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Abstract

Evaluating the joint significance of covariates is of fundamental importance in a wide range
of applications. To this end, p-values are frequently employed and produced by algorithms
that are powered by classical large-sample asymptotic theory. It is well known that the
conventional p-values in Gaussian linear model are valid even when the dimensionality is
a non-vanishing fraction of the sample size, but can break down when the design matrix
becomes singular in higher dimensions or when the error distribution deviates from Gaus-
sianity. A natural question is when the conventional p-values in generalized linear models
become invalid in diverging dimensions. We establish that such a breakdown can occur
early in nonlinear models. Our theoretical characterizations are confirmed by simulation
studies.

Keywords: Nonuniformity, p-value, breakdown point, generalized linear model, high
dimensionality, joint significance testing

1. Introduction

In many applications it is often desirable to evaluate the significance of covariates in a
predictive model for some response of interest. Identifying a set of significant covariates
can facilitate domain experts to further probe their causal relationships with the response.
Ruling out insignificant covariates can also help reduce the fraction of false discoveries and
narrow down the scope of follow-up experimental studies by scientists. These tasks certainly
require an accurate measure of feature significance in finite samples. The tool of p-values
has provided a powerful framework for such investigations.

As p-values are routinely produced by algorithms, practitioners should perhaps be aware
that those p-values are usually based on classical large-sample asymptotic theory. For ex-
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ample, marginal p-values have been employed frequently in large-scale applications when
the number of covariates p greatly exceeds the number of observations n. Those p-values are
based on marginal regression models linking each individual covariate to the response sepa-
rately. In these marginal regression models, the ratio of sample size to model dimensionality
is equal to n, which results in justified p-values as sample size increases. Yet due to the
correlations among the covariates, we often would like to investigate the joint significance
of a covariate in a regression model conditional on all other covariates, which is the main
focus of this paper. A natural question is whether conventional joint p-values continue to
be valid in the regime of diverging dimensionality p.

It is well known that fitting the linear regression model with p > n using the ordinary
least squares can lead to perfect fit giving rise to zero residual vector, which renders the
p-values undefined. When p ≤ n and the design matrix is nonsingular, the p-values in
the linear regression model are well defined and valid thanks to the exact normality of
the least-squares estimator when the random error is Gaussian and the design matrix is
deterministic. When the error is non-Gaussian, Huber (1973) showed that the least-squares
estimator can still be asymptotically normal under the assumption of p = o(n), but is
generally no longer normal when p = o(n) fails to hold, making the conventional p-values
inaccurate in higher dimensions. For the asymptotic properties of M -estimators for robust
regression, see, for example, Huber (1973); Portnoy (1984, 1985) for the case of diverging
dimensionality p = o(n) and Karoui et al. (2013); Bean et al. (2013) for the scenario when
the dimensionality p grows proportionally to sample size n.

We have seen that the conventional p-values for the least-squares estimator in linear
regression model can start behaving wildly and become invalid when the dimensionality p
is of the same order as sample size n and the error distribution deviates from Gaussianity.
A natural question is whether similar phenomenon holds for the conventional p-values for
the maximum likelihood estimator (MLE) in the setting of diverging-dimensional nonlinear
models. More specifically, we aim to answer the question of whether p ∼ n is still the
breakdown point of the conventional p-values when we move away from the regime of
linear regression model, where ∼ stands for asymptotic order. To simplify the technical
presentation, in this paper we adopt the generalized linear model (GLM) as a specific
family of nonlinear models (McCullagh and Nelder, 1989). The GLM with a canonical link
assumes that the conditional distribution of y given X belongs to the canonical exponential
family, having the following density function with respect to some fixed measure

fn(y; X,β) ≡
n∏
i=1

f0(yi; θi) =

n∏
i=1

{
c(yi) exp

[
yiθi − b(θi)

φ

]}
, (1)

where X = (x1, · · · ,xp) is an n× p design matrix with xj = (x1j , · · · , xnj)T , j = 1, · · · , p,
y = (y1, · · · , yn)T is an n-dimensional response vector, β = (β1, · · · , βp)T is a p-dimensional
regression coefficient vector, {f0(y; θ) : θ ∈ R} is a family of distributions in the regular
exponential family with dispersion parameter φ ∈ (0,∞), and θ = (θ1, · · · , θn)T = Xβ. As
is common in GLM, the function b(θ) in (1) is implicitly assumed to be twice continuously
differentiable with b′′(θ) always positive. Popularly used GLMs include the linear regression
model, logistic regression model, and Poisson regression model for continuous, binary, and
count data of responses, respectively.
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The key innovation of our paper is the formal justification that the conventional p-
values in nonlinear models of GLMs can become invalid in diverging dimensions and such
a breakdown can occur much earlier than in linear models, which spells out a fundamental
difference between linear models and nonlinear models. To begin investigating p-values in
diverging-dimensional GLMs, let us gain some insights into this problem by looking at the
specific case of logistic regression. Recently, Candès (2016) established an interesting phase
transition phenomenon of perfect hyperplane separation for high-dimensional classification
with an elegant probabilistic argument. Suppose we are given a random design matrix
X ∼ N(0, In⊗ Ip) and arbitrary binary yi’s that are not all the same. The phase transition
of perfect hyperplane separation happens at the point p/n = 1/2. With such a separating
hyperplane, there exist some β∗ ∈ Rp and t ∈ R such that xTi β

∗ > t for all cases yi = 1 and
xTi β

∗ < t for all controls yi = 0. Let us fit a logistic regression model with an intercept. It is
easy to show that multiplying the vector (−t, (β∗)T )T by a divergence sequence of positive
numbers c, we can obtain a sequence of logistic regression fits with the fitted response
vector approaching y = (y1, · · · , yn)T as c → ∞. As a consequence, the MLE algorithm
can return a pretty wild estimate that is close to infinity in topology when the algorithm
is set to stop. Clearly, in such a case the p-value of the MLE is no longer justified and
meaningful. The results in Candès (2016) have two important implications. First, such
results reveal that unlike in linear models, p-values in nonlinear models can break down and
behave wildly when p/n is of order 1/2; see Karoui et al. (2013); Bean et al. (2013) and
discussions below. Second, these results motivate us to characterize the breakdown point of
p-values in nonlinear GLMs with p ∼ nα0 in the regime of α0 ∈ [0, 1/2). In fact, our results
show that the breakdown point can be even much earlier than n/2.

It is worth mentioning that our work is different in goals from the limited but growing
literature on p-values for high-dimensional nonlinear models, and makes novel contributions
to such a problem. The key distinction is that existing work has focused primarily on identi-
fying the scenarios in which conventional p-values or their modifications continue to be valid
with some sparsity assumption limiting the growth of intrinsic dimensions. For example,
Fan and Peng (2004) established the oracle property including the asymptotic normality for
nonconcave penalized likelihood estimators in the scenario of p = o(n1/5), while Fan and Lv
(2011) extended their results to the GLM setting of non-polynomial (NP) dimensionality. In
the latter work, the p-values were proved to be valid under the assumption that the intrinsic
dimensionality s = o(n1/3). More recent work on high-dimensional inference in nonlinear
model settings includes van de Geer et al. (2014); Athey et al. (2016) under sparsity assump-
tions. In addition, two tests were introduced in Guo and Chen (2016) for high-dimensional
GLMs without or with nuisance regression parameters, but the p-values were obtained for
testing the global hypothesis for a given set of covariates, which is different from our goal
of testing the significance of individual covariates simultaneously. Portnoy (1988) stud-
ied the asymptotic behavior of the MLE for exponential families under the classical i.i.d.
non-regression setting, but with diverging dimensionality. In contrast, our work under the
GLM assumes the regression setting in which the design matrix X plays an important role
in the asymptotic behavior of the MLE β̂. The validity of the asymptotic normality of
the MLE was established in Portnoy (1988) under the condition of p = o(n1/2), but the
precise breakdown point in diverging dimensionality was not investigated therein. Another
line of work is focused on generating asymptotically valid p-values when p/n converges to a
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fixed positive constant. For instance, Karoui et al. (2013) and Bean et al. (2013) considered
M -estimators in the linear model and showed that their variance is greater than classically
predicted. Based on this result, it is possible to produce p-values by making adjustments
for the inflated variance in high dimensions. Recently, Sur and Candès (2018) showed that
similar adjustment is possible for the likelihood ratio test (LRT) for logistic regression.
Our work differs from this line of work in two important aspects. First, our focus is on
the classical p-values and their validity. Second, their results concern dimensionality that
is comparable to sample size, while we aim to analyze the problem for a lower range of
dimensionality and pinpoint the exact breakdown point of p-values.

The rest of the paper is organized as follows. Section 2 provides characterizations of
p-values in low dimensions. We establish the nonuniformity of GLM p-values in diverging
dimensions in Section 3. Section 4 presents several simulation examples verifying the theo-
retical phenomenon. We discuss some implications of our results in Section 5. The proofs
of all the results are relegated to the Appendix.

2. Characterizations of P-values in Low Dimensions

To pinpoint the breakdown point of GLM p-values in diverging dimensions, we start with
characterizing p-values in low dimensions. In contrast to existing work on the asymptotic
distribution of the penalized MLE, our results in this section focus on the asymptotic nor-
mality of the unpenalized MLE in diverging-dimensional GLMs, which justifies the validity
of conventional p-values. Although Theorems 1 and 4 to be presented in Sections 2.2 and A
are in the conventional sense of relatively small p, to the best of our knowledge such results
are not available in the literature before in terms of the maximum range of dimensionality
p without any sparsity assumption.

2.1. Maximum likelihood estimation

For the GLM (1), the log-likelihood log fn(y; X,β) of the sample is given, up to an affine
transformation, by

`n(β) = n−1
[
yTXβ − 1Tb(Xβ)

]
, (2)

where b(θ) = (b(θ1), · · · , b(θn))T for θ = (θ1, · · · , θn)T ∈ Rn. Denote by β̂ = (β̂1, · · · , β̂p)T ∈
Rp the MLE which is the maximizer of (2), and

µ(θ) = (b′(θ1), · · · , b′(θn))T and Σ(θ) = diag{b′′(θ1), · · · , b′′(θn)}. (3)

A well-known fact is that the n-dimensional response vector y in GLM (1) has mean vector
µ(θ) and covariance matrix φΣ(θ). Clearly, the MLE β̂ is given by the unique solution to
the score equation

XT [y− µ(Xβ)] = 0 (4)

when the design matrix X is of full column rank p.

