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ABSTRACT
Heterogeneity is often natural in many contemporary applications involving massive data. While posing
new challenges to effective learning, it can play a crucial role in powering meaningful scientific discoveries
through the integration of information among subpopulations of interest. In this article, we exploit multiple
networks with Gaussian graphs to encode the connectivity patterns of a large number of features on
the subpopulations. To uncover the underlying sparsity structures across subpopulations, we suggest a
framework of large-scale tuning-free heterogeneous inference, where the number of networks is allowed
to diverge. In particular, two new tests, the chi-based and the linear functional-based tests, are introduced
and their asymptotic null distributions are established. Under mild regularity conditions, we establish that
both tests are optimal in achieving the testable region boundary and the sample size requirement for the
latter test is minimal. Both theoretical guarantees and the tuning-free property stem from efficient multiple-
network estimation by our newly suggested heterogeneous group square-root Lasso for high-dimensional
multi-response regression with heterogeneous noises. To solve this convex program, we further introduce
a scalable algorithm that enjoys provable convergence to the global optimum. Both computational and
theoretical advantages are elucidated through simulation and real data examples. Supplementary materials
for this article are available online.
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1. Introduction

In the era of data deluge one can easily collect a massive amount
of data from multiple sources, each of which may come from
a certain subpopulation of a larger population of interest. For
example, these subpopulations can be different studies on the
same subjects or represent different cancer types, brain disor-
ders, or product choices. A large number of features are often
associated with each subject. Allowing and understanding the
heterogeneity in the association structures of these features
across subpopulations can be important in empowering mean-
ingful scientific discoveries or effective personalized choices in
our lives. Meanwhile allowing heterogeneity in the data also
poses new challenges to effective learning and calls for new
developments of methods, theory, and algorithms with scalabil-
ity and statistical efficiency.

Heterogeneity can take different forms in various applica-
tions such as the differences among link strengths or the spar-
sity patterns over multiple networks, and the differences in
noise levels or distributions over multiple subpopulations. To
avoid potential ambiguity, we would like to make it explicit
that throughout this article, we allow two particular types of
heterogeneity which are the heterogeneity in link strengths and
the heterogeneity in noise levels. The former means the connec-
tivity strengths between nodes can change across subpopula-
tions, and the latter means the variability of nodes can change
across subpopulations. The latter also has to do with a very
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important property of our underlying estimation procedure and
will be made clear in later sections. To approach the problem of
heterogeneous learning in these contexts, we exploit the model
setting of multiple networks with Gaussian graphs each of which
encodes the connectivity pattern among features for each sub-
population. The edges of these networks are characterized by the
inverse covariances for each pair of nodes from a subpopulation.
The focus on this particular type of network models enables us
to present our main idea with technical brevity. See, for example,
Teng (2016) for an account of more general network models
beyond graphical models. In fact, as a popular choice of net-
work models Gaussian graphical models involving the inverse
covariances have been used widely in applications to charac-
terize the conditional dependency structure among features.
In such models, the joint distribution of p features X1, . . . , Xp
is modeled by a multivariate Gaussian distribution N(0, �−1),
where the p×p matrix � is called the precision matrix or inverse
covariance matrix of these p features. A basic fact is that each
pair of features, Xa and Xb, are conditionally independent given
all other features if and only if the (a, b)th entry of the precision
matrix � is zero. The conditional dependency structure in a
Gaussian graph is, therefore, determined completely by the asso-
ciated precision matrix �. See, for instance, Lauritzen (1996)
and Wainwright and Jordan (2008) for more detailed accounts
and applications of these models.

There is a growing literature on Gaussian graphical mod-
els. Much recent attention has been given to the problem of
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support recovery and link strength estimation, which focuses
on identifying the nonzero entries of the precision matrix and
estimating their strengths. Among those endeavors, a major-
ity of the work has focused primarily on the case of a single
Gaussian graphical model; see, for example, Meinshausen and
Bühlmann (2006), Yuan and Lin (2007), Friedman, Hastie, and
Tibshirani (2008), Fan, Feng, and Wu (2009), Yuan (2010), Cai,
Liu, and Luo (2011), Ravikumar et al. (2011), Liu (2013), Zhang
and Zou (2014), Ren et al. (2015), Fan and Lv (2016), and among
many others. A common assumption in this line of work is that
the data is assumed to be homogeneous with all observations
coming from a single population. More detailed discussions and
comparisons of these methods can be found in, for instance, Ren
et al. (2015) and Fan and Lv (2016). Yet as mentioned before het-
erogeneity in the data can be prevalent in many contemporary
applications involving massive data. The existing methods for
analyzing data from each individual source become insufficient
due to the assumption of homogeneity. Naively combining the
results from these individual analyses may also yield suboptimal
performance of statistical estimation and inference.

The setting of multiple networks with Gaussian graphical
models has gained more recent attention. A lot of work assumes
a time-varying graphical structure across different graphs. In
particular, one assumes that there is a natural ordering of the
graphs and the parameters of interest vary smoothly according
to this order. For these developments, some smoothing tech-
niques such as the kernel smoothing are key to the construction
of the estimators as well as the analysis of their theoretical
properties. While the time-varying graphical model is not the
focus of our current article, one may refer to, for example, Zhou,
Lafferty, and Wasserman (2010), Kolar et al. (2010), Chen, Xu,
and Wu (2013), Qiu et al. (2016), and Lu, Kolar, and Liu (2015)
for more details on this line of work.

In contrast, our setting of multiple networks with Gaussian
graphical models is along another line that makes no assump-
tion on the ordering of the graphs. In this line of work, the
main assumption is a common sparsity structure across different
graphs. In particular, the estimators proposed in Guo et al.
(2011), Danaher, Wang, and Witten (2014), and Zhu, Shen, and
Pan (2014) employ the approach of penalized likelihood with
different choices of the penalty function, while the MPE method
introduced in Cai et al. (2016) takes a weighted constrained �∞
and �1 minimization approach, which can be seen as an exten-
sion of the CLIME estimator for a single graph (Cai, Liu, and Luo
2011). The focus of such existing work is placed on the problem
of support recovery and link strength estimation. Moreover, by
the nature of these methods their computational cost increases
drastically with both the dimensionality and the number of
graphs, which can limit their practical use in analyzing massive
datasets. How to develop a scalable procedure for large-scale
inference in the setting of multiple Gaussian graphical models
still remains largely open.

To uncover the underlying connectivity patterns among fea-
tures across subpopulations and address the aforementioned
challenges, in this article, we suggest a new testing framework
of large-scale tuning-free heterogeneous inference (THI), where
the number of networks is allowed to diverge and the num-
ber of features can grow exponentially with the number of
observations. Distinct from the existing methods, our procedure

identifies the sparsity patterns among a diverging number of
graphs by testing the following null hypothesis

H0,ab : ω0
a,b = (ω

(1)

a,b , . . . , ω(k)
a,b)

′ = 0 (1)

associated with the joint link strength vector for each pair of
features 1 ≤ a, b ≤ p with a �= b, where �(t) = (ω

(t)
a,b) with

1 ≤ t ≤ k denotes the precision matrix associated with the tth
graph. To approach the statistical inference problem in (1), we
propose two new tests, named the chi-based test and the linear
functional-based test, for two different scenarios. The former
test which is for the general scenario requires no extra informa-
tion from the graphs and is shown to perform well as long as the
�2 norm of the joint link strength vector ω0

a,b is large. The chi-
based test is named after the property that the null distribution
of this test statistic is shown to converge to the chi-distribution.
The latter one relies on some extra information on the signs
of ω

(t)
a,b. Such extra information is indeed available in some

applications. For example, in some genome-wide association
studies (GWAS) it was discovered that the association structures
can be portable between certain subpopulations (Marigorta and
Navarro 2013). In such a scenario, the linear functional-based
test can be constructed and shown to perform well when the �1
norm of the vector ω0

a,b becomes large.
An interesting property of both tests is that each of them

is established under mild regularity conditions to be optimal
in the sense of achieving the testable region boundary, where
the testable region boundary is defined as the smallest signal
strength below which no test is able to detect if the observations
are from the null hypothesis against the alternative hypoth-
esis and above which some test can distinguish successfully
between the two hypotheses. We further show that for the
linear functional-based test, the sample size requirement is in
fact minimal. A natural question is whether naively combining
the tests constructed from k individual graphs might suffice.
Our theoretical results provide insights into this question and
demonstrate the advantages of our tests in terms of weaker
sample size requirement than the naive combination approach.
We also would like to mention that although the main focus
of our article is on hypothesis testing, our procedure can be
modified easily by introducing an additional thresholding step
for support recovery; see Section 2.5 for detailed discussions
and comparisons with existing approaches. In particular, our
modified procedure achieves support recovery under milder
sample size assumption than many existing methods. To the best
of our knowledge, the testing of multiple networks with graphs
and the optimality study are both new to the literature.

The challenges of heterogeneous learning in the setting of
multiple networks are rooted in the statistical inference with
efficiency, the scalability, and the selection of tuning parameters
which is often an implicit bottleneck of existing methods. Our
THI framework addresses all these challenges in a harmonious
fashion. Both theoretical guarantees and the tuning-free prop-
erty are enabled through efficient multiple-network estimation
by our newly suggested approach of heterogeneous group
square-root Lasso (HGSL) in the setting of high-dimensional
multi-response regression with heterogeneous noises. More
specifically, we reduce the problem of estimating k graphs
simultaneously to that of running p multi-response regressions
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with heterogeneous noises. This new formulation allows us
to borrow information across graphs when estimating their
structures, which results in improved rates of convergence.
To solve the convex programs from these multi-response
regressions, we introduce a new tuning-free algorithm, that
is, scalable and admits provable convergence to the global
optimum. Compared to existing methods in the literature, our
new procedure enjoys four main advantages. First, it is justified
theoretically that our HGSL estimators have faster rates of
convergence. Second, the HGSL method is capable of handling
heterogeneous noises, the presence of which causes intrinsic
difficulty for developing a tuning-free procedure. Third, our
new algorithm is simple and truly tuning free, and scales
up easily. Fourth, we provide theoretical justification on the
convergence of the tuning-free algorithm. An R package HGSL
implementing our suggested THI framework is available on
CRAN (https://cran.r-project.org/web/packages/HGSL/index.
html).

The rest of the article is organized as follows. Section 2 intro-
duces the THI framework with the chi-based test and the linear
functional-based test in multiple networks, and establishes their
optimality properties. We present the HGSL approach for fit-
ting high-dimensional multi-response regression with heteroge-
neous noises, and provide the estimation and prediction bounds
for the estimator in Section 3. The newly proposed tuning-
free algorithm for HGSL as well as a convergence analysis for
the algorithm is relegated to the supplementary material. Sec-
tion 4 details several numerical examples of simulation studies
and real data analysis. We discuss some extensions of the sug-
gested method to a few settings, including the setting with sub-
Gaussian features in Section 5. The proofs of all the results and
technical details are provided in the supplementary material.

2. Tuning-Free Heterogeneous Inference in Multiple
Networks

2.1. Model Setting

As mentioned in Section 1, we adopt the setting of multiple
networks with Gaussian graphical models to encode the con-
nectivity patterns among p features X1, . . . , Xp measured on k
subpopulations of a general population, which yields k datasets.
In this model, for each class 1 ≤ t ≤ k the p features jointly
follow a multivariate Gaussian distribution

X(t) = (X(t)
1 , . . . , X(t)

p )′ ∼ N(0, (�(t))−1), (2)
where the superscript (t) means that these p features are mea-
sured on the tth subpopulation and �(t) is the p × p preci-
sion matrix of the tth class. In addition, the distributions of
X(1), . . . , X(k) are assumed to be independent. Each of the k
precision matrices �(t) = (ω

(t)
a,b)p×p reflects the conditional

dependency structure among the p features X(t)
1 , . . . , X(t)

p . In
the high-dimensional setting, where the dimensionality p can
be very large compared to the sample size, it is common in
many applications such as genomic studies to assume that each
precision matrix �(t) has certain sparsity structure. The goals
in these studies include the estimation of precision matrices
�(t) and the statistical inference, such as p-value or confidence
interval on their entries ω

(t)
a,b.

