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a b s t r a c t

High dimensionality comparable to sample size is common in many statistical problems. We examine
covariance matrix estimation in the asymptotic framework that the dimensionality p tends to∞ as the
sample size n increases. Motivated by the Arbitrage Pricing Theory in finance, a multi-factor model is
employed to reduce dimensionality and to estimate the covariance matrix. The factors are observable
and the number of factors K is allowed to grow with p. We investigate the impact of p and K on
the performance of the model-based covariance matrix estimator. Under mild assumptions, we have
established convergence rates and asymptotic normality of the model-based estimator. Its performance
is compared with that of the sample covariance matrix. We identify situations under which the factor
approach increases performance substantially ormarginally. The impacts of covariancematrix estimation
on optimal portfolio allocation and portfolio risk assessment are studied. The asymptotic results are
supported by a thorough simulation study.
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1. Introduction

Covariance matrix estimation is fundamental for almost all
areas of multivariate analysis and many other applied problems.
In particular, covariance matrices and their inverses play a central
role in portfolio risk assessment and optimal portfolio allocation.
For example, the smallest and largest eigenvalues of a covariance
matrix are related to the minimum andmaximum variances of the
selected portfolio, respectively, and the eigenvectors are related to
optimal portfolio allocation. Therefore, we need a good covariance
matrix estimator inverting which does not excessively amplify the
estimation error. See Goldfarb and Iyengar (2003) for applications
of covariancematrices to portfolio selections and Johnstone (2001)
for their statistical implications.
Estimating high-dimensional covariance matrices is intrinsi-

cally challenging. For example, in optimal portfolio allocation and
portfolio risk assessment, the number of stocks p, which is typi-
cally of the same order as the sample size n, can well be in the
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order of hundreds. In particular, when p = 200 there are more
than 20,000 parameters in the covariancematrix. Yet, the available
sample size is usually in the order of hundreds or a few thousand
because longer time series (larger n) increases modeling bias. For
instance, by taking daily data of the past three years we have only
roughly n = 750. So it is hard or even unrealistic to estimate co-
variance matrices without imposing any structure (see the rejoin-
der in Fan (2005)).
Factor models have been widely used both theoretically and

empirically in economics and finance. Derived byRoss (1976, 1977)
using the Arbitrage Pricing Theory (APT) and by Chamberlain and
Rothschild (1983) in a large economy, the multi-factor model
states that the excessive return of any asset Yi over the risk-free
interest rate satisfies

Yi = bi1f1 + · · · + biK fK + εi, i = 1, . . . , p, (1)

where f1, . . . , fK are the excessive returns of K factors, bij, i =
1, . . . , p, j = 1, . . . , K , are unknown factor loadings, and ε1, . . . , εp
are p idiosyncratic errors uncorrelated given f1, . . . , fK . The factor
models have been widely applied and studied in economics and
finance. See, for example, Ross (1976, 1977), Engle and Watson
(1981), Chamberlain (1983), Chamberlain and Rothschild (1983),
Diebold andNerlove (1989), Fama and French (1992, 1993), Aguilar
and West (2000), Bai (2003), Ledoit and Wolf (2003), Stock and
Watson (2005) and references therein. These are extensions of the
famous Capital Asset PricingModel (CAPM) and can be regarded as
efforts to approximate the market portfolio in the CAPM.
Thanks to the multi-factor model (1), if a few factors can

completely capture the cross-sectional risks, the number of
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parameters in covariance matrix estimation can be significantly
reduced. For example, using the Fama-French three-factor model
(Fama and French, 1992, 1993), there are 4p instead of p(p +
1)/2 parameters to be estimated. Despite the popularity of factor
models in the literature, the impact of dimensionality on the
estimation errors of covariance matrices and its applications to
optimal portfolio allocation and portfolio risk assessment are
poorly understood so, in this paper, determined efforts are made
on such an investigation. To make the multi-factor model more
realistic, we allow K to growwith the number of assets p and hence
with the sample size n. As a result, we also investigate the impact of
the number of factors on the estimation of covariance matrices, as
well as its applications to optimal portfolio allocation and portfolio
risk assessment. To appreciate the derived rates of convergence,
we compare them with those without using the factor structure.
One natural candidate is the sample covariance matrix. This
also allows us to examine the impact of dimensionality on the
performance of the sample covariancematrix.Wewill assume that
the factors are observable as in Fama and French (1992, 1993). Our
results also provide an important milestone for understanding the
performance of factor models with unobservable factors.
The traditional covariance matrix estimator, the sample covari-

ance matrix, is known to be unbiased, and it is invertible when
the dimensionality is no larger than the sample size. See, for ex-
ample, Eaton and Tyler (1994) for the asymptotic spectral distri-
butions of randommatrices including sample covariance matrices
and their statistical implications. In the absence of prior informa-
tion about the population covariance matrix, the sample covari-
ance matrix is certainly a natural candidate in the case of small
dimensionality, but no longer performs very well for moderate or
large dimensionality [see, e.g. Lin and Perlman (1985) and John-
stone (2001)]. Many approaches were proposed in the literature
to construct good covariance matrix estimators. Among them, two
main directions were taken. One is to remedy the sample covari-
ance matrix and construct a better one by using approaches such
as shrinkage and the eigen-method, etc. See, for example, Ledoit
and Wolf (2004) and Stein (1975). The other one is to reduce
dimensionality by imposing some structure on the data. Many
structures, such as sparsity, compound symmetry, and the autore-
gressive model, are widely used. Various approaches were taken
to seek a balance between the bias and variance of covariance ma-
trix estimators. See, for example, Wong et al. (2003), Huang et al.
(2006), and Bickel and Levina (2008).
The rest of the paper is organized as follows. Section 2

introduces the estimators of the covariance matrix. In Section 3
we give some basic assumptions and present sampling properties
of the estimators. We study the impacts of covariance matrix
estimation on optimal portfolio allocation and portfolio risk
assessment in Section 4. A simulation study is presented in
Section5,which augments our theoretical study. Section6 contains
some concluding remarks. The proofs of our results are given in the
Appendix.

2. Covariance matrix estimation

Wealways denote by n the sample size, by p the dimensionality,
and by f1, . . . , fK the K observable factors, where p grows with
sample size n and K increases with dimensionality p. For ease of
presentation, we rewrite the factor model (1) in matrix form

y = Bnf+ ε, (2)

where y = (Y1, . . . , Yp)′, Bn = (b1, . . . , bp)′ with bi =
(bn,i1, . . . , bn,iK )′, i = 1, . . . , p, f = (f1, . . . , fK )′, and ε =
(ε1, . . . , εp)

′. Throughout we assume that E(ε|f) = 0 and
cov(ε|f) = 6n,0 is diagonal. For brevity of notation, we suppress
the first subscript n in some situations where the dependence on n
is self-evident.
Let (f1, y1), . . . , (fn, yn) be n independent and identically

distributed (i.i.d.) samples of (f, y). We introduce here some
notation used throughout the paper. Let

6n = cov(y), X = (f1, . . . , fn),
Y = (y1, . . . , yn) and E = (ε1, . . . , εn).