It is worth mentioning that for the linear model, the score equation (4) becomes the
well-known normal equation XTy = XTXβ which admits a closed form solution. On the
other hand, equation (4) does not admit a closed form solution in general nonlinear models.
This fact due to the nonlinearity of the mean function µ(·) causes the key difference between
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the linear and nonlinear models. In future presentations, we will occasionally use the term
nonlinear GLMs to exclude the linear model from the family of GLMs when necessary.

We will present in the next two sections some sufficient conditions under which the
asymptotic normality of MLE holds. In particular, Section 2.2 concerns the case of fixed
design and Section A deals with the case of random design. In addition, Section 2.2 allows
for general regression coefficient vector β0 and the results extend some existing ones in the
literature, while Section A assumes the global null β0 = 0 and Gaussian random design
which enable us to pinpoint the exact breakdown point of the asymptotic normality for the
MLE.

2.2. Conventional p-values in low dimensions under fixed design

Recall that we condition on the design matrix X in this section. We first introduce a
deviation probability bound that facilitates our technical analysis. Consider both cases of
bounded responses and unbounded responses. In the latter case, assume that there exist
some constants M,v0 > 0 such that

max
1≤i≤n

E

{
exp

[
|yi − b′ (θ0,i)|

M

]
− 1− |yi − b

′ (θ0,i)|
M

}
M2 ≤ v0

2
(5)

with (θ0,1, · · · , θ0,n)T = θ0 = Xβ0, where β0 = (β0,1, · · · , β0,p)T denotes the true regression
coefficient vector in model (1). Then by Fan and Lv (2011, 2013), it holds that for any
a ∈ Rn,

P
(∣∣aTY− aTµ (θ0)

∣∣ > ‖a‖2 ε) ≤ ϕ(ε), (6)

where ϕ(ε) = 2e−c1ε
2

with c1 > 0 some constant, and ε ∈ (0,∞) if the responses are
bounded and ε ∈ (0, ‖a‖2/‖a‖∞] if the responses are unbounded.

For nonlinear GLMs, the MLE β̂ solves the nonlinear score equation (4) whose solution
generally does not admit an explicit form. To address such a challenge, we construct a
solution to equation (4) in an asymptotically shrinking neighborhood of β0 that meets the
MLE β̂ thanks to the uniqueness of the solution. Specifically, define a neighborhood of β0

as

N0 = {β ∈ Rp : ‖β − β0‖∞ ≤ n−γ log n} (7)

for some constant γ ∈ (0, 1/2]. Assume that p = O(nα0) for some α0 ∈ (0, γ) and let bn =
o{min(n1/2−γ

√
log n, s−1n n2γ−α0−1/2/(log n)2} be a diverging sequence of positive numbers,

where sn is a sequence of positive numbers that will be specified in Theorem 1 below. We
need some basic regularity conditions to establish the asymptotic normality of the MLE β̂.

Condition 1 The design matrix X satisfies∥∥∥[XTΣ (θ0) X
]−1∥∥∥

∞
= O(bnn

−1), (8)

max
β∈N0

maxpj=1 λmax

[
XTdiag

{
|xj | ◦

∣∣µ′′ (Xβ)
∣∣}X

]
= O(n) (9)

with ◦ denoting the Hadamard product and derivatives understood componentwise. Assume

that maxpj=1 ‖xj‖∞ < c
1/2
1 {n/(log n)}1/2 if the responses are unbounded.
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Condition 2 The eigenvalues of n−1An are bounded away from 0 and∞,
∑n

i=1(z
T
i A−1n zi)

3/2

= o(1), and maxni=1E|yi−b′(θ0,i)|3 = O(1), where An = XTΣ(θ0)X and (z1, · · · , zn)T = X.

Conditions 1 and 2 put some basic restrictions on the design matrix X and a moment
condition on the responses. For the case of linear model, bound (8) becomes ‖(XTX)−1‖∞ =
O(bn/n) and bound (9) holds automatically since b′′′(θ) ≡ 0. Condition 2 is related to the
Lyapunov condition.

Theorem 1 (Asymptotic normality) Assume that Conditions 1–2 and probability bound
(6) hold. Then

a) there exists a unique solution β̂ to score equation (4) in N0 with asymptotic probability
one;

b) the MLE β̂ satisfies that for each vector u ∈ Rp with ‖u‖2 = 1 and ‖u‖1 = O(sn),

(uTA−1n u)−1/2(uT β̂ − uTβ0)
D−→ N(0, φ) (10)

and specifically for each 1 ≤ j ≤ p,

(A−1n )
−1/2
jj (β̂j − β0,j)

D−→ N(0, φ), (11)

where An = XTΣ(θ0)X and (A−1n )jj denotes the jth diagonal entry of matrix A−1n .

Theorem 1 establishes the asymptotic normality of the MLE and consequently justifies
the validity of the conventional p-values in low dimensions. Note that for simplicity, we
present here only the marginal asymptotic normality, and the joint asymptotic normality
also holds for the projection of the MLE onto any fixed-dimensional subspace. This result
can also be extended to the case of misspecified models; see, for example, Lv and Liu (2014).

As mentioned in the Introduction, the asymptotic normality was shown in Fan and
Lv (2011) for nonconcave penalized MLE having intrinsic dimensionality s = o(n1/3). In
contrast, our result in Theorem 1 allows for the scenario of p = o(n1/2) with no sparsity
assumption in view of our technical conditions. In particular, we see that the conventional
p-values in GLMs generally remain valid in the regime of slowly diverging dimensionality
p = o(n1/2).

3. Nonuniformity of GLM P-values in Diverging Dimensions

So far we have seen that for nonlinear GLMs, the p-values can be valid when p = o(n1/2) as
shown in Section 2, and can become meaningless when p ≥ n/2 as discussed in the Introduc-
tion. Apparently, there is a big gap between these two regimes of growth of dimensionality
p. To provide some guidance on the practical use of p-values in nonlinear GLMs, it is of
crucial importance to characterize their breakdown point. To highlight the main message
with simplified technical presentation, hereafter we content ourselves with the specific case
of logistic regression model for binary response. Moreover, we investigate the distributional
property in (11) for the scenario of true regression coefficient vector β0 = 0, that is, under
the global null. We argue that this specific model is sufficient for our purpose because if the
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conventional p-values derived from MLEs fail (i.e., (11) fails) for at least one β0 (in partic-
ular β0 = 0), then conventional p-values are not justified. Therefore, the breakdown point
for logistic regression is at least the breakdown point for general nonlinear GLMs. This ar-
gument is fundamentally different from that of proving the overall validity of conventional
p-values, where one needs to prove the asymptotic normality of MLEs under general GLMs
rather than any specific model.

3.1. The wild side of nonlinear regime

For the logistic regression model (1), we have b(θ) = log(1+eθ), θ ∈ R and φ = 1. The mean
vector µ(θ) and covariance matrix φΣ(θ) of the n-dimensional response vector y given by

(3) now take the familiar form of µ(θ) =
(

eθ1

1+eθ1
, · · · , eθn

1+eθn

)T
and

Σ(θ) = diag

{
eθ1

(1 + eθ1)
2 , · · · ,

eθn

(1 + eθn)
2

}

with θ = (θ1, · · · , θn)T = Xβ. In many real applications, one would like to interpret the
significance of each individual covariate produced by algorithms based on the conventional
asymptotic normality of the MLE as established in Theorem 1. As argued at the beginning
of this section, in order to justify the validity of p-values in GLMs, the underlying theory
should at least ensure that the distributional property (11) holds for logistic regression under
the global null. As we will see empirically in Section 4, as the dimensionality increases, p-
values from logistic regression under the global null have a distribution that is skewed more
and more toward zero. Consequently, classical hypothesis testing methods which reject the
null hypothesis when p-value is less than the pre-specified level α would result in more
false discoveries than the desired level of α. As a result, practitioners may simply lose the
theoretical backup and the resulting decisions based on the p-values can become ineffective
or even misleading. For this reason, it is important and helpful to identify the breakdown
point of p-values in diverging-dimensional logistic regression model under the global null.

Characterizing the breakdown point of p-values in nonlinear GLMs is highly nontrivial
and challenging. First, the nonlinearity generally causes the MLE to take no analytical
form, which makes it difficult to analyze its behavior in diverging dimensions. Second,
conventional probabilistic arguments for establishing the central limit theorem of MLE only
enable us to see when the distributional property holds, but not exactly at what point it
fails. To address these important challenges, we introduce novel geometric and probabilistic
arguments presented later in the proofs of Theorems 2–3 that provide a rather delicate
analysis of the MLE. In particular, our arguments unveil that the early breakdown point of
p-values in nonlinear GLMs is essentially due to the nonlinearity of the mean function µ(·).
This shows that p-values can behave wildly much early on in diverging dimensions when we
move away from linear regression model to nonlinear regression models such as the widely
applied logistic regression; see the Introduction for detailed discussions on the p-values in
diverging-dimensional linear models.

Before presenting the main results, let us look at the specific case of logistic regression
model under the global null. In such a scenario, it holds that θ0 = Xβ0 = 0 and thus
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Σ(θ0) = 4−1In, which results in

An = XTΣ(θ0)X = 4−1XTX.

In particular, we see that when n−1XTX is close to the identity matrix Ip, the asymptotic

standard deviation of the jth component β̂j of the MLE β̂ is close to 2n−1/2 when the
asymptotic theory in (11) holds. As mentioned in the Introduction, when p ≥ n/2 the MLE
can blow up with excessively large variance, a strong evidence against the distributional
property in (11). In fact, one can also observe inflated variance of the MLE relative to
what is predicted by the asymptotic theory in (11) even when the dimensionality p grows
at a slower rate with sample size n. As a consequence, the conventional p-values given by
algorithms according to property (11) can be much biased toward zero and thus produce
more significant discoveries than the truth. Such a breakdown of conventional p-values is
delineated clearly in the simulation examples presented in Section 4.

