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Abstract15

Accurate estimation of malignant cell fractions in tissues plays a critical role in cancer diagno-16

sis, prognosis, and subsequent treatment decisions. However, most currently available methods17

provide only point estimates, neglecting the quantification of uncertainties, which is essential18

for both clinical and research applications. This study introduces DeepDeconUQ, a deep neu-19

ral network model developed to estimate prediction intervals for malignant cell fractions based20

on bulk RNA-seq data. This approach addresses limitations in current malignant cell fraction21

estimation methods by integrating uncertainty quantification into predictions of cancer cell frac-22

tions. DeepDeconUQ leverages single-cell RNA sequencing (scRNA-seq) data in conjunction23

with conformalized quantile regression to produce reliable prediction intervals. The model trains24

a quantile regression neural network to establish upper and lower bounds for cancer cell propor-25

tions, followed by a calibration step that refines these intervals to ensure both statistical validity26

(coverage probability) and discrimination (narrow intervals). Benchmark analyses indicate that27

DeepDeconUQ consistently surpasses existing methods, achieving high coverage accuracy with28

tight prediction intervals across simulated and real cancer datasets. The robustness of DeepDe-29

conUQ is further demonstrated by its resilience to various gene expression perturbations. The30

DeepDeconUQ method is publicly accessible at https://github.com/jiaweih14/DeepDeconUQ.31
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Author Summary35

Accurately determining the proportion of malignant cells in tumor tissues is crucial for cancer36

diagnosis and treatment planning. Current methods often provide single estimates without indi-37

cating the uncertainty, which can lead to overconfidence in clinical decisions. Here, we present38
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DeepDeconUQ, a deep learning tool that not only predicts the fraction of malignant cells in bulk39

RNA sequencing data but also quantifies the uncertainty around these estimates. By leverag-40

ing single-cell RNA sequencing data to simulate realistic tumor samples, DeepDeconUQ trains41

a neural network to generate prediction intervals—ranges within which the true malignant cell42

fraction is likely to lie with high probability. This approach combines quantile regression and43

statistical calibration to ensure reliability without restrictive assumptions about data distribution.44

When tested on both simulated and real-world datasets, DeepDeconUQ consistently outper-45

formed existing methods, delivering precise intervals that reliably capture true values while re-46

maining robust against technical noise in gene expression measurements. Our tool addresses47

a critical gap in cancer genomics by providing clinicians and researchers with confidence inter-48

vals that enhance the interpretability of bulk tissue analyses. This advancement could improve49

personalized treatment strategies and reduce errors in downstream research applications.50

Introduction51

Recent advancements in next-generation sequencing methodologies, particularly bulk RNA se-52

quencing (RNA-seq) and single-cell RNA sequencing (scRNA-seq), have substantially driven53

progress across biological and medical research domains1–4. One prominent application is54

to estimate malignant cell fraction from bulk RNA-seq samples5–9. This process typically in-55

volves using regression-based methods that leverage malignant and normal expression data56

(e.g., scRNA-seq) as a reference profile10. Most available estimation methods merely provide57

point estimates of cell-type proportions from bulk RNA-seq data5,6. The accuracy of these meth-58

ods often depends on the choice and quality of the reference profile8. Furthermore, limited59

efforts have been made to investigate and quantify the impacts of uncertainties in estimated cell-60

type proportions, which can critically impact downstream analyses in malignant-cell-associated61

disease research, leading to potential errors in findings11. Uncertainty quantification of the esti-62

mated malignant cell fraction is thus essential, as is the quantification of prediction accuracy.63

Uncertainty in malignant cell fraction estimation can be quantified through prediction inter-64

vals, which provide a range within which the true cell-type composition is likely to fall with a high65

probability12,13. An ideal procedure for generating prediction intervals should satisfy two prop-66

erties. The first property is validity14. It should provide valid coverage in finite samples without67

making strong distributional assumptions, such as normality. The second property is discrimina-68

tion12. The predicted intervals should be as narrow as possible at each point in the input space69

so that the predictions will be informative. When the data is heteroscedastic, getting valid but70

narrow prediction intervals requires adjusting the lengths of the intervals according to the local71

variability at each query point in the predictor space.72

RNA-Sieve9 and MEAD7 are two statistical methods that have been proposed recently that73

can be used to estimate cell-type proportions and, in the meantime, quantify the uncertainties74

of the estimated cell proportions. RNA-Sieve9 is a likelihood-based deconvolution method. It75

assumes that the estimates of cell-type fractions are normally distributed around the true frac-76

tions. Meanwhile, the errors arising from the gene expression profile and observed bulk gene77

expressions are independent. Therefore, the confidence intervals of the cell proportions can78

be calculated through likelihood estimation. However, these assumptions may not hold con-79

sistently in practice, as gene expression levels within samples (either bulk or single-cell) often80

exhibit inter-gene dependencies due to coregulation mechanisms15. MEAD7, another statistical81

inference approach, incorporates a gene-gene dependency structure to improve the accuracy82

of cell proportion estimates. MEAD asserts that the estimated proportions follow asymptotic83

normal distributions, with solutions constrained to non-negative values. While MEAD considers84

the correlation across different genes, the assumption that individuals in the bulk and reference85
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data are from the same population may not hold universally, especially in contexts like cancer86

research, where gene expression levels vary greatly in different populations. Moreover, the de-87

pendence matrix used in MEAD is highly dependent on the choice of bulk samples and cannot88

be generated when there is only one single bulk sample to decompose.89

In this study, we introduce DeepDeconUQ, a deep learning model that is distribution-agnostic90

and designed to estimate prediction intervals for malignant cell compositions in bulk RNA-seq91

data. DeepDeconUQ trains a neural network on simulated bulk RNA-seq data, avoiding para-92

metric assumptions about bulk gene expression distributions. Through conformalized quan-93

tile regression14, it provides both valid and precise prediction intervals for malignant cell frac-94

tions. Specifically, DeepDeconUQ employs scRNA-seq data to simulate artificial bulk RNA-seq95

datasets with predefined malignant cell proportions. These simulated datasets are then used to96

train a quantile regression neural network, which predicts the lower and upper bounds of malig-97

nant cell proportions in new cancer tissue samples. Following this, a conformal prediction pro-98

cess is applied to a separate calibration dataset of artificial bulk RNA-seq to adjust the intervals99

generated by the neural network. This conformalization step ensures that the estimated malig-100

nant cell proportions achieve stronger coverage guarantees. Benchmarking with both simulated101

and real datasets demonstrates that DeepDeconUQ surpasses existing methods in performance102

and remains robust against perturbations in gene expression levels. By leveraging scRNA-seq103

data, employing deep neural networks, and utilizing conformalized quantile regression, Deep-104

DeconUQ achieves superior performance in cancer cell deconvolution analysis with uncertainty105

quantification.106

Results107

Methods overview108

Fig 1 provides a schematic representation of DeepDeconUQ. The framework begins with single-109

cell RNA sequencing (scRNA-seq) datasets, where the cells from each subject are assumed to110

have labeled cell types (malignant or normal) and known gene expression profiles. The scRNA-111

seq data is a gene expression matrix where each row is a single cell sample, and each column is112

a gene. To simulate bulk RNA-seq data, first, we randomly select certain numbers of malignant113

and normal cells with replacement. Second, the bulk gene expression profile can be generated114

by summing up the gene expression values of the selected cells (Fig 1A). These processes are115

repeated many times to generate a large number of simulated bulk sequencing data. These116

simulated bulk RNA-seq datasets are then divided into two disjoint groups: a training set and a117

calibration set. Specifically, 70% of the data is randomly selected for training a highly accurate118

quantile function, while the remaining 30% is reserved for conformal calibration. After the TF-IDF119

transformation and MinMax normalization, the trained model uses bulk RNA-seq data x and a120

predefined significance level α as input and outputs predictions of the lower and upper bounds121

for malignant cell fractions, {q̂αlo
(x), q̂αhi

(x)} (Fig 1B). Following model training, the calibration122

set is employed to compute conformity scores using equation 10. The adjustment minimizes123

both the risk of overly conservative predictions (over-coverage) and the potential for overly nar-124

row intervals that miss true values (under-coverage) (Fig 1C). Finally, for a real bulk sample,125

DeepDeconUQ firstly uses the neural network to get an estimate of the prediction interval and126

then makes use of the conformity score to adjust the prediction interval Ĉ(Xn+1) (Fig 1D). This127

prediction interval provides a measure of uncertainty, offering a more reliable estimate of the128

malignant cell fractions within a bulk RNA-seq sample.129

Our model was constructed using artificial bulk RNA-seq samples and evaluated through130

the leave-one-out cross-validation. The evaluation is based on validity and discrimination. For131
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Fig 1: Overview of DeepDeconUQ. A: Constructing simulated bulk RNA-seq samples with
different fractions of malignant cells. p is the fraction of malignant cells in a simulated bulk
sample. B: Model structure used to train DeepDeconUQ. It consists of four fully connected layers
with dropout layers. Seventy percent of the simulated data are used for training. The output is
two quantile functions at a given significance level α. C: Conformity scores are calculated on the
remaining 30% of the simulated dataset. D: Estimating the prediction interval of malignant cells
from a real bulk sample. The trained model is used to calculate the lower and upper bounds,
and the conformity scores are used to adjust the quantiles, which finally outputs the prediction
interval {p̂αlo

