β̂+ = β̂− = 0 case into two subcases: the case in
which the everything is zero even without the hierarchy constraint and the case
in which the hierarchy constraint is the “reason” for everything being zero (in
other words α̂ > 0 and we wouldn’t be in this case if α̂ = 0). The hierarchy-
active case occurs when ‖z‖∞ − λ > 0. In light of the lower bound on λ given
above, active hierarchy sets everything to zero specifically when ‖z‖∞ > w and
λ ≥ (‖z‖∞ + w)/2.

Case IV. β̂+ = 0, β̂− > 0.

The KKT conditions imply that γ̂− = 0, β̂− = α̂−(w+λ) and γ̂+ = 2(λ− α̂) ≥ 0.
Putting these together gives α̂ ≤ λ and β̂− < −w ≤ 0. In other words, this case
does not occur!

We summarize these cases more succinctly:

Case I. β̂+ > 0, β̂− = 0.

(i) α̂ = 0 iff. ‖z‖∞ ≤ w and λ̃1 ≤ λ < w.

(ii) α̂ > 0 iff.

(a) A. ‖z‖∞ > w, λ̃3 ≤ λ < w,

B. ‖z‖∞ ≤ w ≤ ‖z‖1, λ̃3 ≤ λ < λ̃1

C. ‖z‖1 < w, λ < λ̃1

(b) ‖z‖1 ≥ w, max{w, λ̃3} ≤ λ < (‖z‖∞ + w)/2,
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Case II. β̂+ > 0, β̂− > 0.

iff. ‖z‖1 ≥ w and λ < λ̃3 (note that λ = λ̃3 could only occur when w = 0, a case
we exclude).

Case III. β̂+ = 0, β̂− = 0.

iff.
λ ≥ max{w, (‖z‖∞ + w)/2}.

The hierarchy-active case occurs iff. ‖z‖∞ > w and λ ≥ (‖z‖∞ + w)/2.

Case IV. β̂+ = 0, β̂− > 0.

Does not occur!

By rearranging these cases depending on the relative sizes of w, ‖z‖∞, and ‖z‖1, we get the
paths given in the Proposition statement.

Proposition 2. The solution to (1) has |θ̂k(λ)| non-increasing in λ for each k.

Proof. Based on Proposition 1, this statement is immediate except when α̂ > 0, i.e. Case
I(ii). Referring back to this case in the proof of Proposition 1, let α̂(λ) be the unique1 point
for which fλ(α̂(λ)) = 0. Defining t(λ) = λ+ α̂(λ), we have

fλ(α̂(λ)) = 0 ⇐⇒ ‖S(z, t(λ)‖1 − t(λ) + λ = w.

This must hold for λ over the range in which α̂(λ) > 0 (as specified in Proposition 1). Since
‖S(z, t)‖1 − t is a strictly decreasing function of t, it follows that increasing λ requires an
increase in t(λ) for λ. Since θ̂ = S(z, t(λ)), this proves that |θ̂j| is nonincreasing in λ.

1.4 Where do the paths become nonzero?
The results from the previous section provide sufficient information for us to derive an

exact, closed-form expression for the point in the path at which each coefficient becomes
nonzero.

Proposition 3. Recall that λ̃1 = min{λ ≥ 0 : ‖S(z, λ)‖1 + λ ≤ w}. The main effects and
interactions become nonzero at

ν̂ = sup{λ : |β̂| 6= 0}
ν̂k = sup{λ : |θ̂k| 6= 0},

which have the following “closed form” values:

1Since fλ is strictly decreasing, it has a unique root.
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1. Big main effect: ‖z‖∞ ≤ ‖z‖1 < w.

ν̂ = w

ν̂k =

{
|zk| for |zk| ≥ λ̃1

(|zk|+ w − ‖S(z, |zk|)‖1)/2 for |zk| < λ̃1

2. Moderate main effect: ‖z‖∞ ≤ w ≤ ‖z‖1.

ν̂ = w

ν̂k =

{
|zk| for |zk| ≥ λ̃1

|zk|/2 + [w − ‖S(z, |zk|)‖1]+/2 for |zk| < λ̃1

3. Big interaction: w < ‖z‖∞ ≤ ‖z‖1.

ν̂ = (w + ‖z‖∞)/2

ν̂k = |zk|/2 + [w − ‖S(z, |zk|)‖1]+/2

Proof. The expressions for ν̂ and ν̂k follow from Proposition 1. The only parts that are not
immediate are the cases in which α̂(λ) > 0.

We begin by considering the “Big main effect” when λ < λ̃1. By definition of ν̂k and by the
expression for θ̂ in this case, we see that |zk| = ν̂k + α̂(ν̂k). We also know that fν̂k(α̂(ν̂k)) = 0
(since α̂(ν̂k) > 0). Putting these together gives ‖S(z, |zk|)‖1 − w + 2ν̂k − |zk| = 0, which we
solve for ν̂k. We also require that α̂(ν̂k) > 0 and ν̂k ≥ 0, i.e. that 0 ≤ ν̂k < |zk|. Notice
that |zk| < λ̃1 implies that |zk| > w − ‖S(z, |zk|)‖1, establishing that ν̂k < |zk| for |zk| < λ̃1.
In the “Big main effect” case, it is easy to see that (|zk| + w − ‖S(z, |zk|)‖1)/2 > 0 (which
implies that ν̂k ≥ 0, as required). This completes the proof for the “Big main effect” case.