3.2. Main results

We now present the formal results on the invalidity of GLM p-values in diverging dimensions.

Theorem 2 (Uniform orthonormal design) 1 Assume that n−1/2X is uniformly dis-
tributed on the Stiefel manifold Vp(Rn) consisting of all n× p orthonormal matrices. Then
for the logistic regression model under the global null, the asymptotic normality of the MLE
established in (11) fails to hold when p ∼ n2/3, where ∼ stands for asymptotic order.

Theorem 3 (Correlated Gaussian design) Assume that X ∼ N(0, In ⊗ Σ) with co-
variance matrix Σ nonsingular. Then for the logistic regression model under the global null,
the same conclusion as in Theorem 2 holds.

Theorem 4 in Appendix A states that under the global null in GLM with Gaussian
design, the p-value based on the MLE remains valid as long as the dimensionality p diverges
with n at a slower rate than n2/3. This together with Theorems 2 and 3 shows that under the
global null, the exact breakdown point for the uniformity of p-value is n2/3. We acknowledge
that these results are mainly for theoretical interests because in practice one cannot check
precisely whether the global null assumption holds or not. However, these results clearly
suggest that in GLM with diverging dimensionality, one needs to be very cautious when
using p-values based on the MLE.

The key ingredients of our new geometric and probabilistic arguments are demonstrated
in the proof of Theorem 2 in Section B.3. The assumption that the rescaled random design
matrix n−1/2X has the Haar measure on the Stiefel manifold Vp(Rn) greatly facilitates
our technical analysis. The major theoretical finding is that the nonlinearity of the mean
function µ(·) can be negligible in determining the asymptotic distribution of MLE as given
in (11) when the dimensionality p grows at a slower rate than n2/3, but such nonlinearity can
become dominant and deform the conventional asymptotic normality when p grows at rate
n2/3 or faster. See the last paragraph of Section B.3 for more detailed in-depth discussions

1. For completeness, we present Theorem 4 in Appendix A which provides a random design version of
Theorem 1 under global null and a partial converse of Theorems 2 and 3.

8



Nonuniformity of P-values Can Occur Early in Diverging Dimensions

on such an interesting phenomenon. Furthermore, the global null assumption is a crucial
component of our geometric and probabilistic argument. The global null assumption along
with the distributional assumption on the design matrix ensures the symmetry property
of the MLE and the useful fact that the MLE can be asymptotically independent of the
random design matrix. In the absence of such an assumption, we may suspect that p-values
of the noise variables can be affected by the signal variables due to asymmetry. Indeed, our
simulation study in Section 4 reveals that as the number of signal variables increases, the
breakdown point of the p-values occurs even earlier.

Theorem 3 further establishes that the invalidity of GLM p-values in high dimensions be-
yond the scenario of orthonormal design matrices considered in Theorem 2. The breakdown
of the conventional p-values occurs regardless of the correlation structure of the covariates.

Our theoretical derivations detailed in the Appendix also suggest that the conventional
p-values in nonlinear GLMs can generally fail to be valid when p ∼ nα0 with α0 ranging
between 1/2 and 2/3, which differs significantly from the phenomenon for linear models
as discussed in the Introduction. The special feature of logistic regression model that the
variance function b′′(θ) takes the maximum value 1/4 at natural parameter θ = 0 leads to
a higher transition point of p ∼ nα0 with α0 = 2/3 for the case of global null β0 = 0.

4. Numerical Studies

We now investigate the breakdown point of p-values for nonlinear GLMs in diverging di-
mensions as predicted by our major theoretical results in Section 3 with several simulation
examples. Indeed, these theoretical results are well supported by the numerical studies.

4.1. Simulation examples

Following Theorems 2–3 in Section 3, we consider three examples of the logistic regression
model (1). The response vector y = (y1, · · · , yn)T has independent components and each
yi has Bernoulli distribution with parameter eθi/(1 + eθi), where θ = (θ1, · · · , θn)T = Xβ0.
In example 1, we generate the n × p design matrix X = (x1, · · · ,xp) such that n−1/2X
is uniformly distributed on the Stiefel manifold Vp(Rn) as in Theorem 2, while examples
2 and 3 assume that X ∼ N(0, In ⊗ Σ) with covariance matrix Σ as in Theorem 3. In
particular, we choose Σ = (ρ|j−k|)1≤j,k≤p with ρ = 0, 0.5, and 0.8 to reflect low, moderate,
and high correlation levels among the covariates. Moreover, examples 1 and 2 assume the
global null model with β0 = 0 following our theoretical results, whereas example 3 allows
sparsity s = ‖β0‖0 to vary.

To examine the asymptotic results we set the sample size n = 1000. In each example,
we consider a spectrum of dimensionality p with varying rate of growth with sample size
n. As mentioned in the Introduction, the phase transition of perfect hyperplane separation
happens at the point p/n = 1/2. Recall that Theorems 2–3 establish that the conventional
GLM p-values can become invalid when p ∼ n2/3. We set p = [nα0 ] with α0 in the grid
{2/3 − 4δ, · · · , 2/3 − δ, 2/3, 2/3 + δ, · · · , 2/3 + 4δ, (log(n) − log(2))/ log(n)} for δ = 0.05.
For example 3, we pick s signals uniformly at random among all but the first components,
where a random half of them are chosen as 3 and the other half are set as −3.

The goal of the simulation examples is to investigate empirically when the conventional
GLM p-values could break down in diverging dimensions. When the asymptotic theory for
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the MLE in (11) holds, the conventional p-values would be valid and distributed uniformly
on the interval [0, 1] under the null hypothesis. Note that the first covariate x1 is a null
variable in each simulation example. Thus in each replication, we calculate the conventional
p-value for testing the null hypothesis H0 : β0,1 = 0. To check the validity of these p-values,
we further test their uniformity.

For each simulation example, we first calculate the p-values for a total of 1, 000 repli-
cations as described above and then test the uniformity of these 1, 000 p-values using, for
example, the Kolmogorov–Smirnov (KS) test (Kolmogorov, 1933; Smirnov, 1948) and the
Anderson–Darling (AD) test (Anderson and Darling, 1952, 1954). We repeat this procedure
100 times to obtain a final set of 100 new p-values from each of these two uniformity tests.
Specifically, the KS and AD test statistics for testing the uniformity on [0, 1] are defined as

KS = sup
x∈[0,1]

|Fm(x)− x| and AD = m

∫ 1

0

[Fm(x)− x]2

x(1− x)
dx,

respectively, where Fm(x) = m−1
∑m

i=1 I(−∞,x](xi) is the empirical distribution function for
a given sample {xi}mi=1.
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(b) AD test

Figure 1: Results of KS and AD tests for testing the uniformity of GLM p-values in simula-
tion example 1 for diverging-dimensional logistic regression model with uniform
orthonormal design under global null. The vertical axis represents the p-value
from the KS and AD tests, and the horizontal axis stands for the growth rate α0

of dimensionality p = [nα0 ].

4.2. Testing results

For each simulation example, we apply both KS and AD tests to verify the asymptotic
theory for the MLE in (11) by testing the uniformity of conventional p-values at signifi-
cance level 0.05. As mentioned in Section 4.1, we end up with two sets of 100 new p-values
from the KS and AD tests. Figures 1–3 depict the boxplots of the p-values obtained from
both KS and AD tests for simulation examples 1–3, respectively. In particular, we observe
that the numerical results shown in Figures 1–2 for examples 1–2 are in line with our theo-
retical results established in Theorems 2–3, respectively, for diverging-dimensional logistic
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(a) KS test for ρ = 0.5
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(b) AD test for ρ = 0.5
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(c) KS test for ρ = 0.8
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(d) AD test for ρ = 0.8

Figure 2: Results of KS and AD tests for testing the uniformity of GLM p-values in simula-
tion example 2 for diverging-dimensional logistic regression model with correlated
Gaussian design under global null for varying correlation level ρ. The vertical axis
represents the p-value from the KS and AD tests, and the horizontal axis stands
for the growth rate α0 of dimensionality p = [nα0 ].

regression model under global null that the conventional p-values break down when p ∼ nα0

with α0 = 2/3. Figure 3 for example 3 examines the breakdown point of p-values with
varying sparsity s. It is interesting to see that the breakdown point shifts even earlier when
s increases as suggested in the discussions in Section 3.2. The results from the AD test are
similar so we present only the results from the KS test for simplicity.

To gain further insights into the nonuniformity of the null p-values, we next provide an
additional figure in the setting of simulation example 1. Specifically, in Figure 4 we present
the histograms of the 1,000 null p-values from the first simulation repetition (out of 100)
for each value of α0. It is seen that as the dimensionality increases (i.e., α0 increases), the
null p-values have a distribution that is skewed more and more toward zero, which is prone
to produce more false discoveries if these p-values are used naively in classical hypothesis
testing methods.

To further demonstrate the severity of the problem, we estimate the probability of
making type I error at significance level a, as the fraction of p-values below a. The means
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(a) KS test for s = 0
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(b) KS test for s = 2

Figure 3: Results of KS test for testing the uniformity of GLM p-values in simulation ex-
ample 3 for diverging-dimensional logistic regression model with uncorrelated
Gaussian design under global null for varying sparsity s. The vertical axis repre-
sents the p-value from the KS test, and the horizontal axis stands for the growth
rate α0 of dimensionality p = [nα0 ].

and standard deviations of the estimated probabilities are reported in Table 1 for a = 0.05
and 0.1. When the null p-values are distributed uniformly, the probabilities of making type I
error should all be close to the target level a. However, Table 1 shows that when the growth
rate of dimensionality α0 approaches or exceeds 2/3, these probabilities can be much larger
than a, which again supports our theoretical findings. Also it is seen that when α0 is close
to but still smaller than 2/3, the averages of estimated probabilities exceed slightly a, which
could be the effect of finite sample size.