, p̂αhi
}.

validity, we check the coverage rate, defined as the frequency of true malignant cell fraction132

within the prediction interval of the testing dataset (see Formula 6). For discrimination, we use133

the average length of prediction interval of the testing datasets as an evaluation metric (see134

Formula 2).135

Coverage =
1

n

n∑
i=1

1(p̂i,αlo
≤ yi ≤ p̂i,αhi

), (1)

Lavg =
1

n

n∑
i=1

|p̂i,αhi
− p̂i,αlo

| , (2)

where yi is the true malignant cell fraction of the ith sample in the testing dataset. p̂i,αlo
and p̂i,αhi

136

are the corresponding lower and upper bounds of the ith sample’s prediction interval. n is the137

total number of samples in the testing dataset, and 1(x) is an indicator function of 1 when x is138

true and 0 otherwise.139

For each subject, we generated the simulated bulk datasets as described in the Dataset140

simulation subsection separately. Leave-one-out cross-validation was used to evaluate model141

performance across subjects during simulation. Specifically, we selected one of the k artificial142

bulk RNA-seq datasets as the testing dataset, while the remaining k − 1 datasets served as the143

training set. This process was repeated k times to fully evaluate the performance of our model.144
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For real-world dataset applications, we aggregated all k artificial bulk RNA-seq datasets to train145

a unified model, which was subsequently validated using real data.146

DeepDeconUQ outperforms other methods for estimating the prediction147

interval of malignant cell fraction148

To assess the performance of DeepDeconUQ, we conducted a comparative analysis against two149

alternative methods, RNA-Sieve (v. 0.1.4)9 and MEAD (v. 1.0.1)7, both of which have been pro-150

posed in the literature to quantify uncertainties in estimated cell-type proportions. This evaluation151

was performed on both simulated and real bulk RNA-seq datasets. Since RNA-Sieve and MEAD152

are statistical inference methods and do not include a step for simulating artificial bulk RNA-seq153

datasets for model training, we utilized the scRNA-seq data directly as the reference for these154

methods. The same scRNA-seq data were also employed to generate the synthetic bulk RNA-155

seq datasets for DeepDeconUQ. All benchmarking methods were executed using their default156

configurations, ensuring a consistent basis for comparison. Additionally, the methods were eval-157

uated on identical test datasets, which were kept separate from the training datasets used to158

develop the models. Details of implementations of these compared methods are explained in159

Supplementary Information, Section 6.160

Fig 2 presents boxplots illustrating coverage and average prediction interval lengths for 15161

simulated bulk RNA-seq datasets at three significance levels (15%, 10%, and 5%). Although162

RNA-Sieve maintains relatively narrow prediction intervals, it often fails to meet the coverage cri-163

terion across the datasets, indicating a tendency toward marked undercoverage. This suggests164

that RNA-Sieve’s intervals may be too narrow to reliably contain the true malignant fraction.165

In contrast, MEAD achieves the coverage criterion for some datasets but exhibits considerable166

variability in prediction interval lengths, with some interval lengths extending beyond 0.6. Such167

substantial intervals lead to overcoverage, reducing interpretability by producing intervals that168

are too broad to offer precise estimates. DeepDeconUQ demonstrates superior performance169

across all three methods on the simulation datasets, consistently satisfying the coverage re-170

quirement while maintaining tight prediction intervals. This performance advantage is attributed171

to two primary factors: first, the neural network’s effective quantile learning enables it to meet the172

coverage criterion; second, the well-trained model generates low conformity scores on the cali-173

bration set, ensuring that the quantile of these scores remains sufficiently small to yield narrow174

prediction intervals.175

We further evaluated the performance of these three methods on real AML datasets, includ-176

ing ‘primary,’ ‘recurrent,’ and ‘BeatAML’ samples, one real Neuroblastoma dataset, and one real177

HNSCC dataset. As illustrated in Table 1, RNA-Sieve consistently has the worst performance,178

with its average prediction interval length fixed at 1.0, indicating it predicts 0.0 as the lower bound179

and 1.0 as the upper bound for every real sample. This likely stems from RNA-Sieve’s limitations180

in handling gene expression data sourced from diverse sequencing protocols. Consequently,181

while RNA-Sieve can provide an estimate of malignant cell fraction, the results lack reliability.182

MEAD, conversely, accounts for variations in sequencing depth and tissue sample size, thus183

yielding relatively robust performance on real datasets. DeepDeconUQ demonstrates an even184

higher capability by addressing batch effects and sequencing biases via TF-IDF transformation185

and Min-Max normalization, achieving superior performance relative to MEAD, with more con-186

sistent coverage and narrower prediction intervals across the real datasets. Fig 3 depicts the187

prediction intervals generated by DeepDeconUQ and MEAD on the real primary dataset at α =188

0.05 (95% confidence level). Given that RNA-Sieve consistently generated maximum-width pre-189

diction intervals (0.0-1.0) on real AML datasets, we restricted our visualization analysis to Deep-190

DeconUQ and MEAD. The visualization clearly demonstrates that MEAD failed to encompass191
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Fig 2: DeepDeconUQ outperforms other methods in predicting malignant cell type pre-
diction interval on AML simulated bulk RNA-seq datasets. Boxplots of coverage (A) and
average prediction interval length (B) on 15 AML simulated bulk RNA-seq datasets. Coverage
is defined as the proportion of instances in which the true fraction of malignant cells falls within
the prediction interval for the testing dataset. The average length represents the mean length
of the prediction intervals across the testing datasets. Each bar in the boxplot comprises 15
data points, each corresponding to one of 15 simulated AML datasets. Significance levels are
indicated with different colors.

several real samples with true malignant cell fractions in the range of 0.5-0.8, whereas Deep-192

DeconUQ successfully captured all samples within this range. Although both DeepDeconUQ193

and MEAD exhibited coverage failures for samples with true malignant cell fractions below 0.4,194
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Fig 3: Visualization of prediction intervals on the real primary dataset of DeepDeconUQ
and MEAD at α = 0.05 (95% confidence level). Comparison of uncertainty intervals generated
by DeepDeconUQ (left) and MEAD (right) methods. Each vertical line represents the prediction
interval (lower to upper bound) for an individual sample, with samples sorted by their true malig-
nant fraction values in ascending order along the x-axis. The true values are marked with either
red squares (when contained within the prediction interval) or blue triangles (when falling outside
the prediction interval).

DeepDeconUQ demonstrated superior performance with significantly fewer coverage failures in195

this lower range. Results for other significance levels can be accessed in Fig S8, and Fig S9. It196

should be noted that the malignant cell fractions given by flow cytometry most likely deviate from197

a true fraction of malignant cells, resulting in under coverage compared to the prespecified cover-198

age levels, which is expected. Despite these caveats, the results show that the coverages of the199

prediction intervals from DeepDeconUQ are generally higher than those from MEAD, while the200

lengths of the prediction intervals from DeepDeconUQ are shorter than those based on MEAD.201

Additionally, We further compared coverages of the prediction intervals based on DeepDe-202

conUQ and MEAD using McNemar’s statistical test16. We also compared the lengths of the203

prediction intervals based on DeepDeconUQ and MEAD using the Wilcoxon signed-rank test.204

For the coverage analysis, each sample in the dataset was assigned a label of 1 if its true malig-205

nant cell fraction fell within the predicted interval; otherwise, it was labeled as 0. This approach206

enabled the generation of binary outcome pairs for each sample between DeepDeconUQ and207

MEAD, thereby providing paired nominal data suitable for McNemar’s statistical test. Further-208

more, we aggregated all samples across the three AML datasets into a consolidated dataset to209

perform a statistical assessment of this unified sample set. The resulting p-values from McNe-210

mar’s test are 1.4035×10−6, 1.2438×10−13, and 1.3977×10−8 at significance levels 15%, 10%, 5%,211

respectively. Moreover, the p-value of the Wilcoxon signed-rank test on the prediction lengths are212

3.33 × 10−6, 9.75 × 10−9, and 0.0013 at the same significance levels. These findings underscore213

a statistically significant performance distinction between DeepDeconUQ and MEAD.214

