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We also generalize the robust knockoffs inference in [4] to the time series setting to

relax the assumption of known covariate distribution required by model-X knockoffs,

since such an assumption is overly stringent for time series data. We establish

sufficient conditions under which TSKI achieves the asymptotic false discovery rate

(FDR) control. Our technical analysis reveals the effects of serial dependence and

unknown covariate distribution on the FDR control. We conduct a power analysis of

TSKI using the Lasso coefficient difference knockoff statistic under the generalized

linear time series models. The finite-sample performance of TSKI is illustrated with

several simulation examples and an economic inflation study.

Running title: TSKI

Key words : Model-X knockoffs; Time series; High dimensionality; FDR control; Power
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1 Introduction

Identifying key economic factors among a large number of potential variables (e.g., numer-

ous types of consumer price indices, unemployment rates, and housing prices) that can

influence inflation is a long-standing research pursuit [25, 36, 15] that remains crucial due

to inflation’s significance. However, statistical inference for economic time series such as

inflation is challenging due to the serial dependence, large number of potentially impor-

tant covariates (including time series covariates, their lags, and non-time series covariates),

regime shifts [21, 39], and possible nonlinear relationships.

Let us exemplify these challenges with Figure 1, which depicts the monthly inflation

rate (hereafter referred to as inflation) time series of the U.S. economy from May 2013 to

January 2023, sourced from the FRED-MD database [28] and the U.S. Bureau of Labor

Statistics. In addition to the inflation series, the FRED-MD database includes 126 other
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time series variables that can be used to predict the inflation for the following month. Here,

inflation is calculated as the first-order difference of the Consumer Price Index (CPI) [28]

divided by the CPI of the previous month; see Section 5 for details. Figure 1 shows that

during the period from 2020 to late 2022, inflation displayed an upward mean drift due

to the U.S. economy’s post-COVID-19 recovery and the impacts of the Russia–Ukraine

conflict, along with some possible stationary phase-changing behaviors [21, 39]. To address

concerns on potential nonstationarity over the entire time span caused by, say, the mean

drift, the rolling-window method is commonly employed in time series analysis. The

intuition behind this method is that the time series, including both the response and

predictors, are more likely to be stationary within a small time window1. However, the

use of rolling windows further complicates the problem in that the sample size in each

window is usually small; for example, there are only 60 data points if sampled monthly over

a five-year period. The presence of serial dependence, small sample size, high-dimensional

covariates, and possibly nonlinear relationships makes statistical inference for time series

regression highly challenging. Variable selection has been a popular solution to address

such challenges, under the assumption that only a small subset of covariates contribute to

the response of interest. Correctly selecting these important covariates can help simplify

the model and improve interpretability and prediction accuracy. Our goal in this paper is

to develop a reliable variable selection approach that accounts for these unique challenges

in time series regression.

Popularly used measures for evaluating the performance of high-dimensional variable

selection include the false discovery rate (FDR) [6], model selection consistency [43, 29, 24],

and feature importance ranking [10, 30]. Our paper focuses on controlling the FDR, whose

formal definition is in (1). Most existing works address the FDR control by building

1We also obtain numerical evidence supporting the stationarity of the inflation within each window
through standard unit root tests; details are provided in Section A.5.
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Figure 1: The U.S. inflation from May 2013 to January 2023.

procedures based on the p-values constructed for assessing the importance of individual

variables; see, e.g., the seminal works of [6, 7]. Yet, the high dimensionality in covariates

and the possibly complicated nonlinear model structure make many conventional ways of

p-value calculations inapplicable or even completely fail [19]. To overcome such difficulties,

the framework of knockoffs inference was proposed in [3, 12] to achieve the goal of exact

FDR control in variable selection in finite samples, completely bypassing the use of the

conventional p-values in high-dimensional regression models. It allows for an arbitrary

dependence structure of the response on covariates and an arbitrary dimensionality of

covariates at the cost of assuming the known joint covariate distribution. See Section 2.2

for a brief review of the model-X knockoffs framework.

Two critical assumptions in model-X knockoffs [12] are: 1) the observations across time

are independent and identically distributed (i.i.d.) and 2) the joint distribution of covariate

vector is known for generating the knockoff variables. Both assumptions are unreasonably

strong for time series data. Time series data exhibit serial dependence, and in some

applications where covariates are lagged response variables with a stationarity assumption,

assuming a known covariate distribution directly reveals the set of important variables,

thus invalidating the problem of variable selection. We will address these challenges by

relaxing the two aforementioned assumptions.
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To relax the first assumption, we adopt the popular idea of subsampling. To relax the

second assumption, we generalize the robust knockoffs inference in [4] to the time series

setting, where the robust knockoffs inference [4] is a recent innovation that allows for ap-

proximate covariate distribution (as opposed to known covariate distribution) developed

for i.i.d. data. We name the knockoff variables generated using approximate covariate dis-

tribution as approximate knockoffs to ease the presentation. Our analyses reveal that with

approximate knockoffs generated in a rowwise fashion ignoring the serial dependence, the

FDR inflation has an upper bound depending on the Kullback–Leibler (KL) divergence

between the distributions of data matrices corresponding to the approximate and exact

model-X knockoff variables. Our theoretical results are comparable to Theorem 1 of [4],

with the difference that we do not need the i.i.d. observations assumption. Our theory

shows that there is generally no guarantee that such KL divergences asymptotically van-

ish in the existence of serial dependence, suggesting that the corresponding FDR could be

uncontrolled. We also show that subsampling [42] can successfully address such difficulty

and warrant asymptotically vanishing KL divergence if the subsampling rate is appro-

priately chosen, provided that the time series are β-mixing. We then apply the robust

knockoffs inference to each of the subsampled data, resulting in multiple sets of selected

variables. We aggregate these sets via the e-value method [40, 34]. The complete frame-

work is presented in Section 2 and named as the time series knockoffs inference (TSKI).

We provide a rigorous characterization of how the serial dependence and the accuracy of

the approximate knockoffs affect the FDR control and prove that the TSKI procedure

can achieve asymptotic FDR control when the subsampling is done appropriately and the

approximate knockoffs are accurate enough.

It is well-known that FDR and power are two sides of the same coin. We then turn

to the power analysis of TSKI in Section 3. Assuming the generalized linear time series

models and some regularity conditions, we show that for TSKI with subsampling and e-
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value aggregation, the set of selected variables is either empty or enjoys the sure screening

property with asymptotic probability one. These results are formally summarized in

Theorem 2 and discussed after it.

We test the empirical performance of TSKI on both simulated and real data. Our simu-

lation results in Section 4 demonstrate that the TSKI with subsampling controls the FDR

when the data are generated from some popular β-mixing processes. The selection power

is generally satisfactory with a sufficient sample size. Furthermore, in Section 5 we apply

the TSKI to study the temporal relations between inflation and other macroeconomic time

series from the U.S. economy over the past ten years.

1.1 Related work

Established methods such as the BH and BY [6, 7] are commonly used in biology appli-

cations with non-time series data. Some new developments such as [33, 8] either assume

independent test statistics, require the availability of p-values, or rely on specific model

structures, making them unsuitable for time series applications due to incompatible as-

sumptions.

Among these existing methods, BY achieves the FDR control in variable selection

based on a set of valid p-values with no requirements on the dependence structure among

p-values. Similarly, e-BH [40] uses e-values without requirements on their dependence

structure. While these methods offer the potential for valid FDR control for time se-

ries data, obtaining valid p-values or e-values remains an unresolved challenge in many

applications.

Regularized regression [29] and information criterion-based model selection [24] are

also popularly used for selecting important variables in time series regressions. Yet, they

often assume some specific model structure (e.g., the linear model) to prove variable/model

selection consistency, posing uncertainty about their performance when deployed on real
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data with nonlinear dependency. In addition, they are not specifically designed for control-

ling the variable selection error rate, and hence may not be suitable for certain applications

when the error rate control is a concern.

1.2 Notation

Let (Ω,F ,P) and R be the underlying probability space and the Borel σ-algebra on the

real line R, respectively. We use the boldface for random vectors and matrices, the tilde for

the knockoff variables, and the vector notation x⃗ to denote vectors in the Euclidean space.

For random vector x, define x−j as the subvector by removing the jth coordinate. We use

parentheses for matrix concatenation. For any real sequences {an} and {bn}, an = O(bn)

means lim supn→∞

∣∣∣anbn ∣∣∣ < ∞, and an = o(bn) means lim supn→∞

∣∣∣anbn ∣∣∣ = 0. We use #S to

denote the cardinality of a given set S. Moreover, a transition kernel is defined as a map

p : (Rk1 ,Rk2) −→ [0, 1] for some positive integers k1 and k2 satisfying that (i) for each

D ∈ Rk2 , p(·,D) is a measurable function and (ii) for each x ∈ Rk1 , p(x, ·) is a probability

measure.

2 Robust time series knockoffs inference with TSKI

Given an observed stationary time series {Yt,xt}nt=1 with Yt ∈ R a scalar response and

xt ∈ Rp a high-dimensional covariate vector, we are interested in accurately selecting

relevant covariates (i.e., non-null features) in xt, where the definition of the null feature

is given below.

Definition 1. (Null feature) Consider the response Y and the covariate vector x =

(X1, · · · , Xp)
T
. Covariate Xj with j ∈ {1, · · · , p} is said to be null with respect to re-

sponse Y if and only if Xj ⊥⊥ Y |(X1, · · · , Xj−1, Xj+1, · · · , Xp)
T .

We denote the set of null features according to Definition 1 above as H0 ⊂ {1, · · · , p}
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for each t, where H0 is independent of t because (Yt,xt)’s have the same distribution

due to the stationarity assumption. Our goal is to estimate the important variable set

H1 = {1, · · · , p}\H0 using data {Yt,xt}nt=1. For an estimated set Ŝ ⊂ {1, · · · , p} returned

by some algorithm, we measure the accuracy by evaluating the False Discovery Rate

(FDR) defined as

FDR := E

(
#(Ŝ ∩H0)

(#Ŝ) ∨ 1

)
. (1)

In this paper, we focus on time series data with serial dependency and high dimen-

sionality where covariate dimensionality p can be much larger than sample size n. We do

not assume any specific dependence structure of Yt on xt other than the one in Definition

1 and that Yt is xt+1-measurable (see Corollary 2) for our FDR analysis. As a result, our

proposed method can accommodate an unknown relationship between Yt and xt includ-

ing both linear and nonlinear ones. Our method builds on the recent work of model-X

knockoffs [12] and its robust extension [4] proposed for the non-time-series data, where we

briefly review the former in the next section to set the stage.

2.1 A brief review of the model-X knockoffs framework

Let y = (Y1, · · · , Yn)
T ∈ Rn and X = (x1, · · · ,xn)

T ∈ Rn×p be the response vector and

design matrix collecting the n observations. The model-X knockoffs [12] was proposed for

the setting where the rows of the augmented matrix (y,X) ∈ Rn×(p+1) are i.i.d. random

vectors with known distribution for x1. The knockoffs inference aims at estimating H1

while keeping the FDR (1) under control. To this end, it constructs an n × p matrix X̃

in a rowwise fashion independently using the known joint distribution of x1 such that

X̃ ⊥⊥ y|X and (X, X̃)swap(S)
d
= (X, X̃) (2)
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for each S ⊂ {1, · · · , p}, where swap(S) denotes the swapping operation meaning that for

each j ∈ S, columns j and j + p are swapped, and
d
= stands for equal in distribution. At

a high level, the model-X knockoffs create a “fake” covariate matrix X̃ which perfectly

mimics the “behavior” of the original covariate matrix. By using these fake covariates as

controls, the importance of original covariates can be inferred.

As an example, when the covariate distribution for xt is known to be N(0,Σ) with

Σ the p× p covariance matrix, a valid way to construct the corresponding ideal knockoff

vector x̃t is to sample from the conditional multivariate Gaussian distribution

x̃t|xt
d∼ N(xt − diag(s⃗)Σ−1xt, 2diag(s⃗)− diag(s⃗)Σ−1diag(s⃗)), (3)

where diag(s⃗) is a diagonal matrix of tuning parameters with positive diagonal entries.

Larger components of s⃗ imply that the resulting knockoff variables are more independent

of the original variables, thereby providing higher power in distinguishing them. For the

general covariate distribution, a conditional distribution for generating knockoff variables

can also be constructed following the same high-level idea above. Further details about

knockoff variable sampling procedure for general distributions can be found in [12, 18].

With the knockoff variable matrix X̃, the knockoff statistics Wj’s, measuring the

importance of original covariates, are constructed such that the sign-flip property [3, 12]

is satisfied: for each S ⊂ {1, · · · , p} and each 1 ≤ j ≤ p,

Wj(y, [X, X̃]swap(S)) =


−Wj(y,X, X̃) if j ∈ S,

Wj(y,X, X̃) otherwise.

(4)

As variable importance measures, high-quality knockoff statistics Wj’s should have

the desired properties that 1) Wj’s have large positive values for j ∈ H1 and 2) for null

features j ∈ H0, Wj’s have small magnitude and are symmetric around zero. See [12]
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for the formal characterization. Examples 1–2 in the next subsection are two important

instances of the knockoff statistics that satisfy the sign-flip property.

Model-X knockoffs [12] estimates H1 as Ŝ = {1 ≤ j ≤ p : Wj ≥ T} with the so-

called knockoff threshold T = min
{
t > 0 :

1+#{j:Wj≤−t}
#{j:Wj≥t}∨1 ≤ τ

}
, where τ ∈ (0, 1) is some

pre-specified target level for FDR control. It has been shown in [12] that the model-X

knockoffs framework achieves FDR control in finite samples with arbitrary dimensionality

of xt and arbitrary (unknown) dependence structure of Yt on xt.

As discussed in the Introduction, the i.i.d. row assumption for (y,X) and the known

distribution assumption for xt are too stringent for time series data. We will develop a

new framework for time series knockoffs inference, which relaxes these assumptions. It is

important to note that the remaining part of the paper does not assume i.i.d. rows in

data matrix (y,X).

2.2 Outline of the TSKI framework

In this subsection, we provide an outline of the TSKI framework. Some technical details

will be presented in the next subsection. TSKI has three key ingredients: subsmapling,

robust knockoffs inference on each subsample, and e-value aggregation of the selected sets

from different subsamples. Algorithm 1 provides a detailed implementation of TSKI. Our

presentation may not strictly adhere to the order of the three ingredients stated above.

To relax the known covariate distribution assumption, we adopt the robust knockoffs

framework in [4] and introduce the following Definition 2. In what follows, the knockoff

generator, conditional distribution, and transition kernel are examples of regular condi-

tional probability (r.c.p.) in probability theory.

Definition 2 (Knockoff generator). κ : Rp×Rp 7−→ Rp is said to be a knockoff generator if

1) κ(z⃗, ·) is a probability measure for each z⃗ ∈ Rp and 2) κ(·,A) is a measurable function
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for each A ∈ Rp, where R is the smallest σ-algebra of R that contains all open sets.

For each observed covariate vector xt with t ∈ [n] := {1, · · · , n}, we generate its

knockoff vector x̃t from κ(xt, ·). When xt has known distribution N(0,Σ) with known

parameters Σ, the conditional Gaussian distribution in (3) is an instance of the knockoff

generator which yields ideal knockoff variables satisfying (2). If Σ in (3) is unknown and

replaced with an estimated version (see (8) for details), the resulting knockoff generator

produces only approximate knockoff variables that violate the exchangeability condition

in (2). Additional examples of the knockoff generator can be found in [12, 18]. To achieve

asymptotic FDR control using knockoff variables generated from κ(x, ·), we need some

additional conditions on κ which will be presented in Condition 3 in the next section.

Note that because of the rowwise generation of knockoff variables, although {xt}nt=1 have

serial dependence across t, {x̃t}nt=1 are independent across t conditional on {xt}nt=1; this

violates the second property in (2) and thus the FDR control result in [12] or [4] cannot

be applied directly. From now on, we work with the inference sample {Yt,xt, x̃t}nt=1.

To overcome such difficulty, we consider subsamples each with index set Hk =

{k + s(q + 1) : s = 0, 1, · · · , ⌊n−k
q+1
⌋} for k ∈ {1, · · · , q + 1} with some integer q ≥ 0.

To simplify the technical presentation, let {Vt,ut, ũt}Nt=1 be a generic subsample that can

be any of the q + 1 subsamples. Denote by v := (V1, · · · , VN)
T
, U := (u1, · · · ,uN)

T
,

and Ũ := (ũ1, · · · , ũN)
T
. As in the robust knockoffs inference [4], we construct knockoff

statistics Wj(v,U , Ũ)’s based on (v,U , Ũ ) and select the set of important variables using

these knockoff statistics following the identical procedure as reviewed in the last subsec-

tion. Thus, we end up with q + 1 sets of selected variables {j : W k
j ≥ T k} with each

corresponding to a subsample k. Here, W k
j ’s and T k are the correspondingly constructed

knockoff statistics and the knockoff threshold as specified in (5), respectively.

Below are two examples of the knockoff statistics. The random forests model in Ex-

ample 2 can be replaced with other learning models such as the deep learning model.
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Example 1 (Lasso coefficient difference (LCD)). For a given sample

(v,U , Ũ) and a tuning parameter λ ≥ 0, we define Wj = Wj(v,U , Ũ ) =

|β̂j| − |β̂j+p|, where (β̂1, · · · , β̂2p)
T is given by either the Lasso estimate

argminβ∈R2p

{
n−1

∑n
t=1(Vt − (u

T

t , ũ
T

t )β)
2 + λ

∑2p
j=1 |βj|

}
with β = (β1, · · · , β2p)

T ,

or the generalized linear model (GLM) Lasso estimate defined in (12).

Example 2 (Random forests mean decrease accuracy (MDA)). For a given sample

(v,U , Ũ), we define Wj = Wj(v,U , Ũ ) = N−1
∑N

t=1

{
[Vt − m̂(u

(j)
t , ũt)]

2 − [Vt −

m̂(ut, ũ
(j)
t )]2

}
for each j ∈ {1, · · · , p}, where (u(j)

t , ũ
(j)
t ) = [ut, ũt]swap({j}) and m̂ : R2p 7−→

R is the random forests regression function trained by regressing Vt’s on (ut, ũt)’s.

The LCD uses the linear model as a working model, while the MDA does not assume

any explicit model structure. When the underlying true model is nonlinear, the LCD

is based on the misspecified model, whereas the MDA is free of such issues. Yet, MDA

demands a large sample size, which is a common drawback for all nonparametric regression

models. Our simulation study will provide additional insights into the performance of LCD

and MDA in various model settings.

When q > 0, subsampling yields more than one set of selected variables. Naively taking

the intersection or union over these sets would not guarantee FDR control. The TSKI

uses the e-BH procedure [40] to overcome such a difficulty; see Step 3 in Algorithm 1 for

the calculation of e-values and how it forms the final set of selected variables Ŝ. The e-BH

procedure works similarly to the BH procedure [6] with the difference that e-values [35]

are used in place of the p-values. Given a null hypothesis, we call a non-negative random

variable E an “e-value” if E[E] ≤ 1 under the null. To test a hypothesis at significance level

α, we can reject the null hypothesis when E ≥ 1/α, noting that P(E ≥ 1/α) ≤ αE[E] ≤ α

under the null. One appealing property is that the average of multiple e-values is still

a valid e-value regardless of their dependence structure. This motivates us to use it to
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aggregate results from different subsamples. We acknowledge that the e-value idea has

been used in the literature for aggregating knockoffs inference results [40, 34]. We note

that tuning parameter τ1 used for individual subsample in Step 3 should be set smaller

than the overall target level τ ∗ in Step 4 in order to achieve high selection power; this is

formally stated in Theorem 2 in Section 3.

Algorithm 1: Robust time series knockoffs inference (TSKI) via e-values

1 Let 0 < τ1 < 1 be a constant and 0 < τ ∗ < 1 the target FDR level.

2 For each k ∈ {1, · · · , q + 1}, calculate the knockoff statistics W k
1 , · · · ,W k

p

satisfying (4) using sample {xi, x̃i, Yi}i∈Hk
.

3 Calculate the e-value statistics ej = (q + 1)−1
∑q+1

k=1 e
k
j , where

2

ekj =
p× 1{Wk

j ≥Tk}

1 +
∑p

s=1 1{Wk
s ≤−Tk}

, T k = min

{
t ∈ Wk

+ :
1 + #{j : W k

j ≤ −t}
#{j : W k

j ≥ t} ∨ 1
≤ τ1

}
, (5)

and Wk
+ = {|W k

s | : |W k
s | > 0} for each k ∈ {1, · · · , q + 1}. Here, 1{·} is the

indicator function.

4 Let Ŝ = {j : ej ≥ p(τ ∗ × k̂)−1} with k̂ = max{k : e(k) ≥ p(τ ∗ × k)−1}, where e(j)’s

are the ordered statistics of ej’s such that e(1) ≥ · · · ≥ e(p).

2.3 FDR control by TSKI

We need some technical conditions to bound the FDR of TSKI.

Condition 1. The density function of (X, X̃,Y ) exists and (Yt,xt)’s are identically

distributed across t. In addition, the supports of (X, X̃,Y ) and [X, X̃,Y ]swap({j}) are the

same for each j ∈ {1, · · · , p}.

Condition 2. The knockoff generator κ(·, ·) is constructed independently of observed time

series {xt, Yt}nt=1.

Condition 1 is a basic regularity condition. Condition 2 may be relaxed if we use sample

splitting to obtain an asymptotically independent training subsample for estimating the

unknown covariate distribution and constructing the knockoff generator.
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To ease the presentation, let (Y,x, x̃) be an independent copy of (Y1,x1, x̃1). As

outlined in the last subsection, we allow certain deviation of κ(x, ·) from the one derived

from the true covariate distribution of x. Consequently, x̃ generated from κ(x, ·) is only an

approximate knockoff vector, which may violate the exchangeability condition in (2). The

use of approximate knockoffs instead of ideal model-X knockoffs may incur a potential FDR

inflation. Our Theorem 1, which imposes mild conditions on κ(·, ·), demonstrates that such

FDR inflation can be controlled in time series applications. These results generalize the

robust knockoffs inference results for i.i.d. observations in [4] to the time series setting.

Let {xπ
t , x̃

π
t , Y

π
t }nt=1 be a sequence of i.i.d. random vectors such that (xπ

1 , x̃
π
1 , Y

π
1 )

and (x1, x̃1, Y1) have the same distribution. Denote by Xk = {xi, x̃i, Yi}i∈Hk
and X π

k =

{xπ
i , x̃

π
i , Y

π
i }i∈Hk

for each k ∈ {1, · · · , q+ 1}. Let fz(·) be the density function of random

vector z.

Theorem 1. Let Ŝ be the set of variables selected by TSKI with Algorithm 1. Then under

Conditions 1–2 and the assumption of positive T k’s in (5), we have

FDR ≤ inf
ε>0

[
τ∗eε +

q+1∑
k=1

P( max
1≤j≤p

K̂L
kπ

j > ε)
]
+

q+1∑
k=1

sup
D∈R#Hk×(2p+1)

|P(Xk ∈ D)− P(X π
k ∈ D)|, (6)

where 0 < τ ∗ < 1 is the target FDR level and for each 1 ≤ k ≤ q + 1 and 1 ≤ j ≤ p,

K̂L
kπ

j =
∑
i∈Hk

log

(
fXj ,X̃j ,x−j ,x̃−j

(Xπ
ij, X̃

π
ij,x

π
−ij, x̃

π
−ij)

fXj ,X̃j ,x−j ,x̃−j
(X̃π

ij, X
π
ij,x

π
−ij, x̃

π
−ij)

)
. (7)

An example is provided in Section A.1 of the Supplementary Material, where the KL

divergence term on the right-hand side of (6) asymptotically vanishes. The KL divergence

term can be further simplified provided that Condition 3 below, adapted from Definition

1 in [4], is satisfied. This condition concerns the knockoff generator κ(·, ·) and p additional

coordinate-wise knockoff generators κj : Rp−1 × R 7→ R for j ∈ {1, · · · , p}, where each
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κj(x−j, ·) approximates the conditional distribution of Xj given x−j.

