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SUPPLEMENTARY MATERIAL TO “INNOVATED
SCALABLE EFFICIENT ESTIMATION IN ULTRA-LARGE

GAUSSIAN GRAPHICAL MODELS”

By Yingying Fan and Jinchi Lv

University of Southern California

This Supplementary Material contains the proofs of Theorem 3, Proposi-
tion 1, and additional technical details, as well as an extension of ISEE by
incorporating the idea of feature screening.

APPENDIX B: ULTRA-LARGE GRAPH SCREENING

B.1. SIS-assisted ISEE. When the scale of the number of nodes p
is ultra large, we can exploit the sure independence screening (SIS) in [16]
to reduce the computational cost for each scaled Lasso regression. For each
node j in the index set Al with 1 ≤ l ≤ L, the SIS ranks the components of
the vector

(A.1) w = (wk)k∈Acl = XT
Acl

Xj

obtained by componentwise regression and for any given ζ ∈ (0, 1), defines
a submodel

(A.2) Mjl,ζ = {k ∈ Acl : |wk| is among the first [ζn] largest of all} ,

where [ζn] denotes the integer part of ζn. Here for simplicity, each node
random variable Xj is assumed to have standard deviation one as in [16].

Following [16], based on the reduced model Mjl,ζ obtained by the SIS

one can construct the SIS-SLasso estimator β̂
∗
j,l, which is the scaled Lasso

estimator β̂j,l as defined in (12) with zero components outside the index
set Mjl,ζ for β. Similarly as in (16), we define the initial ISEE estimator

Ω̂∗ISEE,ini as the sample covariance matrix

(A.3) Ω̂∗ISEE,ini = n−1(X̂
∗
)T X̂

∗
,

where the estimator X̂
∗

for the oracle empirical matrix X̃ is constructed as in
(15) using the SIS-SLasso estimator β̂

∗
j,l. Then we can construct the ISEE

estimator for the graph Ω̂ISEE,g and the ISEE estimator with refinement
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Ω̂ISEE based on the SIS-assisted initial ISEE estimator Ω̂∗ISEE,ini in (A.3) as
described in Section 2.3. Similarly the iterative SIS (ISIS) in [16] can also
be applied to improve over the SIS in ultra-large scale problems.

B.2. Technical conditions.

Condition 3. It holds that p > n and log p = O(nγ) for some constant
0 < γ < 1− 2κ with κ defined in Condition 4.

Condition 4. There exist some constants 0 ≤ κ < 1/2 and c1, c2, c3 > 0
such that for each j ∈ Al with 1 ≤ l ≤ L, the support of the regres-
sion coefficient vector βj,l = (βjlk)k∈Acl in (11) admits a decomposition
supp(βj,l) = Sjl0 ∪ Sjl1, where for each k ∈ Sjl0, |βjlk| ≥ c1n

−κ and

|cov(β−1
jlkXj , Xk)| ≥ c2, and for each k ∈ Acl , |cov(

∑
m∈Sjl1 βjlmXm, Xk)| ≤

c3λ. Moreover, it holds that

(A.4) max
j∈Al, 1≤l≤L

max
{ ∑
m∈Sjl1

|βjlm|, λ−1
∑

m∈Sjl1

β2
jlm

}
= O(Kλ).

Conditions 3 and 4 are additional assumptions that facilitate the analysis
of the SIS-assisted ISEE approach and ensure the sure screening property of
the SIS procedure as in [16]. In particular, Condition 3 allows the dimension-
ality p to increase exponentially with sample size n. Condition 4 is imposed
to ensure that the SIS-assisted ISEE estimate can enjoy nice asymptotic
properties.

B.3. Theoretical properties. As introduced in Section B.1, to re-
duce the computational cost we can apply ISEE along with SIS or ISIS in
the initial step for ultra-large graph screening. The computational cost can
be further reduced if we also apply SIS or ISIS in the refinement step of
estimating the link strength. In the refinement step, for each identified link
(j, k) we can fit model (11) instead on the union of the supports of the jth
and kth rows of Ω̂ISEE,g, with nodes j and k excluded; see (60) in the proof
of Theorem 2 for more details.

