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This Supplementary Material contains additional numerical studies, examples to compute HGBICp, all the
proofs of main results, and additional technical details.

A. EXAMPLES OF HGBICp 550

We illustrate how HGBICp can be calculated in linear regression and logistic regression. In both cases,
we assume that b� is the maximum likelihood estimator. Then, the estimated natural parameter vector is
b✓ = Xb�. In order to estimate the two forms of Fisher Information matrices given in (7) and (8), we use
the plug-in estimator bHn as defined in Section 3.3. To proceed, we need to make use of the link function
b(✓), and its first and second derivatives. 555

In linear regression, the link function takes the from b(✓) = ✓2/2. So, b0(✓) = ✓ and b00(✓) = 1. Then,
bAn = XTX , and bBn = XTdiag{(y � b✓) � (y � b✓)}X where diag{(y � b✓) � (y � b✓)} is the diagonal
matrix whose i-th entry is (yi � b✓i)2.

In logistic regression, the link function takes the from b(✓) = log(1 + e✓). Then, the derivatives are
b0(✓) = e✓/(1 + e✓) and b00(✓) = e✓/(1 + e✓)2. First, we can form diagonal matrix ⌃(Xb�n) whose i- 560

th diagonal entry is exp(b✓i)/{1 + exp(b✓i)}2, and calculate bAn = An(b�n) = XT⌃(Xb�n)X . Next, we
need another diagonal matrix, namely diag[{y � µ(Xb�n)} � {y � µ(Xb�n)}] with the i-th diagonal
entry being [yi � exp(b✓i)/{1 + exp(b✓i)}]2. Then, we calculate bBn = XTdiag[{y � µ(Xb�n)} � {y �
µ(Xb�n)}]X .

In either case, we obtain the plug-in estimates of An and Bn following Section 3.3. Finally, we get 565

bHn = bA�1
n
bBn. We use log determinant and the trace of bHn to calculate HGBICp.

B. NUMERICAL STUDIES ON LOGISTIC REGRESSION WITH INTERACTION

Our second simulation example is the high-dimensional logistic regression with interaction. We sim-
ulated 100 data sets from the logistic regression model with interaction and an n-dimensional parameter
vector 570

✓ = Z� + 2xp+1 + 2xp+2, (A.1)

where Z = (x1, . . . , xp) is an n⇥ p design matrix, xp+1 = x1 � x2 and xp+2 = x3 � x4 are two inter-
action terms, and the rest of the setting is the same as in the simulation example in Section 4.2. For
each data set, the n-dimensional response vector y was sampled from the Bernoulli distribution with
success probability vector {e✓1/(1 + e✓1), . . . , e✓n/(1 + e✓n)}T with ✓ = (✓1, . . . , ✓n)T given in (A.1).
As in Section 4.2, we consider the case where all covariates are independent of each other. We chose 575

�0 = (2.5,�1.9, 2.8,�2.2, 3, 0, . . . , 0)T and set sample size n = 300. Although the data was generated
from the logistic regression model with parameter vector (A.1), we fit the logistic regression model with-
out the two interaction terms. This provides another example of misspecified models. As argued in Sec-
tion 4.2, the oracle working model is supp(�0) = {1, . . . , 5} which corresponds to the logistic regression
model with the first five covariates. To build a sequence of sparse models, we applied Lasso followed by 580

maximum-likelihood refitting based on the support of the estimated model.
Since the goal in logistic regression is usually classification, we replace the prediction error with the

classification error rate. Tables 3 and 4 show similar conclusions to those in Section 4.2. Again HGBICp

outperformed all other model selection criteria with greater advantage as the dimensionality increases
(e.g., p � 800). As in Example 4.2, we also present the trend of the false discovery proportion and the 585

true positive rate as ⇣ varies in Figure 2. From the figure, we observe that it is a more difficult setting
than the multiple index model to reach model selection consistency. The proposed HGBICp criterion with
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Table 3. Average results over 100 repetitions for Example B with all entries multiplied by 100.

Consistent selection probability with sure screening probability in parentheses
p AIC BIC EBIC GIC GAIC GBIC GBICp HGBICp Oracle
100 0(100) 30(100) 71(100) 67(100) 3(100) 32(100) 60(100) 98(98) 100(100)
200 0(100) 27(100) 72(100) 73(100) 1(100) 29(100) 50(100) 94(96) 100(100)
400 0(100) 12(100) 80(100) 85(100) 0(100) 16(100) 44(100) 94(94) 100(100)
800 0(100) 2(99) 65(98) 75(98) 0(99) 4(99) 31(99) 92(93) 100(100)
1600 0(100) 0(100) 55(96) 74(95) 0(99) 1(100) 14(98) 83(84) 100(100)
3200 0(100) 0(100) 64(99) 79(98) 0(100) 1(100) 13(100) 78(81) 100(100)

Mean classification error (in percentage) with standard error in parentheses
100 25.3(0.3) 16.1(0.2) 15.5(0.2) 15.5(0.2) 17.1(0.2) 16.1(0.2) 15.6(0.2) 15.2(0.2) 15.2(0.2)
200 24.9(0.3) 17.2(0.3) 15.9(0.2) 15.8(0.2) 17.9(0.2) 16.9(0.3) 16.1(0.2) 15.5(0.2) 15.4(0.2)
400 25.0(0.3) 19.7(0.4) 15.5(0.3) 15.4(0.2) 18.7(0.3) 17.8(0.3) 16.3(0.2) 15.3(0.2) 15.2(0.2)
800 24.7(0.3) 21.9(0.4) 16.2(0.2) 15.9(0.2) 18.9(0.2) 18.8(0.3) 16.8(0.3) 15.8(0.2) 15.5(0.2)
1600 26.0(0.4) 24.3(0.4) 16.2(0.2) 15.8(0.2) 19.4(0.3) 20.2(0.3) 17.2(0.2) 15.9(0.3) 15.4(0.2)
3200 25.7(0.3) 24.4(0.4) 16.0(0.2) 15.7(0.2) 19.3(0.2) 20.7(0.3) 17.9(0.3) 16.0(0.2) 15.3(0.2)

the choice of ⇣ = 1 appears to strike a good balance between the false discovery proportion and the true
positive rate.

To evaluate how much the fitted misspecified model deviates from the true model, we have now cal-590

culated the average correlation (AC) between the fitted mean vector and the true mean vector, and the
consistent selection probability (CSP) over 100 repetitions, for the multiple index model and logistic re-
gression model in Table 5. It shows that the proposed information criterion is in general robust to different
levels of model misspecification.

Table 4. Average false positives over 100 repetitions for Example B.

p AIC BIC EBIC GIC GAIC GBIC GBICp HGBICp

100 55.71 1.57 0.37 0.43 4.51 1.48 0.54 0.00
200 40.83 3.24 0.46 0.37 5.10 2.14 0.80 0.02
400 35.25 11.74 0.28 0.16 6.43 4.27 1.16 0.00
800 31.78 18.22 0.55 0.26 5.83 6.00 1.59 0.01
1600 30.25 22.65 0.65 0.26 5.87 8.02 2.06 0.01
3200 28.41 22.31 0.50 0.25 5.26 8.61 2.74 0.03

Table 5. Average correlation (AC) between the fitted mean vector and the true mean vector, and
the consistent selection probability (CSP), for the multiple index model and logistic regression
model

Multiple index model Logistic regression model
p AC CSP AC CSP
100 0.97 1.00 0.89 0.98
200 0.97 0.99 0.89 0.94
400 0.97 0.99 0.89 0.94
800 0.97 0.98 0.89 0.92
1600 0.97 0.98 0.88 0.83
3200 0.97 0.95 0.88 0.78
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Fig. 2. The average false discovery proportion (left panel)
and the true positive rate (right panel) as the factor ⇣ varies
for Example B when p = 200 (black solid), p = 800 (red

dashes), and p = 3200 (green dot-dash).

C. NUMERICAL STUDIES ON POISSON REGRESSION WITH INTERACTION 595

Our third simulation example is the high-dimensional Poisson regression with interaction. We simu-
lated 100 data sets from the Poisson regression model with interaction and an n-dimensional parameter
vector

✓ = 1.5 + Z� + xp+1 + xp+2, (A.1)

where Z = (x1, . . . , xp) is an n⇥ p design matrix, and xp+1 = x1 � x2 and xp+2 = x3 � x4 are two
interaction terms. Here the rows of the n⇥ p design matrix Z are sampled as independent copies via 600

the following process. First, we generate wp⇥1 ⇠ t5(0,⌃), a multi-variate t-distribution with 5 de-
grees of freedom and scale matrix ⌃, where ⌃ij = ⇢|i�j| for all i and j. We consider two correla-
tion structures, namely ⇢ = 0 and ⇢ = 0.6. Then, we define xp⇥1 = (x1, . . . , xp)T as a scaled ver-
sion of w to the unit interval, where xj = (wj �mink wk)/(maxk wk �mink wk), for j = 1, . . . , p.
Finally, for each data set, the n-dimensional response vector y was sampled from the Poisson dis- 605

tribution with mean vector (e✓1 , . . . , e✓n)T with ✓ = (✓1, . . . , ✓n)T given in (A.1). Here, we choose
�0 = (1.25, 1, 0.75, 1.25, 1, 0, . . . , 0)T and set sample size n = 200. Although the data was generated
from the Poisson regression model with parameter vector (A.1), we fit the Poisson regression model
without the two interaction terms. From the data generation process, it is clear that Y is independent
of (x6, . . . , xp) conditional on (x1, . . . , x5). Thus the oracle working model is supp(�0) = {1, . . . , 5}, 610

which corresponds to the Poisson regression model with the first five covariates; it is sometimes referred
to as the Markov blanket for Y (Candès et al., 2018). To build a sequence of sparse models, we applied
Lasso followed by maximum-likelihood refitting based on the support of the estimated model.

