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Abstract

Characterizing the asymptotic distributions of eigenvectors for large random matri-

ces poses important challenges yet can provide useful insights into a range of statistical

applications. To this end, in this paper we introduce a general framework of asymptotic

theory of eigenvectors (ATE) for large spiked random matrices with diverging spikes and

heterogeneous variances, and establish the asymptotic properties of the spiked eigenvec-

tors and eigenvalues for the scenario of the generalized Wigner matrix noise. Under some

mild regularity conditions, we provide the asymptotic expansions for the spiked eigen-

values and show that they are asymptotically normal after some normalization. For the

spiked eigenvectors, we establish asymptotic expansions for the general linear combina-

tion and further show that it is asymptotically normal after some normalization, where

the weight vector can be arbitrary. We also provide a more general asymptotic theory

for the spiked eigenvectors using the bilinear form. Simulation studies verify the validity

of our new theoretical results. Our family of models encompasses many popularly used

ones such as the stochastic block models with or without overlapping communities for

network analysis and the topic models for text analysis, and our general theory can be

exploited for statistical inference in these large-scale applications.
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1 Introduction

The big data era has brought us a tremendous amount of both structured and unstructured

data including networks and texts in many modern applications. For network and text

data, we are often interested in learning the cluster and other structural information for

the underlying network communities and text topics. In these large-scale applications, we

are given a network data matrix or can create such a matrix by calculating some similarity

measure between text documents, where each entry of the data matrix is binary indicating

the absence or presence of a link, or continuous indicating the strength of similarity between

each pair of nodes or documents. Such applications naturally give rise to random matrices

that can be used to reveal interesting latent structures of networks and texts for effective

predictions and recommendations.

Random matrix has been widely exploited to model the interactions among the nodes of

a network for applications ranging from physics and social sciences to genomics and neuro-

science. Random matrix theory (RMT) has a long history and was originated by Wigner in

Wigner (1955) for modeling the nucleon-nucleus interactions to understand the behavior of

atomic nuclei and link the spacings of the levels of atomic nuclei to those of the eigenvalues

of a random matrix. See, for example, Bai (1999) for a review of some classical technical

tools such as the moment method and Stieltjes transform as well as some more recent devel-

opments on the RMT, and Mehta (2004); Tao (2004); Bai and Silverstein (2006) for detailed

book-length accounts of the topic of random matrices.

There is a rich recent literature in mathematics on the asymptotic behaviors of eigenvalues

and eigenvectors of random matrices (Erdős et al., 2013; Bourgade et al., 2018; Bourgade and

Yau, 2017; Rudelson and Vershynin, 2016; Dekel et al., 2007). The main challenge in many

RMT problems is caused by the strong dependence of eigenvalues if they are close to each

other. Using the terminologies in RMT, four regimes are often of interests: bulk, subcritical

edge, critical edge, and supercritical regimes. The first three regimes all have eigenvalues

that are highly correlated with each other, and the last regime has weaker interactions among

the eigenvalues. The last regime can be further divided into two categories according to the

relative strength of spiked eigenvalues compared to noise, which can be roughly understood

as the signal-to-noise ratio. There have been exciting mathematical developments in the

recent mathematical literature when the smallest spiked eigenvalue has the same order as the

noise (Capitaine and Donati-Martin, 2018; Knowles and Yin, 2013; Bao et al., 2018). Due

to the challenge caused by constant signal-to-noise ratio, these existing results often take
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complicated forms and the asymptotic distributions depend generally on the noise matrix

distribution in a complex way, limiting their practical usage to statisticians. In this paper, we

consider the setting of diverging spikes where the spiked eigenvalues are an order of magnitude

larger than the noise level asymptotically. Although mathematically easier, such random

matrices are of great interests to statisticians, because many statistical applications such

as network analysis and text analysis often fall into this regime. Yet there lack any formal

results on the asymptotic expansions and asymptotic distributions of spiked eigenvectors

even in this setting. This motivates our study in this paper.

There is a larger literature on the limiting distributions of eigenvalues than eigenvectors

in RMT. For instance, the limiting spectral distribution of the Wigner matrix was generalized

by Arnold (1967) and Arnold (1971). Marchenko and Pastur (1967) established the well-

known Marchenko–Pastur law for the limiting spectral distribution of the sample covariance

matrix including the Wishart matrix which plays an important role in statistical applications.

In contrast, the asymptotic distribution of the largest nonspiked eigenvalue of Wigner matrix

with Gaussian ensemble was revealed to be the Tracy–Widom law in Tracy and Widom (1994)

and Tracy and Widom (1996). More recent developments on the asymptotic distribution of

the largest nonspiked eigenvalue include Johnstone (2001), El Karoui (2007), Johnstone

(2008), Erdös et al. (2011), and Knowles and Yin (2017). See also Füredi and Komlós

(1981), Baik et al. (2005), Bai and Yao (2008), Knowles and Yin (2013), Pizzo et al. (2013),

Renfrew and Soshnikov (2013), Knowles and Yin (2014), and Wang and Fan (2017) for the

asymptotic distributions of the spiked eigenvalues of various random matrices and sample

covariance matrices. For the eigenvectors, Capitaine and Donati-Martin (2018) and Bao et al.

(2018) established their asymptotic distributions, which depend on the specific distribution

of the Wigner matrix in a complicated way, in the challenging setting of constant signal-to-

noise ratio. There is also a growing literature on the specific scenario and applications of

large network matrices. To ensure consistency, Johnstone and Lu (2009) proposed the sparse

principal component analysis to reduce the noise accumulation in high-dimensional random

matrices. See, for example, McSherry (2001), Spielman and Teng (2007), Bickel and Chen

(2009), Decelle et al. (2011), Rohe et al. (2011), Lei (2016), Abbe (2017), Jin et al. (2017),

Chen and Lei (2018), and Vu (2018).

Matrix perturbation theory has been commonly used to characterize the deviations of

empirical eigenvectors from the population ones, often under the average errors (Horn and

Johnson, 2012). In contrast, recently Fan et al. (2018) and Abbe et al. (2019) investigated

random matrices with low expected rank and provided a tight bound for the difference be-

tween the empirical eigenvector and some linear transformation of the population eigenvector

through a delicate entrywise eigenvector analysis for the first-order approximation under the

maximum norm. See also Paul (2007), Koltchinskii and Lounici (2016), Koltchinskii and

Xia (2016), and Wang and Fan (2017) for the asymptotics of empirical eigenstructure for
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large random matrices. Yet despite these endeavors, the precise asymptotic distributions

of the eigenvectors for large spiked random matrices still remain largely unknown even for

the case of Wigner matrix noise. Indeed characterizing the exact asymptotic distributions

of eigenvectors in such setting can provide useful insights into a range of statistical applica-

tions that involve the eigenspaces. In this sense, the asymptotic expansions and asymptotic

distributions of eigenvectors established in this paper complement the existing work in the

statistics literature.

The major contribution of this paper is introducing a general framework of asymptotic

theory of eigenvectors (ATE) for large spiked random matrices with diverging spikes, where

the mean matrix is low-rank and the noise matrix is the generalized Wigner matrix. The

generalized Wigner matrix refers to a symmetric random matrix whose diagonal and upper

diagonal entries are independent with zero mean, allowing for heterogeneous variances. Our

family of models includes a variety of popularly used ones such as the stochastic block models

with or without overlapping communities for network analysis and the topic models for text

analysis. Under some mild regularity conditions, we establish the asymptotic expansions for

the spiked eigenvalues and prove that they are asymptotically normal after some normaliza-

tion. For the spiked eigenvectors, we provide asymptotic expansions for the general linear

combination and further establish that it is asymptotically normal after some normalization

for arbitrary weight vector. We also present a more general asymptotic theory for the spiked

eigenvectors based on the bilinear form. To the best of our knowledge, these theoretical re-

sults are new to the literature. Our general theory can be exploited for statistical inference in

a range of large-scale applications including network analysis and text analysis. For detailed

comparisons with the literature, see Section 3.6.

The rest of the paper is organized as follows. Section 2 presents the model setting

and theoretical setup for ATE. We establish the asymptotic expansions and asymptotic

distributions for the spiked eigenvectors as well as the asymptotic distributions for the spiked

eigenvalues in Section 3. Several specific statistical applications of our new asymptotic theory

are discussed in Section 4. Section 5 presents some numerical examples to demonstrate

our theoretical results. We further provide a more general asymptotic theory extending

the results from Section 3 using the bilinear form in Section 6. Section 7 discusses some

implications and extensions of our work. The proofs of main results are relegated to the

Appendix. Additional technical details are provided in the Supplementary Material.

2 Model setting and theoretical setup

2.1 Model setting

As mentioned in the introduction, we focus on the class of large spiked symmetric random

matrices with low-rank mean matrices and generalized Wigner matrices of noises. It is
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worth mentioning that our definition of the generalized Wigner matrix specified in Section

1 is broader than the conventional one in the classical RMT literature; see, for example,

Yau (2012) for the formal mathematical definition with additional assumptions. To simplify

the technical presentation, consider an n × n symmetric random matrix with the following

structure

X = H + W, (1)

where H = VDVT is a deterministic latent mean matrix of low rank structure, V =

(v1, · · · ,vK) is an n×K orthonormal matrix of population eigenvectors vk’s with VTV = IK ,

D = diag(d1, · · · , dK) is a diagonal matrix of population eigenvalues dk’s with |d1| ≥ · · · ≥
|dK | > 0, and W = (wij)1≤i,j≤n is a symmetric random matrix of independent noises on and

above the diagonal with zero mean Ewij = 0, variances σ2
ij = Ew2

ij , and max1≤i,j≤n |wij | ≤ 1.

The rank K of the mean part is assumed typically to be a smaller order of the random ma-

trix size n, which is referred to as matrix dimensionality hereafter for convenience. The

bounded assumption on wij is made frequently for technical simplification and satisfied in

many real applications such as network analysis and text analysis. It can be relaxed to

E|wij |l ≤ C l−2E|wij |2, l ≥ 2, with C some positive constant, and all the proofs and results

can carry through.

In practice, it is either matrix X or matrix X − diag(X) that is readily available to us,

where diag(·) denotes the diagonal part of a matrix. In the context of graphs, random matrix

X characterizes the connectivity structure of a graph with self loops, while random matrix

X−diag(X) corresponds to a graph without self loops. In the latter case, the observed data

matrix can be decomposed as

X− diag(X) = H + [W − diag(X)] . (2)

Observe that W−diag(X) has the similar structure as W in the sense of being symmetric and

having bounded independent entries on and above the diagonal, by assuming that diag(X)

has bounded entries for such a case. Thus models (1) and (2) share the same decomposition

of a deterministic low rank matrix plus some symmetric noise matrix of bounded entries,

which is roughly all we need for the theoretical framework and technical analysis. For these

reasons, to simplify the technical presentation we abuse slightly the notation by using X

and W to represent the observed data matrix and the latent noise matrix, respectively, in

either model (1) or model (2). Therefore, throughout the paper the data matrix X may

have diagonal entries all equal to zero and correspondingly the noise matrix W may have a

nonzero diagonal mean matrix, and our theory covers both cases.

In either of the two scenarios discussed above, we are interested in inferring the structural

information in models (1) and (2), which often boils down to the latent eigenstructure (D,V).
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Since both the eigenvector matrix V and eigenvalue matrix D are unavailable to us, we resort

to the observable random data matrix X for extracting the structural information. To this

end, we conduct a spectral decomposition of X, and denote by λ1, · · · , λn its eigenvalues

and v̂1, · · · , v̂n the corresponding eigenvectors. Without loss of generality, assume that

|λ1| ≥ · · · ≥ |λn| and denote by V̂ = (v̂1, · · · , v̂K) an n ×K matrix of spiked eigenvectors.

As mentioned before, we aim at investigating the precise asymptotic behavior of the spiked

empirical eigenvalues λ1, · · · , λK and spiked empirical eigenvectors v̂1, · · · , v̂K of data matrix

X. It is worth mentioning that our definition of spikedness differs from the conventional one

in that the underlying rank order depends on the magnitude of eigenvalues instead of the

nonnegative eigenvalues that are usually assumed.

One concrete example is the stochastic block model (SBM), where the latent mean matrix

H takes the form H = ΠPΠT with Π = (π1, · · · ,πn)T ∈ Rn×K a matrix of community

membership vectors and P = (pkl) ∈ RK×K a nonsingular matrix with pkl ∈ [0, 1] for

1 ≤ k, l ≤ K. Here, for each 1 ≤ i ≤ n, πi ∈ {e1, · · · , eK} with ej ∈ RK , 1 ≤ j ≤ K,

a unit vector with the kth component being one and all other components being zero. It

is well known that the community information of the SBM is encoded completely in the

eigenstructure of the mean matrix H, which serves as one of our motivations for investigating

the precise asymptotic distributions of the empirical eigenvectors and eigenvalues.

2.2 Theoretical setup

We first introduce some notation that will be used throughout the paper. We use a � b to

represent a/b→ 0 as matrix size n increases. We say that an event En holds with significant

probability if P(En) = 1 − O(n−l) for some positive constant l and sufficiently large n. For

a matrix A, we use λj(A) to denote the jth largest eigenvalue in magnitude, and ‖A‖F ,

‖A‖, and ‖A‖∞ to denote the Frobenius norm, the spectral norm, and the matrix entrywise

maximum norm, respectively. Denote by A−k the submatrix of A formed by removing the

kth column. For any n-dimensional unit vector x = (x1, · · · , xn)T , let dx = ‖x‖∞ represent

the maximum norm of the vector.

We next introduce a definition that plays a key role in proving all asymptotic normality

results in this paper.

Definition 1. A pair of unit vectors (x,y) of appropriate dimensions is said to satisfy the

Wl-CLT condition for some positive integer l if xT (Wl−EWl)y is asymptotically standard

normal after some normalization, where CLT refers to the central limit theorem.

Lemmas 1 and 2 below provide some sufficient conditions under which (x,y) can satisfy

the Wl-CLT condition defined in Definition 1 for l = 1 and 2, which is all we need for our

technical analysis of asymptotic distributions. In this paper, we apply these lemmas with

either x or y equal to vk. Therefore, a sufficient condition for the results in our paper is

that ‖vk‖∞ is small enough.
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Lemma 1. Assume that n-dimensional unit vectors x and y satisfy

‖x‖∞‖y‖∞ �
[
var(xTWy)

]1/2
= sn. (3)

Then xTWy satisfies the Lyapunov condition for CLT and we have (xTWy−ExTWy)/sn
D−→

N(0, 1) as n→∞, which entails that (x,y) satisfies the Wl-CLT condition with l = 1.

