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Abstract

Identifying interaction effects is fundamentally important in many scientific dis-

coveries and contemporary applications, but it is challenging since the number of

pairwise interactions increases quadratically with the number of covariates and that

of higher-order interactions grows even faster. Although there is a growing litera-

ture on interaction detection, little work has been done on the prediction and false

sign rate on interaction detection in ultrahigh-dimensional regression models. This

paper fills such a gap. More specifically, in this paper we establish some theoretical

results on interaction selection for ultrahigh-dimensional quadratic regression mod-

els under random designs. We prove that the examined method enjoys the same

oracle inequalities as the lasso estimator and further admits an explicit bound on

the false sign rate. Moreover, the false sign rate can be asymptotically vanishing.

These new theoretical characterizations are confirmed by simulation studies. The

performance of our proposed approach is further illustrated through a real data

application.
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1 Introduction

Understanding how features interact with each other is fundamentally important in many

scientific discoveries and contemporary applications, especially in areas such as medicine,

genetics, and cancer studies (Xu et al., 2004; Musani et al., 2007; Cordell, 2009; Gosik

et al., 2018). Identifying important interactions can also help improve model interpretabil-

ity and prediction. With rapid development of information technologies, high-dimensional

data are increasingly encountered in many scientific fields. Recent years have also seen a

surge of interests on high-dimensional data in business and economics (Fan et al., 2016;

Belloni et al., 2018; Cattaneo et al., 2019; Uematsu and Tanaka, 2019; Ke et al., 2020;

Zheng et al., 2021). However, interaction identification with high-dimensional data poses

great challenges since the number of pairwise interactions increases quadratically with

the number of covariates.

Generally speaking, most of existing approaches for interaction models with contin-

uous response can be categorized into two types: one-step approaches and stagewise

approaches. A typical idea of one-step approaches is to select the main and interaction

terms simultaneously by using regularization methods with specifically designed penalty

functions or imposing inequality or convex constraints; see, for example, Yuan et al.

(2009), Choi et al. (2010), Bien et al. (2013), Yan and Bien (2017) and references therein.

Recently, Zhao and Leng (2016) presented a unified analysis on the convergence rate

for a class of penalized estimators for quadratic regression models with random design.

These methods can suffer from prohibitively high computational cost because they need

to deal with complex penalty structures or multiple inequality constraints and thus are

not feasible for ultrahigh-dimensional data.

The stagewise selection approaches first reduce the number of interactions and main
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effects to a moderate scale and then select important interactions and main effects in

the reduced feature space. There are two different ways for existing stagewise selection

approaches. The first way is to impose the heredity assumption. The strong heredity

assumption requires that an interaction between two covariates be included in the model

only if both main effects are important, while the weak one relaxes such as a constraint to

the presence of at least one main effect being important. Examples include the two-step

recursive approach (Hall and Xue, 2014), the forward selection based procedure (Hao and

Zhang, 2014), and the two-stage regularization method based on the lasso (Hao et al.,

2018). However, the heredity assumptions can be violated or difficult to verify in real

applications (Ritchie et al., 2001; Cordell, 2009; Gosik et al., 2018). This motivates the

second way of stagewise approaches for interaction detection, which do not require the

heredity assumptions. For example, Jiang and Liu (2014) considered interaction detection

for the sliced inverse index models by screening interaction variables, which are variables

contributing to interactions, instead of main effects and established the sure screening

property under the normality assumption of covariates on each slice. Kong et al. (2017)

introduced the method of interaction pursuit with distance correlation to select important

interactions in high-dimensional multi-response regression models, which exploits feature

screening applied to transformed variables with distance correlation (Székely et al., 2007;

Li et al., 2012) followed by feature selection. See Section 2.1 for detailed description on

the method of interaction pursuit with distance correlation. More recently, Tian and Feng

(2021) suggested a new framework for variable screening via random subspace ensembles,

which evaluates the contribution of variables through the joint contributions in different

subspaces and can be used for interaction screening without the heredity assumptions.

Although there is a growing literature on interaction detection as discussed above,

little work has been done on the prediction and false sign rate on interaction detection.

In this paper, we establish some global theoretical results on the oracle inequalities and

false sign rate on interaction selection for a class of stagewise selection approaches with

random design in high-dimensional settings. Unlike selective inference or conditional
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inference in which theoretical results are conditional on the selected model obtained from

the first stage, our goal is to establish global bounds for prediction error, estimation error,

and false sign rate. The major challenge in establishing these global theoretical results is

that the set of selected predictors after the first stage is random and we need to control

all possible random sets.

Figure 1: Heat map of retained variables after the feature screening step of the interaction
pursuit approach in Kong et al. (2017). Each row represents one repetition while each
column represents one variable. Black dots denote retained variables.

To further illustrate this point, consider the interaction model Y = 3X1X5+3X10X15+

ε. There are four important variables X1, X5, X10, and X15. We simulated data in the

same way as that for model 4 in Section 3 except that p = 200 and ρ = 0.5. Figure 1

shows the heat map of the union of the retained main effects and interaction variables after

the feature screening step of the interaction pursuit approach in Kong et al. (2017). As

shown in Figure 1, the retained set after the feature screening step is random. Therefore,

existing results on the prediction and false sign rate for fixed design in the literature

are no longer applicable here. To address this issue, we establish new theory which

accounts for the uncertainty related to the random set of variables resulted from the first

stage (e.g., the screening step). Our theoretical results are obtained by first showing
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that the sparse eigenvalue condition and restricted eigenvalue condition hold for the full

augmented random design matrix (which includes both main effects and interactions)

with high probability, where the covariates in main effects are not required to follow the

Gaussian or sub-Gaussian distributions. This result plays a key role in our technical

analysis for the main effect and interaction selection. It can also be of independent

interest for other two-step procedures.

Our goal in this paper is to establish more comprehensive theory on feature selection

for a class of stagewise selection approaches for quadratic regression models with random

design in high-dimensional settings. We prove that the resulting estimator enjoys the

oracle inequalities under the prediction loss and Ld loss, with 1 ≤ d ≤ 2, as well as an

asymptotically vanishing bound on the false sign rate. The key novelty of our selection

results is that we allow for random support for global inference instead of local inference

conditional on the selected models. Thus we can avoid the use of sample splitting. In

contrast, other existing methods usually need to split the data into two parts to obtain

the same results, which can lead to loss of efficiency.

Among the existing literature, a most closely related paper is Zhao and Leng (2016).

Our work differs significantly from theirs in the following aspects: First, Zhao and Leng

(2016) provided only the `1 bound for estimation error, while we establish the `d bound

with d ∈ [1, 2] for estimation error and bounds for prediction error and false sign rate.

To the best of our knowledge, our result on false sign rate for interaction models is new

to the literature. Second, Zhao and Leng (2016) considered the interaction model (1)

without the first stage (for example, the screening step), and thus their results cannot

be applied to stagewise approaches; while our results are applicable to both one-step and

stagewise approaches. Third, we have weaker assumptions on the dependence structure

among covariates and allow heavier-tailed distributions in covariates and error. As a

result, our theory covers broader scenarios. We will provide more detailed comparisons

in Section 2.4 after we present the conditions and results.

The rest of the paper is organized as follows. Section 2 provides one condition to
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characterize the key idea of a class of stagewise selection approaches, exploits the regu-

larization methods to further select important interactions and main effects in reduced

feature space, and studies the theoretical properties on variable selection. Sections 3 and

4 demonstrate the advantage of our proposed approach through simulation studies and

a real data application, respectively. We discuss some extensions of our work in Section

5. The proofs of some main results are relegated to the Appendix. Additional simulation

studies and technical details are provided in the supplementary material.

2 Interaction Detection

We will first introduce the model setting and then discuss one condition which holds

for most of stagewise approaches. We also exploit the regularization methods to further

select important interactions and main effects in reduced feature space, and study the

theoretical properties on variable selection in this Section.

