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Abstract

This article reviews the literature on sparse high-dimensional

models and discusses some applications in economics and finance.

Recent developments in theory, methods, and implementations in

penalized least-squares and penalized likelihood methods are

highlighted. These variable selection methods are effective in sparse

high-dimensional modeling. The limits of dimensionality that regu-

larization methods can handle, the role of penalty functions, and

their statistical properties are detailed. Some recent advances in

sparse ultra-high-dimensional modeling are also briefly discussed.
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1. INTRODUCTION

1.1. High Dimensionality in Economics and Finance

High-dimensional models recently have gained considerable importance in several areas

of economics. For example, the vector autoregressive (VAR) model (Sims 1980, Stock

& Watson 2001) is a key technique to analyze the joint evolution of macroeconomic

time series and can deliver a great deal of structural information. Because the number

of parameters grows quadratically with the size of the model, standard VAR models

usually include no more than 10 variables. However, econometricians may observe

hundreds of data series. To enrich the model information set, Bernanke et al. (2005)

proposed to augment standard VAR models with estimated factors (FAVAR) to measure

the effects of monetary policy. Factor analysis also plays an important role in forecast-

ing using large dimensional data sets (for reviews, see Stock & Watson 2006, Bai &

Ng 2008).

Another example of high dimensionality is large panels of home-price data. To incorpo-

rate cross-sectional effects, one may consider that the price in one county depends on

several other counties, most likely its geographic neighbors. Because such correlation is

unknown, initially the regression equation may include about 1,000 counties in the United

States, which makes direct ordinary least-squares (OLS) estimation impossible. One tech-

nique to reduce dimensionality is variable selection. Recently, statisticians and econometri-

cians have developed algorithms to simultaneously select relevant variables and estimate

parameters efficiently (see Fan & Lv 2010 for an overview). Variable selection techniques

have also been widely used in financial portfolio construction, treatment-effects models,

and credit-risk models.

Volatility matrix estimation is a high-dimensional problem in finance. To optimize the

performance of a portfolio (Campbell et al. 1997, Cochrane 2005) or to manage the risk of a

portfolio, asset managers need to estimate the covariance matrix or its inverse matrix of the

returns of assets in the portfolio. Suppose that we have 500 stocks to be managed. There are

125,250 parameters in the covariance matrix. High dimensionality here poses challenges to

the estimation of matrix parameters, as small element-wise estimation errors may result in

huge errors matrix-wise. In the time domain, high-frequency financial data also provide both

opportunities and challenges to high-dimensional modeling in economics and finance. On a

finer timescale, the market microstructure noise may no longer be negligible.

1.2. High Dimensionality in Science and Technology

High-dimensional data have commonly emerged in other fields of sciences, engineering,

and humanities, thanks to advances in computing technologies. Examples include market-

ing, e-commerce, and warehouse data in business; genetic, microarray, and proteomics

data in genomics and heath sciences; and biomedical imaging, functional magnetic reso-

nance imaging, tomography, signal processing, high-resolution imaging, and functional

and longitudinal data. For instance, for drug sales data collected in many geographical

regions, cross-sectional correlation makes the dimensionality increase quickly; the consid-

eration of 1,000 neighborhoods requires 1 million parameters. In meteorology and earth

sciences, temperatures and other attributes are recorded over time and in many regions.

Large panel data over a short time horizon are frequently encountered. In biological

sciences, one may want to classify diseases and predict clinical outcomes using microarray
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gene expression or proteomics data, in which tens of thousands of expression levels are

potential covariates, but there are typically only tens or hundreds of subjects. Hundreds of

thousands of single-nucleotide polymorphisms are potential predictors in genome-wide

association studies. The dimensionality of the feature spaces grows rapidly when interac-

tions of such predictors are considered. Large-scale data analysis is also a common feature

of many problems in machine learning, such as text and document classification and

computer vision (see Hastie et al. 2009 for more examples).

All the above examples exhibit various levels of high dimensionality. To be more

precise, relatively high dimensionality refers to the asymptotic framework in which the

dimensionality p is growing but is of a smaller order of the sample size n [i.e., p ¼ o(n)],

moderately high dimensionality refers to the asymptotic framework in which p grows

proportionately to n (i.e., p � cn for some c > 0), high dimensionality refers to the

asymptotic framework in which p can grow polynomially with n [i.e., p ¼ O(na) for some

a > 1], and ultra-high dimensionality refers to the asymptotic framework in which p

can grow nonpolynomially with n [i.e., log p ¼ O(na) for some a > 0], the so-called

nonpolynomial (NP) dimensionality. The inference and prediction are based on high-

dimensional feature space.

1.3. Challenges of High Dimensionality

High dimensionality poses numerous challenges to statistical theory, methods, and

implementations in those problems. For example, in a linear regression model with noise

variance s2, when the dimensionality p is comparable to or exceeds the sample size n, the

OLS estimator is not well behaved. A regression model built on all regressors usually has a

prediction error of order (1þ p/n)1/2 swhen p � n rather than (1 þ s/n)1/2 swhen there are

only s intrinsic predictors. This reflects two well-known phenomena in high-dimensional

modeling: spurious correlations and the noise accumulation. The spurious correlations

among the predictors are an intrinsic difficulty of high-dimensional model selection. There

can be high spurious correlation even for independent and identically distributed (i.i.d.)

predictors when p is large compared with n (see, e.g., Fan & Lv 2008, Fan et al. 2011b). In

fact, conventional intuition might no longer be accurate in high dimensions. Another

example is the data-piling problems in high-dimensional space shown by Hall et al. (2005).

Noise accumulation is a common phenomenon in high-dimensional prediction.

Although it is well known in regression problems, explicit theoretical quantification of the

impact of dimensionality on classification was not well understood until the recent work of

Fan & Fan (2008). These authors showed that for the independence classification rule,

classification using all features has a misclassification rate determined by a quantity

Cp=
ffiffiffi
p

p
, which trades off between the dimensionality p and overall signal strength Cp, the

distance between the centroids of two classes. Although Cp is nondecreasing with p, the

accompanying penalty on dimensionality
ffiffiffi
p

p
can significantly deteriorate the performance.

They showed indeed that classification using all features can be as bad as random guessing

because of the noise accumulation in estimating the population centroids in high dimen-

sions. Hall et al. (2008) considered a similar problem for distance-based classifiers and

showed that the misclassification rate converges to zero when Cp=
ffiffiffi
p

p ! 1.

As clearly demonstrated above, variable selection is fundamentally important in

high-dimensional modeling. Bickel (2008) pointed out that the main goals of high-

dimensional modeling are (a) to construct as effective a method as possible to predict future
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observations and (b) to gain insight into the relationship between features and response for

scientific purposes, as well as hopefully to construct an improved prediction method.

Examples of the former goal include portfolio optimization and text and document

classification, and the latter is important in many scientific endeavors such as genomic

studies. In addition to noise accumulation, the inclusion of spurious predictors can prevent

the appearance of some important predictors due to the spurious correlation between the

predictors and response (see, e.g., Fan & Lv 2008, 2010). In such cases, those predictors

help predict the noise, which can be a rather serious issue when we need to accurately

characterize the contribution from each identified predictor to the response variable.

Sparse modeling has been widely used to deal with high dimensionality. The main

assumption is that the p-dimensional parameter vector is sparse, with many components

being exactly zero or negligibly small. Such an assumption is crucial in identifiability,

especially for the relatively small sample size. Although the notion of sparsity gives rise to

biased estimation in general, it has proved to be effective in many applications. In particu-

lar, variable selection can increase the estimation accuracy by effectively identifying impor-

tant predictors and can improve the model interpretability.

The rest of the article is organized as follows. In Section 2, we survey some develop-

ments of the penalized least-squares (PLS) estimation and its applications to econometrics.

Section 3 presents some further applications of sparse models in finance. We provide a

review of more general likelihood–based sparse models in Section 4. In Section 5, we

review some recent developments of sure screening methods for ultra-high-dimensional

sparse inference. Conclusions are given in Section 6.