We also tested DeepDeconUQ’s performance on two other cancer types, neuroblastoma and215

head and neck squamous cell carcinoma (HNSCC), as evaluated in DeepDecon. DeepDeconUQ216

consistently achieved the highest coverage and the narrowest prediction intervals across all three217
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Table 1: DeepDeconUQ outperforms other methods in predicting malignant cell type pre-
diction interval on real cancer bulk RNA-seq datasets. Coverage and average prediction
interval length (Lavg) are shown under different significance levels on three real AML bulk RNA-
seq datasets (’primary,’ ’recurrent,’ and ’BeatAML’), one real Neuroblastoma dataset and one real
HNSCC dataset.
Methods Dataset 15% 10% 5%

Coverage Lavg Coverage Lavg Coverage Lavg

RNA-Sieve

primary 1.0 1.0 1.0 1.0 1.0 1.0
recurrent 1.0 1.0 1.0 1.0 1.0 1.0
beat 1.0 1.0 1.0 1.0 1.0 1.0
Neuroblastoma 1.0 1.0 1.0 1.0 1.0 1.0
HNSCC 1.0 1.0 1.0 1.0 1.0 1.0

MEAD

primary 0.667 0.553 0.705 0.630 0.771 0.738
recurrent 0.676 0.520 0.706 0.591 0.735 0.694
beat 0.496 0.386 0.544 0.433 0.663 0.515
Neuroblastoma 0.333 0.211 0.397 0.224 0.428 0.231
HNSCC 0.139 0.035 0.270 0.059 0.283 0.062

DeepDeconUQ

primary 0.800 0.434 0.876 0.572 0.912 0.662
recurrent 0.824 0.606 0.853 0.604 0.882 0.685
beat 0.592 0.409 0.730 0.554 0.781 0.611
Neuroblastoma 0.349 0.280 0.460 0.293 0.556 0.309
HNSCC 0.361 0.081 0.433 0.103 0.635 0.151

datasets at different significance levels. The results are presented in Table 1. Moreover, Deep-218

DeconUQ is also robust in complex tumor microenvironments (TME) when tested with epithelial219

datasets. Details can be accessed in Supplementary Information, Section 4.220

DeepDeconUQ is robust to gene expression perturbations221

In the Methods section, we discussed how perturbations in bulk RNA-seq gene expression data222

can affect the accuracy of the estimation algorithms. Fig 4, Fig S4, and Fig S5 illustrate the223

impact of various perturbation levels on the performance of these methods under different sig-224

nificance levels. For RNA-Sieve, the performance remains comparable to prior results without225

noise interference, with the prediction interval coverage consistently low. For MEAD, increasing226

noise levels results in decreased coverage and increased variability in the intervals. In the case227

of DeepDeconUQ, while coverage decreases as noise levels rise, the majority of coverage val-228

ues still meet the required threshold. Notably, the average length of DeepDeconUQ’s prediction229

intervals remains stable across different noise levels. DeepDeconUQ achieves the highest cov-230

erage and smallest average interval length across all methods under various noise conditions,231

demonstrating its robustness to expression perturbations.232

Ablation study233

To understand the contribution of key architectural components to model performance, we con-234

ducted a systematic ablation study. We focused on two critical elements: conformal calibration235
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Fig 4: DeepDeconUQ is robust to gene expression perturbations. Boxplots of coverage and
average prediction interval length on 15 AML simulated bulk RNA-seq datasets under different
noise levels. We added random noise generated from a Gaussian distribution with zero mean
and variance that equals λ(λ = 0.01, 0.05, 0.1) times the gene expression level for each gene in
each sample. Each bar contains a total of 15 points, representing 15 separate AML datasets.
The color represents different levels of noise level λ. Significance level α = 0.1.

and TF-IDF transformation. Quantile regression was preserved throughout this analysis as it236

provides the fundamental mechanism for generating lower and upper prediction interval bounds.237

In the conformal calibration ablation experiment, we eliminated the calibration phase and238

allocated the entire training dataset to neural network training. For the TF-IDF transformation239

ablation, we removed this feature engineering step while retaining MinMax normalization, which240
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is essential for stabilizing gradient-based optimization in deep learning frameworks.241

The result is shown in Fig 5. When conformal calibration was removed, DeepDeconUQ242

demonstrated systematic over-coverage with expanded interval widths compared to the original243

implementation. This finding confirms that conformal calibration plays a crucial role in optimiz-244

ing prediction intervals by balancing coverage precision and interval width. The elimination of245

TF-IDF transformation had more pronounced consequences, resulting in a markedly degraded246

performance characterized by insufficient coverage (substantially below prescribed confidence247

levels) and wider prediction intervals. The severity of this performance deterioration highlights248

the fundamental importance of TF-IDF transformation in enabling effective neural network learn-249

ing.250

Collectively, these ablation experiments validate the necessity of both components in the251

DeepDeconUQ architecture, with each contributing significantly to the model’s overall predictive252

capabilities and uncertainty quantification accuracy.253

Time and memory usage254

DeepDeconUQ was trained and tested on a High-Performance-Cluster (HPC) with a xeon-2640255

6-core CPU node. It is the only algorithm that requires the generation of in silico training data,256

which takes 20 min for 3000 samples with a peak memory usage of 10 GB. Additionally, it took257

∼20 minutes to train a model and took ∼3s to predict on one bulk tissue.258

Discussion259

DeepDeconUQ is an advanced deep neural network-based algorithm designed to leverage single-260

cell RNA sequencing (scRNA-seq) data to generate prediction intervals for malignant cancer cell261

fractions. Building on our earlier method, DeepDecon, DeepDeconUQ retains all its foundational262

advantages, such as the ability to automatically extract complex nonlinear features within its hid-263

den layers and to accurately estimate the quantile function by integrating a comprehensive input264

of genes ( ∼ 104). To address intrinsic variability in RNA-seq data, DeepDeconUQ employs TF-265

IDF transformation and Min-Max normalization, which enables it to yield prediction intervals that266

account for both biological and technical sources of noise. Additionally, it utilizes a calibration267

dataset to fine-tune the prediction interval, effectively mitigating risks of overcoverage and under-268

coverage. Integrating training and calibration datasets in DeepDeconUQ represents a significant269

advancement in malignant cancer cell fraction estimation, allowing for more accurate and inter-270

pretable predictions. By leveraging quantile regression and conformal inference, DeepDeconUQ271

not only enhances confidence in the malignant cell prediction interval results but also facilitates272

the application of the method to real-world datasets with minimal adjustments. The framework’s273

ability to generate reliable uncertainty estimates positions DeepDeconUQ as a valuable tool for274

the analysis of bulk RNA-seq data, particularly in contexts where precise quantification of cell275

type proportions is critical for downstream analyses and clinical decision-making.276

While DeepDeconUQ can achieve good performance on AML cancer tissues, we note that277

this method still has limitations. First of all, the quality of training data is very important. DeepDe-278

conUQ is a neural network-based method, which means it needs a large amount of data to train.279

Currently, we use single-cell data from 15 AML subjects to construct simulation bulk RNA-seq280

datasets. If the number of subjects is small or the single-cell data is dominated by one specific281

cell type, DeepDeconUQ can learn less information from the data and cannot generalize and282

represent the latent features well. In theory, the UQ approach may also work for previous de-283

composition methods with or without single-cell data, provided we have sufficient bulk RNA-seq284
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Fig 5: Ablation study of DeepDeconUQ. DeepDeconUQ is the original model. No Calibration
removes the calibration part of the DeepDeconUQ model and uses all the training data to train
the neural network. No Transformation removes the TF-IDF transformation and uses MinMax
normalization for data preprocessing. Each point in the boxplot is an artificial bulk RNA-seq
dataset.

data with corresponding malignant cell fractions. A critical prerequisite is that these annotated285

fractions should span the complete range from 0.0 to 1.0. However, from a practical perspective,286

such comprehensively annotated bulk RNA-seq datasets remain scarce. Secondly, experimental287

bias and noise can greatly affect the estimate performance, even though we take different ways288

such as TF-IDF transformation and Min-Max normalization to mitigate batch effects and bias.289

The complexity and difficulties of real RNA-seq can still affect DeepDeconUQ’s performance.290

11



Thirdly, DeepDeconUQ can only estimate the prediction interval of malignant cell fraction. In291

practice, tissues usually consist of multiple cell types, and some tissues even contain unknown292

sub-cell types.293

We plan to further improve the performance and applicability of DeepDeconUQ by imple-294

menting several key modifications to the existing methodology. Firstly, we want to extend Deep-295