2.1 Model Setting

Consider the interaction model

Y = α0 +

p∑
j=1

βjXj +

p−1∑
k=1

p∑
`=k+1

γk`XkX` + ε, (1)

where Y is the response variable, x = (X1, . . . , Xp)
T is a p-vector of random covari-

ates Xj’s, α0 is the intercept, βj’s and γk`’s are regression coefficients for main effects

and interactions, respectively, and ε is the mean zero random error independent of Xj’s.

Throughout the paper, we assume that E(Xj) = 0 for each random covariate Xj. Other-

wise, consider the interaction model (1) with each Xj replaced by Xj −E(Xj). Without

loss of generality, we also assume that var(Xj) = 1.

Denote by (β0,j)1≤j≤p and (γ0,k`)1≤k<`≤p the true regression coefficient vectors for

main effects and interactions, respectively. To ease the presentation, throughout the

paper XkX` is referred to as an important interaction if its regression coefficient γ0,k` is
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nonzero, and Xk is called an active interaction variable if there exists some 1 ≤ ` 6= k ≤ p

such that XkX` is an important interaction. Define three sets of indices

I = {(k, `) : 1 ≤ k < ` ≤ p with γ0,k` 6= 0} ,

A = {1 ≤ k ≤ p : (k, `) or (`, k) ∈ I for some `} , (2)

B = {1 ≤ j ≤ p : β0,j 6= 0} .

The set I contains all important interactions and set A consists of all active interaction

variables, while set B is comprised of all important main effects. We combine sets A and

B, and define the set of important features as M = A ∪ B. It is straightforward to see

that sets A, I, and M are invariant under affine transformations Xnew
j = bj(Xj − aj)

with aj ∈ R and bj ∈ R \ {0} for 1 ≤ j ≤ p. Thus there is no issue of identifiability when

recovering interactions in I and variables in M.

For high-dimensional interaction models with multivariate response, which includes

our model (1) as a special case, Kong et al. (2017) proposed a new interaction screening

approach, where variables inA and B are identified by distance correlations dcorr(X2
j , Y

2)

and dcorr(Xj, Y ), respectively. Here dcorr stands for distance correlation (Székely et al.,

2007) between two random vectors. They showed that this screening method enjoys the

sure screening property (Fan and Lv, 2008), meaning that all important interactions and

all covariates that contribute to important interactions or main effects can be retained

with asymptotic probability one. However, the global theoretical properties of this stage-

wise method of screening followed by selection is not well-understood, even in the single

response setting. In this paper, we intend to provide such theoretical guarantee under

the interaction model (1). We will focus on the prediction and false sign rate on feature

selection for random design when p grows exponentially with n.

Assume that we are given a sample {(xTi , Yi), i = 1, . . . , n} of n independent and

identically distributed observations from (xT , Y ) in interaction model (1). We rewrite
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interaction model (1) in the matrix form

y = α01n + Zθ + ε, (3)

where y = (Y1, . . . , Yn)T is the response vector, 1n is an n-dimensional column vector

with all elements being 1, θ = (θ1, . . . , θq)
T is a parameter vector consisting of q =

p(p+1)/2 regression coefficients βj and γk`, Z is the corresponding n×q augmented design

matrix incorporating the covariate vectors for Xj’s and their interactions in columns, and

ε = (ε1, . . . , εn)T is the error vector. Hereafter, for the simplicity of presentation and

theoretical derivations, we slightly abuse the notation and still use y and Z to denote

the de-meaned response vector and column de-meaned design matrix, respectively, which

leads to α0 = 0.

As discussed before, there are many developments on stagewise approaches for in-

teraction detection. A common idea for most of stagewise approaches is to reduce the

number of interactions and main effects to a moderate scale and then select important

interactions and main effects in the reduced feature space. The key to guaranteeing the

success of the selection stage in these approaches is to ensure that all important inter-

actions and main effects are retained in the first stage with probability tending to one.

This property is called sure screening property in the feature screening literature (Fan

and Lv, 2008). Thus, it is reasonable to directly assume that the sure screening property

holds if one has no preference on which method should be used to reduce the number of

interactions and main effects in the first stage.

2.2 Condition 1 and Verification

Let Î and M̂ be the estimators of I and M in the first stage (for example, screening

step) of a user-specified stagewise approach for interaction detection. In general, both

Î and M̂ can still contain many noise variables. Throughout this paper, we make the

following assumption.
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Condition 1. There exist some constant C > 0 and 0 < η < 1 such that

P
(
I ⊂ Î and M⊂ M̂

)
= 1− o

(
n−C

)

for log p = o(nη).

As discussed before, Condition 1 is a sure screening property, which holds for many

stagewise interaction detection approaches, such as those in Hall and Xue (2014); Jiang

and Liu (2014); Hao and Zhang (2014); Kong et al. (2017); Zhou et al. (2019). We show

in Lemma 1 in Appendix B that Condition 1 holds under some sufficient conditions.

2.3 Interaction Models in Reduced Feature Space

Denote by H a subset of {1, . . . , q} given by the features in M̂ and interactions in Î. To

estimate the true value θ0 = (θ0,1, . . . , θ0,q)
T of the parameter vector θ, we can consider

the reduced feature space spanned by the q1 = |Î|+|M̂| columns of the augmented design

matrix Z in H, thanks to the sure screening property in Condition 1. Here |G| stands

for the cardinality of a set G. When the model dimensionality is reduced to a moderate

scale q1, one can apply any favorite variable selection procedure for effective selection

of important interactions and main effects and efficient estimation of the corresponding

coefficients. There is a large literature on the developments of various variable selection

methods. Among all approaches, two classes of regularization methods, the convex ones

and the concave ones, have been extensively investigated; see, for example, Tibshirani

(1996), Fan and Li (2001), Candes and Tao (2007) and references therein. To combine

the strengths of both classes, Fan and Lv (2014) introduced the combined L1 and concave

regularization method and established the oracle risk inequalities and bound on the false

sign rate for the main-effects-only linear models with fixed design. More specifically, they

considered the regularization problem

min
β∈Rp

{
(2n)−1‖y −Xβ‖2

2 + λ0‖β‖1 + ‖pλ(β)‖1

}
,
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where X is n× p fixed design matrix with main effects only, β = (β1, . . . , βp)
T with βj’s

being regression coefficients for these main effects, λ0 ≥ 0 is the regularization parameter

for the L1-penalty, pλ(β) = pλ(|β|) = (pλ(|β1|), . . . , pλ(|βp|))T , and pλ(t) is an increasing

concave penalty function on [0,∞) indexed by regularization parameter λ ≥ 0.

Following Fan and Lv (2014), we consider the following combined L1 and concave

regularization problem

min
θ∈Rq , θHc=0

{
(2n)−1‖y − Zθ‖2

2 + λ0‖θ∗‖1 + ‖pλ(θ∗)‖1

}
, (4)

where θHc denotes a subvector of θ given by components in the complement Hc of the

reduced set H, θ∗ = (θ∗1, . . . , θ
∗
q)
T = Dθ = n−1/2(‖z̃1‖2θ1, . . . , ‖z̃q‖2θq)

T is the coefficient

vector corresponding to the design matrix with each column rescaled to have L2-norm

n1/2, and z̃j is the jth column of the augmented random design matrix Z and D is a q×q

diagonal matrix with diagonal entries Djj = n−1/2‖z̃j‖2 for j = 1, . . . , q. Intuitively, the

L1 component λ0‖θ∗‖1 reflects the minimum amount of regularization for suppressing the

noise in prediction, while the concave component ‖pλ(θ∗)‖1 serves to adapt the model

sparsity for variable selection.

Solving problem (4) without the constraint θHc = 0 is equivalent to feature selection

using regularization method in q = p(p + 1)/2 dimensions without the first stage. One

advantage of having the first stage is that the computational cost of solving problem

(4) in q1 dimensions is generally substantially reduced compared to that of solving the

same problem in q dimensions. However, substantial theoretical challenges arise in in-

vestigating the asymptotic properties of the resulting regularized estimator in (4). As

discussed in the Introduction section, due to the first stage, the set of selected predictors

after the first stage is random and we have to control all possible random sets when

establishing the global theoretical results of the resulting regularized estimator in (4)

with high-dimensional settings. In addition, Fan and Lv (2014) considered linear models

with deterministic design matrix and no interactions, whereas we now need to study the

interaction model with random design matrix. The presence of both interactions and
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additional randomness requires more delicate technical analyses.

