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ABSTRACT
Power and reproducibility are key to enabling refined scientific discoveries in contemporary big data appli-
cations with general high-dimensional nonlinear models. In this article, we provide theoretical foundations
on the power and robustness for the model-X knockoffs procedure introduced recently in Candès, Fan,
Janson and Lv in high-dimensional setting when the covariate distribution is characterized by Gaussian
graphical model. We establish that under mild regularity conditions, the power of the oracle knockoffs pro-
cedure with known covariate distribution in high-dimensional linear models is asymptotically one as sample
size goes to infinity. When moving away from the ideal case, we suggest the modified model-X knockoffs
method called graphical nonlinear knockoffs (RANK) to accommodate the unknown covariate distribution.
We provide theoretical justifications on the robustness of our modified procedure by showing that the false
discovery rate (FDR) is asymptotically controlled at the target level and the power is asymptotically one
with the estimated covariate distribution. To the best of our knowledge, this is the first formal theoretical
result on the power for the knockoffs procedure. Simulation results demonstrate that compared to existing
approaches, our method performs competitively in both FDR control and power. A real dataset is analyzed
to further assess the performance of the suggested knockoffs procedure. Supplementary materials for this
article are available online.
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1. Introduction

Feature selection with big data is of fundamental importance to
many contemporary applications from different disciplines of
social sciences, health sciences, and engineering Hastie, Tibshi-
rani, and Friedman (2009), Fan and Lv (2010), and Bühlmann
and van de Geer (2011). Over the past two decades, various
feature selection methods, theory, and algorithms have been
extensively developed and investigated for a wide spectrum
of flexible models ranging from parametric to semiparametric
and nonparametric linking a high-dimensional covariate vec-
tor x = (X1, . . . , Xp)T of p features Xj’s to a response Y of
interest, where the dimensionality p can be large compared
to the available sample size n or even greatly exceed n. The
success of feature selection for enhanced prediction in prac-
tice can be attributed to the reduction of noise accumulation
associated with high-dimensional data through dimensionality
reduction. In particular, most existing studies have focused
on the power perspective of feature selection procedures such
as the sure screening property, model selection consistency,
oracle property, and oracle inequalities. When the model is
correctly specified, researchers and practitioners often would
like to know whether the estimated model involving a subset
of the p covariates enjoys reproducibility in that the fraction of
noise features in the discovered model is controlled. Yet such a
practical issue of reproducibility is largely less well understood
for the settings of general high-dimensional nonlinear models.
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Moreover, it is no longer clear whether the power of feature
selection procedures can be retained when one intends to ensure
the reproducibility.

Indeed, the issues of power and reproducibility are key to
enabling refined scientific discoveries in big data applications
utilizing general high-dimensional nonlinear models. To char-
acterize the reproducibility of statistical inference, the seminal
paper of Benjamini and Hochberg (1995) introduced an elegant
concept of false discovery rate (FDR), which is defined as the
expectation of the fraction of false discoveries among all the dis-
coveries, and proposed a popularly used Benjamini–Hochberg
procedure for FDR control by resorting to the p-values for large-
scale multiple testing returned by some statistical estimation
and testing procedure. There is a huge literature on FDR con-
trol for large-scale inference and various generalizations and
extensions of the original FDR procedure were developed and
investigated for different settings and applications Benjamini
and Yekutieli (2001), Efron and Tibshirani (2002), Storey (2002),
Storey, Taylor, and Siegmund (2004), Abramovich et al. (2006),
Efron (2007a, 2007b), Fan, Hall, and Yao (2007), Wu (2008),
Clarke and Hall (2009), Hall and Wang (2010), Fan and Fan
(2011), Meng et al. (2011), Zhang and Liu (2011), Fan, Han,
and Gu (2012), Liu and Shao (2014), and Su and Candès (2016).
Most of existing work either assumes a specific functional form
such as linearity on the dependence structure of response Y
on covariates Xj’s, or relies on the p-values for evaluating the
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significance of covariates Xj’s. Yet in high-dimensional settings,
we often do not have such luxury since response Y could depend
on covariate vector x through very complicated forms and even
when Y and x have simple dependence structure, high dimen-
sionality of covariates can render classical p-value calculation
procedures no longer justified or simply invalid Huber (1973),
Fan, Demirkaya, and Lv (2017), and Sur, Chen, and Candès
(2017). These intrinsic challenges can make the p-value based
methods difficult to apply or even fail Candès et al. (2018).

To accommodate arbitrary dependence structure of Y on x
and bypass the need of calculating accurate p-values for covari-
ate significance, Candès et al. (2018) recently introduced the
model-X knockoffs framework for FDR control in general high-
dimensional nonlinear models. Their work was inspired by and
builds upon the ingenious development of the knockoff filter in
Barber and Candès (2015), which provides effective FDR control
in the setting of Gaussian linear model with dimensionality
p no larger than sample size n. The knockoff filter was later
extended in Barber and Candès (2016) to high-dimensional lin-
ear model using the ideas of data splitting and feature screening.
The salient idea of Barber and Candès (2015) is to construct
the so-called “knockoff ” variables which mimic the depen-
dence structure of the original covariates but are independent of
response Y conditional on the original covariates. These knock-
off variables can be used as control variables. By comparing
the regression outcomes for original variables with those for
control variables, the relevant set of variables can be identified
more accurately and thus the FDR can be better controlled.
The model-X knockoffs framework introduced in Candès et al.
(2018) greatly expands the applicability of the original knockoff
filter in that the response Y and covariates x can have arbitrar-
ily complicated dependence structure and the dimensionality
p can be arbitrarily large compared to sample size n. It was
theoretically justified in Candès et al. (2018) that the model-
X knockoffs procedure controls FDR exactly in finite samples
of arbitrary dimensions. However, one important assumption
in their theoretical development is that the joint distribution of
covariates x should be known. Moreover, formal power analysis
of the knockoffs framework is still lacking even for the setting of
Gaussian linear model.

Despite the importance of known covariate distribution in
their theoretical development, Candès et al. (2018) empirically
explored the scenario of unknown covariate distribution for the
specific setting of generalized linear model (GLM) McCullagh
and Nelder (1989) with Gaussian design matrix and discovered
that the estimation error of the covariate distribution can have
negligible effect on FDR control. Yet there exist no formal theo-
retical justifications on the robustness of the model-X knockoffs
method and it is also unclear to what extent such robustness can
hold beyond the GLM setting. To address these fundamental
challenges, our article intends as the first attempt to provide the-
oretical foundations on the power and robustness for the model-
X knockoffs framework. Specifically, the major innovations of
the article are 2-fold. First, we will formally investigate the
power of the knockoffs framework in high-dimensional linear
models with both known and unknown covariate distribution.
Second, we will provide theoretical support on the robustness
of the model-X knockoffs procedure with unknown covariate
distribution in general high-dimensional nonlinear models.

More specifically, in the ideal case of known covariate dis-
tribution, we prove that the model-X knockoffs procedure in
Candès et al. (2018) has asymptotic power one under mild
regularity conditions in high-dimensional linear models. When
moving away from the ideal scenario, to accommodate the
difficulty caused by unknown covariate distribution we sug-
gest the modified model-X knockoffs method called graphical
nonlinear knockoffs (RANK). The modified knockoffs proce-
dure exploits the data splitting idea, where the first half of the
sample is used to estimate the unknown covariate distribution
and reduce the model size, and the second half of the sample
is employed to globally construct the knockoff variables and
apply the knockoffs procedure. We establish that the modified
knockoffs procedure asymptotically controls the FDR regardless
of whether the reduced model contains the true model or not.
Such feature makes our work intrinsically different from that in
Barber and Candès (2016) requiring the sure screening property
Fan and Lv (2008) of the reduced model; see Section 3.1 for
more detailed discussions on the differences. In our theoretical
analysis of FDR, we still allow for arbitrary dependence struc-
ture of response Y on covariates x and assume that the joint
distribution of x is characterized by Gaussian graphical model
with unknown precision matrix Lauritzen (1996). In the specific
case of high-dimensional linear models with unknown covariate
distribution, we also provide robustness analysis on the power
of our modified procedure.

The rest of the article is organized as follows. Section 2
reviews the model-X knockoffs framework and provides the-
oretical justifications on its power in high-dimensional linear
models. We introduce the modified model-X knockoffs proce-
dure RANK and investigate its robustness on both FDR control
and power with respect to the estimation of unknown covariate
distribution in Section 3. Section 4 presents several simulation
examples of both linear and nonlinear models to verify our
theoretical results. We demonstrate the performance of our
procedure on a real dataset in Section 5. Section 6 discusses
some implications and extensions of our work. The proofs of
main results are relegated to the Appendix. Additional technical
details are provided in the supplementary materials.

2. Power Analysis for Oracle Model-X Knockoffs

Suppose we have a sample (xi, Yi)
n
i=1 of n independent and iden-

tically distributed (iid) observations from the population (x, Y),
where dimensionality p of covariate vector x = (X1, . . . , Xp)T

can greatly exceed available sample size n. To ensure model
identifiability, it is common to assume that only a small fraction
of p covariates Xj’s are truly relevant to response Y . To be
more precise, Candès et al. (2018) defined the set of irrelevant
features S1 as that consisting of Xj’s such that Xj is independent
of Y conditional on all remaining p − 1 covariates Xk’s with
k �= j, and thus the set of truly relevant features S0 is given
naturally by Sc

1, the complement of set S1. Features in sets S0
andSc

0 = S1 are also referred to as important and noise features,
respectively.

We aim at accurately identifying these truly relevant features
in set S0, that is, assumed to be identifiable while keeping the
FDR Benjamini and Hochberg (1995) under control. The FDR
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for a feature selection procedure is defined as

FDR = E[FDP] with FDP = |Ŝ ∩ Sc
0|

|Ŝ| , (1)

where Ŝ denotes the sparse model returned by the feature
selection procedure, |·| stands for the cardinality of a set, and the
convention 0/0 = 0 is used in the definition of the false discov-
ery proportion (FDP), which is the fraction of noise features in
the discovered model. Here feature selection procedure can be
any favorite sparse modeling method by the choice of the user.

2.1. Review of Model-X Knockoffs Framework

Our suggested graphical nonlinear knockoffs procedure in Sec-
tion 3 falls in the general framework of model-X knockoffs
introduced in Candès et al. (2018), which we briefly review in
this section. The key ingredient of model-X knockoffs frame-
work is the construction of the so-called model-X knockoff
variables that are defined as follows.

Definition 1 (Candès et al. 2018). Model-X knockoffs for the
family of random variables x = (X1, . . . , Xp)T is a new family of
random variables x̃ = (X̃1, . . . , X̃p)T that satisfies two proper-
ties: (1) (xT , x̃T)swap(S)

d=(xT , x̃T) for any subset S ⊂ {1, . . . , p},
where swap(S) means swapping components Xj and X̃j for each
j ∈ S and d= denotes equal in distribution, and (2) x̃ ⊥⊥ Y|x.

We see from Definition 1 that model-X knockoff variables
X̃j’s mimic the probabilistic dependency structure among the
original features Xj’s and are independent of response Y given
Xj’s. When the covariate distribution is characterized by Gaus-
sian graphical model Lauritzen (1996), that is,

x ∼ N(0, �−1
0 ) (2)

with p×p precision matrix �0 encoding the graphical structure
of the conditional dependency among the covariates Xj’s, we
can construct the p-variate model-X knockoff random variable
x̃ characterized in Definition 1 as

x̃|x ∼ N
(

x − diag{s}�0x, 2diag{s} − diag{s}�0diag{s}
)

, (3)

where s is a p-dimensional vector with nonnegative components
chosen in a suitable way. In fact, in view of Equations (2) and (3)
it is easy to show that the original features and model-X knockoff
variables have the following joint distribution(

x
x̃

)
∼ N

((
0
0

)
,
(

�0 �0 − diag{s}
�0 − diag{s} �0

))
(4)

with �0 = �−1
0 the covariance matrix of covariates x.

Intuitively, larger components of s means that the constructed
knockoff variables deviate further from the original features,
resulting in higher power in distinguishing them. The p-
dimensional vector s in Equation (3) should be chosen in a
way such that �0 − 2−1diag{s} is positive definite, and can be
selected using the methods in Candès et al. (2018). We will treat
it as a nuisance parameter throughout our theoretical analysis.

