
Received: 8 December 2019 Revised: 21 January 2020 Accepted: 21 January 2020

DOI: 10.1002/sta4.273

S P E C I A L I S S U E P A P E R

Statistical insights into deep neural network learning in
subspace classification

Hao Wu1 Yingying Fan2 Jinchi Lv2

1Department of Mathematics, Dornsife

College of Letters, Arts and Sciences,

University of Southern California, Los Angeles,

90089-0001, CA, USA
2Data Sciences and Operations Department,

Marshall School of Business, University

of Southern California, Los Angeles,

90089-0001, CA, USA

Correspondence

Hao Wu, Department of Mathematics,

Dornsife College of Letters, Arts and Sciences,

University of Southern California, Los Angeles,

CA 90089-0001, USA.

Email: hwu409@usc.edu

Deep learning has benefited almost every aspect of modern big data applications. Yet its

statistical properties still remain largely unexplored. It is commonly believed nowadays that deep

neural networks (DNNs) benefit from representational learning. To gain some statistical insights

into this, we design a simple simulation setting where we generate data from some latent

subspace structure with each subspace regarded as a cluster. We empirically demonstrate that

the performance of DNN is very similar to that of the two-step procedure of clustering followed

by classification (unsupervised plus supervised). This motivates us to ask: Does DNN indeed

mimic the two-step procedure statistically? That is, do bottom layers in DNN try to cluster first

and then top layers classify within each cluster? To answer this question, we conduct a series

of simulation studies, and to our surprise, none of the hidden layers in DNN conduct successful

clustering. In some sense, our results provide an important complement to the common belief

of representational learning, suggesting that at least in some model settings, although the

performance of DNN is comparable with that of the ideal two-step procedure knowing the true

latent cluster information a priori, it does not really do clustering in any of its layers. We also

provide some statistical insights and heuristic arguments to support our empirical discoveries

and further demonstrate the revealed phenomenon on the real data application of traffic sign

recognition.

KEYWORDS

clustering, DNN, statistical insights, subspace classification

1 INTRODUCTION

Deep learning is a popular machine learning method that has gained a lot of interest in recent years. It has dramatically improved the

state-of-the-art in image processing, speech recognition, text analysis, and many other domains such as health care and finance; see, e.g., He,

Zhang, Ren, and Sun (2016), Amodei et al. (2016), Majumder, Poria, Gelbukh, and Cambria (2017), Litjens et al. (2017), and Heaton, Polson, and

Witte (2017). In particular, there has been a significant amount of research on classifications of different objects by deep learning; see, e.g., Chen,

Lin, Zhao, Wang, and Gu (2014), Socher, Huval, Bath, Manning, and Ng (2012), Cireşan, Meier, and Schmidhuber (2012), Glorot, Bordes, and

Bengio (2011), and Lee, Pham, Largman, and Ng (2009). To name a few, Kussul, Lavreniuk, Skakun, and Shelestov (2017) proposed a multilevel

deep learning approach for land cover and crop type classification with multitemporal multisource satellite imagery. Dolz et al. (2017) created

a deep learning-based classification scheme by stacking denoising auto-encoders to segment organs at risk in the optic region in brain cancer.

Esteva et al. (2017) demonstrated the effectiveness of deep learning in dermatology, a technique that we apply to both general skin conditions

and specific cancers.

Despite their popularity, most deep learning methods are regarded as black-box procedures in the sense that their statistical properties are

largely unknown. In recent years, researchers attempt to unveil the statistical properties behind deep learning. Existing theoretical developments

focus mainly on algorithms, probabilistic understanding, and approximation theory in deep learning. For example, Mhaskar and Poggio (2016)

demonstrated how different smoothness classes lead to satisfactory results for approximation by rectified linear unit networks and Gaussian

networks on the entire Euclidean space. Patel, Nguyen, and Baraniuk (2015) developed a generative probabilistic model for deep learning

that explicitly captures latent nuisance variation. Poggio et al. (2017) used the classical theory of ordinary differential equations and replaced

a potentially fundamental puzzle about generalization in deep learning with elementary properties of gradient optimization techniques. Jacot,

Stat. 2020;9:e273. wileyonlinelibrary.com/journal/sta4 © 2020 John Wiley & Sons, Ltd. 1 of 16

https://doi.org/10.1002/sta4.273

https://doi.org/10.1002/sta4.273
https://orcid.org/0000-0001-8899-2734
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fsta4.273&domain=pdf&date_stamp=2020-06-25

2 of 16 WU ET AL.

Gabriel, and Hongler (2018) introduced a new perspective to analyse the converging dynamics of neural networks via the neural tangent kernel.