2.4 Asymptotic Properties of Interaction and Main Effect Se-

lection

Before presenting the theoretical results, we state some mild regularity conditions that are

needed in our analysis. For a vector a, the usual vector `d norm is denoted by ‖a‖d (d = 0

or d ∈ [1, 2]). Without loss of generality, assume that the first s = ‖θ0‖0 components of the

true regression coefficient vector θ0 in (3) are nonzero. Throughout the paper, the regular-

ization parameter for the L1 component is fixed to be λ0 = c0{(log q1)/nα1α2/(α1+2α2)}1/2

with c0 some positive constant, where α1 and α2 are given in Condition 2. Some in-

sights into this choice of λ0 will be provided at the end of this subsection. Denote by

pH,λ(t) = 2−1{λ2 − (λ − t)2
+}, t ≥ 0, the hard-thresholding penalty, where (·)+ denotes

the positive part of a number.

Condition 2. There exist constants α1, α2, c1 > 0 such that for any t > 0, P (|Xj| > t) ≤

c1 exp(−c−1
1 tα1) for each 1 ≤ j ≤ p and P (|ε| > t) ≤ c1 exp(−c−1

1 tα2), and var(X2
j ) are

uniformly bounded away from zero.

Condition 3. There exist some constants κ0, κ, L1, L2 > 0 such that with probability

1− an satisfying an = o(1), it holds that min‖δ‖2=1, ‖δ‖0<2s n
−1/2‖Zδ‖2 ≥ κ0,

min
δ 6=0, ‖δ2‖1≤7‖δ1‖1

{
n−1/2‖Zδ‖2/(‖δ1‖2 ∨ ‖δ3‖2)

}
≥ κ

for δ = (δT1 , δ
T
2 )T ∈ Rq with δ1 ∈ Rs and δ3 a subvector of δ2 consisting of the s largest com-

ponents in magnitude, and Djj’s are bounded between L1 ≤ L2, where a∨ b = max{a, b}.

Condition 4. The concave penalty satisfies that pλ(t) ≥ pH,λ(t) on [0, λ], p′λ{(1−c3)λ} ≤

min{λ0/4, c3λ} for some constant c3 ∈ [0, 1), and −p′′λ(t) is decreasing on [0, (1 − c3)λ].

Moreover, min1≤j≤s |θ0,j| > L−1
1 max{(1− c3)λ, 2L2κ

−1
0 p

1/2
λ (∞)} with pλ(∞) = lim

t→∞
pλ(t).

The first part of Condition 2 is a usual assumption to control the tail behavior of the

covariates and error, which is important for ensuring the sure screening property of our
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procedure. Similar assumptions have been made in such work as Fan and Song (2010) and

Barut et al. (2016). The scenario of α1 = α2 = 2 corresponds to the case of sub-Gaussian

covariates and error, including distributions with bounded support and light tails.

Condition 3 is similar to Condition 1 in Fan and Lv (2014) for the case of deterministic

design matrix, except that the design matrix is now random in our setting and also aug-

mented with interactions. We provide in Section 2.5 some sufficient conditions ensuring

that Condition 3 holds. Parallel to our Condition 3, Zhao and Leng (2016) required the

restricted eigenvalue condition:

min
|J |≤s, J⊆{1,...,q}

min
‖δJc‖1≤k′0‖δJ‖1

{
n−1/2‖Zδ‖2/‖δJ‖2

}
= M(k′0, s) > 0,

where k′0 is some positive constant. They also required that the eigenvalues of cov(Z) are

bounded. It is seen that our condition on Z is generally weaker than theirs.

Similar to Condition 2 in Fan and Lv (2014), our Condition 4 ensures that the concave

penalty pλ(t) satisfies the hard-thresholding property, requires that its tail grows relatively

slowly, and puts a constraint on the minimum signal strength. The hard-thresholding

property means that the resulting estimator has the same feature as the hard-thresholding

estimator: each component is either zero or of magnitude larger than some value. See

§3.1 of Fan and Lv (2014) for more discussions on hard-thresholding property.

The following theorem presents the selection properties of the resulting regularized

estimator θ̂ = (θ̂1, . . . , θ̂q)
T . In particular, we present an explicit bound on the number

of falsely discovered signs FS(θ̂) = |{1 ≤ m ≤ q : sgn(θ̂m) 6= sgn(θ0,m)}|, which is a

stronger measure on variable selection outcome than the total number of false positives

and false negatives. To simplify the presentation, hereafter, q1 is implicitly understood

as max(n, q1).

Theorem 1. Assume that log p = o{nα1α2/(α1+2α2)} with α1α2/(α1+2α2) ≤ 1, Conditions

1–4 hold, and pλ(t) is continuously differentiable. Then the global minimizer θ̂ of (4) has

the hard-thresholding property that each component is either zero or of magnitude larger

than (1 − c3)λ, and with probability at least 1 − an − o(n−C + q−c41 ) for some positive
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constant c4, it satisfies simultaneously that

n−1/2
∥∥∥Z(θ̂ − θ0)

∥∥∥
2

= O(κ−1λ0s
1/2),∥∥∥θ̂ − θ0

∥∥∥
d

= O(κ−2λ0s
1/d), d ∈ [1, 2],

FS(θ̂) = O
{
κ−4(λ0/λ)2s

}
,

and furthermore sgn(θ̂) = sgn(θ0) if λ ≥ 56(1 − c3)−1κ−2λ0s
1/2. Moreover, the same

results hold with probability at least 1−an−o(max{n, q}−c4) for the regularized estimator

θ̂ without the first stage, that is, without the constraint θHc = 0 in (4). In that case,

Condition 1 is not needed.

Theorem 1 shows that if the tuning parameter λ satisfies λ0/λ→ 0, then the number

of falsely discovered signs FS(θ̂) is of order o(s) and thus the false sign rate FS(θ̂)/s is

asymptotically vanishing with probability tending to one by noticing that q1 is implicitly

understood as max(n, q1). Recall that λ0 = c0{(log q1)/nα1α2/(α1+2α2)}1/2. All bounds

for prediction and estimation losses and false sign rate in Theorem 1 become larger as q1

increases. Thus, effective screening and dimension reduction in the first stage can improve

accuracy in prediction and estimation and reduce false sign rate. We also observe that

the bounds for prediction and estimation losses are independent of the tuning parameter

λ for the concave penalty.

As shown in Theorem 1, λ0 plays a crucial role in characterizing the rates of conver-

gence for the regularized estimator θ̂. Such a parameter basically measures the maximum

noise level in interaction models. In particular, the exponent α1α2/(α1 + 2α2) is a key

parameter that reflects the level of difficulty in the problem of interaction selection. This

quantity is determined by three sources of heavy-tailedness: covariates themselves, their

interactions, and the error. In this paper we have focused on the more challenging case

of α1α2/(α1 + 2α2) ≤ 1. Such a scenario includes two specific cases: 1) sub-Gaussian

covariates and sub-Gaussian error, that is, α1 = α2 = 2 and 2) sub-Gaussian covariates

and sub-exponential error, that is, α1 = 2, α2 = 1. We remark that in the lighter-tailed
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case of α1α2/(α1 +2α2) > 1, one can simply set λ0 = c0{(log q1)/n}1/2 and inequalities in

Theorem 1 remain to hold by resorting to Lemma 6 in Section E.5 of the supplementary

material using similar arguments in the proof of Theorem 1 in Appendix A.