To introduce W2-CLT, for any given unit vectors x = (x1, · · · , xn)T and y = (y1, · · · , yn)T ,

we denote respectively s2
x,y and κx,y the mean and variance of the random variable

∑
1≤k,i≤n, k≤i

σ2
ki

[ ∑
1≤l<k≤n

wil(xkyl + ykxl) +
∑

1≤l<i≤n
wkl(xiyl + yixl)

+ (1− δki)Ewii(xiyk + xkyi)
]2

+ 2
∑

1≤k,i≤n, k≤i
γki(xkyk + xiyi)

×
[ ∑

1≤l<k≤n
wil(xkyl + ykxl) +

∑
1≤l<i≤n

wkl(xiyl + yixl)

+ (1− δki)Ewii(xiyk + xkyi)
]

+
∑

1≤k,i≤n, k≤i
κki(xkyk + xiyi)

2, (4)

where γki = Ew3
ki and κki = E(w2

ki − σ2
ki)

2 for k 6= i, γkk = 2(Eω3
kk − σ2

kkEωkk), κkk =

4E(ω2
kk − σ2

kk)
2 with ωkk = 2−1wkk, σ

2
kk = Eω2

kk, and δki = 1 when k = i and 0 otherwise.

It is worth mentioning that the random variable given in (4) coincides with the one defined

in (A.7) in Section B.2 of Supplementary Material, which is simply the conditional variance

of random variable xT (W2 − EW2)y given in (A.5) when expressed as a sum of martingale

differences with respect to a suitably defined σ-algebra; see Section B.2 for more technical

details and the precise expressions for s2
x,y and κx,y given in (A.8) and (A.9), respectively.

Lemma 2. Assume that n-dimensional unit vectors x and y satisfy ‖x‖∞‖y‖∞ → 0, κ
1/4
x,y �

sx,y, and sx,y → ∞. Then we have [xT (W2 − EW2)y]/sx,y
D−→ N(0, 1) as n → ∞, which

entails that (x,y) satisfies the W2-CLT condition.

Remark 1. To provide more insights into the conditions of Lemmas 1 and 2, we discuss

the special case of standard Wigner matrix where σ2
ij = p(1− p) with p the expected value of

entries of X. Then s2
n := var(xTWy) ∈ [p(1− p), 2p(1− p)] and condition (3) in Lemma 1

reduces to

‖x‖∞‖y‖∞ �
√

var(xWy) ∼
√
p(1− p).

Moreover, (A.13) in the Supplementary Material ensures that Lemma 2 holds under the

following sufficient conditions

‖x‖∞‖y‖∞ → 0, n3/2p(1− p)‖x‖2∞‖y‖2∞ → 0, and p(1− p)n→∞. (5)

Thus if either ‖x‖∞ or ‖y‖∞ is small enough, both lemmas hold. Indeed in this scenario,
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direct calculations show that s2
x,y ∼ np(1− p).

We see from Lemmas 1 and 2 that the Wl-CLT condition defined in Definition 1 can

indeed be satisfied under some mild regularity conditions. In particular, Definition 1 is im-

portant to our technical analysis since to establish the asymptotic normality of the spiked

eigenvectors and spiked eigenvalues, we first need to expand the target to the form of

xT (Wl − EWl)y with l some positive integer plus some small order term, and then the

asymptotic normality follows naturally if (x,y) satisfies the Wl-CLT condition. To facilitate

our technical presentation, let us introduce some further notation. For any t 6= 0 and given

matrices M1 and M2 of appropriate dimensions, we define the function

R(M1,M2, t) = −
L∑

l=0, l 6=1

t−(l+1)MT
1 EWlM2, (6)

where L is some sufficiently large positive integer that will be specified later in our technical

analysis. For each 1 ≤ k ≤ K, any given matrices M1 and M2 of appropriate dimensions,

and n-dimensional vector u, we further define functions

P(M1,M2, t) = tR(M1,M2, t), P̃k,t =
[
t2(Avk,k,t/t)

′]−1
, (7)

bu,k,t = u−V−k
[
(D−k)

−1 +R(V−k,V−k, t)
]−1R(u,V−k, t)

T , (8)

where D−k denotes the submatrix of the diagonal matrix D by removing the kth row and

kth column,

Au,k,t = P(u,vk, t)− P(u,V−k, t)
[
t(D−k)

−1 + P(V−k,V−k, t)
]−1 P(V−k,vk, t), (9)

(·)′ denotes the derivative with respect to scalar t or complex variable z throughout the

paper, and the rest of notation is the same as introduced before.

3 Asymptotic distributions of spiked eigenvectors

3.1 Technical conditions

To facilitate our technical analysis, we need some basic regularity conditions.

Condition 1. Assume that αn = ‖E(W − EW)2‖1/2 →∞ as n→∞.

Condition 2. There exists a positive constant c0 < 1 such that min{|di|/|dj | : 1 ≤ i < j ≤
K + 1, di 6= −dj} ≥ 1 + c0. In addition, either of the following two conditions holds:

i) |dK |/(nεαn)→∞ with some small positive constant ε,

ii) maxi,j var(wij) ≤ (c2
1α

2
n)/n and |dK | > cαn log n with some constants c1 ≥ 1 and

c > 4c1(1 + 2−1c0).
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Condition 3. It holds that |d1| = O(|dK |), |dK |σmin/αn →∞, ‖vk‖2∞/σmin → 0, α4
n‖vk‖4∞/

(
√
nσ2

min)→ 0, and σ2
minn→∞, where σmin = {min1≤i,j≤n, i 6=j Ew2

ij}1/2.

Conditions 1–2 are needed in all our Theorems 1–5 and imposed for our general model

(1), including the specific case of sparse models. In contrast, condition 3 is required only for

Theorem 3 under some specific models with dense structures such as the stochastic block

models with or without overlapping communities.

Condition 1 restricts essentially the sparsity level of the random matrix (e.g., given by

a network). Note that it follows easily from max1≤i,j≤n |wij | ≤ 1 that αn ≤ n1/2. It

is a rather mild condition that can be satisfied by very sparse networks. For example,

if Ew2
12 = · · · = Ew2

1blognc = 1/2 and the other w1j ’s are equal to zero, then we have

α2
n ≥ 2−1 log n → ∞. Many network models in the literature satisfy this condition; see, for

example, Jin et al. (2017), Lei (2016), and Zhang et al. (2015).

Condition 2 requires that the spiked population eigenvalues of the mean matrix H (in

the diagonal matrix D) are simple and there is enough gap between the eigenvalues. The

constant c0 can be replaced by some o(1) term and our theoretical results can still be proved

with more delicate derivations. This requirement ensures that we can obtain higher order

expansions of the general linear combination for each empirical eigenvector precisely. Oth-

erwise if there exist some eigenvalues such that di = di+1, then v̂i and v̂i+1 are generally no

longer identifiable so we cannot derive clear asymptotic expansions for them; see also Abbe

et al. (2019) for related discussions. Condition 2 also requires a gap between αn and |dK |.
Since parameter αn reflects the strength of the noise matrix W, it requires essentially the

signal part H to dominate the noise part W with some asymptotic rate. Similar condition is

used commonly in the network literature; see, for instance, Abbe et al. (2019) and Jin et al.

(2017).

Condition 3 restricts our attention to some specific dense network models. In particular,

|d1| = O(|dK |) assumes that the eigenvalues in D share the same order. The other assump-

tions in Condition 3 require essentially that the minimum variance of the off-diagonal entries

of W cannot tend to zero too fast, which is used only to establish a more simplified theory

under the more restrictive model; see Theorem 3.

3.2 Asymptotic distributions of spiked eigenvalues

We first present the asymptotic expansions and CLT for the spiked empirical eigenvalues

λ1, · · · , λK . For each 1 ≤ k ≤ K, denote by tk the solution to equation

fk(z) = 1 + dk

{
R(vk,vk, z)−R(vk,V−k, z)

[
(D−k)

−1 +R(V−k,V−k, z)
]−1

×R(V−k,vk, z)
}

= 0 (10)
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when restricted to the interval z ∈ [ak, bk], where

ak =

dk/(1 + 2−1c0), dk > 0

(1 + 2−1c0)dk, dk < 0
and bk =

(1 + 2−1c0)dk, dk > 0

dk/(1 + 2−1c0), dk < 0
.

The following lemma characterizes the properties of the population quantity tk’s defined in

(10): It is unique and the asymptotic mean of λk.

Lemma 3. Equation (10) has a unique solution in the interval z ∈ [ak, bk] and thus tk’s are

well defined. Moreover, for each 1 ≤ k ≤ K we have tk/dk → 1 as n→∞.

It is seen from Lemma 3 that when the matrix size n is large enough, the values of tk and

dk are very close to each other. The following theorem establishes the asymptotic expansions

and CLT for λk and reveals that tk is in fact its asymptotic mean.

Theorem 1. Under Conditions 1–2, for each 1 ≤ k ≤ K we have

λk − tk = vTkWvk +Op(αnd
−1
k ). (11)

Moreover, if var(vTkWvk) � α2
nd
−2
k and the pair of vectors (vk,vk) satisfies the W1-CLT

condition, then we have

λk − tk − EvTkWvk[
var(vTkWvk)

]1/2 D−→ N(0, 1). (12)

Capitaine et al. (2012) and Knowles and Yin (2014) established the joint distribution

of the spiked eigenvalues for the deformed Wigner matrix in different settings than ours.

Capitaine et al. (2012) assumed that Ew2
ii = 1/2 and Ew2

ij = 1 for i 6= j, while Knowles and

Yin (2014) assumed that Ew2
ij = 1 for all (i, j). Under their model settings, the smallest

spiked eigenvalue |dK | and the noise level αn are of the same order, and as a result, their

asymptotic distributions depend on the distributions of the Wigner matrix. In contrast, our

Theorem 1 is proved in the setting of diverging spikes. Thanks to the stronger signal-to-noise

ratio, the noise matrix contributes to the distributions of the spiked eigenvalues in Theorem

1 in a global way, allowing for more heterogeneity in the variances of entries of the noise

matrix W.

Theorem 1 requires that (vk,vk) satisfies the W1-CLT condition and var(vTkWvk) �
α2
nd
−2
k . To gain some insights into these two conditions, we will provide some sufficient

conditions for such assumptions. Let us consider the specific case of σmin > 0, that is, the

generalized Wigner matrix W is nonsparse. We will show that as long as

‖vk‖2∞σ−1
min → 0 and σmin � αn|dk|−1, (13)
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the aforementioned two conditions in Theorem 1 hold. We first verify the W1-CLT condition.

By Lemma 1, a sufficient condition for (vk,vk) to satisfy the W1-CLT condition is that

‖vk‖2∞ �
[
var(vTkWvk)

]1/2
=
[
E(vTkWvk − EvTkWvk)

2
]1/2

. (14)

Observe that it follows from
∑

1≤i≤n(vk)
2
i = vTk vk = 1 and

∑
1≤i≤n(vk)

4
i ≤ ‖vk‖2∞ ≤ 1 that

[
E(vTkWvk − EvTkWvk)

2
]1/2 ≥

2
∑

1≤i,j≤n, i 6=j
σ2
ij(vk)

2
i (vk)

2
j

1/2

≥ σmin

2
∑

1≤i,j≤n, i 6=j
(vk)

2
i (vk)

2
j

1/2

= σmin

2− 2
∑

1≤i≤n
(vk)

4
i

1/2

≥ σmin

(
2− 2‖vk‖2∞

)1/2
, (15)

where (vk)i stands for the ith component of vector vk. The assumption ‖vk‖2∞σ−1
min → 0 in

(13) together with (15) ensures (14), which consequently entails that (vk,vk) satisfies the

W1-CLT condition.

We next check the condition var(vTkWvk) = E(vTkWvk − EvTkWvk)
2 � α2

nd
−2
k . It

follows directly from (15) that this condition holds under (13). In fact, since Condition 2

guarantees that αn/|dk| asymptotically vanishes, the assumption σmin � αn|dk|−1 can be

very mild. In particular, for the Wigner matrix W with σij ≡ 1 for all 1 ≤ i, j ≤ n, it holds

that

E(vTkWvk − EvTkWvk)
2 = 2. (16)

Thus the condition of E(vTkWvk − EvTkWvk)
2 � α2

nd
−2
k reduces to that of α2

nd
−2
k � 1,

which is guaranteed to hold under Condition 2.

We also would like to point out that one potential application of the new results in

Theorem 1 is determining the number of spiked eigenvalues, which in the network models

reduces to determining the number of non-overlapping (or possibly overlapping) communities

or clusters.

3.3 Asymptotic distributions of spiked eigenvectors

We now present the asymptotic distributions of the spiked empirical eigenvectors v̂k for

1 ≤ k ≤ K. To this end, we will first establish the asymptotic expansions and CLT for the

bilinear form

xT v̂kv̂
T
k y

with 1 ≤ k ≤ K, where x,y ∈ Rn are two arbitrary non-random unit vectors. Then

by setting y = vk, we can establish the asymptotic expansions and CLT for the general

11



linear combination xT v̂k. Although the limiting distribution of the bilinear form xT v̂kv̂
T
k y

is the theoretical foundation for establishing the limiting distribution of the general linear

combination xT v̂k, due to the technical complexities we will defer the theorems summarizing

the limiting distribution of xT v̂kv̂
T
k y to a later technical section (i.e., Section 6), and present

only the results for xT v̂k in this section. This should not harm the flow of the paper. For

readers who are also interested in our technical proofs, they can refer to Section 6 for more

technical details; otherwise it is safe to skip that technical section. For each 1 ≤ k ≤ K, let

us choose the direction of v̂k such that vTk v̂k ≥ 0 for the theoretical derivations, which is

always possible after a sign change when needed.

Theorem 2. Under Conditions 1–2, for each 1 ≤ k ≤ K we have the following properties:

1) If the unit vector u satisfies that |uTvk| ∈ [0, 1) and α−2
n d2

kvar[(bTu,k,tk−uTvkv
T
k )Wvk]→

∞, then it holds that

tk

(
uT v̂k +Au,k,tkP̃

1/2
k,tk

)
= (bTu,k,tk − uTvkv

T
k )Wvk

+ op

({
var[(bTu,k,tk − uTvkv

T
k )Wvk]

}1/2
)
, (17)

where the asymptotic mean has the expansion Au,k,tkP̃
1/2
k,tk

= −uTvk + O(α2
nd
−2
k ). Further-

more, if (bu,k,tk − vkv
T
k u,vk) satisfies the W1-CLT condition, then it holds that

tk

(
uT v̂k +Au,k,tkP̃

1/2
k,tk

)
− E

[
(bTu,k,tk − uTvkv

T
k )Wvk

]
{

var
[
(bTu,k,tk − uTvkv

T
k )Wvk

]}1/2

D−→ N(0, 1).

2) If (α−4
n d2

k + 1)var(vTkW2vk)→∞, then it holds that

2t2k

(
vTk v̂k +Avk,k,tkP̃

1/2
k,tk

)
= −vTk

(
W2 − EW2

)
vk + op

{[
var(vTkW2vk)

]1/2}
, (18)

where the asymptotic mean has the expansion Avk,k,tkP̃
1/2
k,tk

= −1 + 2−1t−2
k vTk EW2vk +

O(α3
nd
−3
k ). Furthermore, if (vk,vk) satisfies the W2-CLT condition, then it holds that

2t2k

(
vTk v̂k +Avk,k,tkP̃

1/2
k,tk

)
[
var
(
vTkW2vk

)]1/2 D−→ N(0, 1).