Saxe et al. (2018) suggested that compression dynamics in the information plane are not a general feature of deep networks but are critically

influenced by the non-linearities employed by the network. Lu, Fan, Lv, and Noble (2018) introduced a general framework of DeepPINK for

reproducible feature selection in deep neural networks (DNNs). Nevertheless, the statistical insights into deep learning methods are still mostly

unexcavated.

In this paper, we attempt to provide some understanding on the statistical performance of basic deep learning methods through numerically

and theoretically studying a simple statistical model for two-class classification in a high-dimensional space. Our model assumes that observations

are independently and identically distributed in some high-dimensional space, which is the union of several latent lower dimensional subspaces.

On each subspace, we further assume that the observations are independent and follow a mixture of two Gaussian distributions with known

labels. Note that the subspace structure is completely latent and unavailable to us. This model is remotely motivated from some real-life

problems such as classifying cats and dogs using image data, where different pictures can correspond to different activities (e.g., eating,

playing, and sleeping). Roughly speaking, each lower dimensional subspace in our model can be regarded as one type of activities of animals,

and the union of all these subspaces mimics the reality that pictures for each animal species can consist of different activities. Another

example is skin cancer detection, which aims at successfully classifying cancer cells and noncancer ones. Skin cancer is among the most

common of all human cancers, with 1 million people in the United States diagnosed each year with some type of the disease. There are

three major types of skin cancers: basal cell carcinoma, squamous cell carcinoma, and melanoma. They are likely to grow in different areas,

which could be thought of as clusters. A further example is the recognition of traffic signs that lie in different groups on the basis of the

level of brightness and the angle of view, which plays an important role in self-driving cars. These examples motivate us to consider the

high-dimensional classification problem under the latent structural assumption of lower dimensional subspaces. We acknowledge that our

statistical model is definitely an oversimplified version of the previously discussed real-life examples. However, because our intension is to

provide some statistical insights into deep learning methods, studying this oversimplified model should not be a big issue for our specific

purpose.

It is popularly believed nowadays that DNNs benefit from representational learning, meaning that the bottom layers of DNNs try to

extract representations of different clusters (subspaces in our statistical model), and then the top layers try to use these representations

to help with classifications. However, through applying deep learning methods to a simulated data set from our statistical model discussed

above, we discover some surprising facts that provide an important complement to the common belief of representational learning. To

better understand our message, let us temporarily walk away from the deep learning framework and think about the ideal procedure for

classification under our model setting. Ideally, if the clusters (or subspaces) are known to us, then the best we can do is to first separate the

data according to subspaces and then conduct classification within each subspace. In the following, we will name this two-step procedure

relying on the oracle subspace information the ideal procedure and use it as a benchmark to evaluate the performance of DNNs. It is worth

mentioning that clustering methods are popular in the data mining literature. For example, Soltanolkotabi, Elhamifar, and Candes (2014)

formulated a great solution to recover the union of subspaces from a high-dimensional setting with elegant theoretical guarantees. Many

adapted algorithms have also been developed. Aljalbout, Golkov, Siddiqui, Strobel, and Cremers (2018) designed customized neural networks

coupled with K-means clustering and added the clustering hardening loss to guide the process of updating the network and encourage

clustering of feature spaces, which is also supporting evidence for our paper that the regular DNN does not efficiently conduct clustering.

In this paper, we intend to study this phenomenon of regular DNNs through a simple statistical model, provide some statistical insights, and

demonstrate the revealed phenomenon on the real data application. For face recognition, Liu et al. (2017), Deng, Guo, and Zafeiriou (2018),

Wang, Cheng, Liu, and Liu (2018), Wang et al. (2018), and Wen, Zhang, Li, and Qiao (2019) have dedicated a lot of efforts to the design

of new loss functions to minimize the distances between the deep features of the same class, thereby improving face identification and

verification accuracy empirically. Because it is impractical to precollect all possible class identities for training, those interesting works focus

on compressing the learned deep features of the same class to their centres and enhancing their discriminative power for verifying new

unseen classes without label prediction. In contrast, in our paper, the data have a latent subspace structure on top of the classes, where

the subspaces (clusters) can be viewed as the superclasses at a higher level. Under such a model structure, we explicitly study how the

DNN learns without clustering in advance and why it achieves comparable classification performance to the ideal two-step procedure, that is,

unsupervised clustering to partition data into subspaces (superclasses) followed by supervised classification for further recognition within each

subspace.

Through simulation studies, we discover that the classification error rate of DNNs is very close to that of the ideal procedure, motivating us

to ask whether the bottom layers of DNNs indeed conduct clustering first and then top layers classify within each learned cluster, which can

be regarded as some type of representational learning. However, our simulation studies suggest otherwise. More specifically, we discover that

none of the layers in the DNN successfully recover the cluster/subspace structure. This message suggests that at least in some high-dimensional

classifications, the way a DNN learns is different from the commonly believed representational learning.