Condition 3 (Definition 1 in [4]). For each 1 ≤ j ≤ p, 1) if z̃ = (Z̃1, · · · , Z̃p)
T

is sampled from the conditional distribution κ((X1, · · · , Xj−1, X̃
†
j , Xj+1, · · · , Xp), ·), then

(X̃†
j , Z̃j,x−j, z̃−j) and (Z̃j, X̃

†
j ,x−j, z̃−j) have the same distribution, where X̃†

j is sampled

from κj(x−j, ·); and 2) the density function of the distribution of (X̃†
j , Z̃j,x−j, z̃−j) exists.

Corollary 1. Assume that all the conditions of Theorem 1 hold. If further Condition 3

is satisfied, then (6) holds with

K̂L
kπ

j =
∑
i∈Hk

log

fXj |x−j
(Xπ

ij|xπ
−ij)fX̃†

j |x−j
(X̃π

ij|xπ
−ij)

fXj |x−j
(X̃π

ij|xπ
−ij)fX̃†

j |x−j
(Xπ

ij|xπ
−ij)

,

where X̃†
j ’s are given in Condition 3 and fz1|z2(z1|z2) = fz1,z2(z1, z2)[fz2(z2)]

−1 is the

conditional probability density function of z1 given z2.

It is seen that when Condition 3 is met, the FDR inflation can be measured by the

Kullback–Leibler (KL) divergence between the conditional distributions of X̃†
j |x−j and

Xj|x−j, where the former is described by the coordinate-wise knockoff generator κj(x−j, ·).

When these two conditional distributions are identical, the knockoff generator κ(·, ·) satis-

fying Condition 3 reduces to the ideal knockoff generator in model-X knockoffs [12]. In this

sense, Condition 3 relaxes the requirement of knowing the exact covariate distribution.

We borrow the Gaussian example discussed in [4] to help understand Condition 3. Con-

sider the Gaussian knockoff generator described around (8). Lemma 4 of [4] demonstrates

that κ(·, ·) and κj(·, ·) satisfy Condition 3 if the former is chosen as

κ(xt, ·)
d∼ N(xt − diag(s⃗)Θ̂xt, 2diag(s⃗)− diag(s⃗)Θ̂diag(s⃗)), (8)

and each κj(x−j, ·) follows the distribution N(x
T

−jΘ̂−j,jΘ̂
−1
jj , Θ̂

−1
jj ), where Θ̂ is a postive

definite estimate of [E(xxT
)]−1 constructed independently from the observed data (y,X),
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Θ̂−j,j represents the jth column of Θ̂ with the jth component removed, and Θ̂jj is the jth

diagonal entry of Θ̂. Here, for simplicity, we assume that xt has mean zero. Corollary 1

indicates that the asymptotic FDR control depends on the estimation accuracy of Θ̂. See

Section A.4 for how we estimate the precision matrix in practice. Meanwhile, see [4] for

other examples of knockoffs generators satisfying Condition 3.

Under Condition 4 below, a simple upper bound for the second term on the right-hand

side of (6) can be derived; this result is formally summarized in Corollary 2 below. An

example satisfying Condition 4 is provided in Section 2.4.

Condition 4 (h-step β-mixing with exponential decay). The covariate process {xt} is a

p-dimensional stationary Markov chain with a transition kernel p : Rp × Rp 7−→ R and

a stationary distribution π. There exist a positive integer h, a measurable function V :

Rp −→ [0,∞), and some constants 0 ≤ ρ < 1 and 0 < C0 <∞ such that for each x⃗ ∈ Rp,∥∥ph(x⃗, ·)− π(·)
∥∥
TV
≤ CρhV (x⃗), where C > 0 is some constant with C0 ≥ C

∫
Rp V (x⃗)dπ(x⃗)

and ∥·∥TV denotes the total variation (TV) norm associated with measures. Moreover, for

each x⃗ ∈ Rp, p(x⃗, ·) is absolutely continuous with respect to the Lebesgue measure.

Corollary 2. Assume that all the conditions of Theorem 1 hold. If further {xt}i≥1 satisfies

Condition 4 with q-step and constants C0 > 0 and 0 ≤ ρ < 1, and Yi is xt+1-measurable,

then (6) holds with

q+1∑
k=1

sup
D∈R#Hk×(2p+1)

|P(Xk ∈ D)− P(X π
k ∈ D)| ≤ C0 × ρq × n. (9)

Moreover, when (Yt,xt)’s are i.i.d., (9) holds with ρ = 0.

As shown in Corollary 2, in the i.i.d. data setting where ρ = 0, the FDR upper bound

in (6) replicates the result in [4] when q = 0 (i.e., no subsampling). With serial depen-

dence and general q, from (6) and (9), we observe an interesting tradeoff between the

KL divergence and the TV upper bound as q changes. First, in view of the expression
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in Corollary 1, P(max1≤j≤p K̂L
kπ

j > ε) depends on q in a complicated way via the sub-

sample size ⌊n/(q + 1)⌋. In addition, since the probability is upper bounded by 1, the

term
∑q+1

k=1 P(max1≤j≤p K̂L
kπ

j > ε) increases at most linearly with q. On the other hand,

Corollary 2 suggests that the TV upper bound decreases exponentially with q. Despite

this tradeoff, it is unreasonable to determine the optimal choice of q by directly analyzing

these upper bounds since they can be conservative. We leave the theoretical investiga-

tion of the optimal q for future research. Our empirical study suggests that q = 1 or 2

often yields satisfactory finite-sample control of the FDR, as long as each subsample is

reasonably large.

To provide a concrete time series example where our theory in this section applies, we

analyze the Gaussian ARX model (Example 3 in the next subsection) with Σ = E(xxT
)

assumed to be known, and q = ⌈(log n)1+δ⌉ and p = O(nK0) for some constants δ > 0

and K0 > 0. We show in Section A.1 that the KL divergence is zero and prove in

Section 2.4 that Condition 4 is satisfied. Thus, the FDR upper bound in Theorem 1

becomes τ ∗+C0nρ
q. When Σ is unknown and needs to be estimated, it is possible to obtain

an upper bound using an estimated covariance matrix formed from a large independent

learning sample using the proof idea for Lemma 5 of [4].

When moving beyond the Gaussian time series covariates, for example, Model 1 in

Section 4, we assume the high-level condition
∑q+1

k=1 P(max1≤j≤p K̂L
kπ

j > ε) = o(1) and

the β-mixing condition as in Corollary 2. Under these assumptions, our theory applies.

Despite these technical assumptions, our simulation results suggest that the FDR can

be controlled in broad model settings with in-sample estimated covariate distribution.

Theoretical justification of such empirical results for time series data is highly challenging

and is left for future investigation.
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2.4 Stationary processes satisfying Condition 4

We provide a linear time series example that satisfies Condition 4. Additional examples,

including nonlinear ones, are provided in Section A.2 of the Supplementary Material.

Example 3 (Autoregressive models with exogenous variables (ARX)). For each t, define

Yt =

k1∑
j=1

αjYt−j +

k2∑
l=1

k3l∑
j=1

β
(l)
j H

(l)
t−j+1 + εt

with H
(l)
t = ϵ

(l)
t +

∑k3l
j=1 b

(l)
j H

(l)
t−j, where for some positive constants L0, L1, and L2, it

satisfies that 1 −
∑k3l

j=1 b
(l)
j zj ̸= 0 and 1 −

∑k1
j=1 αjz

j ̸= 0 for each |z| ≤ 1 + L0 and

each l ∈ {1, · · · , k2}. Additionally,
∑k2

l=1

∑k3l
j=1 |β

(l)
j | < L1 and k1, k31, · · · , k3k2 < L2.

Here, k1, k2, and k31, · · · , k3k2 are all positive integers. Moreover, (ϵ
(1)
t , · · · , ϵ(k2)t , εt)’s are

(k2 + 1)-dimensional i.i.d. Gaussian random vectors with zero mean and positive definite

covariance matrix Σ0 that satisfy E(εtϵ(l)t ) = 0 for each l.

Example 3 is a benchmark model for describing the behavior of macroeconomic

variables. It is seen that the covariate vector with respect to response Yt is xt =

(Yt−1, · · · , Yt−k1 ,h
T

t )
T
with ht = (H

(1)
t , · · · , H(1)

t−k31+1, · · · , H
(k2)
t , · · · , H(k2)

t−k3k2+1)
T
. It has

been shown (e.g., [2]) that the stationary process {xt} in Example 3 with fixed dimen-

sionality satisfies Condition 4 with h-step and some constants ρ, C0 for each positive integer

h. When the dimensionality of xt increases, certain growth conditions such as (10) below

on the value of h and the dimensionality of xt are needed for Condition 4 to hold. For

this reason, we make the dependence of the stationary processes on h explicit: hereafter

{x(h)
t } denotes a ph-dimensional stationary process satisfying Condition 4 for h ≥ 1, as

guaranteed by Proposition 1 below.

Proposition 1. Let {x(h)
t } be a sequence of ph-dimensional linear process in Example 3

with constant Li’s and uniformly positive definite Σ
(h)
0 ’s. Assume that for some constant
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C2 > 0 and sufficiently small s2 > 0,

sup
h>0
{ph exp (−s2h)} ≤ C2. (10)

Then for some constants 0 ≤ ρ < 1 and C0 > 0 and all large h, {x(h)
t } satisfies Condition 4.

In view of Theorem 1 and Proposition 1, if we assume Example 3 with p = pqn =

O(nK0) and subsample with q = qn = ⌈(log n)1+δ⌉, where K0 > 0 and δ > 0 are some

constants, then the β-mixing convergence rate required by Theorem 1 is satisfied by the

subsampled data for all large n.

3 Power analysis under generalized linear time series

models

Since the selection power of any procedure depends on the signal strength, we showcase

the power analysis using the GLM time series model where the signal strength can be

measured conveniently by the regression coefficients. Correspondingly, we consider the

LCD knockoff statistic in Example 1 because Lasso is popularly used in high-dimensional

GLM regression.

The canonical GLM has the conditional mean function

E(Yt|xt) = g(xT
t β⃗

o), (11)

where β⃗o is a vector of unknown coefficients and g(·) is the derivative of a differentiable

function r(·). The inverse function of r′(·), denoted as g−1(·), is referred to as the canonical

link function. Commonly used canonical link functions include: (1) the identity link

g−1(µ) = µ for the linear model, (2) the logit link g−1(µ) = log(µ/(1−µ)) with 0 < µ < 1

for the logistic model, and (3) the log link g−1(µ) = log µ with µ > 0 for the Poisson
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model.

To form the LCD knockoff statistics, we first fit the following GLM Lasso regression

(β̂1, · · · , β̂2p)T = arg min
β⃗∈R2p

n−1
n∑

t=1

2
(
−Yt × (x

T

t , x̃
T

t )β⃗ + r
(
(x

T

t , x̃
T

t )β⃗
))

+ λn

2p∑
j=1

|βj |

 , (12)

where λn ≥ 0 is the regularization parameter. Define β⃗∗ := (β∗
1 , · · · , β∗

2p)
T with

(β∗
1 , . . . , β

∗
p)

T = β⃗o and β∗
p+1 = · · · = β∗

2p = 0. By the conditional independence

Yt ⊥⊥ x̃t|xt, we have E(Yt|xt, x̃t) = E(Yt|xt) = g(xT
t β⃗

o) = g((x
T

t , x̃
T

t )β⃗
∗). Thus, (12)

estimates the population parameter vector β⃗∗. When the link function is the identity, the

GLM Lasso estimate becomes the linear Lasso estimate.

Extensive research has been conducted to study the performance of Lasso with time

series data. See, for example, [1, 5, 22, 26, 29, 41]. Specifically, error bounds for the

linear Lasso estimates in ARX models with conditionally heteroskedastic errors have been

considered in [1, 29, 41]. Moreover, [22] established error bounds and support recovery

guarantees of the GLM Lasso when both the response and covariate vector are stationary

time series with dependence measures (as defined therein) satisfying certain summability

conditions. Our power analysis needs the following technical conditions.

Condition 5. For some constant c0 > 0 and sequence k3n > 0 with limn→∞ k3n = 0, it

holds that P
(∑2p

j=1 |β̂j − β∗
j | ≤ c0(#S∗)λn

)
≥ 1− k3n, where S∗ = {j : |β∗

j | > 0}.

Condition 6. There exists some sequence k1n > 0 with k1nq
−1 →∞ as n→∞ such that

minj∈S∗ |β∗
j | > k1nλn.

Condition 7. For some constant c1 ∈ (0, 1) and sequence {k2n} with limn→∞ k2n = 0,

it holds that 2(τ1#S∗)−1 < c1 and P(#{j : W k
j ≥ T k} ≥ c1(#S∗)) ≥ 1 − k2n for k ∈

{1, · · · , q + 1}.

We note that Condition 5 and (13) below are the L1- and L2-estimation error bounds

for the linear Lasso, which have been established in previous studies [1, 5, 26, 29, 41] in
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time series settings under various different model assumptions with model-specific choice

of λn. In these studies, k1n, k2n, and k3n typically decrease at polynomial rates as n

increases. Additionally, the GLM Lasso estimation error bounds have been established in

[22]. As a concrete example, for the model in Example 3 with dimensionality p increasing

at most exponentially with sample size n, we can prove that Condition 5 and (13) hold

with λn = O([log p]3/2n−1/2+α) for some α ∈ (0, 1/2) following the same proof as that for

Theorem 3.1 in [22] if, say, the Gaussian knockoff generator (3) is used. Since the proof is

a straightforward extension, we opt to omit it to save space.

Condition 6 shares similarities with the often-imposed beta-min assumption

minj∈S∗ |β∗
j | >

√
#S∗× λn for ensuring Lasso’s model selection consistency. If q is chosen

as O((log n)1+δ) as suggested by Proposition 1 and
√
#S∗ ≫ (log n)1+δ, then Condition 6

becomes less restrictive than the beta-min condition. Condition 7 is a technical assump-

tion that can be proved using the same derivations as in [18] under Condition 5 and the

following L2-estimation error bound condition

P
([ 2p∑

j=1

(β̂j − β∗
j )

2
] 1
2 ≤ c0

√
#S∗λn

)
≥ 1− k2n. (13)

For technical simplicity in power analysis, we assume that there are no ties in the mag-

nitude of nonzero knockoff statistics and Lasso solutions. Furthermore, we assume that

T k’s in (5) satisfy max1≤k≤q+1{T k} <∞ almost surely.

Theorem 2. Assume S∗ ⊂ {1, · · · , p} with #S∗ > 0. Let Ŝ be returned by Algorithm 1

with τ1, τ∗ ∈ (0, 1) and the LCD knockoff statistics (Cf. Example 1). Assume that Con-

ditions 6–7 are satisfied and Condition 5 holds for the Lasso estimates applied to each

subsample Hk in Algorithm 1. Then it holds that for all large n, small

P

(
{Ŝ = ∅} ∪

{
#(S∗ ∩ Ŝ)

#S∗ ≥ 1− 4c0(1 + q)k−1
1n

})
≥ 1− (q + 1)× (k2n + k3n). (14)
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If we further assume that τ1 = τ ∗ ×K−1 × (1− 4(q + 1)c0k
−1
1n ) with some K > 1, then for

all large n,

E

(
#(S∗ ∩ Ŝ)

#S∗

)
≥
(
1− (q + 1)(τ1 + θε)K

K − 1
− (q + 1)× (k2n + k3n)

)
× k4n, (15)

where {k4n} is some increasing sequence with limn→∞ k4n = 1 and

θε = inf

{
θ ≥ 0 : max

1≤k≤q+1
E

(
#({j : W k

j ≥ T k} ∩ (S∗)c)

#{j : W k
j ≥ T k} ∨ 1

)
≤ τ1 + θ

}
. (16)

As previously discussed, k2n and k3n generally converge to zero at polynomial rates as

n increases. Hence, setting q = O((log n)1+δ) makes the right-hand side of (14) asymptot-

ically approaching one. Thus, with asymptotic probability one, Algorithm 1 either makes

no discovery or has the percentage of correct discovery #(S∗∩Ŝ)
#S∗ approaching one. The

event of no discovery occurs when most individual knockoff filters from different subsam-

ples select an abundantly large number of false positives so that the resulting e-values for

all variables become too small to be selected. To further exclude the event {Ŝ = ∅}, it is

essential for (τ1+ θε)q to be asymptotically vanishing (see (15)). To understand this, note

that when (τ1 + θε)q is sufficiently small, it effectively controls the false discovery propor-

tion for each knockoff filter, consequently providing an upper bound on
∑p

s=1 1{Wk
s ≤−Tk}

for each k = 1, · · · , q + 1. This further entails that the jth e-value statistic given in

Algorithm 1 is sufficiently large for each j ∈ S∗ so that it can be selected by the e-value

procedure and hence Ŝ ̸= ∅. In practical implementation, in light of the definition of τ1,

we can make τ1q asymptotically negligible by choosing K ≫ q = O((log n)1+δ).
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4 Simulation studies

We now investigate the finite-sample performance of the TSKI procedure with Algorithm

1. Two selection methods considered in this section are TSKI with LCD in Example 1 and

TSKI with random forests MDA in Example 2; we abbreviate them as TSKI-LCD and

TSKI-MDA, respectively. We generate the approximate knockoff variables using the idea

of the second-order approximation [12, 18] via the knockoff generator (8); See Section A.4

for the estimation of Θ̂ and the choice of s⃗.

We compare with two benchmark methods. The first method selects features using

the Benjamini–Yekutieli (BY) method [7]. We choose not to use the Benjamini–Hochberg

(BH) method [6] because it assumes independence among the underlying p-values, which

is not expected to hold true for time series applications. Due to the limited results on

obtaining p-values for high-dimensional time series regression models, for the BY method,

we calculated p-values by utilizing the ordinary least squares method in our simulations

when n > p. When n < p, the BY method is not applicable due to the lack of an effective p-

value calculation method. The second benchmark method is the adaptive Lasso [44, 29],

which was designed for feature selection without the aim of FDR control. These two

approaches are abbreviated as LS-BY and adaLasso, respectively.

4.1 Simulation settings

We consider the self-exciting threshold autoregressive model with exogenous variables

(SETARX [39]), which is one of the most commonly used models for regime changes in time

series data. Regime changes are frequently observed in economic time series (e.g., time

series in Figure 1). It is well-known that SETARX with fixed dimensionality p satisfies the

β-mixing Condition 4 and is stationary; see, e.g., [2]. We present additional simulation

experiments in Section A.4 of the Supplementary Material, where some other popular
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time series models such as the linear autoregressive model with exogenous variables and

the autoregressive conditional heteroskedasticity model with exogenous variables [17] are

considered.

Model 1 (SETARX model). For each integer t and ι ∈ {0, 5}, we define

Yt =


∑2

j=1(−0.5)j−1βYt−j + 0.6(
∑ι

j=1Ht,j +
∑15

j=ι+1Ht,j) + εt, if Yt−d > r,

∑2
j=1−(−0.5)j−1βYt−j + 0.6(−

∑ι
j=1Ht,j +

∑15
j=ι+1Ht,j) + εt, otherwise,

where we choose r = 0.7 and d = 1 as the threshold value and the threshold lag, respectively.

We set the autoregressive coefficient β = 0.7, and choose the model errors εt’s as i.i.d.

N(0, 1). The time series covariates Ht,j’s are generated as Ht,j = η × Ht−1,j + ϵt,j with

j ∈ {1, · · · , 50} and η = 0.2, where (ϵt,1, · · · , ϵt,50)’s are i.i.d. Gaussian random vectors

across t with zero mean and E(ϵt,kϵt,l) = (0.2)|k−l| for all k, l. We formulate the covariate

vector with respect to response Yt as xt = (Yt−1, · · · , Yt−20,ht,ht−1,ht−2,ht−3,ht−4) with

ht = (Ht,1, · · · , Ht,50), giving rise to p = 270. Throughout the simulation, we keep p = 270

while varying the sample size n across experiments with n ∈ {200, 300, 500, 1000}. Due to

the space constraint, we move the results for n = 300 and 1000 to Section A.4.

It is seen that the mean function is comprised of two components: a piecewise linear

function of the lags and the first ι time series covariates, along with a linear function

involving (Ht,ι+1, · · · , Ht,15) for ι ∈ {0, 5}. The setup with ι = 5 mimics a realistic and

straightforward scenario where certain variables Ht,j, but not all, together with lagged

variables Yt−j, undergo changes in regime. The mean regression function of Model 1 is

therefore nonlinear, as illustrated graphically in Figure 2. The relevant index set according

to Definition 1 is S0 = {1, 2, 21, · · · , 35}, while the null set H0 = {3, · · · , 20, 36, · · · , 270}.

For implementation, the target FDR level is set as τ ∗ = 0.2, and the R packages glmnet

and randomForest are used for calculating the Lasso estimates and the random forests
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Figure 2: A graphical representation depicting Yt−1 on the x-axis and Yt on the y-axis is
provided under Model 1 with (η, ι) = (0.2, 5).

Method n/p/η/ι q FDR Power n/p/η/ι q FDR Power
TSKI-LCD

200/270/0.2/0

0 0.157 0.698

500/270/0.2/0

0 0.176 0.939
TSKI-LCD 1 0.026 0.051 1 0.099 0.872
TSKI-MDA 0 0.173 0.456 0 0.181 0.922
TSKI-MDA 1 0.026 0.028 1 0.092 0.550
TSKI-LCD

200/270/0.2/5

0 0.139 0.287

500/270/0.2/5

0 0.141 0.634
TSKI-LCD 1 0.023 0.019 1 0.086 0.267
TSKI-MDA 0 0.138 0.215 0 0.166 0.679
TSKI-MDA 1 0.012 0.011 1 0.084 0.216

Table 1: The simulation results on the empirical FDR and power for the TSKI with
τ1 = τ ∗/(q+1) and τ ∗ = 0.2 under Model 1 in Section 4.1. The results for n ∈ {300, 1000}
and q = 2 are given in Section A.4

.

MDA, respectively. The TSKI Algorithm 1 with parameters q ∈ {0, 1, 2}, τ ∗ = 0.2, and

τ1 = τ ∗/(q + 1) is used in our simulation. The empirical versions of the FDR and power

are calculated as the sample averages of the false discovery proportion and true discovery

proportion across 100 repetitions, respectively. The values of (p, q, n) are included in both

Tables 1–2, and the R codes are available in the Supplementary Material.

4.2 Empirical performance of TSKI

Table 1 presents the results for TSKI-LCD and TSKI-MDA with q = 0 and q = 1. The

complete results, which also include q = 2 and a larger sample size n = 1000, are provided

in Section A.4. It is seen from Table 1 that both methods control the FDR in finite samples

below the target level of τ ∗ = 0.2, while larger q gives lower selection power compared to

that of q = 0 (i.e., no subsampling). The lower power for larger q is reasonable and caused

by the small sample size in each subsample when fitting the time series regression model.

25



Adaptive Lasso
n/p/η/ι FDR Power

200/270/0.2/0 0.520 0.964
300/270/0.2/0 0.468 0.997
500/270/0.2/0 0.657 1.000
200/270/0.2/5 0.604 0.705
300/270/0.2/5 0.563 0.786
500/270/0.2/5 0.677 0.891

LS + BY
n/p/η/ι FDR Power

200/270/0.2/0 – –
300/270/0.2/0 0.000 0.001
500/270/0.2/0 0.027 0.763
200/270/0.2/5 – –
300/270/0.2/5 0.018 0.006
500/270/0.2/5 0.026 0.276

Table 2: Left panel: the simulation results on the empirical FDR and power for the
adaptive Lasso [29, 44]; there is no target FDR level for the adaptive Lasso. Right panel:
the simulation results on the empirical FDR and power for the ordinary least squares +
Benjamini–Yekutieli (BY [7]) with the target FDR level at 0.2; this approach does not
apply to high-dimensional scenarios when n < p.