The two parts of Theorem 2 correspond to two different cases when var(uT v̂k) can be of

different magnitude. To understand this, note that for large enough matrix size n, we have

|tK | � αn by Condition 2 and Lemma 3. In view of (18), the asymptotic variance of vTk v̂k is

equal to var(2−1t−2
k vTkW2vk). In contrast, in light of (17), the asymptotic variance of uT v̂k

with |uTvk| ∈ [0, 1) is equal to var
[
t−1
k (bTu,k,tk − uTvkv

T
k )Wvk

]
. Let us consider a specific

12



case when var[(bTu,k,tk − uTvkv
T
k )Wvk] ∼ 1. By Lemma 4 in Section 6, we have

var
(
2−1t−2

k vTkW2vk
)

= O
(
α2
nt
−4
k

)
� var

[
t−1
k (bTu,k,tk − uTvkv

T
k )Wvk

]
= O

(
t−2
k

)
.

This shows that the above two cases can be very different in the magnitude for the asymptotic

variance of uT v̂k and thus should be analyzed separately.

To gain some insights into why vTk v̂k has smaller variance, let us consider the simple case

of K = 1. Then in view of our technical arguments, it holds that

vT1 v̂1v̂
T
1 v1 = − 1

2πi

∮
Ω1

vT1 (W − zI)−1v1

1 + d1vT1 (W − zI)−1v1
dz

= − 1

2πi

∮
Ω1

1[
vT1 (W − zI)−1v1

]−1
+ d1

dz, (19)

where i =
√
−1 is associated with the complex integrals represents the imaginary unit and

the line integrals are taken over the contour Ω1 that is centered at (a1 + b1)/2 with radius

c0|d1|/2. Then we can see that the population eigenvalue d1 is enclosed by the contour Ω1.

By the Taylor expansion, we can show that with significant probability,

[
vT1 (W − zI)−1v1

]−1
= −z − vT1 Wv1 +O

(
|z|−1α2

n log n
)
.

Substituting the above expansion into (19) results in

− 1

2πi

∮
Ω1

1[
vT1 (W − zI)−1v1

]−1
+ d1

dz = − 1

2πi

∮
Ω1

1

d1 − z − vT1 Wv1 +O(|z|−1α2
n log n)

dz

= − 1

2πi

∮
Ω1

1

d1 − z
− 1

2πi

∮
Ω1

vT1 Wv1

(d1 − z)2
dz +O

(
d−2

1 α2
n log n

)
= − 1

2πi

∮
Ω1

1

d1 − z
+O

(
d−2

1 α2
n log n

)
(20)

with significant probability. Thus the asymptotic distribution of vT1 v̂1v̂
T
1 v1 is determined by

Op(d
−2
1 α2

n log n), which has no contribution from vT1 Wv1. On the other hand, our technical

analysis for uT v̂1v̂1v1 (which is much more complicated and can be found in the technical

proofs section) reveals that the dominating term is uTWv1 when u 6= v1 or −v1. This

explains why we need to treat differently the two cases of u close to or far away from v1.

3.4 A more specific structure and an application

Theorem 2 in Section 3.3 provides some general sufficient conditions to ensure the asymp-

totic normality for the spiked empirical eigenvectors. Under some simplified but stronger

assumptions in Condition 3, the same results on the empirical eigenvectors and eigenvalues

continue to hold. Note that the stochastic block models with non-overlapping or overlapping

communities can both be included as specific cases of our theoretical analysis. As mentioned

13



before, we choose the direction of v̂k such that vTk v̂k ≥ 0 for each 1 ≤ k ≤ K.

Theorem 3. Under Conditions 1–3, for each 1 ≤ k ≤ K we have the following properties:

1) (Eigenvalues) It holds that

λk − tk − EvTkWvk[
E(vTkWvk − EvTkWvk)2

]1/2 D−→ N(0, 1).

2) (Eigenvectors) If the unit vector u satisfies that σ−1
min‖vk(b

T
u,k,tk

− uTvkv
T
k )‖∞ → 0

and |uTvk| ∈ [0, 1− ε] for some positive constant ε, then it holds that

tk

(
uT v̂k +Au,k,tkP̃

1/2
k,tk

)
− E

[
(bTu,k,tk − uTvkv

T
k )Wvk

]
{

var
[
(bTu,k,tk − uTvkv

T
k )Wvk

]}1/2

D−→ N(0, 1). (21)

Moreover, it also holds that

2t2k

(
vTk v̂k +Avk,k,tkP̃

1/2
k,tk

)
[
var(vTkW2vk)

]1/2 D−→ N(0, 1). (22)

Theorem 2 also gives the asymptotic expansions for the asymptotic mean termAu,k,tkP̃
1/2
k,tk

.

It is seen that if |dK | diverges to infinity much faster than α2
n, then the O(·) terms in the

asymptotic expansions of the mean become smaller order terms and thus the following corol-

lary follows immediately from Theorem 3.

Corollary 1. Assume that Conditions 1–3 hold. For each 1 ≤ k ≤ K, if the unit vector

u satisfies that |uTvk| ∈ [0, 1 − ε] for some positive constant ε and α−4
n d2

kvar[(bTu,k,tk −
uTvkv

T
k )Wvk]→∞, then we have

tk
(
uT v̂k − uTvk

)
− E

[
(bTu,k,tk − uTvkv

T
k )Wvk

]{
var
[
(bTu,k,tk − uTvkv

T
k )Wvk

]}1/2

D−→ N(0, 1). (23)

Moreover, if α−6
n d3

kvar(vTkW2vk)→∞ then we have

2t2k
(
vTk v̂k − 1

)
+ vTk EW2vk[

var(vTkW2vk)
]1/2 D−→ N(0, 1). (24)

Theorem 3 includes the stochastic block model as a specific case. If X is the affinity

matrix from a stochastic block model with K non-overlapping communities and the size of

each community is of the same order O(n), then it holds that ‖vk‖∞ = O(n−1/2), dK = O(n),

αn ≤ n1/2, and αn‖vk‖∞ ≤ O(1). Thus Condition 3 can be satisfied as long as σmin � n−1/4,

leading to the asymptotic normalities in Theorem 3.

Our Theorem 3 also covers the stochastic block models with overlapping communities.
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For example, the following network model was considered in Zhang et al. (2015)

EX = ΘΠPΠTΘT , (25)

where Θ is an n × n diagonal degree heterogeneity matrix, Π is an n × K community

membership matrix, and P is a K × K nonsingular irreducible matrix with unit diagonal

entries. Observe that the above model has low-rank mean matrix and thus can be connected

to our general form of eigendecomposition EX = H = VDVT . If the spiked eigenvalues and

spiked eigenvectors satisfy that |dk| = O(n) and ‖vk‖∞ = O(n−1/2) for all 1 ≤ k ≤ K, then

Condition 3 can be satisfied when σmin � n−1/4. Consequently, the asymptotic normalities

in Theorem 3 can hold.

3.5 Proofs architecture

The key mathematical tools are from complex analysis and random matrix theory. At a high

level, our technical proofs consist of four steps. First, we apply Cauchy’s residue theorem

to represent the desired bilinear form xT v̂kv̂
T
k y with 1 ≤ k ≤ K as a complex integral

over a contour for a functional of the Green function associated with the original random

matrix X = H + W. It is worth mentioning that such an approach was used before to

study the asymptotic distributions for linear combinations of eigenvectors in the setting of

covariance matrix estimation for the case of i.i.d. Gaussian random matrix coupled with

linear dependency. Second, we reduce the problem to one that involves a functional of the

new Green function associated with only the noise part W by extracting the spiked part.

Such a step enables us to conduct precise high order asymptotic expansions. Third, we

conduct delicate high order Taylor expansions for the noise part using new Green function

corresponding to the noise part. In this step, we apply the asymptotic expansion directly

to the evaluated complex integral over the contour instead of an expansion of the integrand.

Such a new way of asymptotic expansion is crucial to our study. Fourth, we bound the

variance of xT (Wl − EWl)y using delicate random matrix techniques. In contrast to just

counting the number of certain paths in a graph used in classical random matrix theory

literature, we need to carefully bound the individual contributions toward the quantity αn =

‖E(W − EW)2‖1/2; otherwise simple counting leads to rather loose upper bound.

3.6 Comparisons with the statistics literature

In a related work, Tang and Priebe (2018) established the CLT for the entries of eigenvectors

of a random adjacency matrix. Our work differs significantly from theirs in at least four

important aspects. First, Tang and Priebe (2018) assumed a prior distribution on the mean

adjacency matrix, while we assume a deterministic mean matrix. As a result, the asymptotic

variance in Tang and Priebe (2018) is determined by the prior distribution and is the same for
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each entry of an eigenvector, while in our paper the CLT for different entries of an eigenvector

can be different and the asymptotic variance depends on all entries of the eigenvector. While

Tang and Priebe (2018) also provided the conditional CLT under the setting of the stochastic

block model, their result conditions on just one node. Second, our model is much more general

than that in Tang and Priebe (2018) in that the spiked eigenvalues can have different orders

and different signs. Third, we establish the CLT for the general linear combinations of

the components of normalized eigenvectors and the CLT for eigenvalues, while Tang and

Priebe (2018) proved the CLT for the rows of Λ1/2V̂
T

, where Λ ∈ RK×K is the diagonal

matrix formed by K spiked eigenvalues of the adjacency matrix and V̂ = (v̂1, · · · , v̂K) is the

matrix collecting the corresponding eigenvectors of the adjacency matrix. Fourth, through a

dedicated analysis of the higher order expansion for the general linear combination uT v̂k, we

uncover an interesting phase transition phenomenon that the limiting distribution of uT v̂k

is different when the deterministic weight vector u is close to or far away from vk (modulo

the sign), which is new to the literature.

Wang and Fan (2017) proved the asymptotic distribution of the linear form vTi v̂k with

1 ≤ i, k ≤ K, where vi’s and v̂k’s are the spiked population and empirical eigenvectors for

some covariance matrix, respectively. Their asymptotic normality results cover the case of

vT1 v̂1 when K = 1, and vTi v̂k for 1 ≤ i, k ≤ K with i 6= k when K ≥ 2. Similarly, Koltchinskii

and Lounici (2016) considered the sample covariance matrix under the Gaussian distribution

assumption, and derived the asymptotic expansion of the bilinear form xT v̂kv̂
T
k y, where x,y

are two deterministic unit vectors. They also obtained the asymptotic distribution of xT v̂k.

Different from Wang and Fan (2017) and Koltchinskii and Lounici (2016), in this paper we

establish the asymptotic distribution for the general linear combination uT v̂k for the large

structured symmetric random matrix from model (1) under fairly weak regularity conditions.

Our proof techniques differ from those in Wang and Fan (2017) and Koltchinskii and Lounici

(2016), and are also distinct from most of existing ones in the literature.

4 Statistical applications

The new asymptotic expansions and asymptotic distributions of spiked eigenvectors and

eigenvalues established in Section 3 have many natural statistical applications. Next we

discuss three specific ones. See also Fan et al. (2019) for another application on testing the

node membership profiles in network models.

4.1 Detecting the existence of clustering power

One potential application of Theorem 3 is to improve the results on community detection

under model setting (25). Spectral methods have been used popularly in the literature for

recovering the memberships of nodes in network models. For example, applying the K-means
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clustering algorithm to the K spiked eigenvectors calculated from the adjacency matrix has

been a prevalent method for inferring the memberships of nodes. However, it may not be true

that all theseK eigenvectors are useful for clustering. For example, if eigenvector vk = 1/
√
n,

then it has zero clustering power and should be dropped in the K-means clustering algorithm.

This is especially important in large networks because including a useless high-dimensional

eigenvector may significantly increase the noise in clustering. Theorem 3 suggests that we

can test the hypothesis H0 : vk = 1/
√
n using the test statistic v̂Tk 1. Then with the aid

of Theorem 3, the asymptotic null distribution can be established and the critical value

can be calculated. This naturally suggests a method for selecting important eigenvectors in

community detection.

4.2 Detecting the existence of denser subgraph

Another application of Theorem 3 is to detect the existence of a denser community in a given

random graph, the same problem as studied in Arias-Castro et al. (2014) and Verzelen et al.

(2015). Specifically, assume that the data matrix X = (xij) is a symmetric adjacency matrix

with independent Bernoulli entries on and above the diagonal. Let H = E[X] be the mean

adjacency matrix. Consider the following null and alternative hypotheses

H0 : H = p11T vs. H1 : H = p11T + (q − p)` ` T ,

where ` is the vector with the first n1 entries being 1 and all remaining entries being 0, and

q ∈ (p, 1]. It can be seen that under the alternative hypothesis, there is a denser subgraph

and q measures the connectivity of nodes within it. Arias-Castro et al. (2014) and Verzelen

et al. (2015) proposed tests for the above hypothesis in the setting of n1 = o(n). We focus

on the same setting and in addition assume that n−1 � p < q and q ∼ p. We next discuss

how to exploit our Theorem 3 to test the same hypothesis.

Under the null hypothesis, a natural estimator of p is given by p̂ = 1
n(n−1)

∑
1≤i≤j≤n xij .

Moreover, direct calculations show that

vT1 EW2v1 = np(1− p) and var(vT1 W2v1) = p(1− p)
[
2(n− 1) + p3 + (1− p)3

]
. (26)

Thus the mean and variance of vT1 W2v1 in (26) can be estimated as

np̂(1− p̂) and p̂(1− p̂)
[
2(n− 1) + p̂3 + (1− p̂)3

]
, (27)

receptively. In view of (24) in Corollary 1, since v1 = n−1/21 under the null hypothesis

H0 : H = p11T , a natural test statistic for testing H0 : H = p11T is given by

Tn =
2λ2

1

(
n−1/21T v̂1 − 1

)
+ np̂(1− p̂)

[p̂(1− p̂) [2(n− 1) + p̂3 + (1− p̂)3]]1/2
.
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It can be seen that since λ1 ≈ t1 (see Lemma 3), the asymptotic null distribution of

Tn is expected to be N(0, 1) by resorting to (24) in Corollary 1. On the other hand, un-

der the alternative hypothesis, since the leading eigenvector differs from n−1/21, the term

n−1/21T v̂1 − 1 in the numerator of Tn is expected to take some negative value, and thus

Tn is expected to have different asymptotic behavior than N(0, 1). In fact, we provide the

proof sketch in Section D.5 of Supplementary Material on the asymptotic null and alternative

distributions. In particular, we show that the asymptotic null distribution of Tn is N(0, 1),

and if
n2
1(q−p)2
np +

n2
1(q−p)
n � 1, then Tn → −∞ with asymptotic probability one under the

alternative hypothesis.