To strengthen our empirical evidence, we further provide some theoretical results and insights under our statistical model. Our theoretical

findings are consistent with our empirical ones—the ideal procedure can have very low classification error rate and greatly outperform the

naive procedure of blind classification, which completely ignores the subspace structure in the data. We also provide some heuristic statistical

WU ET AL. 3 of 16

arguments on the performance of DNNs. Furthermore, we demonstrate the revealed phenomenon on the real data application of traffic sign

recognition, which plays a crucial role in self-driving vehicles.

2 EXPERIMENTS

2.1 Model setting and some initial results

Consider a sample of independent observations in R
D from a union of three lower dimensional subspaces S1, S2, S3, where each of the three

subspaces is of dimensionality p with p < D. For each subspace Sk (for k ∈ {1,2,3}), denote by Ak ∈ R
D×p the basis matrix whose columns are

orthonormal vectors spanning the subspace. For an observation from subspace Sk , suppose it can be represented as x = Akx̃, where x̃ ∈ R
p follows

the mixture Gaussian distribution x̃ ∼ (1 − Y)p(𝝁(k)
0
,Σ) + Yp(𝝁(k)

1
,Σ) with 𝝁

(k)
j

∈ R
p (for j ∈ {1,2}) the mean vectors and Σ ∈ R

p×p the covariance

matrix. Here, Y is a Bernoulli random variable with probability of success 1/2 representing the class label. Note that the latent subspace structure,

that is, the basis matrices (A1,A2,A3), is completely unavailable to us.

Suppose we have n labelled observations (xi,Yi), i = 1, … , n, independently sampled from the above latent subspace model. Denote by

X = [xT
1
, … , xT

n]T ∈ R
n×D the matrix whose columns are feature vectors, and Y = (Y1, … ,Yn)T the vector collecting the labels. Let (X(k),Y(k))

be the observations corresponding to the kth subspace and X̃(k) the corresponding coefficient matrix, that is, X(k) = X̃(k)AT
k

. Note that for each

k ∈ {1,2,3}, X(k), X̃(k),Y(k), and Ak are unobservable to us. Our goal is to train a classifier Ĉ(x) such that for a new unlabelled observation x, the

trained classifier Ĉ(x) can predict the class label of x with high success rate.

We simulate nk = 800 observations from subspace Sk , and we set D = 100 and p = 40. The augmented basis matrix [A1,A2,A3]∈ R
D×(3p) is

nondegenerate with rank D. So we end up with n = 2,400 observations (xi,Yi) in total, where each feature vector xi has dimensionality D = 100.

Let A = (0.317,0.318,0.684)T and d = (1.098,1.092,−1.104)T . We set 𝝁(k)
0

= AT
k

A(k)1 and 𝝁
(k)
1

= AT
k
(A(k) + d(k))1, where 1 is a vector of 1's, for

k = 1,2,3, where A(k) and d(k) stand for the kth entry of the vectors A and d, respectively.

As discussed in Section 1, if the oracle information on each observation's subspace identity is known, the best one can do is the ideal procedure.

We apply the ideal procedure to the simulated data and use the result as a benchmark to evaluate the performance of other methods. We also

apply neural networks with two hidden layers to the simulated data set (xi,Yi). More details about our neural network can be found in a later

section. The third comparison method is the Fisher linear discriminant analysis (LDA) applied to (xi,Yi). Note that for the last two methods, we do

not use the oracle information on observations' subspace identity.

Table 1 shows the distance correlations (DCs; Reshef et al., 2011; Szkely, Rizzo, & Bakirov, 2007) between various pairs of variables, which is

a specific case of maximum mean discrepancy (MMD; Arbel, Sutherland, Bińkowski, & Gretton, 2018; Dziugaite, Roy, & Ghahramani, 2015; Gao,

Lv, & Shao, 2019; Jones and Forrest, 1995; Kong, Li, Fan, & Lv, 2017; Li, Zhong, & Zhu, 2012) with the distance kernel. DC provides an effective

measure of the non-linear dependency between two random variables of potentially different dimensions and data types defined as

dCor(u, v) = dCov(u, v)√
dVar(u)dVar(v)

(1)

with

dCov2(u, v) = 1
cpcq ∫

Rp+q

|𝜙u,v(x, y) − 𝜙u(x)𝜙v(y)|2

||x||p+1||y||q+1
dxdy. (2)