Under model (2), we have

6n = cov(Bnf)+ cov(ε) = Bncov(f)B′n + 6n,0. (3)

A natural idea for estimating 6n is to plug in the least-squares
estimators ofBn, cov(f), and6n,0. Therefore, we have a substitution
estimator

6̂n = B̂nĉov(f)̂B
′

n + 6̂n,0, (4)

where B̂n = YX′(XX′)−1 is the matrix of estimated regression
coefficients, ĉov(f) = (n − 1)−1XX′ − {n(n − 1)}−1X11′X′ is the
sample covariance matrix of the factors f, and

6̂n,0 = diag
(
n−1̂E Ê′

)
is the diagonal matrix of n−1̂E Ê′ with Ê = Y − B̂X the matrix of
residuals. If the factor model is not employed, then we have the
sample covariance matrix estimator

6̂sam = (n− 1)−1 YY′ − {n (n− 1)}−1 Y11′Y′. (5)

Ledoit and Wolf (2003) propose an interesting idea of
combining the single-index (K = 1, CAPM) model based estima-
tion of the covariancematrix with the sample covariancematrix to
improve the estimate of the covariance matrix. It aims at a trade-
off between the bias and variance of the two estimated covariance
matrices for practical applications.
In the paper we mainly aim to provide a theoretical under-

standing of the factor model with a diverging dimensionality and
growing number of factors for the purpose of covariance matrix
estimation, but not to compare with other popular estimators.
Throughout the paper, we always contrast the performance of the
covariance matrix estimator 6̂ in (4) with that of the sample co-
variance matrix 6̂sam in (5). The paper also provides a theoretical
study on the two estimators used in the procedure of Ledoit and
Wolf (2003). With prior information of the true factor structure,
the substitution estimator 6̂ is expected to perform better than
6̂sam. However, this has not been formally shown, especially when
p → ∞ and K → ∞, and this is not always true. In addition,
exact properties of this kind are not well understood. As the prob-
lem is important for portfolio management, determined efforts are
devoted in this regard.

3. Sampling properties

In this section we study the sampling properties of 6̂ and
6̂sam with growing dimensionality and number of factors. We give
some basic assumptions in Section 3.1. The sampling properties are
presented in Section 3.2.
In the presence of diverging dimensionality, one should

carefully choose appropriate norms for large matrices in different
situations. We first introduce some notation. We always denote by
λ1(A), . . . , λq(A) the q eigenvalues of a q× q symmetric matrix A
in decreasing order. For any matrix A = (aij), its Frobenius norm is
given by

‖A‖ =
{
tr(AA′)

}1/2
. (6)
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In particular, if A is a q × q symmetric matrix, then ‖A‖ ={∑q
i=1 λi(A)

2
}1/2. The Frobenius norm as well as many other

matrix norms [see Horn and Johnson (1990)] is intrinsically related
to the eigenvalues or singular values of matrices.
Despite its popularity, the Frobenius norm is not appropriate

for understanding the performance of the factor-model based
estimation of the covariance matrix. To see this, let us consider
a simple example. Suppose we know ideally that B = 1 and
cov(ε|f ) = Ip in model (2) with a single factor f . Then we have
a substitution covariance matrix estimator 6̂ = 1v̂ar(f )1′ + Ip as
in (4). It is a classical result that

E |v̂ar(f )− var(f )|2 = O(n−1).

Thus by (3), we have

6̂− 6 = 1 [v̂ar(f )− var(f )] 1′

and the Frobenius norm ‖6̂ − 6‖ = |v̂ar(f )− var(f )| p picks up
every element from the matrix and amplifies the estimation error
from v̂ar(f ). Consequently,

E
∥∥∥6̂− 6∥∥∥2 = O(n−1p2).
On the other hand, by assuming boundedness of the fourth
moments of y across n, a routine calculation reveals that

E
∥∥∥6̂sam − 6∥∥∥2 = O(n−1p2).
This shows that under Frobenius norm, 6̂ and 6̂sam have the
same convergence rate and perform roughly the same. Hence, the
Frobenius norm does not help us understand the factor structure.
Thus we should seek other norms that fully employ the factor
structure.
James and Stein (1961) introduce the entropy (or Stein) loss

function

L1(6̂,6) = tr
(
6̂6−1

)
− log

∣∣∣6̂6−1∣∣∣− p.
Inspired by this andmotivated by the above example,we introduce
below a new norm ‖ · ‖6 that is closely related to the entropy
loss and quadratic loss L2(6̂,6) = tr[6̂6−1 − I]2. Fix a sequence
of positive definite covariance matrices 6n of dimensionality pn,
n = 1, 2, . . . , and define

‖A‖6n = p
−1/2
n

∥∥6−1/2n A6−1/2n

∥∥ (7)

for any pn × pn matrix A. In particular, we have ‖6n‖6n =
p−1/2‖Ip‖ = 1. Note that∥∥∥6̂n − 6n∥∥∥

6n
= p−1/2n L2(6̂n,6n),

so it is really only a rescale of the quadratic loss. The inclusion
of a normalization factor p−1/2 above is not essential and we
incorporate it to take into account the diverging dimensionality.
Intrinsically, this norm takes into account and fully employs the
factor structure since it involves the inverse of the covariance
matrix. We will see later in this section that under norm ‖ · ‖6, the
consistency rate in the factor approach is better than that in the
sample approach, and the factor approach has much advantage in
estimating the inverse of covariance matrix.
3.1. Some basic assumptions

Let bn = E‖y‖2, cn = max1≤i≤K E(f 4i ), and dn = max1≤i≤p E(ε
4
i ).

(A) (f1, y1), . . . , (fn, yn) are n i.i.d. samples of (f, y). E(ε|f) = 0 and
cov(ε|f) = 6n,0 is diagonal. Also, the distribution of f is continuous
and K ≤ p.
(B) bn = O(p) and the sequences cn and dn are bounded. Also, there
exists a constant σ1 > 0 such that λK (cov(f)) ≥ σ1 for all n.
(C) There exists a constant σ2 > 0 such that λp(6n,0) ≥ σ2 for all n.
(D) The K factors f1, . . . , fK are fixed across n, and p−1B′nBn → A as
n→∞ for some K ×K symmetric positive semidefinite matrix A.

3.2. Sampling properties

Theorem 1 (Rates of Convergence Under Frobenius Norm). Under
conditions (A) and (B), we have

∥∥∥6̂− 6∥∥∥ = OP(n−1/2pK) and∥∥∥6̂sam − 6∥∥∥ = OP(n−1/2pK). In addition, we have
max
1≤k≤p

∣∣∣λk(6̂n)− λk(6n)∣∣∣ = OP(n−1/2pK)
and

max
1≤k≤p

∣∣∣λk(6̂sam)− λk(6n)∣∣∣ = OP(n−1/2pK).
From this theorem, we see that under the Frobenius norm,

the dimensionality reduces rates of convergence by an order of
pK , which is the order of the number of parameters. The above
rate of eigenvalues of 6̂ is optimal. To see it, let us extend the
previous example by including K factors f1, . . . , fK and setting
B = (1, . . . , 1)p×K . Further supposewe know ideally that cov(f) =
var(f1)IK . Then we have

6n = Ip + var(f1)K11′ and

6̂n = Ip + v̂ar(f1)K11′.
It is easy to see that λ1(6n) = var(f1)pK + 1, λk(6n) = 1, k =
2, . . . , p and λ1(6̂n) = v̂ar(f1)pK + 1, λk(6̂n) = 1, k = 2, . . . , p.
Thus,

max
1≤k≤p

∣∣∣λk(6̂n)− λk(6n)∣∣∣ = |v̂ar(f1)− var(f1)| pK
= OP(n−1/2pK).

Therefore, 6̂ here attains the optimal uniform weak convergence
rate of eigenvalues.
Theorem 1 shows that the factor structure does not give much

advantage in estimating6. The next theoremshows thatwhen6−1
is involved, the rate of convergence is improved.

Theorem 2 (Rates of Convergence Under Norm ‖ · ‖6). Suppose that
K = O(nα1) and p = O(nα). Under conditions (A)–(C), we have∥∥∥6̂− 6∥∥∥

6
= OP(n−β/2) with β = min(1 − 2α1, 2 − α − α1) and∥∥∥6̂sam − 6∥∥∥
6
= OP(n−β1/2) with β1 = 1 − max(α, 3α1/2, 3α1 −

α).