The results in Theorem 1 are also applicable to the regularized estimator without

the first stage. In that case, Condition 1 is not needed. Such a one-step procedure

was investigated in Zhao and Leng (2016) under the same interaction model (1) with

a different class of penalty functions. They showed that the `1 estimation error bound

for the resulting penalized estimator is in the order of O
(
s{(log q)/n}1/2

)
under the

assumption that both covariates and model error are sub-Gaussian (that is, α1 = α2 =

2 in our paper). Under the same distribution assumption, our `1 estimation error is

O
(
s{(log q1)/n2/3}1/2

)
. It is seen that our result is tighter than that of Zhao and Leng

(2016) when log{p(p + 1)/2} is higher order of n1/3 log{max(n, q1)}, has the same order

as theirs when log{p(p+ 1)/2} is of order n1/3 log{max(n, q1)}, and is weaker than theirs

when log{p(p + 1)/2} is smaller order of n1/3 log{max(n, q1)}. In the last scenario, our

weaker result can be seen as the price we need to pay in exchange for weaker conditions but

more general results. In addition, Zhao and Leng (2016) required that log(q) = o(n1/3)

with q = p(p + 1)/2, while we can allow for log(p) = o(n2/3) when α1 = α2 = 2 even

without the first stage. Thus we allow for higher dimensionality. Moreover, the bound for

estimation error in Zhao and Leng (2016) holds only when the tuning parameter in their

penalty is no less than c{(log q)/n}1/2 with some positive constant c, while our bounds for

prediction and estimation errors are independent of the tuning parameter for the concave

penalty when our tuning parameter λ0 for the L1 component is fixed.

As discussed in the Introduction, there are many other one-step procedures in the

literature. However, most of those methods impose various constraints on coefficients

to enforce the heredity assumption and focus on the low- or moderate-dimensional set-

tings; see, for example, Yuan et al. (2009), Choi et al. (2010), Bien et al. (2013), Yan

and Bien (2017), and references therein. These methods are not directly suitable for

high-dimensional quadratic regression models for at least two reasons. First, the compu-
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tational cost of these methods increases substantially when the number of covariates p

grows, mainly because of the O(p2) added interactions. The computational cost can be

extremely high for ultrahigh-dimensional data where p grows at an exponential rate of the

sample size n. Second, because of the large number of interactions, selecting important

main effects and interactions is more challenging due to spurious correlation and noise

accumulation. It is worth mentioning that Tang et al. (2020) proposed a new ADMM

based method, which can deal with high-dimensional data and requires no heredity as-

sumptions. However, their theoretical results focus on the estimation and selection of

interaction effects, and there are no theoretical results on prediction error, false sign rate,

and main effect estimation and selection.

Our work is also related to Fan and Lv (2014) in the sense that the same type of

penalty function is used. However, we consider linear interaction model with random

design while Fan and Lv (2014) considered linear model with fixed design. Thus the

results in Fan and Lv (2014) are not directly applicable to stagewise procedure such as

the ones considered here. Also, the presence of random design and interactions poses

additional significant theoretical difficulties. Moreover, the bounds in Fan and Lv (2014)

depend on {(log p)/n}1/2, while our bounds depend on {(log q1)/nα1α2/(α1+2α2)}1/2, which

involves the rate parameters controlling tail probability of each covariate and the model

error. Thus, our results can characterize how each bound depends on the distribution of

covariates and model error.

2.5 Verification of Condition 3

Since Condition 3 is a key assumption for proving Theorem 1, we provide some sufficient

conditions that ensure this assumption on the augmented random design matrix Z =

(z1, . . . , zq). Denote by Γ the population covariance matrix of the augmented covariate

vector consisting of p main effects Xj’s and p(p− 1)/2 interactions XkX`’s.
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Condition 5. There exists some constant K > 0 such that for δ = (δT1 , δ
T
2 )T ∈ Rq,

min
‖δ‖2=1, ‖δ‖0<2s

δTΓδ ≥ K and min
δ 6=0, ‖δ2‖1≤7‖δ1‖1

δTΓδ/
(
‖δ1‖2

2 ∨ ‖δ3‖2
2

)
≥ K,

where δ1 ∈ Rs and δ3 is a subvector of δ2 consisting of the s largest components in

magnitude.

Condition 5 is satisfied if the smallest eigenvalue of Γ is assumed to be bounded

away from zero. Such a condition is in fact much weaker than the minimum eigenvalue

assumption, since it is the population version of a mild sparse eigenvalue assumption and

the restricted eigenvalue assumption. The following theorem shows that under some mild

assumptions, Condition 3 holds for the full augmented design matrix Z and thus holds

naturally for any n× q2 sub-design matrix with q2 ≤ q given by the first stage.

Theorem 2. Assume that Condition 5 holds, there exist some constants α1, c1 > 0 such

that for any t > 0, P (|Xj| > t) ≤ c1 exp(−c−1
1 tα1) for each j ∈ {1, . . . , p}, s = O(nξ0),

and log p = o(nmin{α1/4, 1}−2ξ0) with constant 0 ≤ ξ0 < min{α1/8, 1/2}. Then Condition 3

holds with probability 1− an satisfying nmin{α1/4, 1}−2ξ0 = O(− log an).

3 Simulation Studies

We design two simulation studies to verify the theoretical results in this paper. In study

1, we consider the following five interaction models:

Model 1 : Y = 2X1 + 2X5 + 3X1X5 + ε1,

Model 2 : Y = 2X1 + 2X10 + 3X1X5 + ε2,

Model 3 : Y = 2X10 + 2X15 + 3X1X5 + ε3,

Model 4 : Y = 3X1X5 + 3X10X15 + ε4,

Model 5 : Y = 2X1 + 2X10 + 2X20 + 2X30 + 2X40+

3X1X5 + 3X1X10 + 3.5X5X15 + 3.5X10X15 + ε5,
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where each covariate Xj = Wj + Uj for 1 ≤ j ≤ p, the covariate vector (W1, . . . ,Wp)
T ∼

N(0,Σ) with Σ = (ρ|j−k|)1≤j,k≤p, and Uj’s are independent and identically distributed and

follow the uniform distribution on [−0.5, 0.5]. The errors ε1 ∼ t(3), ε2 ∼ t(4), ε3 ∼ t(4),

ε4 ∼ t(8), and ε5 ∼ t(12) are independent of x = (X1, . . . , Xp)
T . The first two models

(models 1 and 2) satisfy the heredity assumption (either strong or weak), the next two

models (models 3 and 4) do not obey such an assumption, and the last model has larger

number of important variables. A sample of size n was randomly generated from each

of the five models. We fixed the sample size and dimensionality at (n, p) = (300, 5000)

and considered two different correlation levels ρ = 0 and 0.5 for these five models. We

repeated each experiment 100 times.

We compare performance of different stagewise selection approaches, each of which

is a two-step method, where in the first step a variable screening is employed to reduce

the number of interactions and main effects, and in the second step a variable selection

method is used to further select important interactions and main effects. For the screening

step, we employed several recent feature screening procedures: the sure independence

screening (Fan and Lv, 2008), feature screening via distance correlation (Li et al., 2012),

variable selection via sliced inverse regression (Jiang and Liu, 2014), and interaction

pursuit via distance correlation (Kong et al., 2017), respectively. Since this paper focuses

on interaction models with one single response, we can also consider the method of

interaction pursuit via the Pearson correlation for screening, which is exactly the same

as interaction pursuit via distance correlation, except for the replacement of distance

correlation with the Pearson correlation when identifying the variables in A and B.

Both methods in Fan and Lv (2008) and Li et al. (2012) are not particularly designed

for interaction models and each returns a set of variables without distinguishing between

important main effects and active interaction variables. Thus for each of those methods,

we construct interactions using all possible pairwise interactions of the recruited variables,

and refer to the resulting procedures as SIS2 and DCSIS2, respectively, to distinguish

them from the original ones. By doing so, the strong heredity assumption is enforced.
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For the method of interaction pursuit with the Pearson correlation, we retain the top

[n/(log n)] variables in each of sets Â and B̂ defined in (B.2), respectively. The features

in the union set M̂ = Â ∪ B̂ are used as main effects, while variables in set Â are

used to build interactions in the selection stage. We use the same procedure for the

method of interaction pursuit via distance correlation in Kong et al. (2017). To ensure

a fair comparison, the numbers of variables kept in other methods are all equal to the

cardinality of M̂, which is up to 2[n/(log n)]. Since the screening step is not the main

focus of our current paper, we present all screening results in the supplementary material.