When there is only one class of data, that is, k = 1, our
setting coincides with that of single Gaussian graphical model.
For the general case of multiple graphs with k ≥ 2, it can be
beneficial to borrow the strength across all k classes of data to
achieve more accurate estimation of the k precision matrices if
the k classes are related to each other. With this spirit, we assume
that the k classes share some similar sparsity structure, and the
heterogeneity captures the differences among these graphs and
variations of connectivities between nodes as (a, b) varies. In
particular, we are interested in the scenario where for each pair
of nodes (a, b) with 1 ≤ a �= b ≤ p, either ω

(t)
a,b = 0

simultaneously for all 1 ≤ t ≤ k or alternatively the joint link
strength vector ω0

a,b = (ω
(1)

a,b , . . . , ω(k)
a,b)

′ is significantly different
from the zero vector. Throughout the article, we denote by

E = {
(a, b) : 1 ≤ a �= b ≤ p and ω0

a,b �= 0
}

(3)

the edge set corresponding to the k graphs given in model (2).
The main goal of our article is to develop an effective and

efficient procedure for testing the null hypothesis H0,ab defined
in (1) for multiple networks, which provides an inferential
approach to uncovering the feature association structures across
the k subpopulations. Depending on the type of the alternative
hypothesis, we will introduce two different fully data-driven test
statistics and establish their advantages over those obtained by
naively combining the tests constructed from each individual
graph.

2.2. Chi-Based Test

We begin with introducing the first test for our THI framework
in multiple networks. To ease the presentation, we introduce
some compact notation. Denote by a−j the subvector of a vector
a = (a1, . . . , ap)′ with the jth component removed, and for
any matrix A = (ai,j) denote by A∗,j its jth column, A−j,j the
subvector of A∗,j with the jth component removed, and A∗,−j
the submatrix of A with the jth column removed. Our testing
idea is based on a simple observation that for each 1 ≤ j ≤ p,
the conditional distribution of X(t)

j given all remaining features
X(t)

−j in class t follows the Gaussian distribution

X(t)
j |X(t)

−j ∼ N(X(t)′
−j C(t)

j , 1/ω
(t)
j,j ) (4)

with the (p − 1)-dimensional coefficient vector C(t)
j =

−�
(t)
−j,j/ω

(t)
j,j . Based on the distributional representation in (4),

one can see that the error random variables ε
(t)
j = X(t)

j −
X(t)′

−j C(t)
j are independent across t and follow the distribution

N(0, 1/ω
(t)
j,j ). Moreover, it holds for each pair of nodes (a, b)

with 1 ≤ a, b ≤ p that

cov(ε(t)
a , ε(t)

b ) = ω
(t)
a,b

ω
(t)
a,aω

(t)
b,b

. (5)

The key representation in (5) entails that accurate estimators of
ω

(t)
a,b with a �= b can be constructed if one can estimate ω

(t)
a,a, ω(t)

b,b,
and cov(ε

(t)
a , ε(t)

b ) well.
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Another important observation is that under the null
hypothesis H0,ab in (1), the conditional distributions of the
k classes X(t)

j |X(t)
−j with 1 ≤ t ≤ k indeed share similar

sparsity structure on the coefficient vectors C(t)
j thanks to the

representation C(t)
j = −�

(t)
−j,j/ω

(t)
j,j . In fact, it is clear that

C(t)
a,b = 0 for all 1 ≤ t ≤ k under H0,ab, where C(t)

a,b = −ω
(t)
a,b/ω

(t)
a,a

is the component of vector C(t)
a corresponding to feature X(t)

b .
This observation suggests that we can borrow information
from different graphs when testing the joint sparsity structure
of multiple graphs. Motivated by such observation, we turn
the problem of multiple-network estimation into that of high-
dimensional multi-response linear regression

⎛
⎜⎜⎜⎜⎝

X(1)
j

X(2)
j
...

X(k)
j

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

X(1)
−j

X(2)
−j

. . .
X(k)

−j

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

C(1)
j

C(2)
j
...

C(k)
j

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝

ε
(1)
j

ε
(2)
j
...

ε
(k)
j

⎞
⎟⎟⎟⎟⎠ (6)

for 1 ≤ j ≤ p. A distinct characteristic of the above multi-
response regression model (6) is that it has heterogeneous noises
since ω

(t)
j,j generally varies over 1 ≤ t ≤ k.

As mentioned before, we also have the group sparsity struc-
ture of the regression coefficient vector C0

j =
(

C(1)′
j , . . . , C(k)′

j

)′

∈ R
(p−1)k in model (6). More specifically, denote the k-

dimensional subvector of C0
j corresponding to the lth group

by

C0
j(l) =

(
C(1)

j,l , . . . , C(k)
j,l

)′
. (7)

Then, we see that C0
j(l) = 0 for all pairs (j, l) ∈ E c, the

complement of E defined in (3). We will suggest in Section 3
an efficient estimation procedure that utilizes the group sparsity
structure in the regression coefficients and also accounts for the
heterogeneity in the noises in model (6).

From now on we work with a sample from model (2), that is,
comprised of n(t) independent and identically distributed (iid)
observations X(t)

1,∗, . . . , X(t)
n(t),∗ for each class 1 ≤ t ≤ k, where

X(t)
i,∗ = (X(t)

i,1 , . . . , X(t)
i,p )′ ∼ N(0, (�(t))−1) and the observations

across different classes are independent. Suppose that we have
some initial estimator Ĉ0

j = (Ĉ(1)′
j , . . . , Ĉ(k)′

j )′ for the (p −
1)k-dimensional regression coefficient vector C0

j , where we will
provide details on one such construction in Section 3. Then the
random errors for each 1 ≤ t ≤ k can be estimated by the
residuals

Ê(t)
i,j = X(t)

i,j − X(t)′
i,−jĈ

(t)
j (8)

with 1 ≤ i ≤ n(t) and 1 ≤ j ≤ p. In view of the representation in
(5), we can estimate ω

(t)
j,j associated with the noise level of class t

as ω̂
(t)
j,j = n(t)/(

∑n(t)
i=1 Ê(t)

i,j Ê(t)
i,j ). In contrast, the estimation of ω(t)

a,b
with a �= b is slightly more complicated. To estimate the negative
covariance −cov(ε

(t)
a , ε(t)

b ) = −ω
(t)
a,b/(ω

(t)
a,aω

(t)
b,b), we exploit the

following bias corrected statistic

T(t)
n,k,a,b = 1

n(t)

⎡
⎣ n(t)∑

i=1
Ê(t)

i,a Ê(t)
i,b +

n(t)∑
i=1

(
Ê(t)

i,a

)2
Ĉ(t)

b,a

+
n(t)∑
i=1

(
Ê(t)

i,b

)2
Ĉ(t)

a,b

⎤
⎦ . (9)

Observe that the first term on the right-hand side of (9) corre-
sponds to the sample covariance of the residuals from features
X(t)

a and X(t)
b . When a = b, this sample covariance is asymptot-

ically unbiased in estimating var(ε(t)
a ) = 1/ω

(t)
a,a. Such sample

covariance is, however, biased in the case of a �= b and thus
two additional terms are introduced for T(t)

n,k,a,b in (9) to correct
the bias. Indeed, we can show that after the bias correction the
statistic T(t)

n,k,a,b is asymptotically close to the statistic

J(t)
n,k,a,b =

[
1 − ω(t)

a,a(ω̂
(t)
a,a)

−1 − ω
(t)
b,b(ω̂

(t)
b,b)

−1
] ω

(t)
a,b

ω
(t)
a,aω

(t)
b,b

, (10)

which is in turn asymptotically close to the negative covariance
−cov(ε

(t)
a , ε(t)

b ).
When there is only a single graph, that is, k = 1, the

above statistic T(t)
n,k,a,b in (9) reduces to the one introduced by

Liu (2013) to address the bias issue in the testing for a single
Gaussian graph. In the scenario of multiple graphs, we observe a
similar phenomenon and provide in Theorem 2.1 later a formal
theoretical justification. It is worth mentioning that the key esti-
mators ω̂

(t)
j,j and T(t)

n,k,a,b introduced above are constructed using
the residuals Ê(t)

i,j instead of the estimated regression coefficients
Ĉ(t)

a,b, though the regression coefficients C(t)
a,b are also closely

related to the entries of the precision matrix �(t). The main
advantage of using residuals Ê(t)

i,j over coefficients Ĉ(t)
a,b is rooted

in the fact that obtaining asymptotically unbiased estimates of
the latter is much more challenging in high dimensions, largely
due to the well-known bias issue associated with the regulariza-
tion methods, than accurately estimating the former, which is
closely related to the prediction problem.

The new formulation in (6) not only allows us to solve
the problem of multiple-graph estimation efficiently through
p multi-response regressions as detailed in Section 3, but also
enables us to construct new tests that are more powerful than
existing methods by borrowing information from different
graphs. We are now ready to present the first such test. Due to
the group sparsity structure and the target of our null hypothesis
H0,ab : ω0

a,b = 0 in (1), we naturally construct our test
statistics using certain functions of all statistics T(t)

n,k,a,b in (9)
with 1 ≤ t ≤ k. Thanks to the joint estimation accuracy for the
(p−1)k-dimensional regression coefficient vector C0

j , we define
our first test statistic, the chi-based test statistic Un,k,a,b, as

U2
n,k,a,b =

k∑
t=1

n(t)ω̂(t)
b,bω̂

(t)
a,a

(
T(t)

n,k,a,b

)2
(11)

for testing the null hypothesis H0,ab against the alternative
hypothesis for which the condition is imposed on the �2 norm
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‖ω0
a,b‖. In other words, our test statistic is powerful whenever

the signal strength ‖ω0
a,b‖ is larger than some testable region

boundary, which will be characterized later in Section 2.4.
To characterize the limiting distribution of the chi-based

test statistic Un,k,a,b in (11) under the null, we introduce two
additional statistics V∗(t)

n,k,a,b and U∗
n,k,a,b as

V∗(t)
n,k,a,b =

√
ω

(t)
b,bω̃

(t)
a,a

n(t)

n(t)∑
i=1

(
E(t)

i,a E(t)
i,b − EE(t)

i,a E(t)
i,b

)
, (12)

U∗2
n,k,a,b =

k∑
t=1

(
V∗(t)

n,k,a,b

)2

=
k∑

t=1

ω
(t)
b,bω̃

(t)
a,a

n(t)

⎡
⎣ n(t)∑

i=1

(
E(t)

i,a E(t)
i,b − EE(t)

i,a E(t)
i,b

)⎤⎦
2

,

(13)

where E(t)
i,j = X(t)

i,j − X(t)′
i,−jC

(t)
j is the random error and ω̃

(t)
j,j =

n(t)/(E(t)′
∗,j E(t)

∗,j) is the oracle estimator of ω
(t)
jj since the random

error vector E(t)
∗,j = (E(t)

1,j , . . . , E(t)
n(t),j)

′ is unobservable in practice.
Hereafter, the expectation sign is denoted as E to distinguish
from the random error E(t)

(i,j). It is interesting to observe that
under the null, the Gaussian vector E(t)

∗,b ∼ N(0, (ω(t)
b,b)

−1I)
is independent of E(t)∗,a, which entails that V∗(t)

n,k,a,b ∼ N(0, 1)

and they are independent of each other over 1 ≤ t ≤ k.
Consequently, under the null hypothesis H0,ab in (1) it holds that
U∗2

n,k,a,b ∼ χ2(k).
Before formally presenting our first main result, we introduce

the following two regularity conditions on our model (2).