The following two theorems characterize the performance of the SIS-
assisted ISEE estimators in both the initial step and the refinement step.

Theorem 4. Assume that the conditions of Theorem 1 and Conditions
3–4 hold and ζ in (A.2) is at least of order n−γ0 with some constant 0 <
γ0 < 1−2κ. Then the SIS-assisted initial ISEE estimator Ω̂∗ISEE,ini in (A.3)
satisfies the same properties as in Theorem 1.
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Theorem 5. Under the conditions of Theorems 2 and 4, the ISEE es-
timators Ω̂ISEE,g and Ω̂ISEE based on Ω̂∗ISEE,ini in (A.3) satisfy the same
properties as in Theorem 2.

APPENDIX C: PROOFS OF ADDITIONAL MAIN RESULTS

C.1. Proof of Theorem 3. By (16), (35), and the definition of the
bias corrected initial ISEE estimator Ω̂ISEE,cini in (23) and (24), it suffices to

consider the off-block-diagonal entries of the initial ISEE estimator Ω̂ISEE,ini,

that is, the submatrices (Ω̂ISEE,ini)Al,Am with 1 ≤ l 6= m ≤ L. The bias of

the initial ISEE estimator Ω̂ISEE,ini comes from these entries. Note that for

each l 6= m, (Ω̂ISEE,ini)Al,Am admits the representation in (38). By (54) and
(55), we see that the aforementioned bias is incurred by the second and third
terms η2 and η3 in (38).

Due to the symmetry, we focus only on the term η2. Examining Part 1 of
the proof of Theorem 1, we see that the bias in the term η2 is caused only
by the additive component

(A.5) F̃2 = −ΩT
Al

F2Ω̂Am ,

where F2 defined in (43) is given by (n−1XT
Al

EAl)
T (Ĉ

Al
Am −CAl

Am
), and Ĉ

Al
Am

and CAl
Am

denote submatrices of ĈAm and CAm consisting of rows with

indices in Al, respectively. We now add a bias correction term Ĉ
Al
AmΩ̂Am as

specified in (24) to (Ω̂ISEE,ini)Al,Am , and subsequently to F̃2 given in (A.5).
Let us consider the resulting new term

(A.6) F̃
∗
2 = F̃2 + Ĉ

Al
AmΩ̂Am = F4 + F5 + CAl

Am
ΩAm ,

where F4 = −[ΩT
Al

(n−1XT
Al

EAl)
T − I|Al|](Ĉ

Al
Am − CAl

Am
)Ω̂Am and F5 =

CAl
Am

(Ω̂Am −ΩAm). We study these two terms F4 and F5 separately.
As in Part 1 of the proof of Theorem 1, we condition on the event

E ∩ (∩3≤i≤5Ei) hereafter. Note that Ĉ
Al
Am − CAl

Am
is exactly the matrix F3

introduced therein. In light of the definitions of E , E4, and E5 in (A.40)
and (45)–(46), by the facts of ‖ΩAl‖∞ = O(1) and Ω̂Am = O(1) it holds
uniformly over 1 ≤ l 6= m ≤ L that

‖F4‖∞ ≤ O(1)‖n−1XT
Al

EAl −Ω−1
Al
‖∞‖F3‖∞O(1)(A.7)

≤ O(λ) ·O(Kαλ) = O(Kαλ2).
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Using similar arguments to those in the proof of Lemma 2, we can show that
‖CAl

Am
‖∞ = ‖ −ΩAl,AmΩ−1

Am
‖∞ = O(1), which along with (A.40) entails

(A.8) ‖F5‖∞ = O
{

max(Kλ2, λ)
}
.

Since α ≤ 1/2 by Condition 2, it follows from (A.7) and (A.8) that

(A.9) ‖F4 + F5‖∞ ≤ O
{

max(Kλ2, λ)
}
.

