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Abstract
Recent computational and behavioral studies suggest that motor adaptation results from

the update of multiple memories with different timescales. Here, we designed a model-

based functional magnetic resonance imaging (fMRI) experiment in which subjects adapted

to two opposing visuomotor rotations. A computational model of motor adaptation with multi-

ple memories was fitted to the behavioral data to generate time-varying regressors of brain

activity. We identified regional specificity to timescales: in particular, the activity in the infe-

rior parietal region and in the anterior-medial cerebellum was associated with memories for

intermediate and long timescales, respectively. A sparse singular value decomposition

analysis of variability in specificities to timescales over the brain identified four components,

two fast, one middle, and one slow, each associated with different brain networks. Finally, a

multivariate decoding analysis showed that activity patterns in the anterior-medial cerebel-

lum progressively represented the two rotations. Our results support the existence of brain

regions associated with multiple timescales in adaptation and a role of the cerebellum in

storing multiple internal models.

Author Summary

Motor adaptation, a form of motor learning in which motor commands are modified to
compensate for disturbances in the external environment, usually proceeds at a rapid pace
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initially and is then followed by more gradual adjustments. This suggests that at least two
learning processes are involved, but little is known about how many distinct memories the
brain actually updates during motor adaptation. In addition, it is unclear whether these
putative multiple motor memories reside within a single neural system that encompasses
different timescales or in qualitatively distinct neural systems. We addressed these issues
using a model-based functional imaging approach in which we first used behavioral data
to derive a large number of possible memory “states,” each with different dynamics, and
then correlated these memory states with neural activities. We identified four components:
two fast, one intermediate, and one slow, each associated with different brain networks. In
particular, areas in the prefrontal and parietal lobes and the posterior part of the cerebel-
lum were associated with formation of memories for short timescales. By contrast, the
inferior parietal region and the anterior-medial cerebellum were associated with formation
of memories for intermediate and long timescales, respectively.

Introduction
Behavioral and computational modeling studies, on the one hand, and neuroimaging studies,
on the other hand, have greatly advanced our understanding of motor adaptation. In particular,
recent behavioral and computational modeling studies have shed light on the temporal struc-
ture of motor adaptation by showing that motor behavior is well accounted for by the sum of
multiple motor memory states with different timescales. For instance, models with two time
constants can reproduce a number of adaptation phenomena such as anterograde interference,
spontaneous recovery, and savings [1–4]. A model with a larger number of time constants can
account for adaptation occurring at multiple timescales, e.g., fatigue and aging [5]. In contrast,
neuroimaging studies, using either functional magnetic resonance imaging (fMRI) [6–8] or
positron emission tomography (PET) [9–12], have investigated the spatial distribution of the
neural correlates and plastic changes across different brain regions at specific times during and
after adaptation, with the prefrontal cortex (PFC), the posterior parietal cortex (PPC), and the
cerebellum consistently showing activation. The PFC mostly contributes to the early, but not
the late, stage of adaptation, which is consistent with its role in spatial working memory and in
attention and arousal at the onsets of target presentation [13,14]. The PPC is also important in
the early stage of motor adaptation [6,9,15], here again consistent with its role in working
memory [13,14], planning movements and early adaptation to a new visuomotor transforma-
tion [9,16,17]. The activity of the cerebellum increases in a later stage of visuomotor adaptation
[6,15,18] and correlates with the degree of savings at transfer of learning [19]. Such activation
is consistent with cerebellum learning from errors [20,21], building internal models [22–24],
and storing multiple motor skills [25].

However, these modeling and neuroimaging studies have been conducted independently of
each other. As a result, little is known about the neural correlates of the latent (i.e., nondirectly
observable from the behavioral data) motor memories at different timescales suggested by
computational models. In particular, it is unclear whether the multiple motor memories pro-
posed by the models reside within a single system that contains a distribution of possible time-
scales or in a finite set of qualitatively distinguishable neural systems [1,26]. In addition,
because experimental behavioral data can be well accounted for by models with different num-
ber of time constants, it is unclear how many distinct memories the brain actually updates dur-
ing a specific type of motor adaptation. Finally, it is unclear whether the neural substrates
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identified in the early and late phases of adaptation in previous fMRI studies map onto putative
“fast” and “slow” processes suggested by the computational models.

Here, we combined modeling and imaging approaches via a model-based fMRI study of the
spatial and temporal distribution of multiple motor memories during adaptation. Subjects
adapted to two opposing visuomotor rotations in short alternating blocks. We estimated the
multiple memories via a multiple-timescale adaptation model that generalizes the two-state
models to multiple states with a logarithmic distribution of time scales from seconds to hours,
as in a previous study [5]. A model-based approach based on regression analyses of brain activ-
ity would have insufficient power to dissociate multiple memories that are highly correlated
with each other. We therefore propose a novel two-step approach. In a first step, we conducted
exploratory multiple single regressions with individual memories, which avoids the problem of
multicollinearity. In a second step, we performed a sparse singular value decomposition (SVD)
on the voxels identified in the first step, in order to select a small number of orthogonal compo-
nents. As a result, we identified four characteristic networks, each associated with formation of
different time-scales of memories.

Results
Twenty-one healthy right-handed subjects used their left hand and adapted to two opposing
visuomotor rotations, of 40° and −40°, respectively, presented in blocks of nine trials. At each
trial, subjects were instructed to hit a circular target that appeared on the visual display by
manipulating a joystick with their left hand, with the goal to decrease the distance between the
cursor and the target at the end of the movement (see Fig 1 and details in Materials and Meth-
ods). The cursor was rotated 40°, −40°, or 0° from the actual movement direction depending
on the task (Task 1: 40°; Task 2: −40°; Control task: 0°), which was cued by the target color
(Fig 1). The tasks were presented in blocks of nine trials.

Behavioral Results and Modeling
The overall mean adaptation level of 21 subjects showed that fast adaptation occurred within
task blocks, and slow adaptation occurred across the task blocks for each task (Fig 2A). For-
getting across blocks, which can be observed by comparing the last trial of a task block and the
first trial of the next block of the same task, gradually decreased across blocks. Thus, visual
inspection of the behavioral data suggests the existence of multiple timescales in motor mem-
ory, initially dominated by faster memories and eventually dominated by slower memories.