α0 0.10 0.47 0.57 0.67 0.77 0.87

a = 0.05 Mean 0.050 0.052 0.055 0.063 0.082 0.166
SD 0.006 0.007 0.007 0.007 0.001 0.011

a = 0.1 Mean 0.098 0.104 0.107 0.118 0.144 0.247
SD 0.008 0.010 0.009 0.011 0.012 0.013

Table 1: Means and standard deviations (SD) for estimated probabilities of making type I
error in simulation example 1 with α0 the growth rate of dimensionality p = [nα0 ].
Two significance levels a = 0.05 and 0.1 are considered.

5. Discussions

In this paper we have provided characterizations of p-values in nonlinear GLMs with diverg-
ing dimensionality. The major findings are that the conventional p-values can remain valid
when p = o(n1/2), but can become invalid much earlier in nonlinear models than in linear
models, where the latter case can allow for p = o(n). In particular, our theoretical results
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Figure 4: Histograms of null p-values in simulation example 1 from the first simulation
repetition for different growth rates α0 of dimensionality p = [nα0 ].
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pinpoint the breakdown point of p ∼ n2/3 for p-values in diverging-dimensional logistic re-
gression model under global null with uniform orthonormal design and correlated Gaussian
design, as evidenced in the numerical results. It would be interesting to investigate such a
phenomenon for more general class of random design matrices.

The problem of identifying the breakdown point of p-values becomes even more com-
plicated and challenging when we move away from the setting of global null. Our technical
analysis suggests that the breakdown point p ∼ nα0 can shift even earlier with α0 ranging
between 1/2 and 2/3. But the exact breakdown point can depend upon the number of
signals s, the signal magnitude, and the correlation structure among the covariates in a
rather complicated fashion. Thus more delicate mathematical analysis is needed to obtain
the exact relationship. We leave such a problem for future investigation. Moving beyond
the GLM setting will further complicate the theoretical analysis.

As we routinely produce p-values using algorithms, the phenomenon of nonuniformity of
p-values occurring early in diverging dimensions unveiled in the paper poses useful cautions
to researchers and practitioners when making decisions in real applications using results
from p-value based methods. For instance, when testing the joint significance of covariates
in diverging-dimensional nonlinear models, the effective sample size requirement should be
checked before interpreting the testing results. Indeed, statistical inference in general high-
dimensional nonlinear models is particularly challenging since obtaining accurate p-values
is generally not easy. One possible route is to bypass the use of p-values in certain tasks
including the false discovery rate (FDR) control; see, for example, Barber and Candès
(2015); Candès et al. (2018); Fan et al. (2018) for some initial efforts made along this line.
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Appendix A. Conventional P-values in Low Dimensions under Random
Design

Under the specific assumption of Gaussian design and global null β0 = 0, we can show that
the asymptotic normality of MLE continues to hold without previous Conditions 1–2.

Theorem 4 Assume that β0 = 0, the rows of X are i.i.d. from N(0,Σ), b(5)(·) is uniformly
bounded in its domain, and y − µ0 has uniformly sub-Gaussian components. Then if p =
O(nα) with some α ∈ [0, 2/3), we have the componentwise asymptotic normality

(A−1n )
−1/2
jj β̂j

D−→ N(0, φ),

where all the notation is the same as in (11).

Theorem 4 shows that the conclusions of Theorem 1 continue to hold for the case of
random design and global null with the major difference that the dimensionality can be
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pushed as far as p ∼ n2/3. The main reasons for presenting Theorem 4 under Gausssian
design are twofold. First, Gaussian design is a widely used assumption in the literature.
Second, our results on the nonuniformity of GLM p-values in diverging dimensions use
geometric and probabilistic arguments which require random design setting; see Section 3
for more details. To contrast more accurately the two regimes and maintain self-contained
theory, we have chosen to present Theorem 4 under Gaussian design. On the other hand,
we would like to point out that Theorem 4 is not for practitioners who want to justify the
usage of classical p-values. The global null assumption of β0 = 0 restricts the validity of
Theorem 4 in many practical scenarios.

Appendix B. Proofs of Main Results

We provide the detailed proofs of Theorems 1–3 in this Appendix.

B.1. Proof of Theorem 1

To ease the presentation, we split the proof into two parts, where the first part locates the
MLE β̂ in an asymptotically shrinking neighborhood N0 of the true regression coefficient
vector β0 with significant probability and the second part further establishes its asymptotic
normality.

Part 1: Existence of a unique solution to score equation (4) in N0 under Condition
1 and probability bound (6). For simplicity, assume that the design matrix X is rescaled
columnwise such that ‖xj‖2 =

√
n for each 1 ≤ j ≤ p. Consider an event

E =
{
‖ξ‖∞ ≤ c

−1/2
1

√
n log n

}
, (12)

where ξ = (ξ1, · · · , ξp)T = XT [y − µ(θ0)]. Note that for unbounded responses, the as-

sumption of maxpj=1 ‖xj‖∞ < c
1/2
1 {n/(log n)}1/2 in Condition 1 entails that c

−1/2
1

√
log n <

minpj=1{‖xj‖2/‖xj‖∞}. Thus by ‖xj‖2 =
√
n, probability bound (6), and Bonferroni’s

inequality, we deduce

P (E) ≥ 1−
p∑
j=1

P
(
|ξj | > c

−1/2
1

√
n log n

)
(13)

≥ 1− 2pn−1 = 1−O{n−(1−α0)},

since p = O(nα0) for some α0 ∈ (0, γ) with γ ∈ (0, 1/2] by assumption. Hereafter we
condition on the event E defined in (12) which holds with significant probability.

We will show that for sufficiently large n, the score equation (4) has a solution in the
neighborhood N0 which is a hypercube. Define two vector-valued functions

γ(β) = (γ1(β), · · · , γp(β))T = XTµ(Xβ)

and

Ψ(β) = γ(β)− γ(β0)− ξ, β ∈ Rp.
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Then equation (4) is equivalent to Ψ(β) = 0. We need to show that the latter has a solution
inside the hypercube N0. To this end, applying a second order Taylor expansion of γ(β)
around β0 with the Lagrange remainder term componentwise leads to

γ(β) = γ(β0) + XTΣ (θ0) X(β − β0) + r, (14)

where r = (r1, · · · , rp)T and for each 1 ≤ j ≤ p,

rj =
1

2
(β − β0)

T ∇2γj(βj) (β − β0)

with βj some p-dimensional vector lying on the line segment joining β and β0. It follows
from (9) in Condition 1 that

‖r‖∞ ≤ max
δ∈N0

p
max
j=1

1

2
λmax

[
XTdiag

{
|xj | ◦

∣∣µ′′ (Xδ)
∣∣}X

]
‖β − β0‖

2
2 (15)

= O
{
pn1−2γ(log n)2

}
.

Let us define another vector-valued function

Ψ(β) ≡
[
XTΣ (θ0) X

]−1
Ψ(β) = β − β0 + u, (16)

where u = −[XTΣ(θ0)X]−1(ξ − r). It follows from (12), (15), and (8) in Condition 1 that
for any β ∈ N0,

‖u‖∞ ≤
∥∥∥[XTΣ (θ0) X

]−1∥∥∥
∞

(‖ξ‖∞ + ‖r‖∞) (17)

= O
[
bnn
−1/2√log n+ bnpn

−2γ(log n)2
]
.

By the assumptions of p = O(nα0) with constant α0 ∈ (0, γ) and bn = o{min(n1/2−γ
√

log n,
n2γ−α0−1/2/(log n)2}, we have

‖u‖∞ = o(n−γ log n).

Thus in light of (16), it holds for large enough n that when (β − β0)j = n−γ
√

log n,

Ψj(β) ≥ n−γ
√

log n− ‖u‖∞ ≥ 0, (18)

and when (β − β0)j = −n−γ
√

log n,

Ψj(β) ≤ −n−γ
√

log n+ ‖u‖∞ ≤ 0, (19)

where Ψ(β) = (Ψ1(β), · · · ,Ψp(β))T .

By the continuity of the vector-valued function Ψ(β), (18), and (19), Miranda’s existence
theorem Vrahatis (1989) ensures that equation Ψ(β) = 0 has a solution β̂ in N0. Clearly, β̂
also solves equation Ψ(β) = 0 in view of (16). Therefore, we have shown that score equation
(4) indeed has a solution β̂ in N0. The strict concavity of the log-likelihood function (2) by
assumptions for model (1) entails that β̂ is the MLE.
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Part 2: Conventional asymptotic normality of the MLE β̂. Fix any 1 ≤ j ≤ p. In light
of (16), we have β̂ − β0 = A−1n (ξ − r), which results in

(A−1n )
−1/2
jj (β̂j − β0,j) = (A−1n )

−1/2
jj eTj A−1n ξ − (A−1n )

−1/2
jj eTj A−1n r (20)

with ej ∈ Rp having one for the jth component and zero otherwise. Note that since the
smallest and largest eigenvalues of n−1An are bounded away from 0 and ∞ by Condition

2, it is easy to show that (A−1n )
−1/2
jj is of exact order n1/2. In view of (17), it holds on the

event E defined in (12) that∥∥A−1n r
∥∥
∞ ≤

∥∥∥[XTΣ (θ0) X
]−1∥∥∥

∞
‖r‖∞

= O
[
bnpn

−2γ(log n)2
]

= o(n−1/2),

since bn = o{n2γ−α0−1/2/(log n)2} by assumption. This leads to

(A−1n )
−1/2
jj eTj A−1n r = O(n1/2) · oP (n−1/2) = oP (1). (21)

It remains to consider the term (A−1n )
−1/2
jj eTj A−1n ξ =

∑n
i=1 ηi, where ηi = (A−1n )

−1/2
jj eTj

A−1n zi[yi − b′(θ0,i)]. Clearly, the n random variables ηi’s are independent with mean 0 and

n∑
i=1

var(ηi) = (A−1n )−1jj eTj A−1n (φAn)A−1n ej = φ.