Condition 2.1. There exists some constant M > 0 such that
1/M ≤ λmin(�(t)) ≤ λmax(�

(t)) ≤ M for each 1 ≤ t ≤ k,
where λmin and λmax denote the smallest and largest eigenvalues
of a matrix.

Condition 2.2. It holds that n(1) � · · · � n(k) with
max1≤t≤k{n(t)}/n(0) ≤ M0, where � means the same order,
n(0) = min1≤t≤k{n(t)}, and M0 is some positive constant.

The well-conditionedness of the precision matrices �(t)

assumed in Condition 2.1 simplifies our technical presentation.
For simplicity, we also assume in Condition 2.2 that our sample
is balanced with the sample sizes of each of the k classes
comparable to each other. With slight abuse of notation, we
denote by n(0) this common level whenever the rate is involved.
We proceed with introducing additional notation and technical
conditions. Denote by �j = Ĉ0

j − C0
j and �j(l) = Ĉ0

j(l) − C0
j(l)

the estimation errors of Ĉ0
j and Ĉ0

j(l), respectively, with the k-
dimensional subvector Ĉ0

j(l) defined in a similar way to C0
j(l) in

(7). To characterize the sparsity level, we define the joint sparsity
of the k networks as the maximum node degree corresponding
to the edge set E in (3),

s ≡ max
1≤a≤p

∑
1≤b �=a≤p

1{ω0
a,b �= 0}. (14)

We further assume that with high probability the initial estima-
tor Ĉ0

j satisfies

1√
k

∥∥�j
∥∥ = 1√

k

∥∥∥Ĉ0
j − C0

j

∥∥∥ ≤ C1

[
s

1 + (log p)/k
n(0)

]1/2
,

(15)∑
l �=j

1√
k

∥∥�j(l)
∥∥

=
∑
l �=j

1√
k

∥∥∥Ĉ0
j(l) − C0

j(l)

∥∥∥ ≤ C2s
[

1 + (log p)/k
n(0)

]1/2
,

(16)

1
k

k∑
t=1

∥∥∥X(t)
∗,−j

(
Ĉ(t)

j − C(t)
j

)∥∥∥2

n(t) ≤ C3s
1 + (log p)/k

n(0)
, (17)

where C1, C2, and C3 are some positive constants and ‖ · ‖
denotes the �2 norm. The properties (15)–(17) are crucial work-
ing assumptions in our testing for k networks.

In Section 3, we will provide one valid and tuning-free con-
struction of initial estimators with the above desired proper-
ties. A distinct characteristic is that the analysis of our tuning-
free estimator is new due to the heterogeneity of noises across
different classes, which makes typical tuning-free procedures
such as the scaled Lasso (Sun and Zhang 2012) and the square-
root Lasso (Belloni, Chernozhukov, and Wang 2011) no longer
work in the current setting; see Section 3 for more detailed
discussions.

Theorem 2.1. Assume that Conditions 2.1–2.2 hold, the initial
estimators Ĉ0

j each satisfy properties (15)–(17) with probability
at least 1 − C0p1−δ , s

(
k + log p

)
/n(0) = o(1), and log(k/δ1) =

O{s[1 + (log p)/k]} for some constants C0 > 0, δ > 1 and δ1 =
o(1). Then for each pair (a, b) with 1 ≤ a �= b ≤ p, it holds with
probability at least 1 − (12 + C0)p1−δ − 4δ1 that∣∣∣∣∣∣

[ k∑
t=1

n(t)ω̂(t)
b,bω̂

(t)
a,a

(
T(t)

n,k,a,b − J(t)
n,k,a,b

)2
]1/2

− U∗
n,k,a,b

∣∣∣∣∣∣
≤ C

(
s
k + log p√

n(0)

)
,

where C > 0 is some constant. Moreover, under null hypothesis
H0,ab in (1) we have U∗2

n,k,a,b ∼ χ2(k) and with the same

probability bound that
∣∣∣Un,k,a,b − U∗

n,k,a,b

∣∣∣ ≤ C
(

s k+log p√
n(0)

)
.

The coupling result in Theorem 2.1 motivates us to propose
the chi-based test φ2 defined as

φ2 = 1
{

Un,k,a,b > zl2
k (1 − α)

}
(18)

for our THI framework in multiple networks which tests the null
hypothesis H0,ab in (1) using the test statistic Un,k,a,b given in
(11), where α ∈ (0, 1) is a fixed significance level and zl2

k (1 − α)

denotes the 100(1 − α)th percentile of the chi distribution with
degrees of freedom k. The name of this test is from the property
that the null distribution of the test statistic is asymptotically
close to the chi distribution.
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Proposition 2.1. Assume that all the conditions of Theorem 2.1
hold and s2(k + log p)2 = o(n(0)). Then the chi-based test φ2 in
(18) has asymptotic significance level α.

As formally justified in Proposition 2.1, the chi-based test φ2
introduced in (18) is indeed an asymptotic test with significance
level α under the sample size requirement of n(0) � s2(k +
log p)2, in the asymptotic setting in which the number of nodes
p, the number of networks k, and the joint sparsity of the
networks s can diverge simultaneously as the common level of
sample sizes n(0) → ∞.

2.3. Linear Functional-Based Test

The chi-based test φ2 introduced in Section 2.2 serves as a
general procedure to test whether the joint link strength vector
ω0

a,b is zero when there is no additional information assumed
on the k networks. In some scenarios when certain extra knowl-
edge is available, it is possible to design more powerful testing
procedures. In this spirit, we now present an alternative test
for our THI framework in multiple networks based on a linear
functional of ω0

a,b, which is closely related to its �1 norm. The
main motivation is that in some applications such as the GWAS
example mentioned in Section 1 (Marigorta and Navarro 2013),
the sign relationship of some target edge across k graphs is
provided implicitly or explicitly. For example, one may expect
that all the ω

(t)
a,b with 1 ≤ t ≤ k share the same sign, that is, they

are either all nonpositive or all nonnegative. In such a scenario,
testing the null hypothesis H0,ab : ω0

a,b = 0 is equivalent to
testing ‖ω0

a,b‖1 = |∑k
t=1 ω

(t)
a,b| = 0. In a more general setting,

the sign relationship can be represented by a unique sign vector
ξ = (ξ1, . . . , ξk)

′ ∈ {1, −1}k, up to a single sign, such that
‖ω0

a,b‖1 = ∑k
t=1 ξtω

(t)
a,b or ‖ω0

a,b‖1 = |∑k
t=1 ξtω

(t)
a,b|, and thus

the null hypothesis H0,ab : ω0
a,b = 0 takes an equivalent form of

‖ω0
a,b‖1 = |∑k

t=1 ξtω
(t)
a,b| = 0.

Given the above sign vector ξ , we define our second test
statistic, the linear functional-based test statistic Vn,k,a,b(ξ), as

Vn,k,a,b(ξ) =
k∑

t=1
ξt

√
n(t)ω̂(t)

a,aω̂
(t)
b,bT(t)

n,k,a,b (19)

with the bias corrected statistic T(t)
n,k,a,b given in (9). Intuitively,

with the sign information, the proposed test statistic Vn,k,a,b(ξ)

has the same order of magnitude as
√

n‖ω0
a,b‖1, noting that

T(t)
n,k,a,b is close to −cov(ε

(t)
a , ε(t)

b ). To characterize the limiting
distribution of the linear functional-based test statistic Vn,k,a,b
under the null, we introduce another statistic V∗

n,k,a,b(ξ) as

V∗
n,k,a,b(ξ) =

k∑
t=1

ξtV∗(t)
n,k,a,b

=
k∑

t=1
ξt

√
ω

(t)
b,bω̃

(t)
a,a

n(t)

n(t)∑
i=1

(
E(t)

i,a E(t)
i,b − EE(t)

i,a E(t)
i,b

)
,

where the statistic V∗(t)
n,k,a,b is given in (12). With the extra sign

information, our new test statistic is powerful whenever the
signal strength ‖ω0

a,b‖1 becomes large; see Section 2.4 for the

characterization of the testable region boundary under the alter-
native hypothesis for which the condition is imposed on the �1
norm ‖ω0

a,b‖1. It is easy to see that under the null, V∗(t)
n,k,a,b ∼

N(0, 1) are independent of each other over 1 ≤ t ≤ k, and
consequently V∗

n,k,a,b(ξ) ∼ N(0, k) for any given sign vector ξ .

Theorem 2.2. Assume that all the conditions of Theorem 2.1
hold. Then for each pair (a, b) with 1 ≤ a �= b ≤ p, it holds
with probability at least 1 − (12 + C0)p1−δ − 4δ1 that∣∣∣∣∣

k∑
t=1

ξt

[√
n(t)ω̂(t)

b,bω̂
(t)
a,a

(
T(t)

n,k,a,b − J(t)
n,k,a,b

)
− V∗(t)

n,k,a,b

]∣∣∣∣∣
≤ C

(
s
k + log p√

n(0)

)
, (20)

where C > 0 is some constant. Moreover, under null hypothesis
H0,ab in (1) we have J(t)

n,k,a,b = 0, V∗
n,k,a,b(ξ) ∼ N(0, k) and

with the same probability bound,
∣∣∣Vn,k,a,b(ξ) − V∗

n,k,a,b(ξ)

∣∣∣ ≤
C
(

s k+log p√
n(0)

)
.

Theorem 2.2 quantifies the asymptotic behavior of the linear
functional-based test statistic Vn,k,a,b(ξ) under the null hypoth-
esis H0,ab in (1). Assume further that the sign vector ξ is given
uniquely such that ‖ω0

a,b‖1 = ∑k
t=1 ξtω

(t)
a,b under the alternative

hypothesis. Then Theorem 2.2 and the definition of the statistic
J(t)
n,k,a,b in (10) motivate us to propose a one-sided test, the linear

functional-based test φ1, defined as

φ1 = 1
{

Vn,k,a,b(ξ)√
k

< z(α)

}
(21)

for our THI framework in multiple networks, where α ∈ (0, 1)

is a fixed significance level and z(α) stands for the 100αth
percentile of the standard Gaussian distribution. When the sign
vector ξ is given up to a single sign, for example, when we know
only that all the signs ξt with 1 ≤ t ≤ k are identical, it is more
natural to define a two-sided test. We omit the details of such
two-sided test for simplicity.

Proposition 2.2. Assume that all the conditions of Theorem 2.2
hold and s2k−1(k + log p)2 = o(n(0)). Then the linear
functional-based test φ1 in (21) has asymptotic significance
level α.

Remark 2.1. The sample size requirements in Propositions 2.1–
2.2 can be weakened if one only cares about the statistical
inference of the joint link strength vector ω0

(a,b)
for some fixed

pair (a, b). Indeed, Propositions 2.1–2.2 are still valid as long
as the joint degrees of k networks for nodes a and b satisfy
the corresponding sample size requirements. That is, one can
replace s by maxi∈{a,b}

∑
1≤j �=i≤p 1{ω0

i,j �= 0}. This is a weaker
assumption because the degrees for nodes other than a and b
can be much larger.