Tables 6, 7, 8, and 9 show similar conclusions to those in Sections 4.2 and B. Again HGBICp outper-
formed all other model selection criteria in terms of higher consistent selection probability and smaller 615

mean squared prediction error, with a more prominent improvement when the covariates are dependent
(⇢ = 0.6).

To test the robustness of the proposed method, we consider a fourth simulation example, which is sim-
ilar to the third example with a change in the covariate generating process. In particular, the rows of the
n⇥ p design matrix Z are sampled as independent copies from a mixture of two t-distributions via the fol- 620
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Table 6. Average results over 100 repetitions for Example C with all entries in the top panel
multiplied by 100 when ⇢ = 0.

Consistent selection probability with sure screening probability in parentheses
p AIC BIC EBIC GIC GAIC GBIC GBICp HGBICp Oracle
100 0(100) 12(100) 39(100) 36(100) 25(100) 12(100) 44(100) 97(100) 100(100)
200 0(100) 12(100) 57(100) 60(100) 23(100) 18(100) 54(100) 98(100) 100(100)
400 0(100) 15(100) 71(100) 73(100) 15(100) 21(100) 54(100) 100(100) 100(100)
800 0(100) 14(100) 73(100) 81(100) 13(100) 15(100) 59(100) 100(100) 100(100)
1600 0(100) 12(100) 81(100) 85(100) 8(100) 18(100) 52(100) 99(100) 100(100)
3200 0(100) 12(100) 82(100) 92(100) 5(100) 13(100) 41(100) 99(100) 100(100)

Mean prediction error with standard error in parentheses
100 577(39) 424(32) 381(25) 381(25) 396(28) 423(32) 367(25) 334(21) 333(21)
200 451(16) 289(11) 254(8) 250(8) 279(10) 284(11) 250(8) 234(7) 233(7)
400 378(16) 232(9) 201(6) 201(6) 240(9) 223(7) 205(6) 192(5) 192(5)
800 337(12) 205(7) 173(4) 171(4) 211(8) 198(6) 176(4) 166(3) 166(3)
1600 313(11) 191(7) 159(4) 158(4) 206(7) 182(5) 169(5) 154(4) 154(4)
3200 284(9) 174(6) 145(3) 143(3) 189(7) 171(5) 153(4) 142(3) 142(3)

Table 7. Average false positives over 100 repetitions for Example C when ⇢ = 0.

p AIC BIC EBIC GIC GAIC GBIC GBICp HGBICp

100 25.14 3.42 1.60 1.65 3.05 3.27 1.14 0.03
200 34.21 3.71 1.03 0.79 3.92 3.14 0.90 0.02
400 35.84 3.72 0.63 0.57 5.33 2.86 0.98 0.00
800 40.47 4.02 0.40 0.27 5.07 2.96 0.80 0.00
1600 38.80 4.28 0.24 0.20 7.83 2.87 1.07 0.01
3200 38.05 4.07 0.23 0.08 6.83 3.34 1.05 0.01

Table 8. Average results over 100 repetitions for Example C with all entries in the top panel
multiplied by 100 when ⇢ = 0.6.

Consistent selection probability with sure screening probability in parentheses
p AIC BIC EBIC GIC GAIC GBIC GBICp HGBICp Oracle
100 0(100) 1(100) 13(100) 12(100) 42(100) 1(100) 39(100) 89(100) 100(100)
200 0(100) 1(100) 8(100) 8(100) 46(100) 1(100) 42(100) 92(100) 100(100)
400 0(100) 1(100) 20(100) 24(100) 34(100) 1(100) 38(100) 92(100) 100(100)
800 0(100) 0(100) 29(100) 31(100) 29(100) 1(100) 32(100) 94(100) 100(100)
1600 0(100) 1(100) 35(100) 48(100) 19(100) 2(100) 29(100) 95(100) 100(100)
3200 0(100) 0(100) 45(100) 59(100) 9(100) 2(100) 24(100) 97(100) 100(100)

Mean prediction error with standard error in parentheses
100 1943(114) 1245(91) 1099(80) 1086(79) 955(73) 1204(84) 923(62) 796(55) 779(55)
200 2102(209) 1202(118) 1013(89) 998(88) 854(78) 1165(106) 864(80) 725(60) 715(60)
400 1301(88) 859(65) 652(50) 636(49) 659(49) 819(64) 593(44) 525(41) 511(39)
800 1160(84) 716(64) 536(47) 521(45) 575(58) 673(62) 537(48) 425(37) 416(32)
1600 1039(81) 624(48) 463(34) 442(33) 539(46) 589(46) 475(36) 377(29) 374(28)
3200 754(63) 439(29) 332(24) 318(23) 435(34) 426(30) 361(28) 275(16) 275(16)

lowing process. First, we generate w(1)
p⇥1 ⇠ t5(0,⌃), a multi-variate t-distribution with 5 degrees of free-

dom and scale matrix⌃, where⌃ij = 0.5|i�j| for all i and j. Then, we define x(1)
p⇥1 = (x(1)

1 , . . . , x(1)
p )T as

a scaled version of w(1) to the unit interval, where x(1)
j = (w(1)

j �mink w
(1)
k )/(maxk w

(1)
k �mink w

(1)
k ),

for j = 1, . . . , p. Following a similar process, we generate an independent w(2)
p⇥1 ⇠ t4(0, Ip), a multi-

variate t-distribution with 4 degrees of freedom and scale matrix Ip. And x(2)
p⇥1 is its corresponding625
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Table 9. Average false positives over 100 repetitions for Example C when ⇢ = 0.6.

p AIC BIC EBIC GIC GAIC GBIC GBICp HGBICp

100 30.37 5.83 3.18 2.95 1.53 5.22 1.29 0.13
200 36.36 5.70 2.89 2.51 1.27 5.04 1.09 0.11
400 29.86 5.93 1.81 1.59 2.03 4.64 1.01 0.09
800 34.47 6.14 1.58 1.33 3.04 4.86 1.40 0.06
1600 34.24 5.68 1.43 0.91 3.82 4.44 1.47 0.05
3200 34.01 5.76 0.93 0.67 5.62 4.46 1.79 0.03

Table 10. Average results over 100 repetitions for Example C with the mixture distribution and
with all entries in the top panel multiplied by 100.

Consistent selection probability with sure screening probability in parentheses
p AIC BIC EBIC GIC GAIC GBIC GBICp HGBICp Oracle
100 0(100) 4(100) 30(100) 28(100) 30(100) 5(100) 44(100) 92(100) 100(100)
200 0(100) 10(100) 40(100) 43(100) 27(100) 13(100) 54(100) 92(100) 100(100)
400 0(100) 10(100) 40(100) 46(100) 16(100) 10(100) 37(100) 99(100) 100(100)
800 0(100) 8(100) 59(100) 67(100) 15(100) 12(100) 46(100) 97(100) 100(100)
1600 0(100) 8(100) 59(100) 70(100) 11(100) 12(100) 39(100) 98(100) 100(100)
3200 0(100) 8(100) 65(100) 77(100) 13(100) 13(100) 51(100) 99(100) 100(100)

Mean prediction error with standard error in parentheses
100 1565(216) 1194(187) 1077(174) 1079(174) 1069(176) 1175(186) 1016(162) 958(158) 945(158)
200 932(98) 625(76) 539(71) 533(71) 616(87) 609(76) 533(72) 480(63) 474(63)
400 1025(114) 623(70) 537(69) 527(68) 649(74) 589(66) 543(70) 468(56) 468(56)
800 625(65) 397(40) 314(29) 304(27) 404(49) 370(32) 328(30) 284(26) 283(26)
1600 635(67) 361(40) 271(28) 268(28) 355(41) 331(35) 290(35) 255(27) 253(27)
3200 569(52) 310(23) 230(14) 225(14) 319(29) 295(22) 242(16) 218(14) 216(13)

scaled version. Subsequently, we generate xp⇥1 according to the mixture distribution xp⇥1 = ◆x(1)
p⇥1 +

(1� ◆)x(2)
p⇥1, where ◆ is an independent Bernoulli random variable with distribution Ber(0.5). The re-

maining data generation process and fitting procedure are the same as in the third simulation example.
Tables 10 and 11 show similar conclusions as the tables for the third simulation example. Again HGBICp

outperformed all other model selection criteria in terms of higher consistent selection probability, smaller 630

mean squared prediction error, and much smaller false positives. This demonstrates the robustness of the
proposed model selection criteria.

Table 11. Average false positives over 100 repetitions for Example C with the mixture distribu-
tion.

p AIC BIC EBIC GIC GAIC GBIC GBICp HGBICp

100 26.80 4.95 2.24 2.16 2.35 4.25 1.15 0.08
200 32.39 5.07 1.75 1.49 3.06 4.04 0.84 0.08
400 35.19 4.53 1.35 1.02 5.25 3.43 1.06 0.01
800 34.15 4.46 0.84 0.64 4.89 3.44 1.07 0.03
1600 38.36 4.36 0.54 0.36 4.92 3.01 1.06 0.02
3200 35.84 4.87 0.52 0.28 5.19 3.55 0.97 0.01
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D. DISCUSSION ON ASSUMPTION 5
Assumption 5 is about the continuity of the matrix-valued functions Vn(�) and eVn(�1, . . . ,�d) at

�n,0. To obtain some further insights, let us expand Vn(�) in terms of the design matrix X , the covariance635

matrix of response vector cov(Y ), and the link function b(✓) as

Vn(�) = {XT cov(Y )X}�1/2XT⌃(X�)X{XT cov(Y )X}�1/2,

where⌃(✓) = diag{b00(✓1), . . . , b00(✓n)}. Assumption 5 puts some restrictions on the minimum and max-
imum eigenvalues of Vn(�)� Vn in a shrinking neighborhood of �n,0. In particular, Vn(�)� Vn has
the same spectrum as the corresponding matrix {XT cov(Y )X}1/2{Vn(�)� Vn}{XT cov(Y )X}�1/2,
which can be simplified as640

{XT cov(Y )X}1/2{Vn(�)� Vn}{XT cov(Y )X}�1/2

= {XT⌃(X�)X �XT⌃(X�n,0)X}{XT cov(Y )X}�1

= XT {⌃(X�)� ⌃(X�n,0)}X{XT cov(Y )X}�1.