It is easy to show that β > β1 whenever α > 2α1 and α1 < 1.
Hence, the sample covariancematrix 6̂sam has slower convergence.
An interesting case is K = O(1). In this case, under the norm ‖ · ‖6,
6̂ has convergence rate n−β/2 with β = min(1, 2 − α), whereas
6̂sam has slower convergence rate n−β1/2 with β1 = 1 − α. In
particular, when α ≤ 1, 6̂ is root-n-consistent under ‖ · ‖6. This
can be shown to be optimal by some calculations using a specific
factor model mentioned above.
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Theorem 3 (Rates of Convergence of Inverse Under Frobenius
Norm). Under conditions (A)–(C), we have∥∥∥6̂−1n − 6−1n ∥∥∥ = oP{(p2K 4 log n/n)1/2},
whereas∥∥∥6̂−1sam − 6−1n ∥∥∥ = oP{(p4K 2 log n/n)1/2}.
From this theorem, we see that when K = o(p), 6̂

−1
performs

much better than 6̂
−1
sam. As expected, they perform roughly the

same in the extreme case where K is proportional to p. It is
very pleasing that under an additional assumption (C), 6̂

−1
has a

consistency rate slightly slower than 6̂ under the Frobenius norm,
since 6̂

−1
involves the inverse of the K × K sample covariance

matrix of f. The consistency result of 6̂
−1
sam is implied by that of 6̂sam,

thanks to a simple inequality in matrix theory on inverses under
perturbation. However, the consistency result of 6̂

−1
needs a very

delicate analysis of inverse matrices. This theorem will be used in
Section 4.1 to examine the volatility of a mean–variance optimal
portfolio.
Before going further,we first introduce some standard notation.

LetA = (aij)be a q×rmatrix anddenote by vec(A) the qr×1 vector
formed by stacking the r columns of A underneath each other in
the order from left to right. In particular, for any d × d symmetric
matrix A, we denote by vech(A) the d(d+1)/2×1 vector obtained
from vec(A) by removing the above-diagonal entries of A. It is not
difficult to see that there exists a unique d2×d(d+1)/2matrix Dd
of zeros and ones such that

Dd vech(A) = vec(A)

for any d×d symmetricmatrixA.Dd is called the duplicationmatrix
of order d. Clearly, for any d× d symmetric matrix A, we have

PDvec(A) = vech(A),

where PD =
(
D′D

)−1 D′. For any q × r matrix A1 = (aij) and s × t
matrix A2, we define their Kronecker product A1⊗A2 as the qs× rt
matrix (aijA2).

Theorem 4 (Asymptotic Normality). Under conditions (A), (B), and
(D), if p→∞ as n→∞, then the estimator 6̂ satisfies
√
n vech

[
p−2B′n

(
6̂n − 6n

)
Bn
]

D
−→N (0,G) ,

where G = PD (A⊗ A)DHD′ (A⊗ A) P ′D, H = cov [vech (U)] with
U = (uij)K×K and

cov
(
uij, ukl

)
= κ ijkl + κ ikκ jl + κ ilκ jk,

κ i1···ir is the central moment E
[
(fi1 − Efi1) · · · (fir − Efir )

]
of f =

(f1, . . . , fK )′, D is the duplication matrix of order K , and PD =(
D′D

)−1 D′.
When f has a K -variate normal distribution with covariance

matrix (σij)K×K , the matrix H in Theorem 4 is determined by
cov

(
uij, ukl

)
= σikσjl + σilσjk.

4. Impacts on optimal portfolio allocation and portfolio risk
assessment

In this section we examine the impacts of covariance matrix
estimation on optimal portfolio allocation and portfolio risk
assessment, respectively.
4.1. Impact on optimal portfolio allocation

Markowitz (1952) defines themean–variance optimal portfolio
of p risky assets with expected returns µn and covariance matrix
6n as the solution of the allocation vector ξn ∈ Rp to the following
minimization problem

min
ξ
ξ′6nξ (8)

Subject to ξ′1 = 1 and ξ′µn = γn,

where 1 is a p × 1 vector of ones and γn is the expected rate of
return imposed on the portfolio. It is well known that Markowitz’s
optimal portfolio [see Markowitz (1959), Cochrane (2001), or
Campbell et al. (1997)] is

ξn =
φn − γnψn

ϕnφn − ψ2n
6−1n 1+

γnϕn − ψn

ϕnφn − ψ2n
6−1n µn (9)

with ϕn = 1′6−1n 1, ψn = 1′6−1n µn, and φn = µ′n6
−1
n µn, and its

variance is

ξ′n6nξn =
ϕnγ

2
n − 2ψnγn + φn
ϕnφn − ψ2n

. (10)

Denote by ξng the ξn in (9) with γn replaced by ψn/ϕn. The global
minimum variance without constraint on the expected return is

ξ′ng6nξng = ϕ
−1
n , (11)

which is attained in (10) when γn = ψn/ϕn.
Based on the history, we can construct 6̂n as before. Also, by

the factor model (2), we have a substitution estimator µ̂n =
B̂nn−1(f1+· · ·+ fn) of themean vectorµn. As above, we can define
estimators ξ̂n, ξ̂ng and ϕ̂n, ψ̂n, φ̂nwith6n andµn replaced by 6̂n and
µ̂n, respectively.

Theorem 5 (Weak Convergence of Global Minimum Variance). Sup-
pose that all the ϕn’s are bounded away from zero. Under condi-
tions (A)–(C), we have

ξ̂
′

ng 6̂n̂ξng − ξ
′

ng6nξng = oP{(p
4K 4 log n/n)1/2},

whereas

ξ̂
′

ng 6̂sam̂ξng − ξ
′

ng6nξng = oP{(p
6K 2 log n/n)1/2}.

Theorem 6 (Weak Convergence to Optimal Portfolio). Suppose that
ϕnφn − ψ2n are bounded away from zero and ϕn/(ϕnφn − ψ2n ),
ψn/(ϕnφn − ψ2n ), φn/(ϕnφn − ψ2n ), γn are bounded. Under
conditions (A)–(C), we have

ξ̂
′

n6̂n̂ξn − ξ
′

n6nξn = oP{(p
4K 4 log n/n)1/2},

whereas

ξ̂
′

n6̂sam̂ξn − ξ
′

n6nξn = oP{(p
6K 2 log n/n)1/2}.

The assumptions on ϕn, ψn and φn in Theorems 5 and 6 are
technical and reasonable. In view of (11), the assumption on ϕn in
Theorem 5 amounts to saying that the global minimum variances
are bounded across n. The additional assumptions in Theorem 6
can be understood in a similar way in light of (10). From the
above two theorems, we see that when K = o(p), 6̂ performs
much better than 6̂sam from the point of view of optimal portfolio
allocation. On the other hand, we also see that dimensionality as
well as number of factors can only grow slowlywith sample size so
that the globally optimal portfolio and the mean–variance optimal
portfolio constructed using estimated covariancematrix 6̂ or 6̂sam
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behave similarly to theoretical ones. So high dimensionality does
impose a great challenge on optimal portfolio allocation.
Our study reveals that for a large number of stocks, additional

structures are needed. For example,wemay group assets according
to sectors and assume that the sector correlations are weak and
negligible. Hence, the covariance structure is block diagonal. Our
factor model approach can be used to estimate the covariance
matrix within a block, and our results continue to apply.

4.2. Impact on portfolio risk assessment

Risk management requires assessing the risk of a portfolio,
which is different from optimal portfolio allocation. Throughout,
risk is referred to as portfolio variance. As mentioned in Section 1,
the smallest and largest eigenvalues of the covariance matrix are
related to the minimum and maximum variances of the selected
portfolio, respectively. Throughout this section, we fix a sequence
of selected portfolios ξn ∈ Rp with ξ′n1 = 1 and ξn = O(1)1.
Here we impose the condition ξn = O(1)1 to avoid extreme short
positions — that is, some large negative components in ξn. Then,
the variance of portfolio ξn is

var(ξ′ny) = ξ
′

ncov(y)ξn = ξ
′

n6nξn.

The estimated risk associated with portfolio ξn is ξ
′

n6̂nξn. For
practical use in portfolio risk assessment, we need to examine
the behavior of portfolio variance based on 6̂n estimated from
historical data.

Theorem 7 (Weak Convergence of Variance). Under conditions (A)
and (B), we have

ξ′n6̂nξn − ξ
′

n6nξn = oP{(p
4K 2 log n/n)1/2}

and

ξ′n6̂samξn − ξ
′

n6nξn = oP{(p
4K 2 log n/n)1/2}.