The method of variable selection via sliced inverse regression or SIRI for short (Jiang

and Liu, 2014) is an iterative procedure that alternates between a large-scale variable

screening step and a moderate-scale variable selection step when p is large. Here we use

the full iterative procedure as described in Jiang and Liu (2014) and thus no additional

variable selection step is needed for this method. For other screening methods, we can

employ regularization methods such as the Lasso (Tibshirani, 1996) and the combined

L1 and concave method (Fan and Lv, 2014) to select important interactions and main

effects after the screening stage. As shown in Fan and Lv (2014), different choices of the

concave penalty gave rise to similar performance. We thus implemented the combined L1

and smooth integration of counting and absolute deviation method (Lv and Fan, 2009),

for simplicity. We also tried Lasso penalty but it generally yields inferior results. Thus

we only report the approach of interaction pursuit with the Pearson correlation followed

by Lasso penalty as a representative. For the method of SIRI (Jiang and Liu, 2014),

we added an additional refitting step using the selected variables to calculate model

performance measures. The oracle procedure based on the true underlying interaction

model, or Oracle for short, was used as a benchmark for comparisons.

To ease the presentation, denote by IP the screening method of interaction pursuit

with the Pearson correlation, IPDC the the screening method of interaction pursuit

with the distance correlation, and L1+SICA the combined L1 and smooth integration

of counting and absolute deviation method for selection. The approach of SIS2 fol-
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lowed by the L1+SICA method is referred to as SIS2-L1+SICA for short. All other

combinations of screening and selection methods are defined similarly. We include the

following seven methods to assess the variable selection performance: SIS2-L1+SICA,

DC-SIS2-L1+SICA, SIRI, IPDC-L1+SICA, IP-Lasso, IP-L1+SICA, and Oracle. The

cross-validation was used to select tuning parameters for all the methods, except that bic

was applied to the procedures with the combined L1 and smooth integration of count-

ing and absolute deviation method for computational efficiency since two regularization

parameters are involved.

Table 1: Variable selection results for study 1 with (n, p, ρ) = (300, 5000, 0.5). Reported
values are medians and robust standard deviations (in parentheses) of three performance
measures: PE, prediction error; FS, falsely discovered signs; and Time, running time in
seconds. 0∗ means that the corresponding value is small than 0.001.

SIS2-L1+SICA DC-SIS2-L1+SICA SIRI IPDC-L1+SICA IP-Lasso IP-L1+SICA Oracle
Model 1
PE 3.1 (0.8) 3.2 (1.0) 3.0 (0.0) 3.1 (1.8) 3.6 (0.3) 3.1 (0.8) 2.9 (0.2)
FS 0 (4.5) 1 (7.8) 0 (0.0) 0 (14.1) 109 (20.5) 0 (4.5) 0 (0)
Time 728.0 (60.2) 716.5 (47.6) 806.1 (54.5) 114.3 (15.4) 7.4 (1.0) 124.2 (12.8) 0* (0*)
Model 2
PE 19.1 (3.2) 2.1 (0.3) 2.2 (0.0) 2.1 (0.4) 2.5 (0.2) 2.1 (0.3) 2.0 (0.1)
FS 27 (9.0) 0 (3.4) 3 (3.0) 0 (5.4) 100 (20.5) 0 (3.0) 0 (0)
Time 741.8 (40.6) 732.7 (41.3) 801.9 (51.8) 109.3 (10.2) 7.0 (0.7) 117.8 (8.5) 0* (0*)
Model 3
PE 20.8 (3.0) 20.0 (3.7) 13.2 (0.6) 2.1 (0.3) 2.4 (0.2) 2.1 (0.2) 2.0 (0.2)
FS 29.5 (10.4) 27 (13.4) 7 (5.2) 0 (2.7) 97 (18.3) 0 (2.2) 0 (0)
Time 766.4 (25.0) 758.8 (29.2) 788.3 (57.1) 111.2 (9.1) 6.8 (0.6) 118.4 (7.1) 0* (0*)
Model 4
PE 36.4 (3.3) 21.6 (13.2) 12.4 (7.7) 1.4 (0.1) 1.6 (9.1) 1.4 (9.3) 1.3 (0.0)
FS 33.5 (14.6) 28 (13.1) 6 (5.2) 0 (0.0) 71 (39.9) 0 (4.9) 0 (0)
Time 764.9 (28.3) 769.0 (27.2) 231.4 (131.3) 97.2 (6.4) 6.4 (1.0) 106.6 (11.8) 0* (0*)
Model 5
PE 67.0 (13.5) 54.7 (24.1) 6.4 (34.3) 2.0 (3.5) 37.4 (28.9) 35.6 (30.7) 2.0 (0.0)
FS 21 (9.0) 16 (13.8) 22 (8.6) 6 (1.9) 119.5 (27.6) 11 (13.8) 0 (0.0)
Time 776.4 (48.1) 773.1 (41.3) 472.9 (81.1) 111.1 (19.3) 9.5 (1.9) 145.0 (14.8) 0* (0*)

To evaluate the variable selection performance of each method, we employed three

measures: the prediction error, falsely discovered signs, and running time in seconds.

The prediction error was calculated using an independent test sample of size 10,000.

The medians and robust standard deviations of these measures were calculated based on

100 simulations for different models in the study 1. The robust standard deviation is

defined as the interquartile range divided by 1.34. The experiments were conducted on

two identical servers with 3.07 GHz Intel Core with 24 processors and 64 GB memory.
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Parallel implementation was applied on the 100 simulations so the individual running

time may seem long but the entire experiment can finish in much shorter time than

sequential implementation. Since the selection results for study 1 under two settings

(n, p, ρ) = (300, 5000, 0) and (n, p, ρ) = (300, 5000, 0.5) are similar, we only present the

selection results for study 1 with (n, p, ρ) = (300, 5000, 0.5) here to save space. For the se-

lection results for study 1 with (n, p, ρ) = (300, 5000, 0), see Table 6 in the supplementary

material.

In view of Table 1, we see that when the strong heredity assumption holds (model

1), most methods performed well with the SIRI method following closely the oracle pro-

cedure. In model 2 with the weak heredity assumption, all methods, except the SIS2-

L1+SICA method, performed fairly well. In the cases when the heredity assumption does

not hold (models 3 and 4), those variable selection methods based on the interaction pur-

suit via distance correlation or the Pearson correlation (the IPDC-L1+SICA, IP-Lasso,

and IP-L1+SICA methods) still mimicked the oracle procedure and uniformly outper-

formed the other methods over all settings. The inflated robust standard deviations,

relative to medians, in model 4 were due to the relatively low sure screening probabilities

(see Tables 3 and 4 in the supplementary material. When the sure screening probability

is low, a non-negligible number of replications can have nonzero false negatives, which

inflated the corresponding prediction errors. Model 5 has five main effects and four inter-

actions, some of which satisfy the heredity assumption while others do not. The method

based on interaction pursuit via distance correlation (the IPDC-L1+SICA method) per-

forms the best and closest to the oracle procedure. The SIRI method performs better

than the methods of interaction pursuit via Pearson correlation (the IP-Lasso and IP-

L1+SICA methods) but not the method of interaction pursuit via distance correlation

(the IPDC-L1+SICA method) in model 5.

To assess the performance of each method with increasing sample size n and dimen-

sionality p, we consider study 2. More specifically, we consider model 4 with the same

settings except for (n, p) = (300, 10000) and (400, 10000), respectively, in study 2. See

20



Tables 5 and 7 in the supplemental material for corresponding screening and selection

results. We can observe similar conclusions as those for model 4 in study 1.