Hence, Assumption 5 can be regarded as the continuity condition of the matrix-valued function
XT {⌃(X�)� ⌃(X�n,0)}X{XT cov(Y )X}�1 at �n,0. Moreover, the only factor that depends on � in645

this expression is the difference⌃(X�)� ⌃(X�n,0), which is a diagonal matrix. The diagonal entries are
given by b00(·), which is assumed to be a continuous function. Thus the difference ⌃(X�)� ⌃(X�n,0)
can be kept small in an appropriately scaled neighborhood of �n,0. A similar analysis can be conducted
on eVn(�1, . . . ,�d).

Furthermore, it is easy to see that Assumption 5 is satisfied under the linear model. Indeed, under650

linear model, the second derivative of the link function is constant, so are both functions Vn(�) and
eVn(�1, . . . ,�d). Hence, the differences in the assumption are zero matrices, and Assumption 5 holds
naturally. For the logistic regression model and Poisson regression model, the second derivative of the
link function is a continuous function b00(✓) = exp(✓)/{1 + exp(✓)}2 and b00(✓) = exp(✓), respectively.

E. PROOFS OF MAIN RESULTS655

We provide the proofs of Theorems 1–3 in this section. We aim to establish the asymptotic consis-
tency of the maximum likelihood estimator uniformly over all models Mm such that |Mm|  K where
K = o(n). For this purpose, we extend our notation. �n,0(Mm) denotes the parameter vector for the
working model and is defined as the minimizer of the Kullback–Leibler divergence whose support is
Mm: �n,0(Mm) = argmin�2B(Mm) I{gn; fn(·;�, ⌧)}. �n,0(Mm) is estimated by the maximum likeli-660

hood estimator b�(Mm) which is defined as b�(Mm) = argmax�2B(Mm) `n(�).

E.1. Proof of Theorem 1
We consider the decomposition of S(y,Mm;Fn) in (13) and deal with terms log[EµMm

{Un(�)n}] and
log↵Mm separately by invoking Taylor’s expansion. In fact, log[EµMm

{Un(�)n}] is based on `⇤n(y,�),
the deviation of the quasi-log-likelihood from its maximum, while log↵Mm is the log-prior probabil-665

ity which depends on Dm = E[I{gn; fn(·, b�n,m)}� I{gn; fn(·,�n,m,0)}], expected difference in the
Kullback–Leibler divergences. In light of consistency of the estimator b�n as shown in Lemma 1, we focus
only on the neighborhood of �n,0.

First, we make a few remarks on the technical details of the proof. Throughout the proof, we con-
dition on the event eQn = {b�n 2 Nn(�n)}, where Nn(�n) = {� 2 Rd : k(n�1Bn)1/2(� � �n,0)k2 670

(n/d)�1/2�n}, Bn = XT cov(Y )X , �n = O{Ln(log p)1/2} and b�n is the unrestricted MLE. The eigen-
values of n�1An(�) and n�1Bn are bounded away from 0 and 1 by Assumptions 1 and 3. This follows
from the fact that eigenvalues of MTNM lie between �min(N)�min(MTM) and �max(N)�max(MTM)
for any matrix M and positive semidefinite symmetric matrix N . Therefore, from Lemma 1 we have that
pr( eQn) ! 1 as n ! 1.675
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To establish this theorem we require a possibly dimension dependent bound on the quantity
kn�1/2Xb�nk2. This can be achieved by putting some restriction on the parameter space. Let Mn(↵) =
{� 2 Rd : kX�k1  ↵ log n} be a neighborhood, where ↵ is some positive constant. One way of bound-
ing the quantity kn�1/2Xb�nk2 is to restrict the maximum likelihood estimator b�n on the set Mn(↵). Here,
the constant ↵ can be chosen as large as desired to make Mn(↵) large enough, whereas the neighborhood 680

Nn(�n) is asymptotically shrinking. Then, we have Nn(�n) ⇢ Mn(↵) for all sufficiently large n, which
implies that conditional on eQn, the restricted MLE coincides with its unrestricted version. Hereafter in
this proof, b�n will be referred to as the restricted ML unless specified otherwise.

Part I: expansion of the term log[EµMm
{Un(�)n}]. Recall that Un(�) = exp{n�1`⇤n(y,�} and

`⇤n(y,�) = `n(y,�)� `n(y, b�n). First, we observe that the maximum value of the function `⇤n(y,�) 685

is attained at � = b�n. Moreover, we have @2`⇤n(y,�)/@�
2 = �An(�) from (8) where An(�) =

XT⌃(X�)X . Then, we consider Taylor’s expansion of the log-likelihood function `n(y, ·) around b�n

in a new neighborhood eNn(�n) = {� 2 Rd : k(n�1Bn)1/2(� � b�n)k2  (n/d)�1/2�n}. We get

`⇤n(y,�) =
1

2
(� � b�n)

T
�
@2`⇤n(y,�⇤)/@�

2 (� � b�n) (A.1)

= �n

2
�TVn(�⇤)�, 690

where �⇤ lies on the line segment joining � and b�n, � = n�1/2B1/2
n (� � b�n), and Vn(�) =

B�1/2
n An(�)B

�1/2
n . Since b�n 2 eNn(�n), by the convexity of the neighborhood eNn(�n) we have �⇤ 2

eNn(�n). We also note that conditional on the event eQn, it holds that eNn(�n) ⇢ Nn(2�n).
Now, we will bound Un(�)n over the region eNn(�n) using Taylor’s expansion in (A.1). By Assumption

5, we get 695

q1(�)1 eNn(�n)
(�)  �n�1`⇤n(y,�)1 eNn(�n)

(�)  q2(�)1 eNn(�n)
(�), (A.2)

where q1(�) = 1
2�

T {Vn � ⇢n(�n)Id}� and q2(�) =
1
2�

T {Vn + ⇢n(�n)Id}�. Then, we consider the linear
transformation h(�) = (n�1Bn)1/2�. For sufficiently large n, we obtain

EµMm
{e�nq2(�)1 eNn(�n)

(�)}  EµMm
{Un(�)

n1 eNn(�n)
(�)}  EµMm

{e�nq1(�)1 eNn(�n)
(�)}, (A.3)

where µMm denotes the prior distribution on h(�) 2 Rd for the model Mm.
The final expansion of log[EµMm

{Un(�)n}] results from combination of Lemmas 7–10. The expres- 700

sions EµMm
{Un(�)n1 eNc

n(�n)
} and

R
�2Rd e�nqj1 eNc

n(�n)
dµ0 for j = 1, 2 in Lemmas 8 and 10 converge

to zero faster than any polynomial rate in n since en = �min(Vn)/2 is bounded away from 0. Moreover,
Lemmas 7 and 9 yield

log[EµMm
{Un(�)

n}] = log

(✓
2⇡

n

◆d/2

|Vn ± ⇢n(�n)Id|�1/2

)
+ log c4,

where c4 2 [c3, c
�1
3 ]. Finally, we observe that 705

|Vn ± ⇢n(�n)Id|�1/2 = |Vn|�1/2|Id ± ⇢n(�n)V
�1
n |�1/2 = |Vn|�1/2[1 +O{⇢n(�n)tr(V �1

n )}]�1/2

= |Vn|�1/2[1 +O{⇢n(�n)d��1
min(Vn)}]�1/2 = |Vn|�1/2{1 + o(1)},

where we use Assumption 5. So, we obtain

log[EµMm
{Un(�)

n}] = log

"✓
2⇡

n

◆d/2

|Vn|�1/2{1 + o(1)}
#
+ log c4

= � log n

2
d+

1

2
log |A�1

n Bn|+
log(2⇡)

2
d+ log c4 + o(1). (A.4) 710
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This completes the expansion of log[EµMm
{Un(�)n}].