DeconUQ’s capacity to include multiple cell types or subtypes. The current method avoids the296

statistical complexity of handling multivariate prediction regions, which are required when de-297

convolving bulk RNA-seq data into more than two cell types. Prediction regions, unlike univari-298

ate intervals, must account for dependencies between cell type proportions (e.g., sum-to-one299

constraints and correlations), necessitating advanced methods like multivariate conformal pre-300

diction. Secondly, DeepDeconUQ’s capability to detect technical bias and diverse sequencing301

protocols should be improved. In addition to current normalization processing, methods like302

autoencoder17,18, transfer learning19 and transformers20 can be used to generate latent embed-303

dings to reduce these biases (see Section 3 in the supplementary information for preliminary304

results). Thirdly, the current DeepDeconUQ model takes all genes into account. Whether selec-305

tive incorporation of cell type-specific genes could enhance prediction accuracy is an interesting306

topic. To investigate this issue, we selected differentially expressed genes between normal and307

malignant cells using MAST21, a widely used method for single cell differential gene analysis.308

DeepDeconUQ was trained and validated based on the selected genes and the detailed results309

are given in Section 5 in the supplementary information. The preliminary study shows that gene310

selection does not markedly impact the performance of DeeDeconUQ. More complete and exten-311

sive studies on the impacts of gene selection using other software packages on the performance312

of DeepDeconUQ will be studied in the future.313

Methods314

Datasets315

To initially train and test DeepDeconUQ, we utilized simulated datasets derived from Acute316

Myeloid Leukemia (AML) single-cell data previously used in DeepDecon22. The single-cell317

AML datasets were downloaded from Gene Expression Omnibus (GEO) with accession num-318

ber GSE11625623. We selected 15 subjects, totaling 38,410 cells, to simulate artificial bulk319

RNA-seq datasets, employing the same preprocessing and simulation procedures established320

in DeepDecon. Preprocessing of scRNA-seq data followed the workflow of Scanpy (v.1.7.2), a321

widely-adopted Python package for single-cell gene expression analysis24. Initially, cells with322

fewer than 500 detected genes and genes expressed in fewer than five cells were filtered out323

(Fig S1). Further, gene expression count matrices were processed to remove extreme outliers324

(Table S1). Gene expression values were normalized using Scanpy’s ‘normalize total’ function325

to ensure uniform total counts across cells. This will mitigate discrepancies arising from varying326

library sizes. This produced a normalized matrix of all filtered cells and genes, ready for the327

generation of simulated bulk data. Ultimately, 30,000 simulated bulk samples (2,000 per subject)328

were generated for training and testing DeepDeconUQ.329

We further assessed DeepDeconUQ using real AML bulk RNA-seq datasets. Real AML data330

were collected from the GDC Data Portal(https://portal.gdc.cancer.gov/) with the project331

name “TARGET-AML”. The AML samples were further divided into primary and recurrent AML332

categories according to different cancer stages. As a result, there were a total of 117 primary333

AML samples and 38 recurrent AML samples. For these bulk RNA-seq datasets, ground-truth334

cancer cell fractions via flow cytometry are available. Additionally, an independent real AML335

dataset, “BeatAML”25, was collected from cBioportal26. “BeatAML” contains a total of 451 bulk336
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RNA-seq samples and 300 of them have corresponding ground-truth cancer cell fractions. This337

dataset used the “SureSelect” sequencing platform, which is different from the sequencing plat-338

form for the single-cell data in “TARGET-AML” dataset (Table S2). The inclusion of these diverse339

datasets allowed us to evaluate DeepDeconUQ’s performance across different sequencing plat-340

forms and data sources.341

To test DeepDeconUQ’s performance on other cancer tissues, we also collected 19,173 sin-342

gle cells from 9 neuroblastoma cancer patients27 and 184,868 single cells from 27 Head and343

neck squamous cell carcinoma (HNSCC) cancer patients28. They were used to simulate artificial344

RNA-seq bulk samples to build and evaluate DeepDeconUQ. Additionally, a real neuroblastoma345

bulk RNA-seq dataset consisting of 99 bulk RNA-seq samples with known cancer cell fractions346

was collected from cBioportal26 and another real HNSCC bulk RNA-seq dataset, ‘TCGA-HNSC’,347

consisting of 518 bulk RNA-seq samples with known cancer cell fractions was collected from348

LinkedOmics29. These two real datasets were used for testing. Moreover, the above datasets349

have the knowledge of malignant and normal cells. However, in practice, cancer tissues usually350

exhibit a complex tumor microenvironment (TME). A total of 18,062 single cells derived from351

four individuals were collected30, It contains epithelial cells (tumor), T-cells, B-cells, plasma cells,352

macrophage, fibroblast cells, and so on. Experiments were conducted to test the capacity of353

DeepDeconUQ to estimate epithelial cell proportion regarding heterogeneity.354

Generating artificial bulk RNA-seq datasets355

To generate artificial bulk RNA-seq samples, we used the previously described scRNA-seq356

datasets, simulating each sample with predetermined malignant cell fractions for training the357

DeepDeconUQ model. Specifically, for each artificial bulk sample, we set a fixed total cell count,358

N , and a malignant cell number nm was randomly sampled from a uniform distribution between359

0 and N . Subsequently, nm malignant cells and N − nm normal cells were randomly drawn from360

the same scRNA-seq dataset. If the available malignant or normal cells were fewer than nm or361

N−nm, respectively, cells were sampled with replacement, meaning that each cell was uniformly362

drawn from all single cells in the dataset; otherwise, cells were sampled without replacement to363

ensure no duplicates. Importantly, cells from different subjects (i.e., individuals) were not com-364

bined within a single artificial sample to maintain individual-specific gene expression profiles.365

This principle was motivated by two reasons. Firstly, the aim was to safeguard within-subject366

relationships among genes by preserving the unique gene expression patterns inherent to each367

subject. Secondly, the intention was to capture the variability between subjects, commonly re-368

ferred to as cross-subject heterogeneity8. After generating an artificial bulk sample by summing369

the expression values of all selected cells, it was labeled according to the malignant cell fraction,370

nm/N . This process was repeated for each scRNA-seq dataset, resulting in a corresponding arti-371

ficial bulk RNA-seq dataset with T samples, each tagged with a known malignant cell proportion.372

Here, we set N = 3, 000 and T = 200, consistent with the configuration in DeepDecon22. This373

sampling strategy serves as a substantial data generation resource for training and evaluating374

DeepDeconUQ.375

Data Processing376

Before training, the artificial bulk RNA-seq samples were preprocessed to ensure alignment be-377

tween training and prediction data. Only genes present in both the training and testing datasets378

were retained, and genes with low expression variance (below 0.1) were excluded. To further379

standardize the data, a TF-IDF transformation was applied to the raw RNA-seq count matrix.380

This transformation, commonly used in information retrieval and text mining31,32, starts by calcu-381
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lating the ‘term frequency (TF)’ for each gene in each sample by normalizing the gene expression382

profile (see Formula 3). The ‘inverse document frequency (IDF)’ was then calculated by divid-383

ing the total number of bulk samples by the total gene expression values of the gene across all384

samples (see Formula 4), followed by log-transformation and multiplication by the TF value. The385

TF-IDF transformation weights genes with lower expression levels more heavily, which helps to386

adjust for the imbalanced expression levels across genes33.387

TF(Xi,j) =
Xi,j∑
j Xi,j

, (3)

388

IDF(Gj) = log

(
T∑
iXi,j

+ 1

)
, (4)

where Xi,j is the expression level of the jth gene in the ith sample, Gj indicates the jth gene,389

and T is the number of bulk samples.390

Let X ′ denote the gene expression matrix after TF-IDF transformation. A MinMax normaliza-391

tion was applied to the resulting expression matrix X ′ to scale the expression values to the [0,392

1] range (see Formula 5). This is a common practice in deep learning models that use gradient-393

based optimization algorithms8,17.394

Xnorm
i =

X
′
i −min(X

′
i)

max(X
′
i)−min(X

′
i)
, (5)

where X ′
i is the ith row of X ′ and Xnorm

i is the ith row of the resulting expression matrix after the395

MinMax transformation.396

TF-IDF transformation and MinMax normalization are important steps in ensuring the quality397

and consistency of the data used to train deep learning models. Although the input datasets398

varied between platforms and protocols, we utilized the same processing workflow to make it399

easy to apply DeepDeconUQ to other datasets.400

DeepDeconUQ401

Problem formulation402

Suppose we are given n bulk RNA-seq gene expression samples {(Xi, Yi)}ni=1, where Xi ∈ Rp
403

represents the ith bulk RNA-seq gene expression vector with p > 0 features (genes) and Yi =404

(yi, 1 − yi) is the corresponding ith cell fraction vector of malignant and normal cells. Our aim405

is to construct a distribution-agnostic prediction interval Ĉ(Xn+1) that contains the malignant cell406

fraction yn+1 for a new bulk RNA-seq sample Xn+1. Specifically, given a desired significance407

level α, the prediction interval Ĉ(Xn+1) is likely to contain the true malignant cell fraction vector408

yn+1 with a user-specified coverage probability 1− α:409

P{yn+1 ∈ Ĉ(Xn+1))} ≥ 1− α, (6)

for any joint distribution PXY and any sample size n. Meanwhile, the estimated prediction interval410