Here, u and v are two random vectors of arbitrary dimensions p and q, respectively; 𝜙u(x), 𝜙v(y), and 𝜙u,v(x, y) are the characteristic functions

of u, v, and (u, v), respectively; and the constant ck = 𝜋(1+k)∕2∕Γ((1 + k)∕2) is half of the surface area of the unit sphere in R
k+1. In particular, DC is

zero if and only if u and v are independent. See Székely and Rizzo (2013) for details of the bias-corrected version of DC. Several messages can

be drawn. First, the classification problem is challenging as reflected from the very low DC between feature matrix X and label vector Y. This

will be further confirmed later by Figure 3. Second, knowing the subspace/cluster identity can help with classification, as evidenced from the

much higher DCs between the class labels Y(k) and submatrices X(k) or X̃(k), and the high DC between Y and YF with YF denoting the predicted

training labels by the ideal procedure. In fact, the classification error rate by the ideal procedure is 4.34%. Third, the predicted training labels

by DNN (the structure is shown in Figure 1) Ŷ mimic YF very closely, with DC as high as 0.8829. Fourth, none of the hidden layers cluster the

data well, as shown by the low DCs in the last three rows in Table 1. These results suggest a surprising fact that DNN does not learn the cluster

representations in data well but still manages to classify well. We next provide more empirical evidence in the following sections.

2.2 Classification methods without clustering versus with clustering

In the last section, we have seen that the ideal procedure based on oracle subspace information performs well in classification. We further

demonstrate here that even with empirically learned cluster information, the performance of various popular classifiers can be very close to that

of the ideal procedure. Specifically, we directly apply popularly used classification methods including LDA, lasso logistic regression, KNN, decision

tree, random forest, and support vector machine (SVM) with linear and non-linear kernels, to the simulated data. To compare, we also implement a

two-step procedure where in the first step, we use subspace clustering algorithm (Park, Caramanis, & Sanghavi, 2014) to cluster the data first, and

4 of 16 WU ET AL.

FIGURE 1 Deep neural network (DNN) structure

TABLE 1 Bias-corrected distance correlations (DCs) between different pairs of variables Variable 1 Variable 2 DC

X Y 0.0779

X(1) Y(1) 0.3817

X(2) Y(2) 0.2826

X(3) Y(3) 0.4004

X̃(1) Y(1) 0.4740

X̃(2) Y(2) 0.3345

X̃(3) Y(3) 0.4038

Y YF 0.8341

Ŷ YF 0.8829

Xc Zsubspace 0.8925

XbottomLayer Zsubspace 0.3428

XtopLayer Zsubspace 0.2420

XtwoLayers Zsubspace 0.2965

Note. X: n × D feature matrix; Y: vector of true class
labels; YF : predicted class labels by the ideal procedure;
Ŷ: predicted class labels by a DNN with two hidden lay-
ers; X̃(k): nk × p coefficient matrix corresponding to the
kth subspace; X(k) = X̃(k)AT

k
: nk × D feature matrix corre-

sponding to subspace k; Y(k): labels for observations on
subspace k; Xc : transformed X via clustering; XbottomLayer:
n-vector representing the hidden layer after the input
layer; XtopLayer: n-vector representing the hidden layer
before the output layer; XtwoLayers: the augmented matrix
[XbottomLayer,XtopLayer]; Zsubspace: the latent subspace label
for each observation. Bold data emphasize the trend.

then in the second step, we apply each of the aforementioned classification methods within each identified cluster. The number of repetitions is

100, with the mean error for clustering being 0.0008. The very low clustering error also suggests that the latent subspace structure is easy to learn.

It is shown that all methods have improved performance after we incorporate the clustering step, with clustering followed by lasso logistic

regression with the best overall classification error rate of 5.46%. In addition, with clustering, almost all methods (except for KNN because of

possible curse of dimensionality) perform similarly and are comparable with the ideal procedure of classification error rate 4.34%. For illustration

purposes, the specific plot for lasso logistic regression is shown in Figure 2.

Similar to Table 1, we calculate the DC between the predicted class labels by various methods in Figures 3 and 4. The results are presented in

Table 2. The last column corresponds to the DCs for test data. These results confirm again that DNN has performance very close to that of these

two-step procedures.

2.3 DNNs via TensorFlow

We implemented deep learning by TensorFlow on the hardware 8-core 2.4-GHz Intel E5-2665 processors and NVIDIA K20 Kepler graphics

processing unit (GPU) accelerators. To speed up the training process of DNN, we use parallel computing with 24 threads/central processing units

(CPUs) (2 sockets, 6 cores per socket, and 2 threads per core) and 2 GPUs.

Figure 5 shows the average error rate over 100 test data sets. It can be seen from Figure 5 that the classification error rate follows a U-shaped

curve, regardless of whether dropout is used or not on both CPU and GPU. For the same number of layers, the error rate decreases as the

WU ET AL. 5 of 16

FIGURE 2 Classification error rate for lasso
logistic regression

FIGURE 3 Classification error rates by different
methods

FIGURE 4 Classification error rates by different methods

number of hidden units grows. Additionally, for the same number of hidden units in each hidden layer, the error rate declines first and then rises

afterward. This explains why we focus on DNN with two hidden layers and 100 hidden units in each layer (dropout = 0.5) (see Tables A1–A4

for detailed numerical results for various numbers of layers with dropout = 0.5). Later, we add dropout = 0.2 for the input layer and apply

centerization and normalization to achieve lower error rate 0.0640 (CPU) and 0.0644(GPU).