Observe that CAl
Am

ΩAm = −ΩAl,AmΩ−1
Am

ΩAm = −ΩAl,Am . Therefore,
combining (A.6) and (A.9) proves the desired bound for the bias corrected
initial ISEE estimator Ω̂ISEE,cini with off-block-diagonal entries(

Ω̂ISEE,cini

)
Al,Am

= −
[(

Ω̂ISEE,ini

)
Al,Am

+ Ĉ
Am
Al

Ω̂Al + Ĉ
Al
AmΩ̂Am

]
;

that is, with the same probability bound as in Theorem 1 it holds that∥∥∥Ω̂ISEE,cini −Ω
∥∥∥
∞

= O
{

max(Kλ2, λ)
}
,

which order is in fact O(λ) as explained in the proof of Theorem 2.
The second part of Theorem 3, which is graph recovery consistency of the

bias corrected initial ISEE estimator Ω̂ISEE,cini, can be proved using similar
arguments to those in the proof for part a of Theorem 2, by noting that
Ω̂ISEE,g = Tτ (Ω̂ISEE,cini) and ω∗0 = Cλ with C > 0 some sufficiently large
constant.

C.2. Proof of Theorem 4. We first show that the two events H1 and
H2 defined as

(A.10) H1 =
⋂

j∈Al,1≤l≤L
{Sjl0 ⊂Mjl,ζ}

and

(A.11) H2 =

{
maxj∈Al,1≤l≤L

∥∥∥∥n−1XT
Acl

∑
m∈Sjl1

βjlmXm

∥∥∥∥
∞
≤ O(λ)

}
have large probabilities. The event H1 in (A.10) characterizes the sure
screening property of the SIS associated with the sets of indices Sjl0. It
is easy to check that Conditions 1–4 in [16] are entailed by our Conditions 1
and 3–4, withM∗ replaced by Sjl0. In particular, they verified the property
C (a concentration property) for Gaussian distributions.

A key observation is that the proof of Theorem 1 in [16] applies equally
well to the case where the set of desired effects Sjl0 plays the role of M∗
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and the set of additional effects Sjl1 = supp(βj,l) \ Sjl0 may not be empty.
Thus an application of the same arguments leads to a similar conclusion to
that in Theorem 1 of [16]; that is, for ζ at least in the order of n−γ0 with
some positive constant γ0 < 1− 2κ, we have

(A.12) P {Sjl0 ⊂Mjl,ζ} = 1−O
{

exp[−Cn1−2κ/(log n)]
}
,

where C is some positive constant. Since log p = O(nγ) with constant 0 <
γ < 1−2κ by Condition 3, we see immediately from (A.12) and Bonferroni’s
inequality over all nodes j in the index sets Al that

(A.13) P (H1) ≥ 1− p · o
{
p−(δ−1)

}
= 1− o

{
p−(δ−2)

}
.

Note that for each k ∈ Acl , the expectation of n−1XT
k

∑
m∈Sjl1 βjlmXm

is equal to cov(
∑

m∈Sjl1 βjlmXm, Xk). Thus in view of the assumption of

maxk∈Acl |cov(
∑

m∈Sjl1 βjlmXm, Xk)| ≤ c3λ by Condition 4, using similar ar-

guments to those for proving (A.35) with t chosen to be [(δ+1)(log p)/(cn)]1/2

leads to

(A.14) P (H2) ≥ 1− p(p− 1) ·O
{
p−(δ+1)

}
= 1− o

{
p−(δ−2)

}
.

Combining (A.13) and (A.14) yields the desired probability bound

(A.15) P (H1 ∩H2) ≥ 1− o
{
p−(δ−2)

}
.