On the other hand, if the portfolios ξn’s have no short positions, then
we have

ξ′n6̂nξn − ξ
′

n6nξn = oP{(p
2K 2 log n/n)1/2}

and

ξ′n6̂samξn − ξ
′

n6nξn = oP{(p
2K 2 log n/n)1/2}.

From this theorem, we see that 6̂ behaves roughly the same
as the sample covariance matrix estimator 6̂sam in portfolio risk
assessment. This is essential for both covariancematrix estimators,
since portfolio risk assessment does not involve inverse of the
covariance matrix, but the covariance matrix itself. The above
theorem is implied by consistency results of 6̂ and 6̂sam under the
Frobenius norm in Theorem 1.

5. A simulation study

In this section we use a simulation study to illustrate and
augment our theoretical results and to verify finite-sample
performance of the estimator 6̂ as well as 6̂

−1
. To this end, we

fix sample size n = 756, which is the sample size of three-
year daily financial data, and we let dimensionality p grow from
low to high and ultimately exceed sample size. As mentioned
before, our primary concern is a theoretical understanding of
factor models with a diverging number of variables and factors for
the purpose of covariance matrix estimation, but not comparison
with other popular estimators. So we compare performance of the
estimator 6̂ only to that of sample covariance matrix 6̂sam. To
contrast with 6̂sam, we examine the covariance matrix estimation
errors of 6̂ and 6̂sam under the Frobenius norm, the norm ‖ · ‖6
introduced in Section 3, and the entropy loss. Meanwhile, we also
compare estimation errors of 6̂

−1
and 6̂

−1
sam under the Frobenius

norm. Furthermore, we evaluate estimated variances of optimal
portfolios with expected rate of return γn = 10% based on 6̂
and 6̂sam by comparing their mean-squared errors (MSEs). For the
estimated globalminimumvariances, we also compare theirMSEs.
Moveover, we examine MSEs of estimated variances of the equally
weighted portfolio ξp = (1/p, . . . , 1/p), based on 6̂ and 6̂sam,
respectively.
For simplicity, we fix K = 3 in our simulation and consider the

three-factor model

Ypi = bpi1f1 + bpi2f2 + bpi3f3 + εi, i = 1, . . . , p. (12)

Here,we use the first subscript p to stress that the factor loadings in
the three-factor model varies across dimensionality p. The Fama-
French three-factor model (Fama and French, 1993) is a practical
example of model (12). To make our simulation more realistic, we
take the parameters from a fit of the Fama-French three-factor
model.
In the Fama-French three-factor model, Yi is the excess return

of the i-th stock or portfolio, i = 1, . . . , p. The first factor f1
is the excess return of the proxy of the market portfolio, which
is the value-weighted return on all NYSE, AMEX and NASDAQ
stocks (from CRSP) minus the one-month Treasury bill rate (from
Ibbotson Associates). The other two factors are constructed using
six value-weighted portfolios formed on size and book-to-market
ratio. Specifically, the second factor f2, SMB (Small Minus Big),

SMB = 1/3 (Small Value+ Small Neutral+ Small Growth)
− 1/3 (Big Value+ Big Neutral+ Big Growth)

is the average return on the three small portfolios minus the
average return on the three big portfolios, and the third factor f3,
HML (High Minus Low),

HML = 1/2 (Small Value+ Big Value)
− 1/2 (Small Growth+ Big Growth)

is the average return on the two value portfoliosminus the average
return on the two growth portfolios. See the website http://mba.
tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html for
more details about their three factors and the data sets of the three
factors, risk free interest rates, and returns of many constructed
portfolios.
We first fit three-factor model (12) with n = 756 and p = 30

using the three-year daily data of 30 Industry Portfolios from May
1, 2002 to Aug 29, 2005, which are available at the above website.
Then, as in (4), we get 30 estimated factor loading vectors b̂1 =
(b11, b12, b13), . . . , b̂30 = (b30,1, b30,2, b30,3) and 30 estimated
standard deviations σ̂1, . . . , σ̂30 of the errors, where b̂i and σ̂i
correspond to the i-th portfolio, i = 1, . . . , 30. The sample average
of σ̂1, . . . , σ̂30 is 0.66081 with a sample standard deviation 0.3275.
We report in Table 1 the sample means and sample covariance
matrices of f and b̂ denoted by µf, µb and covf, covb, respectively.
For each simulation, we carry out the following steps:

• We first generate a random sample of f = (f1, f2, f3)′ with size
n = 756 from the trivariate normal distributionN (µf, covf).
• Then, for each dimensionality p increasing from16 to 1000with
increment 20, we do the following.
• Generate p factor loading vectors b1, . . . , bp as a random
sample of size p from the trivariate normal distribution
N (µb, covb).

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Table 1
Sample means and sample covariance matrices of f and b̂

µf covf

0.023558 1.2507 −0.034999 −0.20419
0.012989 −0.034999 0.31564 −0.0022526
0.020714 −0.20419 −0.0022526 0.19303

µb covb

0.78282 0.029145 0.023873 0.010184
0.51803 0.023873 0.053951 −0.006967
0.41003 0.010184 −0.006967 0.086856

• Generate p standard deviations σ1, . . . , σp of the errors as
a random sample of size p from a gamma distribution
G(α, β) conditional on being bounded below by a threshold
value. The threshold for the standard deviations of errors
is required in accordance with condition (C) in Section 3.1,
and it is set to 0.1950 in our simulation because we find
min1≤i≤30 σ̂i = 0.1950. Note that G(α, β) has mean αβ
and standard deviation α1/2β , and its conditional mean and
conditional second moment on falling above 0.1950 can be
approximated respectively by(
αβ −

0.1950
2

q
)/

(1− q) and(
αβ2 + α2β2 −

0.19502

2
q
)/

(1− q) ,

where q is the probability of falling below0.1950 underG(α, β).
By matching the mean 0.66081 and standard deviation 0.3275
for G(α0, β0), we obtain α0 = 4.0713 and β0 = 0.1623.
Therefore, following the above approximations, by recursively
matching the conditionalmean 0.66081 and conditional second
moment 0.32752+0.660812 = 0.54393 for G(α, β), we finally
get α = 3.3586 and β = 0.1876.
• After getting p standard deviations σ1, . . . , σp of the errors,
we generate a random sample of ε = (ε1, . . . , εp)

′ with
size n = 756 from the p-variate normal distribution
N
(
0, diag

(
σ 21 , . . . , σ

2
p

))
.

• Then from model (12), we get a random sample of y =
(Y1, . . . , Yp)′ with size n = 756.
• Finally, we compute estimated covariance matrices 6̂ and
6̂sam, as well as 6̂

−1
and 6̂

−1
sam, and record the errors in the

aforementioned measures. Meanwhile, we calculate MSEs of
estimated variances of the optimal portfolios with γn = 10%
as well as MSEs of estimated global minimum variances based
on 6̂ and 6̂sam, respectively. Also, we record MSEs of estimated
variances of the equally weighted portfolio based on 6̂ and
6̂sam, respectively.

We repeat the above simulation 500 times and report themean-
square errors as well as the standard deviations of those errors.
In Figs. 1–4, solid curves and dashed curves correspond to

6̂ and 6̂sam, respectively. Fig. 1 presents the averages and the
standard deviations of their estimation errors under the Frobenius
norm, norm ‖ · ‖6, and entropy loss against dimensionality
p, respectively. Fig. 2 depicts the averages and the standard
deviations of estimation errors of 6̂

−1
and 6̂

−1
sam under the

Frobenius norm against p. We report in Fig. 3 MSEs of estimated
variances of the optimal portfolios with γn = 10% as well as MSEs
of estimated globalminimumvariances using 6̂ and 6̂sam against p.
Fig. 4 presentsMSEs of estimated variances of the equallyweighted
portfolio based on 6̂ and 6̂sam against p.
Recall that both the sample size n and the number of factors