To examine whether any layers of DNN carry the latent cluster information, we apply various popularly used clustering methods to the

bottom hidden layer XbottomLayer, top hidden layer XtopLayer, and the combination of the two hidden layers XbottomLayer + XtopLayer. The methods we

experimented with include the greedy subspace clustering (Park et al., 2014), the robust subspace clustering via thresholding (Heckel & Bölcskei,

2015), the K-means clustering Lloyd (1982), the hierarchical clustering (Rokach & Maimon, 2005), and the singular value decomposition coupled

with the aforementioned two methods, where the clustering error rates are shown in Table 3. The clustering error rate is the mismatch ratio of

cluster labels relative to the true labels up to permutation of classes. To get some visualization, we provide the T-distributed Stochastic Neighbor

Embedding (t-SNE) plots (van der Maaten & Hinton, 2008) in Figure 6. We can see from the plots that DNN did not preserve the clustering

6 of 16 WU ET AL.

TABLE 2 Bias-corrected distance correlations (DCs) for the top hidden layer of deep
neural network

Variable 1 Variable 2 Training DC Test DC

Ŷ YF 0.8829 0.8354

Ylasso YF 0.8717 0.8175

Yknn YF 0.8707 0.8197

YlinearSVM YF 0.8650 0.8081

YkernelSVM YF 0.8746 0.8310

YrandomForest YF 0.8345 0.8217

FIGURE 5 Classification error rate of deep neural network (DNN)

TABLE 3 Clustering error rates on hidden layers Method XbottomLayer XtopLayer XbottomLayer + XtopLayer

GreedySC 0.431913 0.470013 0.470083

RSCT 0.403967 0.430333 0.421375

K-means 0.448750 0.474450 0.460292

SVD + K-means 0.444742 0.470392 0.464654

Hierarchical 0.666054 0.666050 0.666079

SVD + Hierarchical 0.666075 0.666025 0.666071

Abbreviations: GreedySC, greedy subspace clustering; RSCT, robust sub-
space clustering via thresholding; SVD, singular value decomposition.

pattern and learned features in a different mechanism. The patterns shown in the three plots also support the trend in the DC values that we

calculated in Table 1. These high clustering error rates here with the low clustering error rate in Section 2.2, as well as the t-SNE visualization in

Figure 6, suggest that DNN does not conduct efficient clustering in any of its layers.

We also apply the classification methods discussed in Section 2.2 to just the top hidden layer. As seen from Figure 4, the classification

performance is highly similar to that in Figure 3 with the exception of the decision tree method. These results reinforce our previous statement

that DNN has comparable classification results to two-step procedures without performing clustering first.

In addition, we have also conducted a larger scale simulation study in which both the sample size and dimensionality are enlarged by 10 times.

Indeed, the implementation of such a large-scale study was very time-consuming. However, the patterns and phenomenon observed previously

stay the same in the large scale. A short summary of the main results for this additional large-scale simulation study is presented in Section A.5

(the full detailed results are available upon request).

WU ET AL. 7 of 16

FIGURE 6 T-distributed Stochastic Neighbor Embedding (t-SNE) visualization

3 SOME STATISTICAL INSIGHTS AND HEURISTIC ARGUMENTS

We attempt to provide some theoretical justifications on our empirical findings in this section. Our results have three components: classification

within each cluster, classification without learning the cluster information, and some heuristic statistical arguments on how DNN learns.

3.1 Gaussian classification in one subspace

We focus on classification within one subspace in this section. For simplicity, we drop all the superscripts corresponding to the subspace, and

thus the two class distributions are p(𝜇0,Σ) and p(𝜇1,Σ), and the observations are (xi,Yi), i = 1, … , n. We restrict ourselves to the lower

dimensional subspace, so the dimensionality is p. The class prior probabilities are assumed to be equal.

In this two-class Gaussian classification, the Bayes rule takes the form

𝛿B(x) = 𝟙{ΔTΣ−1(x − 𝜇) > 0},

where Δ = 𝜇1 − 𝜇0 and 𝜇 = 1

2
(𝜇0 + 𝜇1). With training data, we can plug in the sample estimates of 𝝁i and Σ, denoted by 𝝁̂i and Σ̂, and the

corresponding LDA classifier is

𝛿F(x) = 𝟙{Δ̂TΣ̂−1(x − 𝜇̂) > 0}with Δ̂ = 𝜇1 − 𝜇0.