From now on we condition on the event H1 ∩H2. On this event, for each
node j in the index set Al, the submodel Mjl,ζ given by the SIS contains
the set of desired effects Sjl0. In light of (A.11), we can treat the component∑

m∈Sjl1 βjlmXm of the mean vector XAcl
βj,l in the univariate linear regres-

sion model (11) as part of the error vector in the technical analysis for the
scaled Lasso. A key observation is that all the error bounds and probability
bounds used in the arguments for proving Lemma 1 hold uniformly over the
submodels Mjl,ζ . Thus an application of the proof of Lemma 1 shows that
with probability 1 − o{p−(δ−2)} tending to one, it holds uniformly over all
nodes j in the index sets Al with 1 ≤ l ≤ L and all submodels Mjl,ζ that∥∥∥β̂∗j,l,Mjl,ζ

− βj,l,Mjl,ζ

∥∥∥
1

= O(Kλ),(A.16)

n−1
∥∥∥XMjl,ζ

(β̂
∗
j,l,Mjl,ζ

− βj,l,Mjl,ζ
)
∥∥∥2

2
= O(Kλ2),(A.17)

where β̂
∗
j,l denotes the SIS-SLasso estimator, which is the scaled Lasso esti-

mator β̂j,l as defined in (12) with zero components for β outside the reduced
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index set Mjl,ζ obtained by the SIS, and Mjl,ζ in the subscripts indicates
the corresponding subvectors or submatrices.

In view of (A.15), the intersection of the eventH1∩H2 and the one given in
(A.16)–(A.17) still has large probability 1 − o{p−(δ−2)}. On such an event,
it follows immediately from the sure screening property of Sjl0 ⊂ Mjl,ζ ,
(A.16), and (A.4) that

(A.18)
∥∥∥β̂∗j,l − βj,l∥∥∥

1
= O(Kλ).

Note that the proof of Theorem 2 in [33] applies equally well for the largest
singular value to show that

(A.19) P

{
max
|Λ|≤K̃

λmax(n−1XT
ΛXΛ) ≤ O(1)

}
≤ pK̃e−Cn,

where K̃ is as defined in the proof of Lemma 1 and C is some positive
constant. Since K̃ ≤ c̃0n/(log p) for some sufficiently small positive constant
c̃0, it is easy to derive that (A.19) entails

(A.20) P

{
max
|Λ|≤K̃

λmax(n−1XT
ΛXΛ) ≤ O(1)

}
= 1− o

{
p−(δ−2)

}
.

Thus conditioning on this additional event does not change our asymptotic
probability bound 1− o{p−(δ−2)}.

Denote by Λ0 = supp(βj,l) \ Mjl,ζ . Since ‖βj,l‖0 ≤ K̃ as shown in the

proof of Lemma 1 which implies |Λ0| ≤ K̃, by (A.20), (A.4) in Condition 4,
and Sjl0 ⊂Mjl,ζ we have

n−1‖XΛ0βj,l,Λ0
‖22 ≤ λmax(n−1XT

Λ0
XΛ0)‖βj,l,Λ0

‖22(A.21)

≤ λmax(n−1XT
Λ0

XΛ0)‖βj,l,Sjl1‖
2
2

≤ O(1) ·O(Kλ2) = O(Kλ2).

Combining (A.17) and (A.21) leads to

(A.22) n−1
∥∥∥XAcl

(β̂
∗
j,l − βj,l)

∥∥∥2

2
= O(Kλ2).

In light of (A.18) and (A.22), we have shown that with probability 1 −
o{p−(δ−2)} tending to one, it holds uniformly over all nodes j in the index
sets Al with 1 ≤ l ≤ L that the same bounds as (A.23)–(A.24) in Lemma 1
are also valid for the SIS-SLasso estimator. Therefore, the same arguments
as in the proof of Theorem 1 carry through.
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C.3. Proof of Theorem 5. Theorem 5 holds immediately as a conse-
quence of Theorems 2 and 4.

APPENDIX D: PROOFS OF TECHNICAL RESULTS

D.1. Lemma 1 and its proof.