We modeled adaptation as the sum of multiple memory states with different time constants.
As in a previous model [5], a continuous distribution of timescales was approximated by multi-
ple time constants. We defined 30 time constants, ranging from 2 s to ~92.6 h, in a logarithmic
scale (S1 Table). In addition, the contextual cue (here the target color) selects the states for a
specific task, as in a previous study [2]. Thus, the motor output at each trial n is given by

yðnÞ ¼
X30

k¼1

xkðnÞTcðnÞ; ð1Þ

where xk = [xk,1 xk,2] with time constant τk (k = 1,. . .,30). The contextual cue vector is c = [1 0]T

for Task 1 and c = [0 1]T for Task 2. This model thus assumes no interference between two
tasks, i.e., perfect switching (please refer to S1 Text for the rationale of this choice of a model
with no interference).

The states were updated by the error feedback, e = f − y, where f is, at each trial, one of the
two visuomotor rotations, 40° or −40°. Because the intertrial interval (ITI) was random (see
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details in Materials and Methods), we modeled time decay as an exponential function of time
[27]. The update equation from trial n to n+1 for the state of motor memory with time constant
τk is thus given by

xkðnþ 1Þ ¼ xkðnÞe�TðnÞ=tk þ bk � eðnÞ � cðnÞ; ð2Þ

where T(n) is the ITI following trial n and βk is the learning rate. The learning rates depend
inversely on the time constant τk, as follows:

bk ¼
r
tkq

; ð3Þ

where r and q are strictly positive free parameters. As a result of this relationship, states with
smaller time constants decay faster but are more rapidly updated [5,28].

Using averaged data of 21 subjects in actual adaptation to Tasks 1 and 2 (see details in Mate-
rials and Methods), the best-fitted parameters of the proposed model were r = 0.0333 and
q = 0.201. The model fit is shown in Fig 2A, and the 30 states of Task 1 used in the fit are
shown in Fig 2B. The overall fit to the averaged data was excellent (root mean squared
error = 4.96°, R2 = 0.981). In addition, the fit to individual subjects’ data was satisfactory over-
all, although the fit was only modest for some subjects (mean ± SEM across subjects: R2 =
0.832 ± 0.189). We thus used the regressors calculated from the averaged adaptation data for
the subsequent fMRI analysis.

Fig 1. Single trial timeline. The cursor was rotated by 40° or −40° in adaptation trials or by 0° in control trials. A target signaled the start of the movement,
which had to be completed within 1.5 s (maximummovement time) for the trial to be valid. Feedback was provided by showing a cursor position for 0.5 s after
the maximummovement time. The different tasks were cued by target colors (blue, red, and green; see Materials and Methods).

doi:10.1371/journal.pbio.1002312.g001
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Model-Based Regression of fMRI
Because the multiple memory states are highly correlated with each other, especially for larger
time constants (for instance, the correlation coefficient between the state with τ21 = 2.2 h and
the state with τ30 = 92.6 h was 0.994), we first entered the states as single regressors in indepen-
dent univariate analyses of blood-oxygen-level dependent (BOLD) signal (see Materials and
Methods).

Overall, this univariate model-based regression analysis revealed distinct patterns of regions
for states with increasing time constants (Fig 3A). The faster states (τk, ranging from 2.0 to 4.6
s; k = 1, 2, and 3) correlated mainly with activity in large regions in the frontal and parietal

Fig 2. Mean subject adaptation andmodel fit. (A) Blue, red, and black circles indicate directions of joystick movements in Task 1 (40° rotation), Task 2
(−40°), and Control (0°), respectively, averaged across subjects (N = 21). Blue or red shaded regions indicate trials in Task 1 or 2, respectively. Regions with
no shading indicate control trials. The thick black line indicates motor output, y of the multistate model (Eq 1). Error bars denote the standard error of the
mean. (B) Trajectories of individual states of memory for Task 1, xk,1 (Eqs 1 and 2) of the fitted model. Colors indicate state numbers (k = 1,. . .,30) and
corresponding time constants (τk) as indicated by the color bar (see also S1 Table). Data of the model fit are available in S1 Data.

doi:10.1371/journal.pbio.1002312.g002
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cortices and with activity in regions in the posterior-lateral cerebellum (see below). By contrast,
the states with intermediate time constants (τk, ranging from 2.1 to 87.9 min; k = 11,. . .,20) cor-
related with activity in a restricted area in the right anterior region of the inferior parietal lobe
(aIPL, indicated by a blue circle in Fig 3A), which is the most anterior of the intraparietal sul-
cus. Note that the aIPL activity was prominently found in the right hemisphere, contralateral

Fig 3. Correlated regions for individual states of motor memory with different time constants. (A) Red-yellow regions indicate regions where BOLD
signal time courses were significantly correlated with individual states of motor memory (Fig 2B) (p < 0.001 uncorrected for multiple comparisons, see
Materials and Methods). Color-coded T-values of regression coefficients are rendered on the right posterior view of the brain surfaces. The two blue circles
indicate the anterior regions of the inferior parietal lobe and the cerebellum, which are consistently responsible for intermediate (k = 11,. . .,20) and slow states
(k = 21,. . .,30). s: second, m: minute, h: hour (see also S1 and S2 Videos). (B) Regional difference in the cerebellum between the fastest (k = 1) and slowest
(k = 30) states. Regions related to each state are indicated in the transverse sections from the superior (the left panel) to the inferior (the right panel) sections
(see also S1 Fig). Data of the statistical maps are available in S2 Data.

doi:10.1371/journal.pbio.1002312.g003
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to the left hand used to perform the task but that weak activity was found in the left hemisphere
when the threshold was lowered (see Discussion). The slower states (τk, ranging from 2.2 to
92.6 h: k = 21,. . .,30) primarily correlated with activity in the anterior-medial cerebellum (see
below). Supplementary videos show the patterns of correlated regions in both hemispheres for
all time constants and corresponding regressors (S1 and S2 Videos). These patterns for each
time constant were similar in both the 40° and the −40° condition.