Ĉ(Xn+1) should be as narrow as possible while achieving the desired coverage level.411

Quantile regression412

Methods like DeepDecon22 formulate the problem as a regression task, typically addressed using413

variations of non-negative least squares or more advanced machine learning methodologies.414
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The estimation of cell type proportions is often solved by minimizing squared residuals over the415

n training points {(Xi, Yi)}ni=1 (see Formula 7):416

µ̂(x) = µ(x; θ̂), θ̂ = argminθ

1

n

n∑
i=1

(Yi − µ(Xi; θ))
2 +R(θ), (7)

where θ are the parameters of the regression model, µ(x; θ) is the learned regression model,417

and R(θ) is a regularization module.418

Similarly, quantile regression estimates the conditional quantiles of cell type proportions, as-419

suming that the τ th conditional quantile is associated with gene expression profiles. A condi-420

tional quantile function qα is learned from n training samples {(Xi, Yi)}ni=1 at a specified quantile421

(or significance) level α (see Formula 8).422

q̂α(x) = f(x; θ̂), θ̂ = argminθ

1

n

n∑
i=1

ρα(Yi, f(Xi; θ)) +R(θ), (8)

where f(x; θ) is the quantile regression function and can be learned through neural networks. ρα423

is the quantile (pinball) loss34, defined as,424

ρα(y, ŷ) =

{
α(y − ŷ) if y − ŷ > 0,
(1− α)(ŷ − y) otherwise,

(9)

where y and ŷ are the observed and predicted cell type fraction, and α ∈ (0, 1) is the corre-425

sponding quantile (significance) level. Pinball loss is a skewed transformation of the absolute426

value function and is commonly used in quantile regression14.427

Given a significance level α, we can get the lower bound and upper bound prediction q̂αlo
, q̂αhi

428

through quantile regression. Here, αlo = α
2
, αhi = 1 − α

2
. Then, Ĉ(Xn+1) = [q̂αlo

, q̂αhi
] can be429

used as the estimate of the true prediction interval C(Xn+1). The simplicity and generality of430

this approach make quantile regression highly versatile, allowing for the integration of various431

machine learning techniques to model and learn qα
14,35,36.432

Conformal prediction433

The quantile regression method is widely applicable and often works well in practice, yielding434

intervals that are adaptive to heteroscedasticity. However, it is not guaranteed to satisfy the va-435

lidity property when the true prediction interval C(Xn+1) is estimated by the prediction interval436

Ĉ(Xn+1). Fortunately, conformal prediction37 was then brought out to solve this problem. Specifi-437

cally, split (inductive) conformal prediction38,39, which is general and whose computational cost is438

a small fraction of the full conformal prediction, helps construct prediction intervals that are valid439

and discriminative. We borrowed the idea from Romano et al.14 and combined DeepDecon with440

conformal quantile regression (CQR) to obtain valid and discriminative cell fraction prediction441

intervals on bulk RNA-seq samples. We refer the resulting algorithm as DeepDeconUQ.442

The split conformal method begins by splitting the training data into two disjoint subsets: a443

proper training set {(Xi, Yi) : i ∈ I1} and a calibration set {(Xi, Yi) : i ∈ I2}. We then apply a444

neural network to estimate the lower and upper quantile functions, q̂αlo
and q̂αhi

, as described in445

Equation 8. This model’s architecture is similar to our previously developed cell fraction estima-446

tion framework, DeepDecon22, and will be further explained in the model structure subsection.447

Next, we compute conformity scores that quantify the error made by the prediction interval.448

The scores are evaluated on the calibration set as follows:449

Ei := max(q̂αlo
(Xi)− Yi, Yi − q̂αhi

(Xi)) i ∈ I2, (10)
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Finally, given new input data Xn+1, we construct the prediction interval of Yn+1 as:450

Ĉ(Xn+1) = [q̂αlo
(Xn+1)−Q1−α(E, I2), q̂αhi

(Xn+1) +Q1−α(E, I2)], (11)

where Q1−α(E, I2) is the (1−α/2)(1+ 1
|I2|)th quantile of {Ei : i ∈ I2}. In this context, we select α/2451

due to the presence of two distinct cell types within the dataset—malignant and normal—as sug-452

gested in multivariate quantile regression40. Moreover, Romano et al. demonstrated that when453

conformity scores Ei are almost surely unique, the prediction interval achieves an approximate454

state of perfect calibration14.455

The specific steps of DeepDeconUQ are given in Algorithm 1.456

Algorithm 1 DeepDeconUQ
Require: Bulk RNA-seq samples with labels (Xi, Yi) ∈ Rp × R2, 1 ≤ i ≤ n

Significance level α
Testing bulk sample Xn+1

Ensure: Cell fraction prediction interval C(Xn+1) for Xn+1.
1: Randomly split n bulk RNA-seq samples into two disjoint sets, I1 and I2.
2: Fit two conditional quantile functions {q̂αlo

, q̂αhi
} according to Equation 8 on training set I1

3: Compute conformity scores Ei according to formula 10 on calibration set I2
4: Compute Q1−α(E, I2), the (1− α/2)(1 + 1

|I2|)th quantile of {Ei : i ∈ I2}.
5: Compute prediction interval Ĉ(Xn+1) according to formula 11 for Xn+1.

Lei et al. advocated for selecting a larger I1 compared to I2 to improve the accuracy of esti-457

mated quantile functions41. Given the size of our training dataset (30,000 simulated samples),458

we opted for a 7:3 split ratio between the training and calibration sets to optimize the model459

performance.460

Model structure461

The main neural network architecture of DeepDeconUQ is similar to DeepDecon, which con-462

sists of two main components. The first component consists of four fully connected layers with463

a dropout regularization between each layer, and the rectified linear unit (ReLU) is used as the464

activation function in every internal layer. The second component differs from DeepDecon, which465

uses a softmax function to predict the malignant and normal cell fractions. To reduce the com-466

putational cost, instead of fitting two separate neural networks to estimate the lower and upper467

quantile functions, we replaced the original one-dimensional estimate of the malignant cell frac-468

tion with a two-dimensional estimate of the lower and upper quantiles. In this way, most of the469

network parameters are shared between the two quantile estimators. All model parameters were470

optimized using the Adam optimization algorithm42 with a learning rate of 0.0001 and a batch471

size of 128. The model was trained as a regression task, with the pinball loss (see Formula 9)472

as the loss function. Hyperparameters that are tested and tuned in DeepDecon were also used473

in DeepDeconUQ.474

The impact of gene expression perturbations on DeepDeconUQ475

To test the model’s robustness to gene expression perturbations, we introduced varying levels476

of Gaussian noise to the expression levels within the simulated datasets. Specifically, for each477

gene in each sample, random noise was added, drawn from a Gaussian distribution with a478

mean of zero. The variance of this noise was proportional to the expression level of each gene,479
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set at λ times the gene expression level, where λ was assigned values of 0.01, 0.05, and 0.1480

(see Formula 12). This approach allowed us to systematically examine the model stability and481

predictive accuracy under controlled levels of expression variability.482

Xnoise
ij = max(0, Xij +N(0, λXij)), (12)

where Xij is the gene expression value of gene j in simulated bulk sample i and λ is the noise483

level.484

Following this processing, we applied the previously trained DeepDeconUQ models to each485

simulated bulk RNA-seq dataset to estimate the prediction intervals. This enabled us to system-486

atically evaluate the model’s robustness under various gene expression perturbations, providing487

insights into its stability and reliability in producing accurate intervals when gene expression data488

is subject to different levels of noise.489
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Segerstolpe, Å., Qian, H., Olsson-Strömberg, U., Mustjoki, S., Sandberg, R., Jacobsen,515

17

https://github.com/jiaweih14/DeepDeconUQ
http://dx.doi.org/10.1038/nmeth.1613
http://dx.doi.org/10.1093/bfgp/elu035
http://dx.doi.org/10.1371/journal.pcbi.1008452


S. E. W., and Mead, A. J. (2017). Single-cell transcriptomics uncovers distinct molecular516

signatures of stem cells in chronic myeloid leukemia. Nature Medicine 23, 692–702. doi:10.517

1038/nm.4336.518

5. Newman, A. M., Steen, C. B., Liu, C. L., Gentles, A. J., Chaudhuri, A. A., Scherer, F.,519

Khodadoust, M. S., Esfahani, M. S., Luca, B. A., Steiner, D., Diehn, M., and Alizadeh,520

A. A. (2019). Determining cell type abundance and expression from bulk tissues with digital521

cytometry. Nature Biotechnology 37, 773–782. doi:10.1038/s41587-019-0114-2.522

6. Wang, X., Park, J., Susztak, K., Zhang, N. R., and Li, M. (2019). Bulk tissue cell type523

deconvolution with multi-subject single-cell expression reference. Nature Communications524