Lemma 1. Under Condition 1, with probability 1 − o{p−(δ−2)} tending
to one it holds uniformly over all nodes j in the index sets Al with 1 ≤ l ≤ L
and simultaneously that

‖β̂j,l − βj,l‖1 = O(Kλ),(A.23)

n−1‖XAcl
(β̂j,l − βj,l)‖22 = O(Kλ2),(A.24)

‖n−1XT
Acl

Ej,l‖∞ = O(λ),(A.25)

where θ̂j,l = n−1Ê
T

j,lÊj,l, θ̃j,l = n−1ET
j,lEj,l, and the additional subscript l

indicates the same scalars and vectors as defined previously with the index
set A replaced by Al.

Proof of Lemma 1. Let us first make a few observations. First, for each
index set Al, the random error vector ηAl in the scalar form of the multi-
variate linear regression model (7) with index set A = Al is Gaussian with
mean 0 and covariance matrix Ω−1

Al
and independent of xAcl . Since by Con-

dition 1, the spectrum of the precision matrix Ω is bounded between M−1

and M . We see immediately that the spectrum of its principal submatrix
ΩAl is also bounded between M−1 and M , so is that of its inverse Ω−1

Al
.

This shows that for each corresponding univariate linear regression model
(11), its error vector Ej,l is N(0, θj,lIn) with marginal variance θj,l bounded
between M−1 and M , where the additional subscript l indicates the same
scalars and vectors as defined previously with the index set A replaced by
Al.

Second, by Condition 1, the precision matrix Ω is K-sparse, that is, each
of its row or column has at most K nonzero off-diagonal entries. Since
maxl |Al| = O(1), it follows that the total number of nonzero entries K̃
in the submatrix ΩAcl ,Al

is bounded from above by K|Al| = O(K). In
view of K ≤ c0n/(log p) for some sufficiently small positive constant c0,
we have K̃ ≤ c̃0n/(log p) with c̃0 = O(c0) still some sufficiently small posi-
tive constant. Thus for each index set Al, the regression coefficient matrix
CAl = −ΩAcl ,Al

Ω−1
Al

in the matrix form of the multivariate linear regression
model (9) with index set A = Al satisfies that each column vector has at
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most K̃ nonzero components. This shows that for each corresponding uni-
variate linear regression model (11), its regression coefficient vector βj,l has

sparsity ‖βj,l‖0 ≤ K̃ = O(K) ≤ c̃0n/(log p) uniformly over all nodes j and
index sets Al.

Third, for each index set Al, the corresponding univariate linear regression
model (11) is a linear regression model with Gaussian design matrix XAcl

and
Gaussian error vector Ej,l that is independent of XAcl

. Note that in light of

X = (x1, · · · ,xn)T and (1), XAcl
∼ N(0, In ⊗ΣAcl

), where ΣAcl
denotes the

principal submatrix of Σ given by the index set Acl . Since Ω has spectrum
bounded between M−1 and M , the spectrum of Σ = Ω−1 is also bounded
between M−1 and M and so is that of its principal submatrix ΣAcl

.
Denote by Ej,l the event that the bounds (A.23)–(A.25) hold simultane-

ously for node j in the index set Al. With the above three observations, an
application of the proof of Lemma 2 in [39] shows that

(A.26) P (Ej,l) = 1− o
{
p−(δ−1)

}
.

Thus applying Bonferroni’s inequality over all nodes j in the index sets Al
along with (A.26) yields the uniform bounds (A.23)–(A.25) satisfied with
probability

(A.27) P (E1) ≥ 1− p · o
{
p−(δ−1)

}
= 1− o

{
p−(δ−2)

}
which converges to one since δ ≥ 2, where the event E1 is defined as

(A.28) E1 =
⋂

j∈Al,1≤l≤L
Ej,l.

In view of Êj,l = Xj −XAcl
β̂j,l, the fact that θ̂j,l = n−1Ê

T

j,lÊj,l follows easily

from the definition of the minimizer (β̂j,l, θ̂
1/2
j,l ) of the scaled Lasso problem

(12).

D.2. Lemma 2 and its proof.