2. PENALIZED LEAST SQUARES

Assume that the collected data are of the form (xTi , yi)
n
i¼1, in which yi is the i-th observation

of the response variable, and xi is the associated p-dimensional predictors vector. The data

are often assumed to be a random sample from the population (xT, y), where, conditional

on x, the response variable y has a mean depending on bTx with b ¼ (b1, : : : , bp)
T. In

sparse high-dimensional modeling, we assume ideally that most parameters bj are exactly

zero, meaning that only a few of the predictors contribute to the response. The objective of

variable selection is to identify all important predictors having nonzero regression coeffi-

cients and giving accurate estimates of those parameters.

2.1. Univariate Penalized Least Squares

We start with the linear regression model

y ¼ Xbþ «, ð1Þ
where y ¼ (y1, : : : , yn)

T is an n-dimensional response vector, X ¼ (x1, : : : , xn)
T is an n � p

design matrix, and « is an n-dimensional noise vector. Consider the specific case of a

canonical linear model with a rescaled orthonormal design matrix, i.e., XTX ¼ nIp. The

PLS problem is

min
b2Rp

1

2n
k y�Xb k22 þ

Xp
j¼1

pl(jbj j)
( )

, ð2Þ

where k�k2 denotes the L2 norm, and pl(�) is a penalty function indexed by the regulariza-

tion parameter l� 0. By regularizing the conventional least-squares estimation, we hope to
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simultaneously select important variables and estimate their regression coefficients with

sparse estimates.

In the above canonical case of XTX ¼ nIp, the PLS problem (Equation 2) can be trans-

formed into the following component-wise minimization problem:

min
b2Rp

1

2n
k y�Xbb k22 þ

1

2
k bb� b k22 þ

Xp
j¼1

pl(j bj j)
( )

, ð3Þ

where bb ¼ n�1XTy is the OLS estimator or, more generally, the marginal regression esti-

mator. Thus we consider the univariate PLS problem

ŷ(z) ¼ argmin
y2R

1

2
(z� y)2 þ pl(j y j)

� �
. ð4Þ

For any increasing penalty function pl(�), we have a corresponding shrinkage rule in the

sense that jŷ(z)j � jzj and ŷ(z) ¼ sgn(z)jŷ(z)j (Antoniadis & Fan 2001). Antoniadis &

Fan (2001) further showed that the PLS estimator ŷ(z) has the following properties: (a)

sparsity if mint�0ft þ p0
l(t)g > 0, in which case the resulting estimator automatically sets

small estimated coefficients to zero to accomplish variable selection and reduce model

complexity; (b) approximate unbiasedness if p0
l(t) ¼ 0 for large t, in which case the

resulting estimator is nearly unbiased, especially when the true coefficient bj is large, to

reduce model bias; (c) and continuity if and only if arg mint�0ft þ p0
l(t)g ¼ 0, in which

case the resulting estimator is continuous in the data to reduce instability in model

prediction (see, e.g., the discussion in Breiman 1996). Here pl(t) is nondecreasing

and continuously differentiable on [0, 1), the function �t � p0
l(t) is strictly unimodal

on (0, 1), and p0
l(0) represents p0

l(0þ). Generally speaking, the singularity of the

penalty function at the origin, i.e., p0
l(0þ) > 0, is necessary to generate sparsity for

variable selection, and its concavity is needed to reduce the estimation bias when the

true parameter is nonzero. In addition, the continuity ensures the stability of the selected

models.

There are many commonly used penalty functions such as the Lq penalties pl(jyj) ¼
l jyjq for q > 0 and lI(jyj 6¼ 0) for q ¼ 0. The use of the L0 penalty pl(t) ¼ l2

2
I(t 6¼ 0) and

L1 penalty in Equation 4 gives the hard-thresholding estimator ŷH(z) ¼ zI(jzj > l) and the

soft-thresholding estimator ŷS(z) ¼ sgn(z)(jzj � l)þ, respectively. It is easy to see that none

of the Lq penalties simultaneously satisfies all three conditions given above. As such, Fan &

Li (2001) introduced the smoothly clipped absolute deviation (SCAD) penalty, whose

derivative is given by

p0
l(t) ¼ l I(t � l)þ (al� t)þ

(a� 1)l
I(t > l)

� �
for some a > 2, ð5Þ

where pl(0) ¼ 0, and a ¼ 3.7 is often used. It satisfies the aforementioned three properties

and, in particular, ameliorates the bias problems of convex penalty functions. A closely

related minimax concave penalty (MCP) was proposed by Zhang (2010), whose derivative

is given by p0
l(t) ¼ (al� t)þ=a. In particular, when a ¼ 1, pl(t) ¼ 1

2
½l2 � (l� t)2þ	 is re-

ferred to as the hard-thresholding penalty by Fan & Li (2001) and Antoniadis (1996), who

showed that the solution of Equation 4 is also the hard-thresholding estimator ŷH(z).
Therefore, the MCP produces discontinuous solutions with model instability.
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2.2. Multivariate Penalized Least Squares

Consider the multivariate PLS (Equation 2) with general design matrix X. The goal is to

estimate the true unknown sparse regression coefficients vector b0 ¼ (b0,1, : : : , b0,p)
T in

the linear model (Equation 1), where the dimensionality p can be comparable to or even

greatly exceed the sample size n. The L0 regularization, which is used in many classical

model selection methods, such as the AIC and BIC, has been shown to have nice sampling

properties (see, e.g., Barron et al. 1999). However, these best-subset-selection methods

require an exhaustive search over all submodels, which is prohibitive even in moderate

dimensions. Such computational difficulty motivated various continuous relaxations. For

example, the bridge regression (Frank & Friedman 1993) uses the Lq penalty, 0 < q � 2. In

particular, the use of the L2 penalty is called the ridge regression. The nonnegative garrote

was introduced by Breiman (1995) for variable selection and shrinkage estimation. The L1

PLS method was termed Lasso by Tibshirani (1996), which is also collectively referred to

as the L1 penalization methods in other contexts. Other commonly used penalty functions

include the SCAD and MCP (see Section 2.1). A family of concave penalties that bridge the

L0 and L1 penalties was introduced by Lv & Fan (2009) for model selection and sparse

recovery. A linear combination of L1 and L2 penalties was called an elastic net by Zou &

Hastie (2005), with the L2 component encouraging grouping of variables.

What kind of penalty functions are desirable for variable selection in sparse modeling?

Some appealing properties of the regularized estimator were first outlined by Fan & Li

(2001). They advocated penalty functions giving estimators with the three properties

mentioned in Section 2.1. In particular, they considered penalty functions pl(jyj) that are
nondecreasing in jyj and provided insights into these properties. As mentioned above, the

SCAD penalty satisfies the above three properties, whereas Lasso (the L1 penalty) suffers

from the bias issue.

Much effort has been devoted to developing algorithms to solve the PLS problem

(Equation 2). Fan & Li (2001) proposed an effective local quadratic approximation

(LQA) algorithm. This translates the nonconvex minimization problem into a sequence of

convex minimization problems. Specifically, for a given initial value b
 ¼ (b
1, : : : , b


p)

T ,

the penalty function pl is locally approximated by a quadratic function as

pl(jbjj) � pl(jb
j j)þ
1

2

p0
l(jb
j j)
jb
j j

½b2j � (b
j )
2	 for bj � b
j . ð6Þ

With quadratic approximation (Equation 6), the PLS problem (Equation 2) becomes a

convex PLS problem with weighted L2 penalty and admits a closed-form solution. To avoid

numerical instability, it sets the estimated coefficient bbj ¼ 0 if b
j is close to zero, that is,

deleting the j-th covariate from the final model. One potential issue of LQA is that the

value zero is an absorbing state in the sense that once a coefficient is set to zero, it remains

zero in subsequent iterations. Recently, the local linear approximation (LLA)

pl(jbjj) � pl(jb
j j)þ p0
l(jb
j j)(jbjj � jb
j j) for bj � b
j ð7Þ

was introduced by Zou & Li (2008), after the least angle regression (LARS) algorithm

(Efron et al. 2004) was proposed to efficiently compute Lasso. Both LLA and LQA are

convex majorants of a concave penalty function pl(�) on [0, 1), but LLA is a better

approximation as it is the minimum (tightest) convex majorant of the concave function

on [0, 1). For both approximations, the resulting sequence of target values is always
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nonincreasing, which is a specific feature of minorization-maximization algorithms

(Hunter & Li 2005). This can easily be seen by the following argument. If at the k-th

iteration Lk(b) is a convex majorant of the target function Q(b) such that Lk(bk) ¼ Q(bk)

and bkþ1 minimizes Lk (b), then

Q(bkþ1) � Lk(bkþ1) � Lk(bk) ¼ Q(bk).