The knockoffs method is empirically known to be conservative when the sample size is

overly small. This conservative nature offsets the FDR inflation due to serial dependence

in the small sample size scenario, which explains why FDR is still controlled even without

subsampling. The extended Model 1 simulation presented in Section A.4 shows that for

a larger sample size n = 1000, we start observing FDR inflation when q = 0. In addition,

in the additional simulation examples presented in Section A.4, we observe severe FDR

inflation when q = 0 in various scenarios (see Table 3).

From Table 1, we see that for Model 1 with ι = 0 (i.e., lower nonlinearity), the LCD-

based method demonstrates superior performance over the MDA-based method in terms

of power. Meanwhile, when ι = 5 (i.e., higher nonlinearity), we observe from Table 1 that

MDA outperforms LCD in power when the sample size is large (i.e., n = 500 and q = 0), an

intuitive observation considering the nonparametric nature of the MDA measure. Indeed,

the empirical performance of MDA decreases drastically in all settings as q increases,

because of the smaller sample size when calculating the MDA measures.

The results from Table 1 highlight that TSKI-MDA may not be suitable for some

real data applications, such as our study where only 60 observations are accessible for

each inference window. They underline the need to explore ways to enhance selection

power for nonlinear time series, especially with limited samples. On the other hand,
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Table 2 highlights that adaLasso demonstrates one of the highest selection powers among

all four methods. However, adaLasso fails to control error rates under Model 1. This

is expected because adaLasso is designed for the linear model and focuses on consistent

model selection, lacking an error rate tuning parameter, such as the target FDR level.

LS-BY is inapplicable to high-dimensional time series applications when n < p, such as

our real data example in Section 5, due to the lack of a reliable p-value calculation method.

It is important to emphasize that obtaining valid p-values under high-dimensional linear

or nonlinear time series models presents a highly challenging and currently unresolved

issue; such challenge is also reflected in the poor performance of LS-BY when p becomes

comparable to n (i.e., (n, p) = (300, 270)).

It is worth pointing out that our additional simulation experiments in Section A.4 of

the Supplementary Material reveal that: 1) TSKI-LCD and TSKI-MDA with q = 1 consis-

tently control FDR below the target level, whereas setting q = 0 yields results occasionally

exceeding the target level; and 2) the LS-BY method can have FDR exceeding the target

level when data is simulated from autoregressive conditional heteroskedasticity models

with exogenous variables and higher value of η (as in Model 1). See the Supplementary

Material for full details.

Overall, our simulation experiments show that the time series FDR is controlled stably

by the TSKI procedure with subsampling parameter q = 1 in finite samples, whereas the

selection power depends on the sample size, the subsampling parameter q ≥ 0, and the

choice of the feature importance measure. Importantly, our theoretical results (Theorem 1

and Corollary 2) and simulation results show that TSKI is among the first approaches with

theoretically justified FDR control for dependent data under flexible β-mixing condition

in Condition 4. For implementation, we suggest that practitioners working on time series

inference with limited sample sizes initiate their diagnosis by using TSKI-LCD with q set

to 1, and generate knockoff variables using knockoff generator (8).
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Figure 3: The left panel displays the averages of “having any selections” indicators over
100 repetitions, where the indicator at each rolling window is one if and only if any
covariates are selected, and the x-axis indicates the ending time of each rolling window.
The right panel shows the analogous results, but the indicator is one at each covariate
index if that covariate is selected at any rolling window. The first 127 covariates are
current time covariates, and the 128th to 254th covariates are one-month lag covariates
in the AR(2) model. Covariates measuring similar economic values are clustered closer
(see [28] for detailed definitions of these covariates). The selection method here is the
TSKI-LCD without subsampling (q = 0).

Figure 4: These two panels are analogous to those in Figure 3 but with q = 1 for the
TSKI-LCD procedure.

5 Real data application

We analyze the U.S. inflation series data described in the Introduction. The monthly

economic time series, including numerous types of consumer price indices, unemployment

rates, and housing prices, can be obtained from the FRED-MD database [28]3 and the

U.S. Bureau of Labor Statistics. These time series have been pre-processed following the

instructions of the FRED-MD database to make them more stationary [28]. To address

the concern on potential nonstationarity over the entire time span, we break it into 58

rolling windows, each covering a five-year period. Motivated by our simulation study,

we apply TSKI-LCD with q ∈ {0, 1} described in Section 4.1 (with knockoff generator

3The website URL: https://research.stlouisfed.org/econ/mccracken/fred-databases/.
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(a) The red curve is ACOGNO

(b) The red curve is EXCAUSx

(c) The red curve is CLAIMSx

Figure 5: The black curves in the three panels are the inflation series at time t + 1. The
red curve in panel (a) is the number of new orders for consumer goods at time t, the red
curve in panel (b) indicates the U.S./Canada exchange rate at time t, and the red curve
in panel (c) is the U.S. initial claims for unemployment benefits at time t. All curves here
are standardized and adjusted for visual comparison, and hence the values of these time
series are not reported on the y-axis.

(8)) to each five-year rolling window to investigate the temporal relations between the

inflation and other time series variables. The inflation at time t is defined as the adjusted

consumer price index for all goods: Inflationt :=
(

CPIt−CPIt−1

CPIt−1
× 100

)
%, where CPIt is the

consumer price index for all goods at time (month) t. Each time series has a FRED-MD
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code. For example, CPIAUCSL is the FRED-MD code of the inflation series. To reduce

randomness resulting from the use of the knockoffs construction, we repeat the inference

procedure 100 times, and report the average results in Figure 3 with q = 0, where the left

panel displays whether any significant covariates have been found at each rolling window

period, and the right panel shows the selection frequency over 58 rolling window periods

of the 127 time series covariates and their one month lags. That is, we model the one

month ahead inflation series Inflationt+1 (response) using an AR(2) model with 127 time

series covariates at current time t and 127 one month lags of these time series covariates.

Consequently, the total covariate dimensionality is p = 254.

As can be seen in Figure 3, the TSKI-LCD with q = 0 identifies some active windows

around the year 2021 (COVID) and 2022 (Russia-Ukraine conflict), with the selection

frequency concentrating on a sparse set of covariates. The majority of the selected variables

are covariates at the current time t. The top 10 most frequently selected covariates by the

TSKI-LCD with q = 0 are employment-related series (HWI, CLAIMSx), consumption-

related indices (ACOGNO, CPIAUCSL), housing-related series (PERMITS), U.S. bond

yields (GS5, GS10), stock market indices (S.P.div.yield, S.P.500), and exchange rates

(EXCAUSx) at their current time t, with their FRED-MD codes given in the parentheses.

The simulation results in Section 4 suggest that the choice of q = 1 has better FDR

control especially when the sample size is limited. Motivated by our simulation results,

we next apply the TSKI-LCD with subsampling q = 1 in Figure 4 with the expectation

of better FDR control. The results of Figure 4 are more conservative in comparison to

those in Figure 3. Despite being conservative, these new results also suggest some active

windows around the same periods as q = 0, and the selected variables are also mostly

covariates at the current time t. In addition, most covariates selected by the TSKI-LCD

with q = 1 belong to the set selected by the TSKI-LCD with q = 0. In particular, the

top 10 selected covariates are CPIAUCSL, CLAIMSx, PERMITS, AMDMUOx, GS10,
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ACOGNO, EXCAUSx, EXUSUKx, INDPRO, and IPFUELS, where only PERMITS is

one-month lag covariate at t − 1 in the AR(2) model. Among them, EXUSUKx, AMD-

MUOx, INDPRO, and IPFUELS are new in comparison to the list of the selected set

when q = 0, where the first two are the U.S./U.K. exchange rate and another type of

consumption-related index (the number of unfilled orders for durable goods), respectively,

and the last two are industrial production indices that are related to consumption price

indices. The difference in the selected sets of covariates is attributed to the fact that some

economic covariates are designed to track similar economic factors and tend to be highly

correlated.

The recent literature [37] suggests that inflation foresting is a difficult task in the

sense that AR models with additional time series covariates rarely outperform simple

AR models with only inflation lags. In other words, conditional on the lagged inflation

series, additional covariates do not carry strong signals in inflation forecasting. The fact

that the TSKI-LCD with q = 1 selects only a few time series covariates indeed supports

such an argument. It is also interesting to notice that the stock market indices are not

considered as important covariates by the TSKI-LCD with subsampling (i.e., q = 1), but

are selected as important covariates when q = 0. In particular, the selection frequencies

of S&P dividend yields and S&P 500 (both at lag t− 1) are 100% and 79%, respectively,

in Figure 3, while only 5% and 1%, respectively, in Figure 4, suggesting that stock market

indices could be spurious findings.

The selection results by the TSKI-LCD motivate us to further investigate the depen-

dency of inflation on a few time series covariates. In Figure 5, we plot three selected

series, namely ACOGNO, EXCAUSx, and CLAIMSx, which are among the top 10 lists

both when q = 0 and q = 1. These three selected covariates are all at their current time

t in the AR(2) model. ACOGNO is the number of new orders for consumer goods, which

is an important consumption index; EXCAUSx is the exchange rate from the U.S. dollar
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to the Canadian dollar, and CLAIMSx is the initial claim for unemployment benefits. We

also include the inflation series at time t + 1 in the same period (the black curve in each

panel). For better visual comparison, all curves in Figure 5 have been standardized and

adjusted.

A visual inspection of Figure 5 shows that the impacts of the COVID-19 pandemic

in April 2020 on the U.S. economy are stronger than those of the gasoline price shock in

January 2015. This potentially explains why our empirical findings of significant covariates

concentrate mostly on this period. From Figure 5, we see that the gasoline price shock in

January 2015 affects the consumption index series ACOGNO more mildly compared to the

impact of COVID-19 in April 2020. Also, although there is some variation in the exchange

rate EXCAUSx after January 2015, it is unclear whether such variation was caused by

the gasoline price shock. In contrast, most of the U.S. economy’s time series clearly

responded to the pandemic to an unignorable degree. Particularly, the exchange rate and

the number of initial claims dropped in March 2020, suggesting that these covariates were

leading indicators of the inflation drop in April 2020. In summary, we have applied the

newly suggested tool of TSKI to study the U.S. economy. Our empirical results illustrate

the potential of the TSKI to obtain more instructive findings in real data applications.
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Supplementary Material to “High-Dimensional

Knockoffs Inference for Time Series Data”

Chien-Ming Chi, Yingying Fan, Ching-Kang Ing and Jinchi Lv

This Supplementary Material contains the appendix of Section 2, additional simulation

examples, the proofs of all main results and technical lemmas, and some additional tech-

nical details. All the notation is the same as defined in the main body of the paper.

Additionally, we introduce some technical notation below. For x⃗ := (x1, · · · , xn)
T ∈ Rn,

we define ∥x⃗∥k := (
∑n

i=1 |xi|k)1/k, ∥x⃗∥∞ := max1≤i≤n |xi|, and ∥x⃗∥0 :=
∑n

i=1 1{xi ̸=0} with

1{·} being the indicator function. The distribution of a random mapping X is denoted as

µX . For a matrix X and an index subset S, X(S) represents a submatrix of X containing

only columns with indices in S. The total variation (TV) norm for any measures µ1 and

µ2 on (Ω,F) is defined as ∥µ1 − µ2∥TV := 2 supD∈F |µ1(D)− µ2(D)|.

A Appendix of Section 2

A.1 Example for Theorem 1

We begin with providing an example with asymptotically vanishing KL divergence. As-

sume that {xt} follows a stationary linear Gaussian process as in Example 3 in Sec-

tion 2.4 with zero mean and precision matrix (i.e., the inverse of the covariance matrix)

Θ = [E(xtx
T

t )]
−1, and the knockoff generator is such that κ(z⃗, ·) follows a Gaussian distri-

bution with mean (Ip −DΘ̂)z⃗ and variance 2D −DΘ̂D for each z⃗ ∈ Rp, where Ip is the

p-dimensional identity matrix, Θ̂ is the estimated covariance matrix constructed from an

independent learning sample, and D is a diagonal matrix with nonnegative entries such

that 2D −DΘ̂D is positive semidefinite. It has been shown in Lemma 5 of [4] that when

the data consists of i.i.d. observations without serial dependency, it holds that for each
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ε > 0,

lim
n→∞

q+1∑
k=1

P(max
1≤j≤p

K̂L
kπ

j > ε) = 0 (A.1)

as long as Condition 3 is satisfied, p≫ q, and

max
1≤j≤p

Θ
− 1

2
jj

∥∥∥Θ− 1
2 (Θ̂j −Θj)

∥∥∥
2
= op

{
1√

n log p

}
, (A.2)

where Θjj denotes the jth diagonal entry of Θ and Θj represents the jth column of

Θ. We omit the dependence of the parameters on sample size n here for simplicity. More

examples on asymptotically vanishing KL divergence for non-time series data can be found

in the same paper above. Similar results can be proved for our applications of time series

data using the proof techniques in [4] by replacing the concentration inequalities for i.i.d.

observations with those for β-mixing data; since the extension is straightforward, we omit

the details for simplicity.

We provide two remarks here. First, when Θ is known, it is obvious that the KL

divergence is zero. Second, by Lemma 5 in [4], an independent learning sample of size

ñ ≫ n log p is needed for (A.2) to hold. However, our simulation results indicate that

using the full sample for both Θ estimation and TSKI inference can still control the FDR

empirically, which suggests that the theoretical requirement may be unnecessarily strong.

How to relax such an assumption in a time series setting is left for future investigation.

A.2 Additional stationary processes satisfying Condition 4

A.2.1 Various nonlinear AR-type processes

Many time-homogeneous Markov chains satisfy Condition 4. To name a few, [38, 2] showed

that with some additional mild regularity conditions, {(Yt−1, · · · , Yt−k1)} in Example 4

below satisfies Condition 4 for all h > 0 with some constants C0 and 0 ≤ ρ < 1.
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Example 4 (Nonlinear AR [38, 2]). Let a measurable function G : Rk1 −→ R for some

constant integer k1 > 0 be given such that supz⃗∈Rk1 |G(z⃗)| < ∞, and {εt} a sequence of

i.i.d. model errors. For each t, we define

Yt = G(Yt−1, · · · , Yt−k1) + εt.

The self-exciting threshold autoregressive models (SETAR) [39, 23] also satisfies Con-

dition 4 for all h > 0 according to [2]. For more examples such as the exponential AR

models, see [32, 2] and the references therein.

A.2.2 ARCH-type process

Example 5 (AR(k1)-X-ARCH(k3) [14, 31]). Let εt’s be i.i.d. random variables with

zero mean and Eε21 = 1, and {ht := (Ht,1, · · · , Ht,k2)} be a sequence of k2-dimensional

time series covariates that is independent of εt’s. Let measurable functions G1 : Rk3 →

(0,∞), G2 : Rk2 → R, and γj : Rk1 → R with 1 ≤ j ≤ k1 be given such that∑k1
j=1 supz⃗∈Rk1 |γj(z⃗)| < 1. The functional-coefficient ARX-ARCH model [13] is given

by

Yt =

k1∑
j=1

γj(Yt−1, · · · , Yt−k1)Yt−j +G2(ht) + σtεt

with σt = G1(σt−1εt−1, · · · , σt−k3εt−k3).

Example 5 above is an ARCH model with the mean function consisting of

an AR component and exogenous covariates. The covariate vector is xt =

(Yt−1, · · · , Yt−k1−k3 ,ht, · · · ,ht−k3)
T
for response Yt. In particular, Model 3 in Section 4

is an example of the ARX-ARCH model above when γj’s are constants and the model

error follows a standard ARCH process [17].

The AR component in Example 5 above can be a general functional-coefficient autore-

gressive model [13], and the ARCH component can take the form of a smooth transition
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ARCH model [27]. With G2 = 0 and additional mild regularity conditions, the Markov

chain {Yt, · · · , Yt−k1−k3+1}t satisfies Condition 4 for each h > 0 with constants C0 > 0 and

0 ≤ ρ < 1 according to [14, 31]. In the presence of exogenous covariates ht, additional

regularity conditions on ht’s are needed for Condition 4 to hold for the Markov chain;

such study is beyond the scope of the current paper and is left for future investigation.

One challenge in the variable selection problem with time series data is that there

does not always exist an obvious definition of the covariate vector. Taking Example 5 for

instance, the existence of the ARCH component requires us to take into account both the

mean function and variance function when selecting the set of non-null variables in the

broad sense according to Definition 1. To better understand this, let us consider an ARX-

ARCH(1) model with a standard ARCH component such that σt =
√

0.1 + 0.9(σt−1εt−1)2,

and write

σt−1εt−1 = Yt−1 −
k1∑
j=1

γj(Yt−2, · · · , Yt−1−k1)Yt−1−j −G2(ht−1). (A.3)

In this example, in addition to variables (Yt−1, · · · , Yt−k1 ,ht) which affect the mean re-

gression function, we should also take into account the lagged covariates in the ARCH

component (Yt−1, · · · , Yt−k1−1,ht−1) when conducting variable selection in the broad

sense according to Definition 1. That is, one sensible choice of the covariate vector is

xt = (Yt−1, · · · , Yt−k1−1,ht,ht−1)
T
. Omitting variables in the variance function (i.e., the

ARCH component) and defining the covariate vector as (Yt−1, · · · , Yt−k1 ,ht) may give us

a nonsparse set of non-null variables according to Definition 1. Nevertheless, the actual

variable selection performance of the TSKI depends on the specific choice of the knockoff

statistics, as shown in our simulation section. If the knockoff statistics are constructed

based on the mean regression function alone (e.g., the LCD and MDA discussed earlier),

then the corresponding TSKI cannot be expected to have power in selecting variables
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that affect only the variance function. In this sense, our results in such a scenario should

be interpreted as selecting the important variables contributing to the mean regression

function alone.

Remark 1. We have left out the GARCH-type process [9] in our discussion because it can

be challenging to formulate meaningful covariates for variable selection purposes in such

a setting. Note that a GARCH-type process can be represented as an ARCH-type process

with infinite order. Thus, if the covariates vector is not well-formulated such that some

active covariates are not included, the resulting regression model may no longer be sparse,

rendering the FDR control problem invalid. We shall leave the variable selection problem

for the GARCH-type process in future work.

A.3 Robust TSKI without subsampling

In this section, we consider a special case of Algorithm 1 when q = 0, that is, no subsam-

pling. For ease of reference, we provide a full description of the corresponding algorithm in

Algorithm 2 below. Our theoretical study here has two major contributions: 1) extending

the theory of robust knockoffs inference [4] to its e-value analog, where the non-robust ver-

sion was first introduced and studied by [34] for i.i.d. data, and 2) further extending the

results to time series applications. By similar analysis as in Theorem 3 below, we can show

that the robust knockoffs inference [4] (without using the e-values) can also be extended

to time series applications, but the details are omitted here for simplicity. We emphasize

that our results (A.5)–(A.6) in Theorem 3 below assume neither i.i.d. observations nor

the pairwise exchangibility Condition 3.

Let X−j be the submatrix of X with the jth column removed, and Xj and X̃j the

jth columns of X and X̃, respectively. Recall that (Y,x, x̃) is an independent copy of

(Y1,x1, x̃1) and X̃†
j is given in Condition 3 by the jth coordinatewise knockoff generator.
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Algorithm 2: Time series knockoffs inference (TSKI) via e-values without subsampling

1 Let 0 < τ1 < 1 be a constant and 0 < τ ∗ < 1 the target FDR level.
2 Calculate the knockoff statistics W1, · · · ,Wp satisfying (4) with the full sample
{Yt,xt, x̃t}nt=1.

3 Let W+ = {|Ws| : |Ws| > 0}. Calculate the e-value statistics ej’s such that

ej =
p× 1{Wj≥T}

1 +
∑p

s=1 1{Ws≤−T}
, T = min

{
t ∈ W+ :

1 + #{j : Wj ≤ −t}
#{j : Wj ≥ t} ∨ 1

≤ τ1

}
.

(A.4)

4 Let Ŝ = {j : ej ≥ p(τ ∗ × k̂)−1} with k̂ = max{k : e(k) ≥ p(τ ∗ × k)−1}, where e(j)’s
are the ordered statistics of ej’s such that e(1) ≥ · · · ≥ e(p).

Theorem 3. Let Ŝ be the set of variables selected by the TSKI Algorithm 2 and 0 < τ ∗ < 1

the target FDR level. Assume that Condition 1 holds and T in (A.4) is positive. Then we

have

FDR ≤ inf
ε>0

[
τ ∗ × eε + P(max

1≤j≤p
K̂Lj > ε)

]
, (A.5)

where for each 1 ≤ j ≤ p,

K̂Lj = log

fXj ,X̃j ,X−j ,X̃−j ,Y
(Xj, X̃j,X−j, X̃−j,Y )

fXj ,X̃j ,X−j ,X̃−j ,Y
(X̃j,Xj,X−j, X̃−j,Y )

. (A.6)

If we further assume that Condition 2 is satisfied and Xj is independent of Y conditional

on X−j for each j ∈ H0, then we have

K̂Lj = log

fXj ,X̃j ,X−j ,X̃−j
(Xj, X̃j,X−j, X̃−j)

fXj ,X̃j ,X−j ,X̃−j
(X̃j,Xj,X−j, X̃−j)

. (A.7)

Moreover, if (x, x̃), (x1, x̃1), · · · , (xn, x̃n) are further assumed to be i.i.d., then we have

K̂Lj =
n∑

t=1

log

(
fXj ,X̃j ,x−j ,x̃−j

(Xtj, X̃tj,x−tj, x̃−tj)

fXj ,X̃j ,x−j ,x̃−j
(X̃tj, Xtj,x−tj, x̃−tj)

)
. (A.8)
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If further Condition 3 is satisfied, then we have

K̂Lj =
n∑

t=1

log

fXj ,x−j
(Xtj,x−tj)fX̃†

j ,x−j
(X̃tj,x−tj)

fXj ,x−j
(X̃tj,x−tj)fX̃†

j ,x−j
(Xtj,x−tj)


=

n∑
t=1

log

fXj |x−j
(Xij|x−tj)fX̃†

j |x−j
(X̃tj|x−tj)

fXj |x−j
(X̃tj|x−tj)fX̃†

j |x−j
(Xtj|x−tj)

,

(A.9)

where fz1|z2(z1|z2) denotes the conditional probability density function of z1 given z2.

The proof of Theorem 3 follows mainly those in [4, 34, 40] and is presented in Sec-

tion B.3 later. Comparing (A.9) to (A.8), we see that the KL divergences become invariant

to x̃−j thanks to the additional assumption Condition 3. The simplified form in (A.9) is

important in proving the asymptotic FDR control as in (A.1). In addition, Condition 3

allows for deviation of the conditional distribution of X̃†
j |x−j from the true underlying

conditional distribution of Xj|x−j, making the procedure more practically applicable, as

verified in examples given in [4].

A.4 Appendix of Section 4

A.4.1 ARX and ARXARCH models

In this section, we present additional simulation examples: the autoregressive model with

exogenous variables and the autoregressive conditional heteroskedasticity model with ex-

ogenous variables, as detailed in [17]. All the symbols and notation are consistent with

those in Section 4.

Model 2 (ARX model). For each integer t, we define

Yt =
2∑

j=1

(−0.5)j−1βYt−j +
15∑
j=1

0.6×Ht,j + εt.
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Model 3 (ARX-ARCH model). For each t, we define

Yt =
2∑

j=1

(−0.5)j−1βYt−j +
15∑
j=1

0.6×Ht,j + σtεt

with σ2
t = 0.1 + 0.9(σt−1εt−1)

2.

The model error {εt} is a sequence of i.i.d. standard Gaussian random variables and

β = 0.7. The time series covariates are given by Ht,j = η×Ht−1,j+ϵt,j with j ∈ {1, · · · , 50}

and some η ∈ {0.2, 0.95}, where (ϵt,1, · · · , ϵt,50)’s are i.i.d. Gaussian random vectors with

zero mean and E(ϵt,kϵt,l) = (0.2)|k−l| for all k, l. We formulate the coveriate vector with

respect to response Yt as xt = (Yt−1, · · · , Yt−20,ht,ht−1,ht−2,ht−3,ht−4), where ht =

(Ht,1, · · · , Ht,50), giving rise to p = 270. We set p = 270 but vary the sample size n across

experiments with n ∈ {200, 300, 500}.