Table 1 summarizes prominent clusters for the small (k = 1), middle (k = 16), and large
(k = 30) time constants for Task 1. Significant clusters were found to be related to the fastest
state (k = 1) in the parietal, frontal, and cerebellar regions when thresholded at p< 0.05 cor-
rected for multiple comparisons (family-wise error rate [FWER]) throughout the brain at clus-
ter level. Activity related to the middle state (k = 16) was significant in the aIPL (p< 0.05)
when we applied small volume correction for the superior and inferior lobules, in line with pre-
vious studies reporting parietal contribution to visuomotor adaptation [9,15]. Activity related
to the slowest state (k = 30) was significant in the left and right cerebellum at p< 0.05 corrected
for the entire brain at cluster level. Fig 3B shows regional difference in the cerebellum between
the fast (k = 1) and the slow (k = 30) states. Regions related to the fast state (blue) distribute in

Table 1. Clusters identified bymodel-based regression analysis.

Peak (MNI) Cluster Size T-Value at Peak Corrected p-Value

x y z

Fast state (k = 1)

Parietal clusters

L precuneus -4 -48 76

R angular gyrus 42 -68 46 2616a 9.24 < 0.001

R precuneus 4 -56 74

L angular gyrus -40 -66 50 650 7.69 < 0.001

Prefrontal cluster

R superior frontal gyrus 6 26 58 1474b 7.46 < 0.001

R middle frontal gyrus 50 24 40

Cerebellar clusters

L cerebellum crus 1 -12 -82 -28 413 6.69 < 0.001

L cerebellum 7b -26 -74 -48 102 6.04 0.007

R cerebellum crus 1 18 -90 -22 84 5.96 0.014

Temporal clusters

L inferior temporal gyrus -50 -56 -8 79 6.02 0.017

R inferior temporal gyrus 54 -66 -12 225 6.74 < 0.001

R middle temporal gyrus 62 -42 -2 88 5.49 0.012

Precentral cluster

L precentral gyrus -44 4 42 92 5.66 0.010

Middle state (k = 16)

R inferior parietal lobule 46 -38 56 25 5.30 0.013c

Slow state (k = 30)

L cerebellum 6 -24 -44 -36 122 6.19 0.003

R cerebellum 8 26 -42 -52 75 5.89 0.017

aThis cluster spans L precuneus, R angular gyrus and R precuneus.
bThis cluster spans R superior frontal gyrus and R middle frontal gyrus.
ccorrected for parietal (the superior and inferior parietal) lobules, otherwise corrected for the entire brain

doi:10.1371/journal.pbio.1002312.t001
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the posterior-lateral parts of the cerebellar cortex. These parts are mainly in the left and right
crus 1 (see Table 1), which is connected with the prefrontal-parietal networks [29]. Note that
activity was found in crus 1 not only for the fastest (k = 1) but also for relatively fast
(k = 2,. . .,7) states (S1 Fig). By contrast, regions related to the slow state (red) distribute in the
anterior-medial parts (mainly lobule 6 and partly lobule 8), which are connected with cerebral
sensorimotor networks [30].

Results from the univariate regression analysis with the 30-state model provided highly
redundant but rich information on possible brain regions related to formation of multiple
motor memories. For comparison, we checked if the standard two-state model [1,28] could
explain our behavioral data and brain activity (see Materials and Methods). We found that the
two-state model was a subset of the 30-state model. That is, the time constants of the fast pro-
cess and the slow process in the two-state model were respectively 47.9 s and 1.5 h. These are
very close to two time constants of the 30-state model, k = 9 (55.2 s) and k = 21 (2.22 h), with
correlation coefficients of the states between the two models being respectively 0.993 and
0.991. Brain activity identified by the two-state model was essentially the same as that found by
the states of k = 9 and k = 21 in the 30-state model (S2 Fig).

A possible concern with these univariate regression analyses is that the high-pass filtering
with 128 s cut-off frequency, which is used in preprocessing to remove low-frequency noise
due to scanner drift, could filter out the lower-frequency components in the cerebellum. An
analysis of the frequency components of high-pass filtered BOLD signals using Fast Fourier
Transform (FFT) shows that the frequency components in the cerebellum remained large
enough to be correlated with the regressors with the slower time constants (see S3 Fig). A sec-
ond possible concern with this analysis is that the identified activity is not related to memory
states, but to errors. This is an especially valid concern for the faster states, because the memory
states of the fast components correlate with the errors used for updating adaptation, with high
values at the initial stages and low values at the late stages of adaptation. In our regression anal-
ysis of memory states, we included parametric regressors associated with error as those of no
interest, i.e., as nuisance regressors for the decreasing effects of error-related activity on the
estimation of memory-related activity. We verified that these error-associated nuisance regres-
sors appropriately explained away the error in the regression analyses for the faster states (see
S2 Text and S4 Fig).

Dimensionality Reduction
The T-map shown in Fig 3 is redundant because of highly correlated regressors. We thus
applied the sparse SVD to the T-value profiles of voxels as function of time constants to extract
principal components (see Materials and Methods for details). All the voxels that survived the
voxel-level threshold p< 0.001 for at least one time constant in the initial exploratory regres-
sion analysis were included in this sparse SVD analysis. The SVD analysis decomposed the
data matrix into the following three matrices: eigenvariates, eigenvalues, and eigenimages. For
both Tasks 1 and 2, a sparse SVD model with four components was selected via the model
selection method of Bayesian Information Criterion (BIC) [31]. The contributions of these
four components to the variance in the matrix of T-values were (54.26%, 38.94%, 6.32%,
0.47%) and (51.38%, 39.72%, 8.35%, 0.55%) for Tasks 1 and 2, respectively. The first and sec-
ond eigenvariates correspond to the fast states (the second eigenvariate has notably large values
for small time constants that rapidly approach zero around 2 min), while the third and fourth
eigenvariates represent the slow and middle states, respectively (Fig 4A and 4B). Because a sim-
ilar pattern was observed in corresponding eigenimages for Tasks 1 and 2 (see S5 Fig and S1
and S2 Videos), their overlap is presented in Fig 4C after each image was thresholded so that
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Fig 4. Eigenvariates and eigenimages of brain activity related to different timescales of sensorimotor memory. (A) and (B) Eigenvariates as a
function of regressor number corresponding to different time constants for Tasks 1 and 2, respectively. (C) Eigenimages rendered on the brain surface and
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the top 10% of voxels with the highest values are included in the image. The first component is
located mainly around the junction between the supplementary motor area and superior fron-
tal gyrus (SMA/SFG), and in medial occipitoparietal regions (MOP). The second is located
mainly in the posterior region of the intraparietal sulcus (pIPS) and partly in the posterior cere-
bellum (pCBL: crura 1 and 2). The third is mainly in the anterior-medial part of the cerebellum
(a-mCBL: lobules 6 and 8), and the right temporoparietal junction (TPJ). The fourth is in the
anterior part of the intraparietal sulcus (aIPS), which includes the aIPL region for the middle
component (e.g., k = 16), the middle temporal and inferior temporal gyri (M/ITG), and the
inferior frontal gyrus (IFG). More detailed quantification of eigenimages for Tasks 1 and 2 are
provided in S2–S9 Tables.