There are several powerful algorithms for Lasso. Osborne et al. (2000) casted it as qua-

dratic programming. Efron et al. (2004) proposed a fast and efficient LARS algorithm for

variable selection, which, with a simple modification, produces the entire Lasso solution

path fbb(l) : l > 0g. This algorithm uses the fact that the Lasso solution path is piecewise

linear in l (see also Rosset & Zhu 2007 for more discussion). The LARS algorithm starts

with a sufficiently large l, which picks only one predictor that has the largest correlation

with the response and decreases the l value until the second variable is selected, at which

time the selected variables have the same absolute correlation with the current working

residual as the first one, and so on. By the Karush-Kuhn-Tucker (KKT) conditions, a sign

constraint is needed to obtain the Lasso solution path. Zhang (2010) extended the idea of

the LARS algorithm and introduced the PLUS algorithm to compute the PLS solution path

when the penalty function pl(�) is a quadratic spline such as the SCAD and MCP.

With the linear approximation (Equation 7), the PLS problem (Equation 2) becomes the

adaptively weighted Lasso:

min
b2Rp

1

2n
k y�Xb k22 þ

Xp
j¼1

wjj bj j
( )

, ð8Þ

where the weights are wj ¼ p0
l(jb
j j). Thus algorithms for Lasso can easily be adapted to

solve such problems. Different penalty functions give different weighting schemes, and, in

particular, Lasso gives a constant weighting scheme. In this sense, the nonconvex PLS can

be regarded as an iteratively reweighted Lasso. The weight function is chosen adaptively to

reduce the biases due to penalization. The adaptive Lasso proposed by Zou (2006) uses the

weighting scheme wj ¼ jb
j j�g for some g > 0. However, zero is an absorbing state. In

contrast, penalty functions such as SCAD and MCP do not have such an undesirable

property. In fact, if the initial estimate is zero, then wj ¼ l, and the resulting estimate is

the Lasso estimate. Fan & Li (2001), Zou (2006), and Zou & Li (2008) suggested the use

of a consistent estimate such as the unpenalized estimator as the initial value, which

implicitly assumes that p � n. When the dimensionality p exceeds n, it is not applicable.

Fan & Lv (2008) recommended the use of b
j ¼ 0, which is equivalent to using the Lasso

estimate as the initial estimate. The SCAD does not stop here. It further reduces the bias

problem of Lasso by assigning an adaptive weighting scheme. Other possible initial values

include estimators given by the stepwise addition fit or componentwise regression. They

put forward the recommendation that only a few iterations are needed.

Coordinate optimization has also been widely used to solve regularization problems.

For example, for the PLS problem (Equation 2), Fu (1998), Daubechies et al. (2004), and

Wu & Lange (2008) proposed a coordinate descent algorithm that iteratively optimizes

Equation 2 one component at a time. Such an algorithm can also be applied to solve other

problems such as in Meier et al. (2008) for the group Lasso (Yuan & Lin 2006), Friedman

et al. (2008) for penalized precision matrix estimation, and Fan & Lv (2011) for penalized

likelihood (see Section 4.1 for more details).
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The tuning parameter l in the regularization methods can be selected using, e.g., the

multifold cross-validation method, generalized cross-validation method (Craven &Wahba

1978), and various information criteria. For example, Wang et al. (2007) proposed that

one select l by minimizing the generalized BIC:

BIC(l) ¼ logŝ2l þ df(l)(logn)=n,

where ŝ2l is the mean-squared error, and df (l) is the degrees of freedom of the regularized

estimator. They showed that under fixed dimensions, with probability tending to one, the

SCAD-BIC estimate possesses the oracle property. Wang et al. (2009) extended those

results to the setting of a diverging number of parameters.

There have been many studies of the theoretical properties of PLS methods. We give

only a sketch of the developments owing to space limitations. A more detailed account

can be found in, e.g., Fan & Lv (2010). In a seminal paper, Fan & Li (2001) laid down

the theoretical framework of the nonconcave penalized likelihood method and intro-

duced the oracle property, which means that the estimator enjoys the same sparsity as

the oracle estimator with asymptotic probability one and attains an information bound

mimicking that of the oracle estimator. Here the oracle estimator bbO
is referred to as the

statistically infeasible estimator with knowledge of the true subset S ahead of time,

namely, the component bbO

Sc ¼ 0, and bbO

S is the least-squares estimate using only the

variables in S. They showed that for certain penalties, the resulting estimator possesses

the oracle property in the classical framework of fixed dimensionality p. In particular,

they showed that such conditions can be satisfied by SCAD, but not by Lasso, which

suggests that the Lasso estimator generally does not have the oracle property. This has

indeed been shown by Zou (2006) in the finite-parameter setting. Fan & Peng (2004)

later extended the results of Fan & Li (2001) to the diverging dimensional setting of

p ¼ o(n1/5) or o(n1/3). Recently, extensive efforts have been made to study the properties

with NP dimensionality.

Another L1 regularization method is the Dantzig selector recently proposed by Candes

& Tao (2007). It is defined as the solution to

minkb k1 subject to k n�1XT(y�Xb) k1 � l, ð9Þ
where l � 0 is a regularization parameter. Under the uniform uncertainty principle on the

design matrix X, which is a condition on the bounded condition number for all

submatrices of X, they showed that, with large probability, the Dantzig selector bb mimics

the risk of the oracle estimator up to a logarithmic factor log p, specifically

k bb� b0 k2 � C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2 log p)=n

p
s2 þ

X
j2supp b0ð Þb

2
0,j∧s2

h i1=2
, ð10Þ

where b0 is the true regression coefficients vector, C > 0 is some constant, and

l � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2 log p)=n

p
. The uniform uncertainty principle condition can be stringent in high

dimensions (see, e.g., Fan & Lv 2008, Fan & Song 2010 for more discussion). The

oracle inequality (Equation 10) does not specify the sparsity of the estimate. Bickel

et al. (2009) presented a simultaneous theoretical comparison of the Lasso estimator

and the Dantzig selector in a general high-dimensional nonparametric regression

model:

y ¼ f þ «, ð11Þ
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where f ¼ [f(x1), : : : , f(xn)]
T, with f an unknown function of p variates, and y, X ¼

(x1, : : : , xn)
T, and « are the same as in Equation 1. Under a sparsity scenario, Bickel

et al. (2009) derived parallel oracle inequalities for the prediction risk for both methods

and established the asymptotic equivalence of the Lasso estimator and the Dantzig selector.

They also considered the specific case of the linear model (Equation 1), i.e., Equation 11

with true regression function f ¼ Xb0, and gave bounds under the Lq estimation loss for

1 � q � 2.

For variable selection, we are concerned with the model selection consistency of regu-

larization methods in addition to the estimation consistency under some loss. Zhao & Yu

(2006) characterized the model selection consistency of Lasso by studying a stronger

but technically more convenient property of sign consistency: P sgn(bb) ¼ sgn(b0)
h i

! 1 as

n ! 1. They showed that the weak irrepresentable condition

kXT
2X1(X

T
1X1)

�1sgn(b1) k1 < 1, ð12Þ
where we assume covariates have been standardized, is a necessary condition for the sign

consistency of Lasso, and the strong irrepresentable condition stating that the left-hand

side of Equation 12 is uniformly bounded by a constant 0 < C < 1 is a sufficient condition

for the sign consistency of Lasso, where b1 is the subvector of b0 on its support supp(b0),

and X1 and X2 denote the submatrices of the n � p design matrix X formed by columns in

supp(b0) and its complement, respectively. However, the irrepresentable condition is

restrictive in high dimensions. It requires that the L1 norm of all regression coefficients of

all variables in X2 regressed on X1 be bounded by 1 (see, e.g., Lv & Fan 2009 and Fan &

Song 2010 for a simple illustrative example). This demonstrates that in high dimensions,

the Lasso estimator can easily select an inconsistent model, which explains why Lasso

tends to include many false positive variables in the selected model. The latter is also

related to the bias problem in Lasso, which requires a small penalization l, whereas the

sparsity requires choosing a large l.
Three questions of interest naturally arise for regularization methods. What limits of the

dimensionality can PLS methods handle? What is the role of penalty functions? What are

the statistical properties of PLS methods when the penalty function pl is no longer convex?