Part II: expansion of the prior term log↵Mm . Now, we consider the prior term log↵Mm which depends
on b�n through Dm. Simple calculation shows that

log↵Mm = �Dm + logC � d log p. (A.5)

We aim to provide a decomposition of Dm in terms of Hn. Observe that �Dm = E{⌘n(b�n)}� ⌘n(�n,0)715

where ⌘n(�) = E{`n(ey,�)}, and ey is an independent copy of y. We expand E{⌘n(b�n)} around ⌘n(�n,0).
In the generalized linear models setup, we observe that `n(ey,�) = eyTX� � 1T b(X�) and ⌘n(�) =

{E(eyT )}X� � 1T b(X�). Then, we split E{⌘n(b�n)} in the region eQn and its complement, that is,

E{⌘n(b�n)} = E{⌘n(b�n)1 eQn
}+ E{⌘n(b�n)1 eQc

n
} (A.6)

= E{⌘n(b�n)1 eQn
}+ E[{(Eỹ)T (Xb�n)� 1T b(Xb�n)}1 eQc

n
].720

First, we aim to show that the second term on the right-hand side of (A.6) is o(1). Performing
componentwise Taylor’s expansion of b(·) around 0 and evaluating at Xb�n, we obtain b(Xb�n) =

b(0) + b0(0)Xb�n + r, where r = (r1, . . . , rn)T with ri = 2�1b00{(X�⇤
i )i}(Xb�n)

2
i and �⇤

1, . . . ,�
⇤
n ly-

ing on the line segment joining b�n and 0. Thus, we get

E[|{E(ey)}TXb�n � 1T b(Xb�n) | 1 eQc
n
]  O{n log n+ n+ n(log n)2}pr( eQc

n) = o(1) (A.7)725

for sufficiently large n. The last inequality follows from the fact that pr( eQc
n) converges to zero faster than

any polynomial rate. To verify the orders, we recall that b�n is the constrained MLE and b00(·) is bounded
away from 0 and 1. Thus, we obtain following bounds for the four terms |{E(ey)}TXb�n| = O(n log n),
|1T b(0)| = O(n), |b0(0)1TXb�n| = O(n log n), and |1T r| = O{n(log n)2}.

Now, we consider the first term on the right-hand side of (A.6). We begin by expanding ⌘n(�) around730

�n,0 conditioned on the event fQn. By the definition of �n,0, ⌘n(�) attains its maximum at �n,0. By
evaluating Taylor’s expansion of ⌘n(·) around �n,0 at b�n, we derive

⌘n(b�n) = ⌘n(�n,0)�
1

2
(b�n � �n,0)

TAn(�
⇤)(b�n � �n,0)

= ⌘n(�n,0)�
1

2
(b�n � �n,0)

TAn(b�n � �n,0)�
sn
2
,

where An(·) = �@2`n(y, ·)/@�2, An = An(�n,0), and �⇤ is on the line segment joining �n,0 and b�n.735

The second equality is obtained by taking sn = (b�n � �n,0)
T {An(�

⇤)�An}(b�n � �n,0). Furthermore,
setting Cn = B�1/2

n An and vn = Cn(b�n � �n,0) simplifies the above expression to

⌘n(b�n) = ⌘n(�n,0)�
1

2
vTn {(C�1

n )TAnC
�1
n }vn � sn

2
. (A.8)

In (A.8), we first handle the term sn. On the event fQn, by the convexity of the neighborhood Nn(�n)
we have �⇤ 2 Nn(�n). Then, Assumption 5 implies740

���sn1fQn

��� =
���(b�n � �n,0)

T {An(�
⇤)�An}(b�n � �n,0)

��� 1fQn
(A.9)

=
���{B1/2

n (b�n � �n,0)}T {Vn(�
⇤)� Vn}{B1/2

n (b�n � �n,0)}
��� 1fQn

 ⇢n(�n)�
2
nd1fQn

,
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where Vn(·) = B�1/2An(·)B�1/2
n and Vn = V (�n,0). We then deduce that E(sn1fQn

) = o(1), since
⇢n(�n)�2nd1fQn

= o(1) by Assumption 5. Therefore, (A.8) becomes 745

E{⌘n(b�n)1fQn
} = E[⌘n(�n,0)�

1

2
vTn {(C�1

n )TAnC
�1
n }vn1fQn

] + o(1). (A.10)

We provide a decomposition of vn to handle the term vTn {(C�1
n )TAnC�1

n }vn in (A.10). Define
 (�n) = XT {y � µ(X�n)}. From the score equation we have  (b�n) = 0. From (6), it holds that
XT {E(y)� µ(X�n,0)} = 0. For any �1, . . . ,�d 2 Rd, denote by eAn(�1, . . . ,�d) a d⇥ d matrix with
jth row the corresponding row of An(�j) for each j = 1, . . . , d. Then, we define matrix-valued function
eVn(�1, . . . ,�d) = B�1/2

n eAn(�1, . . . ,�d)B
�1/2
n . Assuming the differentiability of  (·) and applying the 750

mean-value theorem componentwise around �n,0, we obtain

0 =  n(b�n) =  n(�n,0)� eAn(�1, . . . ,�d)(b�n � �n,0)

= XT {y � E(y)}� eAn(�1, . . . ,�d)(b�n � �n,0),

where each of �1, . . . ,�d lies on the line segment joining b�n and �n,0. Therefore, we have the decompo-
sition 755

vn = Cn(b�n � �n,0) = un + wn, (A.11)

where un = B�1/2
n XT {y � E(y)} and wn = �{eVn(�1, . . . ,�d)� Vn}{B1/2

n (b�n � �n,0)}.
We handle the quadratic term vTn {(C�1

n )TAnC�1
n }vn in (A.10) by using the decomposition of vn.

For simplicity of notation, denote by Rn = (C�1
n )TAnC�1

n . Recall that Cn = B�1/2
n An. With some

calculations we obtain

E(uT
nRnun) = E[{y � E(y)}TXA�1

n XT {y � E(y)}] 760

= E(tr[A�1
n XT {y � E(y)}{y � E(y)}TX]) = tr(A�1

n Bn).

We get E(uT
nRnun1fQn

) = E(uT
nRnun)� E(uT

nRnun1fQn
c). From Lemma 1, we have pr(fQn

c
) ! 0

as n ! 1. We set eµn = max{tr(A�1
n Bn), 1}, hereby µn is bounded away from zero. We apply Vitali’s

convergence theorem to show that E(uT
nRnun1fQn

c) = o(eµn). To establish uniform integrability, we use
Lemma 6 which states that supn E{|(uT

nRnun)/eµn|1+�} < 1 for some constant � > 0. This leads to 765

E(uT
nRnun1fQn

c) = o(eµn). Hence we have

1

2
E(uT

nRnun1fQn
) =

1

2
tr(A�1

n Bn) + o(eµn). (A.12)

Now, it remains to show that

E{(wT
nRnwn + 2wT

nRnun)1fQn
} = o(eµn). (A.13)

Using the definition of Rn and wn, we can bound wT
nRnwn:

wT
nRnwn = kR1/2

n wnk22  keVn(�1, . . . ,�d)� Vnk22�2ndtr(A�1
n Bn).

So, on the event fQn, it holds that E(wT
nRnwn1fQn

) = o(eµn) by Assumption 5. For the cross term 770

wT
nRnun, applying the Cauchy–Schwarz inequality yields

|E(wT
nRnun1fQn

)|  E(kR1/2
n wnk221fQn

)1/2E(kuT
nR

1/2
n k22)1/2

 E{keVn(�1, . . . ,�d)� Vnk21fQn
�nd

1/2tr(A�1
n Bn)}.
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Thus, we obtain that E(wT
nRnun1fQn

) = o(eµn). E{|⌘n(�n,0)|1fQn
c} is of order o(1) by similar calcula-

tions as in (A.7). Then, combining (A.6), (A.10), (A.12), and (A.13) yields775

E{⌘n(b�n)} = ⌘n(�n,0)�
1

2
tr(A�1

n Bn) + o(eµn). (A.14)

From (A.5) and (A.14), we can obtain the expansion

log↵Mm = �1

2
tr(A�1

n Bn) + logC � d log p+ o(eµn).

Therefore, combining Parts I and II completes the proof of Theorem 1.

E.2. Proof of Theorem 2
At the beginning of the proof, we demonstrate that the theorem follows from the consistency of bAn and780

bBn. Next, we establish the consistency of bAn and bBn. The consistency of bAn follows directly from the
Lipschitz assumption; however, the consistency of bBn is harder to prove. To accomplish this, we break
down bBn and invoke Bernstein-type tail inequalities and concentration theorems to handle challenging
pieces.

We first introduce some notation to simplify the presentation of the proof. �k(·) denotes the eigen-785

values arranged in increasing order. Denote the spectral radius of d⇥ d square matrix M by ⇢(M) =
max1kd{|�k(M)|}. k · k2 denotes the matrix operator norm. oP (·) denotes the convergence in proba-
bility of the matrix operator norm.

We want to show that log | bHn| = log |Hn|+ oP (1) and tr( bHn) = tr(Hn) + oP (1). To establish both
equalities, it is enough to show that bHn = Hn + oP (1/d). Indeed, assume that bHn = Hn + oP (1/d) is790

established. In that case, we observe that

|tr( bHn)� tr(Hn)| = |tr( bHn �Hn)|  d⇢( bHn �Hn) = dk bHn �Hnk2 = oP (1),

where the equality of the spectral radius and the operator norm follows from the symmetry of the matrix
bHn �Hn. Moreover, we have

| log | bHn|� log |Hn||  d max
1kd

| log �k( bHn)� log �k(Hn)|795

= d max
1kd

log

"
max

(
�k( bHn)

�k(Hn)
,
�k(Hn)

�k( bHn)

)#

 d max
1kd

"
max

(
�k( bHn)

�k(Hn)
,
�k(Hn)

�k( bHn)

)
� 1

#

 d max
1kd

|�k( bHn)� �k(Hn)|
min{�k( bHn),�k(Hn)}

. (A.15)

Recall that the smallest and largest eigenvalues of both n�1Bn and n�1An are bounded away from 0 and
1. (See the note in the beginning of the proof of Theorem 1.) So, we get �k(Hn) = O(1) and ��1

k (Hn) =800

O(1) uniformly for all 1  k  d. An application of Weyl’s theorem shows that |�k( bHn)� �k(Hn)| 
⇢( bHn �Hn) for each k. We have ⇢( bHn �Hn) = k bHn �Hnk2 = oP (1/d). Hence, the right-hand side
of (A.15) is oP (1).