Proposition 2.2 which is based on Theorem 2.2 shows that the
linear functional-based test φ1 introduced in (21) is indeed an
asymptotic test with significance level α under the sample size
requirement of n(0) � s2k−1(k+ log p)2. It is worth mentioning
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that most existing results in the literature either focus on testing
procedures for a single graph or develop estimation proce-
dures for multiple graphs without statistical inference in high
dimensions. In contrast, our developments in Theorems 2.1–2.2
and Propositions 2.1–2.2 provide testing procedures in multiple
graphs for the first time. For the case of a single graph with k =
1, our test statistics essentially reduce to the one introduced in
Liu (2013). This suggests an alternative way of constructing test
statistics, which is to construct a test statistic for each individual
graph 1 ≤ t ≤ k as in Liu (2013) and then naively pool them
together in the same way as for our φ2 and φ1.

Let us gain some insights into our tests with a comparison
to the above naive combination procedure. The advantage of
our linear functional-based test φ1 is reflected on the sample
size requirement of s2k−1(k + log p)2 = o(n(0)) established in
Proposition 2.2, thanks to the information of structural similar-
ity across the k graphs which makes the working assumptions
(15)–(17) possible. In comparison, to test the null hypothesis
H0,ab : ω0

a,b = 0 one can also apply the procedure in Liu
(2013) to each of the k graphs and then construct a similar
linear functional-based test as in (21). For such naive com-
bination procedure, it can be shown that a stronger sample
size assumption s2k

(
log p

)2 = o(n(0)) is required. In fact, we
further establish in Section 2.4 that the sample size requirement
s2k−1(k + log p)2 = o(n(0)) for our linear functional-based test
φ1 is minimal in a decision theoretic framework.

Similarly the advantage of our chi-based test φ2 is rooted in
the sample size requirement of s2(k+ log p)2 = o(n(0)) obtained
in Proposition 2.1. In contrast, one can also construct a similar
chi-based test as in (18) based on the residuals Ê(t)

i,j which are
obtained through an application of the procedure in Liu (2013)
to each individual graph. For such naive combination testing
procedure, it can be shown that the sample size assumption
s2k

(
log p

)2 = o(n(0)) is required. This demonstrates that in a
range of typical scenarios when the number of networks does
not grow excessively fast with k = o{(log p

)2}, our chi-based
test φ2 indeed has a weaker sample size requirement.

2.4. Optimality of Tests and Minimum Sample Size
Requirement

So far we have introduced our THI framework in multiple
networks with two different types of tests for testing the null
hypothesis H0,ab : ω0

a,b = 0 in (1). The constructions of our test
statistics are motivated by the possible alternative hypothesis. In
particular, the chi-based test φ2 should be powerful as long as
the joint link strength ‖ω0

a,b‖ is away from zero, while the linear
functional-based test φ1 will be powerful when the signs of ω0

a,b
are known and ‖ω0

a,b‖1 becomes large. Along this direction,
we now further investigate two types of composite alternative
hypotheses. We define the set of all s-sparse multiple networks
as

F(s) = F(s, M) =
⎧⎨
⎩�0 : max

1≤a≤p

∑
1≤b �=a≤p

1{ω0
a,b �= 0} ≤ s

and Condition 2.1 holds

⎫⎬
⎭ , (22)

where �0 = {�(t)}k
t=1 stands for the set of k precision matrices

with slight abuse of notation and s is some positive integer. Then
the null hypothesis H0,ab in (1) can be rewritten as

H0,ab = H0,ab(s) : �0 ∈ N (s) ≡ {
�0 : �0 ∈ F(s), ω0

a,b = 0
}

.
(23)

In particular, we consider the following two alternative hypothe-
ses

Hl2
1,ab(s, ε) : �0 ∈ Al2(s, ε)≡ {

�0 : �0 ∈ F(s),
∥∥ω0

a,b
∥∥ ≥ ε

}
,

(24)

Hl1
1,ab(s, ε, ξ) : �0 ∈ Al1(s, ε, ξ)

≡
{
�0 : �0 ∈ F(s), ξ ′ω0

a,b = ∥∥ω0
a,b
∥∥

1 ≥ ε
}

,
(25)

where the former is introduced to investigate the chi-based test
φ2, the latter is for the linear functional-based test φ1, and ε > 0.

It is clear that the difficulty of testing the null H0,ab in (23)
against the alternative Hl2

1,ab(s, ε) in (24) or against the alter-
native Hl1

1,ab(s, ε, ξ) in (25) depends critically on the quantity
ε. The smaller ε is, the more difficult to distinguish between
the null and alternative hypotheses. A natural and fundamental
question is what the boundary of the testable region is. Such
a boundary means that it is impossible to detect whether the
observations are from the null against the alternative as long
as ε is smaller than it, while there exists some test which can
distinguish between the two hypotheses whenever ε is far larger
than it.

To characterize the testable region boundary, we introduce
the separating rate εn of null H0,ab against alternative Hl2

1,ab(s, ε)
or Hl1

1,ab(s, ε, ξ). For any fixed significance level α ∈ (0, 1) and
power α < β < 1, the separating rate for alternative H1 =
Hl2

1,ab(s, ε) or Hl1
1,ab(s, ε, ξ) is said to be εn if there exist some test

ψ0 of asymptotic significance level α and some absolute large
constant c > 0 such that

lim
n(0)→∞

inf
v∈A(c)

Pv(ψ0 rejects H0,ab) ≥ β , (26)

while there exists some absolute small constant c′ > 0 such that
for any test ψ of asymptotic significance level α, it holds that

lim
n(0)→∞

inf
v∈A(c′)

Pv(ψ rejects H0,ab) < β , (27)

where A(c) represents Al2(s, cεn) or Al1(s, cεn, ξ). By symme-
try, it is easy to see that the separating rate εn for alternative
Hl1

1,ab(s, ε, ξ) defined above is free of the sign vector ξ .
Our major goals in this section are 2-fold. First, we identify

the separating rates εn for alternative Hl2
1,ab(s, ε) under the sam-

ple size assumption s2(k + log p)2 = o(n(0)) and for alterna-
tive Hl1

1,ab(s, ε, ξ) under the sample size assumption s2k−1(k +
log p)2 = o(n(0)). In particular, we show later in Theorem 2.3
that εn � √

k1/2/n(0) for alternative Hl2
1,ab(s, ε) and εn �√

k/n(0) for alternative Hl1
1,ab(s, ε, ξ). Moreover, our newly sug-

gested chi-based test φ2 and linear functional-based test φ1
achieve these two separating rates, respectively, and hence are
optimal in this sense. Second, we investigate the optimality
of the sample size assumption s2k−1(k + log p)2 = o(n(0))
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for the �1 type alternative Hl1
1,ab(s, ε, ξ) in (25). Specifically, we

establish later in Theorem 2.4 that in order to have separating
rate εn � √

k/n(0), this sample size requirement is necessary
under the setting of k = O(log p). Therefore, we conclude that
the linear functional-based test φ1 is optimal to test null H0,ab
from alternative Hl1

1,ab(s, ε, ξ) under the minimum sample size
requirement. It is worth mentioning that major contributions of
our second goal lie in a new construction of a related minimax
lower bound argument.

Theorem 2.3. (1) Under the conditions of Proposition 2.1, the
separating rate for testing H0,ab against Hl2

1,ab(s, ε) is εn =√
k1/2/n(0) and the chi-based test φ2 in (18) achieves this rate,

that is, for any given β > α, (26) is valid with ψ0 = φ2 and
A(c) = Al2(s, cεn) for some sufficiently large constant c > 0.

(2) Under the conditions of Proposition 2.2, the separating
rate for testing H0,ab against Hl1

1,ab(s, ε, ξ) is εn = √
k/n(0) and

the linear functional-based test φ1 in (21) achieves this rate.

In fact, the detection problems of the separating rates for
Hl2

1,ab(s, ε) and Hl1
1,ab(s, ε, ξ) investigated in Theorem 2.3 are

closely related to those of optimal quadratic functional and lin-
ear functional estimation for Gaussian sequence models, respec-
tively. See, for example, Baraud (2002), Ingster and Suslina
(2012), and Collier, Comminges, and Tsybakov (2017) for more
details. Yet Gaussian graphical models are much more com-
plicated than Gaussian sequence models. Even for the simple
setting of k = 1, it was shown in Ren et al. (2015) that minimax
estimation of each single edge ωa,b can be different from the
parametric rate

√
n. This subtle difference is reflected in the

sample size requirements stated in Theorem 2.3 for the setting
of multiple networks.

Theorem 2.4. Assume that k ≤ M1 log p, s > 2, s2k−1(k +
log p)2 > Cn(0), p > sμ, and s[1 + (log p)/k]/n(0) = o(1)

for some large constants M1, C > 0 and some μ > 2. Then
given any α < β < 1 and some constant c > 0, there exists
no test of asymptotic significance level α satisfying (26) with
A(c) = Al1(s, cεn, ξ) and εn = √

k/n(0).

Theorem 2.4 further justifies that the sample size require-
ment of s2k−1(k + log p)2 = o(n(0)) for the �1 type alternative
Hl1

1,ab(s, ε, ξ) in (25) is indeed sharp. To obtain such result,
one needs to construct a lower bound involving the sample
size requirement and the separating rate. For the single graph
setting of k = 1, this is related to the minimax lower bound
of estimating each single edge ωa,b, which was explored in Ren
et al. (2015). The lower bound argument in Ren et al. (2015) is,
however, not applicable to the current setting even for the case
of k = 1, since the construction of the least favorable subset of
the parameter space in Ren et al. (2015) does not allow ωa,b to be
close to zero, which is in fact the focus of the testing problem.
To overcome such difficulty, we propose a very different least
favorable subset in our analysis of Theorem 2.4.

2.5. Comparisons With Existing Methods

As mentioned in the Section 1, there is a rich and growing
line of research on multiple networks in the setting of Gaussian

graphical models. Due to the space constraint, we compare our
procedure with some most relevant ones in the literature. Our
work makes no assumption on the ordering for the k networks.
Existing work along this line includes, for instance, Guo et al.
(2011), Danaher, Wang, and Witten (2014), Zhu, Shen, and
Pan (2014), and Cai et al. (2016). The main advantages of our
proposed THI method over these existing approaches are 3-fold.
First, our THI framework with the two specific testing proce-
dures provides statistical inference for each joint link strength
vector ω0

a,b over k networks to reflect its statistical significance.
This is of crucial importance for model interpretation, false
discovery rate control, and global multiple precision matrices
estimation in applications. In contrast, none of these previous
attempts along this line goes beyond point estimation to inves-
tigate statistical inference.

Second, our theoretically optimal procedure is tuning free
and data driven. This is mainly due to a novel approach of HGSL
as a convex program as well as a computationally fast algorithm
with convergence guarantees suggested in Section 3 for the
setting of high-dimensional multi-response regression with
heterogeneous noises, which may be of independent interest.
Different from ours, all existing methods typically involve one or
more tuning parameters. Moreover, some of these methods rely
on nonconvex optimization problems whose global solutions
cannot always be guaranteed to be computable. In contrast, our
procedure not only enjoys the computational efficiency but also
avoids the additional practical and theoretical issues caused by
the use of the cross-validation; see the simulation studies in
Section 4.1 for a detailed comparison on the computational cost
of our algorithm with competitors which demonstrates the com-
putational advantage of our procedure. Third, our procedure
admits the optimality properties established for two different
types of tests in terms of the separating rates, which follow
from three new lower bound arguments introduced in Sections
C.3 and C.4 of the supplementary material. To the best of our
knowledge, there are no such immediate results available in the
literature of multiple Gaussian graphical models. The obtained
optimality results ensure that our testing procedures are
optimal.