It is well known that the Bayes risk, or the classification error rate of the Bayes rule 𝛿B(x), takes the form

RB = Φ̄(m∕2),

where m2 = ΔTΣ−1Δ is the Mahalanobis distance between two classes. For the LDA 𝛿F(x), conditional on the training data, the classification error

rate is

Rn(𝛿F) =
1
2

∑
k=0,1

Φ̄

(
(−1)k+1ΔTΣ̂−1(𝝁k − 𝝁̂k) + Δ̂Σ̂−1Δ̂∕2

(Δ̂TΣ̂−1ΣΣ̂−1Δ̂)1∕2

)
,

where Φ̄ = 1 − Φ with Φ the standard Gaussian cumulative distribution function.

The following result is a direct consequence from Li and Shao, 2015 (Theorem 1 (ii)). We include it for completeness.

Theorem 1. Assume that p∕n → 0 as n → ∞. Then for large enough n,

Rn(𝛿F) = RB + op(1). (3)

The above result suggests that when the latent subspace structure is known, classification can be highly accurate as long as the Mahalanobis

distance m2 is large enough. This is consistent with our results in Section 2.2. See, for example, Fan and Fan (2008), Fan, Jin, and Yao (2013), and

Fan, Kong, Li, and Zheng (2015) for more developments on high-dimensional classification.

3.2 Gaussian classification in two subspaces

We now consider the case where data are from the union of some lower dimensional subspaces. To simplify the proof, we consider two subspaces

S1 and S2 with p = D∕2, and we assume that the basis matrices take the forms AT
1
= [Ip,0] ∈ R

p×D and AT
2
= [0, Ip] ∈ R

p×D. In addition, on each

subspace Sk , we assume that the common covariance matrix for the mixture Gaussian is Ip. We also assume that conditional on the class label Y,

the observations have equal chance of coming from each of these two subspaces. These oversimplifications allow us to provide an explicit bound

for the overall classification error rate.

8 of 16 WU ET AL.

TABLE 4 Bias-corrected distance correlations (DCs) between different pairs of
variables

Clustering strategy Variable 1 Variable 2 DC

(1) LBFV, LBSV, XbottomLayer Z1 0.0558

HBFV, HBSV XtopLayer Z1 0.0508

XtwoLayers Z1 0.0516

(2) LB, HB XbottomLayer Z2 0.0631

XtopLayer Z2 0.0583

XtwoLayers Z2 0.0591

(3) FV, SV XbottomLayer Z3 0.0311

XtopLayer Z3 0.0276

XtwoLayers Z3 0.0281

Note. XbottomLayer: deep feature by the hidden layer after
the input layer; XtopLayer: deep feature by the hidden layer
before the output layer; XtwoLayers: the augmented matrix
[XbottomLayer,XtopLayer]; Zi: the one-hot cluster identities of
the strategy i). Abbreviations: B, brightness; F, front; H, high;
L, low; S, side; V, view.

With the above model structure, class Y = 0 observations have feature vectors independently drawn from the mixture of two degenerate

Gaussian distributions  (A1𝝁
(1)
0
,A1AT

1
) and  (A2𝝁

(2)
0
,A2AT

2
) with equal mixing probability. Similarly, class Y = 1 observations have feature

vectors independently drawn from the mixture of two degenerate Gaussian distributions  (A1𝝁
(1)
1
,A1AT

1
) and  (A2𝝁

(2)
1
,A2AT

2
) with equal mixing

probability.

Note that the subspace structure is completely latent to us, and we only observe data pairs (xi,Yi). We will focus on the LDA classification rule

by pretending that observations were from two class Gaussian classifications. This corresponds to the first boxplot labelled as LDA in Figure 3.

Theorem 2. Assume that 𝝁(1)
0

= 𝝁
(2)
1

= 0 and ||𝝁(1)
1
||2 = ||𝝁(2)

0
||2. Then the Bayes rule has risk

RB = 1
4
+ Φ̄(||𝝁(1)

1
||2). (4)

Assume further that p∕n → 0. Then for large enough n, it holds that

Rn(𝛿F) = RB + op(1).

The full proof is provided in the Appendix. It is interesting to see from Equation (4) that as long as ||𝝁(1)
1
||2 is large enough, the overall

classification error rate is close to 1∕4. In view of our simulation results in Section 2.2, it is seen that our theory is consistent with the result in

Figure 3 about LDA. Moreover, using our notation in this section, the asymptotic classification error within one subspace (as shown in Theorem

1) can be written as Φ̄(||𝝁(1)
1
||2∕2). Combining this result with Theorem 2, we can see that the latent subspace structure does impose additional

difficulties in classification, and the extra difficulty is mainly reflected in the term 1∕4.