Now, we proceed to show that bHn = Hn + oP (1/d). It suffices to prove that n�1 bAn = n�1An +
oP (1/d) and n�1 bBn = n�1Bn + oP (1/d). To see the sufficiency,805

bHn �Hn = (n�1 bAn)
�1(n�1d bBn)� (n�1An)

�1(n�1dBn)

= (n�1 bAn)
�1(n�1d bBn)� (n�1 bAn)

�1(n�1dBn)

+ (n�1 bAn)
�1(n�1dBn)� (n�1An)

�1(n�1dBn).
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Then, bHn = Hn + oP (1/d) can be obtained by repeated application of the following properties of the
operator norm: k(Id �M)�1k2  1/(1� kMk2) if kMk2 < 1, kMNk2  kMk2kNk2, and kM + 810

Nk2  kMk2 + kNk2, where M and N are d⇥ d matrices Horn & Johnson (1985).

Part 1: prove n�1 bAn = n�1An + oP (1/d). From Lemma 1 we have, kb�n � �n,0k2 =

OP {(n/d)�1/2�n}, which entails b�n = �n,0 +OP {(n/d)�1/2�n}. Then it follows from the Lipschitz
assumption for n�1An(�) in the neighborhood Nn(�n) that n�1 bAn = n�1An + oP (1/d).

Part 2: prove n�1 bBn = n�1Bn + oP (1/d). We need to control the term y � µ(Xb�n). In correctly 815

specified models, µ(X�n,0) and E(y) are the same. So, it is enough to introduce the mean E(y) which
is close to both y and µ(Xb�n). However, it is harder to control the term y � µ(Xb�n) in misspecified
models since we need to deal with both µ(X�n,0) and E(y).

First, we use the fact that µ(X�n,0) and µ(Xb�n) are close. To accomplish this, we add and subtract
µ(X�n,0) to get the following decomposition: 820

n�1 bBn = n�1XTdiag
hn

y � µ(Xb�n)
o
�
n
y � µ(Xb�n)

oi
X

= G1 +G2 +G3,

where

G1 = n�1XTdiag[{y � µ(X�n,0)} � {y � µ(X�n,0)}]X,

G2 = 2n�1XTdiag[{y � µ(X�n,0)} � {µ(X�n,0)� µ(Xb�n)}]X, 825

G3 = n�1XTdiag[{µ(Xb�n)� µ(X�n,0)} � {µ(Xb�n)� µ(X�n,0)}]X.

Next, we introduce E(y) to obtain terms y � E(y) and E(y)� µ(X�n,0) both of which can be kept
small. We split G1 as G1 = G11 +G12 +G13 and G2 as G2 = G21 +G22, where

G11 = n�1XTdiag[{y � E(y)} � {y � E(y)}]X,

G12 = 2n�1XTdiag[{y � E(y)} � {E(y)� µ(X�n,0)}]X, 830

G13 = n�1XTdiag[{E(y)� µ(X�n,0)} � {E(y)� µ(X�n,0)}]X,

G21 = 2n�1XTdiag[{y � E(y)} � {µ(X�n,0)� µ(Xb�n)}]X,

G22 = 2n�1XTdiag[{E(y)� µ(X�n,0)} � {µ(X�n,0)� µ(Xb�n)}]X.

Now, we will control each of the above terms separately. Before we begin, we observe that for any
matrices M and N , we have 835

pr(dkM �Nk2 � t)  pr(dkM �NkF � t)

 d2 max
1j,kd

pr(|M jk �N jk| � t/d2), (A.16)

where k · kF denotes the matrix Frobenius norm and M jk denotes the (j, k)th entry of M . Therefore, it
is enough to bound pr(|M jk �N jk| � t/d2) by o(1/d2) to show that M = N + op(1/d).

Part 2a) prove G11 = n�1Bn + oP (1/d). We will use Bernstein-type tail inequality. First, E(G11) = 840

n�1Bn and Gjk
11 = n�1

Pn
i=1[xijxik{yi � E(yi)}2] =

Pn
i=1 a

jk
i q2i , where ajki = n�1xijxikvar(yi)

and qi = {var(yi)}�1/2{yi � E(yi)}. Let a ajk = (ajk1 , . . . , ajkn )T . Then we have kajkk22 = O(n4u3�1)
since kXk1 = O(nu3) from Assumption 3. It may be noted that qi’s are 1-sub-exponential ran-
dom variables from Assumption 1 and so q2i ’s are 2-sub-exponential random variables. Furthermore,
sup1in var(q

2
i ) = O(1). To see this, we note 845

var(q2i )  E(q4i )  44[4�1{E(q4i )}1/4]4  44
✓
sup
m�1

h
m�1{E(|qi|m)}1/m

i◆4

= O(1),
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where we use Lemma 5. Then combining (A.16) with Lemma 12 for a choice of ↵ = 2, we deduce

pr{dkG11 � E(G11)k2 � t}  d2 max
1j,kd

pr{|Gjk
11 � E(Gjk

11)| � t/d2}

 Cd2 exp(�Ct1/2n1/4�u3/d)

for some constant C. Since d = O(n1) and u < 1/4� u3, the right-hand side of above equation tends
to zero. Thus, we obtain G11 = E(G11) + oP (1/d) = n�1Bn + oP (1/d).850

Part 2b) prove G12 = oP (1/d). Similar to the previous part, we invoke Bernstein-type tail inequal-
ity. Observe that Gjk

12 = n�1
Pn

i=1 2[xijxik{E(y)� µ(X�n,0)}i{yi � E(yi)}] =
Pn

i=1 ã
jk
i qi, where

ãjki = 2n�1var(yi)1/2xijxik{E(y)� µ(X�n,0)}i and qi = {var(yi)}�1/2{yi � E(yi)}. Then, we get
kãjkk22 = O(n4u3+u2/2�3/2) by Assumptions 2 and 3.

By Lemma 11, we have855

pr(dkG12k2 � t)  d2 max
1j,kd

pr(|Gjk
12| � t/d2)

 Cd2 exp{�Ctn3/4�2u3�u2/4/d2}

for some constant C. Since d = O(n1) and 3/4� 2u3 � u2/4� 21 > 0, the right-hand side of above
equation tends to zero. Hence, we have G12 = oP (1/d).

Part 2c) prove G13 = o(1/d). We derive860

kG13k22  kn�1
nX

i=1

(xix
T
i [E(yi)� {µ(X�n,0)}i]2)k2F

= ⌃1j,kd

 
nX

i=1

ajki [E(yi)� {µ(X�n,0)}i]2/var(yi)
!2


nX

i=1

([E(yi)� {µ(X�n,0)}i]2/var(yi))2⌃1j,kdkajkk22,

where the last step follows from the componentwise Cauchy–Schwarz inequality. From Assumptions 2
and 3, we get kG13k22 = O(nu2d2n4u3�1). Therefore, G13 = o(1/d) since d = O(n1) and u2 + 41 +865

4u3 � 1 < 0.
Part 2d) prove G21 = o(1/d2). Bounding G21 is the trickiest part. The use of classical Bernstein-type

inequalities are prohibited since the summation includes two random quantities y and b�. Instead, we will
apply concentration inequalities.

We start by truncating the random variable y by conditioning on the set ⌦n = {kWk1  C1 log n}870

which is defined in Lemma 2. Since b�n belongs to the neighborhood Nn(�n) by Lemma 1, we get

|Gjk
21| =|2n�1

nX

i=1

xijxik{yi � E(yi)}{µ(X�n,0)� µ(Xb�n)}i|

 sup
�n2Nn(�n)

2n�1|
nX

i=1

xijxik{yi � E(yi)}{µ(X�n,0)� µ(X�n)}i|.

Then, we can separate the right-hand side by conditioning on ⌦n. So, we have |Gjk
21|  Gjk

211 +Gjk
212

where875

Gjk
211 = sup

�n2Nn(�n)

2n�1|
nX

i=1

xijxik{yi � E(yi)}{µ(X�n,0)� µ(X�n)}i1⌦n |,

Gjk
212 = sup

�n2Nn(�n)

2n�1|
nX

i=1

xijxik{yi � E(yi)}{µ(X�n,0)� µ(X�n)}i(1� 1⌦n)|.
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First, we bound E(Gjk
211). We take a Rademacher sequence {✏i}ni=1 independent of y. Then, we apply

symmetrization and contraction inequalities in Bühlmann & van de Geer (2011) as follows.

E(Gjk
211) =E

"
sup

�n2Nn(�n)

2n�1

�����

nX

i=1

xijxik{yi � E(yi)}{µ(X�n,0)� µ(X�n)}i1⌦n

�����

#
880

4n�1E

"
sup

�n2Nn(�n)

�����

nX

i=1

✏ixijxikyi{µ(X�n,0)� µ(X�n)}i1⌦n

�����

#

4n�1c0E

(
sup

�n2Nn(�n)

�����

nX

i=1

✏ixijxikyi(X�n,0 �X�n)i1⌦n

�����

)

4n�1c0 sup
�n2Nn(�n)

k�n,0 � �nk2E
 �����

nX

i=1

✏ixijxikyi1⌦nxi

�����

!
,

where the last step follows from the Cauchy–Schwarz inequality. We observe that sup�n2Nn(�n)

k�n,0 � �nk2  n�1/2d1/2�n and E(k
Pn

i=1 ✏ixijxikyi1⌦nxik2)  885

{
Pn

i=1 x
2
ijx

2
ikE(y2i 1⌦n)kxik22}1/2. So, we can bound E(Gjk

211) by
4c0n�3/2d1/2�n{

Pn
i=1 x

2
ijx

2
ikE(y2i 1⌦n)kxik22}1/2. Using Assumptions 2 and 3, we obtain

E(Gjk
211) = O(n�1+2u3d�n emn). Since d = O(n1) and �1 + 2u3 + 31 + 2u1 + 2/2 < 0, we

deduce E(Gjk
211) = o(1/d2).

