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Abstract: Big data is ubiquitous in various fields of sciences, engineering, medicine, social
sciences, and humanities. It is often accompanied by a large number of variables and
features. While adding much greater flexibility to modeling with enriched feature space,
ultrahigh-dimensional data analysis poses fundamental challenges to scalable learning
and inference with good statistical efficiency. Sure independence screening is a simple and
effective method to this endeavor. This framework of two-scale statistical learning, con-
sisting of large-scale screening followed by moderate-scale variable selection introduced
in Fan and Lv (2008), has been extensively investigated and extended to various model
settings ranging from parametric to semiparametric and nonparametric for regression,
classification, and survival analysis. This article provides an overview of the developments
of sure independence screening over the past decade. These developments demonstrate
the wide applicability of the sure independence screening-based learning and inference
for big data analysis with desired scalability and theoretical guarantees.

1 Introduction

Big data has emerged in recent years as a prominent feature of many applications from different disciplines
of sciences, engineering, medicine, social sciences, and humanities, enabling more capacity for refined
discoveries, recommendations, and policies[1]. Among many types of big data, ultrahigh-dimensional data
in which the number of features p can be much larger than the number of observations n is central to
a spectrum of tasks of statistical learning and inference in the past 10 years or so. Scalability is a major
challenge of ultrahigh-dimensional data analysis. Meanwhile, it is well known that additional intrinsic
challenges of ultrahigh-dimensional data analysis include high collinearity, spurious correlation, and noise
accumulation[2–5]. For example, in the presence of a large number of noise features, high-dimensional clas-
sification using all the features can behave like random guess[3]. To improve the scalability and reduce noise
accumulation, one possible approach is reducing the dimensionality of the feature space from a very large
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Table 1. The means (standard errors) of different measures by all the methods for the simulation
example in Section 1.

Method FDR Power 𝜎

Lasso 0.158(0.015) 0.789(0.030) 1.248(0.039)
SCAD 0.150(0.018) 0.711(0.038) 1.224(0.045)
SIS-Lasso 0.167(0.017) 0.841(0.029) 1.173(0.041)
SIS-SCAD 0.147(0.017) 0.903(0.025) 1.033(0.032)

scale to a moderate one in a computationally fast way and implementing refined learning and inference in
the much reduced feature space.

The ideas of feature screening have been widely employed in practice partly for computational reasons.
In addition to the gain in computational efficiency, one can in fact also expect improved statistical efficiency
in estimation and inference owing to alleviated noise accumulation by dimensionality reduction. For the
aforementioned classification problem, one can reduce the number of features by applying two-sample
t-test to each variable and then implement a classification procedure using the selected variables. This
approach is a specific case of the sure independence screening and has high classification power[3].

To appreciate the point, let us consider a simple simulation example that provides a prototype for the
common goals desired by practitioners analyzing high-dimensional data. We generate 100 data sets from
the Gaussian linear model given in Equation (1) with sample size n = 120, dimensionality p = 1000, design
matrix𝐗 ∼ N(𝟎, In

⨂𝚺) for𝚺 = (0.5|j−k|)1≤j,k≤p, and error vector 𝜀 ∼ N(𝟎, 𝜎2In) for 𝜎 = 1. The true regres-
sion coefficient vector 𝜷0 has the first s = 10 components being nonzero and each nonzero component is
selected randomly from {±1}. For each data set, we apply the model-X knockoffs method introduced in
Ref. 6 coupled with the innovated scalable efficient estimation (ISEE) estimator in Ref. 7 to control the
False Discovery Rate (FDR)[8] for feature selection, where the target FDR level is set as q = 0.2. For sparse
model fitting, we employ Lasso[9], SCAD[10], and sure independence screening (SIS)[2] followed by the
Lasso and smoothly clipped absolute deviation (SCAD) as variable selectors, referred to as SIS-Lasso and
SIS-SCAD, respectively. With the set of identified covariates Ŝ by the model-free knockoffs procedure,
we can also construct an estimate for the error standard deviation 𝜎. Table 1 summarizes the simulation
results for the FDR, power, and estimated error standard deviation 𝜎 over 100 replications. From Table 1,
we see that feature screening using SIS can also boost the accuracy of large-scale estimation and inference.