In Models 2 and 3, the mean functions both depend linearly on the covariates. It is

worth mentioning that because of the ARCH component, for Model 3, the relevant and

null sets according to definition 1 are Sarch = {1, 2, 3, 21, · · · , 35, 71, · · · 85} and Harch =

{4, · · · , 20, 36, · · · , 70, 86, · · · , 270}, respectively. The sets S0 and H0 defined previously

are the sets of active and null covariates, respectively, in the mean regression function.

Although S0 and H0 differ from Sarch and Harch, respectively, in Model 3, we examine the

empirical power and FDR of the TSKI with respect to S0 and H0 for two reasons: 1) this

is an interesting problem in time series inference and 2) random forests and Lasso are both

algorithms designed for fitting the mean regression and thus are not expected to detect

variables that affect only the variance function.

For implementation, the target FDR level is set as τ ∗ = 0.2, and the R packages glmnet

and randomForest are used for calculating the Lasso estimates and the random forests

MDA, respectively. We generate the approximate knockoff variables using the idea of the

second-order approximation [12, 18]. Specifically, for the ideal scenario with a zero-mean

8



random vector x given, we sample its knockoff vector from the multivariate Gaussian

distribution (also see (8))

x̃|x ∼ N(x− diag(s⃗)Σ−1x, 2diag(s⃗)− diag(s⃗)Σ−1diag(s⃗)), (A.10)

where Σ = E(xxT
), s⃗ ∈ Rp denotes the tuning parameters, and diag(s⃗) is a diagonal ma-

trix with diagonal entries in s⃗. Larger components of s⃗ imply that the resulting knockoff

variables deviate more from the original features, thereby providing higher power in dis-

tinguishing them. Further details about this knockoff variable sampling procedure can be

found in [12, 18]. In practical applications, we provide an estimate of the precision matrix

Σ̂−1 using the full sample and the method developed in [20], and select s⃗ = (ŝ, · · · , ŝ)T

with ŝ the inverse of the maximum eigenvalue of Σ̂−1. Notably, this method matches the

first two moments of the original covariates and their knockoffs counterparts and is thus

termed the second-order approximation method. The TSKI Algorithm 1 with subsampling

parameter q ∈ {0, 1}, τ ∗ = 0.2, and τ1 = τ ∗/(q + 1) is considered in our simulation. The

R code for the simulation experiments is available in the online Supplementary Material.

A.4.2 Empirical performance of TSKI

For all simulation experiments reported in Tables 1 and 3, both TSKI-LCD and TSKI-

MDA with q = 1 control the FDR in finite samples at the target value of τ ∗ = 0.2, but at

the cost of lower selection power compared to the case of q = 0 (i.e., no subsampling). In

contrast, TSKI with q = 0 has FDR exceeding the target FDR level in some cases.

When analyzing Models 2–3 with linear mean regression functions, the LCD-based

method demonstrates superior performance over the MDA-based method in terms of

power, as evidenced in Table 3. However, for Model 1 when ι = 5 (i.e., high nonlin-

earity), we observe from Table 1 that MDA outperforms LCD in power when the sample
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n/p/η Method q FDR Power

200/270/0.2

TSKI-LCD 0 0.237 0.992
TSKI-LCD 1 0.108 0.529
TSKI-MDA 0 0.273 0.391
TSKI-MDA 1 0.026 0.021

300/270/0.2

TSKI-LCD 0 0.189 0.999
TSKI-LCD 1 0.110 0.97
TSKI-MDA 0 0.222 0.520
TSKI-MDA 1 0.049 0.057

500/270/0.2

TSKI-LCD 0 0.188 1
TSKI-LCD 1 0.142 0.999
TSKI-MDA 0 0.208 0.729
TSKI-MDA 1 0.068 0.164

500/270/0.95

TSKI-LCD 0 0.299 0.972
TSKI-LCD 1 0.172 0.979
TSKI-MDA 0 0.042 0.019
TSKI-MDA 1 0.000 0.000

n/p/η Method q FDR Power

200/270/0.2

TSKI-LCD 0 0.203 0.985
TSKI-LCD 1 0.122 0.755
TSKI-MDA 0 0.220 0.292
TSKI-MDA 1 0.044 0.021

300/270/0.2

TSKI-LCD 0 0.233 0.999
TSKI-LCD 1 0.124 0.986
TSKI-MDA 0 0.185 0.387
TSKI-MDA 1 0.017 0.025

500/270/0.2

TSKI-LCD 0 0.181 0.999
TSKI-LCD 1 0.166 0.996
TSKI-MDA 0 0.142 0.476
TSKI-MDA 1 0.037 0.076

500/270/0.95

TSKI-LCD 0 0.312 0.961
TSKI-LCD 1 0.195 0.969
TSKI-MDA 0 0.032 0.015
TSKI-MDA 1 0.000 0.000

Table 3: The simulation results on the empirical FDR and power for the TSKI with
τ1 = τ ∗/(q + 1) and τ ∗ = 0.2 under Model 2 (left panel) and Model 3 (right panel) in
Section 4.1.

Model 2 (ARX)
n/p/η FDR Power

200/270/0.2 – –
300/270/0.2 0.007 0.009
500/270/0.2 0.029 0.989
500/270/0.95 0.099 0.999

Model 3 (ARXARCH)
n/p/η FDR Power

200/270/0.2 – –
300/270/0.2 0.025 0.04
500/270/0.2 0.094 0.983
500/270/0.95 0.233 0.987

Table 4: The simulation results on the empirical FDR and power for the ordinary least
squares + Benjamini–Yekutieli (BY [7]) with the target FDR level at 0.2. This approach
does not apply to high-dimensional scenarios with more features than observations.

Model 2 (ARX)
n/p/η FDR Power

200/270/0.2 0.001 0.999
300/270/0.2 0.000 1.000
500/270/0.2 0.131 1.000
500/270/0.95 0.001 0.991

Model 3 (ARX-ARCH)
n/p/η FDR Power

200/270/0.2 0.009 0.999
300/270/0.2 0.001 1.000
500/270/0.2 0.069 0.999
500/270/0.95 0.008 1.000

Table 5: The simulation results on the empirical FDR and power for the adaptive Lasso [29,
44]. There is no target FDR level for the adaptive Lasso.
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size is large (i.e., n = 500 and q = 0), an intuitive observation considering the nonpara-

metric nature of the MDA measure. Indeed, the empirical performance of MDA decreases

drastically in all settings when q increases from 0 to 1, because of the smaller sample size

when calculating the MDA measures.

In Table 4, LS-BY exhibits a slightly higher error rate than τ ∗ = 0.2 for Model 3 with

η = 0.95. In addition, it is inapplicable to high-dimensional time series applications when

n < p, such as our real data example in Section 5, due to the lack of a reliable p-value

calculation method. It is important to emphasize that obtaining valid p-values under

high-dimensional linear or nonlinear time series models, such as Models 1–3, presents a

highly challenging and currently unresolved issue. Such a challenge is also reflected by

the deteriorating performance of LS-BY when p becomes comparable to n. On the other

hand, Table 5 highlights that adaLasso demonstrates the highest overall selection powers

among all four methods. However, adaLasso fails to control error rates under Model 1,

which is expected because it is developed for the linear model and focuses on consistent

model selection instead of FDR control.

To sum up, the additional simulation results in this section support our conclusion in

Section 4. For implementation, we suggest that practitioners working on time series infer-

ence with limited sample sizes initiate their diagnosis using TSKI-LCD with parameter q

set to either 0 or 1, along with our knockoffs sampling procedure (8).

Remark 2. Regarding the subsampling parameter q, we remark that by the construction

of (5) in Algorithm 1, TSKI may have decent asymptotic power only when the number of

relevant features is no less than τ−1
1 = (q + 1)/τ ∗. To see the intuition, let us consider

an ideal scenario when the number of relevant features is less than τ−1
1 and these relevant

features’ knockoff statistics are the largest (positive) among all knockoff statistics. Then,

even if the other knockoff statistics are all zero, we have T k = ∞ in (5), and, hence the

knockoff filter screens out all features. It is worth mentioning that a similar requirement
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is assumed in Condition 7 for the asymptotic power.

A.4.3 Additional simulation results for Model 1 with q = 2

Method n/p/η/ι q FDR Power n/p/η/ι q FDR Power
TSKI-LCD

200/270/0.2/0

0 0.157 0.698

300/270/0.2/0

0 0.164 0.870
TSKI-LCD 1 0.026 0.051 1 0.075 0.413
TSKI-LCD 2 0.000 0.000 2 0.007 0.012
TSKI-MDA 0 0.173 0.456 0 0.157 0.718
TSKI-MDA 1 0.026 0.028 1 0.041 0.102
TSKI-MDA 2 0.000 0.000 2 0.005 0.005
TSKI-LCD

200/270/0.2/5

0 0.139 0.287

300/270/0.2/5

0 0.160 0.514
TSKI-LCD 1 0.023 0.019 1 0.032 0.048
TSKI-LCD 2 0.000 0.000 2 0.000 0.000
TSKI-MDA 0 0.138 0.215 0 0.196 0.506
TSKI-MDA 1 0.012 0.011 1 0.038 0.036
TSKI-MDA 2 0.000 0.000 2 0.000 0.000

Method n/p/η/ι q FDR Power n/p/η/ι q FDR Power
TSKI-LCD

500/270/0.2/0

0 0.176 0.939

1000/270/0.2/0

0 0.222 0.975
TSKI-LCD 1 0.099 0.872 1 0.119 0.946
TSKI-LCD 2 0.047 0.216 2 0.126 0.879
TSKI-MDA 0 0.181 0.922 0 0.178 0.971
TSKI-MDA 1 0.092 0.550 1 0.107 0.939
TSKI-MDA 2 0.027 0.053 2 0.067 0.432
TSKI-LCD

500/270/0.2/5

0 0.141 0.634

1000/270/0.2/5

0 0.186 0.755
TSKI-LCD 1 0.086 0.267 1 0.117 0.613
TSKI-LCD 2 0.004 0.006 2 0.022 0.054
TSKI-MDA 0 0.166 0.679 0 0.199 0.849
TSKI-MDA 1 0.084 0.216 1 0.115 0.649
TSKI-MDA 2 0.000 0.000 2 0.027 0.068

Table 6: The simulation results on the empirical FDR and power for the TSKI with
τ1 = τ ∗/(q + 1) and τ ∗ = 0.2 under Model 1 in Section 4.1. The results in this table are
the same as those in Table 1, except for the experiments with q = 2 or n ∈ {300, 1000}.

In this section, we present additional simulation for Model 1 with q = 2 and n ∈

{300, 1000}. The results with q = 2 and n ∈ {300, 1000} in Table 6 complements those in

Table 1; the other results in these two tables are the same.

Let us begin with commenting on the results of q = 2 in Table 6 here. For all simulation

experiments reported in Table 6, both TSKI-LCD and TSKI-MDA with q = 2 control the

FDR in finite samples below the target value of τ ∗ = 0.2, but at the cost of lower selection

power compared to the case of q ∈ {0, 1}. When q = 2 and the sample size is small, TSKI

becomes overly conservative with both low FDR and low power in most cases, with the

MDA-based method suffering more severely from these issues. On the other hand, the
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additional results for n ∈ {300, 1000} provide a clearer understanding of how the selection

power increases with larger sample sizes. These results also suggest that the subsample

size needs to be reasonably large for TSKI to have good power.

In summary, given the simulation results in Table 6, we recommend the use of q = 1

in practice as we are considering finite samples with limited sample sizes in our real data

applications.

A.5 Augmented Dickey–Fuller test for unit roots

We run the augmented Dickey–Fuller (ADF) test implemented with the R package aTSA

to test for unit roots. The null hypothesis of the ADF test is that the time series contains

a unit root and is non-stationary, while the alternative hypothesis is that the time series

is a stationary linear AR model. The unit root AR models considered by the ADF test

may include b lags, where b ≥ 0 is a tuning parameter. The unit root model of the ADF

test also encompasses a drift term and a trend term. For more details, we refer to the R

package aTSA. It is noteworthy that the ADF test with no lags (i.e., b = 0) is equivalent

to the Dickey–Fuller test for the unit root.

The ADF test result for each rolling window is displayed in Figure 6. From Figure 6, it

is observed that most periods do not exhibit clear numerical evidence of non-stationarity

with unit roots (at p-value significance level 0.05), except for 4/1/2020, when COVID-

19 occurred. In addition to the tests for rolling windows, we run the ADF test for the

entire inflation series from 5/1/2013 to 1/1/2023 and rejected the null hypothesis of non-

stationarity at α = 0.01 for b ∈ {0, 1}.
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Figure 6: The results of the augmented Dickey–Fuller (ADF) test, where the unit root
AR models include b lags. The y-axis displays the p-values of the tests. The top panel
displays the results of the ADF test with one lag (b = 1) for each rolling window. The
bottom panel displays the results of the ADF test with no lags (b = 0).
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B Proofs of Theorems 1–2, Corollaries 1–2, and

Proposition 1

B.1 Proof of Theorem 1

For simplicity, in this proof we use the notation U , Ũ ,V to denote a generic subsample

of {xt, x̃t, Yt}nt=1 or their independent and identically distributed (i.i.d.) counterparts

{xπ
t , x̃

π
t , Y

π
t }nt=1, where their exact meaning will be made explicit whenever confusion is

possible. Let us define

K̂L
k

j ≡ log

(
fUj ,Ũj ,U−j ,Ũ−j ,V

(U j, Ũ j,U−j, Ũ−j,V )

fUj ,Ũj ,U−j ,Ũ−j ,V
(Ũ j,U j,U−j, Ũ−j,V )

)
, (A.11)

where U = (xi, i ∈ Hk)
T
, Ũ = (x̃i, i ∈ Hk)

T
, and V = (Yi, i ∈ Hk)

T
. We can use (A.37)

in the proof of Theorem 3 in Section B.3 to conclude that for each k ∈ {1, · · · , q + 1},

E(
∑
j∈H0

ekj × 1
{K̂L

k

j≤ε}
) ≤ p× eε.

Then it holds that

E(
∑
j∈H0

e
(ε)
j ) ≤ p× eε,

where

e
(ε)
j = (q + 1)−1

q+1∑
k=1

ekj × 1
{K̂L

k

j≤ε}
.

Denote by Ŝε be the set of selected features when applying the e-BH method to e
(ε)
j ’s

at the target FDR level τ ∗. Then using similar arguments to those for (A.38) in Section

B.3, we can show that

E

(
#(Ŝε ∩H0)

(#Ŝε) ∨ 1

)
≤ τ ∗ × eε.
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Thus, it follows that

E

(
#(Ŝ ∩H0)

(#Ŝ) ∨ 1

)
≤ E

(
#(Ŝε ∩H0)

(#Ŝε) ∨ 1
× 1{Ŝ=Ŝε} + 1{Ŝ ̸=Ŝε}

)

≤ τ ∗ × eε +

q+1∑
k=1

P(max
1≤j≤p

K̂L
k

j > ε)

(A.12)

in view of {Ŝ ̸= Ŝε} ⊂ {max1≤k≤q+1max1≤j≤p K̂L
k

j > ε}. Since (A.12) holds for each

ε > 0, we can further obtain that

E

(
#(Ŝ ∩H0)

(#Ŝ) ∨ 1

)
≤ inf

ε>0

{
τ ∗eε +

q+1∑
k=1

P(max
1≤j≤p

K̂L
kπ

j > ε)

}

+

q+1∑
k=1

(
P(max

1≤j≤p
K̂L

k

j > ε)− P(max
1≤j≤p

K̂L
kπ

j > ε)
)
.

(A.13)

It remains to bound the second term on the right-hand side of (A.13) above. Recall

that K̂L
kπ

j is defined analogously to (A.11) but based on i.i.d. sample {xπ
t , x̃

π
t , Y

π
t }nt=1.

With U = (xπ
t , t ∈ Hk)

T
, Ũ = (x̃π

t , t ∈ Hk)
T
, and V = (Y π

t , i ∈ Hk)
T
, we can deduce that

K̂L
kπ

j =
∑
t∈Hk

log

(
fXj ,X̃j ,x−j ,x̃−j

(Xπ
tj, X̃

π
tj,x

π
−tj, x̃

π
−tj)

fXj ,X̃j ,x−j ,x̃−j
(X̃π

tj, X
π
tj,x

π
−tj, x̃

π
−tj)

)

= log

(
fUj ,Ũj ,U−j ,Ũ−j

(U j, Ũ j,U−j, Ũ−j)

fUj ,Ũj ,U−j ,Ũ−j
(Ũ j,U j,U−j, Ũ−j)

)

= log

(
fUj ,Ũj ,U−j ,Ũ−j ,V

(U j, Ũ j,U−j, Ũ−j,V )

fUj ,Ũj ,U−j ,Ũ−j ,V
(Ũ j,U j,U−j, Ũ−j,V )

)
,

(A.14)

where the third equality above follows from similar analysis to that of (A.7) in Theorem 1.

The conditional column independence required by (A.7) holds for each j ∈ H0 because

(A.14) involves i.i.d. samples.

We can now see that K̂L
k

j is well-defined thanks to Condition 1. Moreover, by the fact

that the supports of (x, x̃) and [x, x̃]swap({j}) are the same (as guaranteed by Condition 1)

and the definition of (xπ
i , x̃

π
i )’s, K̂L

kπ

j is well-defined. Hence, in light of (A.11) and (A.14),
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there exists some measurable function g : R#Hk×(2p+1) 7−→ R such that K̂L
k

j = g(Xk) and

K̂L
kπ

j = g(X π
k ) for each ε ≥ 0, which entails that there exists some D ∈ R#Hk×(2p+1) such

that

{Xk ∈ D} = {max
1≤j≤p

K̂L
k

j > ε},

{X π
k ∈ D} = {max

1≤j≤p
K̂L

kπ

j > ε}.
(A.15)

With the aid of (A.15), it holds that

|P(max
1≤j≤p

K̂L
k

j > ε)− P(max
1≤j≤p

K̂L
kπ

j > ε)|

≤ sup
D∈R#Hk×(2p+1)

|P(Xk ∈ D)− P(X π
k ∈ D)|.

(A.16)

Therefore, from (A.13)–(A.14) and (A.16) we can obtain the desired conclusion, which

completes the proof of Theorem 1.

B.2 Proof of Theorem 2

Proof of (15). We aim to prove the second assertion (15) of Theorem 2, and will defer

the proof of (14) to the end. Let the knockoff thresholds T k’s, knockoff statistics W k
j ’s,

statistics ekj ’s, and e-values ej’s be given as in Algorithm 1. Let us first outline the

proof idea for (15) as follows. Using the inclusion-exclusion principle, we will show that

∩q+1
k=1{j : ekj > 0} includes most features in S∗ with high probability. We then prove that

each ej with j in ∩q+1
k=1{j : ekj > 0} is sufficiently large to be selected by the e-BH procedure;

that is, ∩q+1
k=1{j : ekj > 0} ⊂ Ŝ. Combining all these results will complete the proof of (15).

We will provide the full details of the proof next.

First, recall that Ŝ = {j : ej ≥ p(τ ∗ × k̂)−1} with k̂ = max{k : e(k) ≥ p(τ ∗ × k)−1},

where e(j)’s are the ordered statistics of ej’s such that e(1) ≥ · · · ≥ e(p). Let K > 1 be the
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constant specified in Theorem 2. Let us consider two events given by

∩q+1
k=1{#{j : W

k
j ≥ T k} ≤ K(#S∗)} (A.17)

and

∩q+1
k=1

{
#(S∗ ∩ {j : W k

j ≥ T k})
#S∗ ≥ 1− (1 + ϕ)c0k

−1
1n

}
, (A.18)

where c0 is given in Condition 5 and that ϕ > 0 is some real constant such that ϕ2−ϕ−1 =

0. We will show that conditional on the two events in (A.17) and (A.18) above, it holds

that

e(#S) = min
j∈S

ej ≥ p(τ ∗(#S))−1, (A.19)

where

S := ∩q+1
k=1{j : W

k
j ≥ T k}. (A.20)

Then it follows from (A.19) and the definition of k̂ that k̂ ≥ #S and S ⊂ Ŝ. Such

results along with an application of the inclusion–exclusion principle entail that conditional

on the intersection of events (A.17) and (A.18), we have

#(S∗ ∩ Ŝ)

#S∗ ≥ #(S∗ ∩ S)
#S∗ ≥ 1− (q + 1)(1 + ϕ)c0k

−1
1n . (A.21)

Since it holds that

E
[#(S∗ ∩ Ŝ)

#S∗

]
≥
(
1− (q + 1)(1 + ϕ)c0k

−1
1n

)
× P

(#(S∗ ∩ Ŝ)

#S∗ ≥ 1− (q + 1)(1 + ϕ)c0k
−1
1n

)
≥
(
1− (q + 1)(1 + ϕ)c0k

−1
1n

)
P
(
event in (A.17) ∩ event in (A.18)

)
,

(A.22)

to establish (15) we need only to prove (A.19) and construct the probability lower bounds
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for events in (A.17) and (A.18).

To show (A.19), note that by the definition of T k’s and the assumption that T k <∞,

we have that conditional on event given in (A.17),

1 + #{j : W k
j ≤ −T k} ≤ τ1(#{j : W k

j ≥ T k})

≤ τ1K(#S∗)

(A.23)

for each k ∈ {1, · · · , q + 1}. In view of (A.23), it holds that for each nonzero ekj ,

ekj =
p

#{s : W k
s ≤ −T k}+ 1

≥ p

τ1K(#S∗)

≥ p

τ ∗ × (1− (1 + q)(1 + ϕ)c0k
−1
1n )× (#S∗)

,

(A.24)

where we have used the definitions of ekj ’s, ϕ, and τ1. Then from (A.24) and the definition

ej = (q + 1)−1
∑q+1

k=1 e
k
j , we can deduce that conditional on event (A.17),

min
j∈S

ej ≥
p

τ ∗ × (1− (1 + q)(1 + ϕ)c0k
−1
1n )× (#S∗)

,

which establishes (A.19).

It remains to provide the probability upper bounds for the complementary events of

(A.17) and (A.18), which are given in (A.27) and (A.25), respectively, below. By the

assumptions (Conditions 6–7 and that Condition 5 is satisfied for the Lasso estimates

applied to each subsample in Hk in Algorithm 1), we can show that

P(complementary event of (A.18)) ≤ (q + 1)× (k2n + k3n) (A.25)

for all large n. We postpone the detailed proof of (A.25) to a later part.

19



On the other hand, it follows from the assumption of #S∗ > 0 that conditional on

event {#{j : W k
j ≥ T k} > K(#S∗)},

#({j : W k
j ≥ T k} ∩ (S∗)c)

#{j : W k
j ≥ T k} ∨ 1

≥
#{j : W k

j ≥ T k} −#S∗

#{j : W k
j ≥ T k} ∨ 1

>
#f{j : W k

j ≥ T k} −#{j : W k
j ≥ T k} ×K−1

#{j : W k
j ≥ T k} ∨ 1

≥ K − 1

K
.

(A.26)

Therefore, from (16) and (A.26) some simple calculations give that

P({#{j : W k
j ≥ T k} > K(#S∗)})× K − 1

K
+ P({#{j : W k

j ≥ T k} ≤ K(#S∗)})× 0

≤ E

(
#({j : W k

j ≥ T k} ∩ (S∗)c)

#{j : W k
j ≥ T k} ∨ 1

)

≤ τ1 + θε,

which yields that

P(complementary event of (A.17)) ≤ (q + 1)× (τ1 + θε)K

K − 1
. (A.27)

This establishes the desired conclusion in (15) of Theorem 2.

Proof of (A.25). We need to prove for each k ∈ {1, · · · , p + 1} that conditional on

event {
∑2p

j=1 |β̂j − β∗
j | ≤ c0(#S∗)λn} ∩ {#{j : W k

j ≥ T k} ≥ c1(#S∗)}, it holds that

#(S∗ ∩ {j : W k
j ≥ T k})

#S∗ ≥ 1− (1 + ϕ)c0k
−1
1n , (A.28)

where we recall that c0 is from Condition 5 and that ϕ > 0 is a real constant such that

ϕ2 − ϕ− 1 = 0. Then (A.25) follows from Conditions 5–6.