With the constructed knockoff variables x̃, the knockoffs
inference framework proceeds as follows. We select important
variables by resorting to the knockoff statistics Wj = fj(Zj, Z̃j)

defined for each 1 ≤ j ≤ p, where Zj and Z̃j represent feature
importance measures for jth covariate Xj and its knockoff coun-
terpart X̃j, respectively, and fj(·, ·) is an antisymmetric function
satisfying fj(zj, z̃j) = −fj(z̃j, zj). For example, in linear regres-
sion models, one can choose Zj and Z̃j as the Lasso Tibshirani
(1996) regression coefficients of Xj and X̃j, respectively, and a
valid knockoff statistic is Wj = fj(zj, z̃j) = |zj| − |z̃j|. There
are also many other options for defining the feature importance
measures. Observe that all model-X knockoff variables X̃j’s are
just noise features by the second property in Definition 1. Thus,
intuitively, a large positive value of knockoff statistic Wj indi-
cates that jth covariate Xj is important, while a small magnitude
of Wj usually corresponds to noise features.

The final step of the knockoffs inference framework is to sort
|Wj|’s from high to low and select features whose Wj’s are at or
above some threshold T, which results in the discovered model

Ŝ = Ŝ(T) = {1 ≤ j ≤ p : Wj ≥ T}. (5)

Following Barber and Candès (2015) and Candès et al. (2018),
one can choose the threshold T in the following two ways

T = min
{

t ∈ W :
|{j : Wj ≤ −t}|
|{j : Wj � t}| ≤ q

}
, (6)

T+ = min
{

t ∈ W :
1 + |{j : Wj ≤ −t}|

|{j : Wj � t}| ≤ q
}

, (7)

where W = {|Wj| : 1 ≤ j ≤ p} \ {0} is the set of
unique nonzero values attained by |Wj|’s and q ∈ (0, 1) is
the desired FDR level specified by the user. The procedures
using threshold T in Equation (6) and threshold T+ in Equa-
tion (7) are referred to as knockoffs and knockoffs+ methods,
respectively. It was proved in Candès et al. (2018) that model-
X knockoffs procedure controls a modified FDR that replaces
|Ŝ| in the denominator by q−1 + |Ŝ| in Equation (1), and
model-X knockoffs+ procedure achieves exact FDR control in
finite samples regardless of dimensionality p and dependence
structure of response Y on covariates x. The major assump-
tion needed in Candès et al. (2018) is that the distribution of
covariates x is known. Throughout the article, we implicitly use
the threshold T+ defined in Equation (7) for FDR control in
the knockoffs inference framework but still write it as T for
notational simplicity.

2.2. Power Analysis in Linear Models

Although the knockoffs procedures were proved rigorously to
have controlled FDR in Barber and Candès (2015), Barber and
Candès (2016), and Candès et al. (2018), their power advan-
tages over popularly used approaches have been demonstrated
only numerically therein. In fact, formal power analysis for
the knockoffs framework is still lacking even in simple model
settings such as linear regression. We aim to fill in this gap as a
first attempt and provide theoretical foundations on the power
analysis for model-X knockoffs framework. In this section, we
will focus on the oracle model-X knockoffs procedure for the
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ideal case when the true precision matrix �0 for the covariate
distribution in Equation (2) is known, which is the setting
assumed in Candès et al. (2018). The robustness analysis for
the case of unknown precision matrix �0 will be undertaken
in Section 3.

We would like to remark that the power analysis for the
knockoffs framework is necessary and nontrivial. The FDR and
power are two sides of the same coin, just like Type I and Type II
errors in hypothesis testing. The knockoffs framework is a wrap-
per and can be combined with most model selection methods
to achieve FDR control. Yet the theoretical properties of power
after applying the knockoffs procedure are completely unknown
for the case of correlated covariates and unknown covariate
distribution. For example, when the knockoffs framework is
combined with the Lasso, it further selects variables from the
set of variables picked by Lasso applied with the augmented
design matrix to achieve the FDR control. For this reason, the
power of knockoffs is usually lower than that of Lasso. The main
focus of this section is to investigate how much power loss the
knockoffs framework would encounter when combined with
Lasso.

Since the power analysis for the knockoffs framework is
nontrivial and challenging, we content ourselves on the setting
of high-dimensional linear models for the technical analysis on
power. The linear regression model assumes that

y = Xβ0 + ε, (8)

where y = (Y1, . . . , Yn)T is an n-dimensional response vector,
X = (x1, . . . , xn)T is an n × p design matrix consisting of
p covariates Xj’s, β0 = (β0,1, . . . , β0,p)T is a p-dimensional
true regression coefficient vector, and ε = (ε1, . . . , εn)T is an
n-dimensional error vector independent of X. As mentioned
before, the true model S0 = supp(β0) which is the support
of β0 is assumed to be sparse with size s = |S0|, and the n
rows of design matrix X are iid observations generated from
Gaussian graphical model (2). Without loss of generality, all
the diagonal entries of covariance matrix �0 are assumed to
be ones.

As discussed in Section 2.1, there are many choices of the
feature selection procedure up to the user for producing the
feature importance measures Zj and Z̃j for covariates Xj and
knockoff variables X̃j, respectively, and there are also different
ways to construct the knockoff statistics Wj. For the illustration
purpose, we adopt the Lasso coefficient difference (LCD) as the
knockoff statistics in our power analysis. The specific choice of
LCD for knockoff statistics was proposed and recommended in
Candès et al. (2018), in which it was demonstrated empirically
to outperform some other choices in terms of power. The LCD
is formally defined as

Wj = |β̂j(λ)| − |β̂p+j(λ)|, (9)

where β̂j(λ) and β̂p+j(λ) denote the jth and (p + j)th com-
ponents, respectively, of the Lasso Tibshirani (1996) regression
coefficient vector

β̂(λ) = argminb∈R2p

{
(2n)−1∥∥y − [X, X̃]b∥∥2

2 + λ‖b‖1
}

,
(10)

with λ ≥ 0 the regularization parameter, X̃ = (̃x1, . . . , x̃n)T

an n × p matrix whose n rows are independent random vectors
of model-X knockoff variables generated from Equation (3),
and ‖ · ‖r for r ≥ 0 the Lr-norm of a vector. To simplify the
technical analysis, we assume that with asymptotic probability
one, there are no ties in the magnitude of nonzero Wj’s and no
ties in the magnitude of nonzero components of Lasso solution
in Equation (10), which is a mild condition in light of the
continuity of the underlying distributions.

To facilitate the power analysis, we impose some basic regu-
larity conditions.

Condition 1. The components of ε are iid with sub-Gaussian
distribution.

Condition 2. It holds that min
j∈S0

|β0,j| ≥ κn{(log p)/n}1/2 for some

slowly diverging sequence κn → ∞ as n → ∞.

Condition 3. There exists some constant c ∈ (2(qs)−1, 1) such
that with asymptotic probability one, |Ŝ| ≥ cs for Ŝ given in
Equation (5).

Condition 1 can be relaxed to heavier-tailed distributions
at the cost of slower convergence rates as long as similar con-
centration inequalities used in the proofs continue to hold.
Condition 2 is assumed to ensure that the Lasso solution β̂(λ)

does not miss a great portion of important features in S0. This
is necessary since the knockoffs procedure under investigation
builds upon the Lasso solution and thus its power is naturally
upper bounded by that of Lasso. To see this, recall the well-
known oracle inequality for Lasso Bickel, Ritov, and Tsybakov
(2009) and Bühlmann and van de Geer (2011) that with asymp-
totic probability one, ‖β̂(λ) − β0‖2 = O(s1/2λ) for λ chosen
in the order of {(log p)/n}1/2. Then Condition 2 entails that for
some κn → ∞, O(sλ2) = ‖β̂(λ) − β0‖2

2 ≥ ∑
j∈Ŝc

L∩S0
β2

0,j ≥
n−1(log p)κ2

n |Ŝc
L ∩ S0| with ŜL = supp{β̂(λ)}. Thus, the num-

ber of important features missed by Lasso |Ŝc
L ∩ S0| is upper

bounded by O(sκ−2
n ) with asymptotic probability one. This

guarantees that the power of Lasso is lowered bounded by 1 −
O(κ−2

n ); that is, Lasso has asymptotic power one. However, as
discussed previously the power of knockoffs is always upper
bounded by that of Lasso. So we are interested in the relative
power of knockoffs compared to that of Lasso. For this reason,
Condition 2 is imposed to simplify the technical analysis of the
knockoffs power by ensuring that the asymptotic power of Lasso
is one. We will show in Theorem 1 that there is almost no power
loss when applying model-X knockoffs procedure.

Condition 3 imposes a lower bound on the size of the sparse
model selected by the knockoffs procedure. Recall that we
assume the number of true variables s can diverge with sample
size n. The rationale behind Condition 3 is that any method with
high power should at least be able to select a large number of
variables which are not necessarily true ones though. Since it is
not straightforward to check, we provide a sufficient condition,
that is, more intuitive in Lemma 1 below, which shows that
Condition 3 can hold as long as there exist enough strong signals
in the model. We acknowledge that Lemma 1 may not be a
necessary condition for Condition 3.
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Lemma 1. Assume that Condition 1 holds and there exists some
constant c ∈ (2(qs)−1, 1) such that |S2| ≥ cs with S2 = {j :
|β0,j| 
 [sn−1(log p)]1/2}. Then Condition 3 holds.

We would like to mention that the conditions of Lemma 1 are
not stronger than Condition 2. We require a few strong signals,
and yet still allow for many very weak ones. In other words, the
set of strong signals S2 is only a large enough proper subset of
the set of all signals S0.

We are now ready to characterize the statistical power of
the knockoffs procedure in high-dimensional linear model (8).
Formally speaking, the power of a feature selection procedure is
defined as

Power(Ŝ) = E

[
|Ŝ ∩ S0|

|S0|

]
, (11)

where Ŝ denotes the discovered sparse model returned by the
feature selection procedure.

Theorem 1. Assume that Condition 1–3 hold, all the eigenvalues
of �0 are bounded away from 0 to ∞, the smallest eigenvalue
of 2diag(s) − diag(s)�0diag(s) is positive and bounded away
from 0, and λ = Cλ{(log p)/n}1/2 with Cλ > 0 some constant.
Then the oracle model-X knockoffs procedure satisfies that with
probability at least 1 − c3p−c3 ,

|Ŝ ∩ S0|/|S0| ≥ 1 − C�1 Cλ(ϕ + 1)κ−1
n

and therefore,

Power(Ŝ) = E

[
|Ŝ ∩ S0|

|S0|

]
≥ 1 − C�1 Cλ(ϕ + 1)κ−1

n − c3p−c3

+o(κ−1
n ) → 1

as n → ∞, where ϕ is the golden ratio and C�1 is some positive
constant.

Theorem 1 reveals that the oracle model-X knockoffs proce-
dure in Candès et al. (2018) knowing the true precision matrix
�0 for the covariate distribution can indeed have asymptotic
power one under some mild regularity conditions. Since param-
eter κn characterizes the signal strength, it is seen that the
stronger the signal, the faster the convergence of power to one.
This shows that for the ideal case, model-X knockoffs procedure
can enjoy appealing FDR control and power properties simulta-
neously.

3. Robustness of Graphical Nonlinear Knockoffs

When moving away from the ideal scenario considered in Sec-
tion 2, a natural question is whether both properties of FDR
control and power can continue to hold with no access to the
knowledge of true covariate distribution. To gain insights into
such a question, we now turn to investigating the robustness
of model-X knockoffs framework. Hereafter, we assume that
the true precision matrix �0 for the covariate distribution in
Equation (2) is unknown. We will begin with the FDR analysis
and then move on to the power analysis.

3.1. Modified Model-X Knockoffs

We would like to emphasize that the linear model assumption
is no longer needed here and arbitrary dependence structure
of response y on covariates x is allowed. As mentioned in Sec-
tion 1, to overcome the difficulty caused by unknown preci-
sion matrix �0 we modify the model-X knockoffs procedure
described in Section 2.1 and suggest the method of graphical
nonlinear knockoffs (RANK).