Lemma 2. Under Condition 1, with probability 1 − o{p−(δ−2)} tending
to one it holds uniformly over 1 ≤ l ≤ L that

(A.29) ‖Ω̂Al −ΩAl‖∞ = O
{

max
(
Kλ2, λ

)}
,

where ‖ · ‖∞ denotes the entrywise L∞-norm of a given matrix.
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Proof of Lemma 2. Note that by (13) and (9), we have the following
decomposition of the residual matrix

(A.30) ÊAl = XAl −XAcl
ĈAl = EAl −XAcl

(ĈAl −CAl),

where ĈAl = (β̂j,l)j∈Al is a (p− |Al|)× |Al| matrix of estimated regression
coefficients. Combining (14) and (A.30) yields

(A.31) Ω̂−1
Al
−Ω−1

Al
= n−1Ê

T

Al
ÊAl −Ω−1

Al
= ξ1 + ξ2 + ξ3,

where ξ1 = n−1ET
Al

EAl −Ω−1
Al

, ξ2 = −2n−1ET
Al

XAcl
(ĈAl −CAl), and ξ3 =

n−1(ĈAl − CAl)
TXT

Acl
XAcl

(ĈAl − CAl). Let us first consider the last two

terms ξ2 and ξ3 conditional on the event E1 defined in (A.28). On the event
E1, bounds (A.25) and (A.23) control the maximum rowwise L∞-norm of
matrix n−1ET

Al
XAcl

and maximum columnwise L1-norm of matrix ĈAl−CAl ,
respectively, which lead to

(A.32) ‖ξ2‖∞ = O(Kλ2),

where ‖ · ‖∞ denotes the entrywise L∞-norm of a given matrix. An appli-
cation of the Cauchy-Schwarz inequality along with bound (A.24) results
in

(A.33) ‖ξ3‖∞ = O(Kλ2).

Note that bounds (A.32) and (A.33) are uniform over 1 ≤ l ≤ L. It remains
to consider the first term ξ1.

As mentioned in the proof of Lemma 1, the spectrum of Ω−1
Al

is bounded

between M−1 and M . In view of (9) and (7), n−1ET
Al

EAl is the oracle sample

covariance matrix estimator for Ω−1
Al

. Thus the concentration bounds in [41]
and [2], together with Bonferroni’s inequality and maxl |Al| = O(1), yield
for any t ≤ α,

(A.34) P {‖ξ1‖∞ ≤ t} = 1−O(e−cnt
2
),

where c and α are some positive constants. Taking t = [δ(log p)/(cn)]1/2 in
(A.34) and applying Bonferroni’s inequality over 1 ≤ l ≤ L lead to

(A.35) P (E2) ≥ 1− p ·O(e−cnt
2
) = 1−O

{
p−(δ−1)

}
= 1− o

{
p−(δ−2)

}
,

where the event E2 is defined as

(A.36) E2 =

{
max

1≤l≤L

∥∥∥n−1ET
Al

EAl −Ω−1
Al

∥∥∥
∞
≤ t = O(λ)

}
.
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Therefore, combining (A.31)–(A.34) and (A.35) leads to
(A.37)

P

{
max

1≤l≤L

∥∥∥Ω̂−1
Al
−Ω−1

Al

∥∥∥
∞

= O
{

max
(
Kλ2, λ

)}}
= 1− o

{
p−(δ−2)

}
.

We still need to derive the bounds for the matrices Ω̂Al .