4 Real Data Application

We further evaluate the performance of our method on a supermarket data set, which was

also analyzed in Wang (2009), Hao and Zhang (2014), and Hao et al. (2018). The data

set contains a total of n = 464 daily sale records from a major supermarket in northern

China. Each record includes the number of customers on a particular day, denoted as Y ,

and the sale amounts of p = 6, 398 products on the same day, denoted as X1, · · · , Xp. The

response Y and covariates X1, · · · , Xp have already been standardized to have zero mean

and unit variance. The goal is to identify the products that significantly contribute to

the prediction of the daily number of customers, which can be useful for the supermarket

manager to make promotion strategies.

Following Hao et al. (2018), we randomly split the data into a training set of size

400 and a test set of size 64 to evaluate the prediction performance of different methods.

Using the training set, we retained the top [n/(log n)] variables in each of sets Â and

B̂ in the screening stage, and used the features in the union set M̂ = Â ∪ B̂ as main

effects and variables in set Â to build interactions in the selection stage. We then calcu-

lated the number of selected main effects (size.main), the number of selected interactions

(size.inter), and the out-of-sample R2 on the test data. We repeated the random splits

100 times, with the average performance presented in Table 2. The results of the RAMP

with different tuning methods were extracted from Hao et al. (2018), where RAMP-GIC

is RAMP with the tuning parameter selected by GIC (Fan and Tang, 2013). Other

procedures for the RAMP are defined similarly.

Table 2 shows that both IP-Lasso and IP-L1+SICA yield slightly higher out-of-

sample R2 than the RAMP based methods. In addition, the out-of-sample R2 values

for iFORT and iFORM (reported in Table 8 of Hao and Zhang (2014)) are 88.91(0.17)

and 88.66(0.18), respectively, with standard errors included in parentheses. This indi-
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Table 2: Mean selection and prediction results on the supermarket data set over 100
random splits. The standard errors are in parentheses.

size.main size.inter R2

RAMP-AIC 229.12(1.68) 94.53(1.06) 0.9048(0.0023)
RAMP-BIC 101.17(3.25) 34.36(1.65) 0.9118(0.0020)
RAMP-EBIC 29.27(1.01) 3.07(0.29) 0.8967(0.0031)
RAMP-GIC 30.71(0.92) 3.20(0.30) 0.9008(0.0028)
IP-Lasso 53.00(0.30) 147.30(2.02) 0.9191(0.0020)
IP-L1+SICA 52.20(0.28) 121.85(0.93) 0.9206(0.0020)

cates that both IP-Lasso and IP-L1+SICA also outperform iFORT and iFORM in terms

of the out-of-sample R2.

5 Discussion

Our theoretical analysis has shown that the regularized estimator given by the interac-

tion pursuit approach enjoys the same asymptotic properties as the lasso estimator, but

with improved sparsity and false sign rate, in ultrahigh-dimensional quadratic regression

models under random design. To simplify the technical presentation, our analysis has

focused on the linear pairwise interaction models. It would be interesting to extend these

selection results to other general model frameworks such as the generalized linear models,

nonparametric models, and survival models with interactions.

A Proofs of Theorems 1 and 2

We provide the detailed proofs of Theorems 1 and 2 in Appendix A and give some suffi-

cient conditions in Appendix B to ensure that Condition 1 holds. Additional simulation

studies and technical details are provided in the supplementary material. In particular,

q1 in the proofs of Theorems 1 and 2 is implicitly understood as max(n, q1) to simplify

the notation.
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A.1 Proof of Theorem 1

Recall that Z = (z̃1, . . . , z̃q) is the corresponding n× q augmented design matrix incorpo-

rating the covariate vectors for Xj’s and their interactions in columns, where z̃j = x̃j =

(X1j, . . . , Xnj)
T for 1 ≤ j ≤ p is the jth covariate vector and z̃j for p + 1 ≤ j ≤ q =

p(p+ 1)/2 is x̃k ◦ x̃` with some 1 ≤ k < ` ≤ p and ◦ denoting the Hadamard (component-

wise) product. We rescale the augmented design matrix Z such that each column has L2-

norm n1/2, and denote by Z̃ = ZD−1 the resulting matrix, where D = diag{D11, . . . , Dqq}

with Djj = n−1/2‖z̃j‖2 is a diagonal scale matrix.

Define the event E4 = {L1 ≤ min1≤j≤q |Djj| ≤ max1≤j≤q |Djj| ≤ L2}, where L1 and L2

are two positive constants defined in Condition 3. Then by the assumption in Condition

3, event E4 holds with probability at least 1 − an. In what follows, we will condition on

the event E4.

Note that conditional on E4, we have

‖Zδ‖2 ∼ ‖Z̃δ‖2, (A.1)

where the notation fn ∼ gn means that the ratio fn/gn is bounded between two positive

constants. Thus, conditional on E4, Condition 3 holds with matrix Z replaced with Z̃.

More specifically, with probability at least 1− an, it holds that

min
‖δ‖2=1, ‖δ‖0<2s

n−1/2‖Z̃δ‖2 ≥ κ̃0, min
δ 6=0, ‖δ2‖1≤7‖δ1‖1

{
n−1/2‖Z̃δ‖2/(‖δ1‖2 ∨ ‖δ3‖2)

}
≥ κ̃,

(A.2)

where κ̃0 and κ̃ are two positive constants depending only on κ, κ0, L1, and L2. In

addition, conditional on E4, the desired results in Theorem 1 are equivalent to those with

Z and θ replaced by Z̃ and θ∗ = Dθ, respectively. Thus, we only need to work with the

design matrix Z̃ and reparameterized parameter vector θ∗.

We will use sets to index vectors and matrices. For example, δH denotes the subvector

of δ ∈ Rq formed by its components with indices in H, and Z̃H represents the submatrix

of Z̃ ∈ Rn×q formed by its columns in H. By the definitions of Z̃H and δH, we see that
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the two inequalities in (A.2) with Z̃ and δ replaced by Z̃H and δH, respectively, still hold

with probability at least 1 − an. By examining the proof of Theorem 1 in Fan and Lv

(2014), in order to prove Theorem 1 in our paper, it suffices to show that the following

inequality

‖n−1Z̃T
HεH‖∞ > λ0/2 (A.3)

holds with probability at most an + o(p−c4), where λ0 = c0{(log q1)/nα1α2/(α1+2α2)}1/2 for

some constant c0 > 0 and c4 is some arbitrarily large positive constant depending on c0.

Then with (A.3), following the proof of Theorem 1 in Fan and Lv (2014), we can obtain

that all results in Theorem 1 hold with probability at least 1− an − o(p−c4).

It remains to prove (A.3). We first show that ‖n−1Z̃T
HεH‖∞ > λ0/2 holds with an over-

whelming probability. To this end, note that an application of the Bonferroni inequality

gives

P (‖n−1Z̃T
HεH‖∞ > λ0/2|E4) ≤

q1∑
j=1

P (|n−1z̃Tj ε| > L1λ0/2|E4) (A.4)

for any λ0 > 0. The key idea is to construct an upper bound for P (|n−1z̃Tj ε| > L1λ0/2|E4).

We claim that such an upper bound is C̃1 exp{−C̃2n
α1α2/(α1+2α2)λ2

0} for any 0 < L1λ0 < 2,

where C̃1 and C̃2 are some positive constants. To prove this, we consider the following

two cases.

Case 1: j ∈ {1, 2 . . . , p}. In this case, z̃j = (X1j, . . . , Xnj)
T . Thus n−1z̃Tj ε =

n−1
∑n

i=1Xijεi. By Lemma 2, for any t > 0, we have

P (|Xijεi| > t) ≤ 2c1 exp{−c−1
1 tα1α2/(α1+α2)}

for all 1 ≤ i ≤ n and 1 ≤ j ≤ p. Note that E(Xijεi) = 0. Thus it follows from Lemma 6

that there exist some positive constants C̃3 and C̃4 such that

P (|n−1z̃Tj ε| > L1λ0/2|E4) ≤ C̃3 exp{−C̃4n
min{α1α2/(α1+α2),1}λ2

0}

for all 0 < L1λ0 < 2.
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Case 2: j ∈ {p+1, . . . , q}. In this case, z̃j = (X1kX1`, . . . , XnkXn`)
T . Thus n−1z̃Tj ε =

n−1
∑n

i=1 XikXi`εi with some 1 ≤ k < ` ≤ p. By Lemma 2, for any t > 0, we have

P (|XikXi`εi| > t) ≤ 4c1 exp{−c−1
1 tα1α2/(α1+2α2)} for all 1 ≤ i ≤ n and 1 ≤ k < j ≤ p.