To ease the presentation, we first introduce some notation.
For each given p × p symmetric positive definite matrix �,
denote by C� = Ip − diag{s}� and B� = (

2diag{s} −
diag{s}�diag{s})1/2 the square root matrix. We define n × p
matrix X̃� = (̃x�

1 , . . . , x̃�
n )T by independently generating x̃�

i
from the conditional distribution

x̃�
i |xi ∼ N

(
C�xi, (B�)2

)
, (12)

where X = (x1, . . . , xn)T is the original n × p design matrix
generated from Gaussian graphical model (2). It is easy to show
that the (2p)-variate random vectors (xT

i , (̃x�
i )T)T are iid with

Gaussian distribution of mean 0 and covariance matrix given
by cov(xi) = �0, cov(xi, x̃�

i ) = �0C�, and cov(̃x�
i ) = (B�)2 +

C��0(C�)T .
Our modified knockoffs method RANK exploits the idea

of data splitting, in which one half of the sample is used to
estimate unknown precision matrix �0 and reduce the model
dimensionality, and the other half of the sample is employed to
construct the knockoff variables and implement the knockoffs
inference procedure, with the steps detailed below.

• Step 1. Randomly split the data (X, y) into 2-folds (X(k), y(k))
with 1 ≤ k ≤ 2 each of sample size n/2.

• Step 2. Use the first fold of data (X(1), y(1)) to obtain an
estimate �̂ of the precision matrix and a reduced model with
support S̃ .

• Step 3. With estimated precision matrix �̂ from Step 2,
construct an (n/2) × p knockoffs matrix X̂ using X(2) with
rows independently generated from Equation (12); that is,
X̂ = X(2)(C�̂)T + ZB�̂ with Z an (n/2) × p matrix with
iid N(0, 1) components.

• Step 4. Construct knockoff statistics Wj’s using only data on
support S̃ , that is, Wj = Wj(y(2), X(2)

S̃ , X̂S̃) for j ∈ S̃ and
Wj = 0 for j ∈ S̃c. Then apply knockoffs inference procedure
to Wj’s to obtain final set of features Ŝ .

Here for any matrix A and subset S ⊂ {1, . . . , p}, the compact
notation AS stands for the submatrix of A consisting of columns
in set S .

As discussed in Section 2.1, the model-X knockoffs frame-
work uses sparse regression procedures such as the Lasso. For
this reason, even in the original model-X knockoffs procedure
the knockoff statistics Wj’s (see, e.g., Equation (9)) take nonzero
values only over a much smaller model than the full model.
This observation motivates us to estimate such a smaller model
using the first half of the sample in Step 2 of our modified pro-
cedure. When implementing this modified procedure, we limit
ourselves to sparse models S̃ with size bounded by some positive
integer Kn that diverges with n; see, for example, Fan and Lv
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(2013) and Lv (2013) for detailed discussions and justifications
on similar consideration of sparse models. In addition to sparse
regression procedures, feature screening methods such as Fan
and Lv (2008) and Fan and Fan (2008) can also be used to obtain
the reduced model S̃ .

The above modified knockoffs method differs from the orig-
inal model-X knockoffs procedure Candès et al. (2018) in that
we use an independent sample to obtain the estimated precision
matrix �̂ and reduced model S̃ . In particular, the indepen-
dence between estimates (�̂, S̃) and data (X(2), y(2)) plays an
important role in our theoretical analysis for the robustness of
the knockoffs procedure. In fact, the idea of data splitting has
been popularly used in the literature for various purposes Fan,
Samworth, and Wu (2009), Fan, Guo, and Hao (2012), Shah and
Samworth (2013), and Barber and Candès (2016). Although the
work of Barber and Candès (2016) has the closest connection
to ours, there are several key differences between these two
methods. Specifically, Barber and Candès (2016) considered
high-dimensional linear model with fixed design, where the
data is split into two portions with the first portion used for
feature screening and the second portion employed for applying
the original knockoff filter in Barber and Candès (2015) on
the reduced model. To ensure FDR control, it was required in
Barber and Candès (2016) that the feature screening method
should enjoy the sure screening property Fan and Lv (2008),
that is, the reduced model after the screening step contains the
true model S0 with asymptotic probability one. In contrast, one
major advantage of our method is that the asymptotic FDR
control can be achieved without requiring the sure screening
property; see Theorem 2 in Section 3.2 for more details. Such
major distinction is rooted on the difference in constructing
knockoff variables; that is, we construct model-X knockoff vari-
ables globally in Step 3 above, whereas Barber and Candès (2016)
constructed knockoff variables locally on the reduced model.
Another major difference is that our method works with ran-
dom design and does not need any assumption on how response
y depends upon covariates x, while the method in Barber and
Candès (2016) requires the linear model assumption and cannot
be extended to nonlinear models.

3.2. Robustness of FDR Control for Graphical Nonlinear
Knockoffs

We begin with investigating the robustness of FDR control for
the modified model-X knockoffs procedure RANK. To simplify
the notation, we rewrite (X(2), y(2)) as (X, y) with sample size n
whenever there is no confusion, where n now represents half
of the original sample size. For each given p × p symmetric
positive definite matrix �, an n × p knockoffs matrix X̃� =
(̃x�

1 , . . . , x̃�
n )T can be constructed with n rows independently

generated according to Equation (12) and the modified knock-
offs procedure proceeds with a given reduced modelS . Then the
FDP and FDR functions in Equation (1) can be rewritten as

FDRn(�,S) = E[FDPn(y, XS , X̃�

S)], (13)

where the subscript n is used to emphasize the dependence
of FDP and FDR functions on sample size. It is easy to check
that the knockoffs procedure based on (y, XS , X̃�0

S ) satisfies all

the conditions in Candès et al. (2018) for FDR control for any
reduced model S , that is, independent of X and X̃�0 , which
ensures that FDRn(�0,S) can be controlled at the target level
q. To study the robustness of our modified knockoffs procedure,
we will make a connection between functions FDRn(�,S) and
FDRn(�0,S).

To ease the presentation, denote by X̃0 = X̃�0 the oracle
knockoffs matrix with � = �0, C0 = C�0 , and B0 = B�0 .
The following proposition establishes a formal characterization
of the FDR as a function of the precision matrix � used in
generating the knockoff variables and the reduced model S .

Proposition 1. For any given symmetric positive definite � ∈
Rp×p and S ⊂ {1, . . . , p}, it holds that

FDRn(�,S) = E

[
gn

(
XS

augH�
)]

, (14)

where XS
aug = [X, X̃0,S ] ∈ Rn×(p+|S|), function gn(·) is some

conditional expectation of the FDP function whose functional
form is free of � and S , and

H� =
(

Ip C�
S − C0,S(BT

0,SB0,S)−1/2((B�
S)TB�

S
)1/2

0 (BT
0,SB0,S)−1/2((B�

S)TB�
S
)1/2

)
.

We see from Proposition 1 that when � = �0, it holds that
H�0 = Ip+|S| and thus the value of the FDR function at point
�0 reduces to

FDRn(�0,S) = E

[
gn

(
XS

aug
)]

,

which can be shown to be bounded from above by the target
FDR level q using the results proved in Candès et al. (2018).
Since the dependence of FDR function on � is completely
through matrix H�, we can reparameterize the FDR function
as FDRn(H�,S). In view of Equation (14), FDRn(H�,S) is the
expectation of some measurable function with respect to the
probability law of XS

aug which has matrix normal distribution
with independent rows, and thus is expected to be a smooth
function of entries of H� by measure theory. Motivated by
such an observation, we make the following Lipschitz continuity
assumption.

Condition 4. There exists some constant L > 0 such that for all
|S| ≤ Kn and ‖� − �0‖2 ≤ C2an with some constant C2 >

0 and an → 0,
∣∣FDRn(H�,S) − FDRn(H�0 ,S)

∣∣ ≤ L
∥∥H� −

H�0
∥∥

F , where ‖ · ‖2 and ‖ · ‖F denote the matrix spectral norm
and matrix Frobenius norm, respectively.

Condition 5. Assume that the estimated precision matrix �̂

satisfies ‖�̂ − �0‖2 ≤ C2an with probability 1 − O(p−c1) for
some constants C2, c1 > 0 and an → 0, and that |S̃| ≤ Kn.

The error rate of precision matrix estimation assumed in
Condition 5 is quite flexible. We would like to emphasize that
no sparsity assumption has been made on the true precision
matrix �0. Bounding the size of sparse models is also important
for ensuring model identifiability and stability; see, for instance,
Fan and Lv (2013) and Lv (2013) for more detailed discussions.
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Theorem 2. Assume that all the eigenvalues of �0 are bounded
away from 0 to ∞ and the smallest eigenvalue of 2diag(s) −
diag(s)�0diag(s) is bounded from below by some positive con-
stant. Then under Condition 4, it holds that

sup
|S|≤Kn, ‖�−�0‖2≤C2an

|FDRn(H�,S) − FDR(H�0 ,S)|

≤ O(K1/2
n an). (15)

Moreover, under Conditions 4 and 5 with K1/2
n an → 0, the FDR

of RANK is bounded from above by q + O(K1/2
n an) + O(p−c1),

where q ∈ (0, 1) is the target FDR level.

Theorem 2 establishes the robustness of the FDR with respect
to the precision matrix �; see the uniform bound in Equation
(15). As a consequence, it shows that our modified model-X
knockoffs procedure RANK can indeed have FDR asymptoti-
cally controlled at the target level q. We remark that the term
K1/2

n in Theorem 2 is because Condition 4 is imposed through
the matrix Frobenius norm, which is motivated from results
on the smoothness of integral function from calculus. If one
is willing to impose assumption through matrix spectral norm
instead of Frobenius norm, then the extra term K1/2

n can be
dropped and the set S can be taken as the full model {1, . . . , p}.

We would like to stress that Theorem 2 allows for arbitrarily
complicated dependence structure of response y on covariates x
and for any valid construction of knockoff statistics Wj’s. This
is different from the conditions needed for power analysis in
Section 2.2 (i.e., the linear model setting and LCD knockoff
statistics). Moreover, the asymptotic FDR control in Theorem 2
does not need the sure screening property of P{S̃ ⊃ S0} → 1
as n → ∞.

3.3. Robustness of Power in Linear Models

We are now curious about the other side of the coin; that is, the
robustness theory for the power of our modified knockoffs pro-
cedure RANK. As argued at the beginning of Section 2.2, to ease
the presentation and simplify the technical derivations we come
back to high-dimensional linear models (8) and use the LCD in
Equation (9) as the knockoff statistics. The difference with the
setting in Section 2.2 is that we no longer assume that the true
precision matrix �0 is known and use the modified knockoffs
procedure introduced in Section 3.1 to achieve asymptotic FDR
control.

Recall that for the RANK procedure, the reduced model S̃
is first obtained from an independent subsample and then the
knockoffs procedure is applied on the second fold of data to
further select features from S̃ . Clearly, if S̃ does not have the
sure screening property of P{S̃ ⊃ S0} → 1 as n → ∞,
then the Lasso solution based on [X(2)

S̃ , X̃�

S̃ ] as given in Equation
(18) is no longer a consistent estimate of β0 even when the true
precision matrix �0 is used to generate the knockoff variables. In
addition, the final power of our modified knockoffs procedure
will always be upper bounded by s−1|S̃ ∩ S0|. Nevertheless, the
results in this section are still useful in the sense that model (8)
can be viewed as the projected model on support S̃ . Thus, our
power analysis here is relative power analysis with respect to the
reduced model S̃ . In other words, we will focus on how much

power loss would occur after we apply the model-X knockoffs
procedure to (X(2)

S̃ , X̃�

S̃ , y(2)) when compared to the power of
s−1|S̃ ∩ S0|. Since our focus is relative power loss, without loss
of generality we will condition on the event{

S̃ ⊃ S0
}

. (16)

We would like to point out that all conditions and results in this
section can be adapted correspondingly when we view model (8)
as the projected model if S̃ �⊃ S0. Similarly as in FDR analysis,
we restrict ourselves to sparse models with size bounded by Kn
that diverges as n → ∞, that is, |S̃| ≤ Kn.