Let us work with the bound ‖Ω̂−1
Al
− Ω−1

Al
‖∞ = O{max(Kλ2, λ)}. Since

|Al| = O(1), the Frobenius norm ‖Ω̂−1
Al
−Ω−1

Al
‖F = O{max(Kλ2, λ)}. In light

of Condition 1, the quantity O{max(Kλ2, λ) is bounded above by some suffi-
ciently small positive constant. Then it follows from the matrix perturbation
theory (Corollary 6.3.8 of [27]) that

λmin(Ω̂−1
Al

) ≥ λmin(Ω−1
Al

)− ‖Ω̂−1
Al
−Ω−1

Al
‖F

≥M−1 −O
{

max
(
Kλ2, λ

)}
≥ (2M)−1

for large enough n. The above spectral inequality leads to λmax(Ω̂Al) =

λ−1
min(Ω̂−1

Al
) = O(1). Similarly, we can show that λmin(Ω̂Al) is also bounded

away from zero.
Note a fact that the entrywise L∞-norm of any symmetric positive definite

matrix is bounded above by its largest eigenvalue. This claim follows from
the facts that each diagonal entry is positive and no larger than the largest
eigenvalue and that the 2×2 principal submatrix corresponding to each off-
diagonal entry is necessarily nonsingular. Since both ΩAl and Ω̂Al have spec-

tra bounded away from 0 and∞, we see that ‖ΩAl‖∞ = O(1) and ‖Ω̂Al‖∞ =

O(1), which along with max1≤l≤L ‖Ω̂−1
Al
− Ω−1

Al
‖∞ = O{max(Kλ2, λ)} and

maxl |Al| = O(1) entails

∥∥∥Ω̂Al −ΩAl

∥∥∥
∞

=
∥∥∥ΩAl

(
Ω̂−1
Al
−Ω−1

Al

)
Ω̂Al

∥∥∥
∞

= O
{

max(Kλ2, λ)
}
.

(A.38)

Therefore, combining (A.27), (A.35), and (A.37)–(A.38) yields

(A.39) P (E) = 1− o
{
p−(δ−2)

}
,

where the event E is defined as

(A.40) E = E1 ∩ E2 ∩
{

max
1≤l≤L

∥∥∥Ω̂Al −ΩAl

∥∥∥
∞

= O
{

max(Kλ2, λ)
}}

.

Hereafter we condition on the event E .
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D.3. Proof of Proposition 1. For any Ω ∈ G(M,K), we know that
each row of Ω has at most K + 1 nonzero components and the spectrum of
Ω is bounded between M−1 and M . Thus it follows easily that for Σ = Ω−1

and any u 6= 0,

(A.41) ‖u‖∞ = ‖ΩΣu‖∞ ≤ ‖Ω‖∞,∞‖Σu‖∞,

where ‖ · ‖∞,∞ denotes the operator norm of a matrix induced by the L∞-
norm. Note that ‖Ω‖∞,∞ is the maximum rowwise L1-norm of Ω, which is
bounded above by (K+ 1)1/2 multiplied by the maximum rowwise L2-norm
of Ω, thanks to the Cauchy-Schwarz inequality and the fact that each row
of Ω has L0-norm bounded above by K+1. By the definition of the spectral
norm, the maximum rowwise L2-norm of Ω is further bounded above by
λmax(Ω) ≤M , which entails

(A.42) ‖Ω‖∞,∞ ≤ (K + 1)1/2M.

Combining (A.41)–(A.42) yields the desired bound inf{‖Σu‖∞/‖u‖∞ : u 6=
0} ≥ (K + 1)−1/2M−1.

D.4. Lemma 3 and its proof.

Lemma 3. Assume that Conditions 1–2 hold and K1+αλ = o(1). Then
with probability 1 − o{p−(δ−2)} tending to one it holds uniformly over all
nodes j in the index sets Al with 1 ≤ l ≤ L that the L∞-norm cone invert-
ibility factor

(A.43) F∞,j,l = inf

{
‖R̂j,lu‖∞
‖u‖∞

: ‖uScj,l‖1 ≤ ξ‖uSj,l‖1 6= 0

}

satisfies F∞,j,l ≥ c1F∞, where c1 < 1 is some positive constant, Sj,l denotes

the support supp(βj,l), and R̂j,l = n−1YT
Acl

YAcl
with YAcl

the design matrix

XAcl
rescaled columnwise to have L2-norm n1/2 for each column.