10, 380. doi:10.1038/s41467-018-08023-x.525

7. Xie, D., and Wang, J. (2022). Robust statistical inference for cell type deconvolution. arXiv526

preprint arXiv:2202.06420. doi:10.48550/arXiv.2202.06420.527

8. Menden, K., Marouf, M., Oller, S., Dalmia, A., Magruder, D. S., Kloiber, K., Heutink, P., and528

Bonn, S. (2020). Deep learning–based cell composition analysis from tissue expression529

profiles. Science Advances 6, eaba2619. doi:10.1126/sciadv.aba2619.530

9. Erdmann-Pham, D. D., Fischer, J., Hong, J., and Song, Y. S. (2021). A likelihood-based531

deconvolution of bulk gene expression data using single-cell references. Genome Research532

( gr.272344.120). doi:10.1101/gr.272344.120.533

10. Mohammadi, S., Zuckerman, N., Goldsmith, A., and Grama, A. (2017). A Critical Survey of534

Deconvolution Methods for Separating Cell Types in Complex Tissues. Proceedings of the535

IEEE 105, 340–366. doi:10.1109/JPROC.2016.2607121.536

11. Avila Cobos, F., Alquicira-Hernandez, J., Powell, J. E., Mestdagh, P., and De Preter, K.537

(2020). Benchmarking of cell type deconvolution pipelines for transcriptomics data. Nat538

Commun 11, 5650. doi:10.1038/s41467-020-19015-1.539

12. Lin, Z., Trivedi, S., and Sun, J. (2021). Locally valid and discriminative prediction intervals540

for deep learning models. Advances in Neural Information Processing Systems 34, 8378–541

8391. doi:10.48550/arXiv.2106.00225.542

13. Cai, B., Zhang, J., Li, H., Su, C., and Zhao, H. (2022). Statistical inference of cell-type543

proportions estimated from bulk expression data. arXiv preprint arXiv:2209.04038. doi:10.544

48550/arXiv.2209.04038.545

14. Romano, Y., Patterson, E., and Candes, E. (2019). Conformalized quantile regression. Ad-546

vances in neural information processing systems 32. doi:10.48550/arXiv.1905.03222.547

15. Su, C., Xu, Z., Shan, X., Cai, B., Zhao, H., and Zhang, J. (2023). Cell-type-specific co-548

expression inference from single cell rna-sequencing data. Nature Communications 14,549

4846. doi:10.1038/s41467-023-40503-7.550

16. McNemar, Q. (1947). Note on the sampling error of the difference between correlated pro-551

portions or percentages. Psychometrika 12, 153–157. doi:10.1007/BF02295996.552

17. Chen, Y., Wang, Y., Chen, Y., Cheng, Y., Wei, Y., Li, Y., Wang, J., Wei, Y., Chan, T.-553

F., and Li, Y. (2022). Deep autoencoder for interpretable tissue-adaptive deconvolution554

and cell-type-specific gene analysis. Nature Communications 13, 6735. doi:10.1038/555

s41467-022-34550-9.556

18

http://dx.doi.org/10.1038/nm.4336
http://dx.doi.org/10.1038/nm.4336
http://dx.doi.org/10.1038/nm.4336
http://dx.doi.org/10.1038/s41587-019-0114-2
http://dx.doi.org/10.1038/s41467-018-08023-x
http://dx.doi.org/10.48550/arXiv.2202.06420
http://dx.doi.org/10.1126/sciadv.aba2619
http://dx.doi.org/10.1101/gr.272344.120
http://dx.doi.org/10.1109/JPROC.2016.2607121
http://dx.doi.org/10.1038/s41467-020-19015-1
http://dx.doi.org/10.48550/arXiv.2106.00225
http://dx.doi.org/10.48550/arXiv.2209.04038
http://dx.doi.org/10.48550/arXiv.2209.04038
http://dx.doi.org/10.48550/arXiv.2209.04038
http://dx.doi.org/10.48550/arXiv.1905.03222
http://dx.doi.org/10.1038/s41467-023-40503-7
http://dx.doi.org/10.1007/BF02295996
http://dx.doi.org/10.1038/s41467-022-34550-9
http://dx.doi.org/10.1038/s41467-022-34550-9
http://dx.doi.org/10.1038/s41467-022-34550-9


18. Sagendorf, J. M., Mitra, R., Huang, J., Chen, X. S., and Rohs, R. (2024). Structure-based557

prediction of protein-nucleic acid binding using graph neural networks. Biophysical Reviews558

16, 297–314. doi:10.1007/s12551-024-01201-w.559

19. Long, M., Zhu, H., Wang, J., and Jordan, M. I. (2017). Deep transfer learning with joint560

adaptation networks. In: International conference on machine learning. PMLR ( 2208–561

2217). doi:10.48550/arXiv.1605.06636.562

20. Castro, E., Godavarthi, A., Rubinfien, J., Givechian, K., Bhaskar, D., and Krishnaswamy,563

S. (2022). Transformer-based protein generation with regularized latent space optimization.564

Nature Machine Intelligence 4, 840–851. doi:10.1038/s42256-022-00532-1.565

21. Finak, G., McDavid, A., Yajima, M., Deng, J., Gersuk, V., Shalek, A. K., Slichter, C. K.,566

Miller, H. W., McElrath, M. J., Prlic, M. et al. (2015). Mast: a flexible statistical framework567

for assessing transcriptional changes and characterizing heterogeneity in single-cell rna568

sequencing data. Genome biology 16, 1–13. doi:10.1186/s13059-015-0844-5.569

22. Jiawei Huang, A. S. K. R. K. J. F. Z., Yuxuan Du, and Sun, F. (2020). Deepdecon accurately570

estimates cancer cell fractions in bulk rna-seq data. Patterns 38, 716–733. doi:10.1016/j.571

ccell.2020.08.014.572

23. van Galen, P., Hovestadt, V., Wadsworth, M., Hughes, T., Griffin, G. K., Battaglia, S., Verga,573

J. A., Stephansky, J., Pastika, T. J., Lombardi Story, J., Pinkus, G. S., Pozdnyakova, O.,574

Galinsky, I., Stone, R. M., Graubert, T. A., Shalek, A. K., Aster, J. C., Lane, A. A., and575

Bernstein, B. E. (2019). Single-cell RNA-seq reveals AML hierarchies relevant to disease576

progression and immunity. Cell 176, 1265–1281.e24. doi:10.1016/j.cell.2019.01.031.577

24. Wolf, F. A., Angerer, P., and Theis, F. J. (2018). Scanpy: large-scale single-cell gene expres-578

sion data analysis. Genome Biology 19, 15. doi:10.1186/s13059-017-1382-0.579

25. Tyner, J. W., Tognon, C. E., Bottomly, D., Wilmot, B., Kurtz, S. E., Savage, S. L., Long,580

N., Schultz, A. R., Traer, E., Abel, M. et al. (2018). Functional genomic landscape of acute581

myeloid leukaemia. Nature 562, 526–531. doi:10.1038/s41586-018-0623-z.582

26. Cerami, E., Gao, J., Dogrusoz, U., Gross, B. E., Sumer, S. O., Aksoy, B. A., Jacobsen, A.,583

Byrne, C. J., Heuer, M. L., Larsson, E. et al. (2012). The cBio cancer genomics portal: an584

open platform for exploring multidimensional cancer genomics data. Cancer Discovery 2,585

401–404. doi:10.1158/2159-8290.CD-12-0095.586

27. Dong, R., Yang, R., Zhan, Y., Lai, H.-D., Ye, C.-J., Yao, X.-Y., Luo, W.-Q., Cheng, X.-M.,587

Miao, J.-J., Wang, J.-F. et al. (2020). Single-cell characterization of malignant phenotypes588

and developmental trajectories of adrenal neuroblastoma. Cancer Cell 38, 716–733. doi:10.589

1016/j.ccell.2020.08.014.590

28. Sun, D., Wang, J., Han, Y., Dong, X., Ge, J., Zheng, R., Shi, X., Wang, B., Li, Z., Ren,591

P. et al. (2021). Tisch: a comprehensive web resource enabling interactive single-cell tran-592

scriptome visualization of tumor microenvironment. Nucleic Acids Research 49, D1420–593