We then verified whether a reduced model with four states derived from the SVD analysis,
instead of the full model with 30 states, could account for the behavioral adaption. From the
eigenvariates of the T-map (Fig 4A and 4B), we constructed a reduced four-state model consist-
ing of "eigenstates," each of which was estimated as a linear combination of the 30 regressors
weighted by the corresponding eigenvalues. The variance explained by the four-state model
was as high as the original 30-state model (mean squared error = 4.96°, R2 = 0.981). Thus, the
model reduced from 30 to four states based on the neural activities well explains the behavioral
data.

Decoding Analysis
The above model-based regression analysis indicated contributions of the parietal and the ante-
rior cerebellar regions to the middle and slow states, respectively. To exclude the possibility
that these regression results are due to spurious correlations, we then conducted a decoding
analysis to test whether the regional brain activity could be used to classify the two rotations
(40° and −40°). If classification accuracy varies across the three sessions, this would indicate
that activity in these regions changes with dynamics similar to the dynamics of medium or
slower states. We thus applied a multivoxel pattern analysis (MVPA) to parietal regions in
which BOLD signals significantly correlated with at least one of the intermediate components
(k = 11,. . .,20), and in cerebellar regions in which signals were significantly correlated with at
least one of the slow components (k = 21,. . .,30) (Fig 5A, see Materials and Methods). The
MVPA revealed significantly above chance accuracy (50%) in the right aIPL as well as in the
cerebellum for all sessions, with averaged accuracy across subjects ranging from 60% to 70%
(Fig 5B). This above-chance classification is not surprising because the direction of hand move-
ments changed depending on the rotation types. However, two-way analysis of variance
(ANOVA) with regions of interest (ROIs) and sessions as a within-subject factor revealed a sig-
nificant interaction between the two factors (F(2, 40) = 3.504, p< 0.05). A simple main effect
analysis revealed significant increase of accuracy across sessions in the cerebellum (F(2, 80) =
10.16, p< 0.001), but no significant difference in the right aIPL (F(2, 80) = 0.736, p = 0.482).
These results thus indicate that specificity of activity patterns to the task (40 or −40° rotations)
increased with sessions in the cerebellum but did not change in the parietal regions. We then
verified that the increase in classification accuracy across sessions observed in the cerebellum
was unlikely due to behavioral confounds during adaptation (see S3 Text).

transverse slices at different levels. Eigenimages are thresholded so that the top 10% of the voxels are included for each component. Overlapped images
between Tasks 1 and 2 are rendered (see S6 Fig and S2–S9 Tables for each task). SMA/SFG, supplementary motor area/superior frontal gyrus; MOP,
medial occipitoparietal regions; aIPS, anterior part of intraparietal sulcus; pIPS, posterior part of intraparietal sulcus; TPJ, temporoparietal junction; IFG,
inferior frontal gyrus; M/ITG, middle/inferior temporal gyri; a-mCBL, anterior-medial cerebellum; pCBL, posterior cerebellum. Data of T- values, to which the
SVD analysis was applied, are available in S3 Data. Data of eigenvariates in Fig 4A and 4B are available in S4 Data. Data of eigenimages in Fig 4C are
available in S5 Data.

doi:10.1371/journal.pbio.1002312.g004
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Discussion
We investigated the spatiotemporal neural correlates of motor memory involved in visuomotor
adaptation via estimation of the latent memory states derived from a model with multiple states
with different time constants. A univariate regression analysis, which correlated the model
states with brain activity during the whole adaptation process, first located the neural substrates
related to formation of the multiple motor memories. Then, a sparse SVD analysis showed four
characteristic networks, associated with a specific profile of correlation with different time con-
stants. Finally, a classification analysis showed that specific activity patterns to the rotation
type were acquired in the cerebellum as adaptation proceeded.

Fig 5. Regions of interest (ROIs) and classification accuracy of multivoxel pattern analysis. (A)
Functional ROIs to which multivoxel pattern analysis was applied (gray-black regions). Broken lines indicate
anatomical ROIs (red: the superior and the inferior parietal lobes; cyan: the cerebellum). Left and right panels
indicate the parietal and cerebellar ROIs, respectively. Top and bottom panels show the regions projected to
the sagittal and the transverse planes, respectively. (B) Classification accuracy of Tasks 1 and 2 as a function
of sessions using activity patterns in the above functional ROIs. A plus (+) marker indicates accuracy
averaged within each subject according to cross-validation tests (see Materials and Methods). Thick lines
indicate accuracy averaged across subjects. Data of the individual classification accuracy are available in S6
Data.

doi:10.1371/journal.pbio.1002312.g005
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We organize the following discussion of our results from the faster to the slower time con-
stants. For the first few fastest constants (2 s to 4.6 s), various brain regions were activated,
including frontal and parietal lobes, as well as the visual cortex, the temporal cortex, and
regions in the posterior part of the cerebellum, specifically in crus 1. It is known that regions in
the crus 1 are connected with prefrontal and parietal cerebral regions according to studies on
cerebro-cerebellar connections in monkeys [29] and humans [30]. For slower but still relatively
fast time constants up to k = 6 (15.9 s), the widespread activated regions became more localized
into the PPC. A possible reason for activation of parietal activity is mental rotation, which has
been known to contribute to early adaptation [7,32,33] and has been consistently localized in
the superior parietal regions (e.g., [34,35]). In line with these studies, the subjects in our study
who showed larger reaction times tended to perform the task better with lower directional
errors (R2 = 0.229, p = 0.028).