It follows from Condition 2 and the Cauchy–Schwarz inequality that

n∑
i=1

E |ηi|3 =
n∑
i=1

∣∣∣(A−1n )
−1/2
jj eTj A−1n zi

∣∣∣3E ∣∣yi − b′ (θ0,i)∣∣3
= O(1)

n∑
i=1

∣∣∣(A−1n )
−1/2
jj eTj A−1n zi

∣∣∣3
≤ O(1)

n∑
i=1

∥∥∥(A−1n )
−1/2
jj eTj A−1/2n

∥∥∥3
2

∥∥∥A−1/2n zi

∥∥∥3
2

= O(1)
n∑
i=1

(
zTi A−1n zi

)3/2
= o(1).

Thus an application of Lyapunov’s theorem yields

(A−1n )
−1/2
jj eTj A−1n ξ =

n∑
i=1

ηi
D−→ N(0, φ). (22)

By Slutsky’s lemma, we see from (20)–(22) that

(A−1n )
−1/2
jj (β̂j − β0,j)

D−→ N(0, φ),

showing the asymptotic normality of each component β̂j of the MLE β̂.
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We further establish the asymptotic normality for the one-dimensional projections of
the MLE β̂. Fix an arbitrary vector u ∈ Rp with ‖u‖2 = 1 satisfying the L1 sparsity bound
‖u‖1 = O(sn). In light of (16), we have β̂ − β0 = A−1n (ξ − r), which results in

(uTA−1n u)−1/2(uT β̂ − uTβ0) = (uTA−1n u)−1/2uTA−1n ξ − (uTA−1n u)−1/2uTA−1n r. (23)

Note that since the smallest and largest eigenvalues of n−1An are bounded away from 0
and∞ by Condition 2, it is easy to show that (uTA−1n u)−1/2 is of exact order n1/2. In view
of (17), it holds on the event E defined in (12) that∥∥A−1n r

∥∥
∞ ≤

∥∥∥[XTΣ (θ0) X
]−1∥∥∥

∞
‖r‖∞

= O
{
bnpn

−2γ(log n)2
}

= o(s−1n n−1/2)

since bn = o{s−1n n2γ−α0−1/2/(log n)2} by assumption. This leads to

(uTA−1n u)−1/2uTA−1n r = O(n1/2) · ‖u‖1 · ‖A−1n r‖∞ = oP (1) (24)

since ‖u‖1 = O(sn) by assumption.
It remains to consider the term (uTA−1n u)−1/2uTA−1n ξ =

∑n
i=1 ηi with ηi = (uTA−1n u)−1/2

uTA−1n zi[yi − b′(θ0,i)]. Clearly, the n random variables ηi’s are independent with mean 0
and

n∑
i=1

var(ηi) = (uTA−1n u)−1uTA−1n (φAn)A−1n u = φ.

It follows from Condition 2 and the Cauchy–Schwarz inequality that

n∑
i=1

E |ηi|3 =

n∑
i=1

∣∣∣(uTA−1n u)−1/2uTA−1n zi

∣∣∣3E ∣∣yi − b′ (θ0,i)∣∣3
= O(1)

n∑
i=1

∣∣∣(uTA−1n u)−1/2uTA−1n zi

∣∣∣3
≤ O(1)

n∑
i=1

∥∥∥(uTA−1n u)−1/2uTA−1/2n

∥∥∥3
2

∥∥∥A−1/2n zi

∥∥∥3
2

= O(1)

n∑
i=1

(
zTi A−1n zi

)3/2
= o(1).

Thus an application of Lyapunov’s theorem yields

(uTA−1n u)−1/2uTA−1n ξ =

n∑
i=1

ηi
D−→ N(0, φ). (25)

By Slutsky’s lemma, we see from (23)–(25) that

(uTA−1n u)−1/2(uT β̂ − uTβ0)
D−→ N(0, φ),

showing the asymptotic normality of any L1-sparse one-dimensional projection uT β̂ of the
MLE β̂. This completes the proof of Theorem 1.
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B.2. Proof of Theorem 4

The proof is similar to that for Theorem 1. Without loss of generality, we assume that
Σ = Ip because under global null, a rotation of X yields standard normal rows. First
let ξ = (ξ1, · · · , ξp)T = (XTX)−1XT [y − µ0], where µ0 = b′(0)1 with 1 = (1, · · · , 1)T ∈
Rn because β0 = 0. Then y − µ0 has i.i.d. uniform sub-Gaussian components and is
independent of X = (z1, · · · , zp) ∈ Rn×p. Define event

E = {‖ξ‖∞ ≤ c2
√
n−1 log n}.

By Lemma 5, it is seen that P (E) ≥ 1− o(p−a). Furthermore, define the neighborhood

N0 = {‖β‖∞ ≤ c3
√
n−1 log n} (26)

for some c3 > c2(b
′′(0))−1. We next show that the MLE must fall into the region N0 with

probability at least 1−O(p−a) following the similar arguments in Theorem 1.
First, we define

γ(β) = (γ1(β), · · · , γp(β))T ≡ XTµ(Xβ)

and
Ψ(β) = γ(β)− γ(β0)−XT [y− µ0], β ∈ Rp.

Applying a forth order Taylor expansion of γ(β) around β0 = 0 with the Lagrange remain-
der term componentwise leads to

γ(β) = γ(β0) + b′′(0)XTX(β − β0) + r + s + t,

where r = (r1, · · · , rp)T , s = (s1, · · · , sp)T , t = (t1, · · · , tp)T and for each 1 ≤ j ≤ p,

rj =
b′′′(0)

2

n∑
i=1

xij(x
T
i β)2 (27)

sj =
b(4)(0)

6

n∑
i=1

xij(x
T
i β)3 (28)

tj =
1

24

n∑
i=1

b(5)(xTi β̃
j)xij(x

T
i β)4. (29)

with β̃j some p-dimensional vector lying on the line segment joining β and β0.
Let us define another vector-valued function

Ψ(β) ≡
[
b′′(0)XTX

]−1
Ψ(β) = β − β0 + u, (30)

where u = −(b′′(0))−1ξ + [b′′(0)XTX]−1(r + s + t). It follows from the above derivation
that for any β ∈ N0,

‖u‖∞ ≤
∥∥(b′′(0))−1ξ

∥∥
∞ +

∥∥∥[b′′(0)XTX
]−1

(r + s + t)
∥∥∥
∞
.

Now, we bound the terms on the right hand side.
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First note that on event E ,∥∥(b′′(0))−1ξ
∥∥
∞ ≤ (b′′(0))−1c2

√
n log n. (31)

Then, we consider the next term:
∥∥∥[b′′(0)XTX

]−1
(r + s + t)

∥∥∥
∞

. We observe that∥∥∥[b′′(0)XTX
]−1

(r + s + t)
∥∥∥
∞
≤ |b′′(0)|−1

∥∥∥[n−1XTX
]−1∥∥∥

∞

∥∥n−1(r + s + t)
∥∥
∞

≤ |b′′(0)|−1
∥∥∥[n−1XTX

]−1∥∥∥
∞

·
(∥∥n−1r∥∥∞ +

∥∥n−1s∥∥∞ +
∥∥n−1t∥∥∞) .

By Lemma 6, we have that
∥∥∥[n−1XTX

]−1∥∥∥
∞
≤ 1 + O(pn−1/2). Lemmas 10, 11, 12 assert

that(∥∥n−1r∥∥∞ +
∥∥n−1s∥∥∞ +

∥∥n−1t∥∥∞)
= {nα−5/6 log n+ n3/2α−5/4(log n)3/2 + nα−1(log n)1/2 + n2α−3/2(log n)3/2}

√
n−1 log n.

We combine last two bounds so that we have∥∥∥[b′′(0)XTX
]−1

(r + s + t)
∥∥∥
∞

= o(
√
n−1 log n) (32)

with probability at least 1− o(p−c) when p = O(nα) with α < 2/3.
Combining equations (31) and (32), we obtain that if p = O(nα) with α ∈ [0, 2/3), then

‖u‖∞ ≤ c3
√
n−1 log n.

Thus, the MLE must fall into the region N0 following the similar arguments in Theorem 1.
Next, we show the componentwise asymptotic normality of the MLE β̂. By equation

(30), we have β̂ = −u = (b′′(0))−1(XTX)−1XT [y− µ0]− [b′′(0)XTX]−1(r + s + t). So, we
can write

β̂j = (b′′(0))−1n−1eTj XT [y− µ0] + (b′′(0))−1T − eTj [b′′(0)XTX]−1(r + s + t) (33)

where T = eTj (XTX)−1XT [y−µ0]− n−1eTj XT [y−µ0]. By Lemma 13 and Equation (32),

both n1/2(b′′(0))−1T and n1/2eTj [b′′(0)XTX]−1(r+s+t) converges to zero in probability. So,

it is enough to consider the first summand in (33). Now, we show that n−1/2eTj XT [y−µ0]

is asymptotically normal. In fact, we can write eTj XT [y−µ0] =
∑n

i=1 xijyi where each sum-

mand xijyi is independent over i and has variance φb′′(0). Moreover,
∑n

i=1E|xijyi|3 = O(n)
since |xij |3 and |yi|3 are independent and finite mean. So, we apply Lyapunov’s theorem to

obtain b′′(0)−1/2n−1/2eTj XT [y−µ0]
D−→ N(0, φ). Finally, we know that b′′(0)n(A−1n )jj → 1

in probability from the remark in Theorem 1. Thus, Slutsky’s lemma yields

(A−1n )
−1/2
jj β̂j

D−→ N(0, φ). (34)

This completes the proof of the theorem.

20



Nonuniformity of P-values Can Occur Early in Diverging Dimensions

Lemma 5 Assume that the components of y−µ0 are uniform sub-Gaussians. That is, there
exist a positive constant C such that P (|(y − µ0)i| > t) ≤ C exp{−Ct2} for all 1 ≤ i ≤ n.
Then, it holds that, for some positive constant c2,

‖(XTX)−1XT (y− µ0)‖∞ ≤ c2
√
n−1 log n.

with asymptotic probability 1− o(p−a).

Proof We prove the result by conditioning on X. Let E = n−1XTX− Ip. Then by matrix
inversion,

(n−1XTX)−1 = (Ip + E)−1 = Ip −
∞∑
k=1

(−1)k+1(E)k

= Ip −E +
∞∑
k=2

(−1)k(E)k = 2Ip − n−1XTX +
∞∑
k=2

(−1)k(E)k.