2 Sure Independence Screening

We now begin the journey of feature screening in ultrahigh-dimensional feature space. A common prac-
tice for feature screening is using independence learning that treats the features as independent and thus
applies marginal regression techniques. Yet, the theoretical properties of such computationally expedient
procedures were not well understood for a long while. Motivated by the aforementioned fundamental chal-
lenges of ultrahigh-dimensional data analysis, the SIS was formally introduced and rigorously justified in
Ref. 2 to address both scalability and noise accumulation issues. Let us consider the linear regression model

𝐲 = 𝐗𝜷 + 𝜀 (1)

where 𝐲 = (y1, … , yn)T is an n-dimensional response vector, 𝐗 = (𝐱1, … , 𝐱p) is an n × p design matrix
consisting of p covariates 𝐱js, 𝜷 = (𝛽1, … , 𝛽p)T is a p-dimensional regression coefficient vector, and
𝜀 = (𝜀1, … , 𝜀n)T is an n-dimensional error vector. The focus of Ref. 2 is the ultrahigh-dimensional setting
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with log p = O(n𝛼) for some 0 < 𝛼 < 1. To ensure model identifiability, the true regression coefficient
vector 𝜷0 = (𝛽0,1, … , 𝛽0,p)T is assumed to be sparse. The covariates 𝐱js with indices in the support
∗ = supp(𝜷0) = {1 ≤ j ≤ p ∶ 𝛽0,j ≠ 0} are called important variables, while the remaining covariates
are referred to as noise variables.

The SIS is a two-scale learning framework in which large-scale screening is first applied to reduce the
dimensionality from p to a moderate one d, say, below sample size n, and moderate-scale learning and
inference are then conducted on the much reduced feature space. In particular, the SIS ranks all the p
features using the marginal utilities based on the marginal correlations ĉorr(𝐱j, 𝐲) of 𝐱js with the response
𝐲 and retains the top d covariates with the largest absolute correlations collected in the set ̂; that is,

̂ = {1 ≤ j ≤ p ∶ |ĉorr(𝐱j, 𝐲)| is among the top d largest ones} (2)

where ĉorr denotes the sample correlation. This achieves the goal of variable screening. The variable selec-
tion step of SIS using features in the reduced set ̂ from the screening step can be performed with any
favorite regularization method of user’s choice including Lasso, SCAD, and Dantzig selector[4,5,9–17]. The
SIS ideas can also be incorporated into large-scale Bayesian estimation and inference, where the marginal
utilities can be replaced by the Bayesian counterpart[18,19].

The feature screening (Equation (2)) can be implemented expeditiously. An important question is
whether it contains all the important covariates in the set ∗ with asymptotic probability one; that is,

ℙ{∗ ⊂ ̂} → 1 (3)

as n → ∞. The property in Equation (3) was termed as the sure screening property in Ref. 2 which is crucial
to the second step of refined variable selection. This is a weaker notation than the model selection con-
sistency and is a more realistic task in high-dimensional inference, particularly for a screening method.
Surprisingly, SIS was shown in Ref. 2 to enjoy the sure screening property under fairly general conditions,
with a relatively small size of ̂. Specifically, the p covariates 𝐱js are allowed to be correlated with covari-
ance matrix 𝚺 and the p-dimensional random covariate vector multiplied by 𝚺−1∕2 is assumed to have a
spherical distribution. The sure screening property of SIS depends on the so-called concentration property
for random design matrix 𝐗 introduced in Ref. 2; see Ref. 20 for a similar concentration phenomenon of
the large random design matrix.

The concentration property was originally verified for the scenario of Gaussian distributions, and later
established in Ref. 21 for a wide class of elliptical distributions as conjectured previously. With such a
property, the sure screening property (Equation (3)) can hold for d = o(n), leading to the suggestion of
choosing d = n − 1 or [n∕(log n)] for SIS in the original article[2]. In practice, the parameter d can be chosen
by some data-driven methods such as the cross-validation (CV) and generalized information criterion
(GIC)[22]. It can also be selected by a simple permutation method[23,24] that controls the false positive rate at
a prescribed level q. Let {(𝐗i,Yi)}n

i=1 be the original sample for the covariates and response. One can apply
a random permutation 𝜋 of {1, … , n} to obtain the randomly permuted decoupled data {(𝐗𝜋(i),Yi)}n

i=1.
This does not change the marginal distributions of {𝐗i}n

i=1 and {Yi}n
i=1, but makes the associations between

covariates and response in {(𝐗𝜋(i),Yi)}n
i=1 vanish. For the randomly permuted data, denote by r∗, the top

qth percentile of the absolute marginal sample correlation, which has proportion q of the false positive rate
when applied to the randomly decoupled data. When q = 1, r∗ is merely the largest spurious correlation.
Now, select the model

̂ = {1 ≤ j ≤ p ∶ |ĉorr(𝐱j, 𝐲)| ≥ r∗} (4)

One can also randomly permute the data multiple times and use the median of r∗ to improve the stability.
This simple permutation idea is applicable to other screening methods discussed in this article.
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3 Iterative and Conditional Sure Independence Screening