For intermediate time constants around 16.7 min, we found a characteristic region of activa-
tion in the right aIPL (blue circle in Fig 3). This is consistent with a prism-adaptation study [6]
finding activity contralateral to the reaching hand in the lateral bank of the intraparietal sulcus,
close to the aIPL activity in our study (note that subjects used the left hand in the current
experiment). It has been suggested that the left parietal regions are critical for visuomotor rota-
tion, because patients with left parietal damage show a deficit in adaptation [36,37]. We also
found activity in the left aIPL correlated with intermediate time constants if the threshold is
lowered (p< 0.05 uncorrected), but the activity in the right aIPL was more significant than
that in the left aIPL. Muhta and colleagues showed the importance of the left parietal region for
construction of visuomotor mapping based on online correction of error [36]. In contrast, we
only provided terminal feedback after the end of joystick movement, and the role of online cor-
rection was relatively small. Thus, although further studies are needed to understand the con-
tradiction in parietal laterality between our study and Mutha et al.’s, the above difference in
error feedback may explain this difference.

For slower time constants, the number of correlated voxels in the aIPL decreased, and the
number in the anterior-medial cerebellum increased. With time constants longer than 1 h, the
main activities were identified in the anterior-medial cerebellum; this result is in line with pre-
vious studies [6,15,18]. Regions related to the slow states distribute in the anterior-medial parts
and mainly in lobule 6. These cerebellar regions are connected with cerebral sensorimotor net-
works, including the primary motor and sensory cortices, the premotor cortex, and the supple-
mentary motor area [30]. This suggests that the cerebellar slow states directly contribute to
sensorimotor control without help from cognitive processes (prefrontal-parietal functions)
probably corresponding to an “autonomous” stage [38] by constructing internal models
[18,25,39]. A recent study reported that transcranial direct current stimulation (tDCS) over the
cerebellum induced faster adaptation during training but did not affect retention after training
[40]. Because tDCS is likely to affect neural activity in the posterior part of the cerebellum to a
greater extent than in the anterior-medial part, our findings of the fast components of motor
memory in the posterior part (Fig 3 and S1 Fig) are consistent with this previous study. The
existence of slow components in lobule 6 is consistent with a study reporting that patients with
focal degeneration in this lobule have difficulty in adapting to a visuomotor rotation [41]. In
addition, activity related to kinematic errors that drive visuomotor rotation has been found in
cerebellar regions, including lobule 6 [20].

The SVD analysis of variability in specificities to timescales over the brain identified four
components, two fast, one middle, and one slow, each associated with different brain networks.
Three groups of components (fast, middle, and slow) are consistent with a recently proposed
three-component model of visuomotor adaptation [42]. The first and second SVD components
are subset regions of the fastest component delineated by the regression analysis and indicate
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the existence of two types of fast components: one related to SMA/SFG and MOP, and the
other related to posterior IPS and cerebellum. Our previous study [43] indicated that medial
parietal regions (including MOP) are related to switching of internal models based on contex-
tual cues and that posterior-lateral regions of the IPS are related to switching based on sensori-
motor feedback. Analogy of the current results to our previous study suggests that the first
SVD component corresponds to association between visual cue (target color) and responses
for tasks, while the second one corresponds to fast adaptation (or rearrangement of haptic
directions) based on sensorimotor feedback. The third component confirmed the slow compo-
nent in the anterior-medial cerebellum. The fourth component in the aIPS completely includes
aIPL found for the middle time constant. This component was also found in the IFG and M/
ITG. Neurons in the IFG are activated when monkeys [44]and humans [45,46] observe goal-
directed hand actions and when humans imagine hand actions [47]. The IFG has been sug-
gested to contain sensorimotor memory representation related to hand movement [48]. The
M/ITG is known to be involved in visual motion analysis [49], but specific interpretation of
this region in the visuomotor adaptation is unknown, at least to our knowledge.

Our decoding analysis indicated that the activity pattern in the cerebellum became more
specific to rotation type as adaptation proceeded. A previous study by one of us [25] showed
that cerebellar activities correlated with learning to control two different cursors (rotation and
velocity) were spatially segregated, supporting modular organization of internal models, thus
suggesting that overlapped regions represent common properties of learning two tasks. In con-
trast, the results of the present study show no significant regional difference of activities in
either the parietal or the cerebellar regions between visuomotor rotations of 40° and −40°(S6
Fig). We surmise that the overlap arises because the two visuomotor transformations are iden-
tical except for the rotation angle. Within this common cerebellar region, as well as in the PPC,
the MVPA discriminated the representation of the opposing rotations with higher decoding
accuracy than chance level. As mentioned earlier, this result is not surprising because the direc-
tion of hand movements changed depending on the rotational types and could contribute to
successful decoding. Importantly, however, we observed significant increase of the decoding
accuracy across sessions in the cerebellar regions related to the slow states (lobules 6 and 8),
but not in the parietal regions related to middle states. The increase in classification accuracy
in the cerebellum, especially from the second to the third session, does not appear to be due to
changes in performance, because we could not identify significant difference in performance
between the second and third sessions.

While the primary motor cortex (M1) has been involved in the late stage of adaptation in
previous studies [8,40,50,51], we found no significantly correlated activities in M1. In addition,
in a recent study [51], we found that MVPA could classify opposite rotational types (90° or
−90°) from activity patterns in sensorimotor cortex including M1, suggesting separate repre-
sentation for dual visuomotor adaptation. However, the classification was based on fMRI activ-
ity measured after intensive training on a continuous tracking task for more than 3 d and a
total of 160 min. Therefore, M1 may be correlated with even slower timescales beyond the
range of our study, inducing structural changes [8], although further studies would be neces-
sary to confirm this correlation.