4.3 Rank inference

Our theory can also be applied to statistical testing on the true rank K of the mean matrix

H. Rank inference is an important problem in many high-dimensional network applications.

See, for example, Lei (2016), Chen and Lei (2018), and Li et al. (2020), and the importance

of the problem discussed therein. Consider the following hypotheses

H0 : K = K0 vs. H1 : K > K0,

where K0 is some prespecified positive integer satisfying K0 ≤ K. Define

ŵij = xij −
K0∑
k=1

λke
T
i v̂kv̂

T
k ej

= wij −
K∑
k=1

[
λke

T
i v̂kv̂

T
k ej − dkeTi vkv

T
k ej

]
+

K∑
k=K0+1

λke
T
i v̂kv̂

T
k ej . (28)

Under the null hypothesis H0 : K = K0, the last term in (28) disappears and we can obtain

the asympttoic expansion of ŵij around wij explicitly by an application of Theorems 1 and

2. Then under some additional regularity conditions, it is expected that ŵij is close to wij .

By the independence of wii, i = 1, · · · , n, it holds that∑n
i=1wii√∑n
i=1w

2
ii

D−→ N(0, 1) as n→∞.

Since ŵii ≈ wii under the null hypothesis, the following asymptotic distribution is expected

to hold as well

Tn :=

∑n
i=1 ŵii√∑n
i=1 ŵ

2
ii

D−→ N(0, 1). (29)

This naturally suggests a statistical test based on statistic Tn for testing H0 : K = K0.

Under the alternative hypothesis, since ŵij contains the smallest K −K0 spiked eigenvalues

and the corresponding eigenvectors, its asymptotic behavior is expected to be different, and
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consequently, the test can have nontrivial power. In fact, a more sophisticated version of

this test constructed based on the off-diagonal entries of Ŵ was investigated recently in Han

et al. (2019).

The above asymptotic distribution can also be used to construct confidence intervals for

the rank K. To understand this, note that Tn defined in (29) is a function of K0. Thus an

immediate idea for the 100(1−α)% confidence interval construction is to identify all K0 such

that the corresponding Tn falls into the range of [−Φ−1(1−α),Φ−1(1−α)], where Φ−1(·) is

the inverse distribution function of the standard normal. Similar ideas can also be exploited

to construct confidence intervals for other parameters in network models.

5 Simulation studies

In this section, we use simulation studies to verify the validity of our theoretical results. We

consider the stochastic block model with K = 2 communities. Assume that the number of

nodes is n, the first n/2 nodes belong to the first community, and the rest belong to the

second one. Then the adjacency matrix X has the mean structure EX = H = ARAT ,

where R is a 2 × 2 matrix of the connectivity probabilities, and A = (a1,a2) ∈ Rn×2 with

a1 = n−1/2(1T ,0T )T and a2 = n−1/2(0T ,1T )T , where 0,1 ∈ Rn/2 are vectors of zeros and

ones, respectively. It is worth mentioning that ARAT is not the eigendecomposition of the

mean matrix H, which is why we use different notation than that in model (1).

For the connectivity probability matrix R, we consider the structure

R = r

 2 1

1 2

 ,

where parameter r takes 6 different values 0.02, 0.05, 0.1, 0.2, 0.3, and 0.4. A similar model

was considered in Abbe et al. (2019) and Lei (2016). For the connectivity matrix X, we

simulate its entries on and above the diagonal as independent Bernoulli random variables

with means given by the corresponding entries in the mean matrix H, and set the entries

below the diagonal to be the same as the corresponding ones above the diagonal. We choose

the number of nodes as n = 3000 and repeat the simulations for 10, 000 times.

To verify our theoretical results, for each simulated connectivity matrix X we calculate its

eigenvalues and corresponding eigenvectors. For the eigenvalues, we compare the empirical

distribution of

λk − tk[
var(vTkWvk)

]1/2 (30)

with the standard normal distribution, where tk is the solution to equation (10). The exact

expression of R(vk,V−k, z)[(D−k)
−1 + R(V−k,V−k, z)]

−1R(V−k,vk, z) in (10) is compli-
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Figure 1: Histograms of the normalized eigenvalues (30) when r = 0.4, with the blue curves
representing the standard normal density. Left panel: the first eigenvalue; right panel: the
second eigenvalue.

cated. Since this term is much smaller than R(vk,vk, z), we can calculate an approximation

of tk by solving the equation

1 + dkR(vk,vk, z) = 0 (31)

using the Newton–Raphson method. Guided by the theoretical derivations, we use L = 4

in the asymptotic expansion of R(x,y, t) in (6) for all of our simulation examples. Tables

1–2 summarize the means and standard deviations of (30) with k = 1 and 2 calculated from

the 10,000 repetitions as well as the p-values from the Anderson–Darling (AD) test for the

normality. Figure 1 presents the histograms of the normalized first and second eigenvalues

(i.e., (30) when k = 1 and 2) from the 10,000 repetitions.

For the eigenvectors, we evaluate the asymptotic normality of the linear combination

uT v̂k with k = 1 and 2. We experiment with three different values for u: a1, (1, 0, · · · , 0)T ,

and vk. When u = a1 or (1, 0, · · · , 0)T , we calculate the normalized statistic

tk

(
uT v̂k +Au,k,tkP̃

1/2
k,tk

)
{

var
[
(bTu,k,tk − uTvkv

T
k )Wvk

]}1/2

using the 10,000 simulated data sets, while when u = vk we calculate the normalized statistic

2t2k

(
vTk v̂k +Avk,k,tkP̃

1/2
k,tk

)
[var(vkW2vk)]

1/2

instead. In either of the two cases above, the variance in the denominator is calculated as

the sample variance from 2,000 simulated independent copies of the noise matrix W. We

compare the empirical distributions of the above two normalized statistics with the standard

normal distribution. The simulation results are summarized in Tables 3–8 and Figures 2–3.

Our simulation results in Figure 1 and Tables 1–2 suggest that the normalized spiked
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Table 1: Simulation results for (λ1 − t1)/[var(vT1 Wv1)]1/2

r 0.02 0.05 0.1 0.2 0.3 0.4

Mean 0.0719 0.0149 -0.0068 -0.0080 -0.0024 0.0124

Standard deviation 1.0107 1.0085 0.9927 1.0115 1.0023 1.0125

AD.p-value 0.0725 0.5387 0.6263 0.2342 0.9243 0.2010

Table 2: Simulation results for (λ2 − t2)/[var(vT2 Wv2)]1/2

r 0.02 0.05 0.1 0.2 0.3 0.4

Mean 1.0761 0.2552 0.0681 0.0272 0.0093 0.0052

Standard deviation 0.9630 0.9820 0.9872 1.0100 1.0057 1.0005

AD p-value 0.5349 0.6722 0.8406 0.1806 0.0535 0.8341

eigenvalues have distributions very close to standard Gaussian which supports our results

in Theorem 1. Indeed, such a large p-value is extremely impressive given the “sample size”

(the number of simulations is 10,000). In general, the simulation results for the eigenvectors

support our theoretical findings in Section 3. However, the results corresponding to the first

spiked eigenvector v̂1 (Tables 3–5) are better than those for the second spiked eigenvector v̂2

(Tables 4–8). This is reasonable since for the larger spiked eigenvalue, the negligible terms

that we dropped in the proofs of the asymptotic normality become relatively smaller and

thus have smaller finite-sample effects on the asymptotic distributions. For the linear form

uT v̂k, when u = vk the convergence to standard normal is slower when compared to the

case of u 6= vk. This again supports our theoretical findings in Section 3 and explains why

we need to separate the cases of u = vk and u 6= vk. Such effect is especially prominent for

vT2 v̂2, whose sample mean is −11.8020 when r = 0.02 as shown in Table 7. However, it is

seen from the same table (and other tables) that as the spiked eigenvalue increases with r,

the distribution gets closer and closer to standard Gaussian.

Table 3: Simulation results for uT v̂1 with u = a1

r 0.02 0.05 0.1 0.2 0.3 0.4

Mean -0.0573 -0.0140 -0.0023 -0.0045 -0.0071 -0.0069

Standard deviation 1.0335 1.0244 1.0011 1.0001 1.0214 1.0016

AD.p-value 0.7879 0.4012 0.2417 0.5300 0.9482 0.9935
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Table 4: Simulation results for vT1 v̂1

r 0.02 0.05 0.1 0.2 0.3 0.4

Mean -1.3288 -0.4817 -0.1900 -0.0742 -0.0409 -0.0186

Standard deviation 1.0940 1.0545 1.0338 0.9749 1.0030 1.0005

AD.p-value 0.0582 0.4251 0.0251 0.0225 0.3312 0.2912

Table 5: Simulation results for uT v̂1 with u = (1, 0, · · · , 0)T

r 0.02 0.05 0.1 0.2 0.3 0.4

Mean 0.0025 0.0021 0.0003 0.0105 0.0061 -0.0122

Standard deviation 1.0432 1.0354 0.9871 1.0016 1.0205 0.9898

AD.p-value 0.0044 0.4877 0.3752 0.1514 0.1304 0.3400

Table 6: Simulation results for uT v̂2 with u = a1

r 0.02 0.05 0.1 0.2 0.3 0.4

Mean 4.2611 1.0129 0.3067 0.0745 0.0219 0.0037

Standard deviation 1.2384 1.0952 1.0294 1.0098 1.0280 1.0044

AD p-value 0.3829 0.7535 0.3759 0.4105 0.9129 0.9873

Table 7: Simulation results for vT2 v̂2

r 0.02 0.05 0.1 0.2 0.3 0.4

Mean -11.8020 -4.3274 -2.0057 -0.7447 -0.3526 -0.1650

Standard deviation 1.3775 1.1192 1.0980 1.0343 1.0104 1.0089

AD p-value 0.0000 0.0011 0.0422 0.3964 0.4980 0.1186

Table 8: Simulation results for uT v̂2 with u = (1, 0, · · · , 0)T

r 0.02 0.05 0.1 0.2 0.3 0.4

Mean 0.0622 0.0204 0.0018 -0.0074 -0.0119 -0.0049

Standard deviation 1.1221 1.0537 1.0272 1.0022 1.0088 0.9933

AD p-value 0.0003 0.5853 0.0930 0.6011 0.2423 0.4385
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Figure 2: Histograms corresponding to the first eigenvector v̂1 when r = 0.4, with the blue
curves representing the standard normal density. Left panel: uT1 v̂1; middle panel: vT1 v̂1;
right panel: uT3 v̂1, where u1 = a1 and u3 = (1, 0, · · · , 0)T .
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Figure 3: Histograms corresponding to the second eigenvector v̂2 when r = 0.4, with the
blue curves representing the standard normal density. Left panel: uT1 v̂2; middle panel: vT2 v̂2;
right panel: uT3 v̂1, where u1 = a1 and u3 = (1, 0, · · · , 0)T .
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6 A more general asymptotic theory

As mentioned before, the asymptotic theory on the spiked eigenvectors in terms of the gen-

eral linear combination and on the spiked eigenvalues presented in Section 3 is in fact a

consequence of a more general asymptotic theory on the spiked eigenvectors in terms of the

bilinear form. In this section, we focus our attention on such a more general asymptotic

theory for the bilinear form xT v̂kv̂
T
k y with 1 ≤ k ≤ K, where x and y are two arbitrary

n-dimensional unit vectors. See Sections 3.5 and 3.6 for detailed discussions on the techni-

cal innovations of our novel ATE theoretical framework and comparisons with the existing

literature on the asymptotic distributions of eigenvectors.

For technical reasons, we will break our main results on the asymptotic distributions of

the bilinear form xT v̂kv̂
T
k y down to two theorems, where we consider in Theorem 4 the case

when either vector x or vector y is sufficiently further away from the population eigenvector

vk, and then we study in Theorem 5 the case when both vectors x and y are very close to vk

The technical treatments for these two cases are different since in the latter scenario, the first

order term which determines the asymptotic distribution in Theorem 4 vanishes, and thus we

need to consider higher order expansions to obtain the asymptotic distribution in Theorem

5. Let Jx,y,k,tk , Lx,y,k,tk , and Qx,y,k,tk
be the three rank one matrices given in (113)–(115),

respectively, in the proof of Theorem 5 in Section A.6. Denote by σ2
k = var[tr(WJx,y,k,tk)]

and

σ̃2
k = var

{
tr
[
WJx,y,k,tk −

(
W2 − EW2

)
Lx,y,k,tk

]
+ tr

(
Wvkv

T
k

)
tr
(
WQx,y,k,tk

)}
. (32)

Both of the quantities above play an important role in our more general asymptotic theory.

Theorem 4. Assume that Conditions 1–2 hold and x and y are two n-dimensional unit

vectors. Then for each 1 ≤ k ≤ K, if σ2
k � t−4

k α2
n(|Ax,k,tk | + |Ay,k,tk |)2 + t−4

k we have the

asymptotic expansion

xT v̂kv̂
T
k y = ak + tr(WJx,y,k,tk) +Op

{
t−2
k αn(|Ax,k,tk |+ |Ay,k,tk |) + t−2

k

}
, (33)

where the quantity ak = Ax,k,tkAy,k,tkP̃k,tk .

The assumption of σ2
k � t−4

k α2
n(|Ax,k,tk | + |Ay,k,tk |)2 + t−4

k in Theorem 4 requires the

variance of random variable tr(WJx,y,k,tk) not too small, which at high level, requires that

either vector x or y is sufficiently faraway from the population eigenvector vk. If σij ∼ 1 for

each (i, j) pair, then such an assumption restricts essentially that ‖Jx,y,k,tk‖ should not be

too close to zero. This in turn ensures that the first order expansion is sufficient for deriving

the asymptotic normality of xT v̂kv̂
T
k y. Theorem 4 also entails that a simple upper bound

for σ̃k as defined in (32) can be shown to be O(t−2
k αn).
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Theorem 5. Assume that Conditions 1–2 hold and x and y are two n-dimensional unit

vectors. Then for each 1 ≤ k ≤ K, if σ2
k = O(σ̃2

k) and σ̃2
k � t−6

k α4
n(|Ax,k,tk |+ |Ay,k,tk |)2 + t−6

k

we have the asymptotic expansion

xT v̂kv̂
T
k y = ak + tr

[
WJx,y,k,tk −

(
W2 − EW2

)
Lx,y,k,tk

]
+ tr

(
Wvkv

T
k

)
tr
(
WQx,y,k,tk

)
+Op

{
|tk|−3α2

n(|Ax,k,tk |+ |Ay,k,tk |) + |tk|−3
}
, (34)

where the quantity ak is given in (33).

The ATE theoretical framework for the more general asymptotic theory established in

Theorems 4 and 5 is empowered by the following two technical lemmas.

Lemma 4. For any n-dimensional unit vectors x and y, we have

xT (Wl − EWl)y = Op(min{αl−1
n , dxα

l
n, dyα

l
n}) (35)

with l ≥ 1 some bounded positive integer and dx = ‖x‖∞.

Lemma 5. For any n-dimensional unit vectors x and y, we have ExTWly = O(1) and

ExTWly = O(αln) (36)

with l ≥ 2 some bounded positive integer.