As the marginal utilities are employed to rank the importance of features, SIS can suffer from some poten-
tial issues associated with independence learning. First, some noise covariates strongly correlated with
the important ones can have higher marginal utilities than other important ones (false positive). Second,
some important covariates that are jointly correlated but marginally uncorrelated with the response can
be missed after the screening step (false negative). To address these issues, Ref. 2 further introduced an
extension of the SIS method, called the iterative SIS. The main idea is to iteratively update the estimated
set of important variables using SIS conditional on the estimated set of variables from the previous step.
Intuitively, such an iterative procedure can help recruit important covariates that have very weak or no
marginal associations with the response in the presence of other important ones identified from earlier
steps. The method of iterative SIS was extended in Ref. 25 to the pseudo-likelihood framework beyond the
linear model with more general loss functions. Reference 25 also introduced a sample splitting strategy to
reduce the false positive rate, where some exchangeability conditions were invoked.

When there is some additional knowledge about the importance of a certain set of covariates, it is helpful
to utilize this prior information and rank the importance of features by replacing simple marginal corre-
lations with the marginal correlations conditional on such a set of variables. This approach of conditional
SIS was introduced and justified in Ref. 26. It also intends to provide understandings on the iterative SIS.

4 Sure Independence Screening for Generalized Linear Models
and Classification

When the response is discrete, it is more suitable to consider the fitting of models beyond the linear one.
The generalized linear model (GLM) provides a natural extension of the linear model for both continu-
ous and discrete responses. The GLM with a canonical link assumes that the conditional distribution of
response 𝐲 the given design matrix 𝐗 belongs to the canonical exponential family, having the following
density function with respect to some fixed measure:

fn(𝐲;𝐗, 𝜷) ≡
n∏

i=1
f0(yi; 𝜃i) =

n∏
i=1

{
c(yi) exp

[yi𝜃i − b(𝜃i)
𝜙

]}
(5)

where {f0(y; 𝜃) ∶ 𝜃 ∈ ℝ} is a family of distributions in the regular exponential family with dispersion
parameter 𝜙 ∈ (0,∞), (𝜃1, … , 𝜃n)T = 𝐗𝜷 , b(⋅) and c(⋅) are some known functions, and the remaining
notation is the same as in model (1). Different choices of function b(𝜃) in Equation (5) give rise to different
GLMs including the linear regression, logistic regression, and Poisson regression for continuous, binary,
and count data of responses, respectively.

As the GLMs are widely used in applications, Ref. 27 extended the SIS idea to this more general class of
models. Specifically, two measures of feature importance were considered. The first one is the magnitude of
the maximum marginal likelihood estimator (MMLE) 𝛽M

j which is defined as the maximizer of the quasi-
likelihood function 𝓁(𝛽j) = log fn(𝐲; 𝐱j, 𝛽j) from marginal regression, assuming that the covariate xj has
been standardized. Then, one can construct the reduced model ̂ as in Equation (2) with 𝛽M

j in place
of ĉorr(𝐱j, 𝐲). The second one is the marginal likelihood ratio test statistic L̂j for testing the significance of
each covariate 𝐱j separately. It was shown in Ref. 27 that with both marginal utilities |𝛽M

j | and L̂j, the SIS for
the GLM can continue to enjoy the sure screening property (Equation (3)) when dimensionality p grows
as high as nonpolynomially with sample size n. In addition, a specific bound was established on the size of
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the reduced model. The random decoupling method in Equation (4) can be employed here to choose the
threshold values.

For the binary response, there is a huge literature on classification beyond logistic regression[15,28,29]. The
idea of independence learning used in SIS has also been exploited widely for feature screening and selection
in high-dimensional classification. For the classical two-class Gaussian classification problem with com-
mon covariance matrix 𝚺, the optimal Fisher’s linear discriminant function depends on the inverse of the
unknown covariance matrix 𝚺. It is well known that estimating the high-dimensional covariance matrix
is challenging. One choice is to replace the covariance matrix 𝚺 by its diagonal matrix diag{𝚺}, leading
to the independence rule or naive Bayes method which pretends that the features were independent[30].
Fan and Fan[3] formally characterized the phenomenon of noise accumulation in high-dimensional clas-
sification which reveals that the independence rule using all the features can perform as bad as random
guess when there are a large number of noise features having no discriminative power; see also Ref. 31
for the scenario of asymptotically perfect classification. To reduce the noise accumulation, Fan and Fan[3]

further introduced the feature annealed independence rule (FAIR) based on feature selection using the
two-sample t test[32], which was shown to possess an oracle property with an explicit classification error
rate. The main ideas of FAIR share the same spirit as SIS, in that marginal utilities are exploited to rank
the importance of features and the two-scale learning framework is formally introduced and justified for
ultrahigh-dimensional regression and classification.