More thorough theoretical comparisons of our method with
competitors are possible but involved, particularly given that
no results of hypothesis testing are provided for these existing
methods. For a fair comparison, we now focus on the require-
ments for support recovery results of different methods under
the assumption that all k graphs share a common sparsity struc-
ture. To this end, we need to go a little further based on our chi-
based test φ2 by replacing α in (18) by p−2−ρ with some ρ > 0.
Specifically, for any given ρ > 0 we define the THI estimator Ê
for the support or edge set E corresponding to the k graphs in
(3) as

(a, b) ∈ Ê when Un,k,a,b > zl2
k (1 − p−2−ρ), (28)

where all the notation is the same as in (18). The following
proposition establishes that the THI estimator Ê introduced
in (28) is indeed capable of recovering the network structure
exactly with large probability as long as the minimum signal
strength is above a certain threshold.
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Proposition 2.3. Assume that all the conditions of
Proposition 2.1 hold and min(a,b)∈E ‖ω0

a,b‖ > C√[(k log p)1/2 + log p]/n(0) for some sufficiently large constant
C > 0. Then the THI estimator Ê given in (28) satisfies Ê = E
with probability at least 1 − O(p−ρ).

In view of the separating rate C
√

k1/2/n(0) obtained in Theo-
rem 2.3 (1) for a single joint link strength vector, we see that the
lower bound on the minimum signal strength min(a,b)∈E ‖ω0

a,b‖
in Proposition 2.3 for support recovery comes with an extra
factor of (log p)1/4 for the case of log p = O(k), or with the
factor k1/4 replaced by (log p)1/2 for the case of k = O(log p).
We would like to point out that such increased minimum signal
strength generally cannot be avoided and stems from the union
bound argument taken over all pairs of nodes (a, b) in the edge
set E .

Let us gain some insights into the advantage of our THI
procedure on support recovery in comparison to some existing
approaches. To recover the support successfully, at least the
minimum signal strength requirement of min(a,b)∈E ‖ω0

a,b‖ ≥
C
√

k is needed in Guo et al. (2011), and the assumption of
min(a,b)∈E ‖ω0

a,b‖ ≥ CMn
√

(k log p)/n is needed in Cai et al.
(2016), where Mn ≡ max1≤t≤k max1≤b≤p �

p
a=1|ω(t)

a,b| denoting
the largest matrix 1-norm among k graphs can diverge with n(0)

under our setting, and C > 0 is some constant. In addition,
no theoretical justification is provided in Danaher, Wang, and
Witten (2014), and the support recovery result in Zhu, Shen, and
Pan (2014) cannot be easily compared due to an extra clustering
structural assumption. In summary, compared with existing
methods our optimal THI approach yields a sharper minimum
signal strength requirement for recovering the support of the
networks with common structure, thanks to our optimal testing
procedures.

3. Tuning-Free Heterogeneous Group Square-Root
Lasso

Our THI framework suggested in Section 2 for uncovering the
heterogeneity in sparsity patterns among multiple networks via
large-scale inference relies critically on an efficient procedure for
fitting the high-dimensional multi-response linear regression
model (6) for each node 1 ≤ j ≤ p. We now introduce such
an approach HGSL that can be of independent interest when
one is in need of a tuning-free method for the general setting
of high-dimensional multi-response regression with heteroge-
neous noises. Specifically, we need to construct some initial
estimators Ĉ0

j = (Ĉ(1)′
j , . . . , Ĉ(k)′

j )′ for the (p − 1)k-dimensional

regression coefficient vectors C0
j =

(
C(1)′

j , . . . , C(k)′
j

)′
in model

(6) with 1 ≤ j ≤ p that each satisfy properties (15)–(17) with
significant probability, say, at least 1 − C0p1−δ for some positive
constants C0 and δ > 1.

By symmetry, we can focus only on the case of j = 1,
hereafter without loss of generality. Recall that in our model
(2), for each graph 1 ≤ t ≤ k we have an n(t) × p
data matrix X(t)= (X(t)

1,∗, . . . , X(t)
n(t),∗)

′ with iid rows X(t)
i,∗ =

(X(t)
i,1 , . . . , X(t)

i,p )′ ∼ N(0, (�(t))−1) for 1 ≤ i ≤ n(t). Using

the matrix notation, the multi-response linear regression model
(6) can be rewritten as
⎛
⎜⎜⎜⎜⎝

X(1)
∗,1

X(2)
∗,1
...

X(k)
∗,1

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

X(1)
∗,−1

X(2)
∗,−1

. . .
X(k)

∗,−1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

C(1)
1

C(2)
1
...

C(k)
1

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝

E(1)
∗,1

E(2)
∗,1
...

E(k)
∗,1

⎞
⎟⎟⎟⎟⎠

≡ X0∗,−1C0
1 + E0∗,1 (29)

lying in the N-dimensional Euclidean space, where X(t)
∗,1 =

(X(t)
1,1, . . . , X(t)

n(t),1)
′, N = ∑k

t=1 n(t) denotes the total sample
size, E(t)

∗,1 = (E(t)
1,1, . . . , E(t)

n(t),1)
′ is the same as in (12) with iid

components from distribution N(0, (ω(t)
1,1)

−1), and we adopt the
compact notation introduced in Section 2.2. In addition, we
have the group sparsity structure for the regression coefficient
vector C0

1, which means that all but at most s subvectors C0
1(l) ∈

R
k are zero with C0

1(l) and s defined in (7) and (14), respectively.
The joint group structure and sparsity structure in the multi-

response linear regression model (29) naturally motivate us to
exploit some variant of the group Lasso method (Yuan and
Lin 2006) to estimate the coefficient vector C0

1. The asymptotic
properties of the standard group Lasso are well understood and
imply faster rates of convergence in estimating C0

1 and X0∗,−1C0
1,

compared to the standard Lasso approach (Tibshirani 1996).
See, for instance, Huang and Zhang (2010) and Lounici et al.
(2011) for more details as well as Uematsu et al. (2017) for more
flexible high-dimensional multi-response regression. The opti-
mal choice of an important tuning parameter, the regularization
parameter λ ≥ 0, in these methods, however, depends critically
on the common noise level σ and is thus typically unknown in
practice. Hence, one needs a practical and data-driven choice of
λ that can lead to optimal estimation. This important issue has
been investigated recently in Bunea, Lederer, and She (2014) and
Mitra and Zhang (2016) by extending the tuning-free methods
of the square-root Lasso (Belloni, Chernozhukov, and Wang
2011) and the scaled Lasso (Sun and Zhang 2012) to the group
setting, respectively.

Yet the aforementioned existing tuning-free approaches in
the standard group Lasso setting are not applicable to the model
setting (29), which is due to the heterogeneity of the noise level
in our model. Indeed, instead of a common noise level for all
components of the error vector E0∗,1 = (E(1)′

∗,1 , . . . , E(k)′
∗,1 )′, we

allow each class to have its own noise level, say, (ω
(t)
1,1)

−1 for
1 ≤ t ≤ k. The strategy used in the square-root Lasso and the
scaled Lasso, which essentially includes an additional parameter
for the noise level, can handle only the homogeneous noises.
To deal with such heterogeneity, we extend the group square-
root Lasso one step further to allow for heterogeneous noises.
We would like to point out that such extension for achieving the
tuning-free property is generally never trivial, and the novelty
of our analysis is due to an intrinsic constant level upper bound
obtained on the fitted residual level for each class; see Lemma
D.7 in Section D.7 of the supplementary material for more
details. Liu, Wang, and Zhao (2015) also considered heteroge-
neous noises but the proposed method cannot be readily applied
in our model.
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To ease the presentation, we first introduce some notation.
Define a function Qt(β(t)) = ‖X(t)

∗,1 − X(t)
∗,−1β

(t)‖2/n(0) with
β(t) = (β

(t)
2 , . . . , β(t)

p )′ ∈ R
p−1 matching the index set of

C(t)
1 and 1 ≤ t ≤ k. Denote by β0 = (β(1)′, . . . , β(k)′)′ a

(p − 1)k-dimensional vector and β0
(l) = (β

(1)

l , . . . , β(k)
l )′ ∈ R

k

the lth group of β0 with 1 ≤ l ≤ p in the same way as we
defined C0

1(l) in (7). We further introduce a diagonal matrix
D̄(t)

1 = diag(X(t)′
∗,−1X(t)

∗,−1/n(t)) of order p − 1 and then put
them together to form a new diagonal scaling matrix D̄1 of order
(p−1)k, with the submatrix of D̄1 corresponding to the lth group
denoted by D̄1(l) and the tth entry on the diagonal of D̄1(l) given
by X(t)′

∗,l X(t)
∗,l/n(t).

Our new approach of the heterogeneous group square-root
Lasso (HGSL) is defined as the one given by the following
optimization problem

Ĉ0
1 = arg minβ0∈R(p−1)k

{ k∑
t=1

Q1/2
t (β(t)) + λ

p∑
l=2

∥∥∥D̄1/2
1(l)β

0
(l)

∥∥∥
}

,

(30)
where the regularization parameter λ > 0 which is chosen to
be independent of the noise levels (ω

(t)
1,1)

−1 for 1 ≤ t ≤ k
will be provided explicitly later. Clearly, our HGSL procedure
defined in (30) is a convex program and yields an estimator
for the (p − 1)k-dimensional regression coefficient vectors C0

1.
For the estimation of general C0

j with 1 ≤ j ≤ p, one can
simply replace the corresponding subscript 1 by j in the above
method (30). The optimization problem in (30) coincides with
the standard square-root Lasso in Belloni, Chernozhukov, and
Wang (2011) for the case of k = 1, and differs from the standard
group square-root Lasso in Bunea, Lederer, and She (2014)
which is defined with the loss function (

∑k
t=1 Qt(β(t)))1/2 in

place of ours
∑k

t=1 Q1/2
t (β(t)) when k ≥ 2. Without such new

formulation, the standard group square-root Lasso, however,
cannot carry over to take into account the heterogeneity issue
when the noise level varies across different classes.

As revealed in the analysis of Theorem 3.1 to be presented,
a key ingredient for the success of our HGSL estimators is an
event B1 defined as

B1 =
⎧⎨
⎩

max2≤l≤p

∥∥∥D̄−1/2
E1 D̄−1/2

1(l) X0′
∗,(l)E

0∗,1

∥∥∥
√

n(0)
≤ λ

ξ − 1
ξ + 1

⎫⎬
⎭ (31)

for any fixed scalar ξ > 1, where X0
∗,(l) is an N × k submatrix of

X0∗,−1 given by columns corresponding to the lth group and D̄E1
is a k × k diagonal matrix with tth diagonal entry the squared
�2 norm of the error vector E(t)

∗,1, that is, (D̄E1)t,t = ‖E(t)
∗,1‖2 for

1 ≤ t ≤ k. Similarly, we can define the event Bj as in (31) for
each node 1 ≤ j ≤ p. Each event Bj represents the one that the
pure noise incurred is dominated by the penalty level. To ensure
that event Bj holds with high probability, we need to carefully
pick a sharp choice of the regularization parameter λ, that is,
free of the heterogeneous noise levels.