Furthermore, we need to bound 2|xijxikyi{µ(X�n,0)� µ(X�n)}i1⌦n | for any �n 2 Nn(�n) in order 890

to use the concentration theorem in Bühlmann & van de Geer (2011). We use Lemma 2 to bound yi:

2|xijxikyi{µ(X�n,0)� µ(X�n)}i1⌦n |
 2|xij ||xik||{yi � E(yi) + E(yi)}|1⌦n |{µ(X�n,0)� µ(X�n)}i|
 2|xij ||xik|{|E(yi)|+ C1 log(n)}|{µ(X�n,0)� µ(X�n)}i|.

Since b00(X�)  c�1
0 for any � joining the line segment �n,0 and �n, we have |{µ(X�n,0)� 895

µ(X�n)}i|  c�1
0 kxik2k�n,0 � �nk2 for any �n 2 Nn(�n). When we put last two inequalities to-

gether with Assumptions 2 and 3, we get 2|xijxikyi{µ(X�n,0)� µ(X�n)}i1⌦n |  ci,�n
where ci,�n

=

O(n2u3 emn)kxik2k�n,0 � �nk2. Moreover, we have

sup
�n2Nn(�n)

n�1
nX

i=1

c2
i,�n

 O(n�1+4u3 em2
n) sup

�n2Nn(�n)

k�n,0 � �nk22
nX

i=1

kxik22

 O(n�1+4u3 em2
nd

2�2n) 900

where we use the fact that k�n,0 � �nk22 = O(n�1d�2n) for any �n 2 Nn(�n). Thus, we can use the
concentration inequality in Bühlmann & van de Geer (2011) which yields

pr{Gjk
211 � E(Gjk

211) + t}  C exp

✓
�C

nt2

n�1+4u3 em2
nd

2�2n

◆
, (A.17)

for some constant C.
Now, take any t̃ > 0. We know that E(Gjk

211) < t̃/(2d2) for large enough n. Then by taking t = t̃/(2d2)
in equation (A.17), we obtain 905

pr(Gjk
211 � t̃/d2)  C exp

✓
�C

t̃2

n�2+4u3 em2
nd

6�2n

◆
.

Since �2 + 4u3 + 61 + 4u1 + 2 < 0, we have pr(Gjk
211 � t̃/d2) = o(1/d2).
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Lastly, Gjk
212 = 0 on the event ⌦n which holds with probability at least 1�O(n��) by Lemma 2.

Therefore, we obtain G21 = o(1/d2) by using (A.16).

Part 2e) prove G22 = o(1/d). First, we apply the Cauchy–Schwarz inequality to obtain

|Gjk
22|2 =

 
2

nX

i=1

h
n�1var(yi)

1/2xijxik{µ(X�n,0)� µ(Xb�n)}i
i {E(y)� µ(X�n,0)}i

var(yi)1/2

�!2

910

 4
nX

i=1

n�2var(yi)x
2
ijx

2
ik{µ(X�n,0)� µ(Xb�n)}2i

nX

i=1

{E(y)� µ(X�n,0)}2i
var(yi)

Since b�n lies in the region Nn(�n) with high probability and b00(·) is bounded, {µ(X�n,0)�
µ(Xb�n)}2i can be bounded by kxik22O(n�1d�2n). Assumption 2 and the Cauchy–Schwarz inequality yieldPn

i=1{var(yi)}�1{E(y)� µ(X�n,0)}2i  O(n1/2+u2/2). We further use Assumptions 1 and 3 to obtain
|Gjk

22|2 = O(n�3/2+4u3+u2/2d2�2n). Since d = O(n1) and �3/2 + 4u3 + u2/2 + 61 + 2u1 + 2 < 0,915

we get |Gjk
22|2 = o(1/d4). Thus, we obtain G22 = op(1/d).

Part 2f) prove G3 = o(1/d). We decompose (i, j)th entry of G3 as follows

|Gjk
3 | = n�1

�����

nX

i=1

xijxik{µ(X�n,0)� µ(Xb�n)}2i

�����

 n�1
nX

i=1

|xij ||xik|{µ(X�n,0)� µ(Xb�n)}2i

= O(n�1+2u3d2�2n),920

where the last line is similar to Part 2e. So, |Gjk
3 | = o(1/d2) since �1 + 2u3 + 41 + 2u1 + 2 < 0.

Therefore, we get G3 = o(1/d).
We have finished the proof of Part 2. This concludes the proof of Theorem 2 with the desired probability

bound 1�O(n�� + p1�8c2�
2
n).

E.3. Proof of Theorem 3925

Theorem 3 is a direct consequence of Theorem 2, Lemma 1, and assumption (17). To see this, observe
that the difference in the sample version HGBICp can be written as the sum of the population version
HGBIC⇤

p and the terms consisting of differences of likelihood, tr(Hn) and log(det(Hn)) between the
sample and population versions. That is,

HGBICp(Mm)� HGBICp(M1) = HGBIC⇤
p(Mm)� HGBIC⇤

p(M1)930

� 2{`n(y, b�n,m)� `n(y,�n,m,0)}+ 2{`n(y, b�n,1)� `n(y,�n,1,0)}

+ {tr( bHn,m)� tr(Hn,m)}� {tr( bHn,1)� tr(Hn,1)}

� (log | bHn,m|� log |Hn,m|) + (log | bHn,1|� log |Hn,1|).

The equation (17) suggests that the first line is bounded below by �n for any m > 1. Then we focus on
the remaining terms. Let m = 2, . . . ,M be fixed. The consistency of the maximum likelihood estimator935

in Lemma 1 implies that �2{`n(y, b�n,m)� `n(y,�n,m,0)}+ 2{`n(y, b�n,1)� `n(y,�n,1,0)} converges
to zero with probability at least 1�O(n��) for some constant � > 0 . Moreover, Theorem 2 proves
that the last two lines are also of order o(�n) with probability at least 1�O(n��) provided that �n is
converging slowly enough. Therefore, {HGBICp(Mm)� HGBICp(M1)} > �n/2 for large enough n with
probability 1�O(n��) for any fixed m > 1. Applying the union bound over all M = o(n�) competing940

models completes the proof of Theorem 3.
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F. TECHNICAL LEMMAS

F.1. Lemma 1 and its proof
LEMMA 1 (UNIFORM CONSISTENCY OF THE MAXIMUM LIKELIHOOD ESTIMATOR). Assume

Assumptions 1–3 hold. If Ln{Kn�1 log(p)}1/2 ! 0, then

sup
|M|K,M⇢{1,...,p}

(|M|)�1/2kb�(M)� �n,0(M)k2 = Op

n
Ln(n

�1 log p)1/2
o
,

where Ln = 2emn + C1 log n. emn is a diverging sequence which appears in Assumption 2 and C1 is the
positive constant from Lemma 2. 945

Proof. First, we construct the auxiliary parameter vector b�u(M) as follows. For any sequence Nn,
we take u = {1 + kb�(M)� �n,0(M)k2/Nn}�1 and define b�u(M) = ub�(M) + (1� u)�n,0(M). We
have kb�u(M)� �n,0(M)k2 = ukb�(M)� �n,0(M)k2  Nn by the definition of u. So, b�u(M) belongs
to the neighborhood BM(Nn) = {� 2 Rd, supp(�) = M : k� � �n,0(M)k2  Nn}. Moreover, we ob-
serve that kb�u(M)� �n,0(M)k2  Nn/2 implies kb�(M)� �n,0(M)k2  Nn. Thus, it is enough to 950

bound kb�u(M)� �n,0(M)k2 to prove the theorem.
Now, we consider kb�u(M)� �n,0(M)k2. First, the concavity of `n and the definition of b�(M) yield

`n{b�u(M)} � u`n{b�(M)}+ (1� u)`n{�n,0(M)}

� u`n{b�u(M)}+ (1� u)`n{�n,0(M)}.

So, by rearranging terms, we get 955

�`n{�n,0(M)}+ `n{b�u(M)} � 0. (A.1)

Besides, for any � 2 BM(Nn), we have

E[`n{�n,0(M)}� `n(�)] = I{gn; fn(·;�, ⌧)}� I{gn; fn(·;�n,0(M), ⌧)} � 0, (A.2)

by the optimality of �n,0(M). Combining (A.1) and (A.2) gives

0  E[`n{�n,0(M)}� `n{b�u(M)}]

 �`n{�n,0(M)}+ `n{b�u(M)}+ E[`n{�n,0(M)}� `n{b�u(M)}]
 sup

�2BM(Nn)

��`(�)� E{`n(�)}� (`n{�n,0(M)}� E[`n{�n,0(M)}])
�� 960

= nTM(Nn), (A.3)

since b�u(M) 2 BM(Nn).
On the other hand, for any � 2 BM(Nn),

E[`n{�n,0(M)}� `n(�)] = E(Y T )ZM{�n,0(M)� �}� 1T [b{ZM�n,0(M)}� b(ZM�)]

= µ{ZM�n,0(M)}ZM{�n,0(M)� �}� 1T [b{ZM�n,0(M)}� b(ZM�)], 965

since �n,0(M) satisfies the score equation: ZT
M{E(Y )� µ(ZM�)} = 0. Furthermore, applying the sec-

ond order Taylor expansion yields

E[`n{�n,0(M)}� `n(�)] =
1

2

�
�n,0(M)� �

 T
ZT
M⌃(ZM�̄)ZM

�
�n,0(M)� �

 
,

where �̄ lies on the line segment connecting �n,0(M) and �. Then, we use Assumption 3 and the assump-
tion that c0  b00(Z�)  c�1

0 for any � 2 B. So, we get E[`n{�n,0(M)}� `n(�)] � 1
2nc0c2k�n,0(M)� 970

b�u(M)k22. Therefore, for any � 2 BM(Nn),

k�n,0(M)� �k22  2(c0c2)
�1n�1E[`n{�n,0(M)}� `n(�)]. (A.4)
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Finally, we take a slowly diverging sequence �n such that �nLn{K log(p)/n}1/2 ! 0. Then, we
choose Nn = �nLn{|M|n�1 log(p)}1/2. Since b�u(M) 2 BM(Nn), we combine equations (A.3) and
(A.4) to obtain

sup
|M|K

(|M|)�1/2k�n,0(M)� b�u(M)k2  sup
|M|K

⇢
TM(Nn)

|M|

�1/2

{2(c0c2)�1n�1}1/2975

= Op[Ln{n�1 log(p)}1/2],

where the last step follows from Lemma 4. This completes the proof of Lemma 1.