The detailed proofs of Lemmas 4 and 5 are provided in Sections B.5 and B.6 of Sup-

plementary Material. Our delicate technical arguments therein establish useful refinements

to the classical idea of counting the number of nonzero terms from the random matrix the-

ory. In particular, Lemma 4 is the key building block for high order Taylor expansions that

involve polynomials of quantities in the lemma with different choices of (x,y, l).

7 Discussions

In contrast to the immense literature on the asymptotic distributions for eigenvalues of large

spiked random matrices, the counterpart asymptotic theory for eigenvectors has remained

largely underdeveloped in statistics literature for years. Yet such a theory is much desired for

understanding the precise asymptotic properties of various statistical and machine learning

algorithms that build upon the spectral information of the eigenspace constructed from

observed data matrix. Our work in this paper provides a first attempt with a general ATE

theoretical framework for underpinning the precise asymptotic expansions and asymptotic

distributions for spiked eigenvectors and spiked eigenvalues of large spiked random matrices

with diverging spikes. Our results complement existing ones in the RMT literature as well

as the networks literature.
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The family of models in our ATE framework includes many popularly used ones for

large-scale applications including network analysis and text analysis such as the stochastic

block models with or without overlapping communities and the topic models. Our general

asymptotic theory for eigenvectors can be exploited to develop new useful tools for precise

statistical inference in these applications. It would be interesting to investigate the problem

of reproducible large-scale inference as in Barber and Candès (2015); Candès et al. (2018);

Lu et al. (2018); Fan et al. (2019); Fan et al. (2019) in these model settings. It would also

be interesting to develop a general method to determine the rank and provide robust rank

inference in such high-dimensional low-rank models. These extensions are beyond the scope

of the current paper and will be interesting topics for future research.

A Proofs of main results

Recall that Condition 2 involves two scenarios of the spike strength. We will first prove all

the results under scenario i). Then in Section D of Supplementary Material, we will adapt

the proofs to show that the same results also hold under scenario ii). We provide the proofs

of Theorems 1–5 and Corollary 1 in this appendix. Additional technical details including the

proofs of all the lemmas and further discussions on when the asymptotic normality can hold

for the asymptotic expansion in Theorem 5 are contained in the Supplementary Material.

A.1 Proof of Theorem 1

The results on the asymptotic distributions of spiked eigenvalues in Theorem 1 are in fact

a consequence of those on the asymptotic expansions and asymptotic distributions for the

spiked eigenvectors, where a more general asymptotic theory of the eigenvectors is presented

in Theorems 4–5 in Section 6. Let us define a matrix-valued function that is referred to as

the Green function associated with only the noise part W

G(z) = (W − zI)−1 (37)

for z in the complex plane C, where I stands for the identity matrix of size n. Recall that

λ1, · · · , λn are the eigenvalues of matrix X and v̂1, · · · , v̂n are the corresponding eigenvectors.

By Weyl’s inequality, it holds that max |λi − di| ≤ ‖W‖. Thus, in view of Condition 2 and

Lemma 6 in Supplementary Material, all the spiked eigenvalues λk with 1 ≤ k ≤ K of the

observed random matrix X have magnitudes of larger order than the eigenvalues of the noise

matrix W with significant probability as the matrix size n increases. This entails that with

significant probability, matrices G(λk) with 1 ≤ k ≤ K are well defined and nonsingular.

For the rest of this proof, we restrict all the derivations on such an event that holds with

asymptotic probability one.
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It follows from the definition of the eigenvalue, the representation X = H+W = VDVT+

W, (37), and the properties of the determinant function det(·) that for each 1 ≤ k ≤ K,

0 = det(X− λkI) = det(W − λkI + VDVT ) = det[G−1(λk) + VDVT ]

= det[G−1(λk)] det[I + G(λk)VDVT ],

which leads to det[I + G(λk)VDVT ] = 0 since det[G−1(λk)] = det[G(λk)]
−1 is nonzero.

Using the identity det(I + AB) = det(I + BA) for matrices A and B, we obtain for each

1 ≤ k ≤ K,

0 = det[I + G(λk)VDVT ] = det[I + DVTG(λk)V], (38)

where the second I represents an identity matrix of size K and we slightly abuse the notation

for simplicity. Since the diagonal matrix D is nonsingular by assumption, it follows from

(38) that

det[dkV
TG(λk)V + dkD

−1] = dk det(D−1) det[I + DVTG(λk)V] = 0 (39)

for each 1 ≤ k ≤ K.

By the asymptotic expansions in (79), Lemmas 4 and 5, and Weyl’s inequality max |λk−
dk| ≤ ‖W‖, we have for j 6= `, dkv

T
j G(λk)v` = −dkOp(λ−2

k ) = Op(1/|dk|). Thus, we can see

that all off diagonal entries of matrix dkV
TG(λk)V + dkD

−1 in (39) are of order Op(1/|dk|).
For j 6= k, the jth diagonal entry of dkV

TG(λk)V + dkD
−1 equals dkv

T
j G(λk)vj + dk/dj .

By (78) and Lemma 4, we have dkv
T
j G(λk)vj + 1 = op(1). Moreover, by Condition 2

|dk/dj − 1| ≥ c for some positive constant c. Hence, all these diagonal entries but the kth

one are of order at least Op(1). Thus the matrix (dkv
T
i G(λk)vj + δijdk/di)1≤i,j≤K, i,j 6=k is

invertible with significant probability, where δij = 1 when i = j and 0 otherwise. Recall the

determinant identity for block matrices from linear algebra

det

 A11 A12

A21 A22

 = det(A22) det(A11 −A12A
−1
22 A21)

when the lower right block matrix A22 is nonsingular. Treating the kth diagonal entry of

dkV
TG(λk)V + dkD

−1 as the first block, we have with significant probability

det[dkV
TG(λk)V + dkD

−1] = 0 (40)

entailing dkv
T
kG(λk)vk+1 = dkv

T
kFk(λk)vk, where Fk(z) = G(z)V−k[D

−1
−k+VT

−kG(z)V−k]
−1

· VT
−kG(z) and A−k denotes the submatrix of matrix A by removing the kth column. In

light of (40) and the solution t̂k to equation (94) in the proof of Theorem 4 in Section A.5,
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it holds from the uniqueness of t̂k that

λk = t̂k. (41)

Therefore, combining equality (41) with asymptotic expansion t̂k−tk = vTkWvk+Op(αn/tk)

obtained in (99) completes the proof of Theorem 1.

A.2 Proof of Theorem 2

The results on the asymptotic distributions of spiked eigenvectors in Theorem 2 are also an

implication of a more general asymptotic theory of the eigenvectors presented in Theorems

4–5 in Section 6 on the delicate asymptotic expansions and asymptotic distributions for the

spiked eigenvectors. Recall that V̂ = (v̂1, · · · , v̂K) with v̂k for 1 ≤ k ≤ K the empirical

spiked eigenvectors of the observed random matrix X. Without loss of generality, let us

choose the direction of eigenvector v̂k such that v̂Tk vk ≥ 0. Clearly, fixing the direction of

v̂k does not affect the distribution of xT v̂kv̂
T
k y; that is, its distribution stays the same when

−v̂k is chosen as the eigenvector. We will separately consider the two cases of vTk v̂k and

uT v̂k with u 6= vk, where the former relies on the second order expansion given in (111) in

the proof of Theorem 5 in Section A.6, and the latter utilizes the first order expansion given

in (107) in the proof of Theorem 4 in Section A.5.

We first consider vTk v̂k. Choosing x = y = vk in Theorem 4 gives ak = A2
vk,k,tk

P̃k,tk . By

Lemma 5, it holds that

P(vk,vk, tk) = −
L∑

l=0,l 6=2

vTk EWlvk

tlk
= −1 +O(α2

n/t
2
k) (42)

and

‖P(vk,V−k, tk)‖ = ‖ −
L∑

l=0,l 6=2

vTk EWlV−k

tlk
‖ = O(α2

n/t
2
k). (43)

Moreover, recalling the definition of Au,k,tk in (9), Au,k,tk can be rewritten as

Avk,k,tk = P(vk,vk, t)− t−1
k P(vk,V−k, tk)

(
D−1
−k +R(V−k,V−k, tk)

)−1
P(V−k,vk, tk).

Therefore, by (42)–(43), (A.16), and (91), we have

Avk,k,tk = −1 +O(α2
n/t

2
k) and P̃k,tk = 1 +O(α2

n/t
2
k). (44)

Now recall the second order expansion of xT v̂kv̂ky given in (111) in the proof of Theorem

5. We next calculate the orders of each term in the expansion (111). First, we consider
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bTvk,k,tk . By (43), (A.16), and the definition (7), we have

‖bTvk,k,tk −vTk ‖ =

∥∥∥∥R(vk,V−k, tk)
(

(D−k)
−1 +R(V−k,V−k, tk)

)−1
VT
−k

∥∥∥∥ = O(α2
n/t

2
k). (45)

This together with (44) entails that

‖bTvk,k,tk +Avk,k,tkP̃k,tkv
T
k ‖ = O(α2

n/t
2
k). (46)

It follows from Lemma 4 and (44) that

Avk,k,tkP̃k,tk(bTvk,k,tk +Avk,k,tkP̃k,tkv
T
k )Wvk/tk = Op(α

2
n/|tk|3),

P̃k,tkt
−2
k

[
2P̃k,tk

(
Avk,k,tkb

T
vk,k,tk

+Avk,k,tkb
T
vk,k,tk

)
Wvkv

T
k + bTvk,k,tkWvkb

T
vk,k,tk

]
Wvk

+ 2Avk,k,tkAy,k,tkt
−2
k

(
vTkWvk

)2
+Avk,k,tkP̃k,tk

{
t−2
k xTWvkv

T
kWvk − t−2

k vTkWvkR(vk,V−k, t)

×
[
D−1
−k +R(V−k,V−k, tk)

]−1
VT
−kWvk

}
+Avk,k,tkP̃k,tk

{
t−2
k vTkWvkv

T
kWvk − t−2

k vTkWvkR(vk,V−k, t)

×
[
D−1
−k +R(V−k,V−k, tk)

]−1
VT
−kWvk

}
+Avk,k,tkP̃k,tkt

−2
k R(vk,V−k, tk)

[
D−1
−k +R(V−k,V−k, tk)

]−1
VT
−k(W

2 − EW2)vk

+Avk,k,tkP̃k,tkt
−2
k R(vk,V−k, tk)

[
D−1
−k +R(V−k,V−k, tk)

]−1
VT
−k(W

2 − EW2)vk

= Op(
1

|tk|2
+

αn
|tk|3

),

and

P̃k,tkt
−2
k (Avk,k,tkx

T +Avk,k,tky
T )(W2 − EW2)vk + 3t−2

k Avk,k,tkAvk,k,tkP̃k,tkv
T
k (W2 − EW2)vk

=
vTk (W2 − EW2)vk

t2k
+Op(α

3
n/t

4
k).

Substituting the above equations into (111) results in

vTk v̂kv̂
T
k vk −A2

vk,k,tk
P̃k,tk = −vTk (W2 − EW2)vk/t

2
k +Op(|tk|−2 + α2

n/|tk|3), (47)

where the leading term of the asymptotic expansion now depends on the second moments of
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the noise matrix W. Recall that vTk v̂k ≥ 0. By (44) and (47) we have

vTk v̂k +Avk,k,tkP̃
1/2
k,tk

= −
vTk (W2 − EW2)vk

2Avk,k,tkP̃
1/2
k,tk

t2k

+Op(α
2
n/t

3
k)

= −
vTk (W2 − EW2)vk

2t2k
+Op(|tk|−2 + α2

n/|tk|3). (48)

We now consider an arbitrary unit vector u ∈ Rn with |uTvk| ∈ [0, 1) for investigating

the asymptotic distributions of the general linear combinations uT v̂k. Recall the first order

expansion given in (107) in the proof of Theorem 4 and (46) that

uT v̂kv̂
T
k vk −Au,k,tkAvk,k,tkP̃k,tk = −Avk,k,tkP̃k,tk(bTu,k,tk +Au,k,tkP̃k,tkv

T
k )Wvk/tk

+Op(αn/t
2
k). (49)

Then dividing (49) by vTk v̂k and using (44) and (48), we can deduce that

uT v̂k +Au,k,tkP̃
1/2
k,tk

= P̃1/2
k,tk

(bTu,k,tk +Au,k,tkP̃k,tkv
T
k )Wvk/tk +Op(αn/t

2
k)

= (bTu,k,tk − uTvkv
T
k )Wvk/tk +Op(αn/t

2
k). (50)

In view of the asymptotic expansions in (50) and (48), we can see that the desired

asymptotic normalities in the two parts of Theorem 2 follow from the conditions of Lemmas

1 or 2. More specifically, for (50) if α−2
n d2

kvar[(bTu,k,tk − uTvkv
T
k )Wvk] → ∞, then we have

αn/t
2
k � {var[(bTu,k,tk − uTvkv

T
k )Wvk]}1/2 and thus the first part of Theorem 2 in (17)

holds in view of (50). Furthermore, if (bTu,k,tk − uTvkv
T
k )Wvk is W1-CLT, then (bu,k,tk −

vkv
T
k u,vk) is also W1-CLT and thus we have

tk

(
uT v̂k +Au,k,tkP̃

1/2
k,tk

)
− E

[
(bTu,k,tk − uTvkv

T
k )Wvk

]
{

var
[
(bTu,k,tk − uTvkv

T
k )Wvk

]}1/2

D−→ N(0, 1).

Similarly, the second part of Theorem 2 in (18) also holds under the condition (α−4
n d2

k +

1)var[vTk (W2 − EW2)vk] → ∞ and the CLT holds if (vk,vk) is W2-CLT. This concludes

the proof of Theorem 2.

A.3 Proof of Theorem 3

The results on the asymptotic distributions of spiked eigenvalues and spiked eigenvectors in

Theorem 3 are an application of those in Theorems 1 and 2 for a more specific structure of

the low rank model (1), including the stochastic block model with both non-overlapping and

overlapping communities as special cases.

First, note that (15) implies that the condition of Lemma 1 holds for vTkWvk under

Condition 3. Consequently, (vk,vk) is W1-CLT. In addition, (15) ensures that E(vTkWvk−

30



EvTkWvk)
2 � α2

n/d
2
k under Condition 3. Therefore, it follows from Theorem 1 that the first

result of Theorem 3 holds. Recall that in (A.12), sx,y is defined as the expected value of the

conditional variance of vTk (W2−EW2)vk. By definition, we have var[vTk (W2−EW2)vk] ≥
sx,y ≥ cσ2

minn. Thus the condition (α−4
n d2

k + 1)var[vTk (W2−EW2)vk]→∞ in Theorem 2 is

ensured by the assumptions

σ2
minn→∞,

|dK |σmin

αn
→∞, αn ≤ n1/2

in Condition 3. Moreover, by (A.13) we can see that the conditions of Lemma 2 are satisfied

for vTk (W2 − EW2)vk under Condition 3. Thus (vk,vk) is W2-CLT. Therefore, (22) holds

by an application of (18) in Theorem 2.