Theorem 3.1. Assume that Conditions 2.1–2.2 hold, s ≤
Cξ n(0)/ log p for some constant Cξ > 0, and let Ĉ0

j be the
solution as in (30) for 1 ≤ j ≤ p with

λ = ξ+1
ξ−1

[
k+2δ log p+2

√
δk log p

n(0)(1−τ)

]1/2
, τ 2 = 8(δ log p +

log k)/n(0) = o(1), and δ > 1 some constant. Then the event
Bj holds with probability at least 1 − 3p1−δ , and it holds with
probability at least 1 − 4p1−δ that

∑
1≤l≤p, l �=j

1√
k

∥∥∥Ĉ0
j(l) − C0

j(l)

∥∥∥ ≤ Cs
[

1 + (log p)/k
n(0)

]1/2
, (32)

1√
k

∥∥∥Ĉ0
j − C0

j

∥∥∥ ≤ C
[

s
1 + (log p)/k

n(0)

]1/2
, (33)

1
k

k∑
t=1

∥∥∥X(t)
∗,−1

(
Ĉ(t)

j − C(t)
j

)∥∥∥2

n(0)
≤ Cs

1 + (log p)/k
n(0)

, (34)

where C > 0 is some constant.

Theorem 3.1 establishes the estimation and prediction
bounds for our HGSL estimators. The novelty of our technical
analysis comes from an intrinsic upper bound on the fitted
residual level for each class. It is worth mentioning that with the
knowledge of such quantity, we can also apply the regular group
Lasso with a tuning parameter depending on this quantity and
obtain a corresponding justifiable theorem. The intrinsic upper
bound in our analysis, however, does not appear in the HGSL
optimization problem in (30) and provides only theoretical
support, while the regular group Lasso implemented in the
above way has to apply it in the tuning parameter explicitly.
Consequently, this possibly loose intrinsic upper bound can
yield large bias for the regular group Lasso, but still sharp
results for our HGSL method; see the proofs of Theorem 3.1
and Lemma D.7 in Sections C.5 and D.7 of the supplementary
material, respectively, for more details.

Let us gain some further insights into our tuning-free HGSL
method by comparing the sharpness of our regularization
parameter λ specified in Theorem 3.1 with the one used by
Bunea, Lederer, and She (2014) for the setting of homogeneous
noises. One advantage of our choice of λ comes from the use
of the scaling matrix D̄1, which makes the noise per column of
X0

∗,(l) homogeneous and sharpens λ by a factor given by the ratio
of the largest and the smallest �2 norms among all columns.
Moreover, thanks to the simple block diagonal structure of
matrices X0

∗,(l) a direct and sharp chi-square tail probability
(Laurent and Massart 2000) provides us sharper constant factors
for both k and log p.

As demonstrated in Theorem 3.1, the tuning parameter λ can
be calculated theoretically by applying the formula therein with
some small and fixed constants ξ and δ, for example, ξ = δ =
1.001. Our empirical studies show that HFSL estimators are not
sensitive to ξ and δ as long as they are not chosen too large.
Theorem 3.1 guarantees that with such pre-calculated λ, HGSL
estimator enjoys the nice properties as described in (32)– (34).
Therefore, in this sense, our method is truly tuning-free. This is
in fact also the major distinction from many existing methods
in the literature, which depend on some tuning parameters that
need to be chosen adaptively using training data by, for example,
cross-validation.

The theoretical choice of parameter λ for HGSL established
in Theorem 3.1 has been justified to yield optimal conver-
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gence rates as sample size goes to infinity. With finite sam-
ple, however, such λ may not yield the best results. Next, we
introduce a simulation strategy to choose λ which can adapt
automatically with sample size. We first simulate the value of
‖D̄−1/2

E1 D̄−1/2
1(2) X0′

∗,(2)E
0∗,1‖/(n(0))1/2 for 10,000 times and pick the

100(1 − 1/pδ)th percentile of its empirical distribution as our
choice of λ(ξ − 1)/(ξ + 1) with some constant δ > 1. Here,
we take δ > 1 because of the union bound argument given that
only the setting of l = 2 is simulated. It is important to note that
the components of D̄−1/2

E1 D̄−1/2
1(2) X0′

∗,(2)E
0∗,1 are independent and

their distributions can be characterized easily since they do not
depend on the variances of X0′

∗,(2) and E0∗,1. More specifically, for
each replication 1 ≤ T ≤ 10,000 we simulate the tth compo-
nent of D̄−1/2

E1 D̄−1/2
1(2) X0′

∗,(2)E
0∗,1 independently by first generating

Z1,t,T , Z2,t,T ∼ N(0, I) ∈ R
n(t) independently and then cal-

culating Zt,T = (n(t))1/2Z′
1,t,TZ2,t,T/(‖Z1,t,T‖‖Z1,t,T‖)1/2. The

simulated value of ‖D̄−1/2
E1 D̄−1/2

1(2) X0′
∗,(2)E

0∗,1‖ can then be written
as (

∑k
t=1 Z2

t,T)1/2. Thus, our simulation strategy provides a
specific choice of the parameter λ given by

λsim = 1√
n(0)

ξ + 1
ξ − 1

inf

{
v :

10,000∑
T=1

1

{( k∑
t=1

Z2
t,T

)1/2
< v

}

/10,000 ≥ 1 − 1/pδ

}
. (35)

We will further discuss the choices of δ and ξ in Section 4.1 when
implementing our proposed procedure THI with the HGSL.

In our simulation studies, we compared the aforementioned
two methods for choosing λ—the theoretical-based and the
simulation-based ones. The results are similar with the lat-
ter slightly outperforms the former because of the finite sam-
ple effects. For this reason, all our numerical analyses use the
simulation-based choice of λ.

4. Numerical Studies

4.1. Simulation Studies

We now proceed with investigating the finite-sample per-
formance of THI with the chi-based test φ2 and the linear
functional-based test φ1, which are referred to as procedures
THI-φ2 and THI-φ1, respectively. In particular, Section 4.1.1
presents the hypothesis testing results of our methods. As
discussed in Sections 1 and 2.5, the existing methods on multiple
graphs have focused on the estimation problem instead of
statistical inference such as hypothesis testing. As such, we
modify our procedures correspondingly to obtain estimates
for the precision matrix and then compare them with some
popularly used approaches such as the MPE (Cai et al. 2016)
and the GGL and FGL (Danaher, Wang, and Witten 2014) in
Section 4.1.2. Section 4.1.3 further examines the robustness of
our methods in the presence of heavy-tailed distributions.

We consider two different model settings, Models I and II,
for generating the k networks with Gaussian graphical models
given by precision matrices �(t) = (ω

(t)
a,b) with 1 ≤ t ≤ k. In

both models, the block diagonal structure is used to introduce
sparsity in the precision matrices in the sense that all the entries

outside the diagonal blocks are equal to zero. More specifically,
our Model I assumes that all k precision matrices share the
same block diagonal structure and all diagonal blocks have the
same size. For each pair (a, b) with 1 ≤ a �= b ≤ p, if
the (a, b)th entry belongs to a diagonal block, then we draw
the values for ω

(1)

a,b , . . . , ω(k)
a,b independently from the uniform

distribution U[0.2, 0.4] or U[0.6, 1.2], depending on whether
it belongs to the upper half diagonal blocks or the lower half
diagonal blocks, respectively. All the off-diagonal entries within
the diagonal blocks are generated independently. Finally we set
the diagonal entries as 1 for the upper half diagonal blocks and 3
for the lower half ones. Observe that in Model I, each joint link
strength vector ω0

a,b = (ω
(1)

a,b , . . . , ω(k)
a,b)

′ with a �= b is either a
zero vector or of k nonzero components.

To make the sparsity pattern more flexible compared to
Model I, our Model II employs a different data generating
scheme for entries inside the diagonal blocks with the rest of the
setting the same as in Model I. Specifically, for each entry (a, b)

with a �= b inside a diagonal block we first flip a fair coin. If it is
heads, then the joint link strength vector ω0

a,b is generated in the
same way as in Model I. If it is tail, we randomly draw an integer
k0 from the uniform distribution over {1, . . . , k}, and then set
ω

(t)
a,b = 0 for each 1 ≤ t �= k0 ≤ k and generate ω

(k0)
a,b from the

uniform distribution U[0.2, 0.4] or U[0.6, 1.2], depending on
whether the pair (a, b) falls in the upper half diagonal blocks or
the lower half diagonal blocks, respectively. Clearly, Model II is
sparser than Model I.

For each of the two models introduced above, we further
consider three different settings of parameters by varying the
number of networks k and the number of nodes p, while fixing
the sample sizes n(t) = n(0) at 100 for Model I and at 200
for Model II with 1 ≤ t ≤ k. We also fix the block size to
be 8 and set the number of repetitions as 100 in each setting.
The tuning-free regularization parameter λ is chosen as λsim
in (35) using our simulation strategy with δ = 1 and ξ =
∞. Alternatively one can also use the choice of parameter λ

given in Theorem 3.1, which results in similar but slightly worse
performance compared to the use of λsim.

4.1.1. Testing Results
To see how our proposed methods THI-φ2 and THI-φ1 perform
in finite samples, let us start with the hypothesis testing results
in Models I and II. For each simulated dataset, we apply the THI
procedure with the chi-based test φ2 and the linear functional-
based test φ1 with sign vector ξ = (1, . . . , 1)′ to each pair of
nodes (a, b) with a �= b to detect whether some edges exist
between nodes a and b for any of the k networks. We set the
significance level α to be 0.05 and employ two different methods
to calculate the critical values. The first method computes the
critical values using the asymptotic null distributions estab-
lished in Theorems 2.1 and 2.2, with the corresponding critical
values named as “Theoretical” in Tables 1 and 2. The second
method, called “Empirical” in Tables 1 and 2, computes the
critical values empirically based on the values of the test statistic
Un,k,a,b for the chi-based test φ2, or the test statistic Vn,k,a,b(ξ)

for the linear functional-based test φ1, for the entries outside the
diagonal blocks. Since the entries outside the diagonal blocks are
all equal to zero across the k networks, the 5% critical value can
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Table 1. Means and SD (in parentheses) of testing results for THI methods in Model I with α = 0.05.

FNR (×10−2) FPR ROC area
Method k p Empirical Theoretical (×10−2) (×10−2)

Setting 1 5 50 0.375 (0.484) 0.369 (0.454) 5.044 (0.656) 99.90 (0.078)
THI-φ1 Setting 2 10 50 0 (0) 0 (0) 4.945 (0.752) 1 (0)

Setting 3 10 200 0.001 (0.014) 0.001 (0.014) 5.005 (0.170) 1 (0)
Setting 1 5 50 3.268 (1.568) 3.161 (1.422) 5.123 (0.722) 99.26 (0.319)

THI-φ2 Setting 2 10 50 0.006 (0.060) 0.006 (0.060) 5.352 (0.751) 1 (0.010)
Setting 3 10 200 0.077 (0.100) 0.077 (0.098) 4.896 (0.177) 99.97 (0.019)

Table 2. Means and SD (in parentheses) of testing results for THI methods in Model II with α = 0.05.

FNR (×100) FPR ROC area
Method k p Empirical Theoretical (×10−2) (×10−2)

Setting 1 5 50 0.226 (0.043) 0.224 (0.038) 5.151 (0.821) 94.54 (1.346)
THI-φ1 Setting 2 10 50 0.327 (0.041) 0.327 (0.038) 5.046 (0.932) 90.26 (2.07)

Setting 3 10 200 0.306 (0.017) 0.305 (0.016) 5.04 (0.233) 91.12 (0.771)
Setting 1 5 50 0.066 (0.019) 0.064 (0.017) 5.125 (0.747) 98.42 (0.520)

THI-φ2 Setting 2 10 50 0.099 (0.021) 0.094 (0.020) 5.416 (0.750) 97.66 (0.560)
Setting 3 10 200 0.090 (0.010) 0.090 (0.010) 5.017 (0.149) 97.79 (0.302)

be calculated as the 95th percentile of the pooled test statistics
for all such null entries.