Thus, it follows that

‖(XTX)−1XT (y− µ0)‖∞

≤ ‖2n−1XT (y− µ0)‖∞ + ‖n−2XTXXT (y− µ0)‖∞ +

∥∥∥∥∥n−1
∞∑
k=2

(−1)k(E)kXT (y− µ0)

∥∥∥∥∥
∞

= η1 + η2 + η3.

In the rest of the proof, we will bound η1, η2 and η3.
Part 1: Bound of η1.
First, it is easy to see that

η1 = ‖2n−1XT (y− µ0)‖∞

= 2 max
1≤j≤p

∣∣∣∣∣n−1
n∑
i=1

xij(y− µ0)i

∣∣∣∣∣ .
We observe that each summand xij(y − µ0)i is the product of two subgaussian random
variables, and so satisfies P (|xij(y− µ0)i| > t) ≤ C exp(−Ct) for some constant C > 0 by
Lemma 1 in Fan et al. (2016). Moreover, E[xij(y − µ0)i] = 0 since xij and (y − µ0)i are
independent and have zero mean. Thus, we can use Lemma 9 by setting Wij = xij(y−µ0)i
and α = 1. So, we get

η1 = 2 max
1≤j≤p

∣∣∣∣∣n−1
n∑
i=1

xij(y− µ0)i

∣∣∣∣∣ ≤ c2√n−1 log p (35)

with probability 1−O(p−c) for some positive constants c and c2.
Part 2: Bound of η2.
Now, we study η2 = ‖n−2XTXXT (y−µ0)‖∞. Let zk be the k-th column of X, that is

zk = Xek. Direct calculations yield

eTkXTXXT (y− µ0) =

p∑
j=1

(zTk zj)(z
T
j (y− µ0)) = ‖zk‖22zTk (y− µ0) +

p∑
j 6=k

(zTk zj)(z
T
j (y− µ0)).
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Thus, it follows that

∥∥(XTXXT (y− µ0)
∥∥
∞ ≤ max

k

∣∣‖zk‖22zTk (y− µ0)
∣∣+ max

k

∣∣∣∣∣∣
p∑
j 6=k

(zTk zj)(z
T
j (y− µ0))

∣∣∣∣∣∣ . (36)

First, we consier maxk
∣∣‖zk‖22zTk (y− µ0)

∣∣. Lemma 14 shows that maxk ‖zk‖22 ≤ O(n) with
probability 1−O(p−c). We also have maxk

∣∣zTk (y− µ0)
∣∣ = n

2 η1 ≤ O(
√
n log p) by equation

(35). It follows that

max
k

∣∣‖zk‖22zTk (y− µ0)
∣∣ ≤ max

k
‖zk‖22 max

k

∣∣zTk (y− µ0)
∣∣ ≤ O(n

√
n log p). (37)

Next, let aj = zTk zj/‖zk‖2 and bj = zTj (y−µ0)/‖y−µ0‖2. Then it is easy to see that condi-

tional on zk and y, aj ∼ N(0, 1), bj ∼ N(0, 1) and cov(aj , bj |zk,y) = zTk (y−µ0)/(‖zk‖2‖y−
µ0‖2). By (E.6) of Lemma 7 in Fan et al. (2016), it can be shown that

P

 1

p− 1

∣∣∣∣∣∣
p∑
j 6=k

(zTk zj)(z
T
j (y− µ0))− zTk (y− µ0)

∣∣∣∣∣∣ ≥ c‖zk‖2‖y− µ0‖2
√
p−1 log p

∣∣∣zk,y


= P

 1

p− 1

∣∣∣∣∣∣
p∑
j 6=k

ajbj −
zTk (y− µ0)

‖zk‖2‖y− µ0‖2

∣∣∣∣∣∣ ≥ c
√
p−1 log p

∣∣∣zk,y
 ≤ cp−c1 ,

where c1 is some large positive constant independent of zk and y. Moreover, we can choose
c1 as large as we want by increasing c. Thus, it follows that

P

 1

p− 1

∣∣∣∣∣∣
p∑
j 6=k

(zTk zj)(z
T
j (y− µ0))− zTk (y− µ0)

∣∣∣∣∣∣ ≥ c‖zk‖2‖y− µ0‖2
√
p−1 log p

 ≤ cp−c1 .
It follows from probability union bound that

P

 1

p− 1
max
k

∣∣∣∣∣∣ 1

‖zk‖2‖y− µ0‖2

p∑
j 6=k

(zTk zj)(z
T
j (y− µ0))− zTk (y− µ0)

∣∣∣∣∣∣ ≥ c
√
p−1 log p

 ≤ cp−c1+1.

Taking c1 > 1 yields that with probability at least 1− o(p−a) for some a > 0,

max
k

 1

‖zk‖2‖y− µ0‖2

∣∣∣∣∣∣ 1

p− 1

p∑
j 6=k

(zTk zj)(z
T
j (y− µ0))− zTk (y− µ0)

∣∣∣∣∣∣
 ≤ c√p−1 log p.

22



Nonuniformity of P-values Can Occur Early in Diverging Dimensions

By Lemma 14, we have maxk ‖zk‖2 =
√

maxk ‖zk‖22 ≤ Op(
√
n). Therefore, by using the

fact that ‖y− µ0‖2 ≤ Op(
√
n), we have

max
k

∣∣∣∣∣∣
p∑
j 6=k

(zTk zj)(z
T
j (y− µ0))

∣∣∣∣∣∣
≤ max

k

∣∣∣∣∣∣
p∑
j 6=k

[(zTk zj)(z
T
j (y− µ0))]− (p− 1)zTk (y− µ0)

∣∣∣∣∣∣+ (p− 1) max
k
|zTk (y− µ0)|

≤ pmax
k
‖zk‖2‖y− µ0‖2 max

k

 1

‖zk‖2‖y− µ0‖2

∣∣∣∣∣∣ 1

p− 1

p∑
j 6=k

[(zTk zj)(z
T
j (y− µ0))− zTk (y− µ0)]

∣∣∣∣∣∣


+ pmax
k
|zTk (y− µ0)|

≤ cpn
√

log p
√
p−1 log p+ cp

√
n log p. (38)

Combining (36)–(38) yields

η2 = ‖n−2XTXXT (y− µ0)‖∞ ≤ cp1/2n−1 log p = o(
√
n−1 log n). (39)

Part 3: Bound of η3.

Finally, we study η3. We observe that η3 ≤
∥∥∑∞

k=2(−1)k+1(E)k
∥∥
∞ ‖n

−1XT (y−µ0)‖∞.

Lemma 7 proves that
∥∥∑∞

k=2(−1)k+1(E)k
∥∥
∞ ≤ O(p3/2n−1) while equation (35) shows that

‖n−1XT (y − µ0)‖∞ = O(
√
n−1 log p) with probability 1 − O(p−c). Putting these facts

together, we obtain

η3 ≤ O(p3/2n−1
√
n−1 log p) = o(

√
n−1 log n) (40)

where we use p = O(nα0) with α0 ∈ [0, 2/3).

Combining equations (35), (39), and (40), we obtain that with probability at least
1− o(p−a),

‖(XTX)−1XT (y− µ0)‖∞ ≤ c
√
n−1 log n.

Lemma 6 Under the assumptions of Theorem 4, ‖(n−1XTX)−1‖∞ ≤ 1 + O(pn−1/2) with
probability 1−O(p−c).

Proof Let E = n−1XTX − Ip. Then, ‖E‖2 ≤ C(p/n)1/2 for some constant C with
probability 1 − O(p−c) by Theorem 4.6.1 in Vershynin (2016). Furthermore, by matrix
inversion, we get

(n−1XTX)−1 = (Ip + E)−1 = Ip −
∞∑
k=1

(−1)k+1(E)k.
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Now, we take the norm and use triangle inequalities to get

‖(n−1XTX)−1‖∞ ≤ ‖Ip‖∞ +
∞∑
k=1

‖Ek‖∞ ≤ 1 + p1/2
∞∑
k=1

‖Ek‖2

≤ 1 + p1/2
∞∑
k=1

‖E‖k2 ≤ 1 + Cp1/2
∞∑
k=1

((p/n)1/2)k

≤ 1 + Cp1/2(p/n)1/2

where we use the fact that p/n is bounded by a constant less than 1.

Lemma 7 In the same setting as Lemma 6, if E = n−1XTX−Ip, then
∥∥∑∞

k=2(−1)k+1(E)k
∥∥
∞ ≤

Cp3/2n−1, with probability 1−O(p−c).

Proof Again, we use that ‖E‖2 ≤ C(p/n)1/2 for some constant C with probability 1 −
O(p−c). By similar calculations as in Lemma 6, we deduce∥∥∥∥∥

∞∑
k=2

(−1)k+1(E)k

∥∥∥∥∥
∞

≤
∞∑
k=2

∥∥∥(−1)k+1(E)k
∥∥∥
∞
≤
∞∑
k=2

p1/2
∥∥∥(E)k

∥∥∥
2

=
∞∑
k=2

p1/2 ‖E‖k2 ≤
∞∑
k=2

p1/2(p/n)k/2 ≤ Cp3/2n−1.

Lemma 8 Let Wj be nonnegative random variables for 1 ≤ j ≤ p that are not necessarily
independent. If P (Wj > t) ≤ C1 exp(−C2ant

2) for some constants C1 and C2 and for

some sequence an, then for any c > 0, max1≤j≤pWj ≤ ((c + 1)/C2)
1/2a

−1/2
n (log p)1/2 with

probability at least 1−O(p−c).

Proof Using union bound, we get

P ( max
1≤j≤p

Wj > t) ≤
∑

1≤j≤p
P (Wj > t) ≤ pC1 exp(−C2ant

2).