As mentioned above, Fan & Li (2001) and Fan & Peng (2004) provided answers via the

framework of an oracle property for fixed or relatively slowly growing dimensionality p.

Recently, Lv & Fan (2009) introduced the weak oracle property, which means that the

estimator enjoys the same sparsity as the oracle estimator with asymptotic probability one

and has consistency, and established regularity conditions under which the PLS estimator

given by folded-concave penalties has a nonasymptotic weak oracle property when the

dimensionality p can grow nonpolynomially with the sample size n. They considered a

wide class of folded-concave penalties including SCAD, and the L1 penalty at its boundary.

In particular, their results show that concave penalties can be more advantageous than

convex penalties in high-dimensional variable selection. Later, Fan & Lv (2011) extended

the results of Lv & Fan (2009) to folded-concave penalized likelihood in generalized linear

models with ultra-high dimensionality. Fan & Lv (2009) also characterized the global

optimality of the regularized estimator [see, e.g., Kim et al. (2008) and Kim & Kwon

(2009), who showed that the SCAD estimator equals the oracle estimator with probability

tending to one]. Other work on PLS methods includes Donoho et al. (2006), Meinshausen

& Bühlmann (2006), Wainwright (2006), Huang et al. (2008), Koltchinskii (2008), Belloni

& Chernozhukov (2009), and Zhang (2010). When the error distribution is heavy tailed,
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one may want to use a loss other than the quadratic one to improve the estimation

efficiency. For example, quantile regression techniques have been widely used in econo-

metrics problems (see Belloni & Chernozhukov 2011 and Bradic et al. 2011 for the

properties of quantile regression with the L1 penalty in high dimensions).

2.3. Multivariate Time Series

High dimensionality arises easily from VAR models. A p-dimensional time series with d

lags gives dp2 autoregressive parameters. As an illustration, we focus on an application of

PLS to home-price estimation and forecasting. Analysis on the housing market based on

state-level panel data can capture state-specific dynamics and variations. Calomiris et al.

(2008) performed panel VAR regression to reveal the strong effect of foreclosure on home

prices. Stock & Watson (2010) used a dynamic factor model with stochastic volatility to

examine the link between housing construction and the decline in macro volatility since

the mid-1980s. Rapach & Strass (2007) considered combinations of individual VAR

forecasts, with each equation consisting of only one macroeconomic variable, in forecast-

ing home-price growth in several states. Ng & Moench (2011) performed a hierarchical

factor model consisting of regions and states to draw a linkage between housing and

consumption.

If the primary focus is to forecast home price on local levels, however, factor models

have difficulties in explicitly capturing the cross-sectional correlation among local levels.

For example, at the state level, the home price in Nevada may have statistical correlation

with California and Arizona; at the county or zip-code level, prices in suburbs may respond

sensitively to price changes in the city center, but the response in the reverse direction might

be insignificant. For this reason, we work on regressions that include all lag variables of all

county-level home-price appreciations (HPAs) as regressors.

The addition of neighborhood variables to the regression equation results in a high-

dimensional problem, and standard regression techniques often fail to estimate. If we let yit
be the HPA in county i, an s-period-ahead county-level forecast model is written as

yitþs ¼
Xp
j¼1

bijy
j
t þXtbi þ eitþs, i ¼ 1, : : : , p ,

where Xt are observable factors, yjt are the HPAs of other counties, and bij and bi are

regression coefficients. On the one hand, because p is large (several hundred counties in

the United States), such model cannot be estimated by OLS simply because there is not a

long-enough time series (for 10-year monthly data, n ¼ 120). On the other hand, only a

handful of county-level lag HPAs should be useful for prediction conditioning on national

factors, and the regression result should be sparse. PLS can be used to estimate bij and

obtain sparse solutions (and hence neighborhood selection) at the same time. A simple

solution is to minimize for each given target region i the following object:

minfbij, j¼1, : : : ,N,big
XT�s

t¼1

(yitþs �Xi
tbi �

XN
j¼1

bijy
j
t)
2 þ l

XN
j¼1

wijpl(jbijj),

where the weights wij are chosen according to the geographical distances between counties

i and j, and p(l) is the SCAD penalty. Counties far away from the target county receive a

larger penalty. This choice of penalty reflects the intuition that if two counties are far apart,
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their correlation is more naturally explained by national factors, which are already

included in X.

To fit the model, we use monthly HPA data for the 352 largest counties in the United

States in terms of monthly repeated sales from January 2000 to December 2009. The

measurements of HPAs are more reliable for those counties. As an illustration, the market

factor is chosen to be the national HPA. Therefore, it is a reduced-form forecasting model

of county-level HPA, taking the national HPA forecast as an input. Figure 1 (see color

insert) shows how cross-county correlation is captured by a sparse VAR model. Figure 1a

shows heavy spatial correlation. Whereas the spatial correlation is reduced significantly in

the residuals in Figure 1b, the national factor cannot fully capture the local dependence.

The residual correlations in Figure 1c look essentially like white noise, indicating that the

national HPA along with the neighborhood selection capture the cross-dependence of

regional HPAs. The model achieves both parsimony and in-sample estimation accuracy.

Sparse cross-sectional modeling translates into more forecasting power. This is illus-

trated by an out-of-sample test. Periods 2000.1–2005.12 are now used as a training

sample, and 2006.1–2009.12 are testing periods. We use the discounted aggregated

squared error as a measure of overall performance for each county:

Forecast Errori ¼
Xt

s¼1

rs(ŷiTþs � yiTþs)
2, r ¼ 0:95:

The results show that, over 352 counties, the sparse VAR method with neighborhood

information performs on average 30% better in terms of prediction error than the model

without neighborhood information. Details of improvements can be seen in Figure 2a

(see color insert). Figure 2b compares backtest forecasts using OLS with only the national

HPA and PLS with additional neighborhood information for the largest counties with the

historical HPAs.

2.4. Benchmark of Prediction Errors and Spurious Correlation

How good is a prediction method? The ideal prediction is to use the true model, and the

residual variance s2 provides a benchmark measure of prediction errors. However, in high-

dimensional econometrics problems, the spurious correlations among realized random

variables are high, and some predictors can easily be selected to predict the realized noise

vector. Therefore, the residual variance can substantially underestimate s2, as the realized
noises can be predicted well by these predictors. Specifically, let bS and S0 be the sets of

selected and true variables, respectively. Fan et al. (2011b) argued that the variables inbS \ Sc
0 are used to predict the realized noise when bS  S0. As a result, in the linear model

(Equation 1), the residual sum of squares substantially underestimates the error variance.

Thus it is important and necessary to screen variables that are not truly related to the

response and reduce their influence.

One effective way of handling spurious correlations and their influence is to use the

refitted cross-validation (RCV) method proposed by Fan et al. (2011b). The sample is

randomly split into two equal halves, and a variable selection procedure is applied to both

subsamples. For each subsample, a variance estimate is obtained by regressing the response

on the set of predictors selected based on the other subsample. The average of those two

estimates gives a new variance estimate. Specifically, let Ŝ1 be the selected variables using

the first half of the data, and then refit the regression coefficients of variables in Ŝ1 using
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the second half of the data and compute the resulting residual variance ŝ21. A similar

estimate ŝ22 can be obtained, and the final estimate is simply ŝ2 ¼ (ŝ21 þ ŝ22)=2 or its

weighted version using the degrees of freedom in the computation of two residual vari-

ances. Fan et al. (2011b) showed that when the variable selection procedure has the sure

screening property, S0 � Ŝ1 \ Ŝ2 (see Section 5.1 for more discussion), the resulting esti-

mator can perform as well as the oracle variance estimator, which knows S0 in advance.

They also explain the robustness of the RCV method to the sure screening property. The

idea of RCV can be applied to variance estimation and variable selection in more general

sparse high-dimensional models.