With � taken as the estimated precision matrix �̂, we can
generate the knockoff variables from Equation (12). Then
the Lasso procedure can be applied to the augmented data
(X(2), X̂, y(2)) with X̂ constructed in Step 3 of our modified
knockoffs procedure and the LCD can be defined as

Ŵj = W�̂,S̃
j = |β̂j(λ; �̂, S̃)| − |β̂p+j(λ; �̂, S̃)|, (17)

where β̂j(λ; �̂, S̃) and β̂p+j(λ; �̂, S̃) are the jth and (j + p)th
components, respectively, of the Lasso estimator

β̂(λ; �̂, S̃) = argminbS̃1
=0

{
n−1∥∥y(2) − [X(2), X̂]b∥∥2

2 + λ‖b‖1
}

(18)

with λ ≥ 0 the regularization parameter and S̃1 = {1 ≤ j ≤
2p : j �∈ S̃ and j − p �∈ S̃}.

Unlike the FDR analysis in Section 3.2, we now need sparsity
assumption on the true precision matrix �0.

Condition 6. Assume that �0 is Lp-sparse with each row having
at most Lp nonzeros for some diverging Lp and all the eigenval-
ues of �0 are bounded away from 0 to ∞.

For each given precision matrix � and reduced model S , we
define W�,S

j similarly as in (17) except that � is used to generate
the knockoff variables and set S is used in Equation (18) to
calculate the Lasso solution. Denote by Ŝ� = {j : W�,S

j ≥
T} ⊂ S the final set of selected features using the LCD W�,S

j in
the knockoffs inference framework. We further define a class of
precision matrices � ∈ Rp×p

A =
{
� : � is L′

p-sparse and ‖� − �0‖2 ≤ C2an
}

, (19)

where C2 and an are the same as in Theorem 2 and L′
p is some

positive integer that diverges with n. Similarly as in Section 2.2,
in the technical analysis we assume implicitly that with asymp-
totic probability one, for all valid constructions of the knockoff
variables there are no ties in the magnitude of nonzero knockoff
statistics and no ties in the magnitude of nonzero components
of Lasso solution uniformly over all � ∈ A and |S| ≤ Kn.

Condition 7. It holds that P{�̂ ∈ A} ≥ 1 − c2p−c2 for some
constant c2 > 0.

The assumption on the estimated precision matrix �̂ made
in Condition 7 is mild and flexible. A similar class of precision
matrices was considered in Fan et al. (2015) with detailed dis-
cussions on the choices of the estimation procedures. See, for
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example, Fan and Lv (2016), Chen et al. (2016), and Ren et al.
(2018) for some more recent developments on large precision
matrix estimation and inference. In parallel to Theorem 1, we
have the following results on the power of our modified knock-
offs procedure with the estimated precision matrix �̂.

Theorem 3. Assume that Conditions 1 and 2, and 6 and 7 hold,
the smallest eigenvalue of 2diag(s)−diag(s)�0diag(s) is positive
and bounded away from 0, |{j : |β0,j| 
 [sn−1(log p)]1/2}| ≥ cs,
and λ = Cλ{(log p)/n}1/2 with c ∈ ((qs)−1, 1) and Cλ > 0
some constants. Then if [(Lp + L′

p)
1/2 + K1/2

n ]an = o(1) and
s{an + (Kn +L′

p)[n−1(log p)]1/2} = o(1), RANK with estimated
precision matrix �̂ and reduced model S̃ has power satisfying

Power(�̂, S̃) = E

[
|Ŝ�̂ ∩ S0|

|S0|

]
≥ 1 − C�1 Cλ(ϕ + 1)κ−1

n

−c2p−c2 − c3p−c3 + o(κ−1
n )

= 1 − o(1),
where ϕ is the golden ratio and C�1 is some positive constant.

Theorem 3 establishes the robustness of the power for the
RANK method. In view of Theorems 2 and 3, we see that our
modified knockoffs procedure RANK can enjoy appealing prop-
erties of FDR control and power simultaneously when the true
covariate distribution is unknown and needs to be estimated in
high dimensions.

4. Simulation Studies

So far we have seen that our suggested RANK method admits
appealing theoretical properties for large-scale inference in
high-dimensional nonlinear models. We now examine the
finite-sample performance of RANK through four simulation
examples.

4.1. Model Setups and Simulation Settings

Recall that the original knockoff filter (KF) in Barber and
Candès (2015) was designed for linear regression model with
dimensionality p not exceeding sample size n, while the high-
dimensional knockoff filter (HKF) in Barber and Candès (2016)
considers linear model with p possibly larger than n. To compare
RANK with the HKF procedure in high-dimensional setting,
our first simulation example adopts the linear regression model

y = Xβ + ε, (20)
where y is an n-dimensional response vector, X is an n × p
design matrix, β = (β1, . . . , βp)T is a p-dimensional regres-
sion coefficient vector, and ε is an n-dimensional error vector.
Nonlinear models provide useful and flexible alternatives to
linear models and are widely used in real applications. Our
second through fourth simulation examples are devoted to three
popular nonlinear model settings: the partially linear model, the
single-index model, and the additive model, respectively. As a
natural extension of linear model (20), the partially linear model
assumes that

y = Xβ + g(U) + ε, (21)

where g(U) = (g(U1), . . . , g(Un))T is an n-dimensional vector-
valued function with covariate vector U = (U1, . . . , Un)T , g(·) is
some unknown smooth nonparametric function, and the rest of
notation is the same as in model (20). In particular, the partially
linear model is a semiparametric regression model that has
been commonly used in many areas such as economics, finance,
medicine, epidemiology, and environmental science Engle et al.
(1986) and Härdle, Liang, and Gao (2000).

The third and fourth simulation examples drop the linear
component. As a popular tool for dimension reduction, the
single-index model assumes that

y = g(Xβ) + ε, (22)

where g(Xβ) = (g(xT
1 β), . . . , g(xT

n β))T with X = (x1, . . . , xn)T ,
g(·) is an unknown link function, and the remaining notation
is the same as in model (20). In particular, the single-index
model provides a flexible extension of the GLM by relaxing the
parametric form of the link function Ichimura (1993), Stoker
(1986), Härdle and Stoker (1989), Li and Racine (2007), and
Horowitz (2009). To bring more flexibility while alleviating the
curse of dimensionality, the additive model assumes that

y =
p∑

j=1
gj(Xj) + ε, (23)

where gj(θ) = (gj(θ1), . . . , gj(θn))T for θ = (θ1, . . . , θn)T ,
Xj represents the jth covariate vector with X = (X1, . . . , Xp),
gj(·)’s are some unknown smooth functions, and the rest of
notation is the same as in model (20). The additive model has
been widely employed for nonparametric modeling of high-
dimensional data Hastie and Tibshirani (1990), Ravikumar et al.
(2009), Meier, van de Geer, and Bühlmann (2009), and Choulde-
chova and Hastie (2015).

For the linear model (20) in simulation example 1, the rows of
the n × p design matrix X are generated as iid copies of N(0, �)

with precision matrix �−1 = (ρ|j−k|)1≤j,k≤p for ρ = 0 and
0.5. We set the true regression coefficient vector β0 ∈ Rp as a
sparse vector with s = 30 nonzero components, where the signal
locations are chosen randomly and each nonzero coefficient
is selected randomly from {±A} with A = 1.5 and 3.5. The
error vector ε is assumed to be N(0, σ 2In) with σ = 1. We
set sample size n = 400 and consider the high-dimensional
scenario with dimensionality p = 200, 400, 600, 800, and 1000.
For the partially linear model (21) in simulation example 2,
we choose the true function as g(U) = sin(2πU), generate
U = (U1, . . . , Un)T with iid Ui from uniform distribution on
[0, 1], and set A = 1.5 with the remaining setting the same as in
simulation example 1.

Since the single-index model and additive model are more
complex than the linear model and partially linear model, we
reduce the true model size s while keeping sample size n = 400
in both simulation examples 3 and 4. For the single-index model
(22) in simulation example 3, we consider the true link function
g(x) = x3/2 and set p = 200, 400, 600, 800, and 1000. The
true p-dimensional regression coefficient vector β0 is generated
similarly with s = 10 and A = 1.5. For the additive model (23)
in simulation example 4, we assume that s = 10 of the functions
gj(·)’s are nonzero with j’s chosen randomly from {1, . . . , p} and
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the remaining p − 10 functions gj(·)’s vanish. Specifically, each
nonzero function gj(·) is taken to be a polynomial of degree
3 and all coefficients under the polynomial basis functions are
generated independently as N(0, 102) as in Chouldechova and
Hastie (2015). The dimensionality p is allowed to vary with val-
ues 200, 400, 600, 800, and 1000. For each simulation example,
we set the number of repetitions as 100.

4.2. Estimation Procedures

To implement RANK procedure described in Section 3.1, we
need to construct a precision matrix estimator �̂ and obtain the
reduced model S̃ using the first fold of data (X(1), y(1)). Among
all available estimators in the literature, we employ the ISEE
method in Fan and Lv (2016) for precision matrix estimation
due to its scalability, simple tuning, and nice theoretical proper-
ties. For simplicity, we choose sj = 1/�max(�̂) for all 1 ≤ j ≤
p, where �̂ denotes the ISEE estimator for the true precision
matrix �0 and �max standards for the largest eigenvalue of a
matrix. Then we can obtain an (n/2) × (2p) augmented design
matrix [X(2), X̂], where X̂ represents an (n/2) × p knockoffs
matrix constructed in Step 3 of our modified knockoffs proce-
dure in Section 3.1. To construct the reduced model S̃ using
the first fold of data (X(1), y(1)), we borrow the strengths from
the recent literature on feature selection methods. After S̃ is
obtained, we employ the reduced data (XS̃

aug, y(2)) with XS̃
aug =

[X(2)

S̃ , X̂S̃ ] to fit a model and construct the knockoff statistics.
In what follows, we will discuss feature selection methods for
obtaining S̃ for the linear model (20), partially linear model
(21), single-index model (22), and additive model (23) in sim-
ulation examples 1–4, respectively. We will also discuss the
construction of knockoff statistics in each model setting.

For the linear model (20) in simulation example 1, we obtain
the reduced model S̃ by first applying the Lasso procedure

β̂
(1) = argminb∈Rp

{
n−1‖y(1) − X(1)b‖2

2 + λ‖b‖1
}

(24)

with λ ≥ 0 the regularization parameter and then taking the
support S̃ = supp(β̂

(1)
). Then with the estimated �̂ and S̃ ,

we construct the knockoff statistics as the LCD (17), where the
estimated regression coefficient vector is obtained by applying
the Lasso procedure on the reduced model as described in (18).
The regularization parameter λ in Lasso is tuned using the K-
fold cross-validation (CV).

For the partially linear model (21) in simulation example 2,
we employ the profiling method in semiparametric regression
based on the first fold of data (X(1), U(1), y(1)) by observing that
model (21) becomes a linear model when conditioning on the
covariate vector U(1). Consequently, we need to estimate both
the profiled response E(y(1)|U(1)) and the profiled covariates
E(X(1)|U(1)). To this end, we adopt the local linear smoothing
estimators Fan and Gijbels (1996) ̂E(y(1)|U(1)) and ̂E(X(1)|U(1))

of E(y(1)|U(1)) and E(X(1)|U(1)) using the Epanechnikov kernel
K(u) = 0.75(1 − u2)+ with the optimal bandwidth selected
by the generalized cross-validation (GCV). Then we define the
Lasso estimator β̂

(1) for the p-dimensional regression coefficient
vector similarly as in Equation (24) with y(1) and X(1) replaced
by y(1) − ̂E(y(1)|U(1)) and X(1) − ̂E(X(1)|U(1)), respectively. The

reduced model is then taken as S̃ = supp(β̂
(1)

). For knockoff
statistics Ŵj, we set Ŵj = 0 for all j �∈ S̃ . On the support S̃ ,
we construct Ŵj = |β̂j| − |β̂p+j| with β̂j and β̂p+j the Lasso
coefficients obtained by applying the model fitting procedure
described above to the reduced data (XS̃

aug, U(2)

S̃ , y(2)) in the
second subsample with XS̃

aug = [X(2)

S̃ , X̂S̃ ].
To fit the single-index model (22) in simulation example 3,

we employ the Lasso-SIR method in Lin, Zhao, and Liu (2016).
The Lasso-SIR first divides the sample of m = n/2 observations
in the first subsample (X(1), y(1)) into H slices of equal length c,
and constructs the matrix �H = 1

mc
(X(1))TMMTX(1), where

M = IH ⊗ 1c is an m×H matrix, that is, the Kronecker product
of the identity matrix IH and the constant vector 1c of ones. Then
the Lasso-SIR estimates the p-dimensional regression coefficient
vector β̂

(1) using the Lasso procedure similarly as in Equation
(18) with the original response vector y(1) replaced by a new
response vector ỹ(1) = (cλ1)

−1MMTX(1)η1, where λ1 denotes
the largest eigenvalue of matrix �H and η1 is the corresponding
eigenvector. We set the number of slices H = 5. Then the
reduced model is taken as S̃ = supp(β̂

(1)
). We then apply

the fitting procedure Lasso-SIR discussed above to the reduced
data (XS̃

aug, y(2)) with XS̃
aug = [X(2)

S̃ , X̂S̃ ] and construct knockoff
statistics in a similar way as in partially linear model.