It is worth pointing out that the “Empirical” critical value
mentioned above relies on the knowledge of true nulls and thus
can only be calculated in simulation studies. The main purpose
of using both methods for determining the critical values is to
compare the “Theoretical” values with the “Empirical” ones to
justify our findings on the null distributions of our tests φ2 and
φ1 in Theorems 2.1 and 2.2, respectively. With these critical
values, we can calculate the false positive rate (FPR) and the false
negative rate (FNR). Clearly, with the “Empirical” critical value
the FPR should be exactly 5%, and thus we omit its values and
include only the FPR based on the “Theoretical” critical value
in Tables 1 and 2, which present the means and SD of testing
results in Models I and II, respectively. The FNRs based on both
critical values are reported. In fact, we see from Tables 1 and
2 that the “Theoretical” values for both FPR and FNR are very
close to the “Empirical” ones, indicating that the asymptotic null
distributions obtained in Theorems 2.1 and 2.2 indeed match
the empirical distributions very closely. To better evaluate these
methods, we also vary the critical value and generate a full
receiver operating characteristic (ROC) curve. The areas under
the ROC curves are summarized in Tables 1 and 2. It is seen that
both methods THI-φ2 and THI-φ1 have areas under the ROC
curve close to 1 across all settings.

In particular, we see from Table 1 that the linear functional-
based test φ1 is significantly better than the chi-based test φ2
over all settings of Model I. From setting 1 to setting 2, both test-
ing procedures become better, while both procedures perform
worse from setting 2 to setting 3. These are consistent with our
theoretical results. To understand this, let us take the entry (1, 2)

as an example. In view of Theorem 2.3, the separating rate for
alternative Hl1

1,12(s, ε, ξ) with the corresponding optimal test φ1

is ‖ω0
1,2‖1 ≥ εn � √

k/n(0). Since the components of the joint
link strength vector ω0

1,2 are iid from the uniform distribution
U[0.2, 0.4], as the number of networks k increases the separating
rate condition becomes weaker because ‖ω0

1,2‖1 grows linearly
with k, while the right-hand side εn � √

k/n(0) grows at a slower

rate of
√

k. Thus, the growth of k makes the separating rate
condition easier to be satisfied. The results for the chi-based test
φ2 can be understood similarly.

Comparing Table 2 with Table 1, we see that the performance
of both testing procedures φ2 and φ1 becomes worse. This is
reasonable since Model II is sparser than Model I and thus the
separating rate conditions indicated in Theorem 2.3 are harder
to be satisfied for these sparser entries with only one nonzero
component across k networks, because this nonzero entry needs
to have magnitude much larger than εn � √

k/n(0) for test φ1
or εn � √

k1/2/n(0) for test φ2. As a consequence, different
from Table 1 in which the separating rate conditions become
easier for denser entries with all k nonzero components as k
increases, these conditions become more stringent for sparser
entries with only one nonzero component as k increases. Such
increased difficulty for sparser entries is more severe for the
linear functional-based test φ1 than for the chi-based test φ2 in
light of the separating rates εn in Theorem 2.3.

4.1.2. Precision Matrix Estimation
As mentioned before, almost all existing methods on multiple
graphs focus on the estimation part. To compare with these
existing methods, we modify our THI procedure to generate
sparse estimates of the precision matrices. Specifically, we sug-
gest a two-step procedure. In the first step, for each entry (a, b)

with a �= b, we conduct hypothesis testing at significance level
α to see whether the null hypothesis H0,ab in (1) is rejected or
not. The critical values at significance level α are calculated using
the asymptotic distributions established in Theorems 2.1 and
2.2. In the second step, for each 1 ≤ a ≤ p we estimate the
(a, a)th entry of the tth graph as ω̂

(t)
a,a, and for each rejected null

hypothesis H0,ab we estimate the (a, b)th entry of the tth graph
as −ω̂

(t)
a,aω̂

(t)
b,bT(t)

n,k,a,b in view of (10), where all the notation is the
same as in Section 2.2.

In our two-step procedure suggested above, there is one
tuning parameter which is the significance level α. To tune such
parameter, we generate an independent validation set with the



1920 Z. REN ET AL.

same sample sizes n(t) = n(0) = 100 for Model I and 200
for Model II with 1 ≤ t ≤ k. Then for each given value of
α, we obtain a set of sparse precision matrix estimates �̂0 =
(�̂(1), . . . , �̂(k)) for the k graphs using the training data, and
calculate the value of the loss function

L(�̂0) =
k∑

t=1

{
log[det(�̂(t))] − tr(�̂(t)�̂(t))

}
, (36)

where �̂(1), . . . , �̂(k) are the sample covariance matrix esti-
mators for the k graphs constructed based on the validation
data. The parameter α is then chosen by minimizing the loss
function in (36) over a grid of 10 values for α. We compare our
THI approach with three commonly used competitor methods
MPE, GGL, and FGL, each with one regularization parameter
to tune. For a fair comparison, for each method we use the same
validation set to tune the regularization parameter and choose
the one minimizing the loss function in (36) over a grid of 10
values.

To evaluate the performance of different methods, we cal-
culate three loss functions of the matrix 1-norm, the spectral
norm, and the Frobenius norm for the estimation errors, which
are denoted as �1, �2, and �F , respectively. The precision matrix
estimation results for different methods in Models I and II are
summarized in Tables 3 and 4, respectively. In particular, for
setting 3 of both models the results of MPE and FGL are not
reported because the results cannot be obtained within a reason-
able amount of time due to their excessively high computational
costs. To gain insights into the computational costs of various
methods, we record in Table 7 in the supplementary material
the average computational cost measured as the CPU time in
seconds for each method.

We see from Table 3 that across all three settings, both
methods THI-φ2 and THI-φ1 outperform the MPE, FGL, and
GGL significantly. Similar phenomenon can be observed from
Table 4. In light of the computational cost presented in Table
7 in supplementary material, the overall performance of our
methods is superior to that of all three competing methods.
Observe that setting 1 differs from setting 2 only in the number
of networks k. Therefore, it is fair to conclude that compared
to other approaches, our methods have greater advantages in
estimating a large number of graphs simultaneously, which is

Table 3. Means and SD (in parentheses) of precision matrix estimation results for
different methods in Model I.

k p Method �1 �2 �F

Setting 1 5 50 THI-φ1 4.968 (0.041) 3.417 (0.036) 6.657 (0.036)
THI-φ2 5.68 (0.070) 3.894 (0.081) 7.578 (0.131)

MPE 7.556 (0.024) 6.347 (0.056) 11.53 (0.083)
GGL 8.331 (0.009) 7.289 (0.005) 13.05 (0.005)
FGL 7.989 (0.046) 7.247 (0.044) 13.13 (0.069)

Setting 2 10 50 THI-φ1 5.117 (0.102) 3.281 (0.103) 6.416 (0.194)
THI-φ2 5.191 (0.104) 3.333 (0.108) 6.542 (0.202)

MPE 7.075 (0.022) 5.618 (0.048) 10.44 (0.070)
GGL 8.193 (0.006) 7.241 (0.005) 12.98 (0.010)
FGL 8.132 (0.003) 7.461 (0.003) 13.36 (0.004)

Setting 3 10 200 THI-φ1 5.84 (0.096) 3.997 (0.116) 14.3 (0.474)
THI-φ2 6.466 (0.111) 4.674 (0.142) 16.79 (0.594)

MPE – – –
GGL 8.467 (0.006) 7.489 (0.003) 27.01 (0.003)
FGL – – –

Table 4. Means and SD (in parentheses) of precision matrix estimation results for
different methods in Model II.

k p Method �1 �2 �F

Setting 1 5 50 THI-φ1 3.651 (0.035) 2.091 (0.018) 4.723 (0.023)
THI-φ2 3.368 (0.045) 2.042 (0.023) 4.392 (0.043)

MPE 4.909 (0.020) 3.289 (0.015) 6.668 (0.018)
GGL 7.087 (0.009) 5.155 (0.004) 9.653 (0.005)
FGL 6.748 (0.007) 4.942 (0.004) 9.563 (0.006)

Setting 2 10 50 THI-φ1 3.095 (0.018) 1.898 (0.009) 4.213 (0.011)
THI-φ2 3.019 (0.020) 1.878 (0.011) 4.099 (0.013)

MPE 3.613 (0.013) 2.264 (0.010) 4.325 (0.014)
GGL 5.708 (0.006) 4.325 (0.003) 8.238 (0.004)
FGL 5.606 (0.005) 4.27 (0.003) 8.228 (0.004)

Setting 3 10 200 THI-φ1 6.035 (0.077) 2.7 (0.018) 11.18 (0.078)
THI-φ2 5.595 (0.085) 3.448 (0.061) 15.19 (0.306)

MPE – – –
GGL 6.976 (0.005) 5.195 (0.004) 18.23 (0.004)
FGL – – –

in line with our theoretical findings that our methods allow the
number of networks k to diverge with the sample size n(0) at a
faster rate.

4.1.3. Heavy-Tailed Distributions
Model misspecification (Cule, Samworth, and Stewart 2010) can
often occur in applications. Thus, it is important to examine the
robustness of proposed methods. With this in mind, we now
investigate the finite-sample performance of our THI procedure
in the presence of heavy-tailed distributions such as the Laplace
distribution, as opposed to the Gaussianity assumed in our
theoretical developments. For each previous setting in Models
I and II, after generating the precision matrix �(t), instead
of sampling the data matrix X(t) from the Gaussian distribu-
tion with mean zero and covariance matrix (�(t))−1 we draw
X(t) from the multivariate Laplace distribution with covariance
matrix (�(t))−1. More specifically, we first generate a random
vector whose components are iid Laplace random variables with
location parameter zero and scale parameter 1/

√
2, and then

multiply this vector by (�(t))−1/2 to obtain the desired Laplace
random vector. All the rest of the settings are the same as before.

Table 5 presents the testing results of our methods THI-φ2
and THI-φ1 in the setting of heavy-tailedness. Compared to the
results in Tables 1 and 2, we observe that across all settings of
Models I and II, the performance of our methods stays almost
the same when the Gaussian distribution is replaced by the
Laplace distribution, demonstrating the robustness of our meth-
ods to the heavy-tailed distributions. We have also explored
other heavy-tailed distributions such as the t-distribution with
5 degrees of freedom and the results are very similar. To save
the space, these additional results are not presented here but are
available upon request.

4.2. Real Data Analysis

In this section, we demonstrate the performance of our meth-
ods using three microarray datasets on triple-negative breast
cancer. The three datasets come from separate studies on the
same set of genes for three different groups of cancer patients.
Direct merging of the datasets is usually less favored due to the
inherent discrepancy among the studies. Thus, we expect that
the underlying sparsity structure is the same but the nonzero
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Table 5. Means and SD (in parentheses) of testing results for THI methods in Models I and II with the Laplace distribution and α = 0.05.