As an illustration, following Fan et al. (2011b), we consider the benchmark one-step

forecasting errors s2 in San Francisco and Los Angeles, using HPA data from January 1998

to December 2005 (96 months). Figure 3 shows the estimates as a function of the selected

model size s. Clearly, the naive estimates of directly computing residual variances decrease

steadily with the selected model size s due to spurious correlation, whereas the RCV

method gives reasonably stable estimates for a range of selected models. The benchmark

for both regions is approximately 0.53%, whereas the standard deviations of month-over-

month variations of HPAs are 1.08% and 1.69% in the San Francisco and Los Angeles

areas, respectively. To see how the PLS method works in comparison with the benchmark,

we compute rolling one-step prediction errors over 12 months in 2006. The prediction

errors are 0.67% and 0.86% for the San Francisco and Los Angeles areas, respectively.

They are clearly larger than the benchmark, as expected, but are considerably smaller than

the standard deviations, which use no variables to forecast.

3. SPARSE MODELS IN FINANCE

3.1. Estimation of High-Dimensional Volatility Matrices

Covariance matrix estimation is fundamental in many areas of multivariate analysis. For

example, an estimate of the covariance matrix S is required in financial risk assessment

and longitudinal studies, whereas an inverse of the covariance matrix, called the precision

matrix V ¼ S�1, is needed in optimal portfolio selection, linear discriminant analysis,

and graphical models. In particular, estimating a p � p covariance or precision matrix

is challenging when the number of variables p is large. The sample covariance matrix is

unbiased and is invertible when p is no larger than n. It is a natural candidate when p

is small, but it no longer performs well for moderate or large dimensionality (Johnstone

2001). Additional challenges arise when estimating the precision matrix when n < p.

To deal with high dimensionality, researchers have taken two main directions in the

literature. One is to remedy the sample covariance matrix estimator using approaches such

as the eigen method and shrinkage (see, e.g., Stein 1975, Ledoit & Wolf 2004). The other

one is to impose some structure such as the sparsity, factor model, or autoregressive model

on the data to reduce the dimensionality (see, for example, Wu & Pourahmadi 2003,

Huang et al. 2006, Yuan & Lin 2007, Bai & Ng 2008, Bickel & Levina 2008a,b, Fan

et al. 2008, Levina et al. 2008, Rothman et al. 2008, Lam & Fan 2009, Cai et al. 2010).

The PLS and penalized likelihood method (see Section 4.1) can also be used to estimate

large-scale covariances effectively and parsimoniously (see, e.g., Huang et al. 2006).

Assuming that the covariance matrix has some sparse parameterization, the idea of vari-

able selection can be used to select nonzero matrix parameters. Lam & Fan (2009) gave a
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comprehensive treatment on the sparse covariance matrix, sparse precision matrix, and

sparse Cholesky decomposition.

The negative Gaussian pseudo-likelihood is

tr(SO)� logjOj, ð13Þ
where S is the sample covariance matrix. Therefore, the sparsity of the precision matrix can

be explored by the penalized pseudo-likelihood

tr(SO)� logjOj þ
X
i 6¼ j

pl(joi, jj), ð14Þ

penalizing only the off-diagonal elements oi,j of the precision matrix O, as the diagonal

elements are nonsparse. This allows us to estimate the precision matrix even when p > n.

Similarly, the sparsity of the covariance matrix can be explored by minimizing

tr(SS�1)þ logjSj þ
X
i 6¼ j

pl(jsi,jj), ð15Þ
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Figure 3

Estimated standard deviation as a function of selected model size s in San Francisco (top panels) and
Los Angeles (bottom panels) using the naive (left column) and refitted cross-validation (RCV) (right
column) methods.
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again penalizing only the off-diagonal elements si, j of the covariance matrix S. Various

algorithms have been developed to optimize Equations 14 and 15 (see, for example,

Friedman et al. 2008, Fan et al. 2009a). A comprehensive theoretical study of the proper-

ties of these approaches is provided by Bickel & Levina (2008a) and Lam & Fan (2009).

They showed that the rates of convergence for these problems under the Frobenius norm

are of order (s log p/n)1/2, where s is the number of nonzero elements. This demonstrates

that the impact of dimensionality p enters through a logarithmic factor. They also studied

the sparsistency of the estimates, which is a property that all zero parameters are estimated

as zero with asymptotic probability one, and showed that the L1 penalty is restrictive in

that the number of nonzero off-diagonal elements s0 is equal to O(p), whereas for fold-

concave penalties such as SCAD and the hard-thresholding penalty, there is no such

restriction.

Sparse Cholesky decomposition can be explored similarly. Let w ¼ (W1, : : : ,Wp)
T

be a p-dimensional random vector with mean zero and covariance matrix S. Using

the modified Cholesky decomposition, we have LSLT ¼ D, where L is a lower

triangular matrix having diagonal elements 1 and off-diagonal elements –ft,j in the

(t, j) entry for 1 � j < t � p, and D ¼ diagfs21, : : : , s2pg is a diagonal matrix. Denote

e ¼ Lw ¼ (e1, : : : , ep)
T. Because D is diagonal, e1, : : : , ep are uncorrelated. Thus, for

each 2 � t � p,

Wt ¼
Xt�1

j¼1

ftjWj þ et. ð16Þ

This shows that Wt is an autoregressive series, which gives an interpretation for elements

of matrices L and D and enables us to use the PLS for covariance selection. Suppose that

wi ¼ (Wi1, : : : ,Wip)
T, i ¼ 1, : : : , n, is a random sample from w. For t ¼ 2, : : : ,p, covari-

ance selection can be accomplished by solving the following PLS problem:

min
ftj

1

2n

Xn
i¼1

(Wit �
Xt�1

j¼1

ftjWij)
2 þ

Xt�1

j¼1

plt (jftjj)
( )

. ð17Þ

With estimated sparse L, the diagonal elements can be estimated by the sample variance of

the components of bLwi. Hence the sparsity in Equation 16 is explored.

When the covariance matrix S admits sparsity structure, other simple methods can be

exploited. Bickel & Levina (2008b) and El Karoui (2008) considered the approach of

directly applying entrywise hard thresholding on the sample covariance matrix. The

thresholded estimator has been shown to be consistent under the operator norm, in which

the former considered the case of (log p) / n ! 0 and the latter considered the case of

p � cn. The optimal rates of convergence of such covariance matrix estimation were

derived by Cai et al. (2010). Bickel & Levina (2008a) studied the methods of banding the

sample covariance matrix and banding the inverse of the covariance via the Cholesky

decomposition of the inverse for the estimation of S and S�1, respectively. These estimates

have been shown to be consistent under the operator norm for (log p)2 / n! 0, and explicit

rates of convergence were obtained. Meinshausen & Bühlmann (2006) proved that Lasso

is consistent in neighborhood selection in high-dimensional Gaussian graphical models, in

which the sparsity in the inverse covariance matrix S�1 amounts to conditional indepen-

dence between the variables.
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3.2. Portfolio Selection

Markowitz (1952, 1959) laid down the seminal framework of mean-variance analysis.

In practice, a simple implementation is to construct the mean-variance efficient portfo-

lio using sample means and sample covariance matrix. However, owing to the accu-

mulation of estimation errors, the theoretical optimal allocation vector can be very

different from the estimated one, especially when the number of assets under consider-

ation is large. As a result, such portfolios often suffer poor out-of-sample performance,

although they are optimal in sample. Recently, a number of works have focused on

improving the performance of the Markowitz portfolio using various regularization

and stabilization techniques. Jagannathan & Ma (2003) considered the minimum var-

iance portfolio with no short-sale constraints. They showed that such a constrained

minimum variance portfolio outperforms the global minimum variance portfolio in

practice when unknown quantities are estimated. To bridge the no short-sale con-

straints, on one extreme, and no constraints on short sales, on the other extreme, Fan

et al. (2011c) introduced a gross-exposure parameter c and examined the impact of c

on the performance of the minimum portfolio. They showed that with the gross-

exposure constraint, the empirically selected optimal portfolios based on estimated

covariance matrices have a similar performance to the theoretical optimal portfolios,

and there is little error accumulation effect from the estimation of vast covariance

matrices when c is modest.