It remains to show that the condition

var[(bTu,k,tk − uTvkv
T
k )Wvk]� α2

n/d
2
k (51)

in Theorem 2 can be guaranteed by Condition 3. Then the expansion in (17) holds. Moreover,

the condition σ−1
min

∥∥vk[bTu,k,tk − uTvkv
T
k ]
∥∥
∞ → 0 ensures that (bu,k,tk − vkv

T
k u,vk) is W1-

CLT. Combining these results entails that the asymptotic normality (21) holds. Now we

proceed to verify (51). Consider an arbitrary unit vector u ∈ Rn satisfying |uTvk| ∈ [0, 1− ε]
for some positive constant ε. Recalling the definition of bu,k,t in (8), we have bTu,k,tvk = {uT−
R(u,V−k, t)[(D−k)

−1 + R(V−k,V−k, t)]
−1VT

−k}vk = uTvk. Thus it holds that bTu,k,tk −
uTvkv

T
k = bTu,k,tk − bTu,k,tkvkv

T
k = bTu,k,tk(I− vkv

T
k ). Moreover, similar to (15) we can show

that

[
E(uTWvk − EuTWvk)

2
]1/2 ≥ σmin(2− 2‖vk‖2∞)1/2. (52)

This ensures that there exists some positive constant c1 such that

var[(bTu,k,tk − uTvkv
T
k )Wvk]

2 ≥ σ2
min(2− 2‖vk‖2∞)‖bTu,k,tk − uTvkv

T
k ‖2

≥ σ2
min(2− 2‖vk‖2∞)‖bTu,k,tk(I− vkv

T
k )‖2

≥ c1σ
2
min[−(uTvk)

2 + bTu,k,tkbu,k,tk ], (53)

where we have applied bTu,k,tvk = uTv again in the last step.

Let Ṽ = (vK+1, · · · ,vn) be an n × (n − K) matrix such that (V, Ṽ) is an orthogonal

matrix of size n. Then the n-dimensional unit vector u can be represented as u =
∑n

i=1 aivi

for some scalars ai’s. For each 1 ≤ k ≤ K, by the definition of R in (6) and Lemma 5 we

can show that

‖R(V−k,V−k, tk)+t−1
k I‖ = O

( α2
n

|tk|3
)

and ‖R(u,V−k, tk)+t−1
k uTV−k‖ = O

( α2
n

|tk|3
)
. (54)
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Therefore it holds that∥∥∥R(u,V−k, tk)[D
−1
−k +R(V−k,V−k, tk)]

−1VT
−k +

∑
1≤i 6=k≤K

ai(tkd
−1
i − 1)−1vTi

∥∥∥
= O(α2

n/t
2
k). (55)

Then it follows from (55) and (8) that

bTu,k,tk =
n∑
i=1

aiv
T
i −R(u,V−k, tk)[D

−1
−k +R(V−k,V−k, tk)]

−1VT
−k

and ∥∥∥∥∥∥bu,k,tk − akvk −
∑

1≤i 6=k≤K
ai[1 + (tkd

−1
i − 1)−1]vi −

n∑
i=K+1

aivi

∥∥∥∥∥∥ = O(α2
n/t

2
k). (56)

We denote by ck = akvk +
∑

1≤i 6=k≤K ai[1 + (tkd
−1
i − 1)−1]vi +

∑n
i=K+1 aivi. By (56),

we can obtain

−(uTvk)
2 + bTu,k,tkbu,k,tk = −a2

k + ‖ck‖2 + ‖bu,k,tk − ck‖2 + 2(bu,k,tk − ck)
T ck

=
∑

1≤i 6=k≤K
a2
i [1 + (tkd

−1
i − 1)−1]2 +

n∑
i=K+1

a2
i +O(α2

n/t
2
k)

+ some small order term, (57)

where the small order term takes a rather complicated form and thus we omit its expression

for simplicity. Since by assumption |uTvk| ∈ [0, 1 − ε], u =
∑n

i=1 aivi is a unit vector, and

(v1, · · · ,vn) is an orthogonal matrix, it holds that

n∑
1≤i 6=k≤n

a2
i ≥ 1− (1− ε)2. (58)

Moreover, Condition 3 and Lemma 3 together entail that |tkd−1
i | is bounded away from 0

and 1. Thus there exists some positive constant c2 < 1 such that

[1 + (tkd
−1
i − 1)−1]2 ≥ c2 (59)

for each 1 ≤ i 6= k ≤ K. Therefore, combining (53) and (57)–(59), and by the assumption

σmin � αn/tk, we can obtain the desired claim in (51), which completes the proof of Theorem

3.
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A.4 Proof of Corollary 1

The conclusions of Corollary 1 follow directly from the results of Theorem 3.

A.5 Proof of Theorem 4

The more general asymptotic theory in Theorem 4 focuses on the first order asymptotic

expansion for the bilinear form xT v̂kv̂
T
k y with x and y two arbitrary n-dimensional unit

vectors, while that in Theorem 5 further establishes the higher order (which is second order)

asymptotic expansion for the same bilinear form. We begin with the analysis for the first

order asymptotic expansion. The main ingredients of the proof are as follows. First, we

represent xT v̂kv̂
T
k y as an integral which is a functional of X = H + W. By doing so we

can deal with the matrix H + W instead of the eigenvectors. Second, for the functional of

H+W obtained in the previous step we extract the H part from H+W and further obtain

a functional of W. Roughly speaking, we can get an explicit function of form f((W− tI)−1)

with |t| � ‖W‖. Third, by the matrix series expansion (W − tI)−1 = −
∑∞

l=0 t
−(l+1)Wl,

the function f((W− tI)−1) can be approximated by f(−
∑L

l=0 t
−(l+1)Wl) for some positive

integer L. Fourth, we can then calculate the first (second or higher) order expansion of

f(−
∑L

l=0 t
−(l+1)Wl) since we have an explicit expression of function f .

To facilitate our technical derivations, let us recall some basic matrix identities from the

Sherman–Morrison–Woodbury formula. For any matrices A, B, C, and F of appropriate

dimensions and any vectors a and b of appropriate dimensions, it holds that

(A + BFC)−1 = A−1 −A−1B(F−1 + CA−1B)−1CA−1 (60)

and

(C + abT )−1a =
C−1a

1 + bTC−1a
(61)

when the corresponding matrices for matrix inversion are nonsingular.

To illustrate the main ideas of our proof, we first consider the simple case of K = 1 and

x = y = v1. The general case of K ≥ 1 and arbitrary unit vectors will be discussed later.

Let Ω1 be a contour centered at (a1 + b1)/2 with radius |b1 − a1|/2, where the quantities ak

and bk with 1 ≤ k ≤ K are defined in Section 3.2. Then it is seen that d1 is enclosed by Ω1.

In view of Condition 2, Lemma 6, and Weyl’s inequality, we have

|λ1 − d1| ≤ ‖W‖ < min{|d1 − a1|, |d1 − b1|}

and

|λj − d1| ≥ |d1| − ‖W‖ > max{|d1 − a1|, |d1 − b1|}, j ≥ 2
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with significant probability. We can see that the contour Ω1 does not enclose any other

eigenvalues λj with j 6= 1. Thus, by Cauchy’s residue theorem from complex analysis, we

have with significant probability

− 1

2πi

∮
Ω1

1

λ1 − z
dz = 1 and − 1

2πi

∮
Ω1

1

λj − z
dz = 0, j ≥ 2,

where i associated with the complex integrals represents the imaginary unit (−1)1/2 and the

line integrals are taken over the contour Ω1. Noticing that (X−zI)−1 =
∑n

i=1(λj−z)−1v̂jv̂
T
j ,

we can then obtain an integral representation of the desired bilinear form that with significant

probability

vT1 v̂1v̂
T
1 v1 = −vT1 v̂1v̂

T
1 v1

2πi

∮
Ω1

1

λ1 − z
dz = − 1

2πi

∮
Ω1

vT1

( n∑
j=1

v̂jv̂
T
j

λj − z

)
v1dz

= − 1

2πi

∮
Ω1

vT1 G̃(z)v1dz, (62)

where the matrix-valued function G̃(z) = (X−zI)−1 for z in the complex plane C is referred

to as the Green function associated with the original random matrix X = H + W.

Note that by (1) and K = 1 for the simple case, we have X = H + W = d1v1v
T
1 + W.

Thus the line integral in (62) can be rewritten as

vT1 v̂1v̂
T
1 v1 = − 1

2πi

∮
Ω1

vT1 (W − zI + d1v1v
T
1 )−1v1dz. (63)

With the aid of (60) and (61), the line integral in (63) can be further represented as

vT1 v̂1v̂
T
1 v1 = − 1

2πi

∮
Ω1

vT1 (W − zI)−1v1

1 + d1vT1 (W − zI)−1v1
dz. (64)

To analyze the integrand of the line integral on the right hand side of (64), we first consider

the term (W − zI)−1. Such a term admits the matrix series expansion

(W − zI)−1 = −
∞∑
l=0

z−(l+1)Wl. (65)

Let L be the smallest positive integer such that

αL+1
n (log n)(L+1)/2

|dK |L−2
→ 0. (66)

Such an integer L always exists since |dK |/(nεαn) → ∞ for small positive constant ε by

Condition (2) and αn ≤ n1/2 by definition. Since we consider z on the contour Ω1, it follows

that |z| ≥ c|d1| for some positive constant c. Thus, by (65), Condition 1, and Lemma 6

in Section B.7 of Supplementary Material, with the above choice of L in (66) we have with
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probability tending to one that∥∥∥∥∥
∞∑

l=L+1

z−(l+1)Wl

∥∥∥∥∥ ≤
∞∑

l=L+1

C lαln(log n)l/2

|z|l+1
=
O{CL+1αL+1

n (log n)(L+1)/2}
|z|L+2

=
O(1)

|z|4
, (67)

where C is some positive constant. In light of (65) and (67), we can obtain the asymptotic

expansion

vT1 (W − zI)−1v1 = −
L∑
l=0

z−(l+1)vT1 Wlv1 −
∞∑

l=L+1

z−(l+1)vT1 Wlv1

= −
L∑
l=0

z−(l+1)vT1 Wlv1 +
Op(1)

d4
1

(68)

for z on the contour Ω1.

Directly working with the line integral in (62) or (64) is challenging in deriving the CLT

for the bilinear form vT1 v̂1v̂
T
1 v1. Next we introduce some simple facts about Cauchy’s residue

theorem. Assume that a complex function f(z) is a holomorphic function inside Ω1 except

at one point t. Then it holds that

1

2πi

∮
Ω1

f(z)dz = Res(f, t),

where Res(f, t) represents the residue of function f at point t. In addition, assume that the

Laurent series expansion of f around point t is given by

f(z) =

∞∑
j=−∞

aj(z − t)j

with aj some constants. Then we have Res(f, t) = (2πi)−1
∮

Ω1
f(z)dz = a−1. Furthermore,

if limz→t(z − t)f(z) exists then the Laurent series expansion of f entails that

lim
z→t

(z − t)f(z) = a−1. (69)

Now let us consider the line integral in (64). Observe that the only singular point of function

vT1 (W − zI)−1v1/[1 + d1v
T
1 (W − zI)−1v1] inside Ω1 is the solution to equation

1 + d1v
T
1 (W − zI)−1v1 = 0,

which we denote as t̂1. Let us use [(W − t̂1I)−1]′ as a shorthand notation for h′(t̂1) with
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h(t) = (W − tI)−1. Then by Cauchy’s residue theorem and in view of (64), we have

vT1 v̂1v̂
T
1 v1 = − 1

2πi

∮
Ω1

vT1 (W − zI)−1v1

1 + d1vT1 (W − zI)−1v1
dz = − lim

z→t̂1

(z − t̂1)vT1 (W − zI)−1v1

1 + d1vT1 (W − zI)−1v1

= − vT1 (W − t̂1I)−1v1

d1vT1 [(W − t̂1I)−1]′v1

.

Therefore, an application of the Taylor expansion to function vT1 (W− t̂1I)−1v1/{d1v
T
1 [(W−

t̂1I)−1]′v1} yields

− vT1 (W − t̂1I)−1v1

d1vT1 [(W − t̂1I)−1]′v1

=

∑L
l=0 t̂

−(l+1)
1 vT1 Wlv1 + d−4

1 Op(1)

d1
∑L

l=0(l + 1)t̂
−(l+2)
1 vT1 Wlv1 + d−4

1 Op(1)
. (70)

Note that t̂1 is a random variable that depends on random matrix X. In fact, from (99)

we can see that the asymptotic expansion of t̂1 is a polynomial of vT1 Wlv1. Thus the

asymptotic expansion of (70) is also a polynomial function of vT1 Wlv1. Therefore, controlling

the variance of vT1 Wlv1 can facilitate us in identifying the leading term of the asymptotic

expansion. So far we have laid out the major steps in deriving the asymptotic expansion for

vT1 v̂1v̂
T
1 v1. This can shed light on the detailed proof for the general case of xT v̂kv̂

T
k y with

K ≥ 1.

We now move on to the general case of K ≥ 1 and arbitrary n-dimensional unit vectors

x and y. The technical arguments for the general case are similar to those for the simple

case of K = 1 and x = y = v1 presented above, but with more delicate technical derivations.

Similarly as in (62), it follows from Cauchy’s residue theorem, the definitions of the eigenvalue

and eigenvector, and (1) that the bilinear form xT v̂kv̂
T
k y for each 1 ≤ k ≤ K admits a natural

integral representation; that is, with significant probability,

xT v̂kv̂
T
k y = − 1

2πi

∮
Ωk

xT G̃(z)ydz = − 1

2πi

∮
Ωk

xT
(
W − zI +

K∑
j=1

djvjv
T
j

)−1
ydz

=
1

2πi

∮
Ωk

dkx
T
(
W − zI +

∑
1≤j 6=k≤K

djvjv
T
j

)−1
vkv

T
k

(
W − zI +

∑
1≤j 6=k≤K

diviv
T
i

)−1
y

1 + dkv
T
k

(
W − zI +

∑
1≤j 6=k≤K

djvjvTj

)−1
vk

dz,

(71)

where the Green function G̃(z) associated with the original random matrix X is defined in

(62) and the line integral is taken over a contour Ωk that is centered at (ak + bk)/2 with

radius |bk − ak|/2. Then the contour Ωk encloses the population eigenvalue dk of the latent

mean matrix H. Note that in the representation above, we have used the results, which can
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be derived from Condition 2, Lemma 6, and Weyl’s inequality, that for each j = 1, · · · ,K,

|λk − dk| ≤ ‖W‖ < min{|dk − ak|, |dk − bk|},

|λj − dk| ≥ |dj − dk| − |λj − dj | ≥ |dj − dk| − ‖W‖ > max{|dk − ak|, |dk − bk|}

for j 6= k with significant probability; that is, the contour Ωk encloses λk but not any other

eigenvalues with high probability.