To fit the additive model (23) in simulation example 4, we
apply the GAMSEL procedure in Chouldechova and Hastie
(2015) for sparse additive regression. In particular, we choose 6
basis functions each with 6 degrees of freedom for the smooth-
ing splines using orthogonal polynomials for each additive com-
ponent and set the penalty mixing parameter γ = 0.9 in GAM-
SEL to obtain estimators of the true functions gj(·)’s. The GAM-
SEL procedure is first applied to the first subsample (X(1), y(1))

to obtain the reduced model S̃ , and then applied to the reduced
data (XS̃

aug, y(2)) with XS̃
aug = [X(2)

S̃ , X̂S̃ ] to obtain estimates
ĝj and ĝp+j for the additive functions corresponding to the jth
covariate and its knockoff counterpart with j ∈ S̃ , respectively.
The knockoff statistics are then constructed as

Ŵj = ‖̂gj‖2
n/2 − ‖̂gp+j‖2

n/2 for j ∈ S̃ (25)

and Ŵj = 0 for j �∈ S̃ , where ‖̂gj‖n/2 represents the empirical
norm of the estimated function ĝj(·) evaluated at its observed
points and n/2 stands for the size of the second subsample.

It is seen that in all four examples above, intuitively large
positive values of knockoff statistics Ŵj provide strong evidence
against the jth null hypothesis H0,j : βj = 0 or H0,j : gj = 0. For
all simulation examples, we set the target FDR level at q = 0.2.

4.3. Simulation Results

To gain some insights into the effect of data splitting, we also
implemented our procedure without the data splitting step.
To differentiate, we use RANKs to denote the procedure with
data splitting and RANK to denote the procedure without data
splitting. To examine the feature selection performance, we look
at both measures of FDR and power. The empirical versions
of FDR and power based on 100 replications are reported in
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Table 1. Simulation results for linear model (20) in simulation example 1 with A = 1.5 in Section 4.1.

RANK RANK+ RANKs RANKs+
ρ p FDR Power FDR Power FDR Power FDR Power

0 200 0.2054 1.00 0.1749 1.00 0.1909 1.00 0.1730 1.00
400 0.2062 1.00 0.1824 1.00 0.2010 1.00 0.1801 1.00
600 0.2263 1.00 0.1940 1.00 0.2206 1.00 0.1935 1.00
800 0.2385 1.00 0.1911 1.00 0.2247 1.00 0.1874 1.00

1000 0.2413 1.00 0.2083 1.00 0.2235 1.00 0.1970 1.00
0.5 200 0.2087 1.00 0.1844 1.00 0.1875 1.00 0.1692 1.00

400 0.2144 1.00 0.1879 1.00 0.1954 1.00 0.1703 1.00
600 0.2292 1.00 0.1868 1.00 0.2062 1.00 0.1798 1.00
800 0.2398 1.00 0.1933 1.00 0.2052 0.9997 0.1805 0.9997

1000 0.2412 1.00 0.2019 1.00 0.2221 0.9984 0.2034 0.9984

Table 2. Simulation results for linear model (20) in simulation example 1 with A = 3.5 in Section 4.1.

RANKs RANKs+ HKF HKF+
ρ p FDR Power FDR Power FDR Power FDR Power

0 200 0.1858 1.00 0.1785 1.00 0.1977 0.9849 0.1749 0.9837
400 0.1895 1.00 0.1815 1.00 0.2064 0.9046 0.1876 0.8477
600 0.2050 1.00 0.1702 1.00 0.1964 0.8424 0.1593 0.7668
800 0.2149 1.00 0.1921 1.00 0.1703 0.7513 0.1218 0.6241

1000 0.2180 1.00 0.1934 1.00 0.1422 0.7138 0.1010 0.5550
0.5 200 0.1986 1.00 0.1618 1.00 0.1992 0.9336 0.1801 0.9300

400 0.1971 1.00 0.1805 1.00 0.1657 0.8398 0.1363 0.7825
600 0.2021 1.00 0.1757 1.00 0.1253 0.7098 0.0910 0.6068
800 0.2018 1.00 0.1860 1.00 0.1374 0.6978 0.0917 0.5792

1000 0.2097 0.9993 0.1920 0.9993 0.1552 0.6486 0.1076 0.5524

Table 3. Simulation results for partially linear model (21) in simulation example 2 in Section 4.1.

RANK RANK+ RANKs RANKs+
ρ p FDR Power FDR Power FDR Power FDR Power

0 200 0.2117 1.00 0.1923 1.00 0.1846 0.9976 0.1699 0.9970
400 0.2234 1.00 0.1977 1.00 0.1944 0.9970 0.1747 0.9966
600 0.2041 1.00 0.1776 1.00 0.2014 0.9968 0.1802 0.9960
800 0.2298 1.00 0.1810 1.00 0.2085 0.9933 0.1902 0.9930

1000 0.2322 1.00 0.1979 1.00 0.2113 0.9860 0.1851 0.9840
0.5 200 0.2180 1.00 0.1929 1.00 0.1825 0.9952 0.1660 0.9949

400 0.2254 1.00 0.1966 1.00 0.1809 0.9950 0.1628 0.9948
600 0.2062 1.00 0.1814 1.00 0.2038 0.9945 0.1898 0.9945
800 0.2264 1.00 0.1948 1.00 0.2019 0.9916 0.1703 0.9906

1000 0.2316 1.00 0.2033 1.00 0.2127 0.9830 0.1857 0.9790

Table 4. Simulation results for single-index model (22) in simulation example 3 in Section 4.1.

RANK RANK+ RANKs RANKs+
ρ p FDR Power FDR Power FDR Power FDR Power

0 200 0.1893 1 0.1413 1 0.1899 1 0.1383 1
400 0.2163 1 0.1598 1 0.245 0.998 0.1676 0.997
600 0.2166 1 0.1358 1 0.2314 0.999 0.1673 0.998
800 0.1964 1 0.1406 1 0.2443 0.992 0.1817 0.992

1000 0.2051 1 0.134 1 0.2431 0.969 0.1611 0.962
0.5 200 0.2189 1 0.1591 1 0.2322 1 0.1626 1

400 0.2005 1 0.1314 1 0.2099 0.996 0.1615 0.995
600 0.2064 1 0.1426 1 0.2331 0.998 0.1726 0.998
800 0.2049 1 0.1518 1 0.2288 0.994 0.1701 0.994

1000 0.2259 1 0.1423 1 0.2392 0.985 0.185 0.983

Tables 1 and 2 for simulation example 1 and Tables 3 and 5
for simulation examples 2–4, respectively. In particular, Table 1
compares the performance of RANK and RANK+ with that of
RANKs and RANKs+, where the subscript + stands for the
corresponding method when the modified knockoff threshold
T+ is used. We see from Table 1 that RANK and RANK+ mimic
closely RANKs and RANKs+, respectively, suggesting that data

splitting is more of a technical assumption. In addition, the FDR
is approximately controlled at the target level of q = 0.2 with
high power, which is in line with our theory. Table 2 summa-
rizes the comparison of RANKs with HKF procedure for high-
dimensional linear regression model. Despite that both methods
are based on data splitting, their practical performance is very
different. It is seen that although controlling the FDR below the
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Table 5. Simulation results for additive model (23) in simulation example 4 in Section 4.1.

RANK RANK+ RANKs RANKs+
ρ p FDR Power FDR Power FDR Power FDR Power

0 200 0.1926 0.9780 0.1719 0.9690 0.2207 0.9490 0.1668 0.9410
400 0.2094 0.9750 0.1773 0.9670 0.2236 0.9430 0.1639 0.9340
600 0.2155 0.9670 0.1729 0.9500 0.2051 0.9310 0.1620 0.9220
800 0.2273 0.9590 0.1825 0.9410 0.2341 0.9280 0.1905 0.9200

1000 0.2390 0.9570 0.1751 0.9350 0.2350 0.9140 0.1833 0.9070
0.5 200 0.1904 0.9680 0.1733 0.9590 0.2078 0.9370 0.1531 0.9330

400 0.2173 0.9650 0.1701 0.9540 0.2224 0.9360 0.1591 0.9280
600 0.2267 0.9600 0.1656 0.9360 0.2366 0.9340 0.1981 0.9270
800 0.2306 0.9540 0.1798 0.9320 0.2332 0.9150 0.1740 0.9110

1000 0.2378 0.9330 0.1793 0.9270 0.2422 0.8970 0.1813 0.8880

target level, HKF suffers from a loss of power due to the use of
the screening step and the power deteriorates as dimensionality
p increases. In contrast, the performance of RANKs is robust
across different correlation levels ρ and dimensionality p. It
is worth mentioning that HKF procedure with data recycling
performed generally better than that with data splitting alone.
Thus, only the results for the former version are reported in
Table 2 for simplicity.

For high-dimensional nonlinear settings of partially linear
model, single-index model, and additive model in simulation
examples 2–4, we see from Tables 3–5 that RANKs and RANKs+
performed well and similarly as RANK and RANK+ in terms of
both FDR control and power across different scenarios. These
results demonstrate the model-X feature of our procedure for
large-scale inference in nonlinear models.

5. Real Data Analysis

In addition to simulation examples presented in Section 4, we
also demonstrate the practical utility of our RANK procedure
on a gene expression dataset, which is based on Affymetrix
GeneChip microarrays for the plant Arabidopsis thaliana in
Wille et al. (2004). It is well known that isoprenoids play a
key role in plant and animal physiological processes, such as
photosynthesis, respiration, regulation of growth, and defense
against pathogens in plant physiological processes. In particular,
Horvath, Schaffer, and Wisman (2003) found that many of
the genes expressed preferentially in mature leaves are read-
ily recognizable as genes involved in photosynthesis, including
rubisco activase (AT2G39730), fructose bisphosphate aldolase
(AT4G38970), and two glycine hydroxymethyltransferase genes
(AT4G37930 and AT5G26780). Thus, isoprenoids have become
important ingredients in various drugs (e.g., against cancer and
malaria), fragrances (e.g., menthol), and food colorants (e.g.,
carotenoids). See, for instance, Wille et al. (2004), Schäfer and
Strimmer (2005), and Prelić et al. (2006) on studying the mech-
anism of isoprenoid synthesis in a wide range of applications.

The aforementioned dataset in Wille et al. (2004) consists
of 118 gene expression patterns under various experimental
conditions for 39 isoprenoid genes, 15 of which are assigned
to the regulatory pathway, 19 to the plastidal pathway, and
the remaining 5 isoprenoid genes encode protein located in
the mitochondrion. Moreover, 795 additional genes from 56
metabolic pathways are incorporated into the isoprenoid genetic
network. Thus, the combined dataset is comprised of a sample of

Table 6. Selected genes and their associated pathways for real data analysis in
Section 5.