D1430. doi:10.1093/nar/gkaa1020.594

29. Vasaikar, S. V., Straub, P., Wang, J., and Zhang, B. (2018). Linkedomics: analyzing multi-595

omics data within and across 32 cancer types. Nucleic Acids Research 46, D956–D963.596

doi:10.1093/nar/gkx1090.597

19

http://dx.doi.org/10.1007/s12551-024-01201-w
http://dx.doi.org/10.48550/arXiv.1605.06636
http://dx.doi.org/10.1038/s42256-022-00532-1
http://dx.doi.org/10.1186/s13059-015-0844-5
http://dx.doi.org/10.1016/j.ccell.2020.08.014
http://dx.doi.org/10.1016/j.ccell.2020.08.014
http://dx.doi.org/10.1016/j.ccell.2020.08.014
http://dx.doi.org/10.1016/j.cell.2019.01.031
http://dx.doi.org/10.1186/s13059-017-1382-0
http://dx.doi.org/10.1038/s41586-018-0623-z
http://dx.doi.org/10.1158/2159-8290.CD-12-0095
http://dx.doi.org/10.1016/j.ccell.2020.08.014
http://dx.doi.org/10.1016/j.ccell.2020.08.014
http://dx.doi.org/10.1016/j.ccell.2020.08.014
http://dx.doi.org/10.1093/nar/gkaa1020
http://dx.doi.org/10.1093/nar/gkx1090


30. Sathe, A., Mason, K., Grimes, S. M., Zhou, Z., Lau, B. T., Bai, X., Su, A., Tan, X., Lee, H.,598

Suarez, C. J. et al. (2023). Colorectal cancer metastases in the liver establish immunosup-599

pressive spatial networking between tumor-associated spp1+ macrophages and fibroblasts.600

Clinical Cancer Research 29, 244–260.601

31. Teller, V. (2000). Speech and Language Processing: An Introduction to Natural Language602

Processing, Computational Linguistics, and Speech Recognition. Computational Linguistics603

26, 638–641. doi:10.1162/089120100750105975.604

32. Chowdhury, G. G. Introduction to modern information retrieval. Facet publishing (2010).605

ISBN 185604694X.606
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S4 Fig. DeepDeconUQ is robust to gene expression perturbations. Boxplots of coverage667
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the top 100 principal components as neural network inputs. DAN makes use of transfer learning683

and generates a latent embedding layer for both training and testing datasets. Each point in the684

boxplot is an artificial bulk RNA-seq dataset.685

(TIF)686
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the prediction interval).711

(TIF)712
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1 Preprocessing of single-cell gene expression data

The AML single cell RNA-seq data used in DeepDeconUQ is the same as the data used in Deep-
Decon [1]. AML data was obtained from the Gene Expression Omnibus (GEO) under accession
number GSE116256 [2]. To ensure data quality, we utilized single-cell RNA sequencing (scRNA-
seq) data from subjects with at least 100 normal and 100 malignant cells, respectively (Fig J). This
criterion was employed to avoid extreme scenarios in which very few normal or malignant cells were
selected. A total of 15 AML subjects were selected. For each subject, we filtered out cells with less
than 500 detected genes and genes expressed in less than five cells. The resulting gene expression
profile for each subject was further filtered for extreme outliers in gene expression values. The
filtering criteria for each subject were given in Table B. Finally, gene expression was normalized to
library size by total counts across all genes. This will counteract the effect of different library sizes.
Finally, the resulting normalized matrix of all filtered cells and genes was saved for subsequent
pseudo bulk data generation. We used the tag ‘PredictionRefined’ [2] given in the dataset as the
final label (malignant/normal) to annotate the cell types. This tag was a manual reclassification
of cells by close inspection of mutations/expression profiles.

2 Artificial bulk dataset simulation

The simulated artificial bulk datasets were generated by subsampling within each scRNA-seq sub-
ject. Cells from different subjects were not merged into one bulk sample to preserve potential

∗Corresponding author: jzhong@llu.edu
†Corresponding author: fsun@usc.edu
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correlations between the expression levels of different genes within subjects. The true cell-type pro-
portion for each bulk sample was calculated by dividing the number of single cells with a specific
cell type by the total number of cells in the bulk sample.

First, in each bulk scRNA-seq data, N cells from different cell types (malignant/normal) were
generated where “1” and “2” correspond to malignant and normal cell types, respectively. Let

N = n1 + n2, (1)

fi =
ni

N
, i = 1, 2 (2)

where ni and fi are the number and fraction of cells of type i, respectively, and N is the total
number of cells in one simulated bulk sample. Here ni was generated uniformly from 0 to N
through the python random module [3]. When ni was determined, ni cells were sampled from the
scRNA-seq gene expression matrix for each cell type i (if ni is bigger than the total number of cells
of type i in one particular subject, the cells were chosen with replacement. Otherwise, the cells
were chosen without replacement). Next, the selected single-cell expression profiles for every cell
type were aggregated by summing their expression values,

G =
∑
i

∑
j

Xij , (3)

where Xij is the jth gene expression vector of cell type i and G is the final bulk RNA-seq expression
profile. Repeating the above steps T times to construct a simulated bulk dataset with T samples. In
our simulations, T was chosen as 200 for each subject. Finally, we had 15 simulated bulk RNA-seq
datasets, each with 200 bulk samples with known cell type proportions.

3 The influence of feature embedding to DeepDeconUQ

Although batch effects can be mitigated through TF-IDF transformation and Min-Max normaliza-
tion in DeepDeconUQ, some denoising methods can still be tried to test DeepDeconUQ’s perfor-
mance. One of such is feature embedding.

To test more advanced denoising methods, we employed both classical dimensionality reduc-
tion via Principal Component Analysis (PCA) and an advanced transfer learning method, Deep
Adaptation Network (DAN) [4]. DAN represents a neural architecture that aligns feature distri-
butions between training and testing domains. DAN uses both the labels and samples of training
data and only uses the samples of testing data to generate domain-invariant latent embeddings
with theoretical guarantees. It will generate a latent embedding for both the training and testing
datasets.

For PCA-based dimensionality reduction, data underwent standard preprocessing (TF-IDF
transformation followed by MinMax normalization) before extracting the top 100 principal compo-
nents as neural network inputs. The DAN implementation faithfully reproduced the methodology
described by Long et al. [4], generating latent embeddings for both training and testing datasets
that subsequently served as inputs for the neural network training pipeline. All downstream com-
putational processes remained consistent with the original DeepDeconUQ framework.

Performance comparisons revealed distinct trade-offs between methods (Fig H). PCA embed-
dings demonstrated systematic over-coverage in simulation datasets, with coverage rates exceeding
corresponding significance thresholds. Even though it has narrower prediction intervals than base-
line DeepDeconUQ. However, when evaluated on real-world datasets, PCA embeddings exhibited
reduced coverage relative to the original model, suggesting potential overfitting (Table A). While
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achieving coverage rates appropriately aligned with significance levels, DAN embeddings produced
substantially wider prediction intervals than the baseline model. We hypothesize that inherent
biological heterogeneity across cancer patients presents fundamental challenges to transfer learning
in this context, limiting the effectiveness of domain adaptation techniques.

4 Extention to complex tumor microenvironment (TME)

DeepDeconUQ requires the knowledge of malignant and normal cells. However, in practice, cancer
tissues usually exhibit a complex tumor microenvironment (TME). There are usually multiple
subtypes for either malignant or normal cells. In this case, we can merge the malignant subtypes
into one malignant type and the normal subtypes into one normal type. DeepDeconUQ can then
be used to estimate the prediction interval of the malignant cell fraction. Specifically, we have
collected single-cell data from [5], which comprises scRNA-seq profiles from seven individuals.
Following data filtering procedures identical to those applied to the AML dataset (detailed in
Section 1), we retained 18,062 single cells derived from four individuals. Cell classifications were
established using the ‘condition’ parameter from Sathe, et al. 2023 [5]. These individuals contain
tumor epithelial cells as malignant labels and NK, T-cell, B-cell as normal labels. We subsequently
conducted analogous experiments to those performed with the AML dataset. This involved initially
constructing synthetic bulk RNA-seq datasets with variable malignant cell proportions based on
the available scRNA-seq data. We then trained a DeepDeconUQ model to estimate prediction
intervals for malignant cell fractions.

Fig E illustrates the performance of DeepDeconUQ on the epithelial datasets compared to ex-
isting methodologies. RNA-Sieve demonstrated a low performance, with coverage probabilities
substantially below threshold values across different significance levels, indicating under-coverage.
MEAD exhibited complete performance failure on the epithelial dataset, generating prediction in-
tervals approximating 0-1 for all samples and, in some instances, failing to produce valid prediction
intervals entirely (returning NA values). In contrast, DeepDeconUQ exhibited superior perfor-
mance, yielding statistically valid coverage with comparatively narrow prediction intervals. The
modest over-coverage observed is likely attributed to the limited training cohort (n=4) and could
potentially be mitigated by incorporating additional high-quality datasets.

5 Influence of gene selection on DeepDeconUQ

In the current implementation, DeepDeconUQ utilizes the complete gene set for prediction. We
investigated whether selective incorporation of cell type-specific genes could enhance prediction
accuracy. To address this question, we employed MAST (Model-based Analysis of Single-cell Tran-
scriptomics) [6] as a differential gene expression analysis tool to evaluate the impact of feature
selection on DeepDeconUQ performance.