We now proceed with establishing (A.25). Without loss of generality, we consider the
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case k = 1, and omit the superscripts “k” on ekj ’s, W
k
j ’s, and T k’s for simplicity.

Assume without loss of generality that

|W1| ≥ · · · ≥ |Wp|.

Let j∗ ∈ {1, · · · , p} be given such that j∗ ∈ {s : |Ws| = T}. Such j∗ always exists because

of the assumption that T <∞. Then it follows that

−T < Wj∗+1 ≤ 0

by the definition of T (because otherwise T would take a smaller value than |Wj∗|) and

the assumption that there are no ties in {|Wj| : |Wj| > 0}. We will analyze two cases

separately, where the first case considers Wj∗+1 = 0 and the second case considers −T <

Wj∗+1 < 0.

Let us consider the first case of Wj∗+1 = 0. Denote by q̃ = ϕc0k
−1
1n with ϕ > 0

and ϕ2 − ϕ − 1 = 0. We will discuss the scenarios of #{j : Wj < 0} ≤ q̃(#S∗) and

#{j : Wj < 0} > q̃(#S∗) separately, where the former case will be examined here and the

latter one will be left to a later part. For the scenario of #{j : Wj < 0} ≤ q̃(#S∗), some

simple calculations together with Wj∗+1 = 0 give that

#({j : Wj ≥ T} ∩ S∗) = #({j : |Wj| > 0} ∩ S∗)−#({j : Wj < 0} ∩ S∗)

≥ #({j : |Wj| > 0} ∩ S∗)− q̃(#S∗).

(A.29)

We will deal with the term #({j : |Wj| > 0} ∩ S∗) on the RHS of (A.29) below. On the
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event {
∑2p

j=1 |β̂j − β∗
j | ≤ c0(#S∗)λn}, we can deduce that

c0λn(#S∗) ≥
∑

j∈Ŝ1∩S∗

|β∗
j |

≥ #(Ŝ1 ∩ S∗)× (min
j∈S∗
|β∗

j |),

where Ŝ1 = {j : |β̂j| = 0}. Such result and Condition 6 entail that

c0(#S∗)k−1
1n ≥ #(Ŝ1 ∩ S∗).

Hence, it follows from the assumption that there are no ties in {|β̂j| : |β̂j| > 0} that

#({j : |Wj| > 0} ∩ S∗) = #((Ŝ1)
c ∩ S∗)

≥ (1− c0k
−1
1n )× (#S∗).

(A.30)

Then combining (A.29)–(A.30), we can obtain that conditional on event {
∑2p

j=1 |β̂j −

β∗
j | ≤ c0(#S∗)λn},

#({j : Wj ≥ T} ∩ S∗)

#S∗ ≥ 1− c0k
−1
1n − q̃

= 1− (1 + ϕ)c0k
−1
1n ,

(A.31)

which establishes (A.28). Moreover, observe that the second scenario of #{j : Wj < 0} >

q̃(#S∗) when Wj∗+1 = 0 implies that

#{j : Wj ≤ −T} = #{j : Wj < 0} > q̃(#S∗),

which reduces to the same form as in (A.32) below. Thus, the proof provided below can

be applied here to conclude the proof for the first case Wj∗+1 = 0.

We now consider the case of −T < Wj∗+1 < 0. From the definition of T and the
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assumption that there are no ties in {|Wj| : |Wj| > 0}, it holds on event {#{j : Wj ≥

T} ≥ c1(#S∗)} that

#{j : Wj ≤ −T}+ 2 ≥ τ1 ×#{j : Wj ≥ T}

≥ τ1c1(#S∗).

(A.32)

Meanwhile, on the event {
∑2p

j=1 |β̂j − β∗
j | ≤ c0(#S∗)λn}, since β∗

j+p = 0 for all j > 0 and

|β̂j+p| ≥ T + |β̂j| for all j ∈ {s : Ws ≤ −T}, we have that

c0λn(#S∗) ≥
∑

j:Wj≤−T

|β̂j+p − β∗
j+p|

=
∑

j:Wj≤−T

|β̂j+p|

≥ #{j : Wj ≤ −T} × T.

(A.33)

Then from (A.32)–(A.33) and Conditions 6–7, we can obtain that conditional on event

{#{j : Wj ≥ T} ≥ c1(#S∗)} ∩ {#{j : Wj ≥ T} ≥ c1(#S∗)},

T ≤ c0λn(#S∗)

c1τ1(#S∗)− 2
≤ k1nλnϕ

−1 (A.34)

for all large n.

Further, conditional on event {
∑2p

j=1 |β̂j − β∗
j | ≤ c0(#S∗)λn} ∩ {#{j : Wj ≥ T} ≥
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c1(#S∗)}, we can deduce that for all large n,

c0λn(#S∗) ≥
∑

j∈S∗∩({j:Wj≥T})c
(|β̂j − β∗

j |+ |β̂j+p|)

≥
∑

j∈S∗∩({j:Wj≥T})c
(|β̂j − β∗

j |+ |β̂j| − T )

≥
∑

j∈S∗∩({j:Wj≥T})c
(|β∗

j | − T )

≥ #(S∗ ∩ ({j : Wj ≥ T})c)× k1n(1− ϕ−1)λn,

(A.35)

where the second inequality above is from the fact that |β̂j+p| > |β̂j|−T for j in {j : Wj ≥

T}c, the third inequality above is due to the triangle inequality, and the last inequality

above results from Condition 6 and (A.34).

In light of (A.35), it holds on event {
∑2p

j=1 |β̂j − β∗
j | ≤ c0(#S∗)λn} ∩ {#{j : Wj ≥

T} ≥ c1(#S∗)} that for all large n,

#(S∗ ∩ {j : Wj ≥ T})
#S∗ = 1− #(S∗ ∩ ({j : Wj ≥ T})c)

#S∗

≥ 1− c0
k1n(1− ϕ−1)

= 1− (1 + ϕ)c0k
−1
1n ,

(A.36)

where the second equality above follows from the definition of ϕ. This establishes (A.28).

Thus, combining the above results concludes the proof for (A.25).

Proof of (14). Finally, we show the second assertion (14) of Theorem 2. Let us observe

that by the construction of Algorithm 1 and the definition of S in (A.20), it holds that

P({Ŝ = ∅} ∪ {S ⊂ Ŝ}) = 1.

Then by (A.18)–(A.21), (A.25), and the fact that ϕ ≤ 3 (recall that ϕ is defined at the
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beginning of this proof), we can obtain the desired result in (14). It is worth mentioning

that we do not require τ1 ≤ τ ∗ here. This completes the proof of Theorem 2.

B.3 Proof of Theorem 3

Let us first make a useful claim that with K̂Lj’s given in (A.6), it holds that for each

ε > 0, ∑
j∈H0

E(ej × 1{K̂Lj≤ε}) ≤ p× eε. (A.37)

Then we consider an application of the e-BH method [40] to e
(ε)
j := ej × 1{K̂Lj≤ε} with the

target FDR level τ ∗, yielding a set of selected features Ŝε ⊂ {1, · · · , p} defined as

Ŝε = {j : e(ε)j ≥ p(τ ∗ × k̂ε)
−1}

with k̂ε ≡ max{k : e
(ε)
(k) ≥ p(τ ∗ × k)−1}. Here, e(ε)(j)’s are the ordered statistics of e

(ε)
j ’s such

that e
(ε)
(1) ≥ · · · ≥ e

(ε)
(p). It is easy to see that #Ŝε = k̂ε.

In view of the definition of k̂ε, we can deduce that

E

(
#(Ŝε ∩H0)

(#Ŝε) ∨ 1

)
= E

(∑
j∈H0

1{j∈Ŝε}

k̂ε ∨ 1

)

≤ E

(∑
j∈H0

1{j∈Ŝε} × τ ∗ × e
(ε)
j

p

)

≤ τ ∗p−1 × E

(∑
j∈H0

e
(ε)
j

)

≤ τ ∗eε,

(A.38)

where the last inequality above is from (A.37). Then combining (A.38) and {Ŝ ̸= Ŝε} ⊂
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∪pj=1{K̂Lj > ε} leads to

E

(
#(Ŝ ∩H0)

(#Ŝ) ∨ 1

)
≤ E

(
1{Ŝ=Ŝε} ×

#(Ŝε ∩H0)

(#Ŝε) ∨ 1
+ 1{Ŝ ̸=Ŝε}

)

≤ τ ∗eε + P(max
1≤j≤p

K̂Lj > ε)

for each ε ≥ 0. This concludes the proof for the desired result (A.5). We will provide the

proofs of (A.37) and (A.7)–(A.9), separately.

Proof of (A.37). Let us define

Tj ≡ min

{
t ∈ W†

+ :
1 + #{s : W †

s ≤ −t}
#{s : W †

s ≥ t} ∨ 1
≤ τ1

}
,

where W †
k = Wk if k ̸= j and W †

j = |Wj|,W†
+ = {|W †

s | : |W †
s | > 0}, and min ∅ is defined as

infinity. We further define X
(0)
j and X

(1)
j such that X

(0)
j = Xj and X

(1)
j = X̃j if Wj ≥ 0,

and X
(1)
j = Xj and X

(0)
j = X̃j if Wj < 0.

For each ε ≥ 0, we can deduce that

∑
j∈H0

E
(1{Wj≥T} × 1{K̂Lj≤ε}

1 +
∑p

s=1 1{Ws≤−T}

)

=
∑
j∈H0

E
(1{Wj≥Tj} × 1{K̂Lj≤ε}

1 +
∑p

s=1 1{Ws≤−Tj}

)

=
∑
j∈H0

E

(
1{Wj≥Tj} × 1{K̂Lj≤ε}

1 +
∑p

s=1,s ̸=j 1{Ws≤−Tj}

)

=
∑
j∈H0

E

(
1{Wj>0} × 1{|Wj |≥Tj} × 1{K̂Lj≤ε}

1 +
∑p

s=1,s ̸=j 1{Ws≤−Tj}

)

=
∑
j∈H0

E

(
P(Wj > 0, K̂Lj ≤ ε

∣∣ X(0)
j ,X

(1)
j ,X−j, X̃−j,Y )× 1{|Wj |≥Tj}

1 +
∑p

s=1,s ̸=j 1{Ws≤−Tj}

)
,

(A.39)

where the first three equalities above hold because when 1{Wj≥T} = 1, we have Wj >

0, T = Tj, and 1{Wj≤−Tj} = 0, and the last equality above holds since |Wj|, Tj, and

W1, · · · ,Wj−1, Wj+1, · · · ,Wp are functions of (X
(0)
j ,X

(1)
j ,X−j, X̃−j,Y ) due to the sign-

26



flip property (4).

From the definitions of X
(0)
j , X

(1)
j , and K̂Lj, we can obtain that

P(Wj > 0, K̂Lj ≤ ε
∣∣ X(0)

j ,X
(1)
j ,X−j, X̃−j,Y )

= P(Wj > 0, K̂L
(01)

j ≤ ε
∣∣ X(0)

j ,X
(1)
j ,X−j, X̃−j,Y )

= P(Wj > 0
∣∣ X(0)

j ,X
(1)
j ,X−j, X̃−j,Y )× 1

{K̂L
(01)

j ≤ε}
,

(A.40)

where

K̂L
(01)

j ≡ log

fXj ,X̃j ,X−j ,X̃−j ,Y
(X

(0)
j ,X

(1)
j ,X−j, X̃−j,Y )

fXj ,X̃j ,X−j ,X̃−j ,Y
(X

(1)
j ,X

(0)
j ,X−j, X̃−j,Y )

.

Furthermore, we will show that it holds almost surely that

P(Wj > 0
∣∣ X(0)

j ,X
(1)
j ,X−j, X̃−j,Y )

≤
fXj ,X̃j ,X−j ,X̃−j ,Y

(X
(0)
j ,X

(1)
j ,X−j, X̃−j,Y )

fXj ,X̃j ,X−j ,X̃−j ,Y
(X

(1)
j ,X

(0)
j ,X−j, X̃−j,Y )

× P(Wj < 0
∣∣ X(0)

j ,X
(1)
j ,X−j, X̃−j,Y )

= eK̂L
(01)

j × P(Wj < 0
∣∣ X(0)

j ,X
(1)
j ,X−j, X̃−j,Y ),

(A.41)

where Condition 1 is assumed to avoid division by zero on the right-hand side (RHS) of

the second inequality above. The proof of (A.41) is deferred to right after the proof of

(A.37).
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By (A.40)–(A.41), it holds that

RHS of (A.39)

≤
∑
j∈H0

E

eK̂L
(01)

j P(Wj < 0
∣∣ X(0)

j ,X
(1)
j ,X−j, X̃−j,Y )1{|Wj |≥Tj} 1{K̂L

(01)

j ≤ε}

1 +
∑p

s=1,s ̸=j 1{Ws≤−Tj}


≤ eε

p∑
j=1

E

(
1{Wj≤−Tj}

1 +
∑p

s=1,s ̸=j 1{Ws≤−Tj}

)

≤ eε E

( ∑p
j=1 1{Wj≤−Tj}

1 +
∑p

s=1,s ̸=j 1{Ws≤−Ts}

)

≤ eε E

( ∑p
j=1 1{Wj≤−Tj}

1 ∨
(∑p

s=1 1{Ws≤−Ts}
))

≤ eε,

(A.42)

where RHS is short for the right-hand side, and the third inequality above follows from

Lemma 6 in [4]. Hence, by resorting to (A.39), (A.42), and the fact that

∑
j∈H0

E(ej × 1{K̂Lj≤ε}) = p×
∑
j∈H0

E
(1{Wj≥T} × 1{K̂Lj≤ε}

1 +
∑p

s=1 1{Ws≤−T}

)
,

we can establish (A.37).

Proof of (A.41). Denote by

F>0(X
(0)
j ,X

(1)
j ,X−j, X̃−j,Y ) and F<0(X

(0)
j ,X

(1)
j ,X−j, X̃−j,Y )

the versions of

P(Wj > 0|X(0)
j ,X

(1)
j ,X−j, X̃−j,Y ) and P(Wj < 0|X(0)

j ,X
(1)
j ,X−j, X̃−j,Y ),

respectively. We will show that functions F>0 : Rn(2p+1) 7−→ R and F<0 : Rn(2p+1) 7−→ R
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satisfiy that

F>0(z⃗) =
1{wj(z⃗)>0} × fXj ,X̃j ,X−j ,X̃−j ,Y

(z⃗)

f
X

(0)
j ,X

(1)
j ,X−j ,X̃−j ,Y

(z⃗)
,

F<0(z⃗) =
1{wj(z⃗swap)<0} × fXj ,X̃j ,X−j ,X̃−j ,Y

(z⃗swap)

f
X

(0)
j ,X

(1)
j ,X−j ,X̃−j ,Y

(z⃗)
,

(A.43)

respectively, where z⃗ = (z⃗1, z⃗2, z⃗3, z⃗4, z⃗5), z⃗swap = (z⃗2, z⃗1, z⃗3, z⃗4, z⃗5) with z⃗1 ∈ Rn, z⃗2 ∈ Rn,

z⃗3 ∈ Rn(p−1), z⃗4 ∈ Rn(p−1), z⃗5 ∈ Rn, and wj : Rn(2p+1) 7−→ R denotes the knockoff statistic

function of Wj. From the definitions of X
(0)
j ,X

(1)
j , and wj(·) along with the sign-flip

property (4), we have that almost surely,

wj(X
(0)
j ,X

(1)
j ,X−j, X̃−j,Y ) ≥ 0,

wj(X
(1)
j ,X

(0)
j ,X−j, X̃−j,Y ) < 0.

(A.44)

Then an application of (A.43)–(A.44) and the fact that the probability density function

is nonnegative yields that

F>0(X
(0)
j ,X

(1)
j ,X−j, X̃−j,Y ) ≤

fXj ,X̃j ,X−j ,X̃−j ,Y
(X

(0)
j ,X

(1)
j ,X−j, X̃−j,Y )

f
X

(0)
j ,X

(1)
j ,X−j ,X̃−j ,Y

(X
(0)
j ,X

(1)
j ,X−j, X̃−j,Y )

,

F<0(X
(0)
j ,X

(1)
j ,X−j, X̃−j,Y ) =

fXj ,X̃j ,X−j ,X̃−j ,Y
(X

(1)
j ,X

(0)
j ,X−j, X̃−j,Y )

f
X

(0)
j ,X

(1)
j ,X−j ,X̃−j ,Y

(X
(0)
j ,X

(1)
j ,X−j, X̃−j,Y )

,
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which entail that

P(Wj > 0|X(0)
j ,X

(1)
j ,X−j, X̃−j,Y )

= F>0(X
(0)
j ,X

(1)
j ,X−j, X̃−j,Y )

≤
fXj ,X̃j ,X−j ,X̃−j ,Y

(X
(0)
j ,X

(1)
j ,X−j, X̃−j,Y )

f
X

(0)
j ,X

(1)
j ,X−j ,X̃−j ,Y

(X
(0)
j ,X

(1)
j ,X−j, X̃−j,Y )

,

P(Wj < 0|X(0)
j ,X

(1)
j ,X−j, X̃−j,Y )

= F<0(X
(0)
j ,X

(1)
j ,X−j, X̃−j,Y )

=
fXj ,X̃j ,X−j ,X̃−j ,Y

(X
(1)
j ,X

(0)
j ,X−j, X̃−j,Y )

f
X

(0)
j ,X

(1)
j ,X−j ,X̃−j ,Y

(X
(0)
j ,X

(1)
j ,X−j, X̃−j,Y )

.

(A.45)

Hence, a combination of (A.45) and Condition 1 (which ensures that the denominator is

nonzero) establishes the result in (A.41).

It remains to prove (A.43). To this end, observe that for any Borel sets A1 ∈ Rn,

A2 ∈ Rn, A3 ∈ Rn(p−1), A4 ∈ Rn(p−1), and A5 ∈ Rn, it holds that

∫
z⃗∈A1×···×A5

F>0(z⃗)fX(0)
j ,X

(1)
j ,X−j ,X̃−j ,Y

(z⃗)dz⃗

= P(Wj > 0,Xj ∈ A1, X̃j ∈ A2,X−j ∈ A3, X̃−j ∈ A4,Y ∈ A5)

= P(Wj > 0,X
(0)
j ∈ A1,X

(1)
j ∈ A2,X−j ∈ A3, X̃−j ∈ A4,Y ∈ A5)

=

∫
{X(0)

j ∈A1,X
(1)
j ∈A2,X−j∈A3,X̃−j∈A4,Y ∈A5}

P(Wj > 0
∣∣ X(0)

j ,X
(1)
j ,X−j, X̃−j,Y )dP,

(A.46)

where the second equality above holds by the definitions of X
(0)
j and X

(1)
j . Similarly, for
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any Borel sets A1 ∈ Rn, A2 ∈ Rn, A3 ∈ Rn(p−1), A4 ∈ Rn(p−1), and A5 ∈ Rn, we have

∫
z⃗∈A1×···×A5

F<0(z⃗)fX(0)
j ,X

(1)
j ,X−j ,X̃−j ,Y

(z⃗)dz⃗

= P(Wj < 0, X̃j ∈ A1,Xj ∈ A2,X−j ∈ A3, X̃−j ∈ A4,Y ∈ A5)

= P(Wj < 0,X
(0)
j ∈ A1,X

(1)
j ∈ A2,X−j ∈ A3, X̃−j ∈ A4,Y ∈ A5)

=

∫
{X(0)

j ∈A1,X
(1)
j ∈A2,X−j∈A3,X̃−j∈A4,Y ∈A5}

P(Wj < 0
∣∣ X(0)

j ,X
(1)
j ,X−j, X̃−j,Y )dP,

(A.47)

where the second equality above holds by the definitions of X
(0)
j and X

(1)
j . With the

aid of (A.46)–(A.47), we can resort to the π − λ Theorem [16] and the definition of the

conditional expectation to obtain (A.43). Thus, we have established (A.41).

Proof of (A.7). We now aim to show (A.7) under Condition 2 and the assumption that

Xj is independent of Y conditional on X−j for each j ∈ H0. First, in light of Condition 2

and Definition 2 of the knockoff generator, we see that Y is independent of X̃ conditional

on X. Next, we can deduce that

fXj ,X̃j ,X−j ,X̃−j ,Y
(z⃗1, z⃗2, z⃗3, z⃗4, z⃗5)

= fX(z⃗1, z⃗3)× fX̃j ,X̃−j ,Y |X(z⃗2, z⃗4, z⃗5|z⃗1, z⃗3)

= fX(z⃗1, z⃗3)× fY |X(z⃗5|z⃗1, z⃗3)× fX̃|X(z⃗2, z⃗4|z⃗1, z⃗3)

= fX,X̃(z⃗1, z⃗3, z⃗2, z⃗4)× fY |X(z⃗5|z⃗1, z⃗3)

= fX,X̃(z⃗1, z⃗3, z⃗2, z⃗4)× fY |X−j
(z⃗5|z⃗3),

(A.48)

where the second equality above follows from the conditional independence property of

the knockoffs, and the last equality above holds because of the column-wise conditional

independence assumption on the null features.
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From (A.48), it holds that

fXj ,X̃j ,X−j ,X̃−j ,Y
(Xj, X̃j,X−j, X̃−j,Y )

= fXj ,X̃j ,X−j ,X̃−j
(Xj, X̃j,X−j, X̃−j)× fY |X−j

(Y |X−j)

and

fXj ,X̃j ,X−j ,X̃−j ,Y
(X̃j,Xj,X−j, X̃−j,Y )

= fXj ,X̃j ,X−j ,X̃−j
(X̃j,Xj,X−j, X̃−j)× fY |X−j

(Y |X−j),

which establish (A.7).

Proofs of (A.8) and (A.9). The proof of (A.8) is straightforward using the additional

assumption of i.i.d. observations and hence, is omitted here for simplicity. We now focus

on proving (A.9). Fixing a feature index j, let us consider a random vector (X̃†
j ,x−j, z̃)

such that X̃†
j is generated by the jth coordinatewise knockoff generator κj(x−j, ) given

x−j and that z̃ = (Z̃j, z̃−j) is a knockoff vector of (X̃†
j ,x−j) generated from the knockoff

filter κ((X̃†
j ,x−j), ), where κj and κ are as given in Condition 3. In view of Condition 3,

we see that (X̃†
j , Z̃j,x−j, z̃−j) and (Z̃j, X̃

†
j ,x−j, z̃−j) have the same distribution and the

corresponding density functions exist, which entail that for each (z1, z2, z⃗3, z⃗4) ∈ R2p,

fX̃†
j ,Z̃j ,x−j ,z̃−j

(z1, z2, z⃗3, z⃗4) = fX̃†
j ,Z̃j ,x−j ,z̃−j

(z2, z1, z⃗3, z⃗4). (A.49)

Next, it follows from the definition of (X̃†
j , Z̃j,x−j, z̃−j) that

fX̃†
j ,Z̃j ,x−j ,z̃−j

(z1, z2, z⃗3, z⃗4) = fx−j
(z⃗3)fX̃†

j |x−j
(z1|z⃗3)fZ̃j ,z̃−j |X̃†

j ,x−j
(z2, z⃗4|z1, z⃗3)

= fx−j
(z⃗3)fX̃†

j |x−j
(z1|z⃗3)fX̃j ,x̃−j |Xj ,x−j

(z2, z⃗4|z1, z⃗3),
(A.50)

where fZ̃j ,z̃−j |X̃†
j ,x−j

(z2, z⃗4|z1, z⃗3) = fX̃j ,x̃−j |Xj ,x−j
(z2, z⃗4|z1, z⃗3) because a knockoff generator
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outputs random vectors with the same distribution if the input values are the same due

to Definition 2. Similarly, it holds that

fX̃†
j ,Z̃j ,x−j ,z̃−j

(z2, z1, z⃗3, z⃗4) = fx−j
(z⃗3)fX̃†

j |x−j
(z2|z⃗3)fZ̃j ,z̃−j |X̃†

j ,x−j
(z1, z⃗4|z2, z⃗3)

= fx−j
(z⃗3)fX̃†

j |x−j
(z2|z⃗3)fX̃j ,x̃−j |Xj ,x−j

(z1, z⃗4|z2, z⃗3).
(A.51)

From (A.49)–(A.51), we can deduce that

fX̃†
j |x−j

(z1|z⃗3)fX̃j ,x̃−j |Xj ,x−j
(z2, z⃗4|z1, z⃗3) = fX̃†

j |x−j
(z2|z⃗3)fX̃j ,x̃−j |Xj ,x−j

(z1, z⃗4|z2, z⃗3),

which results in

fXj ,X̃j ,x−j ,x̃−j
(z1, z2, z⃗3, z⃗4)

fXj ,X̃j ,x−j ,x̃−j
(z2, z1, z⃗3, z⃗4)

=
fX̃†

j ,x−j
(z2, z⃗3)× fXj ,x−j

(z1, z⃗3)

fX̃†
j ,x−j

(z1, z⃗3)× fXj ,x−j
(z2, z⃗3)

. (A.52)

Setting (z1, z2, z⃗3, z⃗4) = (Xij, X̃ij,x−ij, x̃−ij) in (A.52) above, we can obtain that

n∑
t=1

log

(
fXj ,X̃j ,x−j ,x̃−j

(Xtj, X̃tj,x−tj, x̃−ij)

fXj ,X̃j ,x−j ,x̃−j
(X̃tj, Xtj,x−tj, x̃−tj)

)

=
n∑

t=1

log

fXj ,x−j
(Xij,x−tj)fX̃†

j ,x−j
(X̃tj,x−tj)

fXj ,x−j
(X̃ij,x−tj)fX̃†

j ,x−j
(Xtj,x−tj)

,

which establishes (A.9). This concludes the proof of Theorem 3.