Note that E(XikXi`εi) = 0. Thus it follows from Lemma 6 and α1α2/(α1 + 2α2) ≤ 1 that

there exist some positive constants C̃5 and C̃6 such that

P (|n−1z̃Tj ε| > L1λ0/2|E4) ≤ C̃5 exp{−C̃6n
α1α2/(α1+2α2)λ2

0}

for all 0 < L1λ0 < 2.

Under the assumption that α1α2/(α1+2α2) ≤ 1, we have α1α2/(α1+2α2) ≤ min{α1α2/(α1+

α2), 1}. Thus combining Cases 1 and 2 above along with (A.4) leads to

P (‖n−1Z̃T
HεH‖∞ > λ0/2|E4) ≤

q1∑
j=1

P (|n−1z̃Tj ε| > L1λ0/2|E4)

≤ C̃1q1 exp{−C̃2n
α1α2/(α1+2α2)λ2

0}

for all 0 < L1λ0 < 2, where C̃1 = max{C̃3, C̃5} and C̃2 = min{C̃4, C̃6}.

Set λ0 = c0{(log q1)/nα1α2/(α1+2α2)}1/2 with c0 > (C̃2)−1/2 some positive constant.

Then 0 < L1λ0 < 2 for all n sufficiently large. Thus, with the above choice of λ0, it holds

that

P (‖n−1Z̃T
HεH‖∞ > λ0/2|E4) ≤ o(q−c41 ),

where c4 is some positive constant. Note that P (A) ≤ P (A|B) +P (Bc) for any events A

and B with P (B) > 0. Thus,

P (‖n−1Z̃T
HεH‖∞ > λ0/2) ≤ P (‖n−1Z̃T

HεH‖∞ > λ0/2|E4) + P (Ec4) ≤ o(q−c41 ) + an,

which completes the proof of Theorem 1.
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A.2 Proof of Theorem 2

We first prove that the diagonal entries Djj’s of the scale matrix D are bounded be-

tween two positive constants L1 ≤ L2 with significant probability. Since P (|Xij| > t) ≤

c1 exp(−c−1
1 tα1) for any t > 0 and all 1 ≤ i ≤ n and 1 ≤ j ≤ p, by Lemma 7 and noting

that E(X2
ij) = 1, there exist some positive constants C̃1 and C̃2 such that

P (1/2 ≤ n−1/2‖x̃j‖2 ≤
√

7/2) = P{−3/4 ≤ n−1

n∑
i=1

[X2
ij − E(X2

ij)] ≤ 3/4}

= 1− P{|n−1

n∑
i=1

[X2
ij − E(X2

ij)]| > 3/4} ≥ 1− C̃1 exp(−C̃2n
min{α1/2,1}) (A.5)

for all 1 ≤ j ≤ p where x̃j = (X1j, . . . , Xnj)
T .

Since var(XikXi`) is a diagonal entry of the population covariance matrix Γ, it follows

from Condition 5 that var(XikXi`) ≥ K > 0 for all 1 ≤ k < ` ≤ p. Thus, there exists a

constant 0 < K0 ≤ 1 such that E(X2
ikX

2
i`) ≥ var(XikXi`) ≥ K > K0 for all 1 ≤ k < ` ≤ p.

Meanwhile, it follows from X2
ikX

2
i` ≤ (X4

ik + X4
i`)/2 and Lemma 3 that E(X2

ikX
2
i`) ≤ C̃3,

where C̃3 ≥ K0 is some positive constant. Note that P (|Xij| > t) ≤ c1 exp(−c−1
1 tα1) for

any t > 0 and all 1 ≤ i ≤ n and 1 ≤ j ≤ p. Thus it follows from Lemma 7 that there

exist some positive constants C̃4 and C̃5 such that for all 1 ≤ k < ` ≤ p,

P
{

(K0/4)−1/2 ≤ n−1/2‖x̃k ◦ x̃`‖2 ≤ (7C̃3/4)−1/2
}

≥P
{

(K0/4)−1/2 ≤ n−1/2‖x̃k ◦ x̃`‖2 ≤ (3K0/4 + C̃3)−1/2
}

≥P
{∣∣n−1

n∑
i=1

[X2
ikX

2
i` − E(X2

ikX
2
i`)]
∣∣ ≤ 3K0/4

}
(A.6)

=1− P
{∣∣n−1

n∑
i=1

[X2
ikX

2
i` − E(X2

ikX
2
i`)]
∣∣ > 3K0/4

}
≥1− C̃4 exp(−C̃5n

min{α1/4,1}). (A.7)

Let L1 = 2−1 min{1, K1/2
0 } = 2−1K

1/2
0 and L2 =

√
7/2 max{1, C̃1/2

3 }. Then combining
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(A.5) with (A.6) yields that the following inequality

L1 ≤ min
1≤j≤q

|Djj| ≤ max
1≤j≤q

|Djj| ≤ L2, (A.8)

holds with probability at least 1− C̃1p exp(−C̃2n
min{α1/2,1})− C̃4p

2 exp(−C̃5n
min{α1/4,1}),

which shows that Djj’s are bounded away from zero and infinity with large probability.

We proceed to show that the first two parts of Theorem 2 hold with significant prob-

ability. For any 0 < ε < 1, define an event E5 = {‖n−1ZTZ − Γ‖∞ ≤ ε}, where ‖ · ‖∞

stands for the entrywise matrix infinity norm, and Z and Γ are defined in Section 2.5.

Recall that q = p(p + 1)/2. Since P (|Xij| > t) ≤ c1 exp(−c−1
1 tα1) for any t > 0 and

all 1 ≤ i ≤ n and 1 ≤ j ≤ p, it follows from Lemma 7 that there exist some positive

constants C̃6 and C̃7 such that

P (E5) = 1− P (|(n−1ZTZ − Γ)jk| > ε for some (j, k) with 1 ≤ j, k ≤ q)

≥ 1−
q∑
j=1

q∑
k=1

P (|(n−1ZTZ − Γ)jk| > ε) ≥ 1− C̃6q
2 exp(−C̃7n

min{α1/4,1}ε2) (A.9)

for any 0 < ε < 1, where Ajk denotes the (j, k)-entry of a matrix A.

Next, we show that conditional on the event E5, the desired inequalities in Theo-

rem 2 hold. From now on, we condition on the event E5. Note that (n−1/2‖Zδ‖2)2 =

δT (n−1ZTZ − Γ)δ + δTΓδ. Let δJ be the subvector of δ formed by putting all nonzero

components of δ together. For any δ satisfying ‖δ‖2 = 1 and ‖δ‖0 < 2s, by the Cauchy-

Schwarz inequality we have

|δT (n−1ZTZ − Γ)δ| ≤ ε‖δ‖2
1 = ε‖δJ‖2

1 ≤ ε‖δJ‖0‖δJ‖2
2 = ε‖δ‖0‖δ‖2

2 < 2sε. (A.10)

It follows that (n−1/2‖Zδ‖2)2 > δTΓδ − 2sε for any δ satisfying ‖δ‖2 = 1 and ‖δ‖0 < 2s.

Thus we derive

min
‖δ‖2=1,‖δ‖0<2s

(n−1/2‖Zδ‖2)2 ≥ min
‖δ‖2=1,‖δ‖0<2s

(δTΓδ)− 2sε ≥ K − 2sε, (A.11)
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where the last inequality follows from Condition 5.