In addition, we also provide in Section A.3 some heuristic statistical arguments on how DNN learns in our simple subspace classification model

introduced earlier, which support our empirical findings.

4 REAL DATA APPLICATION

In addition to the simulation studies, we also demonstrate the revealed phenomenon on the real data application of traffic sign recognition,

which is a crucial task in self-driving vehicles. The real data set (cropped images) is composed of 62 classes labelled as 0 to 61. The sizes of the

images are around 128 ∗ 128 pixels, and each one contains a tuple for RGB colour ranging from 0 to 255. An overview of the images is shown in

Figure A2 (Mathias, Timofte, Benenson, & Van Gool, 2013). We transform the images to 32 ∗ 32 pixels, which is beneficial for recognition. Thus,

the number of features for each image is 32 ∗ 32 ∗ 3 = 3,072. See also Cao, Song, Peng, Xiao, and Song (2019) and Shao et al. (2018).

Each image of a traffic sign may be captured by the camera from the front view or the side view, and brightness of the image could be low or

high. We apply three clustering strategies: (a) four clusters with low brightness and front view (LBFV), low brightness and side view (LBSV), high

brightness and front view (HBFV), and high brightness and side view (HBSV); (b) two clusters with low brightness (LB) and high brightness (HB);

and (c) two clusters with front view (FV) and side view (SV). These strategies are motivated by the intermediate results by clustering algorithms

(the images are clustered by brightness) and different aspect ratios of the images (the images are clustered by view angles). For instance, the

images of label 21 (stop sign) can be partitioned into four clusters as shown in Figure A3.

Without applying the cluster structure a priori, the classification error rates by LDA, random forest, SVM, and deep learning are 17.38%,

12.86%, 12.42%, and 4.73%, respectively.

If we utilize the cluster identities on the basis of the above three strategies, then the classification error rates can be reduced for the clusters,

in which images have low brightness and/or front view (LBFV of strategy 1, LB of strategy 2, and FV of strategy 3), which matches our intuition

on the difficulty level of detecting the traffic signs. The sample sizes for these four clusters HBFV, HBSV, LBFV, and LBSV in the training data

set are 1706, 799, 1380, and 690, respectively. As a result, random forest can lower the classification error rate by 1% using clustering strategies

WU ET AL. 9 of 16

1 and 2, SVM benefits from strategy 3 and also decreases the classification error rate by 1%, and the four-cluster strategy 1 facilitates LDA to

obtain a much improved classification error rate of 9.56% error rate. So does deep learning capture the cluster structure internally over some

hidden layers? As in our analysis for the simulation studies, we calculate the DCs of the deep features by the first hidden layer, second hidden

layer, and their combinations with the one-hot cluster identities of the three clustering strategies; see Table 4. We see that the DCs are quite low.

These real data results are consistent with our simulation experiment and theoretical interpretation that DNN does not learn the cluster structure

but yet is capable of achieving comparable or even better classification performance in comparison with other machine leaning methods with

clustering added on top.

5 CONCLUSION

The main purpose of this paper is to provide some statistical insights into how DNN learns in the subspace classification model. We have

designed a simple simulation study on two-class classification with data generated from a latent subspace structure. We compared DNN with

the two-step procedures of clustering followed by classification. We discovered that although DNN has comparable classification performance

to the two-step procedure, it does not conduct efficient clustering in any of its layers. This is a surprising result and in some sense provides

an important complement to the common belief of representational learning for DNN. We also provided theoretical results to support our

empirical findings and presented some heuristic statistical arguments on how DNN learns. The real data application of traffic sign recognition for

self-driving vehicles further showcased the revealed phenomenon.

DATA ACCESSIBILITY

The real data that support the findings of this study are openly available at https://btsd.ethz.ch/shareddata/.

The simulation data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID

Hao Wu https://orcid.org/0000-0001-8899-2734

REFERENCES

Aljalbout, E., Golkov, V., Siddiqui, Y., Strobel, M., & Cremers, D. (2018). Clustering with deep learning: Taxonomy and new methods. arXiv preprint

arXiv:1801.07648.

Amodei, D., Ananthanarayanan, S., Anubhai, R., Bai, J., Battenberg, E., Case, C., ..., & Chen, J. (2016). Deep speech 2: End-to-end speech recognition in

English and Mandarin. In International conference on machine learning (pp. 173–182). New York City.

Arbel, M., Sutherland, D., Bińkowski, M., & Gretton, A. (2018). On gradient regularizers for MMD GANs, Advances in neural information processing systems

(pp. 6700–6710). MIT Press: Montréal Canada.

Cao, J., Song, C., Peng, S., Xiao, F., & Song, S. (2019). Improved traffic sign detection and recognition algorithm for intelligent vehicles. Sensors, 19(18), 4021.