B.4 Proof of Corollary 1

The conclusion of Corollary 1 follows from the proof of (A.9) in Theorem 3 given in

Section B.3.
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B.5 Proof of Corollary 2

Under Condition 2 and the assumptions that {xt}t≥1 satisfies Condition 4 with h-step and

constants C0 > 0 and 0 ≤ ρ < 1 and Yt is xt+1-measurable, we will prove in Section C.1

that for each 1 ≤ k ≤ q + 1,

sup
D∈R#Hk×(2p+1)

|P(Xk ∈ D)− P(X π
k ∈ D)| ≤ #Hk × ρq × C0, (A.53)

where we recall that Xk = {xt, x̃t, Yt}t∈Hk
and X π

k = {xπ
t , x̃

π
t , Y

π
t }t∈Hk

for each k ∈

{1, · · · , q + 1}. Combining (A.53) and
∑q+1

k=1#Hk ≤ n leads to the desired result in (9).

Next, we deal with the second assertion of Corollary 2. When Condition 2 holds and

{Yt,xt}nt=1 is also an i.i.d. sample, {Yt,xt, x̃t}nt=1 is an i.i.d. sample. Therefore, it follows

from the fact that (Y π
t ,x

π
i , x̃

π
t )’s are i.i.d. with (Y π

t ,x
π
t , x̃

π
t ) having the same distribution

as (Y1,x1, x̃1) that (A.53) holds with ρ = 0, which concludes the proof of Corollary 2.

B.6 Proof of Proposition 1

For the reader’s convenience, we provide some basic knowledge about time-homogeneous

Markov chains here. Two sufficient conditions for a process {Qt} to admit a transition

kernel are 1) for each Borel set A and each t,

P(Qt ∈ A|Qt−1) = P(Qt ∈ A|Qt−j, j < 1),

the so-called the “Markov property;” and 2) the conditional distribution of Qt given Qt−1

are the same for each t. Processes satisfying these two conditions are known as time-

homogeneous Markov chains. A useful sufficient condition for verifying that a process

is a time-homogeneous Markov chain is to check whether the process can be written

as Qt = F (Qt−1, εt) for some measurable F (·, ·) and identically distributed innovative
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random vectors {εt} such that εt is independent of Qt−j with j ≥ 1. It can be shown

that {xt} in Example 3 is a time-homogeneous Markov chain, and we omit the details on

proving such claim for simplicity.

Next, let us consider Example 6 below, which is more general than Example 3. In

particular, {xt} in Example 3 is a special case of {zt} in Example 6.

Example 6 (Gaussian linear processes). Let {zt := (Yt1, · · · , Ytp)
T } be such that for

l = 1, · · · , p, Ytl =
∑∞

i=0(w⃗i(l))
T
δt−i, where w⃗i(l) is an ι-dimensional coefficient vector

such that for each h ≥ 0,

max
1≤l≤p

∑
i≥h

∥w⃗i(l)∥1 ≤ C1e
−s1h (A.54)

with some positive C1 and s1, and δt’s are i.i.d. ι-dimensional Gaussian random vectors

with zero mean and covariance matrix Σ. In addition, assume that λmax(Σ) < L3 and

λmin(E(z1z
T

1 )) > l1 for some positive L3 and l1, where λmax(·) and λmin(·) denote the

largest and smallest eigenvalues of a given matrix, respectively.

We use Propositions 3.1.1–3.1.2 of Brockwell and Davis [11] to obtain the stationarity

of Example 6; the details on this are omitted. Thus, {xt} in Example 3 is a stationary

time-homogeneous Markov chain; equivalently, the stationary distribution and transition

kernel of {xt} exist.

Remark 3. Notice that time-homogeneous Markov chains are not always stationary; par-

ticularly, a random walk process can be a time-homogeneous Markov chain. Also, note

that Example 6 may not be a time-homogeneous Markov chain. With regularity conditions

assumed, for a stationary Qt =
∑∞

j=0 βjεt−j to be a time-homogeneous Markov chain, it is

usually required that Qt can be written as Qt =
∑k

j=1 γjQt−j + εt for some positive integer

k. Without further assumptions, the linear processes in Example 6 may not admit such

representation.

35



Let {z(h)
t } in Example 6 with dimensionality ph and stationary distribution πh(·) be

given. Note that we do not assume a transition kernel for Example 6 and that all pa-

rameters (except for constant C1, s1, l1, and L3) in Example 6 may change for each h,

but we drop the superscript or subscript h for simplicity of presentation whenever there

is no confusion. Since Example 3 admits a transition kernel and it is a special case of

Example 6, to prove Proposition 1 it suffices to show that for all large h, there exist some

constants 0 ≤ ρ < 1, 0 < C0 < ∞, and measurable functions Vh : Rph −→ [0,∞) such

that for each integer t,

sup
D∈Rph

∣∣∣P(z(h)
t+h ∈ D)− P(z(h)

t+h ∈ D | z
(h)
t )
∣∣∣ ≤ Vh(z

(h)
t )ρhC3 (A.55)

almost surely for some constant C3 > 0, and

C0 ≥ sup
h>0

∫
Rph

Vh(x)πh(dx).

To facilitate the technical presentation, we first introduce some necessary notations.

For each h, denote by

U
(h)
1t :=

(
∞∑
i=h

(w⃗i(1))
T

δt−i, · · · ,
∞∑
i=h

(w⃗i(ph))
T

δt−i

)T

,

U
(h)
2t :=

(
h−1∑
i=0

(w⃗i(1))
T

δt−i, · · · ,
h−1∑
i=0

(w⃗i(ph))
T

δt−i

)T

,

(A.56)

and let V
(h)
1t and V

(h)
2t be independent copies of U

(h)
1t and U

(h)
2t , respectively, where the

superscript or subscript h represents the truncation length. Observe that U
(h)
1t +U

(h)
2t is an

instance of zt in Example 6. Due to the Gaussian innovations, the stationary distribution

πh is the distribution of V
(0)
11 , which is the same as that of V

(h)
1t + V

(h)
2t for each t and h.

Let us repeat the needed statement (A.55) with the newly defined notation. For all
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large h, there exist some constants 0 ≤ ρ < 1, 0 < C0 < ∞, and measurable functions

Vh : Rph −→ [0,∞) such that for each integer t,

sup
D∈Rph

∣∣∣P(V (h)
1t + V

(h)
2t ∈ D)− P(U (h)

1(t+h) + U
(h)
2(t+h) ∈ D | U

(h)
1t + U

(h)
2t )
∣∣∣

≤ Vh(U
(h)
1t + U

(h)
2t )ρhC3

(A.57)

almost surely for some constant C3 > 0, and

C0 ≥ sup
h>0

∫
Rph

Vh(x)πh(dx). (A.58)

If (A.57) holds for some t, it holds for each integer t because the process is stationary.

Notice that the technical analysis here does not depend on the Markov property. For

the remaining proof of Proposition 1, we tend to omit the term almost surely when the

equality or inequality holds clearly almost surely.

Let us begin with establishing (A.57). In view of assumption (10), let s3 > 0 and

0 < δ0 < 1 be given such that 0 < s3 < s1 and s2 < δ0s3. For each positive integer h, we

have

ph exp (−δ0s3h) ≤ C2 exp ((s2 − δ0s3)h). (A.59)

We claim that for all large h and each t, it holds that for each D ∈ Rph ,

∣∣∣P(V (h)
1t + V

(h)
2t ∈ D

)
− P

(
U

(h)
1(t+h) + U

(h)
2(t+h) ∈ D

∣∣∣ U (h)
1t + U

(h)
2t

)∣∣∣
≤ P

(∥∥∥V (h)
11

∥∥∥
∞
≥ e−s3h

)
+ P(

∥∥∥U (h)
1(t+h)

∥∥∥
∞
≥ e(−s3h) | U (h)

1t + U
(h)
2t )

+ 2P
(∥∥∥V (h)

21

∥∥∥
∞
≥ e(1−δ0)s3h − 2e−s3h

)
+

8ph
c

e−δ0s3h,

(A.60)

where c > 0 is some constant and ∥z⃗∥∞ := max1≤i≤k |zi| for z⃗ = (z1, · · · , zk)
T ∈ Rk. The

proof of claim (A.60) above is presented in Section C.2.

We next construct some upper bounds for the first and third terms on the RHS of
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(A.60). It follows from ∥·∥21 ≥ ∥·∥
2
2 and (A.54) that for each q and t,

Var(
∑
i≥h

w⃗
T

i (q)δt−i) ≤
∑
i≥h

∥w⃗i(q)∥22 λmax(Σh)

≤

(∑
i≥h

∥w⃗i(q)∥1

)2

λmax(Σh)

≤ (C1 exp (−s1h))2 λmax(Σh),

where Σh denotes the covariance matrix of the underlying Gaussian random vectors δt’s

(the superscript h is dropped) associated with {z(h)
t } in Example 6. Combining this, the

fact that δt’s are Gaussian random vectors, and Markov’s inequality, it holds that for each

h ≥ 0,

P
(∥∥∥V (h)

11

∥∥∥
∞
≥ exp (−s3h)

)
≤ phP

(
C1 exp (−s1h)

√
λmax(Σh)|Z| ≥ exp (−s3h)

)
≤ phE(e|Z|) exp

[
−
(
C1

√
λmax(Σh)

)−1

exp ((s1 − s3)h)

]
,

(A.61)

where Z denotes a Gaussian random variable with zero mean and unit variance. Similarly,

we can show that for all large h, it holds that

P
(∥∥∥V (h)

21

∥∥∥
∞
≥ exp ((1− δ0)s3h)− 2 exp (−s3h)

)
≤ phP

(
C1

√
λmax(Σh)|Z| ≥ exp ((1− δ0)s3h)− 1

)
≤ phE(e|Z|) exp

[
−
(
C1

√
λmax(Σh)

)−1

(exp ((1− δ0)s3h)− 1)

]
.

(A.62)

We are now ready to construct the Vh function. Let g be a measurable function such

that g(U
(h)
1t + U

(h)
2t ) is a version of P(

∥∥∥U (h)
1(t+h)

∥∥∥
∞
≥ e(−s3h) | U (h)

1t + U
(h)
2t ). It follows from

the assumption that λmax(Σh) is bounded by a constant, E(e|Z|) <∞, (A.59), (A.61), and

(A.62) that there exist some constants C3 > 0 and 0 ≤ ρ < 1 such that for each positive
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h, C3ρ
h is larger than the summation of the first, third, and fourth terms on the RHS of

(A.60). For each h, let us define function Vh as

Vh(x) :=


2 if g(x) ≤ C3ρ

h,

2ρ−hC−1
3 otherwise.

Then combining (A.60) and the definitions of ρ, C3, and Vh leads to (A.57).

Finally, we deal with (A.58). By Markov’s inequality, the definition of g, and

P(
∥∥∥V (h)

11

∥∥∥
∞
≥ exp (−s3h)) = P(

∥∥∥U (h)
1(t+h)

∥∥∥
∞
≥ exp (−s3h)), we can deduce that

∫
Vh(x)dπh(x) = E(Vh(U

(h)
1t + U

(h)
2t ))

≤ 2 + 2(C3ρ
h)−1P(g(U (h)

1t + U
(h)
2t ) > C3ρ

h)

≤ 2 + 2(C3ρ
h)−2E(g(U (h)

1t + U
(h)
2t ))

= 2 + 2(C3ρ
h)−2P

(∥∥∥V (h)
11

∥∥∥
∞
≥ exp (−s3h)

)
.

(A.63)

For the first equality, recall that U
(h)
1t + U

(h)
2t has the stationary distribution. Therefore,

by (A.63), (A.61), and (A.59), for all large h, it holds that
∫
Vh(x)dπh(x) is bounded by

a constant, which leads to (A.58). This completes the proof of Proposition 1.

C Some key lemmas and additional technical details

In this section, we will provide additional technical details and some key lemmas. In par-

ticular, we rely on measure theory for valid arguments for the manipulation of integration

when conditional distributions are involved.
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C.1 Proof of Claim (A.53)

Let us first make a simple observation. For any q1-dimensional random vectors X1, Y1 and

q2-dimensional random vectors X2, Y2 such that X2 = F (X1) and Y2 = F (Y1) for some

measurable F : Rq1 7−→ Rq2 , it holds that

sup
D∈Rq2

|µX2(D)− µY2(D)| = sup
D∈Rq2

|µX1(F
−1(D))− µY1(F

−1(D))|

≤ sup
A∈Rq1

|µX1(A)− µY1(A)|,
(A.64)

where F−1(·) denotes the inverse mapping of F (·). With the aid of (A.64), we now deal

with the case of k = 1 below. Let M be given as in (A.86) with l = 2, h = q − 1, and

zi = xi. Similarly, let Mπ be given as in (A.86) with l = 2, h = q − 1, and i.i.d. random

vectors (zπi
1 , zπi

2 )’s such that (zπ1
1 , zπ1

2 ) and (x1,x2) have the same distribution. Then it

follows from Lemma 1 in Section C.3 that

sup
D∈R#H1×(2p)

|P((xi+1,xi, i ∈ H1) ∈ D)− P((zπi
2 , zπi

1 , i ∈ H1) ∈ D)|

≤ #H1 × ρq × C0.

(A.65)

By the assumption that Yi is xi+1-measurable, we have that (Yi,xi) = F (xi+1,xi)

for some measurable F : R2p 7−→ R1+p. Then it follows from the assumption that each

(Y π
i ,x

π
i ) and (Y1,x1) have the same distribution and the assumption that each (zπi

1 , zπi
2 )

and (x1,x2) have the same distribution that

{F (zπi
2 , zπi

1 )}ni=1 and {(Y π
i ,x

π
i )}ni=1 (A.66)
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have the same distribution. Hence, from (A.64)–(A.66), we can deduce that

sup
D∈R#H1×(1+p)

|P((Yi,xi, i ∈ H1) ∈ D)− P((Y π
i ,x

π
i , i ∈ H1) ∈ D)|

= sup
D∈R#H1×(1+p)

|P((xi+1,xi, i ∈ H1) ∈ F−1(D))− P((zπi
2 , zπi

1 , i ∈ H1) ∈ F−1(D))|

≤ #H1 × ρq × C0.

(A.67)

Finally, we can apply Lemma 7 in Section C.9 to control the distributional variation

results from the inclusion of knockoffs. Using Definition 2 and Conditions 1–2, we can show

that 1) (Yi,xi, x̃i)’s are identically distributed; 2) (x̃i, i ∈ H1) are independent conditional

on (xi, i ∈ H1), and that x̃i is independent of (xq, q ∈ H1\{i}) conditional on xi for each

i ∈ H1; 3) (Yi, i ∈ H1) is independent of (x̃i, i ∈ H1) conditional on (xi, i ∈ H1); and 4)

the above results also hold for (Y π
i ,x

π
i , x̃

π
i )’s. By these results, an application of the first

assertion of Lemma 7 concludes the proof of (A.53) for the case with k = 1. The other

cases with 2 ≤ k ≤ q + 1 can be dealt with similarly. This concludes the proof of Claim

(A.53).

C.2 Proof of Claim (A.60)

We denote by fh(x) the density function of V
(h)
21 ; that is,

fh(x) :=
1√

(2π)ph|ΣV
h |

exp

(
−1

2
x

T

(ΣV
h )

−1x

)
,

where ΣV
h is the corresponding covariance matrix and |A| stands for the determinant of a

given matrix A. By the assumptions of Gaussian linear processes (this is where we need

λmin(E(z(h)
1 (z

(h)
1 )

T
)) > l1), there exist some constant c > 0 and positive integer h̄ such

that

min
k≥h̄

λmin(E(V (k)
21 V

(k)T

21 )) > c > 0. (A.68)
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In view of (A.68), for all h ≥ h̄ we have λmin(Σ
V
h ) > c.

To support the technical analysis, we will make use of the following facts.

1) For all x < 1.79, it holds that

exp (x) ≤ 1 + x+ x2. (A.69)

To get the specific value of 1.79, we use the first and second order derivatives of

exp (x) and 1 + x + x2 to conclude that there exists some positive number x0 such

that when x ≤ x0, (A.69) holds, and when x > x0, it holds that exp (x) > 1+x+x2.

Then a direct calculation shows that exp (1.79) < 5.994 < 1 + 1.79 + 1.792, which

gives x0 ≥ 1.79.

2) By (A.68), for all large h, we have that for each ∆, x ∈ Rph with ∥∆∥2 ≤ ∥x∥2,

|xT

(ΣV
h )

−1∆+
1

2
∆

T

(ΣV
h )

−1∆| ≤ 2 ∥x∥2 ∥∆∥2 c
−1. (A.70)

If furthermore 2 ∥x∥2 ∥∆∥2 c−1 < 1.79, then it follows from (A.69)–(A.70) that

|fh(x+∆)− fh(x)| ≤ fh(x)
∣∣∣ exp(−xT

(ΣV
h )

−1∆− 1

2
∆

T

(ΣV
h )

−1∆

)
− 1
∣∣∣

≤ fh(x)
(
2 ∥x∥2 ∥∆∥2 c

−1 + (2 ∥x∥2 ∥∆∥2 c
−1)2

)
.

(A.71)

3) We show that for each D ∈ Rph , µ
V

(h)
21

(D − V
(h)
1t ) is a version of P(V (h)

1t + V
(h)
2t ∈

D | V (h)
1t ) and in particular, for each t, h > 0, and D ∈ Rph ,

P(V (h)
1t + V

(h)
2t ∈ D | V

(h)
1t ) = µ

V
(h)
21

(D − V
(h)
1t ).

To this end, let us define a measurable function g(x) :=
∫
Rph

µ
V

(h)
21

(dx2)1x2∈D−x
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with D − x := {z − x : z ∈ D} and write µ
V

(h)
21

(D − V
(h)
1t ) = g(V

(h)
1t ) to see that

µ
V

(h)
21

(D − V
(h)
1t ) is σ(V

(h)
1t )-measurable. Observe that if we can show that for each

A ∈ Rph ,

∫
A
µ
V

(h)
1t

(dx1)µV
(h)
21

(D − x1) =

∫
{V (h)

1t ∈A}
P(V (h)

1t + V
(h)
2t ∈ D | V

(h)
1t )dP, (A.72)

then we can apply the change of variables formula to the left-hand side of (A.72) and

use the definition of conditional expectation to obtain the desired result. It remains

to prove (A.72).

Since V
(h)
1t and V

(h)
2t are independent for each t and h > 0, it holds that for each

D,A ∈ Rph ,

P({V (h)
1t + V

(h)
2t ∈ D} ∩ {V

(h)
1t ∈ A})

=

∫
R2ph

µ
V

(h)
1t ,V

(h)
2t

(dx1 × dx2)1x1+x2∈D1x1∈A

=

∫
R2ph

µ
V

(h)
1t

(dx1)µV
(h)
2t

(dx2)1x1+x2∈D1x1∈A

=

∫
Rph

1(x1∈A)µV
(h)
1t

(dx1)

∫
Rph

µ
V

(h)
2t

(dx2)1x2∈D−x1

=

∫
Rph

1(x1∈A)µV
(h)
1t

(dx1)µV
(h)
2t

(D − x1)

=

∫
Rph

1(x1∈A)µV
(h)
1t

(dx1)µV
(h)
21

(D − x1)

=

∫
A
µ
V

(h)
1t

(dx1)µV
(h)
21

(D − x1),

(A.73)

where the second equality above is due to independence. Moreover, since P({V (h)
1t +

V
(h)
2t ∈ D} ∩ {V

(h)
1t ∈ A} | V

(h)
1t ) = 1

V
(h)
1t ∈AP(V

(h)
1t + V

(h)
2t ∈ D | V

(h)
1t ), by the law of
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total expectation we have that

P({V (h)
1t + V

(h)
2t ∈ D} ∩ {V

(h)
1t ∈ A})

= E(P({V (h)
1t + V

(h)
2t ∈ D} ∩ {V

(h)
1t ∈ A} | V

(h)
1t ))

=

∫
{V (h)

1t ∈A}
P(V (h)

1t + V
(h)
2t ∈ D | V

(h)
1t )dP.

(A.74)

Hence, combining (A.73)–(A.74) leads to (A.72).

4) Observe that U
(h)
2(t+h) is independent of U

(h)
1t + U

(h)
2t and U

(h)
1(t+h). Thus, for each

D ∈ Rph , we have that

P(U (h)
1(t+h) + U

(h)
2(t+h) ∈ D | U

(h)
1t + U

(h)
2t , U

(h)
1(t+h))

= P(U (h)
1(t+h) + U

(h)
2(t+h) ∈ D | U

(h)
1(t+h)).

Using such representation, similar arguments as in 3) above, and the fact that µ
U

(h)
2(t+h)

is identical to µ
V

(h)
21

, we can show that

P(U (h)
1(t+h) + U

(h)
2(t+h) ∈ D | U

(h)
1t + U

(h)
2t , U

(h)
1(t+h)) = µ

V
(h)
21

(D − U
(h)
1(t+h)).