An application of (60) leads to(
W−zI+

∑
1≤j 6=k≤K

djvjv
T
j

)−1
= G(z)−G(z)V−k

[
D−1
−k + VT

−kG(z)V−k
]−1

VT
−kG(z), (72)

where the Green function G(z) associated with only the noise part W is defined in (37). To

simplify the expression, let

Fk(z) = G(z)V−k[D
−1
−k + VT

−kG(z)V−k]
−1VT

−kG(z) (73)

Then in view of (72), the last line integral in (71) can be further represented as

xT v̂kv̂
T
k y =

1

2πi

∮
Ωk

dkx
T [G(z)− Fk(z)] vkv

T
k [G(z)− Fk(z)] y

1 + dkv
T
k [G(z)− Fk(z)] vk

dz. (74)

It is challenging to analyze the terms in (74) since the expression of Fk(z) is complicated

and we need to study the asymptotic expansion of Fk(z) carefully. In the proof below, we

will see that Lemma 4 in Section 6 is a key ingredient of the technical arguments; see Section

B.5 of Supplementary Material for the proof of this lemma.

We will conduct detailed calculations for the asymptotic expansion of Fk(z). Let us

choose L as the same positive integer as in (66). Then we have
∑∞

l=L+1 z
−(l+1)xTWly =

Op(|z|−4) for z on the contour Ωk. It follows from Lemma 4 and Condition 2 that

L∑
l=2

z−(l+1)xT (Wl − EWl)y = Op

{
αn|z|−3 + α2

n|z|−4 + · · ·+ αL−1
n |z|−(L+1)

}
= Op(αn|z|−3).
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Therefore, similar to (68) we can show that

xTG(z)y = −z−1xTy− z−2xTWy−
L∑
l=2

z−(l+1)xTEWly−
∞∑

l=L+1

z−(l+1)xTWly

−
L∑
l=2

z−(l+1)xT (Wl − EWl)y

= −z−1xTy− z−2xTWy−
L∑
l=2

z−(l+1)xTEWly +Op
(
|z|−4 + αn|z|−3

)
. (75)

Moreover, since for z ∈ Ωk we have |z|−4 ≤ αn|z|−3 by Condition 1, we can further obtain

xTG(z)y = −z−1xTy− z−2xTWy−
L∑
l=2

z−(l+1)xTEWly +Op(αn|z|−3). (76)

In fact, the probabilistic event associated with the small order term Op(αn|z|−3) in (76) holds

uniformly over z since the term Op(αn|z|−3) is simply |z|−3Op(αn).

To simplify the technical presentation, hereafter we use the generic notation u to denote

either x or y unless specified otherwise, which means that the corresponding derivations and

results hold when u is replaced by x and y. Since x and y can be chosen as any unit vectors,

we can obtain from (76) the following asymptotic expansions by different choices of x and y

uTG(z)vk = −z−1uTvk − z−2uTWvk −
L∑
l=2

z−(l+1)uTEWlvk +Op(αn|z|−3), (77)

vTkG(z)vk = −z−1 − z−2vTkWvk −
L∑
l=2

z−(l+1)vTk EWlvk +Op(αn|z|−3), (78)

vTkG(z)V−k = −z−2vTkWV−k −
L∑
l=2

z−(l+1)vTk EWlV−k +Op(αn|z|−3), (79)

uTG(z)V−k = −z−1uTV−k − z−2uTWV−k −
L∑
l=2

z−(l+1)uTEWlV−k

+Op(αn|z|−3), (80)

VT
−kG(z)V−k = −z−1I− z−2VT

−kWV−k −
L∑
l=2

z−(l+1)VT
−kEWlV−k +Op(αn|z|−3). (81)
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Thus it follows from (76)–(81) that

uTFk(z)vk = R(u,V−k, z)
[
D−1
−k +R(V−k,V−k, z)

]−1R(V−k,vk, z)

− z−2R(u,V−k, z)
[
D−1
−k +R(V−k,V−k, z)

]−1
VT
−kWvk

− z−2uTWV−k
[
D−1
−k +R(V−k,V−k, z)

]−1R(V−k,vk, z)

+ z−2R(u,V−k, z)
[
D−1
−k +R(V−k,V−k, z)

]−1
VT
−kWV−k

×
[
D−1
−k +R(V−k,V−k, z)

]−1R(V−k,vk, z) +Op(αn|z|−3),

= R(u,V−k, z)
[
D−1
−k +R(V−k,V−k, z)

]−1R(V−k,vk, z)

− z−2R(u,V−k, z)
[
D−1
−k +R(V−k,V−k, z)

]−1
VT
−kWvk +Op(αn|z|−3) (82)

and

vTkFk(z)vk = vTkG(z)V−k
[
D−1
−k + VT

−kG(z)V−k
]−1

VT
−kG(z)vk

= R(vk,V−k, z)
[
D−1
−k +R(V−k,V−k, z)

]−1R(V−k,vk, z)

− z−2R(vk,V−k, z)
[
D−1
−k +R(V−k,V−k, z)

]−1
VT
−kWvk +Op(αn|z|−3)

= R(vk,V−k, z)
[
D−1
−k +R(V−k,V−k, z)

]−1R(V−k,vk, z) +Op(αn|z|−3), (83)

where Fk(z) is defined in (73) and R is defined in (6).

With all the technical preparations above, we are now ready to analyze the terms in

representation (74). Specifically let us consider the ratio {dkxT [G(z)− Fk(z)]vkv
T
k [G(z)−

Fk(z)]y}/{1 + dkv
T
k [G(z)− Fk(z)] vk} that appears as the integrand on the left hand side

of (74). Similar to (75), taking the derivative of G(z) we have

xTG′(z)y = xT (W − zI)−2y =
∞∑
l=0

(l + 1)z−(l+2)xTWly

= R′(x,y, z) + 2z−3xTWy + z−4Op(αn). (84)

It follows from Lemmas 4–5 that

R′(vk,V−k, z) = O(α2
n/z

4), R′(vk,vk, z)−
1

z2
= O(α2

n/z
4),∥∥R′(V−k,V−k, z)− z−2I

∥∥ = O(α2
n/z

4). (85)

By (79) and Lemmas 4–5, we can conclude that

vTkG(z)V−k = z−2Op(1) + |z|−3Op(α
2
n). (86)
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Moreover, by (80) and (A.16) we have∥∥∥{[D−1
−k + VT

−kG(z)V−k
]−1 −

[
D−1
−k +R(V−k,V−k, z)

]−1
}′ ∥∥∥

=
∥∥∥ [D−1

−k + VT
−kG(z)V−k

]−1
VT
−kG

′(z)V−k
[
D−1
−k + VT

−kG(z)V−k
]−1

−
[
D−1
−k +R(V−k,V−k, z)

]−1R′(V−k,V−k, z)
[
D−1
−k +R(V−k,V−k, z)

]−1
∥∥∥

= O

{∥∥VT
−kG

′(z)V−k −R′(V−k,V−k, z)
∥∥∥∥∥[D−1

−k + VT
−kG(z)V−k

]−1
∥∥∥2
}

+O
{∥∥∥[D−1

−k + VT
−kG(z)V−k

]−1 −
[
D−1
−k +R(V−k,V−k, z)

]−1
∥∥∥

·
∥∥∥[D−1

−k + VT
−kG(z)V−k

]−1R′(V−k,V−k, z)
∥∥∥}

= |z|−1Op(1) + z−2Op(αn) (87)

and ∥∥∥{[D−1
−k +R(V−k,V−k, z)

]−1
}′ ∥∥∥

=
∥∥∥[D−1

−k +R(V−k,V−k, z)
]−1R′(V−k,V−k, z)

[
D−1
−k +R(V−k,V−k, z)

]−1
∥∥∥

= O(1). (88)

Note that in light of (84)–(87), we can obtain

vTkF′k(z)vk = 2vTkG′(z)V−k
[
D−1
−k + VT

−kG(z)V−k
]−1

VT
−kG(z)vk

+ vTkG(z)V−k

{[
D−1
−k + VT

−kG(z)V−k
]−1
}′

VT
−kG(z)vk

= 2R′(vk,V−k, z)
[
D−1
−k +R(V−k,V−k, z)

]−1R(V−k,vk, z)

+R(vk,V−k, z)
{[

D−1
−k +R(V−k,V−k, z)

]−1
}′
R(V−k,vk, z)

+ z−4Op(1) + z−6Op(α
3
n). (89)

Combining the above result with (84) leads to

dkv
T
k

[
G′(z)− F′k(z)

]
vk =

dk

z2P̃k,z
+ 2z−3dkv

T
kWvk + z−4Op(|dk|αn) (90)

for z ∈ [ak, bk]. Further, recalling the definition in (7) and by (88), it holds that

1

z2P̃k,z
=

(
Avk,k,z

z

)′
= R′(vk,vk, z)− 2R′(vk,V−k, z)

[
D−1
−k +R(V−k,V−k, z)

]−1

×R(V−k,vk, z)−R(vk,V−k, z)
{[

D−1
−k +R(V−k,V−k, z)

]−1
}′
R(V−k,vk, z)

= z−2 +O(α2
n/z

4). (91)
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Plugging this into (90) and by Lemmas 4–5, we have for all z ∈ [ak, bk],

dkv
T
k

[
G′(z)− F′k(z)

]
vk = dkz

−2 + 2z−3dkv
T
kWvk + z−4Op(|dk|α2

n)

= dkz
−2
[
1 +Op(|z|−1 + |z|−2α2

n)
]

= dkz
−2 [1 + op(1)] . (92)

Thus 1 + dkv
T
k [G(z)− Fk(z)] vk is a monotone function with probability tending to one.

Further, in light of expressions (78) and (83) we can obtain the asymptotic expansion

1 + dkv
T
k [G(z)− Fk(z)] vk = fk(z)− dkz−2vTkWvk + z−2Op(αn) (93)

for all z ∈ [ak, bk], where fk(z) is defined in (10). Note that fk(ak) = O(1), fk(bk) = O(1),

and fk(ak)fk(bk) < 0 as shown in the proof of Lemma 3 in Section B.4 of Supplementary

Material. These results together with (92), which gives the order for the derivative of 1 +

dkv
T
k [G(z)− Fk(z)] vk, entail that there exists a unique solution t̂k to the equation

1 + dkv
T
k [G(z)− Fk(z)] vk = 0 (94)

for z in the interval [ak, bk]. Using Lemma 4, we can further show that (93) becomes

1 + dkv
T
k [G(z)− Fk(z)] vk − fk(z) = −dk

z2
vTkWvk +Op(|z|−2αn) = Op(|z|−1) (95)

for z ∈ [ak, bk]. Note that fk(z) is a monotone function over z ∈ [ak, bk] as shown in the

proof of Lemma 3 and (A.17). Thus it follows from (94) and (95) that

t̂k − tk = Op(1). (96)

In fact, we can obtain a more precise order of t̂k− tk than the initial one in (96). In view

of (93) and the definition of tk, we have

1 + dkv
T
k [G(tk)− Fk(tk)] vk = −dkt−2

k vTkWvk +Op(αnt
−2
k ). (97)

By (92) and (97), an application of the mean value theorem yields

0 = 1 + dkv
T
k

[
G(t̂k)− Fk(t̂k)

]
vk = 1 + dkv

T
k [G(tk)− Fk(tk)] vk

+ dk t̃
−2
k

[
1 +Op(|dk|−1 + |dk|−2α2

n)
]

(t̂k − tk), (98)

where t̃k is some number between tk and t̂k. The asymptotic expansions in (98) and (97)

entail further that

t̂k − tk =
t2k
t2k

vTkWvk +Op(αnt
−1
k ) = vTkWvk +Op(αnt

−1
k ). (99)
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Now by the similar arguments as for obtaining (69), the integral (74) can be evaluated

as

xT v̂kv̂
T
k y =

1

2πi

∮
Ωk

dkx
T [G(z)− Fk(z)] vkv

T
k [G(z)− Fk(z)] y

1 + dkv
T
k [G(z)− Fk(z)] vk

dz

=
t̂2kx

T
[
G(t̂k)− Fk(t̂k)

]
vkv

T
k

[
G(t̂k)− Fk(t̂k)

]
y

t̂2kv
T
k

[
G′(t̂k)− F′k(t̂k)

]
vk

. (100)

By (90) we have

1

t̂2kv
T
k

[
G′(t̂k)− F′k(t̂k)

]
vk

= P̃k,t̂k − 2t̂−1
k P̃

2
k,t̂k

vTkWvk + t̂−2
k Op(αn) (101)

and (100) can be written as

xT v̂kv̂
T
k y =

t̂2kx
T
[
G(t̂k)− Fk(t̂k)

]
vkv

T
k

[
G(t̂k)− Fk(t̂k)

]
y

t̂2kv
T
k

[
G′(t̂k)− F′k(t̂k)

]
vk

=
[
P̃k,t̂k − 2t̂−1

k vTkWvk + t̂−2
k Op (αn)

]
t̂2kx

T
[
G(t̂k)− Fk(t̂k)

]
vkv

T
k

×
[
G(t̂k)− Fk(t̂k)

]
y. (102)

Recall the definitions in (6) and (7). Then it follows from (77), (82), and (99) that

t̂ku
T
[
G(t̂k)− Fk(t̂k)

]
vk = P(u,vk, t̂k)− P(u,V−k, t̂k)

[
t̂kD

−1
−k + P(V−k,V−k, t̂k)

]−1

× P(V−k,vk, t̂k)− t̂−1
k uTWvk + t̂−1

k R(u,V−k, t̂k)
[
D−1
−k +R(V−k,V−k, t̂k)

]−1

×VT
−kWvk +Op(αnt̂

−2
k )

= P(u,vk, tk)− P(u,V−k, tk)
[
tkD

−1
−k + P(V−k,V−k, tk)

]−1

× P(V−k,vk, tk)− t−1
k uTWvk + t−1

k R(u,V−k, tk)
[
D−1
−k +R(V−k,V−k, tk)

]−1

×VT
−kWvk +Op(αnt

−2
k ),

= Au,k,tk − t
−1
k bTu,k,tkWvk +Op(αnt

−2
k ), (103)

where u stands for both x and y as mentioned before. Furthermore, by Lemma 5 and (99)

we can conclude that

P̃k,t̂k = P̃k,tk +Op(α
2
nt
−3
k ). (104)

Combining the representation (102) and asymptotic expansions (103)–(104), by Lemma 4
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we can deduce that (100) can be further written as

xT v̂kv̂
T
k y =

t̂2kx
T
[
G(t̂k)− Fk(t̂k)

]
vkv

T
k

[
G(t̂k)− Fk(t̂k)

]
y

t̂2kv
T
k

[
G′(t̂k)− F′k(t̂k)

]
vk

=
[
P̃k,tk − 2t−1

k P̃
2
k,tk

vTkWvk +Op(αnt
−2
k )
][
Ax,k,tk − t

−1
k bTx,k,tkWvk +Op(αnt

−2
k )
]

×
[
Ay,k,tk − t

−1
k bTy,k,tkWvk +Op(αnt

−2
k )
]

=
[
P̃k,tk − 2t−1

k P̃
2
k,tk

vTkWvk +Op(αnt
−2
k )
]
×
[
Ax,k,tkAy,k,tk

− t−1
k

(
Ax,k,tkb

T
x,k,tk

+Ay,k,tkb
T
y,k,tk

)
Wvk

+ t−2
k bTx,k,tkWvkb

T
y,k,tk

Wvk +Op(αnckt
−2
k )
]
, (105)

where ck = |Ax,k,tk |+ |Ay,k,tk |+ |tk|−1.