Taking t = a
−1/2
n (log p)1/2((c+ 1)/C2)

1/2 concludes the proof since then

P ( max
1≤j≤p

Wj > a−1/2n (log p)1/2((c+ 1)/C2)
1/2) ≤ C1p

−c.
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Lemma 9 Let Wij be random variables which are independent over the index i. Assume
that there are constants C1 and C2 such that P (|Wij | > t) ≤ C1 exp(−C2t

α) with 0 < α ≤ 1.
Then, with probability 1−O(p−c),

max
0≤j≤p

∣∣∣∣∣n−1
n∑
i=1

(Wij − EWij)

∣∣∣∣∣ ≤ Cn−(1/2)α(log p)1/2,

for some positive constants c and C.

Proof We have P (|n−1
∑n

i=1(Wij − EWij)| > t) ≤ C3 exp(−C4n
αt2) by Lemma 6 of Fan

et al. (2016) where C3 and C4 are some positive constants which only depend on C1 and
C2. This probability bound shows that the assumption of Lemma 8 holds with an = nα.
Thus, Lemma 8 finishes the proof.

Lemma 10 With probability 1 − O(p−c), the vector r defined in (27) satisfies the bound
‖n−1r‖∞ = O(nα−5/6 log n

√
n−1 log n).

Proof We begin by observing that both xij and (xTi β/‖β‖2) are standard normal variables.
So, using Lemma 1 of Fan et al. (2016), we have P (xij(x

T
i β/‖β‖2)2 > t) ≤ C exp(−Ct2/3)

for some constant C which does not depend β. It is easy to see that xij(x
T
i β)2 are indepen-

dent random variables across i’s with mean 0. By Lemma 9, max1≤j≤p |n−1
∑n

i=1 xij

(
xTi β
‖β‖2

)2
|

is of order O(n−1/3(log p)1/2). Moreover, ‖β‖2 ≤ p1/2‖β‖∞ ≤ O(p1/2
√
n−1 log n) when

β ∈ N0. Therefore,

‖n−1r‖∞ = max
1≤j≤p

∣∣∣∣∣b(3)(0)

2
‖β‖22n−1

n∑
i=1

xij(x
T
i β/‖β‖2)2

∣∣∣∣∣
≤ Cpn−1(log n)n−1/3(log p)1/2 = Cnα−4/3(log n)3/2

= O(nα−5/6(log n)
√
n−1 log n),

since p = O(nα).

Lemma 11 With probability 1 − O(p−c), the vector s defined in (28) satisfies the bound
‖n−1s‖∞ = O((n3/2α−5/4(log n)3/2 + (nα−1(log n)1/2)

√
n−1 log n).

Proof First, observe that for some constant C, |n−1sj | ≤ C‖β‖32n−1
∑n

i=1 xij

(
xTi β
‖β‖2

)3
.

Moreover, the summands xij

(
xTi β
‖β‖2

)3
are independent over i and they satisfy the probability

bound P (|xij
(

xTi β
‖β‖2

)3
| > t) ≤ C exp(−Ct1/2) by Lemma 1 of Fan et al. (2016). Thus, by

Lemma 9, we obtain

max
1≤j≤p

∣∣∣∣∣n−1
n∑
i=1

(
xij

(
xTi β

‖β‖2

)3

− E

[(
xij

xTi β

‖β‖2

)3
])∣∣∣∣∣ = O(n−1/4(log p)1/2).
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Now, we calculate the expected value of the summand xij

(
xTi β
‖β‖2

)3
. We decompose xTi β as

xijβj + xTi,−jβ−j where xi,−j and β−j are the vectors xi and β whose jth entry is removed.
We use the independence of xi,−j and xij and get

E

[
xij

(
xTi β

‖β‖2

)3
]

=
1

‖β‖32
E
[
xij
(
xijβj + xTi,−jβ−j

)3]
=

1

‖β‖32
E
[
x4ijβ

3
j + 3x3ijβ

2
j

(
xTi,−jβ−j

)
+ 3x2ijβj

(
xTi,−jβ−j

)2
+ xij

(
xTi,−jβ−j

)3]
=

1

‖β‖32

[
3β3j + 3βj‖β−j‖22

]
=

3βj
‖β‖2

.

Finally, we can combine the result of Lemma 9 and the expected value of xij

(
xTi β
‖β‖2

)3
. We

bound ‖n−1s‖∞ as follows

‖n−1s‖∞ ≤ C‖β‖32 max
1≤j≤p

∣∣∣∣∣n−1
n∑
i=1

xij

(
xTi β

‖β‖2

)3
∣∣∣∣∣

≤ O
(
‖β‖32(n−1/4(log p)1/2 +

‖β‖∞
‖β‖2

)

)
≤ O

(
‖β‖32n−1/4(log p)1/2 + ‖β‖∞‖β‖22)

)
.

Since β ∈ N0, we have ‖β‖2 = O(p1/2n−1/2(log p)1/2) and ‖β‖∞ = O(n−1/2(log p)1/2).
Thus, ‖n−1s‖∞ = O((n3/2α−5/4(log n)3/2 + (nα−1(log n)1/2)

√
n−1 log n) when p = O(nα).

Lemma 12 With probability 1 − O(p−c), the vector t defined in (29) satisfies the bound
‖n−1t‖∞ = O(n2α−3/2(log n)3/2

√
n−1 log n).

Proof The proof is similar to the proof of Lemma 11. Since b(5)(·) is uniformly bounded,

|n−1tj | ≤ C‖β‖42n−1
∑n

i=1

∣∣∣∣xij (xTi β
‖β‖2

)4∣∣∣∣ for some constant C. We focus on the summands∣∣∣∣xij (xTi β
‖β‖2

)4∣∣∣∣ which are independent across i. Moreover, repeated application of Lemma 1

of Fan et al. (2016) yields P (xij(x
T
i β/‖β‖2)2 > t) ≤ C exp(−Ct2/5) for some constant C

independent of β. We can bound the expected value of the summand by Cauchy-Schwartz:

E

[∣∣∣∣xij (xTi β
‖β‖2

)4∣∣∣∣] ≤ (Ex2ijE [(xTi β
‖β‖2

)8])1/2

=
√

105. So, by Lemma 9, we get

‖n−1t‖∞ ≤ C‖β‖42(
√

105 + n−1/5(log p)1/2)

= O(‖β‖42) = O(p2n−2(log n)2).
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Finally, we can deduce that ‖n−1t‖∞ = O(n2α−3/2(log n)3/2
√
n−1 log n) when p = O(nα).

Lemma 13 Let T = eTj (XTX)−1XT [y− µ0]− n−1eTj XT [y− µ0]. Under the assumptions
of Theorem 4, we have

eTj (XTX)−1XT [y− µ0]− n−1eTj XT [y− µ0] = op(n
−1/2). (41)

Proof Since X and y are independent, expectation of T is clearly zero. Then, we consider
the variance of T . To this end, we condition on X. We can calculate the conditional variance
of T as follows

var[T |X] = var[eTj ((XTX)−1 − n−1Ip)XT (y− µ0)|X]

= φb′′(0)eTj ((XTX)−1 − n−1Ip)XTX((XTX)−1 − n−1Ip)ej

where we use var[y] = φb′′(0)In. When we define E = n−1XTX − Ip, simple calculations
show that

Var[T |X] = φb′′(0)n−1eTj ((n−1XTX)−1 − Ip) + (n−1XTX− Ip))ej

= φb′′(0)n−1eTj

( ∞∑
k=2

(−1)kEk

)
ej .

Now, we can obtain the unconditional variance using the law of total variance.

var[T ] = E[var[T |X]] + var[E[T |X]]

= φb′′(0)n−1eTj E

( ∞∑
k=2

(−1)kEk

)
ej .

Thus, using Lemma 7, we can show that var[T ] = o(n−1). Finally, we use Chebyshev’s
inequality P (|T | > n−1/2) ≤ nvar[T ] = o(1). So, we conclude that T = op(n

−1/2)

Lemma 14 Let xij be standard normal random variables for 1 ≤ i ≤ n and 1 ≤ j ≤ p.
Then, max1≤j≤p

∑n
i=1 x

2
ij ≤ n + O(n1/2(log p)1/2) with probability 1 − O(p−c) for some

positive constant c. Consequently, when log p = O(nα) for some 0 < α ≤ 1, we have
max1≤j≤p

∑n
i=1 x

2
ij = O(n), for large enough n with probability 1−O(p−c).

Proof Since xij is a standard normal variable, x2ij is subexponential random variable whose
mean is 1. So, Lemma 9 entails that

max
1≤j≤p

∣∣∣∣∣n−1
n∑
i=1

(x2ij − 1)

∣∣∣∣∣ = O(n−1/2(log p)1/2)

with probability 1−O(p−c). Thus, simple calculations yields

max
1≤j≤p

n∑
i=1

x2ij = max
1≤j≤p

∣∣∣∣∣n+

n∑
i=1

(x2ij − 1)

∣∣∣∣∣ ≤ n+O(n1/2(log p)1/2)

with probability 1−O(p−c).
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B.3. Proof of Theorem 2

To prove the conclusion in Theorem 2, we use the proof by contradiction. Let us make an
assumption (A) that the asymptotic normality (11) in Theorem 1 which has been proved
to hold when p = o(n1/2) continues to hold when p ∼ nα0 for some constant 1/2 < α0 ≤ 1,
where ∼ stands for asymptotic order. As shown in Section 3.1, in the case of logistic
regression under global null (that is, β0 = 0) with deterministic rescaled orthonormal design
matrix X (in the sense of n−1XTX = Ip) the limiting distribution in (11) by assumption
(A) becomes

2−1n1/2β̂j
D−→ N(0, 1), (42)

where β̂ = (β̂1, · · · , β̂p)T is the MLE.
Let us now assume that the rescaled random design matrix n−1/2X is uniformly dis-

tributed on the Stiefel manifold Vp(Rn) which can be thought of as the space of all n × p
orthonormal matrices. Then it follows from (42) that

2−1n1/2β̂j
D−→ N(0, 1) conditional on X. (43)

Based on the limiting distribution in (43), we can make two observations. First, it holds
that