We applied MAST to identify differentially expressed genes between malignant and normal
cell populations within the AML scRNA-seq datasets. MAST takes the AML scRNA-seq datasets
as input and runs a likelihood ratio test to get differential genes between two conditions (malig-
nant/normal). This approach yielded 1, 414 genes with adjusted p-values below the significance
threshold of 0.05. Subsequently, we executed DeepDeconUQ using only this subset of differentially
expressed genes and compared the results against the original implementation utilizing the complete
gene set.

Fig I illustrates DeepDeconUQ performance with and without gene selection on simulated AML
datasets, while Table A presents corresponding results on real AML datasets. In simulated datasets,
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DeepDeconUQ demonstrated comparable performance regardless of gene selection strategy, high-
lighting the model’s inherent robustness. However, in real AML datasets, the considerable hetero-
geneity of cancer tissue potentially resulted in differential gene signatures that did not effectively
generalize across real samples. Consequently, DeepDeconUQ with gene selection exhibited reduced
coverage rates at all significance levels when applied to recurrent and beat AML datasets compared
to the original implementation.

6 Software comparison and settings

We compared DeepDeconUQ with other deconvolution methods, including MEAD (v. 1.0.1) [7],
RNA-Sieve (v. 0.1.4) [8].

For MEAD [7], we installed the R package given in the manuscript and ran it with default
settings. In the leave-one-out cross-validation, the single-cell profile was constructed using the
single cells of all subjects, excluding the subject itself, while in the real bulk testing data, the
single-cell profile was constructed by combining all available single-cell data. Subject information
was included in the single-cell reference. Then, we ran MEAD with default settings by following
the example provided by the authors.

For RNA-Sieve [8], we executed it by following the example code provided. In the leave-one-out
cross-validation, the single-cell profile was constructed by combining the single cells of all subjects,
excluding the data itself, while in the real bulk testing data, the single-cell profile was constructed
by combining all available single-cell data.
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Fig A: Visualization of prediction intervals on the real primary dataset of DeepDe-
conUQ and MEAD at α = 0.10 (90% confidence level). Comparison of uncertainty intervals
generated by DeepDeconUQ (left) and MEAD (right) methods. Each vertical line represents the
prediction interval (lower to upper bound) for an individual sample, with samples sorted by their
true malignant fraction values in ascending order along the x-axis. The true values are marked with
either red squares (when contained within the prediction interval) or blue triangles (when falling
outside the prediction interval).
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Fig B: Visualization of prediction intervals on the real primary dataset of DeepDe-
conUQ and MEAD at α = 0.15 (85% confidence level). Comparison of uncertainty intervals
generated by DeepDeconUQ (left) and MEAD (right) methods. Each vertical line represents the
prediction interval (lower to upper bound) for an individual sample, with samples sorted by their
true malignant fraction values in ascending order along the x-axis. The true values are marked with
either red squares (when contained within the prediction interval) or blue triangles (when falling
outside the prediction interval).
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B

Fig C: DeepDeconUQ outperforms other methods in predicting malignant cell type
prediction interval on simulated HNSCC bulk RNA-seq datasets. Boxplots of coverage
(A) and average prediction interval length (B) on simulated HNSCC bulk RNA-seq datasets. Cov-
erage is defined as the proportion of instances in which the true fraction of malignant cells falls
within the prediction interval for the testing dataset. The average length represents the mean
length of the prediction intervals across the testing datasets. Significance levels are indicated with
different colors.
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Fig D: DeepDeconUQ outperforms other methods in predicting malignant cell type
prediction interval on simulated Neuroblastoma bulk RNA-seq datasets. Boxplots of
coverage (A) and average prediction interval length (B) on simulated Neuroblastoma bulk RNA-seq
datasets. Coverage is defined as the proportion of instances in which the true fraction of malignant
cells falls within the prediction interval for the testing dataset. The average length represents the
mean length of the prediction intervals across the testing datasets. Significance levels are indicated
with different colors.
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Fig E: DeepDeconUQ outperforms other methods in predicting malignant cell type
prediction interval on simulated epithelial bulk RNA-seq datasets. Boxplots of coverage
(A) and average prediction interval length (B) on four simulated epithelial bulk RNA-seq datasets.
Coverage is defined as the proportion of instances in which the true fraction of malignant cells
falls within the prediction interval for the testing dataset. The average length represents the mean
length of the prediction intervals across the testing datasets. Each bar in the boxplot comprises
4 data points, each corresponding to one of 4 simulated epithelial datasets (except one dataset in
MEAD that gives NA values and, therefore, doesn’t show). Significance levels are indicated with
different colors.
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Fig F: DeepDeconUQ is robust to gene expression perturbations. Boxplots of coverage
and average prediction interval length on 15 AML simulated bulk RNA-seq datasets under different
noise levels. We added random noise generated from a Gaussian distribution with zero mean and
variance that equals λ(λ = 0.01, 0.05, 0.1) times the gene expression level for each gene in each
sample. Each bar contains a total of 15 points, representing 15 separate AML datasets. The color
represents different levels of noise level λ. Significance level α = 0.15.
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Fig G: DeepDeconUQ is robust to gene expression perturbations. Boxplots of coverage
and average prediction interval length on 15 AML simulated bulk RNA-seq datasets under different
noise levels. We added random noise generated from a Gaussian distribution with zero mean and
variance that equals λ(λ = 0.01, 0.05, 0.1) times the gene expression level for each gene in each
sample. Each bar contains a total of 15 points, representing 15 separate AML datasets. The color
represents different levels of noise level λ. Significance level α = 0.05.

11



A

B

Fig H: Comparison of DeepDeconUQ with different embedding methods. Two embedding
methods are used to compare with DeepDeconUQ. Principal Component Analysis (PCA) selects
the top 100 principal components as neural network inputs. DAN makes use of transfer learning
and generates a latent embedding layer for both training and testing datasets. Each point in the
boxplot is an artificial bulk RNA-seq dataset.
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Fig I: Comparison of DeepDeconUQ with/without gene selection on simulated AML
datasets. Each bar in the boxplot comprises 15 data points, each corresponding to one of 15
simulated epithelial datasets. Significance levels are indicated with different colors.
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Fig J: Barplots of the numbers of malignant and normal cells in each scRNA-seq sub-
ject. Subjects with at least 100 malignant and 100 normal cells were selected for this study.
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Table A: Performance of DeepDeconUQ with and without PCA embedding and with gene selection
on real AML datasets.

Methods Dataset 15% 10% 5%

Coverage Lavg Coverage Lavg Coverage Lavg

DeepDeconUQ
primary 0.800 0.434 0.876 0.572 0.912 0.662
recurrent 0.824 0.606 0.853 0.604 0.882 0.685
beat 0.592 0.409 0.730 0.554 0.781 0.611

PCA embedding
primary 0.714 0.202 0.800 0.356 0.867 0.310
recurrent 0.706 0.236 0.735 0.324 0.853 0.433
beat 0.233 0.149 0.237 0.151 0.344 0.215

Gene Selection
primary 0.829 0.511 0.905 0.608 0.952 0.680
recurrent 0.676 0.490 0.794 0.641 0.853 0.678
beat 0.537 0.460 0.619 0.465 0.648 0.482
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Table B: Preprocessing criteria for each subject in AML and neuroblastoma datasets. The gene
expression threshold means the maximum gene expression value of a cell. The gene number thresh-
old means the maximum number of expressed genes. This is to avoid gene expressions that do
not represent a single cell. The criteria are based on Scanpy (v. 1.7.2) functions ‘filter cells’ and
‘filter genes’.

Subject Gene expression threshold Gene number threshold

AML328-D29 7000 2500
AML1012-D0 5000 1600
AML556-D0 10000 3000
AML328-D171 5000 2000
AML210A-D0 6000 2000
AML419A-D0 7000 2500
AML328-D0 5000 2000
AML707B-D0 6000 2000
AML916-D0 5000 2000
AML328-D113 6000 2000
AML329-D0 8000 2000
AML420B-D0 7000 2000
AML329-D20 7000 2200
AML921A-D0 8000 2500
AML475-D0 4800 1500
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Table C: Real bulk AML RNA-seq datasets used in DeepDecon

Name Number of samples Sequencing platform Normalization method Source

primary 117 Affymetrix Gene ST Array [9] FPKM GDC Data Portal [10]
recurrent 38 Affymetrix Gene ST Array FPKM GDC Data Portal
BeatAML 300 SureSelect [11] CPM Tyner, et al. 2018 [12]
Pediatric Neuroblastoma 99 Illumina Hi-Seq 2000 [13] RPKM cBioPortal [14]
TCGA-HNSC 518 Illumina Hi-Seq 2000 RPKM LinkedOmics [15]
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