K are kept fixed across p in our simulation. From Figs. 1–4, we
observe the following:
• By comparing corresponding averages and standard deviations
of the errors shown in Figs. 1 and 2, we see that theMonte-Carlo
errors are negligible.
• Fig. 1(a) shows that under the Frobenius norm, 6̂ performs
roughly the same as (slightly better than) 6̂sam, which is
consistent with the results in Theorem 1. Nevertheless, this is
a surprise and is against the conventional wisdom.
• Fig. 1(c) reveals that under norm ‖·‖6, 6̂ performsmuch better
than 6̂sam, which is consistent with the results in Theorem 2.
In particular, we see that the estimation errors of 6̂ under
norm ‖ · ‖6 are roughly at the same level across p. Recall that
sample size n is fixed as 756 here. Thus, this is in line with
the root-n-consistency of 6̂ under norm ‖ · ‖6 when p =
O(n) shown in Theorem 2. Also, the apparent growth pattern
of estimation errors in 6̂sam with p is in accordance with its
(n/p)1/2-consistency under norm ‖ · ‖6 shown in Theorem 2.
• Fig. 1(e) shows that under entropy loss, 6̂ significantly
outperforms 6̂sam, which strongly supports the factor-model
based estimator 6̂ over the sample one 6̂sam. We only report
the results for p truncated at 400. This is because for larger
p, sample covariance matrices 6̂sam are nearly singular with a
big chance in the simulation, which results in extremely large
entropy losses.
• From Fig. 2(a), we see that under the Frobenius norm, the
estimator 6̂

−1
significantly outperforms 6̂

−1
sam, which is in line

with the results in Theorem 3.
• Fig. 3(a) and (b) demonstrate convincingly that 6̂ outperforms
6̂sam in optimal portfolio allocation. These results are in
accordance with Theorems 5 and 6. One may notice that in
Fig. 3(a), the MSEs are relatively large in magnitude for small
p and then tend to stabilize when p grows large. This is because
in our settings for the simulation, for small p the termϕnφn−ψ2n
is relatively small compared to ϕnγ 2n − 2ψnγn + φn, which
results in large variance of the optimal portfolio. The behavior
of theMSEs for large p is essentially due to self-averaging in the
dimensionality. Fig. 3(b) can be interpreted in the same way.
• Fig. 4 reveals that the factor-model based approach and
the sample approach have almost the same performance in
portfolio risk assessment, which is consistent with Theorem 7.
The high-dimensionality behavior is essentially due to self-
averaging as in Fig. 3(a).

6. Concluding remarks

This paper investigates the impact of dimensionality on the
estimation of covariance matrices. Two estimators are singled out
for studies and comparisons: the sample covariancematrix and the
factor-model based estimate. The inverse of the covariance matrix
takes advantage of the factor structure and hence can be better
estimated in the factor approach. As a result, when the parameters
involve the inverse of the population covariance, substantial gain
can be made. On the other hand, the covariance matrix itself does
not take much advantage of the factor structure, and hence its
estimate cannot be improved much in the factor approach. This is
somewhat surprising and goes against the conventional wisdom.
Optimal portfolio allocation and minimum variance portfolio

involve the inverse of the covariance matrix. Hence, it is advanta-
geous to employ the factor structure in optimal portfolio allocation.
On the other hand, portfolio risk assessment intrinsically depends
only on the covariance structure and hence there is not much ad-
vantage to appeal to the factor model in portfolio risk assessment.
Our conclusion is also verified by an extensive simulation study,

in which the parameters are taken in a neighborhood that is close
to the reality. The choice of parameters relies on a fit to the famous
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Fig. 1. (a), (c) and (e): The averages of errors over 500 simulations for 6̂ (solid curve) and 6̂sam (dashed curve) against p under Frobenius norm, norm ‖ · ‖6 and entropy
losses, respectively. (b), (d) and (f): Corresponding standard deviations of errors over 500 simulations for 6̂ (solid curve) and 6̂sam (dashed curve).
Fig. 2. (a) The averages of errors under Frobenius norm over 500 simulations for 6̂
−1
(solid curve) and 6̂

−1
sam (dashed curve) against p. (b) Corresponding standard deviations

of errors under Frobenius norm.
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Fig. 3. (a) TheMSEs of estimated variances of the optimal portfolios with γn = 10% over 500 simulations based on 6̂ (solid curve) and 6̂sam (dashed curve) against p. (b) The
MSEs of estimated global minimum variances over 500 simulations based on 6̂ (solid curve) and 6̂sam (dashed curve) against p.
Fig. 4. The MSEs of estimated variances of the equally weighted portfolio over 500
simulations based on 6̂ (solid curve) and 6̂sam (dashed curve) against p.

Fama-French three-factor model to the portfolios traded in the
market.
Our studies also reveal that the impact of dimensionality on the

estimation of covariance matrices is severe. This should be taken
into consideration in practical implementations.

Appendix. Proofs

Lemmas 1–6 mentioned throughout are referred to as those in
technical report Fan et al. (2006).

Proof of Theorem 1. (1) First, we prove (pK)−1 n1/2-consistency
of 6̂ under the Frobenius norm. To facilitate the presentation,
we introduce here some notation used throughout the rest of the
paper. Let Cn =̂ EX′(XX′)−1,

Dn =̂
{
(n− 1)−1 XX′ − [n(n− 1)]−1 X11′X′

}
− cov(f)

and

Fn =̂ Ip ◦ n−1E (In − H) E′ − 60,

where H =̂ X′
(
XX′

)−1 X is the n× n hat matrix and A1 ◦ A2 stands
for the Hadamard product, i.e. the entrywise product, for any q× r
matrices A1 and A2. Then we have B̂ = YX′

(
XX′

)−1
= B + Cn,

ĉov(f) = (n− 1)−1 XX′ − {n (n− 1)}−1 X11′X′ = cov(f) + Dn,
6̂0 = diag

(
n−1̂E Ê′

)
= 60 + Fn and

6̂ = 6+ BDnB′ +
[
Bĉov(f)C′n + Cnĉov(f)B′

]
+ Cnĉov(f)C′n + Fn. (13)
This shows that 6̂ is a four-term perturbation of the population
covariancematrix, and this representation is our key technical tool.
By the Cauchy-Schwarz inequality, it follows from (13) that

E‖6̂− 6‖2 ≤ 4
[
E tr

{(
BDnB′

)2}
+ E tr

{[
Bĉov(f)C′n + Cnĉov(f)B′

]2}
+ E tr

{[
Cnĉov(f)C′n

]2}
+ E tr

(
F2n
)]
.

We will examine each of the above four terms on the right hand
side separately. For brevity of notation, we suppress the first
subscript n in some situations where the dependence on n is self-
evident.
Before going further, let us bound ‖Bn‖. From assumption (B),

we know that cov(f) ≥ σ1IK , where for any symmetric positive
semidefinitematricesA1 andA2,A1 ≥ A2meansA1−A2 is positive
semidefinite. Thus it follows easily from (3) that

σ1BnB′n = Bn (σ1IK ) B′n ≤ Bncov(f)B′n ≤ 6n,

which alongwith bn = O(p) in assumption (B) shows that ‖Bn‖2 =
tr
(
BnB′n

)
≤ tr (6n) /σ1 ≤ bn

σ1
= O(p), i.e.