2−1n1/2β̂j
D−→ N(0, 1) (44)

unconditional on the design matrix X. Second, β̂j is asymptotically independent of the

design matrix X, and so is the MLE β̂.
Since the distribution of n−1/2X is assumed to be the Haar measure on the Stiefel

manifold Vp(Rn), we have

n−1/2XQ
d
=n−1/2X, (45)

where Q is any fixed p×p orthogonal matrix and
d
= stands for equal in distribution. Recall

that the MLE β̂ solves the score equation (4), which is in turn equivalent to equation

QTXT [y− µ(Xβ)] = 0 (46)

since Q is orthogonal. We now use the fact that the model is under global null which entails
that the response vector y is independent of the design matrix X. Combining this fact with
(45)–(46) yields

QT β̂
d
= β̂ (47)

by noting that Xβ = (XQ)(QTβ). Since the distributional identity (47) holds for any
fixed p× p orthogonal matrix Q, we conclude that the MLE β̂ has a spherical distribution
on Rp. It is a well-known fact that all the marginal characteristic functions of a spherical
distribution have the same generator. Such a fact along with (44) entails that

2−1n1/2β̂ is asymptotically close to N(0, Ip). (48)

To simplify the exposition, let us now make the asymptotic limit exact and assume that

β̂ ∼ N(0, 4n−1Ip) and is independent of X. (49)
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The remaining analysis focuses on the score equation (4) which is solved exactly by the
MLE β̂, that is,

XT [y− µ(Xβ̂)] = 0, (50)

which leads to

ξ ≡ n−1/2XT [y− µ(0)] = n−1/2XT [µ(Xβ̂)− µ(0)] ≡ η. (51)

Let us first consider the random variable ξ defined in (51). Note that 2[y − µ(0)] has
independent and identically distributed (i.i.d.) components each taking value 1 or −1 with
equal probability 1/2, and is independent of X. Thus since n−1/2X is uniformly distributed
on the Stiefel manifold Vp(Rn), it is easy to see that

ξ = n−1/2XT [y− µ(0)]
d
= 2−1n−1/2XT1, (52)

where 1 ∈ Rn is a vector with all components being one. Using similar arguments as before,
we can show that ξ has a spherical distribution on Rp. Thus the joint distribution of ξ is
determined completely by the marginal distribution of ξ. For each 1 ≤ j ≤ p, denote by
ξj the jth component of ξ = 2−1n−1/2XT1 using the distributional representation in (52).
Let X = (x1, · · · ,xp) with each xj ∈ Rn. Then we have

ξj = 2−1n−1/2xTj 1
d
= 2−1(n1/2/‖x̃j‖2)n−1/2x̃Tj 1, (53)

where x̃j ∼ N(0, 4−1In). It follows from (53) and the concentration phenomenon of Gaus-
sian measures that each ξj is asymptotically close to N(0, 4−1) and thus consequently ξ is
asymptotically close to N(0, 4−1Ip). A key fact (i) for the finite-sample distribution of ξ is
that the standard deviation of each component ξj converges to 1/2 at rate OP (n−1/2) that
does not depend upon the dimensionality p at all.

We now turn our attention to the second term η defined in (51). In view of (49) and
the fact that n−1/2X is uniformly distributed on the Stiefel manifold Vp(Rn), we can show
that with significant probability,

‖Xβ̂‖∞ ≤ o(1) (54)

for p ∼ nα0 with α0 < 1. The uniform bound in (54) enables us to apply the mean value
theorem for the vector-valued function η around β0 = 0, which results in

η = n−1/2XT [µ(Xβ̂)− µ(0)] = 4−1n−1/2XTXβ̂ + r (55)

= 4−1n1/2β̂ + r

since n−1/2X is assumed to be orthonormal, where

r = n−1/2XT

{∫ 1

0

[
Σ(tXβ̂)− 4−1In

]
dt

}
Xβ̂. (56)

Here, the remainder term r = (r1, · · · , rp)T ∈ Rp is stochastic and each component rj is
generally of order OP {p1/2n−1/2} in light of (49) when the true model may deviate from
the global null case of β0 = 0.
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Since our focus in this theorem is the logistic regression model under the global null, we
can in fact claim that each component rj is generally of order OP {pn−1}, which is a better
rate of convergence than the one mentioned above thanks to the assumption of β0 = 0.
To prove this claim, note that the variance function b′′(θ) is symmetric in θ ∈ R and takes
the maximum value 1/4 at θ = 0. Thus in view of (54), we can show that with significant
probability,

4−1In −Σ(tXβ̂) ≥ cdiag{(tXβ̂) ◦ (tXβ̂)} = ct2diag{(Xβ̂) ◦ (Xβ̂)} (57)

for all t ∈ [0, 1], where c > 0 is some constant and ≥ stands for the inequality for positive
semidefinite matrices. Moreover, it follows from (49) and the fact that n−1/2X is uniformly
distributed on the Stiefel manifold Vp(Rn) that with significant probability, all the n com-

ponents of Xβ̂ are concentrated in the order of p1/2n−1/2. This result along with (57) and
the fact that n−1XTX = Ip entails that with significant probability,

n−1/2XT

{∫ 1

0

[
4−1In −Σ(tXβ̂)

]
dt

}
X (58)

≥ n−1/2XT

{∫ 1

0
c∗t

2pn−1dt

}
X

= 3−1c∗pn
−3/2XTX = 3−1c∗pn

−1/2Ip,

where c∗ > 0 is some constant. Thus combining (56), (58), and (49) proves the above claim.
We make two important observations about the remainder term r in (55). First, r has

a spherical distribution on Rp. This is because by (55) and (51) it holds that

r = η − 4−1n1/2β̂ = ξ − 4−1n1/2β̂,

which has a spherical distribution on Rp. Thus the joint distribution of r is determined
completely by the marginal distribution of r. Second, for the nonlinear setting of logistic
regression model, the appearance of the remainder term r in (55) is due solely to the
nonlinearity of the mean function µ(·), and we have shown that each component rj can
indeed achieve the worst-case order pn−1 in probability. For each 1 ≤ j ≤ p, denote by ηj
the jth component of η. Then in view of (49) and (55), a key fact (ii) for the finite-sample
distribution of η is that the standard deviation of each component ηj converges to 1/2 at
rate OP {pn−1} that generally does depend upon the dimensionality p.

Finally, we are ready to compare the two random variables ξ and η on the two sides
of equation (51). Since equation (51) is a distributional identity in Rp, naturally the
square root of the sum of varξj ’s and the square root of the sum of varηj ’s are expected
to converge to the common value 2−1p1/2 at rates that are asymptotically negligible. How-
ever, the former has rate p1/2OP (n−1/2) = OP {p1/2n−1/2}, whereas the latter has rate
p1/2OP {pn−1} = OP {p3/2n−1}. A key consequence is that when p ∼ nα0 for some constant
2/3 ≤ α0 < 1, there is a profound difference between the two asymptotic rates in that
the former rate is OP {n−(1−α0)/2} = oP (1), while the latter rate becomes OP {n3α0/2−1}
which is now asymptotically diverging or nonvanishing. Such an intrinsic asymptotic dif-
ference is, however, prohibited by the distributional identity (51) in Rp, which results in
a contradiction. Therefore, we have now argued that assumption (A) we started with for
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2/3 ≤ α0 < 1 must be false, that is, the asymptotic normality (11) which has been proved
to hold when p = o(n1/2) generally would not continue to hold when p ∼ nα0 with constant
2/3 ≤ α0 ≤ 1. In other words, we have proved the invalidity of the conventional GLM
p-values in this regime of diverging dimensionality, which concludes the proof of Theorem
2.

B.4. Proof of Theorem 3

By assumption, X ∼ N(0, In ⊗ Σ) with covariance matrix Σ nonsingular. Let us first
make a useful observation. For the general case of nonsingular covariance matrix Σ, we can
introduce a change of variable by letting β̃ = Σ1/2β and correspondingly X̃ = XΣ−1/2.
Clearly, X̃ ∼ N(0, In⊗ Ip) and the MLE for the transformed parameter vector β̃ is exactly

Σ1/2β̂, where β̂ denotes the MLE under the original design matrix X. Thus to show the
breakdown point of the conventional asymptotic normality of the MLE, it suffices to focus
on the specific case of X ∼ N(0, In ⊗ Ip).

Hereafter we assume that X ∼ N(0, In ⊗ Ip) with p = o(n). The rest of the arguments
are similar to those in the proof of Theorem 2 in Section B.3 except for some modifications
needed for the case of Gaussian design. Specifically, for the case of logistic regression model
under global null (that is, β0 = 0), the limiting distribution in (11) becomes

2−1n1/2β̂j
D−→ N(0, 1), (59)

since n−1XTX → Ip almost surely in spectrum and thus 4−1n(A−1n )jj → 1 in probability
as n → ∞. Here, we have used a claim that both the largest and smallest eigenvalues
of n−1XTX converge to 1 almost surely as n → ∞ for the case of p = o(n), which can
be shown by using the classical results from random matrix theory (RMT) Geman (1980);
Silverstein (1985); Bai (1999).

Note that since X ∼ N(0, In ⊗ Ip), it holds that

n−1/2XQ
d
=n−1/2X, (60)

where Q is any fixed p × p orthogonal matrix and
d
= stands for equal in distribution. By

X ∼ N(0, In ⊗ Ip), it is also easy to see that

ξ = n−1/2XT [y− µ(0)]
d
= 2−1n−1/2XT1, (61)

where 1 ∈ Rn is a vector with all components being one. In view of (49) and the assumption
of X ∼ N(0, In ⊗ Ip), we can show that with significant probability,

‖Xβ̂‖∞ ≤ o(1) (62)

for p ∼ nα0 with constant α0 < 1. It holds further that with significant probability, all the
n components of Xβ̂ are concentrated in the order of p1/2n−1/2. This result along with (57)
and the fact that n−1XTX → Ip almost surely in spectrum entails that with asymptotic
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probability one,

n−1/2XT

{∫ 1

0

[
4−1In −Σ(tXβ̂)

]
dt

}
X (63)

≥ n−1/2XT

{∫ 1

0
c∗t

2pn−1dt

}
X

= 3−1c∗pn
−3/2XTX→ 3−1c∗pn

−1/2Ip,

where c∗ > 0 is some constant. This completes the proof of Theorem 3.
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