5) Denote by Q :=
{∥∥∥V (h)

1t

∥∥∥
∞
≥ e(−s3h)

}
and G :=

{∥∥∥U (h)
1(t+h)

∥∥∥
∞
≥ e(−s3h)

}
. Then it

follows from the definition of µ
V

(h)
21

that for each D ∈ Rph ,

1Qc∩Gc

(
µ
V

(h)
21

(D − V
(h)
1t )− µ

V
(h)
21

(D − U
(h)
1(t+h))

)
≤ sup

∥∆i∥∞<e−s3h

∣∣∣ ∫
D−∆2

(
fh(x+∆2 −∆1)− fh(x)

)
dx
∣∣∣. (A.75)

We are now ready to establish the desired upper bound. For each integer h > 0, t, and
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D ∈ Rph , it holds that

∣∣∣P(V (h)
1t + V

(h)
2t ∈ D

)
− P

(
U

(h)
1(t+h) + U

(h)
2(t+h) ∈ D

∣∣∣ U (h)
1t + U

(h)
2t

)∣∣∣
=

∣∣∣∣∣E [P(V (h)
1t + V

(h)
2t ∈ D | V

(h)
1t )

]
− E

[
P(U (h)

1(t+h) + U
(h)
2(t+h) ∈ D | U

(h)
1t + U

(h)
2t , U

(h)
1(t+h))

∣∣∣∣∣ U (h)
1t + U

(h)
2t

]∣∣∣∣∣.
(A.76)

By 3) and 4) above, for each D ∈ Rph , we have

RHS of (A.76) =
∣∣∣E [µ

V
(h)
21

(D − V
(h)
1t )

]
− E

[
µ
V

(h)
21

(D − U
(h)
1(t+h))

∣∣∣ U (h)
1t + U

(h)
2t

] ∣∣∣. (A.77)

Since V
(h)
1t is an independent copy, it follows that

RHS of (A.77) =
∣∣∣E [µ

V
(h)
21

(D − V
(h)
1t )− µ

V
(h)
21

(D − U
(h)
1(t+h))

∣∣∣ U (h)
1t + U

(h)
2t

] ∣∣∣. (A.78)

Next, we separate the expectation according to events Q and G as

RHS of (A.78)

=
∣∣∣E [(1Q∪G + 1Qc∩Gc)

(
µ
V

(h)
21

(D − V
(h)
1t )− µ

V
(h)
21

(D − U
(h)
1(t+h))

) ∣∣∣ U (h)
1t + U

(h)
2t

] ∣∣∣. (A.79)

Then by (A.75) and some simple calculations, we can show that

RHS of (A.79)

≤ P(G ∪Q | U (h)
1t + U

(h)
2t ) + sup

∥∆i∥∞<e−s3h

∣∣∣ ∫
D−∆2

(
fh(x+∆2 −∆1)− fh(x)

)
dx
∣∣∣. (A.80)

For the first term on the RHS of (A.80), it follows from the definitions of Q and G and
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the stationarity of V
(h)
1t that

P(G ∪Q | U (h)
1t + U

(h)
2t ) ≤ P

(∥∥∥V (h)
11

∥∥∥
∞
≥ e(−s3h)

)
+ P

(∥∥∥U (h)
1(t+h)

∥∥∥
∞
≥ e(−s3h) | U (h)

1t + U
(h)
2t

)
.

(A.81)

For the second term on the RHS of (A.80), it holds that

sup
∥∆i∥∞<e−s3h

∣∣∣ ∫
D−∆2

(
fh(x+∆2 −∆1)− fh(x)

)
dx
∣∣∣

≤ 2P
(∥∥∥V (h)

21

∥∥∥
∞
≥ exp ((1− δ0)s3h)− 2 exp (−s3h)

)
+ sup

∥∆i∥∞<e−s3h

∣∣∣ ∫
x∈D−∆2, ∥x∥∞<e(1−δ0)s3h

(
fh(x+∆2 −∆1)− fh(x)

)
dx
∣∣∣.

(A.82)

We proceed with dealing with the last term on the RHS of (A.82). Let x1, x2 denote

two vectors in Rph . Then, it follows from (A.59) that

lim sup
h→∞

sup
∥x2∥2≤2

√
phe

−s3h

∥x1∥2≤
√
phe

(1−δ0)s3h

∥x1∥2 ∥x2∥2 c
−1 = 0. (A.83)

Let us define ∆ := ∆2 − ∆1. In light of the fact that ∥z∥2 ≤
√
ph ∥z∥∞ for all z ∈ Rph ,

(A.71), (A.83), and the fact that
∫
x∈Rph

fh(x)dx = 1, it holds that for all large h,

sup
∥∆i∥∞<e−s3h

∣∣∣ ∫
x∈D−∆2, ∥x∥∞<e(1−δ0)s3h

(
fh(x+∆2 −∆1)− fh(x)

)
dx
∣∣∣

≤ sup
∥∆∥∞<2e−s3h,∥∆2∥∞<e−s3h

∣∣∣ ∫
x∈D−∆2, ∥x∥∞<e(1−δ0)s3h

(
fh(x+∆)− fh(x)

)
dx
∣∣∣

≤ sup
∥∆∥2≤2

√
phe

−s3h

∥x∥2≤
√
phe

(1−δ0)s3h

(2 ∥x∥2 ∥∆∥2 c
−1 + (2 ∥x∥2 ∥∆∥2 c

−1)2)

≤ sup
∥∆∥2≤2

√
phe

−s3h

∥x∥2≤
√
phe

(1−δ0)s3h

4 ∥x∥2 ∥∆∥2 c
−1

≤ 8c−1ph exp (−δ0s3h).

(A.84)
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Therefore, combining (A.76)–(A.82), (A.84), and the stationarity of the process yields the

desired conclusion. This completes the proof of Claim (A.60).

C.3 Lemma 1 and its proof

The theoretical foundation of our subsampling method is provided by Lemma 1, which

concerns the asymptotic independence of the β-mixing random vectors in each subsample.

Since (A.86) below for Lemma 1 involves stacking up stationary elements column-wise

(there are l elements in a row of matrices in (A.86) below), it is unclear whether we can

directly apply Lemma 4.1 of [42] to our setting. Thus, we provide our self-contained proof

for Lemma 1. Our technical analysis of Lemma 1 seems to be the first formal proof for

results on the asymptotically independent blocks due to the β-mixing and subsampling.

Consider a p-dimensional vector-valued stationary process {zt}. Let n, n̄, h, and l be

positive integers such that

n̄ = sup{s ∈ N : s(l + h)− h ≤ n} > 0. (A.85)

We construct two n̄× (lp) design matrices as

M :=


z

T

(1−1)×(l+h)+1, · · · , z
T

(2−1)×(l+h)−h

· · ·

z
T

(n̄−1)×(l+h)+1, · · · , z
T

n̄×(l+h)−h



and Mπ :=


(zπ1

1 )
T
, · · · , (zπ1

l )
T

· · ·

(zπn̄
1 )

T
, · · · , (zπn̄

l )
T

 ,

(A.86)

where {(zπt
1 , · · · , zπt

l )}t is an i.i.d. sequence such that (zπ1
1 , · · · , zπ1

l ) has the same dis-

tribution as (z1, · · · , zl). Here, matrix M is obtained by removing h random vectors in
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the process after each consecutive l random vectors, and then stacking up the remaining

random vectors. Lemma 1 below characterizes the distributional distance between M

with dependent rows and Mπ with i.i.d. rows.

Lemma 1. Assume that the p-dimensional process {zt} satisfies Condition 4 with (h+1)-

step and constants 0 ≤ ρ < 1 and C0 > 0. Then it holds that

sup
D∈Rlpn̄

∣∣∣P(M ∈ D)− P(Mπ ∈ D)
∣∣∣ ≤ nρh+1C0, (A.87)

where random matrices M and Mπ are defined in (A.86).

Proof. If we view the rows of M as random mappings, a simple version of this problem

is to establish an upper bound of the total variation distance between the distributions of

U1, · · · , Un̄ and their i.i.d. counterparts denoted as Uπ
1 , · · · , Uπ

n̄ . The main technique used

here is to separate the total variation distance into TV1, · · · ,TVn̄ introduced below and

control them separately as

U1, U2, U3, · · · , Un̄ ←→︸︷︷︸
TV1

Uπ
1 , U2, U3, · · · , Un̄ ←→︸︷︷︸

TV2

Uπ
1 , U

π
2 , U3, · · · , Un̄

←→︸︷︷︸
TV3

· · · ←→︸︷︷︸
TVn̄

Uπ
1 , U

π
2 , · · · , Uπ

n̄ .

(A.88)

By the technique in (A.88) above, for each step, we can focus on the total variation

distance between two processes with only one distinct part. For example, for the jth and

(j+1)th processes, the distinct part is Uj and Uπ
j . We will present the formal proof next.

To facilitate the technical presentation, let us first introduce some notations. Denote
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the distributions as

µ1 := µ(z(1−1)(l+h)+1 : 1(l+h)−h,··· ,z(i−1)(l+h)+1 : i(l+h)−h,··· ,z(n̄−1)(l+h)+1 : n̄(l+h)−h),

µn̄+1 := µ(zπ1 ,··· ,zπn̄ ),

µj := µ(zπ1 ,··· ,z(j−1)(l+h)+1 : j(l+h)−h,··· ,z(n̄−1)(l+h)+1 : n̄(l+h)−h)

(A.89)

for j = 2, · · · , n̄. Observe that we have µn̄ = µn̄+1 since the process is stationary. With the

notation introduced above, the desired conclusion is an upper bound for 1
2
∥µ1 − µn̄+1∥TV .

For completeness, we state some important properties of the transition kernel p :

Rp × Rp −→ [0, 1] of a stationary Markov chain with stationary distribution π. 1) For

each integer t and D ∈ Rp, p(zt,D) is a version of P(zt+1 ∈ D|zt). 2) For each measurable

function f and D ∈ Rp,
∫
D p(x⃗, dy⃗)f(y⃗) is a measurable function of x⃗, and hence for each

Dk ∈ Rp, ∫
D1

π(dx⃗1)

∫
D2

p(x⃗1, dx⃗2) · · ·
∫
Dk

p(x⃗k−1, dx⃗k)f(x⃗k)

is a well-defined integral. 3) For each measurable function f and D ∈ Rp,

∫
Rp

π(dx⃗)

∫
D
p(dx⃗, dy⃗)f(y⃗) =

∫
D
π(dx⃗)f(x⃗). (A.90)

4) We have an expression of µj as given in (A.91) below, where we indicate each part of

the distribution of µj according to

zπ1︸︷︷︸
1st part

, · · · , z(j−1)(l+h)+1 : j(l+h)−h︸ ︷︷ ︸
jth part

, · · · , z(n̄−1)(l+h)+1 : n̄(l+h)−h︸ ︷︷ ︸
n̄th part

.

Such representation follows from the first two properties, and the details on deriving it

can be found in Section 5.2 of [16]. For each D ∈ Rlpn̄, µj(D) admits the following
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representation

µj(D) =
∫
D
π(dx⃗1)× · · · × p(x⃗l−1, dx⃗l)︸ ︷︷ ︸

1st part

× · · ·

× π(dx⃗(j−1)(l+h)+1)× · · · × p(x⃗j(l+h)−h−1, dx⃗j(l+h)−h)︸ ︷︷ ︸
jth part

× · · ·

× ph+1(x⃗j(l+h)−h, dx⃗j(l+h)+1)× · · · × p(x⃗(j+1)(l+h)−h−1, dx⃗(j+1)(l+h)−h)︸ ︷︷ ︸
(j + 1)th part

× · · ·

× ph+1(x⃗(n̄−1)(l+h)−h, dx⃗(n̄−1)(l+h)+1)× · · · × p(x⃗n̄(l+h)−h−1, dx⃗n̄(l+h)−h)︸ ︷︷ ︸
n̄th part

,

(A.91)

where x⃗1, · · · , x⃗l︸ ︷︷ ︸
1st part

, · · · , x⃗(n̄−1)(l+h)+1, · · · , x⃗n̄(l+h)−h︸ ︷︷ ︸
n̄th part

stand for the corresponding running vari-

ables with x⃗k ∈ Rp for each k.

Let us make use of a critical observation that

1

2
∥µ1 − µn̄+1∥TV ≤

n̄∑
i=1

sup
D∈Rlpn̄

|µj(D)− µj+1(D)|. (A.92)

We will bound each term in the above summation separately. Let us fix 1 ≤ j ≤ n̄. We no-

tice that µj and µj+1 are almost identical except for the (j+1)th part in (A.91). By a care-

ful comparison, we see that for µj, the (j+1)th part starts with ph+1(x⃗j(l+h)−h, dx⃗j(l+h)+1),

whereas the (j+1)th part of µj+1 starts with π(dx⃗j(l+h)+1). To see the difficulty for bound-

ing each term on the right-hand side (RHS) of (A.92) using such observation, note that∫
D |µ1(dx)− µ2(dx)| is not a well-defined integral for a Borel set D and two measures µ1

and µ2 since there are two dx’s inside the integration. To have a valid argument for this

bound, we use the Radon–Nikodym theorem [16] to replace the underlying measures with

measurable functions (the Radon–Nikodym derivatives). The arguments follow mainly

those for the proof of Lemma 5 in Section C.7.

By Condition 4, for each x⃗ ∈ Rp it holds that p(x⃗, ·) is dominated by the Lebesgue
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measure. Since p is the transition kernel of the stationary Markov chain, this entails that

1) ph+1(x⃗, ·) is dominated by the Lebesgue measure for each x⃗ ∈ Rp and 2) π(·) is also

dominated by the Lebesgue measure. By 1) and the Radon–Nikodym Theorem, there

exists a nonnegative measurable function on R2p, which is denoted as r, such that for each

x⃗ ∈ Rp and D ∈ Rp,

ph+1(x⃗,D) =
∫
D
r(x⃗, y⃗) dy⃗.

This measurable function is simply the Radon–Nikodym derivative [16], and r(x⃗, y⃗) is also

called the probability density functions of zt+h+1 conditional on zt. In particular, for each

D1,D2 ∈ Rp, we have that

P((zt, zt+h+1) ∈ D1 ×D2) =

∫
x⃗∈D1

π(dx⃗)

∫
y⃗∈D2

r(x⃗, y⃗)dy⃗.

For more details on the conditional probability density functions, see Example 4.1.6 of

[16]. Furthermore, by 2) we denote by rπ(x⃗) the Radon–Nikodym derivative such that for

each D ∈ Rp,

π(D) =
∫
D
rπ(x⃗)dx⃗.

Thus, we can obtain that

µj(D) =
∫
D
· · ·

× r(x⃗j(l+h)−h, x⃗j(l+h)+1)dx⃗j(l+h)+1 × · · · × p(x⃗(j+1)(l+h)−h−1, dx⃗(j+1)(l+h)−h)︸ ︷︷ ︸
(j + 1)th part

× · · · × ph+1(x⃗(n̄−1)(l+h)−h, dx⃗(n̄−1)(l+h)+1)× · · · × p(x⃗n̄(l+h)−h−1, dx⃗n̄(l+h)−h)︸ ︷︷ ︸
n̄th part

.

(A.93)

A similar expression also holds for µj+1 with rπ. We will bound |µj(D)− µj+1(D)| next.
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It follows from (A.93) and the fact of p ≤ 1 that for each D ∈ Rlpn̄,

|µj(D)− µj+1(D)|

=

∣∣∣∣∣∣
∫
D
· · ·︸︷︷︸
1,··· ,j

×
(
r(x⃗j(l+h)−h, x⃗j(l+h)+1)− rπ(x⃗j(l+h)+1)

)
dx⃗j(l+h)+1 × · · ·

∣∣∣∣∣∣
≤
∫
D
· · ·︸︷︷︸
1,··· ,j

×
∣∣r(x⃗j(l+h)−h, x⃗j(l+h)+1)− rπ(x⃗j(l+h)+1)

∣∣ dx⃗j(l+h)+1 × · · ·

≤
∫
Rlpj+p

· · ·︸︷︷︸
1st,··· ,jth parts

×
∣∣r(x⃗j(l+h)−h, x⃗j(l+h)+1)− rπ(x⃗j(l+h)+1)

∣∣ dx⃗j(l+h)+1.

(A.94)

To bound the RHS of (A.94), we separate the modulus into positive and negative parts

and get rid of the modulus operation. Let D+ and D− be two disjoint Borel sets such that

∫
Rlpj+p

· · ·︸︷︷︸
1,··· ,j

×
∣∣r(x⃗j(l+h)−h, x⃗j(l+h)+1)− rπ(x⃗j(l+h)+1)

∣∣ dx⃗j(l+h)+1

=

∫
D+

· · ·︸︷︷︸
1,··· ,j

×
(
r(x⃗j(l+h)−h, x⃗j(l+h)+1)− rπ(x⃗j(l+h)+1)

)
dx⃗j(l+h)+1

+

∫
D−

· · ·︸︷︷︸
1st,··· ,jth parts

×
(
rπ(x⃗j(l+h)+1)− r(x⃗j(l+h)−h, x⃗j(l+h)+1)

)
dx⃗j(l+h)+1.

(A.95)

To proceed, we exploit arguments involving “cross-sections.” For any D ∈ Rk1+k2 and

x⃗ ∈ Rk1 with k1 and k2 some positive integers, let us define the cross-section at x⃗ as

Dx⃗ := {y⃗ : (x⃗, y⃗) ∈ D}. See Section C.4 for more detail on cross-sections. Then it holds

that

∫
D+

· · ·︸︷︷︸
1,··· ,j

×
(
r(x⃗j(l+h)−h, x⃗j(l+h)+1)− rπ(x⃗j(l+h)+1)

)
dx⃗j(l+h)+1

=

∫
D+

· · ·︸︷︷︸
1,··· ,j

×ph+1(x⃗j(l+h)−h, dx⃗j(l+h)+1)−
∫
D+

· · ·︸︷︷︸
1,··· ,j

×π(dx⃗j(l+h)+1)

=

∫
Rlpj

· · ·︸︷︷︸
1,··· ,j

×ph+1(x⃗j(l+h)−h, (D+)z)−
∫
Rlpj

· · ·︸︷︷︸
1,··· ,j

×π((D+)z)

=

∫
Rlpj

· · ·︸︷︷︸
1st,··· ,jth parts

×
(
ph+1(x⃗j(l+h)−h, (D+)z)− π((D+)z)

)
,

(A.96)
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where z represents (x⃗
T

1 , · · · , x⃗
T

j(l+h)−h)
T
in the integration. Here, we have used the defi-

nition of the Radon–Nikodym derivative to get the first equality in (A.96). The second

equality in (A.96) is justified by the fact that π is a distribution and hence a transition

kernel, and an application of Lemma 3 in Section C.5. To apply Lemma 3 in (A.96), we can

regard zj(l+h)+1 as X3, zj(l+h)−h as X2, and the remaining variables as X1 in Lemma 3,

and notice that (A.99) is satisfied due to the Markov property. Similar arguments can be

applied to D− too.

In view of (A.95) and (A.96), it follows from the fact of D+ ∩ D− = ∅, (A.90), and

Condition 4 that

RHS of (A.94) =

∫
Rlpj

· · ·︸︷︷︸
1,··· ,j

×
[ (

ph+1(x⃗j(l+h)−h, (D+)z)− π((D+)z)
)

−
(
ph+1(x⃗j(l+h)−h, (D−)z)− π((D−)z)

) ]
≤
∫
Rlpj

· · ·︸︷︷︸
1st,··· ,jth parts

×
∥∥ph+1(x⃗j(l+h)−h, ·)− π(·)

∥∥
TV

=

∫
Rp

π(dx⃗j(l+h)−h)
∥∥ph+1(x⃗j(l+h)−h, ·)− π(·)

∥∥
TV

≤
∫
Rp

V (x⃗)π(dx⃗)ρh+1C,

(A.97)

where C > 0 is given in Condition 4. By Condition 4, we can further show that

RHS of (A.97) ≤ C0ρ
h+1,

where C0 > 0 is a constant such that
∫
Rp V (x⃗)π(dx⃗)C ≤ C0. Therefore, combining (A.92),

(A.97), and the fact of n̄ ≤ n, we can see that the upper bound is given by nρh+1C0, which

concludes the proof of Lemma 1.
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C.4 Lemma 2 and its proof

To facilitate the technical presentation, let us first introduce some necessary notation. For

any D ⊂ Rk1+k2 and x ∈ Rk1 with k1 and k2 some positive integers, we define the cross-

section at x as Dx := {y : (x, y) ∈ D}. A standard operation on Dx is described as follows.

If D1 ⊂ D2, then we have that for each x, (D1)x ⊂ (D2)x and (D2\D1)x = (D2)x\(D1)x. In

addition, for any set D ⊂ Rk and x ∈ Rk, we denote by D−x the set {y−x : y ∈ D}. The

expectation
∫
f(x)µ(dx) for a measurable function f with respect to some random vector

X with distribution µ is written as
∫
Rk fdµ whenever the running variables are obvious.

We also use the product notation in the integration to specify the running variables such

as
∫
f(x2)µ(dx1 × dx2).

Lemma 2. Let X and Y be k1-dimensional and k2-dimensional random vectors, respec-

tively. Assume that h : Rk1 × Rk2 −→ [0, 1] is a transition kernel such that for each

D ∈ Rk2, h(X,D) is a version of P(Y ∈ D | X). Then it holds that

1) For each D ∈ Rk1+k2 and x ∈ Rk1, Dx ∈ Rk2.

2) For each D ∈ Rk1+k2, h(·,D·) is Rk1-measurable.

3) For each D ∈ Rk1+k2, P((XT

,Y
T

) ∈ D) =
∫
Rk1

µX(dx)h(x,Dx).

Proof. We begin with showing part 1). Let L be the collection of sets in Rk1+k2 satisfying

the required conditions; that is, for each D ∈ L, it holds that for each x ∈ Rk1 , Dx ∈ Rk2 .

Then it is easy to verify that L contains all the rectangles of formA×B, whereA ∈ Rk1 and

B ∈ Rk2 . By the basic set operations, it holds that for each x ∈ Rk1 and E,Ei ∈ Rk1+k2 ,

a) (Ex)
c = ({y : (x, y) ∈ E})c = {y : (x, y) ∈ Ec} = (Ec)x;

b) ∪i(Ei)x = ∩i((Ei)x)
c = ∩i(Ec

i )x = (∩iEc
i )x = (∪iEi)x.
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Thus, for E,Ei ∈ L, we have that Ec,∪iEi ∈ L. This shows that L is a σ-algebra. Since

L contains all the rectangles, we obtain the conclusion in part 1) of Lemma 2.

We next proceed to establish part 2). Since Dx is a measurable set, h(x,Dx) is a well-

defined function of x. Let L be the collection of sets such that for each D ∈ L, h(·,D·) is

Rk1-measurable. Since for each A ∈ Rk1 and B ∈ Rk2 , it holds that

h(x, (A× B)x) = h(x,B)1{x∈A},

which is a measurable function of x, we can see that L contains all such rectangles.

Moreover, if D1,D2 ∈ L with D1 ⊂ D2, then it follows that for each x, (D1)x ⊂ (D2)x and

(D2\D1)x = (D2)x\(D1)x, and hence

h(x, (D2\D1)x) = h(x, (D2)x\(D1)x) = h(x, (D2)x)− h(x, (D1)x).

Observe that the RHS of the equality above is measurable since the subtraction of mea-

surable functions is still measurable. Next, if Di ∈ L and Di ⊂ Di+1, by the continuity of

measure, we have that for each x ∈ Rk1 , limn→∞ h(x, (∪n
i=1Di)x) = h(x, (∪∞

i=1Di)x). Thus,

h(x, (∪∞i=1Di)x) is a measurable function of x, and we have ∪∞i=1Di ∈ L. This shows that L

is a λ-system containing the set of all the rectangles. Hence, by Lemma 8 in Section C.12,

we see that L contains the σ-algebra generated by the set, which concludes the proof for

part 2) of Lemma 2.

Finally, let us show part 3). Note that the RHS of the assertion is well-defined due

to part 2) of Lemma 2. By the definition of the conditional expectation, the change of

variables formula, and the fact that for each x ∈ Rk1 , A ∈ Rk1 , B ∈ Rk2 ,

1{x∈A}h(x,B) = h(x, (A× B)x),
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we can deduce that

P((XT

,Y
T

) ∈ A× B) =
∫
Ω

1{X∈A} P(Y ∈ B | X)dP

=

∫
Ω

1{X∈A} h(X,B)dP

=

∫
Rk1

µX(dx) 1{x∈A} h(x,B)

=

∫
Rk1

µX(dx) h(x, (A× B)x),

(A.98)

where Ω represents the underlying probability space.