Meanwhile, for any δ 6= 0 we have

(
n−1/2‖Zδ‖2

‖δ1‖2 ∨ ‖δ3‖2

)2

=
δT (n−1ZTZ − Γ)δ

‖δ1‖2
2 ∨ ‖δ3‖2

2

+
δTΓδ

‖δ1‖2
2 ∨ ‖δ3‖2

2

+
δTΓδ

‖δ‖2
2

≥ δT (n−1ZTZ − Γ)δ

‖δ1‖2
2 ∨ ‖δ3‖2

2

+
δTΓδ

‖δ‖2
2

.

Under the additional condition ‖δ2‖1 ≤ 7‖δ1‖1, by the first inequality of (A.10) it holds

that ∣∣∣∣δT (n−1ZTZ − Γ)δ

‖δ1‖2
2 ∨ ‖δ3‖2

2

∣∣∣∣ ≤ ε‖δ‖2
1

‖δ1‖2
2

=
ε(‖δ1‖1 + ‖δ2‖1)2

‖δ1‖2
2

≤ 64ε‖δ1‖2
1

‖δ1‖2
2

≤ 64sε,

where the last inequality follows from the Cauchy-Schwarz inequality. This entails that

(
n−1/2‖Zδ‖2

‖δ1‖2 ∨ ‖δ3‖2

)2

≥ δTΓδ

‖δ‖2
2

− 64sε

for any δ 6= 0 with ‖δ2‖1 ≤ 7‖δ1‖1. Thus, by Condition 5 we have

min
δ 6=0, ‖δ2‖1≤7‖δ1‖1

(
n−1/2‖Zδ‖2

‖δ1‖2 ∨ ‖δ3‖2

)2

≥ min
δ 6=0, ‖δ2‖1≤7‖δ1‖1

δTΓδ

‖δ‖2
2

− 64sε ≥ K − 64sε. (A.12)

Recall that s = O(nξ0) with 0 ≤ ξ0 < min{α1/8, 1/2} by assumption and thus

s ≤ C̃8n
ξ0 for some positive constant C̃8. Take ε = Kn−ξ0/C̃9 with C̃9 some sufficiently

large positive constant such that ε ∈ (0, 1) and K − 64sε > 0. In view of (A.8), (A.9),

(A.11), and (A.12), since log p = o(nmin{α1/4,1}−2ξ0) by assumption, we obtain that

an = C̃1p exp(−C̃2n
min{α1/2,1}) + C̃4p

2 exp(−C̃5n
min{α1/4,1})

+ C̃6q
2 exp(−C̃7K

2C̃−2
9 nmin{α1/4,1}−2ξ0) = o(1)

with the above choice of ε, and that with probability at least 1− an, the desired results

in the theorem hold with κ0 = K(1− 2C̃8/C̃9) and κ = K(1− 64C̃8/C̃9). This concludes

the proof of Theorem 2.
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B Verification of Condition 1

Kong et al. (2017) considered high-dimensional interaction models with multi-response

Ỹ = (Y1, . . . , Ym)T and proposed a two-stage interaction identification method, called the

interaction pursuit via distance correlation, which exploits feature screening applied to

transformed variables with distance correlation (Székely et al., 2007) followed by feature

selection. They showed the screening step in the method of interaction pursuit with

distance correlation enjoys the sure screening property for any positive integer m; see

Theorem 1 in Kong et al. (2017) for details. Thus, Condition 1 in our paper holds under

those conditions for Theorem 1 in Kong et al. (2017). Next, we would like to show that for

the interaction model (1) the method of interaction pursuit with the Pearson correlation

can also enjoy the sure screening property.

Following the idea of the interaction pursuit via distance correlation in Kong et al.

(2017), we can identify the set of active interaction variables A by ranking the marginal

correlations corr(X2
k , Y

2) in magnitude, and then retaining the top ones with absolute

correlations bounded from below by some positive threshold. Similarly, we can identify

the set of important main effects B through the marginal correlations corr(Xj, Y ). Define

two population quantities

ωk =
cov(X2

k , Y
2)√

var(X2
k)

and ω∗j =
cov(Xj, Y )√

var(Xj)
(B.1)

with 1 ≤ k, j ≤ p for interaction variables and main effects, respectively. Observe that

corr(X2
k , Y

2) = ωk/{var(Y 2)}1/2 and corr(Xj, Y ) = ω∗j/{var(Y )}1/2. Denote by ω̂k and

ω̂∗j the empirical versions of ωk and ω∗j , respectively, constructed by plugging in the

corresponding sample covariances based on the sample {(Xi1, . . . , Xip, Yi), i = 1, . . . , n}.

Then in the screening step of the interaction pursuit, we estimate the sets of active

interaction variables A and important main effects B as

Â = {1 ≤ j ≤ p : |ω̂k| ≥ τ} and B̂ =
{

1 ≤ j ≤ p : |ω̂∗j | ≥ τ̃
}
, (B.2)
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where τ and τ̃ are some positive thresholds. Based on the retained interaction variables

in Â, we can construct all pairwise interactions as

Î =
{

(k, `) : k, ` ∈ Â and k < `
}
. (B.3)

Finally the set of important featuresM can then be estimated as M̂ = Â∪ B̂. Although

our approach for estimating the set B is the same as SIS, the theoretical developments

on the screening property for main effects are distinct from those in Fan and Lv (2008)

due to the presence of interactions in our model.

It is worth mentioning that Î generally provides an overestimate of the set of impor-

tant interactions I, in the sense that some interactions in the constructed set Î may be

unimportant ones. This is, however, not an issue for the purpose of interaction screening

and will be addressed later in the selection step of our method. We would like to remark

that this screening step is similar to the screening step of Kong et al. (2017) except that

the distance correlation is used in Kong et al. (2017). Next, we provide some sufficient

conditions that ensures Condition 1 also holds for the method of interaction pursuit via

Person correlation. To this end, we provide the following sufficient conditions.

Condition 6. There exist constants 0 ≤ ξ1, ξ2 < 1 such that s1 = |I| = O(nξ1) and

s2 = |B| = O(nξ2), and |β0|, ‖β0‖∞, ‖γ0‖∞ = O(1) with ‖ · ‖∞ denoting the vector L∞-

norm.

Condition 7. There exist some constants 0 ≤ κ1, κ2 < 1/2 and c2 > 0 such that

mink∈A |ωk| ≥ 2c2n
−κ1 and minj∈B |ω∗j | ≥ 2c2n

−κ2.

Condition 6 allows the numbers of important interactions and important main effects

to grow with the sample size n, and imposes an upper bound on the magnitude of true

regression coefficients. Clearly, Condition 6 entails that the number of active interaction

variables is at most 2s1, that is, |A| ≤ 2s1.

Condition 7 puts constraints on the minimum marginal correlations, through different

forms, for active interaction variables and important main effects, respectively. It is
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analogous to Condition 3 in Fan and Lv (2008), and can be understood as an assumption

on the minimum signal strength in the feature screening setting. Smaller constants κ1

and κ2 correspond to stronger marginal signals. This condition is crucial for ensuring that

the marginal utilities carry enough information about the active interaction variables and

important main effects.

To gain more insights into Condition 7, consider the specific case of (X1, . . . , Xp)
T ∼

N(0, Ip). Note that var(X2
k) are uniformly bounded by Condition 2. Then it can be

shown that the constraint of mink∈A |ωk| ≥ 2c2n
−κ1 in Condition 7 is equivalent to that

of

min
k∈A

(
β2

0,k +
k−1∑
j=1

γ2
0,jk +

p∑
`=k+1

γ2
0,k`

)
≥ cn−κ1 ,

where c is some positive constant which may be different from c2. Thus Condition 7 can be

understood as constraints imposed indirectly on the true nonzero regression coefficients.

Under these conditions, Lemma 1 in the supplementary material shows that the sam-

ple estimates of the marginal utilities are sufficiently close to the population ones with

significant probability, and establishes the sure screening property for both interaction

and main effect screening. Thus Condition 1 holds under these conditions.
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