‖Bn‖ = O(p1/2). (14)

Clearly, ‖B′nBn‖ = ‖BnB
′

n‖, and by Lemma 1 and (14) we have

‖B′nBn‖ = ‖BnB
′

n‖ ≤ ‖Bn‖‖B
′

n‖

= ‖Bn‖2 = O(p). (15)

This fact is a key observation that will be used very often and, as
shown above, it is entailed only by assumptions (A) and (B), which
are valid throughout the paper.
Now we consider the first term, say E tr{

(
BDnB′

)2
}. From cn =

O(1) in assumption (B), we see that the fourth moments of f are
bounded across n, thus a routine calculation reveals that

E
(
‖Dn‖2

)
= O(n−1K 2), (16)

which is an important fact that will be used very often and also
helps study the inverse ĉov(f)−1 by keeping in mind that K →∞.
By Lemma 1, (15) and (16), we have

E tr
[(

BDnB′
)2]
≤
∥∥B′B∥∥2 E (‖Dn‖2)

= O(n−1(pK)2). (17)
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The remaining three terms are taken care of by Lemmas 2 and
3. Therefore, in view of (15), combining (17) with Lemmas 2 and 3
gives

E
∥∥∥6̂− 6∥∥∥2 = O(n−1(pK)2).
In particular, this implies that

∥∥∥6̂− 6∥∥∥ = OP(n−1/2pK), which
proves (pK)−1 n1/2-consistency of the covariancematrix estimator
6̂ under Frobenius norm.
(2) Then,we show that 6̂sam is (pK)−1 n1/2-consistent under the

Frobenius norm. By (3) and (5), we have

6̂sam = 6+ BDnB′ + Gn + (n− 1)−1
{
BXE′ + EX′B

}
− [n (n− 1)]−1

{
BX11′E′ + E11′X′B′

}
, (18)

where Gn =̂
{
(n− 1)−1 EE′ − [n(n− 1)]−1 E11′E′

}
− 60. This

shows that 6̂sam is also a four-term perturbation of the population
covariance matrix. By the Cauchy-Schwarz inequality, it follows
from (18) that

E
∥∥∥6̂sam − 6∥∥∥2 ≤ 4 [E ∥∥BDnB′∥∥2 + E ‖Gn‖2
+ 2 (n− 1)−2 E

∥∥BXE′∥∥2 + 2 [n (n− 1)]−2 E ∥∥BX11′E′∥∥2] .
As in part (1), we will examine each of the above four terms on
the right hand side separately. The first term E

∥∥BDnB′∥∥2 has been
bounded in (17). Using the same argument as in Lemma 6, we can
show that E ‖Gn‖2 = O(n−1p2). In view of (15), it is shown that

E
∥∥BXE′∥∥2 = O(np2K)
in the proof of Lemma 2. Using the same argument as in Lemma 2
to bound E

∥∥BX11′HE′
∥∥2, we can easily get

E
∥∥BX11′E′∥∥2 = O(n3p2K),
which along with (17) and the above results yields

E
∥∥∥6̂sam − 6∥∥∥2 = O(n−1(pK)2).
This proves (pK)−1 n1/2-consistency of 6̂sam under the Frobenius
norm.
(3) Finally, we prove the uniform weak convergence of

eigenvalues. It follows from Corollary 6.3.8 of Horn and Johnson
(1990) that

max
1≤k≤p

∣∣∣λk(6̂n)− λk(6n)∣∣∣ ≤ { p∑
k=1

[
λk(6̂n)− λk(6n)

]2}1/2
≤

∥∥∥6̂n − 6n∥∥∥ .
Therefore, the uniform weak convergence of the eigenvalues of
the 6̂n’s follows immediately from the (pK)−1 n1/2-consistency of
6̂ under the Frobenius norm shown in part (1). Similarly, by the
(pK)−1 n1/2-consistency of 6̂sam under the Frobenius norm shown
in part (2), the same conclusion holds for 6̂sam. �

Proof of Theorem 2. (1) First, we show that 6̂ is nβ/2-consistent
under norm ‖ · ‖6. The main idea of the proof is similar to that of
Theorem 1, but the proof ismore tricky and involved here since the
norm ‖ · ‖6 involves the inverse of the covariance matrix6. By the
Cauchy-Schwarz inequality, it follows from (13) that

E
∥∥∥6̂− 6∥∥∥2

6
≤ 4

[
E
∥∥BDnB′∥∥26
+ E
∥∥Bĉov(f)C′n + Cnĉov(f)B′

∥∥2
6

+ E
∥∥Cnĉov(f)C′n∥∥26 + E ‖Fn‖26] .

As in the proof of Theorem 1, we will study each of the above four
terms on the right hand side separately.
Before going further, let us bound

∥∥B′6−1B∥∥. From (3), we
know that 6 = 60 + Bcov(f)B′, which along with the
Sherman–Morrison–Woodbury formula shows that

6−1 = 6−10 − 6
−1
0 B

[
cov(f)−1 + B′6−10 B

]−1 B′6−10 . (19)

Thus it follows that

B′6−1B = B′6−10 B− B′6−10 B
[
cov(f)−1 + B′6−10 B

]−1 B′6−10 B

= B′6−10 B
[
cov(f)−1 + B′6−10 B

]−1
cov(f)−1

= cov(f)−1 − cov(f)−1
[
cov(f)−1 + B′6−10 B

]−1
cov(f)−1,

which implies that∥∥B′6−1B∥∥ ≤ ∥∥cov(f)−1∥∥
+

∥∥∥cov(f)−1 [cov(f)−1 + B′6−10 B
]−1
cov(f)−1

∥∥∥ .
Note that cov(f)−1 is symmetric positive definite and B′6−10 B is
symmetric positive semidefinite. Thus, cov(f)−1 + B′6−10 B ≥
cov(f)−1, which in turn implies that [cov(f)−1 + B′6−10 B]−1 ≤
cov(f) and

cov(f)−1
[
cov(f)−1 + B′6−10 B

]−1
cov(f)−1

≤ cov(f)−1cov(f)cov(f)−1 = cov(f)−1.

In particular, this entails that∥∥∥cov(f)−1 [cov(f)−1 + B′6−10 B
]−1
cov(f)−1

∥∥∥
≤
∥∥cov(f)−1∥∥ ,

so now the problem of bounding
∥∥B′6−1B∥∥ reduces to bounding∥∥cov(f)−1∥∥. By assumption (B), λK (cov(f)) ≥ σ1 for some constant

σ1 > 0. Thus the largest eigenvalues of cov(f)−1 are bounded
across n, which easily implies that

∥∥cov(f)−1∥∥ = O(K 1/2). This
together with the above results shows that∥∥B′6−1B∥∥ = O(K 1/2). (20)

Nowwe are ready to examine the first term, say E
∥∥BDnB′∥∥26. By

Lemma 1, we have∥∥BDnB′∥∥26 = p−1tr [(DnB′6−1B)2]
≤ p−1 ‖Dn‖2

∥∥B′6−1B∥∥2 .
Therefore, it follows from (16) and (20) that

E
∥∥BDnB′∥∥26 = O(n−1p−1K 3). (21)

Then,we consider the second term E
∥∥Bĉov(f)C′n + Cnĉov(f)B′

∥∥2
6
.

Note that

E
∥∥Bĉov(f)C′n + Cnĉov(f)B′

∥∥2
6

≤ 2
[
E
∥∥Bĉov(f)C′n∥∥26 + E ∥∥Cnĉov(f)B′∥∥26]

= 4 E
∥∥Bĉov(f)C′n∥∥26 ≤ 8 [(n− 1)−2 E ∥∥BXX′C′n∥∥26

+ n−2 (n− 1)−2 E
∥∥BX11′X′C′n∥∥26]

=̂ 8 (n− 1)−2L1 + 8n−2 (n− 1)−2L2. (22)
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Since E(ε|f) = 0, conditioning on X gives

L1 = p−1E tr
[
XE
(
E′6−1E|X

)
X′B′6−1B

]
= p−1E tr

[
X tr

(
6−160

)
In X′B′6−1B

]
≤ p−1tr

(
6−160

)
E
(
‖XX′‖

) ∥∥B′6−1B∥∥ .
In the proof of Lemma 2, it is shown that E

(
‖XX′‖2

)
= O(n2K 2),

which implies that

E
(
‖XX′‖

)
≤
[
E
(
‖XX′‖2

)]1/2
= O(nK).

By (3) and assumptions (B) and (C), we can easily get

tr
(
6−160

)
≤ tr

(
6−1

)
O(1) = O(p),

which along with (20) and the above results shows that

L1 = O(nK 3/2).

Similarly, by conditioning on Xwe have

L2 = p−1E tr
[
X11′HE

(
E′6−1E|X

)
H11′X′B′6−1B

]
= p−1E tr

[
X11′H tr

(
6−160

)
In H11′X′B′6−1B

]
.

Then, applying Lemma 1 gives

L2 ≤ p−1tr
(
6−160

)
E
∥∥X11′H11′X′

∥∥ ∥∥B′6−1B∥∥
≤ p−1tr

(
6−160

)
E ‖H‖

∥∥X′X∥∥ ∥∥11′11′∥∥ ∥∥B′6−1B∥∥
= n2p−1K 1/2tr

(
6−160

)
E
∥∥X′X∥∥ ∥∥B′6−1B∥∥ ,

which together with the above results shows that

L2 = O(n3K 2).