RANK RANK+
Pathway Gene Pathway Gene

Calvin AT4G38970 Calvin AT4G38970
Carote AT1G57770 Carote AT1G57770
Folate AT1G78670 Folate AT1G78670
Inosit AT3G56960
Phenyl AT2G27820 Phenyl AT2G27820
Purine AT3G01820 Purine AT3G01820
Ribofl AT4G13700
Ribofl AT2G01880 Ribofl AT2G01880
Starch AT5G19220 Starch AT5G19220

Lasso

Pathway Gene Pathway Gene

Berber AT2G34810 Porphy AT4G18480
Calvin AT4G38970 Pyrimi AT5G59440
Calvin AT3G04790 Ribofl AT2G01880
Glutam AT5G18170 Starch AT5G19220
Glycol AT4G27600 Starch AT2G21590
Pentos AT3G04790 Trypto AT5G48220
Phenyl AT2G27820 Trypto AT5G17980
Porphy AT1G03475 Mevalo AT5G47720
Porphy AT3G51820

n = 118 gene expression patterns for 834 genes. This dataset was
studied in Yang, Lozano, and Ravikumar (2014) for identifying
genes that exhibit significant association with the specific iso-
prenoid gene GGPPS11 (AGI code AT4G36810). Motivated by
Yang, Lozano, and Ravikumar (2014), we choose the expression
level of isoprenoid gene GGPPS11 as the response and treat the
remaining p = 833 genes from 58 different metabolic pathways
as the covariates, in which the dimensionality p is much larger
than sample size n. All the variables are logarithmically trans-
formed. To identify important genes associated with isoprenoid
gene GGPPS11, we employ the RANK method using the Lasso
procedure with target FDR level q = 0.2. The implementation
of RANK is the same as that in Section 4 for the linear model.
Since the sample size of this dataset is relatively low, we choose
to implement RANK without sample splitting, which has been
demonstrated in Section 4 to be capable of controlling the FDR
at the desired level.

Table 6 lists the selected genes by RANK, RANK+, and Lasso
along with their associated pathways. We see from Table 6
that RANK, RANK+, and Lasso selected 9 genes, 7 genes,
and 17 genes, respectively. The common set of four genes,
AT4G38970, AT2G27820, AT2G01880, and AT5G19220, was
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selected by all three methods. The values of the adjusted R2

for these three selected models are equal to 0.7523, 0.7515,
and 0.7843, respectively, showing similar level of goodness of
fit. In particular, among the top 20 genes selected using the
Elem-OLS method with entrywise transformed Gram matrix
in Yang, Lozano, and Ravikumar (2014), we found that five
genes (AT1G57770, AT1G78670, AT3G56960, AT2G27820, and
AT4G13700) selected by RANK are included in such a list of
top 20 genes, and three genes (AT1G57770, AT1G78670, and
AT2G27820) picked by RANK+ are contained in the same list.

To gain some scientific insights into the selected genes, we
conducted gene ontology (GO) enrichment analysis to interpret,
from the biological point of view, the influence of selected genes
on isoprenoid gene GGPPS11, which is known as a precursor to
chloroplast, carotenoids, tocopherols, and abscisic acids. Specif-
ically, in the enrichment test of GO biological process, gene
AT1G57770 is involved in carotenoid biosynthetic process. In
the GO cellular component enrichment test, genes AT4G38970
and AT5G19220 are located in chloroplast, chloroplast enve-
lope, and chloroplast stroma; gene AT1G57770 is located in
chloroplast and mitochondrion; and gene AT2G27820 is located
in chloroplast, chloroplast stroma, and cytosol. The GO molec-
ular function enrichment test shows that gene AT4G38970 has
fructose-bisphosphate aldolase activity and gene AT1G57770
has carotenoid isomerase activity and oxidoreductase activity.
These scientific insights in terms of biological process, cellular
component, and molecular function suggest that the selected
genes may have meaningful biological relationship with the tar-
get isoprenoid gene GGPPS11. See, for example, Horvath, Schaf-
fer, and Wisman (2003), Ramel et al. (2009), and Wienkoop et al.
(2004) for more discussions on these genes.

6. Discussions

Our analysis in this article reveals that the suggested RANK
method exploiting the general framework of model-X knockoffs
introduced in Candès et al. (2018) can asymptotically con-
trol the FDR in general high-dimensional nonlinear models
with unknown covariate distribution. The robustness of the
FDR control under estimated covariate distribution is enabled
by imposing the Gaussian graphical structure on the covari-
ates. Such a structural assumption has been widely employed
to model the association networks among the covariates and
extensively studied in the literature. Our method and theo-
retical results are powered by scalable large precision matrix
estimation with statistical efficiency. It would be interesting
to extend the robustness theory of the FDR control beyond
Gaussian designs as well as for heavy-tailed data and dependent
observations.

Our work also provides a first attempt to the power analysis
for the model-X knockoffs framework. The nontrivial technical
analysis establishes that RANK can have asymptotic power one
in high-dimensional linear model setting when the Lasso is used
for sparse regression. It would be interesting to extend the power
analysis for RANK with a wide class of sparse regression and fea-
ture screening methods including SCAD, SIS, and many other
concave regularization methods Fan and Li (2001), Fan and Lv
(2008), Fan and Fan (2008), and Fan and Lv (2013). Though

more challenging, it is also important to investigate the power
property for RANK beyond linear models. The power analysis in
general high-dimensional nonlinear models is highly challeng-
ing for several reasons. First, the minimum signal strength needs
to be characterized precisely in the power analysis. Yet unlike the
beta-min measure in the linear model, there lacks a popularly
accepted measure with explicit formula on the minimum signal
strength in general high-dimensional nonlinear models. Sec-
ond, the estimation error associated with each covariate plays
an important role in the power analysis. However, in general
nonlinear models it is unclear how to disentangle the individual
estimation error corresponding to each covariate. Third, the
knockoffs procedure builds on some underlying variable selec-
tion method, which itself is highly challenging both empirically
and theoretically in general high-dimensional nonlinear mod-
els.

Our RANK procedure uses the idea of data splitting, which
plays an important role in our technical analysis. Our numer-
ical examples, however, suggest that data splitting is more of
a technical assumption than a practical necessity. It would be
interesting to develop theoretical guarantees for RANK without
data splitting. These extensions are interesting topics for future
research.

Supplementary Materials

The supplementary material contains additional technical details for the
proofs of Lemmas 3–8.
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Appendix A: Appendix: Proofs of Main Results

We provide the proofs of Theorems 1–3, Propositions 1 and 2, and
Lemmas 1 and 2 in this appendix. Additional technical details for the
proofs of Lemmas 3–8 are included in the supplementary material.
To ease the technical presentation, we first introduce some notation.
Let �min(·) and �max(·) be the smallest and largest eigenvalues of
a symmetric matrix. For any matrix A = (aij), denote by ‖A‖1 =
maxj

∑
i |aij|, ‖A‖max = maxi,j |aij|, ‖A‖2 = �

1/2
max(ATA), and

‖A‖F = [tr(ATA)]1/2 the matrix �1-norm, entrywise maximum
norm, spectral norm, and Frobenius norm, respectively. For any set
S ⊂ {1, . . . , p}, we use AS to represent the submatrix of A formed by
columns in set S and AS ,S to denote the principal submatrix formed
by columns and rows in set S .

A.1. Proofs of Lemma 1 and Theorem 1

Observe that the choice of S̃ = {1, . . . , p} certainly satisfies the
sure screening property. We see that Lemma 1 and Theorem 1 are
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specific cases of Lemma 6 in Section B.4 of supplementary materials
and Theorem 3, respectively. Thus, we only prove the latter ones.

A.2. Proof of Proposition 1

In this proof, we will consider � and S as deterministic parameters
and focus only on the second half of sample (X(2), y(2)) used in FDR
control. Thus, we will drop the superscripts in (X(2), y(2)) whenever
there is no confusion. For a given precision matrix �, the matrix of
knockoff variables

X̃� = [̃x�
1 , . . . , x̃�

n ]T

can be generated using Equation (12) with �0 replaced by �. Here,
we use the superscript � to emphasize the dependence of knockoffs
matrix on �. Recall that for a given set S with k = |S|, we calculate the
knockoff statistics Wj’s using (y, XS, X̃�

S ). Thus, the FDR function can
be written as

FDRn(�,S) = E[FDPn(y, XS , X̃�
S )] = E

[
g1,n(X, X̃�

S )
]
, (A.1)

where g1,n(X, X̃�
S ) = E[FDPn(y, XS , X̃�

S )
∣∣X, X̃�

S ]. It is seen that the
function g1,n is the conditional FDP when knockoff variables x̃�

i , 1 ≤
i ≤ n, are simulated using � and only variables in set S are used to
construct knockoff statistics Wj. We want to emphasize that since given
X the response y is independent of X̃�

S , the functional form of g1,n is
free of the matrix � used to generate knockoff variables.

Using the technical arguments in Candès et al. (2018), we can show
that FDRn(�0,S) ≤ q for any sample size n and all subsets S ⊂
{1, . . . , p} that are independent of the original data (X(2), y(2)) used
in the knockoffs procedure. Observe that the only difference between
FDRn(�,S) and FDRn(�0,S) is that different precision matrices are
used to generate knockoff variables. We restrict ourselves to the follow-
ing data generating scheme

x̃�
i = (C�)Txi + B�zi, i = 1, . . . , n,

where C� = Ip − �diag{s}, zi ∼ N(0, Ip) ∈ R
p are iid normal

random vectors that are independent of xi’s, and B� = (
2diag{s} −

diag{s}�diag{s})1/2. For simplicity, write x̃(0)
i = x̃�0

i , B0 = B�0 , and
C0 = C�0 , that is, the matrices corresponding to the oracle case. Then
restricted to set S ,

x̃�
i,S = (C�

S )Txi + (B�
S )Tzi, x̃(0)

i,S = CT
0,Sxi + (B0,S )Tzi,

where the subscript S means the submatrix (subvector) formed by
columns (components) in setS . We want to make connections between
x̃�

i,S and x̃(0)
i,S . To this end, construct

x̆�
i,S = (C�

S )Txi + B̃TBT
0,Szi, (A.2)

where B̃ = (BT
0,SB0,S )−1/2((B�

S )TB�
S

)1/2. Then it is seen that
(xi, x̃�

i,S ) and (xi, x̆�
i,S ) have identical joint distribution. Although x̆�

i,S
cannot be calculated in practice for a given � due to its dependency on
�0, the random vector x̆�

i,S acts as a proxy of x̃�
i,S in studying the FDR

function. In fact, by construction (A.1) can be further written as

FDRn(�,S) = E
[
g1,n(X, X̃�

S )
] = E

[
g1,n(X, X̆�

S )
]
, (A.3)

where X̆�
S = [x̆�

1,S , . . . , x̆�
n,S ]T .

Observe that the randomness in both X̃(0)
S and X̆�

S is fully deter-
mined by the same random matrices X and ZB0,S , which are indepen-
dent of each other and whose rows are iid copies from N(0, �0) and

N(0, BT
0,SB0,S ), respectively. For this reason, we can rewrite the FDR

function in Equation (A.3) as

FDRn(�,S) = E[g1,n(XS
augH�)],

where XS
aug = [X, X̃0,S ] = [X, XC0,S + ZB0,S ] ∈ R

n×(p+k) is the
augmented matrix collecting columns of X and X̃0,S , and

H� =
(

Ip C�
S − C0,S B̃

0 B̃

)
,

which completes the proof of Proposition 1.

A.3. Lemma 2 and Its Proof

Lemma 2. Assume that ‖�−�0‖2 = O(an) with an → 0 some deter-
ministic sequence and all the notation the same as in Proposition 1. If
�min{2diag(s) − diag(s)�0diag(s)} ≥ c0 and �max(�0) ≤ c−1

0 for
some constant c0 > 0, then it holds that

‖B̃ − Ik‖2 ≤ c1‖� − �0‖2 = O(an),

where B̃ is given in Equation (A.2) and c1 > 0 is some uniform constant
independent of set S .

Proof. We use C to denote some generic positive constant whose value
may change from line to line. First note that

(B�
S )TB�

S − BT
0,SB0,S = −(

diag(s)(� − �0)diag(s)
)
S ,S . (A.4)

Further, since �0 − 2−1diag(s) is positive definite it follows that
‖s‖∞ ≤ 2�max(�0) ≤ 2c−1

0 . Thus, it holds that

‖(B�
S )TB�

S − BT
0,SB0,S‖2 ≤ C‖(� − �0)S ,S‖2

≤ C‖� − �0‖2 = O(an).