The portfolio optimization problem is

maxw wTSw, s.t.wT1 ¼ 1, kwk1 � c, Aw ¼ a,

where S is the true covariance matrix. The side constraints Aw ¼ a can be on the

expected returns of the portfolio, as in the Markowitz (1952, 1959) formulation.

They can also be the constraints on the allocations on sectors or industries, or the

constraints on the risk exposures to certain known risk factors. They make the

portfolio even more stable. Therefore, they can be removed from theoretical studies.

Let R(w) ¼ wTSw and Rn(w) ¼ wTbSw be the theoretical and empirical portfolio risk

with allocation w, where bS is an estimator of covariance matrix with sample size n.

Let

wopt ¼ argminwT1¼1,kwk1�c
R(w) and bwopt ¼ argminwT1¼1,kwk1�c

Rn(w).

The following theorem shows that the theoretical minimum risk R(wopt) (also called the

oracle risk), the actual risk R(bwopt), and empirical risk Rn(bwopt) are approximately the

same for a moderate c and a reasonable covariance matrix estimator.

Theorem 1: Let an ¼ kbS � Sk1. Then, we have

jR(bwopt)� R(wopt)j � 2anc
2,

jR(bwopt)� Rn(bwopt )j � anc
2,

jR(wopt )� Rn(bwopt)j � anc
2.

Theorem 1, due to Fan et al. (2011c), gives the upper bounds on the approximation errors

of risks. The following result further controls an.
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Theorem 2: Let sij and ŝij be the (i, j)-th element of the matrices S and bS,

respectively. If for a sufficiently large x,

maxi, j Pf
ffiffiffi
n

p jsij � ŝijj > xg < exp(� Cx1=a)

for two positive constants a and C, then

kS� bSk1 ¼ OP
(log p)affiffiffi

n
p

� �
. ð18Þ

Fan et al. (2011c) gave further elementary conditions under which Theorem 2 holds.

The connection between portfolio minimization with the gross-exposure constraint and the

L1 constrained regression problem enables fast statistical algorithms. The paper uses least-

angle regression, or the LARS-Lasso algorithm, to solve for the optimal portfolio under

various gross exposure limits c. When c ¼ 1, it is equivalent to the no-short-sale constraint;

as c increases, the constraint becomes less stringent, and it becomes the global minimum

variance problem when c ¼ 1. Empirical studies find that when c � 2, the portfolio

achieves the best out-of-sample performance in terms of variance and Sharpe ratio, when

low-frequency daily data are used.

The gross-exposure constraint yields sparse portfolio selection. This feature is also

noted by Brodie et al. (2009). DeMiguel et al. (2009) considered other norms to constrain

the portfolio.

3.3. Factor Models

Section 3.1 above discusses large covariance matrix estimation via penalization methods.

We now introduce an approach that uses a factor model, which provides another effective

way of sparse modeling. Consider the multifactor model

Yi ¼ bi1f1 þ : : :þ biKfK þ e, i ¼ 1, : : : , p, ð19Þ
where Yi is the excess return of the i-th asset over the risk-free asset, f1, : : : , fK are the

excess returns of K factors that influence the returns of the market, the bij’s are unknown

factor loadings, and e1, : : : , ep are idiosyncratic noises. The factor models have been widely

applied and studied in economics and finance (see, e.g., Engle & Watson 1981, Chamber-

lain 1983, Chamberlain & Rothschild 1983, Bai 2003, Stock & Watson 2005). Famous

examples include the Fama-French three-factor and five-factor models (Fama & French

1992, 1993). Yet the use of factor models on volatility matrix estimation for portfolio

allocation was poorly understood until the work of Fan et al. (2008).

Thanks to the multifactor model (Equation 19), if a few factors can completely

capture the cross-sectional risks, the number of parameters in covariance matrix estima-

tion can be significantly reduced. For example, using the Fama-French three-factor

model, we find that there are 4p instead of p(p þ 1)/2 parameters. Despite the popular-

ity of factor models, the impact of dimensionality on the estimation errors of covariance

matrices and its applications to optimal portfolio allocation and portfolio risk assess-

ment were not well studied until recently. As is now common in many applications,

p can be large compared to the size n of the available sample. It is also necessary to

study the situation in which the number of factors K diverges, which makes the K-factor

model (Equation 19) better approximate the true underlying model as K grows. Thus

it is important to study the factor model (Equation 19) in the asymptotic framework of

p ! 1 and K ! 1.
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Rewrite the factor model (Equation 19) in matrix form

y ¼ Bf þ e, ð20Þ
where y ¼ (Y1, : : : ,Yp)

T, B ¼ (b1, : : : ,bp)
T with bi ¼ (bi1, : : : ,biK)

T, f ¼ (f1, : : : , fK)
T,

and « ¼ (e1, : : : , ep)
T. Denote S ¼ cov(y), X ¼ (f1, : : : , fn), and Y ¼ (y1, : : : , yn), where

(f1, y1), : : : , (fn, yn) are n i.i.d. samples of (f, y). Fan et al. (2008) proposed a substitution

estimator for S,

bS ¼ bBdcov(f)bBT þ bS0, ð21Þ
where bB ¼ YXT(XXT)�1 is the matrix of estimated regression coefficients, dcov(f) is the

sample covariance matrix of the factors f, and bS0 ¼ diag(n�1bEbET
) is the diagonal matrix of

n�1bEbET
with bE ¼ Y� bBX the matrix of residuals. They derived the rates of convergence of

the factor-model-based covariance matrix estimator bS and the sample covariance matrix

estimator bSsam simultaneously under the Frobenius norm k�k and a new norm k�kS, where

kAkS ¼ p�1=2kS�1=2
AS�1=2k for any p � p matrix A. This new norm was introduced to

better understand the factor structure. In particular, they showed that bS has a faster conver-

gence rate than bSsam under the new norm. The inverses of covariance matrices play an

important role in many applications such as optimal portfolio allocation. Fan et al. (2008) also

compared the convergence rates of bS�1
and bS�1

sam, illustrating the advantage of using the factor

model. Furthermore, they investigated the impacts of covariance matrix estimation on some

applications such as optimal portfolio allocation and portfolio risk assessment. They identified

how large p and K can be such that the error in the estimated covariance is negligible in those

applications. Explicit convergence rates of various portfolio variances were established.

In many applications, the factors are usually unknown to us. So it is important to study

the factor models with unknown factors for the purpose of covariance matrix estimation.

Constructing factors that influence the market itself is a high-dimensional variable selec-

tion problem. One can apply, e.g., sparse principal component analysis (see Johnstone &

Lu 2004, Zou et al. 2006) to construct the unobservable factors. It is also practically

important to consider dynamic factor models in which the factor loadings as well as the

distributions of the factors evolve over time. The heterogeneity of the observations is

another important aspect that needs to be addressed.

4. LIKELIHOOD BASED SPARSE MODELS

4.1. Penalized Likelihood

The ideas of the AIC and BIC suggest that one should choose a parameter vector b

maximizing the penalized likelihood

‘n(b)� lkb k0, ð22Þ
where ‘n(b) is the log-likelihood function and l � 0 is a regularization parameter. The

computational difficulty of the combinatorial optimization in Equation 22 stimulated

many continuous relaxations, leading to a general penalized likelihood

n�1‘n(b)�
Xp
j¼1

pl(j bj j), ð23Þ

where pl(�) is a penalty function indexed by the regularization parameter l � 0 as in PLS

(Equation 2).
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It is nontrivial to maximize Equation 23 when pl is folded concave. In such cases, it is

also generally difficult to study the global maximizer without the concavity of the objective

function. As is common in the literature, the main attention of theory and implementations

has been on local optimizers that have nice statistical properties. Many efficient algorithms

have been proposed to optimize nonconcave penalized likelihoods. Fan & Li (2001)

introduced the LQA algorithm by using the Newton-Raphson method and a quadratic

approximation in Equation 6, and Zou & Li (2008) proposed the LLA algorithm with a

linear approximation in Equation 7. With the trivial zero initial value for LLA, SCAD gives

exactly the Lasso estimate. In this sense, the SCAD or more generally folded-concave

regularization is an iteratively reweighted Lasso.