Denote by L the collection of sets in Rk1+k2 satisfying the required condition; that

is, for each D ∈ L, it holds that P((XT

,Y
T

) ∈ D) =
∫
Rk1

µX(dx) h(x, (D)x). In view

of (A.98), L contains all the rectangles in Rk1+k2 . In addition, we will make use of the

following two facts.

a) If D1,D2 ∈ L and D1 ⊂ D2, then an application of similar arguments to those in the

proof for part 2) of Lemma 2 leads to

P((XT

,Y
T

) ∈ D2\D1) = P((XT

,Y
T

) ∈ D2)− P((XT

,Y
T

) ∈ D1)

=

∫
Rk1

µX(dx)
(
h(x, (D2)x)− h(x, (D1)x)

)
=

∫
Rk1

µX(dx) h(x, (D2)x\(D1)x)

=

∫
Rk1

µX(dx) h(x, (D2\D1)x),

which shows that D2\D1 ∈ L.

b) Assume that Di ∈ L for each n and Di ⊂ Di+1. Then it follows from the continuity
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of measure, the definition of L, and the monotone convergence theorem that

P((XT

,Y
T

) ∈ ∪∞i=1Di) = lim
n→∞

P((XT

,Y
T

) ∈ Dn)

= lim
n→∞

∫
Rk1

µX(dx) h(x, (Dn)x)

=

∫
Rk1

µX(dx) lim
n→∞

h(x, (Dn)x)

=

∫
Rk1

µX(dx) h(x, (∪∞i=1Di)x),

which shows that ∪∞i=1Di ∈ L.

Therefore, using the aforementioned facts, an application of Lemma 8 leads to the con-

clusion in part 3) of Lemma 2. This completes the proof of Lemma 2.

C.5 Lemma 3 and its proof

Lemma 3. Let X1, X2, and X3 be k1-dimensional, k2-dimensional, and k3-dimensional

random vectors, respectively, such that for each D ∈ Rk3,

P(X3 ∈ D | X2) = P(X3 ∈ D | X2,X1). (A.99)

We define a transition kernel h : Rk2×Rk3 −→ [0, 1] such that for each D ∈ Rk3, h(X2,D)

is a version of P(X3 ∈ D | X2). Then it holds that

1) For each D ∈ Rk3, h(X2,D) is a version of P(X3 ∈ D | X2,X1).

2) For each D ∈ Rk1+k2+k3, h(X2,D(X1,X2)) is a version of P((X1,X2,X3) ∈ D |X2,

X1).

Proof. We first show part 1). Since h(X2,D) is a version of P(X3 ∈ D | X2), h(X2,D) is

σ(X2)-measurable, and hence σ(X1,X2)-measurable. In conjunction with (A.99) and

the definition of conditional expectation, we see that h(X2,D) a version of P(X3 ∈

57



D |X2,X1). This yields the conclusion in part 1) of Lemma 3. We then establish part 2).

Let us first verify that h(X2,DX1,X2) is σ(X1,X2)-measurable for each D ∈ Rk1+k2+k3 .

We start with an observation that for each D1 ∈ Rk1 , D2 ∈ Rk2 , D3 ∈ Rk3 , it holds that

h(X2, (D1 ×D2 ×D3)X1,X2) = h(X2,D3)1{X1∈D1}1{X2∈D2},

which is σ(X1,X2)-measurable. This shows that for each Borel rectangle D,

h(X2,DX1,X2) is σ(X1,X2)-measurable. In conjunction with similar arguments to those

in the proof of Lemma 2 in Section C.4, the desired result follows.

Let D ∈ Rk1+k2+k3 be given. Then we will show that for each B ∈ Rk1+k2 ,

∫
h(X2,DX1,X2) 1{(X1,X2)∈B} dP

=

∫
P((X1,X2,X3) ∈ D | X2,X1) 1{(X1,X2)∈B} dP.

(A.100)

The left-hand side of (A.100) is well-defined since h(X2,DX1,X2) is measurable. To show

(A.100), we again apply similar arguments to those in the proof of Lemma 2. Specifically,

let L be the collection of sets inRk1+k2+k3 such that (A.100) holds. Since for eachD1 ∈ Rk1 ,

D2 ∈ Rk2 , D3 ∈ Rk3 , we have

P((X1,X2,X3) ∈ (D1 ×D2 ×D3) | X2,X1)

= P(X3 ∈ D3 | X2,X1)1{X1∈D1}1{X2∈D2}

= h(X2,D3)1{X1∈D1}1{X2∈D2}

= h(X2, (D1 ×D2 ×D3)X1,X2),

it holds that L contains all Borel rectangles D ∈ Rk1+k2+k3 . The remaining arguments fol-

low those in the proof of Lemma 2. Finally, since h(X2,DX1,X2) is σ(X1,X2)-measurable,

by (A.100) and the definition of conditional expectation, we can obtain the conclusion in
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part 2) of Lemma 3. This concludes the proof of Lemma 3.

C.6 Lemma 4 and its proof

Lemma 4. Let {U i} and {V i} be sequences of k1-dimensional and k2-dimensional random

vectors, respectively. Assume that (U i,V i)’s are identically distributed. Then there exists

a transition kernel g : Rk1 ×Rk2 −→ [0, 1] such that for each i and D ∈ Rk2, g(U i,D) is

a version of P(V i ∈ D | U i).

Proof. For each (U i,V i), there exists a transition kernel gi : Rk1×Rk2 −→ [0, 1] such that

for each D ∈ Rk2 , gi(U i,D) is a version of P(V i ∈ D | U i); see, for example, Theorem

4.1.18 of [16]. By this and the fact that µU i
= µU1 for each i, we have that for each

A ∈ Rk1 and B ∈ Rk2 ,

P((U i,V i) ∈ A× B) =
∫
Ω

1{U i∈A}P(V i ∈ B | U i)dP

=

∫
Ω

1{U i∈A} gi(U i,B)dP

=

∫
Rk1

µU i
(dx) 1{x∈A} gi(x,B)

=

∫
Rk1

µU1(dx) 1{x∈A} g1(x,B)

=

∫
Rk1

µU i
(dx) 1{x∈A} g1(x,B)

=

∫
Ω

1{U i∈A} g1(U i,B)dP,

(A.101)

where Ω represents the underlying probability space, the third and last equalities above

follow from the change of variables formula, and the fourth and fifth equalities above are

due to the assumption of identical distributions. Therefore, it follows from (A.101) and

the definition of conditional expectation that g1(U i,D) is a version of P(V i ∈ D | U i) for

each i and D ∈ Rk2 . This completes the proof of Lemma 4.
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C.7 Lemma 5 and its proof

Intuitively, Lemma 5 below extracts the total variation distance from a difference of two

integrals. The results are natural, but the arguments are somewhat delicate. We note

that if the density functions fX and fY exist, then it holds that

sup
D∈R
|
∫
D
fX(z)dz −

∫
D
fY (z)dz| ≤ sup

D∈R

∫
D
|fX(z)− fY (z)|dz

=
1

2
∥µX − µY ∥TV .

However, the same calculation does not apply directly to distributions because the integral∫
|µX(dz)−µY (dz)| is not well-defined due to the two dzs inside the integration. Lemma 5

provides valid arguments in such situations.

Lemma 5. 1) Let µ and ν be two probability measures and f : RK −→ R a measurable

function with 0 ≤ f ≤ 1. Then it holds that

sup
D∈RK

∣∣∣ ∫
D
f(x)µ(dx)−

∫
D
f(x)ν(dx)

∣∣∣ ≤ 1

2
∥µ− ν∥TV .

2) Let p(·, ·) : RK1 ×RK2 7−→ [0, 1] be a transition kernel and µ a probability measure

on RK2 such that for each x ∈ RK1, p(x, ·) is dominated by µ. Further let ν be a probability

measure on RK1 and 0 ≤ f ≤ 1 a measurable function on RK2. Then it holds that

sup
D∈RK1+K2

∣∣∣ ∫
D
ν(dx1)p(x1, dx2)f(x2)−

∫
D
ν(dx1)µ(dx2)f(x2)

∣∣∣
≤ 1

2

∫
RK1

ν(dx1) ∥p(x1, ·)− µ(·)∥TV .

(A.102)

Proof. We start with proving the first assertion. By the definition of the total variation

distance, we can show that there exists some set A ∈ RK such that

∫
A
µ(dx)−

∫
A
ν(dx) =

1

2
∥µ− ν∥TV .

60



Further it holds that for each B ∈ RK with B ⊂ A,

∫
B
µ(dx)−

∫
B
ν(dx) ≥ 0.

Let us define Dj := A∩{x : j−1
M
≤ f(x) < j

M
} for j = 1, · · · ,M +1 with M some positive

integer. Denote by f̄ a step function such that on Dj, it holds that f̄ = j
M
. Then we can

deduce that

∣∣∣∣∣
∫
∪jDj

f(x)µ(dx)−
∫
∪jDj

f(x)ν(dx)−

(∫
∪jDj

f̄(x)µ(dx)−
∫
∪jDj

f̄(x)ν(dx)

)∣∣∣∣∣
≤
∫
∪jDj

|f(x)− f̄(x)|µ(dx) +
∫
∪jDj

|f(x)− f̄(x)|ν(dx)

≤ 1

M

(∫
∪jDj

µ(dx) +

∫
∪jDj

ν(dx)

)

≤ 2

M
.

(A.103)

In light of the construction of Dj’s and f̄ above, we have that

∫
∪jDj

f̄(x)µ(dx)−
∫
∪jDj

f̄(x)ν(dx) =
∑
j

∫
Dj

f̄(x)µ(dx)−
∫
Dj

f̄(x)ν(dx)

=
∑
j

j

M

(∫
Dj

µ(dx)−
∫
Dj

ν(dx)

)

≤
∑
j

(∫
Dj

µ(dx)−
∫
Dj

ν(dx)

)

=
1

2
∥µ− ν∥TV .

(A.104)

Then it follows from A = ∪jDj, (A.103), (A.104), and the fact that the positive integer

M can be arbitrarily large that

∣∣∣∣∫
A
f(x)µ(dx)−

∫
A
f(x)ν(dx)

∣∣∣∣ ≤ 1

2
∥µ− ν∥TV . (A.105)

61



Using similar arguments as above, we can show that

sup
D∈RK

∣∣∣∣∫
D
f(x)µ(dx)−

∫
D
f(x)ν(dx)

∣∣∣∣ = ∣∣∣∣∫
A
f(x)µ(dx)−

∫
A
f(x)ν(dx)

∣∣∣∣ . (A.106)

Therefore, combining (A.105) and (A.106) results in the desired conclusion in part 1) of

Lemma 5.

We now proceed with showing the second assertion. Since ∥p(x1, ·)− µ(·)∥TV is a mea-

surable function in x1, the RHS of (A.102) is well defined. Such a claim can be established

using similar arguments to those in Theorem 5.2.2 of Durrett [16]; for simplicity, we omit

the details. By the assumptions, let f1(x1, x2) be the Radon–Nikodym derivative such

that for each x1 ∈ RK1 and D ∈ RK2 ,

∫
D
p(x1, dx2) =

∫
D
f1(x1, x2)µ(dx2).

If µ is the Lebesgue measure and for each D ∈ RK2 , p(X,D) is a version of P(Y ∈

D|X) for some random mappings Y and X dominated by the Lebesgue measure, such

a Radon–Nikodym derivative is usually referred to as the conditional (on the density

function of X) probability density function; for this, see also Example 4.1.6 in [16]. Thus,

for each D ∈ RK1+K2 , we have that

∣∣∣ ∫
D
ν(dx1)p(x1, dx2)f(x2)−

∫
D
ν(dx1)µ(dx2)f(x2)

∣∣∣
=
∣∣∣ ∫

D
ν(dx1)(f1(x1, x2)− 1)µ(dx2)f(x2)

∣∣∣. (A.107)

Next let us define D∗ as

D∗ := arg sup
D∈RK1+K2

∫
D
ν(dx1)(f1(x1, x2)− 1)µ(dx2)f(x2) (A.108)
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such that for each A ⊂ D∗, the integration of (A.108) over A is nonnegative. Then by

(A.107), (A.108), and the assumption of 0 ≤ f ≤ 1, it holds that

sup
D∈RK1+K2

∣∣∣ ∫
D
ν(dx1)p(x1, dx2)f(x2)−

∫
D
ν(dx1)µ(dx2)f(x2)

∣∣∣
≤
∫
D∗

ν(dx1)(f1(x1, x2)− 1)µ(dx2).

(A.109)

Thus, it follows from the definition of f1, Lemma 2, and the definition of the total variation

norm that

∫
D∗

ν(dx1)(f1(x1, x2)− 1)µ(dx2)

=

∫
RK1

ν(dx1)(p(x1, (D
∗)x1)− µ((D∗)x1))

≤
∫
RK1

ν(dx1)
1

2
∥p(x1, ·)− µ(·)∥TV .

(A.110)

Here Lemma 2 is applicable to the integral with µ since µ can be seen as a transition kernel.

Therefore, combining (A.109) and (A.110) yields the conclusion in part 2) of Lemma 5.

This concludes the proof of Lemma 5.

C.8 Lemma 6 and its proof

Lemma 6. Let {(Y i,X i)} and {(V i,U i)} be two sequences of identically distributed

random vectors with Y i and X i k1-dimensional and k2-dimensional, respectively. Assume

that there exists some positive integer K such that for each Di ∈ Rk2 with i = 1, · · · , K,

P(∩Ki=1{X i ∈ Di} | Y j, j = 1, · · · , K) = ΠK
i=1P(X i ∈ Di | Y i),

P(∩K
i=1{U i ∈ Di} | V j, j = 1, · · · , K) = ΠK

i=1P(U i ∈ Di | V i).

Let us define Y := (Y
T

1 , · · · ,Y
T

K)
T
and V := (V

T

1 , · · · ,V
T

K)
T
, and X and U are defined

similarly. Then it holds that
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1) There exists a transition kernel h : RKk1 × RKk2 −→ [0, 1] such that for each B ∈

RKk2, h(Y ,B) and h(V ,B) are versions of P(X ∈ B | Y ) and P(U ∈ B | V ),

respectively.

2) We have

sup
D∈RK(k1+k2)

∣∣∣P((Y T

,X
T

) ∈ D
)
− P

(
(V

T

,U
T

) ∈ D
)∣∣∣ ≤ 1

2
∥µY − µV ∥TV ,

where µY and µV denote the distributions of Y and V , respectively.

Proof. By assumption, it holds that for each A ∈ RKk1 and Bi ∈ Rk2 with i = 1, · · · , K,

P((Y T

,X
T

) ∈ A× (
K×
i=1

Bi)) = E
[
1{Y ∈A} P

(
∩Ki=1 {X i ∈ Bi} | Y

)]
= E

[
1{Y ∈A} ΠK

i=1P
(
X i ∈ Bi | Y i

)]
,

(A.111)

where×K

i=1
Bi := (B1, · · · , BK). Similarly, we can show that

P((V T

,U
T

) ∈ A× (
K×
i=1

Bi)) = E
[
1{V ∈A} ΠK

i=1P
(
U i ∈ Bi | V i

)]
. (A.112)

Since (Y
T

i ,X
T

i ) and (V
T

i ,U
T

i ) with i ≥ 1 are identically distributed, by Lemma 4 in

Section C.6, there exists a transition kernel h1 such that for each i and D ∈ Rk2 , h1(Y i,D)

and h1(V i,D) are versions of P(X i ∈ D | Y i) and P(U i ∈ D | V i), respectively.

Let us define h2 : RKk1×RKk2 −→ [0, 1] such that for each x = (x
T

1 , · · · , x
T

K)
T ∈ RKk1 ,

h2(x, ·) is a probability measure such that for each Di ∈ Rk2 with i = 1, · · · , K,

h2(x,
K×
i=1

Di) = ΠK
i=1h1(x,Di). (A.113)

We make a useful claim below.
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Claim 1. h2 is a transition kernel satisfying (A.113).

The proof of Claim 1 is provided in Section C.10. Then it follows from (A.111), (A.112),

and Claim 1 above that for each Bi ∈ Rk2 with i = 1, · · · , K,

P((Y T

,X
T

) ∈ A× (
K×
i=1

Bi)) = E
[
1{Y ∈A} ΠK

i=1P
(
X i ∈ Bi | Y i

)]
= E

[
1{Y ∈A} ΠK

i=1h1

(
Y i, Bi

)]
= E

[
1{Y ∈A} h2

(
Y ,

K×
i=1

Bi

)]
,

(A.114)

and similarly,

P((V T

,U
T

) ∈ A× (
K×
i=1

Bi)) = E
[
1{V ∈A} h2

(
V ,

K×
i=1

Bi

)]
. (A.115)

By the construction of h2, (A.114), (A.115), and Lemma 8 in Section C.12, it holds

that for each A ∈ RKk1 and B ∈ RKk2 ,

P((Y T

,X
T

) ∈ A× B)) = E
[
1{Y ∈A} h2

(
Y ,B

)]
,

P((V T

,U
T

) ∈ A× B)) = E
[
1{V ∈A} h2

(
V ,B

)]
.

(A.116)

Since h2 is a transition kernel, we see that for each B ∈ RKk2 , h2(Y ,B) is σ(Y )-

measurable. Thus, in view of (A.116) we have that for each B ∈ RKk2 , h2(Y ,B) is a

version of P(X ∈ B | Y ). A similar result for V and U can also be obtained, which leads

to the first assertion.

Finally, by Lemma 2 and Lemma 5 in Sections C.4 and C.7, respectively, we can deduce
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that for each D ∈ RK(k1+k2),

∣∣∣P((Y T

,X
T

) ∈ D)− P((V T

,U
T

) ∈ D)
∣∣∣

=
∣∣∣ ∫

RKk1

h2(x,D)µY (dx)−
∫
RKk1

h2(x,D)µV (dx)
∣∣∣

≤ 1

2
∥µY − µU∥TV ,

(A.117)

which yields the second assertion. This completes the proof of Lemma 6.

C.9 Lemma 7 and its proof

Let Ũ and Ṽ be the knockoffs counterparts of r×c design matrices U and V , respectively.

The corresponding response vectors are denoted as u and v, respectively. Lemma 7 below

ensures that the knockoffs matrix construction does not cause additional variation in the

distribution in terms of the total variation distance.

Lemma 7. Assume that 1) the rows of (U , Ũ) and (V , Ṽ ) are identically distributed, 2)

the row vectors of Ũ are independent random vectors conditional on U , 3) the ith row

of Ũ is independent of the other rows of U conditional on the ith row of U , and 4) u

is independent of Ũ conditional on U . In addition, we assume the same for (v,V , Ṽ ).

Then it holds that

sup
D∈Rr(1+2c)

∣∣∣P((u,U , Ũ) ∈ D
)
− P

(
(v,V , Ṽ ) ∈ D

)∣∣∣ ≤ 1

2
∥µu,U − µv,V ∥TV

and

sup
D∈R2rc

∣∣∣P((U , Ũ) ∈ D
)
− P

(
(V , Ṽ ) ∈ D

)∣∣∣ ≤ 1

2
∥µU − µV ∥TV .

Proof. We start with showing the first assertion. Denote the ith rows of Ũ and U by Ũ i•
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and U i•, respectively. Then for each Di ∈ Rr, we have that

P(∩ci=1{Ũ i• ∈ Di}|U) = Πc
i=1P(Ũ i• ∈ Di|U)

= Πc
i=1P(Ũ i• ∈ Di|U i•),

where the first equality follows from assumption 2) and the second one is due to assumption

3). By this, an application of Lemma 6 shows that there exists a transition kernel h :

Rrc × Rrc 7−→ [0, 1] such that for each D ∈ Rrc, h(U ,D) and h(V ,D) are versions of

P(Ũ ∈ D | U ) and P(Ṽ ∈ D | V ), respectively.

We will make use of the claim below.

Claim 2. For each D ∈ Rr(1+2c), it holds that

P((u,U , Ũ) ∈ D) =
∫
Rr(1+c)

h(x2,Dx1,x2)µu,U (dx1 × dx2),

P((v,V , Ṽ ) ∈ D) =
∫
Rr(1+c)

h(x2,Dx1,x2)µv,V (dx1 × dx2),

where x1 and x2 denote r-dimensional and (rc)-dimensional vectors, respectively.

The proof of Claim 2 is presented in Section C.11. Then it follows from Claim 2 above,

Lemma 5, and the fact of 0 ≤ h ≤ 1 that for each D ∈ Rr(1+2c),

∣∣∣P((u,U , Ũ) ∈ D)− P((v,V , Ṽ ) ∈ D)
∣∣∣

=
∣∣∣ ∫

Rr(1+c)

h(x2,Dx1,x2)µu,U (dx1 × dx2)−
∫
Rr(1+c)

h(x2,Dx1,x2)µv,V (dx1 × dx2)
∣∣∣

≤ 1

2
∥µu,U − µv,V ∥TV ,

which leads to the conclusion in the first assertion. Using similar arguments as above, we

can establish the second assertion. This concludes the proof of Lemma 7.
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C.10 Proof of Claim 1

Note that given x, the existence of the probability measure h2(x, ·) is guaranteed by

an application of Theorem 1.7.1 in [16]. Let L be the collection of sets such that if

D ∈ L, h2(x,D) is a measurable function of x. We will make three observations due to

the definition of h2. (i) L contains all Borel rectangles since the product of measurable

functions is still a measurable function. (ii) For D1,D2 ∈ L with D1 ⊂ D2, it holds that

h2(·,D2\D1) is measurable and hence D2\D1 ∈ L. (iii) For Di ⊂ Di+1, Di ∈ L, and

D := ∪∞i=1Di, we have

h2(·,D) = sup
i

h2(·,Di)

which is measurable, and thus D ∈ L. Therefore, it follows from these facts and Lemma 8

in Section C.12 that for each D ∈ RKk2 , h2(·,D) is measurable. This completes the proof

of Claim 1.

C.11 Proof of Claim 2

Let us first show the first assertion. For each Borel rectangleA1×A2×A3 ∈ Rr×Rrc×Rrc,

it holds that

P((u,U , Ũ) ∈ A1 ×A2 ×A3) = E
[
1{(u,U)∈A1×A2} P(Ũ ∈ A3 | u,U)

]
= E

[
1{(u,U)∈A1×A2} P(Ũ ∈ A3 | U)

]
=

∫
Rr(1+c)

h(x2, (A1 ×A2 ×A3)x1,x2)µu,U (dx1 × dx2),

where the second equality is due to the assumption of Lemma 7 and the last equality is

because of the definition of h. Let L be a collection of sets in Rr(1+2c) such that if D ∈ L,

P((u,U , Ũ) ∈ D) =
∫
Rr(1+c)

h(x2,Dx1,x2)µu,U (dx1 × dx2).
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Then we can see that L contains all Borel rectangles which collection is a π-system.

Let us make a few observations below.

1) The set L contains Rr(1+2c).

2) If D1,D2 ∈ L and D1 ⊂ D2, then some basic measure and integration operations as

well as the operation of Dx give that

P((u,U , Ũ) ∈ D2\D1) = P((u,U , Ũ ) ∈ D2)− P((u,U , Ũ) ∈ D1)

=

∫
Rr(1+c)

(
h(x2, (D2)x1,x2)− h(x2, (D1)x1,x2)

)
µu,U (dx1 × dx2)

=

∫
Rr(1+c)

h(x2, (D2\D1)x1,x2)µu,U (dx1 × dx2),

which leads to D2\D1 ∈ L.

3) If Dn ∈ L and Dn ⊂ Dn+1, then it follows from the continuity of measure and the

monotone convergence theorem that

P((u,U , Ũ ) ∈ ∪nDn) = lim
n

P((u,U , Ũ) ∈ Dn)

= lim
n

∫
Rr(1+c)

h(x2, (Dn)x1,x2)µu,U (dx1 × dx2)

=

∫
Rr(1+c)

h(x2, (∪nDn)x1,x2)µu,U (dx1 × dx2),

which results in ∪nDn ∈ L.

Therefore, using the aforementioned facts, an application of Lemma 8 in Section C.12

yields the conclusion in the first assertion. The conclusion in the second assertion can be

shown in a similar fashion, which concludes the proof of Claim 2.

C.12 Lemma 8

Definition (π-system and λ-system). A collection of sets P is said to be a π-system if

for any A,B ∈ P , A ∩B ∈ P . A collection L of sets in Ω is said to be a λ-system if
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1) Ω ∈ L;

2) If A ⊂ B and A,B ∈ L, then B\A ∈ L;

3) If An ∈ L and An ⊂ An+1, then ∪nAn ∈ L.

Lemma 8 (π− λ Theorem in [16]). If P is a π-system and L is a λ-system that contains

P , then the smallest σ-algebra containing P is also contained in L.
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