For n large enough, by the triangle inequality we have

�min((B�
S )TB�

S ) ≥ �min(BT
0,SB0,S )

+ �min((B�
S )TB�

S − BT
0,SB0,S )

≥ �min(BT
0 B0) − O(an)

= �min
(

2diag(s) − diag(s)�0diag(s)
)

− O(an)

≥ c0/2.

In addition, �min((B0,S )TB0,S ) ≥ �min((B0)TB0) = �min(
2diag(s) − diag(s)�0diag(s)

)
≥ c0/2. The above two inequalities

together with Lemma 2.2 in Schmitt (1992) entail that∥∥∥(
(B�

S )TB�
S

)1/2 − (
(B0,S )TB0,S

)1/2
∥∥∥

2
≤ (

√
c0/2 + √

c0/2)−1‖(B�
S )TB�

S − (B0,S )TB0,S‖2
≤ C‖� − �0‖2 = O(an), (A.5)

where the last step is because of Equation (A.4). Thus, it follows that

‖B̃ − Ik‖2 ≤
∥∥∥(

(B�
S )TB�

S
)1/2 − (

(B0,S )TB0,S
)1/2

∥∥∥
2

× ‖((B0,S )TB0,S
)−1/2‖2

≤ C‖� − �0‖2�
−1/2
min ((B0)TB0) ≤ C‖� − �0‖2, (A.6)

where the last step comes from assumption �min(BT
0 B0) =

�min(2diag(s) − diag(s)�0diag(s))
≥ c0. This concludes the proof of Lemma 2.
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A.4. Proof of Theorem 2

We now proceed to prove Theorem 2 with the aid of Lemma 2 in
Section A.3. We use the same notation as in the proof of Proposition 1
and use C > 0 to denote a generic constant whose value may change
from line to line.

We start with proving (15). By Condition 4, we have

|FDR(H�,S) − FDR(H�0 ,S)| ≤ L‖H� − H�0‖F , (A.7)

where the constant L is uniform over all ‖� − �0‖ ≤ C2an and |S| ≤
Kn. Denote by k = |S|. By the definition of H�, it holds that

H� − H�0 = H� − Ip+k =
(

0 C�
S − C0,S B̃

0 B̃ − Ik

)
.

By the definition and matrix norm inequality, we deduce

‖H� − H�0‖F = ‖C�
S − C0,S B̃‖F + ‖B̃ − Ik‖F

≤ √
k‖C�

S − C0,S B̃‖2 + √
k‖B̃ − Ik‖2

≤ √
Kn

(
‖C�

S − C0,S‖2 + ‖C0,S (B̃ − Ik)‖2

+‖B̃ − Ik‖2
)

≤ √
Kn

((
1 + ‖C0,S‖2

)‖B̃ − Ik‖2 + ‖C� − C0‖2
)

.

Since �0 − 2−1diag(s) is positive definite, it follows that sj ≤
2�max(�0) ≤ 2/�min(�0) ≤ C. Thus, ‖C0,S‖2 ≤ ‖C0‖2 =
‖I − �0diag(s)‖2 ≤ 1 + ‖�0‖2‖diag(s)‖2 ≤ C. This along with
‖C� − C0‖2 = ‖(� − �0)diag(s)‖2 ≤ Can and Lemma 2 entails that
‖H� − H�0‖F can be further bounded as

‖H� − H�0‖F ≤ C
√

Knan.

Combining the above result with Equation (A.7) leads to

sup
{|S|≤Kn,‖�−�0‖≤Can}

|FDR(H�,S) − FDR(H�0 ,S)| ≤ O(
√

Knan),

(A.8)

which completes the proof of Equation (15).
We next establish the FDR control for RANK. By Condition 7, the

event E0 = {‖�̂ − �0‖2 ≤ C2an} occurs with probability at least
1−O(p−c1 ). Since �̂ and S̃ are estimated from independent subsample
(X(1), y(1)), it follows from Equation (15) that∣∣∣E[

FDPn(X(2)

S̃ , X̂S̃ )
∣∣E0

] − E
[
FDPn(X(2)

S̃ , X̃0,S̃ )
∣∣E0

]∣∣∣
≤ sup

|S|≤Kn, ‖�−�0‖≤C2an

∣∣∣E[
FDPn(X(2)

S , X̃�
S )

∣∣E0
]

−E
[
FDPn(X(2)

S , X̃0,S )
∣∣E0

]∣∣∣ (A.9)

= sup
|S|≤Kn, ‖�−�0‖≤C2an

∣∣∣E[
FDPn(X(2)

S , X̃�
S )

]
−E

[
FDPn(X(2)

S , X̃0,S )
]∣∣∣ (A.10)

= sup
|S|≤Kn, ‖�−�0‖≤C2an

∣∣∣FDR(H�,S) − FDR(H�0 ,S)

∣∣∣
≤O(

√
Knan). (A.11)

Now note that by the property of conditional expectation, we have

FDRn(�̂, S̃) − FDRn(�0, S̃)

=
(
E

[
FDPn(X(2)

S̃ , X̂S̃ )
∣∣E0

] − E
[
FDPn(X(2)

S̃ , X̃0,S̃ )
∣∣E0

])
P(E0)

+
(
E

[
FDPn(X(2)

S̃ , X̂S̃ )
∣∣Ec

0
] − E

[
FDPn(X(2)

S̃ , X̃0,S̃ )
∣∣Ec

0
])

P(Ec
0)

≡ I1 + I2.

Let us first consider term I1. By Equation (A.11), it holds that

|I1| ≤
∣∣∣E[

FDPn(X(2)

S̃ , X̂S̃ )
∣∣E0

] − E
[
FDPn(X(2)

S̃ , X̃0,S̃ )
∣∣E0

]∣∣∣
≤ O(

√
Knan).

We next consider term I2. Since FDP is always bounded between 0 and
1, we have

|I2| ≤ 2P(Ec
0) ≤ O(p−c1).

Combining the above two results yields∣∣FDRn(�̂, S̃) − FDRn(�0, S̃)
∣∣ ≤ O(

√
Knan) + O(p−c1 ).

This together with the result of FDRn(�0, S̃) ≤ q mentioned in the
proof of Proposition 1 in Section A.2 completes the proof of Theorem 2.

A.5. Proof of Theorem 3

In this proof, we will drop the superscripts in (X(2), y(2)) whenever
there is no confusion. By the definition of power, for any given precision
matrix � and reduced model S the power can be written as

Power(�,S) = E[f (XS , X̃�
S , y)],

where f is some function describing how the empirical power depends
on the data. Note that f (XS , X̃�

S , y) is a stochastic process indexed by
�, and we care about the mean of this process. Our main idea is to
construct another stochastic process indexed by � which has the same
mean but possibly different distribution. Then by studying the mean of
this new stochastic process, we can prove the desired result.

We next provide more technical details of the proof. The proxy
process is defined as

X̆�
S = XC�

S + ZB0,S (BT
0,SB0,S )−1/2

((
B�
S

)TBS
)1/2

, (A.12)

where C�
S is the submatrix of C� = Ip −�diag{s}, B�

S is the submatrix
of B� = (

diag(s) − diag(s)�diag(s)
)1/2, and B0 = B�0 . It is easy

to see that X̆�
S and X̃�

S defined using Equation (12) have the same
distribution. Since Z is independent of (X, y), we can further conclude
that (XS , X̃�

S , y) and (XS , X̆�
S , y) have the same joint distribution for

each given � and S . Thus, the power function can be further written
as

Power(�,S) = E[f (XS , X̃�
S , y)] = E[f (XS , X̆�

S , y)].
Therefore, we only need to study the power of the knockoffs procedure
based on the pseudo data (XS , X̆�

S , y).
To simplify the technical presentation, we will slightly abuse the

notation and still use β̂ = β̂(λ) = β̂(λ; �,S) to represent the Lasso
solution based on pseudo data (XS , X̆�

S , y). We will use c and C to
denote some generic positive constants whose values may change from
line to line. Define

G̃ = 1
n

X̃T
KOX̃KO ∈ R

(2p)×(2p) and ρ̃ = 1
n

X̃T
KOy ∈ R

2p (A.13)

with X̃KO = [X, X̆�] ∈ R
n×(2p) the augmented design matrix. For

any given set S ⊂ {1, . . . , p} with k = |S|, (2p) × (2p) matrix A,
and (2p)-vector a, we will abuse the notation and denote by AS ,S ∈
R

(2k)×(2k) the principal submatrix formed by columns and rows in set
{j : j ∈ S or j − p ∈ S} and aS ∈ R

2k the subvector formed by
components in set {j : j ∈ S or j − p ∈ S}. For any p × p matrix B
(or p-vector b), we define BS (or bS ) in the same way meaning that
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columns (or components) in set S will be taken to form the submatrix
(or subvector).

With the above notation, note that the Lasso solution β̂ =
(β̂1, . . . , β̂2p)T = β̂(λ; �,S) restricted to variables in S can be
obtained by setting β̂j = 0 for j ∈ {1 ≤ j ≤ 2p : j �∈ S and j − p �∈ S}
and minimizing the following objective function

β̂S = arg minb∈R2k

{
1
2

bTG̃S ,Sb − ρ̃T
Sb + λ‖b‖1

}
. (A.14)

By Proposition 2 in Section A.6, it holds that with probability at least
1 − c3p−c3 ,

sup
�∈A, |S|≤Kn

‖β̂(λ; �,S) − βT‖1 ≤ C�1 sλ, (A.15)

where λ = Cλ{(log p)/n}1/2 with Cλ > 0 some constant and C�1
is some positive constant. By Condition 2 and the assumption λ =
Cλ{(log p)/n}1/2, we have

min
j∈S0

|β0,j| ≥ κnλ

Cλ
. (A.16)

Denote by W�,S
j the LCD based on the above β̂(λ; �,S). Recall

that by assumption, there are no ties in the magnitude of nonzero
W�,S

j ’s and no ties in the nonzero components of the Lasso solution

with asymptotic probability one. Let |W�,S
(1)

| ≥ · · · ≥ |W�,S
(p)

| be the
ordered knockoff statistics according to magnitude. Denote by j∗ the
index such that |W�,S

(j∗) | = T. Then by the definition of T, it holds that

−T < W�,S
(j∗+1)

≤ 0. We next analyze the two cases of W�,S
(j∗+1)

= 0

and −T < W�,S
(j∗+1)

< 0 separately.

Case 1. For the case of W�,S
(j∗+1)

= 0, Ŝ� = {j : W�,S
j > 0}, and

{j : W�,S
j < −T} = {j : W�,S

j < 0} . Let q̃n = ϕC�1 Cλκ−1
n with

ϕ the positive solution to equation ϕ2 − ϕ − 1 = 0 which is known
as the golden ratio. If |{j : W�,S

j < 0}| > q̃ns, then we can prove that
T ≤ κnλ/(Cλϕ) using the same arguments as in Equation (A.21) since
{j : W�,S

j < −T} = {j : W�,S
j < 0}. Thus, it reduces to Case 2 below

and the arguments therein follow.
On the contrary, if |{j : W�,S

j < 0}| ≤ q̃ns then we have∣∣∣Ŝ� ∩ S0
∣∣∣ =

∣∣∣supp(W�,S ) ∩ S0
∣∣∣ −

∣∣∣{j : W�,S
j < 0} ∩ S0

∣∣∣
≥

∣∣∣supp(W�,S ) ∩ S0
∣∣∣ − q̃ns (A.17)

since Ŝ� = supp(W�,S )\{j : W�,S
j < 0}. Let us now focus on∣∣∣supp(W�,S ) ∩ S0

∣∣∣. We observe that

supp(W�,S ) ⊃ {1, . . . , p} \ S�
1 , (A.18)

where S�
1 = {1 ≤ j ≤ p : β̂j(λ; �,S) = 0}. Meanwhile, note that in

view of Equation (A.15) we have with probability at least 1 − c3p−c3 ,

C�1 sλ ≥ sup
�∈A, |S|≤Kn

‖β̂(λ; �,S) − β0‖1

≥ sup
�∈A, |S|≤Kn

∑
j∈S�

1 ∩S0

|β̂j(λ; �,S) − β0,j|

=
∑

j∈S�
1 ∩S0

|β0,j| ≥ |S�
1 ∩ S0| min

j∈S0
|β0,j|.