Coordinate optimization to implement regularization methods is fast when the uni-

variate optimization problem has an analytic solution, which is the case for many

commonly used penalty functions, such as Lasso, SCAD, and MCP. For example, Fan &

Lv (2011) introduced the iterative coordinate ascent algorithm, a path-following

coordinate optimization algorithm, to maximize the penalized likelihood (Equation 23)

including PLS (Equation 2). It maximizes one coordinate at a time with successive

displacements for Equation 23 with l in decreasing order. More specifically, for each

coordinate within each iteration, it uses the second-order approximation of ‘n(b) at the

current p vector along that coordinate and maximizes directly the univariate penalized

quadratic approximation. It updates each coordinate if the maximizer of that coordinate

makes Equation 23 strictly increasing. Thus the iterative coordinate ascent algorithm

enjoys the ascent property that the resulting sequence of values of the penalized

likelihood (Equation 23) is increasing. Fan & Lv (2011) demonstrated that coordinate

optimization works well and efficiently to produce the entire solution paths for concave

penalties.

A natural question is, what are the sampling properties of penalized likelihood estima-

tion (Equation 23) when the penalty function pl is not necessarily convex? Fan & Li (2001)

studied the oracle properties of folded-concave penalized likelihood estimators in the

finite-dimensional setting, and Fan & Peng (2004) generalized their results to the relatively

high-dimensional setting of p ¼ o(n1/5) or o(n1/3). Let b0 ¼ (bT
1 ,b

T
2 )

T be the true regression

coefficients vector, with b1 and b2 the subvectors of nonsparse and sparse elements,

respectively, and s ¼ kb0k0. Denote S ¼ diagfp00
l(jb1j)g and �pl(b1) ¼ sgn(b1) ∘p

0
l(jb1j),

where ∘ denotes the Hadamard (componentwise) product. Under some regularity con-

ditions, they showed that with probability tending to one as n ! 1, there exists an (n=p)
1
2

consistent local maximizer bb ¼ (bbT

1 , bbT

2 )
T of Equation 23 satisfying (a) sparsity, bb2 ¼ 0,

and (b) asymptotic normality. For any unit vector an in Rs,ffiffiffi
n

p
aTn I

�1=2
1 (I1 þ S)½bb1 � b1 þ (I1 þ S)�1�pl(b1)	�!D N(0,1), ð24Þ

where I1 ¼ I(b1) is the Fisher information matrix knowing the true model supp(b0), and bb1

is a subvector of bb formed by components in supp(b0). In particular, the SCAD estimator

performs as well as the oracle estimator knowing the true model in advance, whereas the

Lasso estimator generally does not.

A long-standing question in the literature is whether the penalized likelihood

methods possess the oracle property in ultra-high dimensions. Fan & Lv (2011)

addressed this problem in the context of generalized linear models with NP dimensionality:

log p ¼ O(na) for some a > 0. They proved that under some regularity conditions, there
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exists a local maximizer bb ¼ (bbT

1 , bbT

2 )
T of the penalized likelihood method (Equation 23)

such that bb2 ¼ 0 with probability tending to one and k bb� b0 k2 ¼ OP(
ffiffi
s

p
n�1=2), where

s ¼ kb0 k0. They also established asymptotic normality and thus the oracle property. Their

studies demonstrate that the technical conditions are less restrictive for folded-concave

penalties such as SCAD. The important question of when the folded-concave penalized

likelihood estimator is a global maximizer of penalized likelihood (Equation 23) naturally

arises. Fan & Lv (2011) characterized such a property from two perspectives: global

optimality (for p � n) and restricted global optimality (for p > n). In addition, they showed

that the SCAD penalized likelihood estimator can meet the oracle estimator under some

regularity conditions. Other work on the topic includes Meier et al. (2008) and van de

Geer (2008).

4.2. Penalized Partial Likelihood

Credit risk is a topic that has been extensively studied in the finance and economics

literature. Various models have been proposed for pricing and hedging credit risky securi-

ties (see Jarrow 2009 for a review of credit-risk models). Cox (1972) introduced the

famous Cox’s proportional hazards model

h(t j x) ¼ h0(t)e
xT b ð25Þ

to accommodate the effect of covariates, in which h(t jx) is the conditional hazard rate

at time t, and h0(t) is the baseline hazard function. This model has been widely used

in survival analysis to model time-to-event data. Such a model can naturally be

applied to model credit default. Lando (1998) first addressed the issue of default

correlation for pricing credit derivatives on baskets, e.g., collateralized debt obligation,

by using the Cox processes. The default correlations are induced via common state

variables that drive the default intensities (see Jarrow 2009, section 4; Duffie et al.

2009; and Duan et al. 2010 for more detailed discussions of the Cox model for credit

default analysis).

Identifying important risk factors and quantifying their risk contributions are crucial

aims of survival analysis. It is natural to extend the regularization methods to the Cox

model. Tibshirani (1997) introduced the Lasso method (L1 penalization method) to this

model. To overcome the bias issue of convex penalties, Fan & Li (2002) employed the

folded-concave penalty and partial likelihood methods. Let t01 < t02 < : : : < t0N be N

ordered observed failure times (assuming no common failure times for simplicity).

Denote by x(k) the covariate vector of the subject with failure time t0k and

Rk ¼ fi : yi � t0kg the risk set right before time t0k. Fan & Li (2002) considered the

penalized partial likelihood

n�1
XN
k¼1

h
xT(k)b� log

nX
i2Rk

exp(xTi b)
oi

�
Xp
j¼1

pl(j bj j). ð26Þ

They proved the oracle properties for the folded-concave penalized partial likelihood

estimator. Later, Zhang & Lu (2007) introduced the adaptive Lasso method for Cox’s

proportional hazards model, and Zou (2008) proposed a path-based variable selection

method by using penalization with adaptive shrinkage. Both papers have shown the

asymptotic efficiency of the methods.
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5. SURE SCREENING METHODS

5.1. Sure Independence Screening

A natural idea for ultra-high-dimensional modeling is to apply a fast, reliable, and efficient

method to reduce the dimensionality p from a large or huge scale [e.g., log p ¼ O(na) for

some a > 0] to a relatively large scale d [e.g., O(nb) for some b > 0] so that well-developed

variable selection techniques can be applied to the reduced feature space. This powerful

tool enables us to approach the problem of variable selection in sparse ultra-high-dimen-

sional modeling. The issues of computational cost, statistical accuracy, and model inter-

pretability will be addressed when the variable screening procedures retain all the

important variables with asymptotic probability one, the so-called sure screening property

introduced by Fan & Lv (2008).

Fan & Lv (2008) recently proposed the sure independence screening (SIS) methodology

to reduce computation in sparse ultra-high-dimensional modeling. It also reduces the

correlation requirements among predictors. The SIS method ranks features by their mar-

ginal correlations with the response. It is a specific case of independence screening, which

ranks features with marginal utility; i.e., each feature is treated as an independent predictor

to measure its effectiveness for prediction.

Assume that the n � p design matrix X has been standardized to have mean zero and

variance one for each column and let v ¼ (o1, : : : ,op)
T ¼ XTy be a p-dimensional vector

of the componentwise regression estimator. For each dn, Fan & Lv (2008) defined the

submodel consisting of selected predictors as

cMd ¼ f1 � j � p :jojj is among the first dn largest of allg: ð27Þ
This reduces the dimensionality of the feature space from p � n to a (much) smaller

scale dn, which can be below n. This correlation learning screens variables that have

weak marginal correlations with the response. It reduces the selection of features by

two-sample t-test statistics in classification problems with class labels Y ¼ �1 (see Fan

& Fan 2008). It is easy to see that SIS has computational complexity O(np) and thus is

fast to implement.

Denote by M
 ¼ f1 � j � p : bj 6¼ 0g the true underlying sparse model and s ¼ jM
j
the nonsparsity size. Fan & Lv (2008) studied the ultra-high-dimensional setting of p � n

with log p ¼ O(na) for some a2 (0,1 – 2k) (see below for the definition of k) and Gaussian

noise e � N(0,s2). They assumed that var(Y) < 1 and that lmax(S) ¼ O(nt):

min
j2M


jbjj � cn�k and min
j2M


jcov(b�1
j Y,Xj)j � c, ð28Þ

in which S ¼ cov(x),k,t, � 0, and c > 0 is a constant. Under some regularity conditions,

Fan & Lv (2008) showed that if 2k þ t < 1, there exists a constant y 2 (2k þ t, 1) such that

when dn � ny, we have for some C > 0

P(M
 � cMd) ¼ 1�O(e�Cn1�2k=logn). ð29Þ
This shows that SIS has the sure screening property even in ultra-high dimensions. With SIS,

we can reduce exponentially growing dimensionality to a relatively large-scale dn � n,

retaining all the important variables in the reduced model cMd with a significant probability.