F.2. Lemma 2 and its proof
LEMMA 2. Assume that Y1, . . . , Yn are independent and satisfy Assumption 1. Then, for any constant

� > 0, there exist large enough positive constants C1 and C2 such that980

kWk1  C1 log n, (A.5)

with probability at least 1�O(n��) and,

kn�1/2E(W | ⌦n)k2 = O{(log n)n�C2}, (A.6)

where ⌦n = {kWk1  C1 log n}.

Proof. We take t = C1 log n in Assumption 1. So we get

pr(kWk1  C1 log n) � 1� nmax
in

pr(|Wi| > C1 log n) � 1� c1n
1�c�1

1 C1 .

å We choose C1 large enough so that 1� c�1
1 C1  0. Thus, we have pr(kWk1  C1 log n) = 1�985

O(n��) where we pick � = c�1
1 C1 � 1 > 0. This proves the first part of the lemma.

Now, we proceed the proof of the second part of the lemma. We will bound each term E(Wi|⌦n) for
i = 1, . . . , n. Since Wi’s for i = 1, . . . , n are independent, the conditional expectation E(Wi|⌦n) can be
written as follows

E(Wi | ⌦n) = E(Wi | |Wi|  C1 log n) =
E{Wi1(|Wi|  C1 log n)}

pr(|Wi|  C1 log n)
.

Since E(W ) = 0 by definition, we get E{Wi1(|Wi|  C1 log n)} = �E{Wi1(|Wi| > C1 log n)}. Last
two equalities result in

|E(Wi | ⌦n)| 
E{|Wi|1(|Wi| > C1 log n)}

pr(|Wi|  C1 log n)
.

We already showed that the denominator pr(|Wi|  C1 log n) can be bounded below by 1�O(n��)
uniformly in i. Thus, it suffices to bound the numerator E{|Wi|1(|Wi| > C1 log n)}. Indeed, we have

E{|Wi|1(|Wi| > C1 log n)} =

Z 1

0
pr{|Wi|1(|Wi| > C1 log n) � t}dt

=

Z C1 logn

0
pr{|Wi|1(|Wi| > C1 log n) � t}dt990

+

Z 1

C1 logn
pr{|Wi|1(|Wi| > C1 log n) � t}dt

=

Z C1 logn

0
pr(|Wi| � C1 log n)dt+

Z 1

C1 logn
pr(|Wi| � t)dt

 C1 log(n)pr(|Wi| � C1 log n) +

Z 1

C1 logn
c1 exp(�c�1

1 t)dt

 C1 log(n)c1 exp(�c�1
1 C1 log n) + c21 exp(�c�1

1 C1 log n),
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where we use Assumption 1 in the last two steps. This concludes the proof of Lemma 2 by choosing 995

C2 = c�1
1 C1.

F.3. Lemma 3 and its proof
LEMMA 3. Under Assumption 2, the function ⇢ defined by ⇢(xT

i �, Yi) = YixT
i � � b(xT

i �) is Lipschitz
continuous with the Lipschitz constant Ln = 2emn + C1 log n conditioned on the set ⌦n = {kWk1 
C1 log n} given in Lemma 2. 1000

Proof. We consider the difference ⇢(xT
i �1, Yi)� ⇢(xT

i �2, Yi) for any �1 and �2 in Rp. We observe that

|⇢(xT
i �1, Yi)� ⇢(xT

i �2, Yi)|  |Yi||xT
i (�1 � �2)|+ |b(xT

i �1)� b(xT
i �2)|.

We can bound |Yi| on ⌦n using Assumption 2 as |Yi|  kY k1  kEY k1 + kWk1  emn +
C1 log(n). Then we apply the mean-value theorem to obtain |b(xT

i �1)� b(xT
i �2)|  |b0(�̃)||xT

i (�1 �
�2)| where �̃ lies on the line segment connecting �1 and �2. Thus, we get |b(xT

i �1)� b(xT
i �2)| 

emn|xT
i (�1 � �2)| by Assumption 2. Hereby, we showed that |⇢(xT

i �1, Yi)� ⇢(xT
i �2, Yi)|  (2emn +

C1 log n)|xT
i �1 � xT

i �2| conditioned on ⌦n. Thus, ⇢(·, Yi) is Lipschitz continuous with the Lipschitz 1005

constant Ln = 2emn + C1 log n conditioned on the set ⌦n. This completes the proof of Lemma 3.

F.4. Lemma 4 and its proof
LEMMA 4. Assume that Assumptions 1–3 hold. Define the neighborhood BM(N) = {� 2

Rd, supp(�) = M : k� � �n,0(M)k2  N} and

TM(N) = sup
�2BM(N)

n�1
��`n(�)� `n{�n,0(M)}� E[`n(�)� `n{�n,0(M)}]

�� .

If �n is a slowly diverging sequence such that �nLn{Kn�1 log(p)}1/2 ! 0, then

sup
|M|K

(|M|)�1/2TM

h
�nLn{|M|n�1 log(p)}1/2

i
= O(L2

nn
�1 log p)

with probability at least (1� e2p1�8c2�
2
n){1�O(n��)}, where Ln = 2emn + C1 log n.

Proof. To prove the lemma, we condition on the set ⌦n = {kY � EY k1  C1 log n}. We observe that
��`n(�)� `n{�n,0(M)}� E[`n(�)� `n{�n,0(M)}]

�� 1010


��`n(�)� `n{�n,0(M)}� E[`n(�)� `n{�n,0(M)} | ⌦n]

��

+ |E[`n(�)� `n(�n,0(M))]� E[`n(�)� `n{�n,0(M)} | ⌦n]|,

by the triangle inequality. Thus, TM(Nn) can be bounded by the sum of the following two terms:

T̃M(Nn) = sup
�2BM(Nn)

n�1
��`n(�)� `n{�n,0(M)}� E[`n(�)� `n{�n,0(M)} | ⌦n]

�� , and

RM(Nn) = sup
�2BM(Nn)

n�1(E[`n(�)� `n{�n,0(M)}]� E[`n(�)� `n{�n,0(M)} | ⌦n]) 1015

That is,

TM(Nn)  T̃M(Nn) +RM(Nn). (A.7)

In the rest of the proof, we will show the following bounds

RM(Nn) = o

✓
L2
n
log p

n

◆
, (A.8)

and

T̃M(Nn) = Op

✓
L2
n
log p

n

◆
. (A.9)
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First, we consider RM(Nn). We split RM(Nn) by the Cauchy–Schwarz inequality so that1020

RM(Nn) = sup
�2BM(Nn)

n�1|{E(Y )� E(Y | ⌦n)}TX{� � �n,0(M)}|

 kn�1/2{E(Y )� E(Y | ⌦n)}k2 sup
�2BM(Nn)

kn�1/2X{� � �n,0(M)}k2.

We have

kn�1/2{E(Y )� E(Y | ⌦n)}k2 = kn�1/2{E(W | ⌦n)}k2 = O(n�C2 log n)

by Lemma 2. We also have1025

kn�1/2X{� � �n,0(M)}k2  {�max(n
�1XT

MXM)}1/2k� � �n,0(M)k2  c�1/2
2 Nn,

for any � 2 BM(Nn).
Therefore, RM(�) = O(Nnn�C2 log n). So, (A.8) follows by taking C2 large enough.
Next, we deal with the term T̃M(Nn) by showing (A.9). We observe that the difference `n(�)�

`n{�n,0(M)} can be written as1030

`n(�)� `n{�n,0(M)} =
nX

i=1

�
Yi{xT

i � � xT
i �n,0(M)}� [b(xT

i �)� b{xT
i �n,0(M)}]

�

=
nX

i=1

⇥
⇢(xT

i �, Yi)� ⇢{xT
i �n,0(M), Yi}

⇤
.

In Lemma 3, we showed that ⇢(xT
i �, Yi) = YixT

i � � b(xT
i �) is Lipschitz continuous with the Lipschitz

constant Ln conditioned on the set ⌦n.
Next, we choose a Rademacher sequence {✏i}ni=1. Then, we apply symmetrization and concentration1035

inequalities in Bühlmann & van de Geer (2011) as follows:

E{T̃M(Nn) | ⌦n}

 2E

 
sup

�2BM(Nn)

n�1

�����

nX

i=1

✏i
⇥
⇢(xT

i �, Yi)� ⇢{xT
i �n,0(M), Yi}

⇤
����� | ⌦n

!