Thus, in view of (22) we have

E
∥∥Bĉov(f)C′n + Cnĉov(f)B′

∥∥2
6
= O(n−1K 2). (23)

The third and fourth terms are examined in Lemmas 4 and 5,
respectively. Since K ≤ p by assumption (A), combining (21) and
(23) with Lemmas 4 and 5 results in

E
∥∥∥6̂− 6∥∥∥2

6
= O(n−1K 2)+ O(n−2pK).

In particular, when K = O(nα1) and p = O(nα) for some 0 ≤ α1 <
1/2 and 0 ≤ α < 2− α1, we have∥∥∥6̂− 6∥∥∥

6
= OP(n−β/2)

with β = min (1− 2α1, 2− α − α1), which proves nβ/2-
consistency of covariance matrix estimator 6̂ under norm ‖ · ‖6.
(2) Then, we prove the nβ1/2-consistency of 6̂sam under norm

‖ · ‖6. By the Cauchy-Schwarz inequality, it follows from (18) that

E
∥∥∥6̂sam − 6∥∥∥2

6
≤ 4

[
E
∥∥BDnB′∥∥26

+ E ‖Gn‖26 + 2 (n− 1)
−2 E

∥∥BXE′∥∥2
6

+ 2 [n (n− 1)]−2 E
∥∥BX11′E′∥∥2

6

]
.

As in part (1), we will examine each of the above four terms on
the right hand side separately. The first term E

∥∥BDnB′∥∥26 has been
bounded in (21), and the second term E ‖Gn‖26 is considered in
Lemma 6. The third term E

∥∥BXE′∥∥2
6
is exactlyL1 in part (1) above.

Using the same argument that was used in part (1) to proveL2, we
can easily get

E
∥∥BX11′E′∥∥2

6
= O(n3K 3/2).
Thus, by (21) and Lemma 6 along with the above results, we have

E
∥∥∥6̂sam − 6∥∥∥2

6

= O(n−1p−1K 3)+ O(n−1p)+ O(n−1K 3/2).

In particular, when K = O(nα1) and p = O(nα) for some 0 ≤ α < 1
and 0 ≤ α1 < (1+ α) /3, we have∥∥∥6̂sam − 6∥∥∥

6
= OP(n−β1/2)

with β1 = 1 − max(α, 3α1/2, 3α1 − α), which shows nβ1/2-
consistency of 6̂sam under norm ‖ · ‖6. �

Proof of Theorem 3. (1) First, we prove the weak convergence of
6̂
−1
sam under the Frobenius norm. Note that 6̂sam involves sample
covariance matrix estimation of 60, so the technique in part (2)
belowdoes not help. In general, the only availableway is as follows.
We define Qn = 6̂sam − 6n. It is a basic fact in matrix theory that∥∥∥6̂−1sam − 6−1n ∥∥∥ ≤ ∥∥6−1n ∥∥

∥∥6−1n Qn
∥∥

1−
∥∥6−1n Qn

∥∥
≤

∥∥6−1n ∥∥2 ‖Qn‖
1−

∥∥6−1n ∥∥ ‖Qn‖ (24)

whenever
∥∥6−1n ∥∥ ‖Qn‖ < 1. From Theorem 1, we know that

‖Qn‖ = OP(n
−1/2pK).

By (A.9) in Fan et al. (2006), we have
∥∥6−1n ∥∥ = O(p1/2). Since

pK 1/2 = o((n/ log n)1/4)we see that∥∥6−1n ∥∥ ‖Qn‖ P
−→ 0 and√

np−4K−2/ log n
∥∥6−1n ∥∥2 ‖Qn‖ P

−→ 0.

It follows easily that√
np−4K−2/ log n

∥∥6−1n ∥∥2 ‖Qn‖
1−

∥∥6−1n ∥∥ ‖Qn‖ P
−→ 0,

which along with (24) shows that√
np−4K−2/ log n

∥∥∥6̂−1sam − 6−1n ∥∥∥ P
−→ 0 as n→∞.

(2) Then, we show the weak convergence of 6̂
−1
under the

Frobenius norm. The basic idea is to examine the estimation error
for each term of 6̂

−1
, which has an explicit form thanks to the

factor structure. From (4),weknow that 6̂ = B̂ĉov(f)̂B′+6̂0, which
alongwith the Sherman–Morrison–Woodbury formula shows that

6̂
−1
= 6̂

−1
0 − 6̂

−1
0 B̂

[
ĉov(f)−1 + B̂′6̂

−1
0 B̂

]−1
B̂′6̂
−1
0 . (25)

Thus by (19), we have∥∥∥6̂−1 − 6−1∥∥∥ ≤ ∥∥∥6̂−10 − 6−10 ∥∥∥
+

∥∥∥∥(6̂−10 − 6−10 ) B̂ [ĉov(f)−1 + B̂′6̂
−1
0 B̂

]−1
B̂′6̂
−1
0

∥∥∥∥
+

∥∥∥∥6−10 B̂
[
ĉov(f)−1 + B̂′6̂

−1
0 B̂

]−1
B̂′
(
6̂
−1
0 − 6

−1
0

)∥∥∥∥
+

∥∥∥∥6−10 (̂
B− B

) [
ĉov(f)−1 + B̂′6̂

−1
0 B̂

]−1
B̂′6−10

∥∥∥∥
+

∥∥∥∥6−10 B
[
ĉov(f)−1 + B̂′6̂

−1
0 B̂

]−1 (̂
B′ − B′

)
6−10

∥∥∥∥
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+

∥∥∥∥6−10 B
{[
ĉov(f)−1 + B̂′6̂

−1
0 B̂

]−1
−
[
cov(f)−1 + B′6−10 B

]−1 } B′6−10

∥∥∥∥
=̂K1 +K2 +K3 +K4 +K5 +K6. (26)

To study
∥∥∥6̂−1 − 6−1∥∥∥, we need to examine each of the above six

termsK1, . . . ,K6 separately, so itwould be lengthywork to check
all the details here. Therefore, we only sketch the idea of the proof
and leave the details to the reader.
From assumption (C), we know that the diagonal entries of 60

are bounded away from 0. Note that 6̂0 and 60 are both diagonal,
and thus, by the same argument as in Lemma 5, we can easily show
that

K1 =

∥∥∥6̂−10 − 6−10 ∥∥∥ = OP(n−1/2p1/2)+ OP(n−1pK 1/2)
= OP(n−1/2p1/2), (27)

since pK 1/2 = o((n/ log n)1/2). Now we consider the second term
K2. By Lemma 1, we have

K2 ≤

∥∥∥(6̂−10 − 6−10 ) 6̂1/20 ∥∥∥
×

∥∥∥∥6̂−1/20 B̂
[
ĉov(f)−1 + B̂′6̂

−1
0 B̂

]−1
B̂′6̂
−1/2
0

∥∥∥∥ ∥∥∥6̂−1/20

∥∥∥
=̂L1L2

∥∥∥6̂−1/20

∥∥∥ ,
and we will examine each of the above two terms L1 and L2, as
well as

∥∥∥6̂−1/20

∥∥∥. Since 6̂0 and60 are diagonal, a similar argument
to that boundingK1 above applies to show that∥∥∥6̂−1/20

∥∥∥ = OP(p1/2) and L1 = OP(n−1/2p1/2).