In the “Moderate main effect” case, if |zk| < λ̃1, we know that one of two cases can
occur. The logic proceeds identically to the “Big main effect” case, except that we are not
guaranteed that (|zk| + w − ‖S(z, |zk|)‖1)/2 ≥ 0, which must hold for us to have ν̂k ≥ 0.
If this does hold, we’re done. Assume that instead (|zk| + w − ‖S(z, |zk|)‖1)/2 < 0. This
implies that ‖S(z, |zk|)‖1 > w or equivalently that |zk|/2 < λ̃3. This means we’re in Case II
and so ν̂k = |zk|/2.

Finally, we consider the “Big interaction” case. By Proposition 1, it is clear that ν̂k ≤ λ̃4
and the expression for ν̂k will depend on whether ν̂k ≥ λ̃3. As above, if ν̂k ≥ λ̃3, then we
would have ν̂k = (|zk| + w − ‖S(z, |zk|)‖1)/2, which to be valid must fall within [0, |zk|) (to
ensure that ν̂k ≥ 0 and α̂(ν̂k) > 0). These requirements simplify to |zk| > w − ‖S(z, |zk|)‖1
and |zk| ≥ −(w−‖S(z, |zk|)‖1). This first inequality always holds in this case since, as noted
in the proof of Proposition 1, f1(λ) = ‖S(z, λ)‖1 + λ ≥ ‖z‖∞ > w. If the second inequality
holds, then ν̂k = (|zk|+w−‖S(z, |zk|)‖1)/2. Otherwise, we have ‖S(z, |zk|)‖1 > w, implying
that |zk|/2 < λ̃3 and we’re in Case II, i.e. ν̂k = |zk|/2.

Remarks:
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• In the “Big main effect” case, only small interactions are modified. In particular, the
test statistic of these smallest interactions are made smaller.

• In the “Moderate main effect” case, interactions below a certain threshold are modified,
with the very smallest ones being reduced to half their size.

• In the “Big interaction” case, the main effect statistic receives a positive boost and the
interactions are reduced. Notice that for |zk| = ‖z‖∞, we have ν̂k = ν̂, i.e. the largest
interaction enters at the same time as the main effect.

Corollary 1. The ν̂ and ν̂k defined as in Proposition 3 are given by

ν̂ = max

{
w,
w + ‖z‖∞

2

}
ν̂k = min

{
|zk|,
|zk|
2

+
[w − ‖S(z, |zk|)‖1]+

2

}

Proof. For the “Big main effect” and “Moderate main effect” cases, observe that |zk| >
|zk|/2 + [w − ‖S(z, |zk|)‖1]+/2 is equivalent to ‖S(z, |zk|)‖1 + |zk| > w (assuming zk 6= 0),
which can be related directly to |zk| < λ̃1. For the “Big interaction” case, ‖S(z, |zk|)‖1+|zk| ≥
‖z‖∞ > w and so |zk| > |zk|/2 + [w − ‖S(z, |zk|)‖1]+/2 holds automatically.

Remarks:

• The main effect statistic is boosted when there’s at least one large interaction.

• Interaction statistics get reduced by at most a factor of 2. The size of the reduction
for ν̂k depends only on the size of the main effect and on those interactions that are
larger (in absolute value) than |zk|. In particular, ‖S(z, |zk|)‖1 =

∑
`:|z`|>|zk|(|z`|− |zk|)

measures how much larger the other interactions are compared to |zk|, and the larger
this value, the more ν̂k is reduced.

2 Test statistics
In Section 1, we studied what happens to the jth variable (i.e. its main effect and p− 1

interactions). In this section, we use the result of Section 1 to obtain a closed-form expression
for our test statistics. To do so, we return to the main paper’s notation, in which wj (rather
than w) represents the jth main effect, zjk (rather than zk) represents the jkth interaction,

λ̂j (rather than ν) represents the test statistic for the jth main effect and λ̂jk (rather than
νk) represents the test statistics for the jkth interaction.
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Proposition 4. Problem (2.3) of the main paper has a unique solution path,
(
β̂+(λ), β̂−(λ), θ̂(λ)

)
∈

R2p+p(p−1/2) for λ > 0. The values

λ̂j = sup{λ ≥ 0 : β̂+
j (λ)− β̂−j (λ) 6= 0}

λ̂jk = sup{λ ≥ 0 : θ̂jk(λ) 6= 0}

can be expressed in closed-form as

λ̂j = max

{
|wj|,

|wj|+ ‖zj·‖∞
2

}
λ̂jk = min

{
|zjk|,

|zjk|
2

+
[|wj| − ‖S(zj·, |zjk|)‖1]+

2

}
,

where zj· ∈ Rp−1 is the vector of interaction contrasts involving the jth variable and wj is
the main effect contrast.

Proof. This follows immediately from Corollary 1.
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