We can expand (105), or equivalently (100), further as

xT v̂kv̂
T
k y =

[
P̃k,tk − 2t−1

k P̃
2
k,tk

vTkWvk +Op(αnt
−2
k )
]
×
[
Ax,k,tkAy,k,tk

− t−1
k

(
Ax,k,tkb

T
x,k,tk

+Ay,k,tkb
T
y,k,tk

)
Wvk + t−2

k bTx,k,tkWvkb
T
y,k,tk

Wvk +Op(αnckt
−2
k )
]

= P̃k,tkAx,k,tkAy,k,tk − t
−1
k Ax,k,tkP̃k,tk

(
bTy,k,tk +Ay,k,tkP̃k,tkv

T
k

)
Wvk

− t−1
k Ay,k,tkP̃k,tk

(
bTx,k,tk +Ax,k,tkP̃k,tkv

T
k

)
Wvk

+ t−2
k P̃k,tk

[
2P̃k,tk

(
Ax,k,tkb

T
x,k,tk

+Ay,k,tkb
T
y,k,tk

)
Wvkv

T
k + bTx,k,tkWvkb

T
y,k,tk

]
Wvk

− 2t−3
k P̃

2
k,tk

bTx,k,tkWvkb
T
y,k,tk

Wvkv
T
kWvk +Op

{
αnckt

−2
k

}
. (106)

Therefore, we have characterized the terms involving t−1
k for the desired first order asymptotic

expansion. That is, by (106) we have

xT v̂kv̂
T
k y = P̃k,tkAx,k,tkAy,k,tk − t

−1
k Ax,k,tkP̃k,tk

(
bTy,k,tk +Ay,k,tkP̃k,tkv

T
k

)
Wvk

− t−1
k Ay,k,tkP̃k,tk

(
bTx,k,tk +Ax,k,tkP̃k,tkv

T
k

)
Wvk +Op

{
(αnck + 1)t−2

k

}
. (107)

Thus if σ2
k = t−2

k P̃
2
k,tk

E[(Ax,k,tkb
T
y,k,tk

+ Ay,k,tkb
T
x,k,tk

+ 2Ax,k,tkAy,k,tkP̃k,tkvTk )Wvk]
2 �

(αnck + 1)2t−4
k ∼ σ2

n(|Ax,k,tk | + |Ay,k,tk |)2t−4
k + t−4

k and (Ax,k,tkb
T
y,k,tk

+ Ay,k,tkb
T
x,k,tk

+

2Ax,k,tkAy,k,tkP̃k,tkvTk ,vk) is W1-CLT, then (33) holds, where ∼means the asymptotic order.

This concludes the proof of Theorem 4.

A.6 Proof of Theorem 5

We have characterized the first order asymptotic expansion for the bilinear form xT v̂kv̂
T
k y

in the proof of Theorem 4 in Section A.5, where x and y are two arbitrary n-dimensional

unit vectors. We now proceed with investigating the higher order (which is second order)

asymptotic expansion for the same bilinear form. More specifically, the proof of Theorem 5
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involves further expansion for the Op{αnckt−2
k } term given in (106).

To gain some intuition, let us recall (75) and compare with (77)–(81). By Lemma 4, we

see that the order Op(αn|z|−3) comes from the terms of form xT (W2−EW2)y/z3. Therefore,

to obtain a higher order expansion we need to identify all terms of form xT (W2−EW2)y/z3.

It follows from (75) and Lemmas 4 and 5 that

xTG(z)y =− z−1xTy− z−2xTWy− xT (W2 − EW2)y

z3

−
L∑
l=2

z−(l+1)xTEWly +Op
(
|z|−4 + α2

n|z|−4
)
. (108)

Moreover, using similar arguments as for proving (101) and (103) but expanding to higher

orders we can obtain

{
t̂2kv

T
k

[
G′(t̂k)− F′k(t̂k)

]
vk
}−1

= P̃k,tk
{

1− 2t−1
k P̃k,tkv

T
kWvk − t−2

k P̃k,tk

×
[
3vTk (W2 − EW2)vk − 2(vTkWvk)

2
] }

+Op(α
2
n|tk|−3) (109)

and

t̂ku
T
[
G(t̂k)− Fk(t̂k)

]
vk = Au,k,tk − t

−1
k uTWvk

+ t−1
k R(u,V−k, tk)

[
D−1
−k +R(V−k,V−k, tk)

]−1
VT
−kWvk + t−2

k uTWvkv
T
kWvk

− t−2
k vTkWvkR(u,V−k, tk)

[
D−1
−k +R(V−k,V−k, tk)

]−1
VT
−kWvk

+ t−2
k R(u,V−k, tk)

[
D−1
−k +R(V−k,V−k, tk)

]−1
VT
−k(W

2 − EW2)vk

− t−2
k uT (W2 − EW2)vk + 2t−3

k vTkWvkR(u,V−k, tk)
[
D−1
−k +R(V−k,V−k, tk)

]−2

×VT
−kWvk +Op(α

2
n|tk|−3), (110)

where u represents both x and y as mentioned before.

Using the representations (100) and (102), and by the asymptotic expansions (109)–(110),
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we can obtain the Op(t
−2
k ) term for the desired second order asymptotic expansion as follows

xT v̂kv̂
T
k y =

t̂2kx
T
[
G(t̂k)− Fk(t̂k)

]
vkv

T
k

[
G(t̂k)− Fk(t̂k)

]
y

t̂2kv
T
k

[
G′(t̂k)− F′k(t̂k)

]
vk

=
(
P̃k,tk ×

{
1− 2t−1

k P̃k,tkv
T
kWvk − t−2

k P̃k,tk
[
3vTk (W2 − EW2)vk − 2(vTkWvk)

2
]}

+Op(α
2
n|tk|−3)

)[
t̂kx

T
[
G(t̂k)− Fk(t̂k)

]
vk

][
t̂kv

T
k

[
G(t̂k)− Fk(t̂k)

]
y
]

= −Ax,k,tkP̃k,tkt
−1
k

(
bTy,k,tk +Ay,k,tkP̃k,tkv

T
k

)
Wvk −Ay,k,tkP̃k,tkt

−1
k

×
(
bTx,k,tk +Ax,k,tkP̃k,tkv

T
k

)
Wvk

+ P̃k,tkt
−2
k

[
2P̃k,tk

(
Ax,k,tkb

T
x,k,tk

+Ay,k,tkb
T
y,k,tk

)
Wvkv

T
k + bTx,k,tkWvkb

T
y,k,tk

]
Wvk

+ 2Ax,k,tkAy,k,tk

(
vTkWvk

)2
+Ay,k,tkP̃k,tk

{
t−2
k xTWvkv

T
kWvk − t−2

k vTkWvkR(x,V−k, t)

×
[
D−1
−k +R(V−k,V−k, tk)

]−1
VT
−kWvk

}
+Ax,k,tkP̃k,tk

{
t−2
k yTWvkv

T
kWvk − t−2

k vTkWvkR(y,V−k, t)

×
[
D−1
−k +R(V−k,V−k, tk)

]−1
VT
−kWvk

}
+Ay,k,tkP̃k,tkt

−2
k R(x,V−k, tk)

[
D−1
−k +R(V−k,V−k, tk)

]−1
VT
−k(W

2 − EW2)vk

+Ax,k,tkP̃k,tkt
−2
k R(y,V−k, tk)

[
D−1
−k +R(V−k,V−k, tk)

]−1
VT
−k(W

2 − EW2)vk

− P̃k,tkt
−2
k (Ay,k,tkx

T +Ax,k,tky
T )(W2 − EW2)vk

− 3t−2
k Ax,k,tkAy,k,tkP̃k,tkv

T
k (W2 − EW2)vk +Op

{
(α2

nck + 1)|tk|−3
}
. (111)

In contrast to the small order term Op{αnckt−2
k } in (106) from the first order asymptotic

expansion, we now have the small order term Op{(α2
nck + 1)|tk|−3} from the second order

asymptotic expansion.

Let us conduct some simplifications for the expressions given in the above asymptotic

expansions in (111). A combination of (106) and (111) shows that the asymptotic distribution

45



is determined by

−Ax,k,tkP̃k,tkt
−1
k

(
bTy,k,tk +Ay,k,tkP̃k,tkv

T
k

)
Wvk

−Ay,k,tkP̃k,tkt
−1
k

(
bTx,k,tk +Ax,k,tkP̃k,tkv

T
k

)
Wvk

+ P̃k,tkt
−2
k

[
2P̃k,tk

(
Ax,k,tkb

T
x,k,tk

+Ay,k,tkb
T
y,k,tk

)
Wvkv

T
k + bTx,k,tkWvkb

T
y,k,tk

]
Wvk

+ 2Ax,k,tkAy,k,tk(vTkWvk)
2 +Ay,k,tkP̃k,tk

{
t−2
k xTWvkv

T
kWvk − t−2

k vTkWvkR(x,V−k, t)

×
[
D−1
−k +R(V−k,V−k, tk)

]−1
VT
−kWvk

}
+Ax,k,tkP̃k,tk

{
t−2
k yTWvkv

T
kWvk − t−2

k vTkWvkR(y,V−k, t)

×
[
D−1
−k +R(V−k,V−k, tk)

]−1
VT
−kWvk

}
+Ay,k,tkP̃k,tkt

−2
k R(x,V−k, t)

[
D−1
−k +R(V−k,V−k, tk)

]−1
VT
−k(W

2 − EW2)vk

+Ax,k,tkP̃k,tkt
−2
k R(y,V−k, t)

[
D−1
−k +R(V−k,V−k, tk)

]−1
VT
−k(W

2 − EW2)vk

− P̃k,tkt
−2
k

(
Ay,k,tkx

T +Ax,k,tky
T
)

(W2 − EW2)vk

− 3t−2
k Ax,k,tkAy,k,tkP̃k,tkv

T
k (W2 − EW2)vk. (112)

To further simplify the notation, we define three terms

Jx,y,k,tk = −P̃k,tkt
−1
k vk

(
Ay,k,tkb

T
x,k,tk

+Ax,k,tkb
T
y,k,tk

+ 2Ax,k,tkAy,k,tkP̃k,tkv
T
k

)
, (113)

Lx,y,k,tk = P̃k,tkt
−2
k vk

{
[Ay,k,tkR(x,V−k, t) +Ax,k,tkR(y,V−k, t)]

×
[
D−1
−k +R(V−k,V−k, tk)

]−1
VT
−k +Ay,k,tkx

T +Ax,k,tky
T

+ 3Ax,k,tkAy,k,tkv
T
k

}
, (114)

Qx,y,k,tk
= Lx,y,k,tk − P̃k,tkt

−2
k Ax,k,tkAy,k,tkvkv

T
k

+ 2P̃2
k,tk

t−2
k vk

(
Ax,k,tkb

T
x,k,tk

+Ay,k,tkb
T
y,k,tk

)
. (115)

Note that all the three matrices defined in (113)–(115) are of rank one and the identity

xTAy = tr(AyxT ) holds for any matrix A and vectors x and y. Thus in view of (113)–

(115), the lengthy expression given in (112) can be rewritten in a compact form as

tr
[
WJx,y,k,tk −

(
W2 − EW2

)
Lx,y,k,tk

]
+ tr

(
Wvkv

T
k

)
tr
(
WQx,y,k,tk

)
. (116)

So far we have shown that the second order expansion of xT v̂kv̂
T
k y is given in (111). Note

that σ̃2
k defined in (32) is essentially the variance of (116). Thus if σ̃2

k � (α2
nck + 1)2t−6

k ∼
σ4
n(|Ax,k,tk |+ |Ay,k,tk |)2t−6

k + t−6
k , then (116) is the leading term of (111). Furthermore, the

assumption of σ2
k = O(σ̃2

k) entails that the first order expansion in Theorem 4 does not

dominate the second order expansion. Therefore, we see that the asymptotic distribution in

Theorem 5 is determined by the joint distribution of the three random variables specified in
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expression (116). This completes the proof of Theorem 5.
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Renfrew, D. and A. Soshnikov (2013). On finite rank deformations of Wigner matrices ii:

Delocalized perturbations. Random Matrices: Theory Appl. 2, 1250015.

Rohe, K., S. Chatterjee, and B. Yu (2011). Spectral clustering and the high-dimensional

stochastic blockmodel. The Annals of Statistics 39, 1878–1915.

Rudelson, M. and R. Vershynin (2016). No-gaps delocalization for general random matrices.

Geometric and Functional Analysis 26, 1716–1776.

Spielman, D. A. and S.-H. Teng (2007). Spectral partitioning works: Planar graphs and

finite element meshes. Linear Algebra and Its Applications 421, 284–305.

Tang, M. and C. E. Priebe (2018). Limit theorems for eigenvectors of the normalized Lapla-

cian for random graphs. The Annals of Statistics 46, 2360–2415.

Tao, T. (2004). Topics in Random Matrix Theory. American Mathematical Society.

Tracy, C. A. and H. Widom (1994). Level-spacing distributions and the Airy kernel. Comm.

Math. Phys. 159, 151–174.

Tracy, C. A. and H. Widom (1996). On orthogonal and symplectic matrix ensembles. Comm.

Math. Phys. 177, 727–754.

Tropp, J. (2012). User-friendly tail bounds for sums of random matrices. Found. Comput.

Math. 12, 389–434.

Verzelen, N., E. Arias-Castro, et al. (2015). Community detection in sparse random networks.

The Annals of Applied Probability 25 (6), 3465–3510.

50



Vu, V. (2018). A simple SVD algorithm for finding hidden partitions. Combinatorics,

Probability and Computing 27, 124–140.

Wang, W. and J. Fan (2017). Asymptotics of empirical eigenstructure for high dimensional

spiked covariance. The Annals of Statistics 45, 1342–1374.

Wigner, E. P. (1955). Characteristic vectors of bordered matrices with infinite dimensions.

Ann. Math. 62, 548–564.

Yau, H.-T. (2012). Universality of generalized Wigner matrices. Quantum Theory from Small

to Large Scales: Lecture Notes of the Les Houches Summer School 95, 675–692.

Zhang, Y., E. Levina, and J. Zhu (2015). Detecting overlapping communities in networks

using spectral methods. https://arxiv.org/pdf/1412.3432.pdf .

51