5 Nonparametric and Robust Sure Independence Screening

When there exist nonlinear relationships between the covariates and the response, one can use measures
of nonlinear correlations in place of the Pearson correlation for linear association. One of such measures is
the generalized correlation suph∈corr(h(Z1),Z2) introduced in Ref. 33, where (Z1,Z2) is a pair of random
variables and  stands for the vector space generated by a given set of functions such as the polynomials
or spline bases.
Nonparametric models provide flexible alternatives to parametric ones. In particular, the additive model
has been widely used for high-dimensional data analysis to alleviate the well-known curse of dimensionality
associated with fully nonparametric models. This model assumes that

𝐲 =
p∑

j=1
𝐦j(𝐱j) + 𝜀 (6)

where 𝐦j(𝜽) = (mj(𝜃1), … ,mj(𝜃n))T for 𝜽 = (𝜃1, … , 𝜃n)T , mj(⋅)s are some unknown smooth functions,
and the rest of the notation is the same as in model (1). Fan et al.[23] extended the SIS method to a high-
dimensional additive model (6) and introduced the nonparametric independence screening (NIS). For
each covariate 𝐱j, marginal nonparametric regression is employed to provide an estimated function f̂j(⋅)
using a B-spline basis. Then, the empirical norms ∥ f̂j∥ns are adopted as the marginal utilities to rank
the importance of features, where ∥ f̂j ∥2

n = n−1 ∑n
i=1 f̂j(xij)2 and 𝐱j = (x1j, … , xnj)T . The reduced model

̂ from feature screening can be constructed similarly to Equation (2) with the nonparametric marginal
utilities. It was established in Ref. 23 that NIS can enjoy the sure screening property even in ultrahigh
dimensions with a limited false selection rate. The SIS has also been generalized to other nonparametric
and semiparametric settings[34–36].

Model misspecification can easily happen in real applications when we specify the wrong family of dis-
tributions or miss some important covariates[37–39]. Thus, it is important to design statistical learning and
inference procedures that are robust to a certain level of model misspecification. In particular, the Pearson
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correlation is known to be sensitive to the presence of outliers and not robust for heavy-tailed data. To
address the robustness issue, Li et al.[40] extended the SIS method by replacing the Pearson correlation
with the Kendall 𝜏 correlation coefficient, which is a robust measure of the correlation in a nonparametric
sense[41,42]. To capture the nonlinear associations between the covariates and response, Li et al.[43] exploited
the distance correlation in Ref. 44 to rank the marginal importance of features. There is growing literature
on robust feature screening in ultrahigh dimensions[45–47].

6 Multivariate Sure Independence Screening and the Beyond

The computational expediency of the SIS comes from the use of marginal screening. To address the poten-
tial drawbacks of independence learning, it would be helpful to exploit the joint information among the
covariates in the two-scale learning framework. However, naively considering k-dimensional submodels of
{1, … , p} involves the screening in a space of size

(
p
k

)
= O(pk) whose computational complexity grows

rapidly even for a small k. A computationally tractable multivariate screening method, called the covariate-
assisted screening and estimation (CASE), was introduced in Ref. 48 under the Gaussian linear model (1).
The key assumption is that the Gram matrix 𝐆 = 𝐗T𝐗 is nonsparse but sparsifiable in the sense that there
exists some p × p linear filtering matrix 𝐃 such that the matrix 𝐃𝐆 is sparse. Then, the Gaussian linear
model 𝐲 = 𝐗𝜷 + 𝜀 can be linearly transformed into 𝐝 = 𝐃𝐗T𝐲 = 𝐃𝐆𝜷 + 𝐃𝐗T𝜀, and a graph-assisted m-
variate 𝜒2-screening can be applied to the p-dimensional vector 𝐝. Fan and Lv[7] also suggested a way to
exploit the joint information among the covariates while using marginal screening ideas, where the features
are linearly transformed by the innovated transformation. These new features can be used for ranking the
importance of original features. Certainly, the area of multivariate SIS awaits further developments.

The ideas of feature screening with SIS have also been applied and adapted to a wide range of large-
scale statistical learning problems such as ultralarge Gaussian graphical models[7] and large interaction
network screening and detection[49–53]. There are many other extensions of the general framework of SIS
for scalable statistical learning and inference. See, for example, Ref. 54 for additional references on feature
screening for ultrahigh-dimensional data.
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