Clearly, 6̂
−1/2
0 B̂

[
ĉov(f)−1 + B̂′6̂

−1
0 B̂

]−1
B̂′6̂
−1/2
0 is symmetric pos-

itive semidefinite with rank at most K and 6̂
1/2
0 6̂

−1
6̂
1/2
0 ≥ 0. Thus

it follows from (25) that

6̂
−1/2
0 B̂

[
ĉov(f)−1 + B̂′6̂

−1
0 B̂

]−1
B̂′6̂
−1/2
0

= Ip − 6̂
1/2
0 6̂

−1
6̂
1/2
0 ≤ Ip,

which implies that 6̂
−1/2
0 B̂

[
ĉov(f)−1 + B̂′6̂

−1
0 B̂

]−1
B̂′6̂
−1/2
0 has at

most K positive eigenvalues and all of them are bounded by one.
This shows that L2 ≤ K 1/2, which along with the above results
gives

K2 = OP(n−1/2pK 1/2). (28)

Similarly, we can also show that

K3 = OP(n−1/2pK 1/2). (29)

Then we consider terms K4 and K5. Clearly, ĉov(f)−1 +
B̂′6̂
−1
0 B̂ ≥ ĉov(f)−1, which in turn entails that [ĉov(f)−1

+ B̂′6̂
−1
0 B̂]−1 ≤ ĉov(f) and∥∥∥∥[ĉov(f)−1 + B̂′6̂

−1
0 B̂

]−1∥∥∥∥ ≤ ‖ĉov(f)‖ .
It is easy to show that ‖ĉov(f)‖ = OP(K). Thus we have

K4 ≤
∥∥6−10 (̂

B− B
)∥∥ ∥∥∥∥[ĉov(f)−1 + B̂′6̂

−1
0 B̂

]−1∥∥∥∥ ∥∥∥̂B′6−10 ∥∥∥
= OP(n−1p1/2)OP(K)OP(p1/2) = OP(n−1/2pK) (30)
and

K5 ≤
∥∥6−10 B

∥∥ ∥∥∥∥[ĉov(f)−1 + B̂′6̂
−1
0 B̂

]−1∥∥∥∥ ∥∥∥(̂B′ − B′
)
6−10

∥∥∥
= OP(p1/2)OP(K)OP(n−1p1/2K) = OP(n−1/2pK). (31)

Finally, by the same argument as in part (1) above, we can show
that∥∥∥∥[ĉov(f)−1 + B̂′6̂

−1
0 B̂

]−1
−
[
cov(f)−1 + B′6−10 B

]−1∥∥∥∥
= oP((n/ log n)−1/2 K 2).

Thus by Lemma 1, we have

K6 ≤

∥∥∥∥[ĉov(f)−1 + B̂′6̂
−1
0 B̂

]−1
−
[
cov(f)−1 + B′6−10 B

]−1 ∥∥∥∥ ∥∥B′6−20 B
∥∥

= oP((n/ log n)−1/2 K 2)O(p) = oP((n/ log n)−1/2 pK 2). (32)

Therefore, it follows from (26)–(32) that√
np−2K−4/ log n

∥∥∥6̂−1n − 6−1n ∥∥∥ P
−→ 0 as n→∞,

which completes the proof. �

Proof of Theorem 4. See the proof of Theorem 4 in technical
report Fan et al. (2006). �

Proof of Theorem 5. (1) First, we prove the weak convergence
of the estimated global minimum variance based on 6̂. From
Theorem 3, we know that√
np−2K−4/ log n

∥∥∥6̂−1 − 6−1∥∥∥ P
−→ 0.

Note that

|̂ϕn − ϕn|

=

∣∣∣1′ (6̂−1 − 6−1) 1∣∣∣ = ∣∣∣tr [(6̂−1 − 6−1) 11′]∣∣∣
≤

∥∥∥6̂−1 − 6−1∥∥∥ ∥∥11′∥∥ = p ∥∥∥6̂−1 − 6−1∥∥∥ .
Thus we have√
n (pK)−4 / log n |̂ϕn − ϕn|

P
−→ 0.

Since all the ϕn’s are bounded away from zero, it follows easily that√
n (pK)−4 / log n

∣∣∣̂ξ′ng 6̂n̂ξng − ξ′ng6nξng ∣∣∣
=

√
n (pK)−4 / log n

∣∣̂ϕ−1n − ϕ−1n ∣∣ P
−→ 0.

(2) Then, we prove the conclusion for 6̂sam. From Theorem 3,
we know that√
np−4K−2/ log n

∥∥∥6̂−1sam − 6−1∥∥∥ P
−→ 0.

Therefore, the above argument in part (1) applies to show that√
np−6K−2/ log n

∣∣∣̂ξ′ng 6̂sam̂ξng − ξ′ng6nξng ∣∣∣
=

√
np−6K−2/ log n

∣∣̂ϕ−1n − ϕ−1n ∣∣ P
−→ 0. �

Proof of Theorem 6. (1) First, we prove the weak convergence of
the estimated variance of the optimal portfolio based on 6̂. From
Theorem 3, we know that
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√
np−2K−4/ log n

∥∥∥6̂−1 − 6−1∥∥∥ P
−→ 0, (33)

and from part (1) in the proof of Theorem 5, we see that√
n (pK)−4 / log n |̂ϕn − ϕn|

P
−→ 0. (34)

Now we show the same rate for
∣∣ψ̂n − ψn∣∣, say√

n (pK)−4 / log n
∣∣ψ̂n − ψn∣∣ P

−→ 0. (35)

By bn = O(p) in assumption (B), a routine calculation yields∥∥µn∥∥ = O(p1/2) and E ∥∥µ̂n − µn∥∥2 = O(n−1p), and thus∥∥µ̂n − µn∥∥ = OP(n−1/2p1/2).
It follows that∣∣ψ̂n − ψn∣∣ ≤ ∣∣∣1′ (6̂−1 − 6−1) µ̂∣∣∣

+
∣∣1′6−1 (µ̂− µ)∣∣ ≤ ∥∥1′∥∥ ∥∥∥6̂−1 − 6−1∥∥∥

× (‖µ‖ + ‖µ̂− µ‖)+
∥∥1′∥∥ ∥∥6−1∥∥ ‖µ̂− µ‖ .

Then we have∣∣ψ̂n − ψn∣∣ ≤ p1/2 ∥∥∥6̂−1 − 6−1∥∥∥ [O(p1/2)+ OP(n−1/2p1/2)]
+ p1/2O(p1/2)OP(n−1/2p1/2)

=

∥∥∥6̂−1 − 6−1∥∥∥O(p)+ OP(n−1/2p3/2)
=

∥∥∥6̂−1 − 6−1∥∥∥O(p),
which together with (33) proves (34). Similarly, we can also show
that√
n (pK)−4 / log n

∣∣̂φn − φn∣∣ P
−→ 0. (36)

Since ϕnφn−ψ2n are bounded away from zero and ϕn/(ϕnφn−ψ
2
n ),

ψn/(ϕnφn −ψ
2
n ), φn/(ϕnφn −ψ

2
n ), γn are bounded, the conclusion

follows from (10) and (34)–(36).
(2) Nowwe prove the conclusion for 6̂sam. From Theorem 3, we

know that√
np−4K−2/ log n

∥∥∥6̂−1sam − 6−1∥∥∥ P
−→ 0,

and from part (2) in the proof of Theorem 5, we see that√
np−6K−2/ log n |̂ϕn − ϕn|

P
−→ 0.

Since bn = O(p) by assumption (B), a routine calculation shows
that∥∥µ̂sam − µn∥∥ = OP(n−1/2p1/2),
where µ̂sam is the sample mean of µn. Therefore, the argument in
part (1) above applies to show that√
np−6K−2/ log n

∣∣∣̂ξ′n6̂sam̂ξn − ξ′n6nξn∣∣∣ P
−→ 0

as n→∞. �

Proof of Theorem 7. Since ξn = O(1)1, the conclusion follows
easily from consistency results of 6̂ and 6̂sam under the Frobenius
norm in Theorem 1. In particular, when the portfolios ξn =
(ξ1, . . . , ξp)

′ have no short positions, we have
∥∥ξn∥∥ = √ξ 21 + · · · + ξ 2p ≤ √ξ1 + · · · + ξp = 1.
It therefore follows easily that√
n (pK)−2 / log n

∣∣∣ξ′n6̂nξn − ξ′n6nξn∣∣∣ P
−→ 0

as n→∞

and√
n (pK)−2 / log n

∣∣∣ξ′n6̂samξn − ξ′n6nξn∣∣∣ P
−→ 0

as n→∞. �
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