Model I

FNR(×10−2) FPR ROC Area
Method k p Empirical Theoretical (×10−2) (×10−2)

Setting 1 5 50 0.345 (0.480) 0.357 (0.440) 4.986 (0.723) 99.91 (0.068)
THI-φ1 Setting 2 10 50 0 (0) 0 (0) 5.089 (0.991) 100 (0)

Setting 3 10 200 0 (0) 0 (0) 5.03 (0.172) 100 (0)

Setting 1 5 50 3.012 (1.555) 2.810 (1.438) 5.293 (0.669) 99.32 (0.287)
THI-φ2 Setting 2 10 50 0 (0) 0 (0) 5.701 (0.824) 100 (0.004)

Setting 3 10 200 0.066 (0.094) 0.063 (0.094) 5.073 (0.171) 99.98 (0.016)

Model II

FNR (×100) FPR ROC Area
Method k p Empirical Theoretical (×10−2) (×10−2)

Setting 1 5 50 0.226 (3.594) 0.226 (3.414) 5.046 (0.973) 94.49 (1.311)
THI-φ1 Setting 2 10 50 0.317 (3.765) 0.319 (3.497) 5.011 (0.908) 90.88 (1.806)

Setting 3 10 200 0.309 (1.574) 0.308 (1.567) 5.048 (0.219) 91.03 (0.766)

Setting 1 5 50 0.069 (0.020) 0.066 (0.019) 5.388 (0.854) 98.43 (0.512)
THI-φ2 Setting 2 10 50 0.093 (0.020) 0.090 (0.019) 5.375 (0.725) 97.66 (0.629)

Setting 3 10 200 0.089 (0.010) 0.088 (0.010) 5.083 (0.177) 97.83 (0.320)

link strengths may vary across these groups. The same dataset
has been analyzed in Ma, Ren, and Tseng (2018). Following
the procedure therein, we pre-process the data and after the
initial filtering, we have 275, 178, and 165 samples in each
dataset, respectively, where for each observation 3377 genes
are retained. To further reduce the dimensionality, we rank the
genes according to the sum of variances across the three datasets
and keep only the top p = 150 ones with largest variations for
our analysis.

Since our procedure is designed to analyze a large number
of graphs, to demonstrate the full advantage of our method,
we further randomly split each of the three datasets into two
subsets of approximately equal sample size. Thus, we end up
with k = 6 subgroups of sample size 137, 138, 89, 89, 83, and 82,
respectively, where each observation is a vector with dimension
p = 150. It is seen that the first two subgroups should have
identical graphical structure, so are the middle two subgroups
and the last two subgroups.

Since for this particular dataset, we have no additional infor-
mation on the signs of ω

(k)
a,b across subgroups, we only apply

our proposed Chi-based test φ2 to these k = 6 subgroups. As
discussed in Section 2.5, our method differs from most existing
ones in that it can produce p-values for testing the significance
of the connectivity of nodes. Since there are p(p − 1)/2 pair
of nodes, we indeed face the problem of large-scale multiple
comparisons. Thanks to the availability of p-values, we adopt the
procedure in Benjamini and Hochberg (1995) to achieve FDR
control at some target level q. This gives us a sparse graphical
model where two nodes are connected if they are connected in
any of the k graphs at the prespecified level q of FDR. Note that
for each split of the data, we can produce one such graph. To
account for the randomness caused by data split, we repeat the
entire procedure 100 times, and at the end, we aggregate the
results by retaining edges that only appear more than 70% of
time.

For comparison, we also apply our chi-based test φ2 to the
k = 3 original subgroups and produce a graph at the same
target level of FDR. This is done only once because there is no

random data split involved. It is intuitive that the results from
k = 3 original groups should be more accurate because it relies
on larger sample sizes. In addition, we also report the graph
returned by correlation network using the original data from
three subgroups. That is, for each of these k = 3 subgroups,
we calculate the sample correlation matrix (ρ

(k)
a,b ), and apply

the Fisher transformation to each correlation coefficient ρ
(k)
a,b

to make it close to normal distribution. Then for each pair of
nodes (a, b), under the null hypothesis H̃0,ab : ρ

(1)

a,b = · · · =
ρ

(k)
a,b = 0, the squared summation of the transformed correlation

coefficients across three groups should be approximately χ2
3

distributed. Thus, the p-value for testing each H̃0,ab can be
calculated and the same FDR control procedure can be applied
to obtain a sparse correlation matrix.

We will compare the aforementioned three graphs: (1) the
aggregated graph produced by φ2 from k = 6 subgroups and
100 random splits, (2) the one produced by φ2 from k = 3
original subgroups, and (3) the one produced by correlation
network from k = 3 original subgroups. Note that for any pair of
genes (a, b) with different connectivities across the three disease
subgroups, the corresponding null hypothesis H0,ab (or H̃0,ab)
should be rejected. Thus, the three identified graphs discussed
above should be able to tell us some information on which pair
of genes exhibit different connectivity pattern for triple-negative
breast cancer.

For performance measure, motivated by the definition of
central nodes introduced in Cai et al. (2016), we calculate the
degree for each node and define important nodes as the ones
with largest degrees in the graphs. Table 6 lists the top 20 nodes
produced by the aforementioned three graphs by setting the
target FDR level at q = 0.001. It is seen that for the two
graphs produced by φ2, there are 9 overlaps out of the top 20,
showing a good level of consistency. To visually compare the
two graphs by φ2, we also plot their connectivities. Since there
are large number of nodes, to make the graphs easier to read,
we reduce the FDR level to 5 × 10−5 and exclude all degree 0
nodes. The resulting graphs are summarized in Figure 1. There
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Table 6. Top 20 nodes with highest degrees identified by THI-φ2 in descending
order.

Corr THI-φ2 THI-φ2

k 3 3 6
1 EGFR SOX10 FOXC1
2 CCND1 COL3A1 COL3A1
3 BAMBI LUM SYNM
4 MT1E SELL SPARCL1
5 NDRG1 IGFBP7 SRGN
6 NQO1 COL5A2 LUM
7 SFN CLDN3 EFHD1
8 KIT AKR1C2 TMEM158
9 MYB KRT14 SOX10
10 SCD COL1A1 IFI27
11 MMP9 IFI27 ALDH3B2
12 LBP DCN GBP1
13 PI3 SPDEF F13A1
14 GSTT1 CYP1B1 SELL
15 RBP1 ALCAM CKS2
16 PON3 SPARCL1 COL5A2
17 MT1G SRGN CXCR4
18 KLK6 COL6A3 ELF5
19 HIST1H2BK MLPH SERHL2
20 SLPI KRT7 DCN

NOTE: Nodes in bold highlight 9 overlaps between the two graphs produced by THI-
φ2.

are a few interesting findings. First, the common 9 nodes in
the top 20 list shares similar connectivity pattern in the two
graphs. For instance, for ‘SOX10’, it is connected with “ELF5”
and “ALCAM” in both graphs. The cluster of genes, “COL3A1,”
“COL1A1,” “COL5A2,” “COL6A3,” “GJA1,” are connected in
both graphs. The cluster of genes, “CXCL13,” “SRGN,” “RGS2,”
“CXCR4,” are connected in both graphs. The cluster of genes
“IFI27,” “IFI16,” “IFI44L” are connected in both graphs. And

the same is true for genes “COL10A1,” “CTSK,” and “F13A1.”
Besides those common clusters corresponding to top ranked
genes, we also observe the common cluster “HLA-DRA,” “HLA-
DQA1,” “HLA-DPA1,” “CD74” in both subgraphs.

We also plot the graph produced by correlation network
when setting q = 5 × 10−5 in Figure 2. It is seen that the graph
is very dense, suggesting that the correlation network is possibly
not as sparse as the graphical network. Due to the very dense
natural of the correlation network, interpretation is impossible.

5. Discussion

In this article, we have introduced the THI framework with the
chi-based test and the linear functional-based test to detect the
sparsity patterns of multiple networks in the setting of Gaussian
graphical models. Such a framework is not only scalable to
large scales, but also enjoys optimality properties in the scenario
where the number of networks is allowed to diverge and the
number of features can be much larger than the sample size.
Our theoretical justifications show that under mild regularity
conditions, the linear functional-based test has the minimum
requirement on the sample size.

Two testing procedures in our THI framework can be
extended to the sub-Gaussian distribution setting. When
the p-dimensional feature vector X(t) in (2) jointly follows
a multivariate sub-Gaussian distribution with bounded sub-
Gaussian norm (see, e.g., Definition 5.22 in Vershynin 2010) in
each class, the value of interest ω

(t)
a,b has a natural interpretation

of partial correlation between X(t)
a and X(t)

b . Under such settings,
one can show that two tests are still valid asymptotically by

Figure 1. Common edges identified by methods THI-φ2 using original 3 subgroups (left panel) and 6 subgroups with random splits (right panel).
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Figure 2. Graph produced by correlation network learning based on original three subgroups.

scrutinizing the proof details with a modification. Indeed, to
test the null hypothesis H0,ab, one only need to replace the
quantity ω̂

(t)
b,bω̂

(t)
a,a in the chi-based test statistic Un,k,a,b of (11)

and in the linear functional-based test statistic Vn,k,a,b(ξ) of (19)
by 1/ι̂

(t)
a,b, where ι̂

(t)
a,b = (

∑n(t)
i=1(Ê(t)

i,a Ê(t)
i,b )2)/n(t) is an estimator

of the variance of E(t)
i,a E(t)

i,b under null (see (12)). For Gaussian
distribution, this variance coincides with 1/(ω

(t)
b,bω

(t)
a,a) under

null.
Yet the optimality of the sample size requirement for the chi-

based test, that is, the minimum sample size requirement with
the optimal separating rate εn = √

k1/2/n(0) for testing null
H0,ab against alternative Hl2

1,ab, still remains as an open problem
for future investigation. The main challenges lie in the need of
constructing a new lower bound as in Theorem 2.4 for alterna-
tive Hl1

1,ab, which involves both the sample size requirement and
the separating rate. Moreover, the technical analysis in the proof
of Theorem 2.1 contains a relatively loose bound between the �1
and �2 norms, which implies that the sample size requirement
imposed in Proposition 2.1 may not be sharp, though sharper
than that for the naive combination testing procedure discussed
in Section 2.3.

As mentioned in Section 1, our article assumes common
sparsity and allows two aspects of heterogeneity which are the
heterogeneity in link strengths over multiple networks and the
heterogeneity in noise levels over multiple subpopulations. The
appealing characteristics of our THI framework for addressing
these issues are empowered by our newly suggested convex

approach of heterogeneous group square-root Lasso (HGSL) for
the setting of high-dimensional multi-response regression with
heterogeneous noises. Other aspects of heterogeneous learning
and inference can certainly be interesting as well. For example,
in practice one might be interested in studying whether the link
strengths across different graphs are identical or not. This is a
more general yet more challenging problem that deserves fur-
ther study. Some efforts along this direction have been made in
the literature. For instance, Danaher, Wang, and Witten (2014)
proposed a penalized likelihood method using the fused Lasso
to estimate the common link strength among multiple Gaussian
graphs. This method, however, focuses only on the estimation
of common link strength and lacks theoretical justification for
its performance. Moreover, their proposed algorithm is not
scalable due to the complicated form of the likelihood function.
Thus, it would be interesting to extend the methods developed
in our article to the problem of testing for heterogeneity in link
strengths.

Our studies are only among the first attempts to address
the challenging issues of heterogeneity in multiple networks
inference in the setting of Gaussian graphical models. It would
be interesting to extend our inferential approach to the settings
of multiple matrix graphical models, multiple tensor graphical
models, and multiple non-Gaussian graphical models, as well as
other network models beyond graphical models. Furthermore,
in some applications, it is possible that a fraction of the class
labels for the subpopulations or even all the class labels can be
unavailable, in which clustering techniques can play a crucial
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role. In addition, there can exist some latent features which
would require a broader class of network structures. The devel-
opments on heterogeneous inference in multiple networks can
also motivate new approaches for regression and classification
problems that have networks as an input. The possible exten-
sions addressing these issues are beyond the scope of the current
article and will be interesting topics for future research.

Supplementary Material

The online supplementary materials contain a scalable HGSL algorithm
with provable convergence, the proofs of Theorems 2.1-3.1 and Proposi-
tions 2.1-2.3, as well as the proofs of key lemmas and additional technical
details. Additional computational cost comparison with existing methods
is also provided.
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