By Equation (A.16), we can further deduce from the above inequality
that

|S�
1 ∩ S0| ≤ C�1 Cλκ−1

n s,

which together with |S0| = s entails that

|({1, . . . , p} \ S�
1

) ∩ S0| ≥ (1 − C�1 Cλκ−1
n )s.

Combining this result with Equation (A.18) yields∣∣∣supp(W�,S ) ∩ S0
∣∣∣ ≥

∣∣∣({1, . . . , p} \ S�
1

) ∩ S0
∣∣∣ ≥ (1 − C�1 Cλκ−1

n )s.
(A.19)

Thus, in view of inequalities Equations (A.17) and (A.19), with proba-
bility at least 1−c3p−c3 it holds uniformly over all � ∈ A and |S| ≤ Kn
that ∣∣Ŝ� ∩ S0

∣∣
s

≥ 1 − C�1 Cλ(ϕ + 1)κ−1
n .

Case 2. We next consider the case of −T < W�,S
(j∗+1)

< 0. By the
definitions of T and j∗, we have

|{j : W�,S
j ≤ −T}| + 2

|{j : W�,S
j ≥ T}|

> q (A.20)

since otherwise we would reduce T to |W�,S
(j∗+1)

| to get the new smaller
threshold with the criterion still satisfied. We next bound T using the
results in Lemma 6 in Section B.4 of supplementary materials. Observe
that Equation (A.20) and Lemma 6 lead to |{j : W�,S

j � −T}| > q|{j :

W�,S
j � T}|−2 ≥ qcs−2 with asymptotic probability one. Moreover,

when W�,S
j ≤ −T we have |β̂j(λ; �,S)| − |β̂j+p(λ; �,S)| ≤ −T and

thus |β̂j+p(λ; �,S)| ≥ T. Using Equation (A.15), we obtain

C�1 sλ ≥ ‖β̂(λ; �,S) − βT‖1 ≥
∑

j: W�,S
j �−T

|β̂j+p(λ; �,S)|

≥ T|{j : W�,S
j � −T}|. (A.21)

Combining these results leads to C�1 sλ ≥ T(qcs − 2) and thus it holds
that

T ≤ C�1 sλ
(qcs − 2)

≤ κnλ

Cλϕ
(A.22)

for large enough n since κn → ∞ as n → ∞ and Cλ is some positive
constant.

We now proceed to prove the theorem by showing that Type II error
is small. In light of Equation (A.15), we derive

C�1 sλ ≥ ‖β̂(λ; �,S) − βT‖1 =
p∑

j=1

[|β̂j(λ; �,S) − β0,j|

+|β̂j+p(λ; �,S)|]
≥

∑
j∈S0∩(Ŝ�)c

[|β̂j(λ; �,S) − β0,j| + |β̂j+p(λ; �,S)|]
≥

∑
j∈S0∩(Ŝ�)c

[|β̂j(λ; �,S) − β0,j| + |β̂j(λ; �,S)| − T
]

since |β̂j+p(λ; �,S)| ≥ |β̂j(λ; �,S)| − T when j ∈ (Ŝ�)c. Using the
triangle inequality and noting that |β0,j| ≥ C−1

λ λκn for j ∈ S0, we can
conclude that

C�1 sλ ≥
∑

j∈S0∩(Ŝ�)c

(|β0,j| − T) ≥ (C−1
λ λκn − T)

∣∣∣(Ŝ�)c ∩ S0
∣∣∣ .
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Thus, it follows that

|Ŝ� ∩ S0|
s

= 1 − |(Ŝ�)c ∩ S0|
s

≥ 1 − C�1λ

C−1
λ λκn − T

= 1 − C�1 Cλ
ϕ

ϕ − 1
κ−1

n

uniformly over all � ∈ A and |S| ≤ Kn since T ≤ κnλ/(Cλϕ).
Combining the above two scenarios, we have shown that with

asymptotic probability one, uniformly over all � ∈ A and |S| ≤ Kn it
holds that with probability at least 1 − c3p−c3 ,

|Ŝ� ∩ S0|
s

≥ 1 − C�1 Cλ(ϕ + 1)κ−1
n (A.23)

since ϕ + 1 = ϕ/(ϕ − 1) by the definition of ϕ. This along with the
assumption P{�̂ ∈ A} ≥ 1 − c2p−c2 in Condition 7 gives

Power(�̂, S̃) = E

[
|Ŝ�̂ ∩ S0|

s

]
≥ E

[
|Ŝ�̂ ∩ S0|

s

∣∣∣�̂ ∈ A
]
P{�̂ ∈ A}

≥
[

1 − C�1 Cλ(ϕ + 1)κ−1
n

]
(1 − c3p−c3 )(1 − c2p−c2)

= 1 − C�1 Cλ(ϕ + 1)κ−1
n − c2p−c2 − c3p−c3 + o(κ−1

n )

= 1 − o(1),

which concludes the proof of Theorem 3.

A.6. Proposition 2 and Its Proof

Proposition 2. Assume that Conditions 1 and 6 hold, the smallest
eigenvalue of 2diag(s) − diag(s)�0diag(s) is positive and bounded
away from 0, and λ = Cλ{(log p)/n}1/2 with Cλ > 0 some constant.
Let βT = (βT

0 , 0, . . . , 0)T ∈ R
2p be the expanded vector of true

regression coefficient vector. If [(Lp + L′
p)1/2 + K1/2

n ]an = o(1)

and s{an + L′
p[(log p)/n]1/2 + [Kn(log p)/n]1/2} = o(1), then with

probability at least 1 − c3p−c3 ,

sup
�∈A, |S|≤Kn

‖β̂(λ; �,S) − βT‖1 = C�1 sλ

and sup
�∈A, |S|≤Kn

‖β̂(λ; �,S) − βT‖2 = C�2 s1/2λ,

where β̂(λ; �,S) is defined in the proof of Theorem 3 in Section A.5
and c3, c4, C�1 , and C�2 are all positive constants.

Proof. We adopt the same notation as used in the proof of Theorem 3
in Section A.5. Let us introduce some key events which will be used in
the technical analysis. Define

E3 =
{

sup
‖�−�0‖≤C2an, |S|≤Kn

‖ρ̃S − G̃S ,SβT,S‖∞ ≤ λ0
}

, (A.24)

E4 =
{

sup
‖�−�0‖2≤C2an, |S|≤Kn

‖G̃S ,S − GS ,S‖max ≤ C5a2,n
}

,

(A.25)

where λ0 = C4
√

(log p)/n and a2,n = an + (L′
p + Kn)

√
(log p)/n with

C4, C5 > 0 some constants. Then by Lemma 4 and 7 in Sections B.2
and B.5 of supplementary materials,

P(E3 ∩ E4) = 1 − c3p−c3 (A.26)

for some constant c3 > 0. Hereafter, we will condition on the event
E3 ∩ E4.

Since β̂S is the minimizer of the objective function in Equation
(A.14), we have

1
2
β̂

T
S G̃S ,S β̂S − ρ̃T

S β̂S + λ‖β̂S‖1

≤ 1
2
βT
T,S G̃S ,SβT,S − ρ̃T

SβT,S + λ‖βT,S‖1.

Some routine calculations lead to
1
2
(β̂S − βT,S )TG̃S ,S (β̂S − βT,S ) + λ‖β̂S‖1

≤ −βT
T,S G̃S ,S β̂S + βT

T,S G̃S ,SβT,S

+ ρ̃T
S (β̂S − βT,S ) + λ‖βT,S‖1

= (̃ρS − G̃S ,SβT,S )T(β̂S − βT,S ) + λ‖βT,S‖1 (A.27)

≤ ‖β̂S − βT,S‖1‖ρ̃S − G̃S ,SβT,S‖∞ + λ‖βT,S‖1. (A.28)

Let δ̂ = β̂ − βT. Then we can simplify Equation (A.28) as

1
2
δ̂

T
S G̃S ,S δ̂S + λ‖β̂S‖1 ≤ ‖̂δS‖1‖ρ̃S − G̃S ,SβT,S‖∞

+ λ‖βT,S‖1

≤ λ0‖̂δS‖1 + λ‖βT,S‖1. (A.29)

Observe that ‖β̂S‖1 = ‖β̂S0‖1 + ‖β̂S\S0‖1 and ‖βT,S‖1 =
‖βT,S0‖1 + ‖βT,S\S0‖1 = ‖βT,S0‖1 with S0 the support of true
regression coefficient vector. Then it follows from ‖β̂S0 − βT,S0‖1 ≥
‖βT,S0‖1 − ‖β̂S0‖1 that

1
2
δ̂

T
S G̃S ,S δ̂S + λ‖β̂S\S0‖1 ≤ λ0‖̂δS‖1 + λ‖β̂S0 − βT,S0‖1.

Denote by ‖̂δS0‖1 = ‖β̂S0 −βT,S0‖1 and ‖̂δS\S0‖1 = ‖β̂S\S0 −
βT,S\S0‖1 = ‖β̂S\S0‖1. Then we can further deduce

1
2
δ̂

T
S G̃S ,S δ̂S + λ‖̂δS\S0‖1 ≤ λ0‖̂δS‖1 + λ‖̂δS0‖1

= λ0‖̂δS0‖1 + λ0‖̂δS\S0‖1 + λ‖̂δS0‖1;

that is,

1
2
δ̂

T
S G̃S ,S δ̂S + (λ − λ0)‖̂δS\S0‖1 ≤ (λ + λ0)‖̂δS0‖1. (A.30)

When λ ≥ 2λ0, it holds that

1
2
δ̂

T
S G̃S ,S δ̂S + λ

2
‖̂δS\S0‖1 ≤ 3λ

2
‖̂δS0‖1. (A.31)

Since δ̂
T
S G̃S ,S δ̂S ≥ 0, we obtain the basic inequality

‖̂δS\S0‖1 ≤ 3‖̂δS0‖1 (A.32)

on event E3. It follows from Equation (A.31) that

δ̂
T
SGS ,S δ̂S ≤ 3λ‖̂δS0‖1 + δ̂

T
S (GS ,S − G̃S ,S )̂δS (A.33)

with

G =
(

�0 �0 − diag(s)
�0 − diag(s) �0

)
.

With some matrix calculations, we can show that

�min(G) ≥ �min(�0)�min{2diag(s) − diag(s)�0diag(s)} ≥ C,

since both �0 and 2diag(s) − diag(s)�0diag(s) have eigenvalues
bounded away from 0. Thus, the left hand side of Equation (A.33)
can be bounded from below by c0C‖̂δS‖2

2.
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It remains to bound the right hand side of Equation (A.33). For the
first term, it follows from the Cauchy–Schwarz inequality that

3λ‖̂δS0‖1 ≤ 3λ
√

s‖̂δS0‖2 ≤ 3λ
√

s‖̂δS‖2. (A.34)

For the last term δ̂
T
S (GS ,S − G̃S ,S )̂δS on the right hand of Equation

(A.33), by conditioning on event E4 and using the Cauchy–Schwarz
inequality, the triangle inequality, and the basic inequality Equation
(A.32) we can obtain∣∣∣̂δT

S (GS ,S − G̃S ,S )̂δS
∣∣∣ ≤ ‖GS ,S − G̃S ,S‖max‖̂δS‖2

1

≤ ‖GS ,S − G̃S ,S‖max(‖̂δS0‖1 + ‖̂δS\S0‖1)
2

≤ 16‖GS ,S − G̃S ,S‖max‖̂δS0‖2
1

≤ 16s‖GS ,S − G̃S ,S‖max‖̂δS0‖2
2

≤ 16s‖GS ,S − G̃S ,S‖max‖̂δS‖2
2

≤ 16C5sa2,n‖̂δS‖2
2.

Combining the above results, we can reduce inequality Equation
(A.33) to

C‖̂δS‖2
2 ≤ 3λ

√
s‖̂δS‖2 + 16C5sa2,n‖̂δS‖2

2.

Since sa2,n → 0, there exists a positive constant C�2 such that it holds
for n large enough that

‖̂δS‖2 = ‖β̂S − βT,S‖2 = C�2
√

sλ.

Further, by Equation (A.34) we have

‖β̂S − βT,S‖1 = C�1 sλ

for some constant C�1 and for large enough n. Note that by definition,
β̂Sc = 0 and βT,Sc = 0. Therefore, summarizing the above results
completes the proof of Proposition 2.
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