Proof of Lemma 3. Let R be the correlation matrix corresponding to
the covariance matrix Σ = (σjk). Since the spectrum of Σ is bounded be-
tween M−1 and M thanks to the same property of Ω, all diagonal entries
σjj of Σ are also bounded between M−1 and M and so are all their re-
ciprocals σ−1

jj . Thus the L1-norms and L∞-norms induced by both linear

transformations corresponding to matrices S = diag{σ1/2
11 , · · · , σ

1/2
pp } and
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S−1 = diag{σ−1/2
11 , · · · , σ−1/2

pp } are equivalent to the original ones. Thus it
follows from the identity

(A.44) R = S−1ΣS−1

that the L∞-norm cone invertibility factor F ′∞ with Σ replaced by R in (20)
and the original one F∞ defined for Σ are within a constant factor of each
other. To simplify the notation, we still write F ′∞ as F∞ which is implicitly
understood as the L∞-norm cone invertibility factor defined for R hereafter.

For each node j in the index set Al, define the population version of the
L∞-norm cone invertibility factor in (A.43) as

(A.45) F̃∞,j,l = inf

{‖RAcl
u‖∞

‖u‖∞
: ‖uScj,l‖1 ≤ ξ‖uSj,l‖1 6= 0

}
,

where RAcl
denotes the principal submatrix of R given by the index set Acl .

As mentioned in the proof of Lemma 1, |Sj,l| = ‖βj,l‖0 ≤ K̃ = O(K), which
together with (20) defined for R and (A.45) leads to

(A.46) F̃∞,j,l ≥ F∞.

We will show that the empirical version of the L∞-norm cone invertibility
factor F∞,j,l in (A.43) concentrates around its population counterpart F̃∞,j,l
in (A.45) with overwhelming probability.

Using similar arguments to those for proving (A.35) with t chosen to be
[(δ + 1)(log p)/(cn)]1/2, we can show that

(A.47) P (F) = 1− o
{
p−(δ−2)

}
,

where F = {‖Σ̂ − Σ‖∞ ≤ O(λ)} with Σ̂ = n−1XTX and ‖ · ‖∞ denoting
the entrywise L∞-norm of a given matrix. Note that R̂j,l = n−1YT

Acl
YAcl

is

simply the principal submatrix R̂Acl
of the sample correlation matrix

(A.48) R̂ =
(

diag{Σ̂}
)−1/2

Σ̂
(

diag{Σ̂}
)−1/2

given by the index set Acl . By some standard calculations, we can show that

on the event F , it also holds that ‖R̂ −R‖∞ ≤ O(λ). This result together
with (A.47) yields

(A.49) P (F1) ≥ 1− o
{
p−(δ−2)

}
,
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where the event F1 is defined as the intersection of events F and {‖R̂ −
R‖∞ ≤ O(λ)}.

Finally let us do some algebraic calculations conditional on event F1. On
this event, for each u ∈ Rp−|Al| satisfying ‖uScj,l‖1 ≤ ξ‖uSj,l‖1 6= 0 we have

‖R̂j,lu‖∞ = ‖R̂Acl
u‖∞ ≥ ‖RAcl

u‖∞ −
∥∥∥(R̂Acl

−RAcl

)
u
∥∥∥
∞

(A.50)

≥ F̃∞,j,l‖u‖∞ − ‖R̂−R‖∞‖u‖1
≥ F̃∞,j,l‖u‖∞ −O(λ)(1 + ξ)‖uSj,l‖1
≥ F̃∞,j,l‖u‖∞ −O(λ)(1 + ξ)|Sj,l|‖uSj,l‖∞

≥
[
F̃∞,j,l −O(Kλ)

]
‖u‖∞,

since |Sj,l| ≤ K̃ = O(K). Therefore, combining (A.46), (A.49)–(A.50), and
the assumption of K1+αλ = o(1) yields F∞,j,l ≥ c1F∞ for some positive
constant c1 < 1, uniformly over all nodes j in the index sets Al with 1 ≤
l ≤ L.
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