The above results have been extended by Fan & Song (2010) to cover non-Guassian

covariates and non-Gaussian response. In the context of generalized linear models, they
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showed that independence screening through the use of marginal likelihood ratios or

marginal regression coefficients possesses a sure screening property with the selected model

size explicitly controlled. In particular, they do not impose elliptical symmetry of the

distribution of covariates nor conditions on the covariance S of covariates. The latter

property is a huge advantage over the penalized likelihood method, which requires restric-

tive conditions on the covariates.

There are other related methods of marginal screening. Huang et al. (2008) intro-

duced marginal bridge regression, Hall & Miller (2009) proposed a generalized correla-

tion for feature ranking, and Fan et al. (2011a) developed nonparametric screening using

the B-spline basis. All these methods require that one choose a thresholding parameter.

Zhao & Li (2010) proposed the use of an upper quantile of marginal utilities for

decoupled (via random permutation) responses and covariates, called PSIS (principled

sure independence screening), to select the thresholding parameter. The idea is to ran-

domly permute the covariates and response so that they have no relation and then to

compute the marginal utilities based on the permuted data and select the upper a
quantile of the marginal utilities as the thresholding parameter. The choice of a is related

to the false selection rate. A stringent screening procedure would take a ¼ 0, namely,

the maximum of the marginal utilities for the randomly decoupled data. Hall et al.

(2009) presented independence learning rules by tilting methods and empirical likeli-

hood and proposed a bootstrap method to assess the accuracy of feature ranking in

classification.

5.2. ATwo-Scale Framework

When the dimensionality is reduced to a moderate scale d with a sure screening method

such as SIS, the well-developed variable selection techniques can be applied to the reduced

feature space. This provides a powerful tool of SIS-based methods for ultra-high-dimen-

sional variable selection.

By its nature, SIS uses only the marginal information of predictors and does not look

at their joint behavior. Fan & Lv (2008) noticed three potential issues of simple SIS that

can make the sure screening property fail to hold. First, it may miss an important pre-

dictor that is marginally uncorrelated or weakly correlated but jointly correlated with the

response. Second, it may select some unimportant predictors that are highly correlated

with the important predictors and exclude important predictors that are relatively weakly

related to the response. Third, the issue of collinearity among predictors is an intrinsic

difficulty of the variable selection problem. To address these issues, Fan & Lv (2008)

proposed iterative SIS, which iteratively applies the idea of large-scale screening and

moderate-scale selection. This idea was extended and improved by Fan et al. (2009b) as

follows.

Suppose that we wish to find a sparse b to minimize the objective

Qn(b) ¼ n�1
Xn
i¼1

L(Yi, b0 þXT
i b), ð30Þ

where L is the loss function, which can be the quadratic loss, robust loss, log-likelihood, or

quasi-likelihood. It is usually convex in b. The first step is to apply the marginal screening,

using the marginal utilities
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Lj ¼ min
b0, bj

n�1
Xn
i¼1

L(Yi, b0 þXi, jbj) ð31Þ

or the magnitude jbbjj of the minimizer of Equation 31 itself (assuming covariates

are standardized in this case) to rank the covariates. This results in the active set A1.

The thresholding parameter can be selected using the permutation method of Zhao & Li

(2010) in Section 5.1. Now apply a penalized likelihood method

n�1
Xn
i¼1

L(Yi, b0 þXT
i,A1

bA1
)þ

X
j2A1

pl(jbjj) ð32Þ

to further select a subset of active variables, resulting in M1. The next step is the condi-

tional screening. Given the active set of covariates M1, what are the conditional contribu-

tions of those variables that were not selected in the first step? This leads us to define the

conditional marginal utilities:

LjjM1
¼ min

b0,bM1
, bj

n�1
Xn
i¼1

L(Yi, b0 þXT
i,M1

bM1
þXijbj). ð33Þ

Note that for the quadratic loss, when bM1
is fixed at the minimizer from Equation 32,

such a method reduces to the residual-based approach of Fan & Lv (2008). The current

approach avoids the generalization of the concept of residuals to other complicated

models and fully uses the conditional inference, but it involves more intensive computa-

tion in the conditional screening. We recruit additional variables by using the marginal

utilities LjjM1
or the magnitude of the minimizer (Equation 33). This is again a large-scale

screening step, giving an active set A2, and the thresholding parameter can be chosen by

the permutation method. The next step is then the moderate-scale selection. The poten-

tially useful variables are now in the set M1 [ A2. Apply the penalized likelihood tech-

nique to the problem:Xn
i¼1

n�1L(Yi, b0 þXT
i,M1

bM1
þXT

i,A2
bA2

)þ
X

j2M1[A2

pl(jbjj). ð34Þ

This results in the selected variables M2. Note that some variables selected in the previous

step M1 can be deleted in this step. Iterate the conditional large-scale screening followed

by the moderate-scale selection until M‘�1 ¼ M‘ or the maximum number of iterations is

reached. This takes account of the joint information of predictors in the selection and

avoids solving large-scale optimization problems. The success of such a two-scale method

and its theoretical properties are documented by Fan & Lv (2008), Fan et al. (2009b),

Zhao & Li (2010), Fan & Song (2010), and Fan et al. (2011a).

6. CONCLUSIONS

Above we briefly survey some recent developments of sparse high-dimensional modeling

and discuss some applications in economics and finance. In particular, the recent develop-

ments in ultra-high-dimensional variable selection can be widely applied to the statistical

analysis of large-scale economic and financial problems. Those sparse modeling problems

deserve further study both theoretically and empirically. We focus on regularization
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methods including PLS and penalized likelihood. The role of penalty functions and the

impact of dimensionality on sparse high-dimensional modeling are revealed and discussed.

Sure independent screening has been introduced to reduce dimensionality and the problems

of collinearity. It is a fundamental element of the promising two-scale framework in ultra-

high-dimensional econometrics modeling.

Sparse models are ideal and generally biased. Yet they have proven to be effective in

many large-scale applications. The biases are typically small as variables are selected from

a large pool to best approximate the true model. High-dimensional statistical learning

facilitates undoubtedly the understanding and derivation of the often-complex nature of

statistical relationships among the explanatory variables and the response. In particular,

the key notion of sparsity, which helps reduce the intrinsic complexity at little cost of

statistical efficiency and computation, provides powerful tools to explore relatively low-

dimensional structures among huge amounts of candidate models. It should have a marked

impact on econometric theory and practice, from econometric modeling to fundamental

understanding of economic problems. New novel modeling techniques are needed to

address the challenges in the frontiers of economics and finance, and other social science

problems.
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Figure 1

Cross-county correlation captured by a sparse vector autoregressive model. (a) The spatial correlation of 352 home-price

appreciation (HPA) data series. (b) The residual correlation of an ordinary least-squares (OLS) approach, using only the national
factor, not neighboring HPAs. For panels a and b, the correlation is fromOLS residuals, conditional on national home price index

(HPI). (c) The spatial correlation of residuals with national HPA and neighborhood selection. The correlation is from penalized

least-squares residuals, conditional on national HPI. (d) Neighborhoods with nonzero regression coefficients. For each county,
only three to four neighboring counties are chosen on average. The correlation is from sparse structure.
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a

b

Figure 2

(a) Forecast error comparison over 352 counties. For each dot, the x axis represents the error by ordinary least squares (OLS) with

only a national factor, and the y axis represents the error by penalized least squares (PLS) with additional neighborhood informa-
tion. If the dot lies below the 45� line, PLS outperforms OLS. (b) Forecast comparison for the largest counties during the test period.

The blue lines represent OLS with national house-price appreciation (HPA) data, the red lines represent PLS with additional

neighborhood information, and the black lines are the historical HPAs. The thickness of the lines is proportional to repeated sales.
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