Unlike conventional fMRI regression analysis, model-based fMRI regression analysis allows
the study of the underlying latent variables generating the behavior in motor adaptation. In
previous neuroimaging studies of motor adaptation, the observable behavioral variables of
interest were used to define contrasts or regressors for analysis of brain activity. However, the
multiple motor memories and related activity that drive the behavior are internal to the subject
undergoing adaptation and thus cannot be measured directly (although they can, in theory, be
manipulated by experimental conditions such as task schedules, e.g., [52]). Here, as in a
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number of reinforcement learning studies (e.g., [53] for review), we circumvented this difficulty
by first estimating internal memory states via computational modeling and then by using these
internal variables in the regression analysis to detect neural representations related to forma-
tion of motor memories at multiple timescales. Note that we carefully designed our regression
models by including possible confounding variables, notably type of task, hand movement,
error, and reaction time in each trial. However, when confounding variables are correlated
with memory states, such as errors with fast memory states, regression cannot completely dis-
sociate activity related to these confounding variables from activity directly related to memory
itself. In addition, our regression models did not include additional behavioral and physical
quantities that may correlate with memory states in the model and that may or may not be
related to formation of multiple memories, such as attention, eye movements, and repetition of
the task. Thus, our results revealed the neural substrates related to formation of the multiple
memories at multiple time scales, but not necessarily the neural substrates of multiple memo-
ries at multiple time scales per se. Experiments in which nuisance parameters (such as error)
are varied while adaptation is constant would allow the effects of these confounds to be
dissociated.

Recent studies have suggested that motor adaptation is a multifaceted process. In particular,
behavior during adaptation is not only updated by error-based learning mechanisms, as we
have assumed with our model, but also presumably updated by reward-based and use-depen-
dent mechanisms [54–56]. Each of these processes likely operates at multiple time constants as
well. In addition, explicit and implicit aspects of motor adaptation have been recently shown to
have fast and slow dynamics, respectively [57]. Thus, although the interpretation of what
“memory states” represent varies between adaptation studies, our experiment of the neural cor-
relates related to formation of motor memories at multiple time scales is, we believe, highly rel-
evant. Note, however, that our study does not provide a clear picture of the connectivity and
spatial arrangements of the multiple neural representations involved. In particular, in line with
a previous study supporting a parallel architecture of motor memories over a serial architecture
[2], we have assumed a parallel architecture in our model in which all memories were updated
by a common error signal (see Eq 2). Our results, however, cannot provide evidence for
such parallel architecture. To further clarify the actual neural mechanism, model-based fMRI
regression can be complemented by functional connectivity analysis [58] or causal and inter-
fering manipulation of neural function via transcranial magnetic stimulation (TMS) or tDCS
[59–62].

Materials and Methods

Subjects
Twenty-one right-handed and neurologically healthy volunteers participated in the study (20–
50 y old, mean age of 27.3 y, six females). Handedness was assessed by a modified version of
the Edinburgh Handedness Inventory [63]. Written informed consent was obtained from all
subjects in accordance with the Declaration of Helsinki. The experimental protocol received
approval from the local ethics committee at the Advanced Telecommunications Research Insti-
tute International.

Task Procedures
We designed a dual-task adaptation experiment with two opposing visuomotor rotations. At
the beginning of each trial, a white cross appeared at the center of screen; this cross served both
as the fixation point and as the initial cursor position. A round colored target of 0.7 cm radius
appeared on the top of the screen 8 cm from the center. Subjects were instructed to manipulate
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an fMRI compatible joystick to move the cursor to the target within 1.5 s (maximum move-
ment time); otherwise, the trial was considered a missed trial, and the data was not analyzed.
After the maximum movement time, the cursor appeared in the direction of the joystick move-
ment at 8 cm from the center for 500 ms to provide angular error feedback. To encourage sub-
jects to respond faster, the color of the feedback cursor turned yellow if the subject did not
move within 800 ms. ITIs were randomly generated from 4 to 14 s from an exponential distri-
bution, in 2 s increments. For each trial, we calculated the angular error between the target
direction and the final cursor direction from the center of the screen. Note that the size of the
target was equivalent to 10° in visual angle, allowing up to ±5° of error to “hit” the target.

There were three different tasks: a control task and the two different visuomotor tasks,
Tasks 1, 2, in which the cursor movement was rotated 40° and −40°, respectively. In the control
task, the cursor movement was not rotated. The experiment was divided in three sessions, each
session lasting about 11 min, with a 1-min break between sessions. Each session consisted of 99
trials, with 27 trials for the control task and 36 trials for each of Tasks 1 and 2. Three different
target colors, red, blue, and green, were used to distinguish the different tasks. Each task was
presented in blocks of nine trials, with blocks presented according to schedules such as
C1212C2121C2121C1212C, where C, 1, and 2 indicate a block of nine trials for the Control,
Task 1, and Task 2. There were two possible schedules starting with either Task 1 (11 subjects)
or 2 (10 subjects), because we counterbalanced the sequence of Tasks 1 and 2 across subjects
and sessions to eliminate any confounding effects due to schedule. Similarly, target colors were
counterbalanced across subjects. Before the experiment, the participants performed a familiari-
zation session of 150 trials of the control task.

Stimuli were presented on a liquid crystal display and projected onto a custom-made view-
ing screen. Subjects laid in a supine position in the scanner, viewed the screen via a mirror, and
were unable to see their hand throughout this task. They were instructed to use their left
thumb and index/middle pair fingers to control the joystick with the left upper arm immobi-
lized using foam pads to minimize body motions.

Model Fitting
We used the MATLAB fmincon function to estimate the value of the two parameters r and q
that minimize the mean squared error between the actual adaptations of subjects for Tasks 1
and 2 and model predictions, y(n) (see Eqs 1 and 3). The adaptation data used for the model fit
were calculated by averaging the observed adaptations of 21 subjects, excluding missed trials
and trials with large (>40°) overshoot. Less than 1% of the total number of trials was excluded.
Because of the task sequence counterbalancing, the average was computed after inverting the
sign of adaptation for ten subjects starting with Task 2.

Using the estimated parameters, we simulated the time series of the 30 states of memory for
each task, xk every 1.8 s, corresponding to scanner repetition time (TR). Because the model
equation (Eq 2) updates the states at each trial, we interpolated and resampled the states of
memory at the time of image acquisitions, i.e., multiples of TR by calculating the decay depend-
ing on time constants following trial n. The 30 simulated memory traces for each task were
used as regressors for the univariate fMRI analysis. For additional modeling with the standard
two-state model [1,28], we fitted four free parameters, time constants and learning rates for the
fast and the slow processes, using the same method described above. It is notable that the
30 time constants in the proposed model were predetermined with a logarithmic scale and the
30 learning rates were calculated by two free parameters (Eq 3). The estimated states of the
fast and the slow processes were compared with those of the proposed model (see Results and
S2 Fig).
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MRI Acquisition
A 3-T Siemens Trio scanner (Erlangen, Germany) with a 12-channel head coil was used to per-
form T2�-weighted echo planar imaging (EPI). A total of 368 scans were acquired for each ses-
sion with a gradient echo EPI sequence, and each subject underwent three sessions. The first
five scans were discarded to allow for T1 equilibration. Scanning parameters were repetition
time (TR), 1,800 ms; echo time (TE), 30 ms; flip angle (FA), 70°; field of view (FOV), 192 × 192
mm; matrix, 64 × 64; 30 axial slices; and slice thickness, 5 mm without gap. T1-weighted ana-
tomical imaging with an MP-RAGE sequence was performed with the following parameters:
TR, 2,250 ms; TE, 3.06 ms; FA, 9°; FOV, 256 × 256 mm; matrix, 256 × 256; 192 axial slices; and
slice thickness, 1 mm without gap.