 4LnE

"
sup

�2BM(Nn)

n�1

�����

nX

i=1

✏i{xT
i � � xT

i �n,0(M)}

����� | ⌦n

#
.

Furthermore, we have1040

E

"
sup

�2BM(Nn)

n�1

�����

nX

i=1

✏i{xT
i � � xT

i �n,0(M)}

����� | ⌦n

#

 E

(
n�1 sup

�2BM(Nn)

k� � �n,0(M)k2k
nX

i=1

✏i(xi)Mk2 | ⌦n

)

 E

(
n�1Nnk

nX

i=1

✏i(xi)Mk2 | ⌦n

)
= n�1NnE

2

64

8
<

:
X

j2M

 
nX

i=1

✏ixij

!2
9
=

;

1/2
3

75

 n�1Nn

2

4
X

j2M

E

8
<

:

 
nX

i=1

✏ixij

!2
9
=

;

3

5
1/2

= Nnn
�1/2|M|1/2,
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where we use the Cauchy–Schwarz inequality and the assumption
Pn

i=1 x
2
ij = n. Therefore, we obtain 1045

the bound

E{T̃M(Nn) | ⌦n}  4LnNnn
�1/2|M|1/2. (A.10)

For any � 2 BM(Nn), we have

n�1
nX

i=1

|⇢{xT
i �n,0(M), Yi}� ⇢(xT

i �, Yi)|2

 n�1L2
n

nX

i=1

|xT
i �n,0(M)� xT

i �|2

= n�1L2
n{�n,0(M)� �}TXT

MXM{�n,0(M)� �} 1050

 L2
nc

�1
2 N2

n.

Then we apply Theorem 14.2 in Bühlmann & van de Geer (2011) to obtain

pr
h
T̃M(Nn) � E{T̃M(Nn) | ⌦n}+ t | ⌦n

i
 exp

✓
�nc2t2

8L2
nN

2
n

◆
.

Now, we take t = 4LnNnn�1/2|M|1/2u for some positive u that will be chosen later. So, we get
pr{T̃M(Nn) � 4LnNnn�1/2|M|1/2(1 + u) | ⌦n}  exp(�2c2u2|M|) by using (A.10). 1055

We choose Nn = Lnn�1/2|M|1/2(1 + u). So, it follows that

pr

(
T̃M(Nn)

|M| � 4L2
nn

�1(1 + u)2 | ⌦n

)
 exp(�8c2u

2|M|).

Thus, we have

pr

(
sup

|M|K

T̃M(Nn)

|M| � 4L2
nn

�1(1 + u)2 | ⌦n

)


X

|M|K

pr

(
T̃M(Nn)

|M| � 4L2
nn

�1(1 + u)2 | ⌦n

)


X

kK

✓
p

k

◆
exp(�8c2u

2k) 
X

kK

⇣pe
k

⌘k
exp(�8c2u

2k).

Now, we choose u = �n(log p)1/2. So, for n large enough, we get

X

kK

⇣pe
k

⌘k
exp(�8c2u

2k) =
X

kK

⇣pe
k

⌘k
p�8c2�

2
nk =

X

kK

{ep(1�8c2�
2
n)}k

kk
1060


X

kK

ep(1�8c2�
2
n)

k!
 e2p1�8c2�

2
n .

So far, the probability of the event T̃M(Nn) = O(L2
n log p/n), which we call A, is bounded below

conditional on⌦n. Simple calculation yields pr(A) � pr(A \ ⌦n) = pr(⌦n)pr(A | ⌦n). Thus, pr(A) �
(1� e2p1�8c2�

2
n)(1�O(n��)). So, (A.9) follows.

We have shown (A.8) and (A.9), which control the terms T̃M(Nn) and RM(Nn), respectively. Thus, 1065

(A.7) concludes the proof of Lemma 4.

F.5. Lemma 5 and its proof
LEMMA 5. Let qi’s be n independent, but not necessarily identically distributed, scaled and centered

random variables with uniform sub-exponential decay, that is,

pr(|qi| > t)  C exp(�C�1t)
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for some positive constant C. Let kqik 1 denote the sub-exponential norm defined by1070

kqik 1 := sup
m�1

h
m�1{E(|qi|m)}1/m

i
.

Then, we have kqik 1  e1/eCmax(C, 1) for all i.

Proof. From the condition on sub-exponential tails, we derive

E(|qi|m) = m

Z 1

0
xm�1pr(|qi| � x)dx  Cm

Z 1

0
xm�1 exp(�C�1x)dx

= CmCm

Z 1

0
um�1 exp(�u)du = CmCm�(m)  CmCmmm,

where the last line follows from the definition of the Gamma function. Taking the mth root, we have1075

{E(|qi|m)}1/m  (Cm)1/mCm.

Rewriting above equation, we obtain

m�1{E(|qi|m)}1/m  m1/mC1/mC  e1/e max(C, 1)C,

for all m � 1. Since the bound is independent of m, it holds that kqik 1  e1/eCmax(C, 1) for all i.
This completes the proof of Lemma 5.

F.6. Lemma 6 and its proof
LEMMA 6. Under Assumption 1, for some constant � > 0, we have

sup
n

E{|(uT
nRnun)/eµn|1+�} < 1,

where un = B�1/2
n XT {Y � E(Y )}, Rn = B1/2

n A�1
n B1/2

n , and eµn = max{tr(A�1
n Bn), 1}.1080

Proof. From the expression of uT
nRnun, we have

uT
nRnun ={Y � E(Y )}TXA�1

n XT {Y � E(Y )}
=[{Y � E(Y )}T cov(Y )�1/2][cov(Y )1/2XA�1

n XT cov(Y )1/2][cov(Y )�1/2{Y � E(Y )}].

Denote Sn = cov(Y )1/2XA�1
n XT cov(Y )1/2 and q = cov(Y )�1/2{Y � E(Y )}. We decompose

uT
nRnun into two terms, the summations of the diagonal entries and the off-diagonal entries, respectively,1085

uT
nRnun = qTSnq =

nX

i=1

siiq
2
i +

X

1i 6=jn

sijqiqj ,

where sij and qi denote the (i, j)th entry of Sn and ith entry of q. Then, we have

E{(uT
nRnun)

2} =
nX

i=1

s2iiE(q4i ) +
X

1i 6=jn

siisjjE(q2i )E(q2j )

+ 2
X

1i 6=jn

s2ijE(q2i )E(q2j ).

Using Assumption 1 and the sub-Gaussian norm bound in Lemma 5, both quantities E(q4i ) and1090

E(q2i )E(q2j ) can be uniformly bounded by a common constant. Hence

E{(uT
nRnun)

2}  O(1) · [{tr(Sn)}2 + tr(S2
n)].

Since Sn is positive semidefinite it holds that tr(S2
n)  {tr(Sn)}2. Finally noting that tr(Sn) =

tr(A�1
n Bn)  eµn, we see that supn E{|(uT

nRnun)/eµn|1+�} < 1 for � = 1, which concludes the proof
of Lemma 6.
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G. ADDITIONAL TECHNICAL DETAILS 1095

Lemmas 7–10 below are similar to those in Lv & Liu (2014). Their proofs can be found in Lv & Liu
(2014) or with minor modifications.

LEMMA 7. Under Assumption 4, for j = 1, 2, we have

c5

Z

�2Rd

e�nqj1 eNn(�n)
dµ0  EµM

n
e�nqj1 eNn(�n)

o
 c6

Z

�2Rd

e�nqj1 eNn(�n)
dµ0. (A.1)

LEMMA 8. Conditional on the event eQn, for sufficiently large n we have

EµM

n
Un(�)

n1 eNc
n(�n)

o
 exp[�{en � ⇢n(�n)/2}d�2n] (A.2) 1100

 exp{�(en/2)d�
2
n},

where en = �min(Vn)/2.

LEMMA 9. It holds that
Z

�2Rd

e�nq1dµ0 =

✓
2⇡

n

◆d/2

|Vn � ⇢n(�n)Id|�1/2 (A.3)

and
Z

�2Rd

e�nq2dµ0 =

✓
2⇡

n

◆d/2

|Vn + ⇢n(�n)Id|�1/2. (A.4)

LEMMA 10. For j = 1, 2, it holds that 1105

Z

�2Rd

e�nqj1 eNc
n(�n)

dµ0 
✓

2⇡

nen

◆d/2

exp
h
�{(end�

2
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1/2 � (d)1/2}2/2
i
. (A.5)

LEMMA 11 (VERSHYNIN (2012)). For independent sub-exponential random variables {yi}ni=1, we
have that the sub-exponential norm of qi = {var(yi)}�1/2{yi � E(yi)} is bounded by some positive con-
stant C3. Moreover, the following Bernstein-type tail probability bound holds

pr

 
|

nX

i=1

aiqi| � t

!
 2 exp

⇢
�C3 min

✓
t2

C2
3kak22

,
t

C3kak1

◆�

for a 2 Rn, t � 0.

Lemma 11 rephrases Proposition 5.16 of Vershynin (2012) for the case where kqik 1  C3. Further, 1110

for our proof we need to characterize the concentration of the square of a sub-exponential random variable.
In this regard, we define a general ↵-sub-exponential random variable ⇠↵ which satisfies

pr(|⇠↵| > t↵)  H exp(�t/H)

for H, t > 0. The usual sub-exponential qi’s are 1-sub-exponential random variables. It may be useful to
note that ↵ = 1/2 corresponds to sub-Gaussian random variables.

LEMMA 12 (ERDŐS ET AL. (2012)). For independent ↵-sub-exponential random variables q2i , the 1115

following Bernstein-type tail probability bound holds
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8
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:
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9
=

;

2/(2+↵)
3

75

for a 2 Rn, t � sup
i

var1/2(q2i )kak2, and C4 > 0 depending on the choice of ↵, H .
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The proof of Lemma 12 follows from that of Lemma 8.2 in Erdős et al. (2012).
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