Processing of fMRI Data
Image preprocessing was performed using SPM8 software (Wellcome Trust Centre for Neuro-
imaging, http://www.fil.ion.ucl.ac.uk/spm). All functional images were first realigned to adjust
for motion-related artifacts. The realigned images were then spatially normalized with the
Montreal Neurological Institute (MNI) template and resampled into 2-mm-cube voxels with
sinc interpolation. All images were spatially smoothed using a Gaussian kernel of 8 × 8 × 8 mm
full width at half maximum. The smoothing was not performed for multivoxel pattern analysis
(see below), as this could blur fine-grained information contained in multivoxel activity [64].

Model-Based Regression Analysis of fMRI Data
We first conducted a model-based regression analysis of fMRI data. For each of Task 1 and
Task 2, the 30 memory traces with different time constants, which were estimated with the pre-
vious behavioral modeling, were used as explanatory variables (i.e., regressors) using the gen-
eral linear model (GLM). To accommodate the problem of multicollinearity due to similarity
of regressors between adjacent time constants, we separately estimated 30 regression models
corresponding to individual time constants:

S ¼ a1xk;1 þ a2xk;2 þ ðEffects of no interestsÞ þ ε; ð4Þ

Here, S is a time series of the BOLD signal at each voxel. The regressors (xk,1 and xk,2) in
each model are time series of motor memories corresponding to one of the 30 time constants
(k = 1,. . .,30; see Eq 1 in behavioral results and modeling) for Tasks 1 (40°) and 2 (−40°). Each
of them was resampled at scan timings of brain activity and orthogonalized using an SPM func-
tion (spm_orth.m).

We included the following regressors as “effects of no interests” in the analysis. First, pulse
functions that were assigned 1 at every onset of joystick movement and 0 otherwise were
included to model hand movements. We assumed that convolution of these functions with a
canonical hemodynamic function can model the hand movements with a short movement
time in our task (mean ± SEM: 296 ± 2.50 ms), with a separate model for each trial type (Tasks
1 and 2 and the Control). In addition, two parametric regressors were included to model the
effect of directional errors and reaction times (“parametric modulation” in SPM). In each trial,
these parametric regressors also used the pulse functions at onset of joystick movement, but
their amplitudes were modulated by directional error and reaction time. We included three
boxcar functions, each of which modeled a session effect. Therefore, 12 regressors in total (3
[hand movement, error and reaction time] x 3 [tasks] + 3 [sessions]) were included as effects of
no interests.
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Low-frequency noise was removed using a high-pass filter with a cut-off period of 128 s,
and serial correlations among scans were estimated with an autoregressive model implemented
in SPM8. Contrast images of each subject, generated using a fixed-effects model, were taken
into the group analysis using a random-effects model of a one-sample t-test. Because the sec-
ondary purpose of the model-based regression analysis was to recruit possible regions related
to many (30) states of motor memory for the sparse singular value decomposition analysis (see
below), activation was reported with a lenient threshold of p< 0.001 uncorrected for multiple
comparisons at the voxel level. In further analyses, we applied a stricter inclusion criterion, a
cluster-level correction based on the FWER, to representative activations such as those related
to the fast, middle, or slow states.

Sparse SVD Analysis
The univariate analysis with a p-value cutoff resulted in a grand total of 23,413 and 24,676
selected voxels associated with 30 memory states for Tasks 1 and 2, respectively. Thus, the uni-
variate analysis provided two matrices X of T-values for these selected voxels, each for one of
the two tasks. We applied the sparse SVD [65] to each matrix X. The sparse SVD was imple-
mented in a refined way with the orthogonality constraints. Specifically, we adopted the

regularized estimator ðD̂; Û ; V̂ Þ that minimizes the sum of squared Frobenius norm of the dif-
ference between X and UDVT and a sparsity-inducing regularization term on matrices D, UD,
and VD, subject to the orthogonality constraints that both matrices U (eigenvariates) and V
(eigenimages) are orthonormal, where D (eigenvalues) is a diagonal matrix. We employed the
entry-wise L1 norm, which is the sum of all absolute entries of a matrix, multiplied by a regular-
ization parameter to regularize the three matrices D, UD, and VD. Each regularization parame-
ter was chosen in a decreasing grid of 20 values ranging from 200 to 0.1 (equally spaced in the
logarithmic scale). For each set of regularization parameters, we obtained a sparse SVD model

ðD̂; Û ; V̂ Þ in which the number of nonzero singular values in D̂ gives the rank of the matrix

decomposition and singular vectors in Û ; V̂ can be sparse with some entries being zero. This
produced a sequence of SVD models with sparse singular values and vectors. We then
employed the standard BIC model selection criterion [31] to select the sparse SVD model.

Multivoxel Pattern Analysis (MVPA)
We additionally conducted an MVPA to test if the regional brain activity could be used to clas-
sify the two rotational types (40° and −40°). The ROIs include the right parietal lobe and the
cerebellum. Our previous model-based regression analysis suggested that these regions are
related to the middle (the parietal regions) and the slow (the cerebellum) states (blue circles in
Fig 3A). The ROI of the right parietal region was the superior and the inferior parietal lobes
according to anatomical map in Pick Atlas (http://fmri.wfubmc.edu/software/PickAtlas). The
cerebellar ROI was anatomically defined bilaterally. Fig 5A shows the parietal and cerebellar
regions enclosed by red and cyan curves, respectively. Within the parietal ROI, we applied
MVPA to BOLD signals of voxels that were significantly correlated with at least one of the
intermediate states (τk, ranging from 2.1 to 87.9 min: k = 11,. . .,20) in the model-based regres-
sion analysis. In the cerebellum, MVPA was applied to signals that were significantly correlated
with at least one of the slow states (τk, ranging from 2.2 to 92.6 h: k = 21,. . .,30). The voxels
selected in Tasks 1 and 2 were jointly used by taking a union.

To conduct the classification, we first modeled all 297 trials as separate pulse regressors at
the onset of movement, which were convolved with a canonical hemodynamic response func-
tion. This analysis yielded 297 independently estimated parameters (beta values) for each indi-
vidual voxel. The 198 trials with rotational conditions (40° or −40°) were subsequently used as
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inputs for the MVPA. The classification was performed with a linear support vector machine
(SVM) implemented in LIBSVM (http://www.csie.ntu.edu.tw/~cjlin/libsvm/), with default
parameters (a fixed regularization parameter C = 1). The separate training and testing datasets
were generated with a pseudo-random half split of all the samples. Cross validation was then
conducted for 1,000 times for each subject, and the average classification accuracy was esti-
mated. The two-way ANOVA with ROIs and sessions as an intrasubject factor was used to test
the differences in classification accuracies.

Supporting Information
S1 Data. The dataset contains adaptation data (mean with error bars) with model fits and
individual memory states for Fig 2. To open this file, Matlab (Mathworks) is needed.
(ZIP)

S2 Data. The dataset contains the SPM8 images of the group statistical T-value maps (Ana-
lyze format) for Fig 3.
(ZIP)

S3 Data. The dataset contains the T-values from which we extracted eigenvariates and
eigenimages by using the SVD analysis for Fig 4. To open this file, Matlab (Mathworks, Inc.)
is needed.
(ZIP)

S4 Data. The dataset contains the eigenvariates for Fig 4A and 4B.
(XLSX)

S5 Data. The dataset contains the eigenimages (NIfTI format) for Tasks 1 and 2 for Fig 4C.
(ZIP)

S6 Data. The dataset contains the individual classification accuracy for Fig 5B.
(XLSX)

S1 Fig. Regions in the cerebellum that correlates with memory states with relatively fast
time constants (k = 2,. . .,7).Highest correlations were found in the posterior region of the cer-
ebellum for faster time constants.
(TIF)

S2 Fig. Correlated regions for states of memory derived from two-state or 30-state model.
(A) We fitted the behavioral data with a two-state model and obtained the fast and slow process
with time constants of 47.9 s and 1.5 h, respectively. We conducted a regression analysis of
brain activity using the fast and the slow processes. The regression model included the four
regressors that corresponded to fast and slow components for Tasks 1 and 2 and other regres-
sors modeling effects of no interest such as hand movements, error, and reaction time. Results
were thresholded at a lenient statistical level (p< 0.01 uncorrected) for each task, and regions
that overlapped between the two tasks are indicated by colors (blue for the fast and red for the
slow component). (B) The time constant of the fast (47.9 s; blue curve in the left panel) and the
slow (1.5 h; blue curve in the right panel) states are very close to those from the suggested
30-state model, k = 9 (55.2 s; red curve in the left panel) and k = 21 (2.22 h; red curve in the
right panel)—see S1 Table; the correlation coefficients between corresponding states in the two
models are respectively 0.993 and 0.991. (C) For comparison, we thresholded results for the
two time-constants (k = 9 and k = 21) from the 30-state model at p< 0.01 (uncorrected) for
each task and indicated the regions overlapped between Tasks 1 and 2. Results are similar to
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those of the two-state model.
(TIF)

S3 Fig. Analysis of the frequency components of high-pass filtered BOLD signals using
FFT.Here, we illustrate how the low-frequency components in the cerebellum were attenuated
by the high-pass filter but remained sufficiently large to be correlated with the regressors with
the slower time constants. Left panels show a representative BOLD signal in the right cerebel-
lum (MNI: [22 −46 40]) for one subject (not averaged). Right panels show the mean and the
SEM of frequency components (the line and the shaded region, respectively) across subjects for
the same voxel. The top panels show the BOLD signal and its frequency components before
and after high-pass filtering (using spm_filter.m with cutoff frequency: 0.0078 Hz, period: 128
s). As expected, the frequency components below the cut-off frequency (black dotted line) were
attenuated; however, they were not completely eliminated. The middle panels show the residual
signal from the BOLD signal and its frequency components not explained by a design matrix
for the slow regressor (k = 30). The bottom panels show the signal explained by the design
matrix and its frequency components. As can be seen on the bottom-right panel, the magni-
tude of the signal at low frequencies is still sufficiently large, resulting in significant correlation
of the BOLD signals in the cerebellum with the slow regressor.
(TIF)

S4 Fig. Brain activity associated with performance-error regressors (group analysis). (A)
Activity derived from the regression analysis of the slowest component. (B) Activity derived
from the analysis of the fastest component. Activity was thresholded at p< 0.001 uncorrected
for multiple comparisons. The left figures represent activity projected to the sagittal, coronal,
and transverse planes (glass brain). The right figures show activity projected to the surface of
the brain from the left, posterior, and top viewpoints.
(TIF)

S5 Fig. Eigenimages with multiple transverse sections for Tasks 1 and 2. As described in the
main text, the correlated brain activities were characterized with the top four components, two
relatively fast components (first and second), an intermediate component (third), and one slow
component (fourth). A similar pattern was found for Tasks 1 and 2.
(TIF)

S6 Fig. Effects of different tasks on brain activities. The correlated brain activities showed no
significant difference between Tasks 1 and 2 in either the parietal (k = 16, τk = 16.7 min) or the
cerebellar (k = 30, τk = 92.6 min) regions.
(TIF)

S1 Table. The 30 time constants τk (k = 1,. . .,30) of the model following a logarithmic scale.
(DOCX)

S2 Table. Clusters in eigenimage of the first component (Task 1).
(DOCX)

S3 Table. Clusters in eigenimage of the second component (Task 1).
(DOCX)

S4 Table. Clusters in eigenimage of the third component (Task 1).
(DOCX)

S5 Table. Clusters in eigenimage of the fourth component (Task 1).
(DOCX)
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