Chen, Y., Lin, Z., Zhao, X., Wang, G., & Gu, Y. (2014). Deep learning-based classification of hyperspectral data. IEEE Journal of Selected topics in applied earth

observations and remote sensing, 7(6), 2094–2107.

Cireşan, D., Meier, U., & Schmidhuber, J. (2012). Multi-column deep neural networks for image classification. arXiv preprint arXiv:1202.2745.

Deng, J., Guo, J., & Zafeiriou, S. (2018). Arcface: Additive angular margin loss for deep face recognition. arXiv preprint arXiv:1801.07698.

Dolz, J., Reyns, N., Betrouni, N., Kharroubi, D., Quidet, M., Massoptier, L., & Vermandel, M. (2017). A deep learning classification scheme based on

augmented-enhanced features to segment organs at risk on the optic region in brain cancer patients. arXiv preprint arXiv:1703.10480.

Dziugaite, G. K., Roy, D. M., & Ghahramani, Z. (2015). Training generative neural networks via maximum mean discrepancy optimization. arXiv preprint

arXiv:1505.03906.

Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural

networks. Nature, 542(7639), 115–118.

Fan, J., & Fan, Y. (2008). High dimensional classification using features annealed independence rules. The Annals of statistics, 36(6), 2605–2637.

Fan, Y., Jin, J., & Yao, Z. (2013). Optimal classification in sparse Gaussian graphic model. The Annals of Statistics, 41(5), 2537–2571.

Fan, Y., Kong, Y., Li, D., & Zheng, Z. (2015). Innovated interaction screening for high-dimensional nonlinear classification. The Annals of Statistics, 43(3),

1243–1272.

Fan, J., & Lv, J. (2008). Sure independence screening for ultrahigh dimensional feature space. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 70(5), 849–911.

Fan, Y., & Lv, J. (2013). Asymptotic equivalence of regularization methods in thresholded parameter space. Journal of the American Statistical Association,

108(503), 1044–1061.

Fan, Y., & Tang, C. Y. (2013). Tuning parameter selection in high dimensional penalized likelihood. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 75(3), 531–552.

Gao, L., Lv, J., & Shao, Q. (2019). Asymptotic distributions of high-dimensional nonparametric inference with distance correlation. arXiv preprint

arXiv:1910.12970.

https://orcid.org/0000-0001-8899-2734
https://orcid.org/0000-0001-8899-2734

10 of 16 WU ET AL.

Glorot, X., Bordes, A., & Bengio, Y. (2011). Domain adaptation for large-scale sentiment classification: A deep learning approach. In Proceedings of the 28th

International Conference on Machine Learning (ICML-11) (pp. 513–520). Bellevue, Washington, USA.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (pp. 770–778). Las Vegas, Nevada, USA.

Heaton, J., Polson, N., & Witte, J. H. (2017). Deep learning for finance: Deep portfolios. Applied Stochastic Models in Business and Industry, 33(1), 3–12.

Heckel, R., & Bölcskei, H. (2015). Robust subspace clustering via thresholding. IEEE Transactions on Information Theory, 61(11), 6320–6342.

Jacot, A., Gabriel, F., & Hongler, C. (2018). Neural tangent kernel: Convergence and generalization in neural networks, Advances in neural information

processing systems, pp. 8571–8580.

Jones, T., & Forrest, S. (1995). Fitness distance correlation as a measure of problem difficulty for genetic algorithms. In Proc. 6th Internat. Conf. on Genetic

Algorithms (pp. 184–192). Pittsburgh, PA.

Kong, Y., Li, D., Fan, Y., & Lv, J. (2017). Interaction pursuit in high-dimensional multi-response regression via distance correlation. The Annals of Statistics,

45(2), 897–922.

Kussul, N., Lavreniuk, M., Skakun, S., & Shelestov, A. (2017). Deep learning classification of land cover and crop types using remote sensing data. IEEE

Geoscience and Remote Sensing Letters, 14(5), 778–782.

Lee, H., Pham, P., Largman, Y., & Ng, A. Y. (2009). Unsupervised feature learning for audio classification using convolutional deep belief networks, Advances

in neural information processing systems (pp. 1096–1104). Vancouver, B.C., Canada: MIT Press.

Li, Q., & Shao, J. (2015). Sparse quadratic discriminant analysis for high dimensional data. Statistica Sinica, 25(2), 457–473.

Li, R., Zhong, W., & Zhu, L. (2012). Feature screening via distance correlation learning. Journal of the American Statistical Association, 107(499), 1129–1139.

Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., ..., & Sánchez, C. I. (2017). A survey on deep learning in medical image analysis.

Medical image analysis, 42, 60–88.

Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., & Song, L. (2017). SphereFace: Deep hypersphere embedding for face recognition. arXiv preprint arXiv:1704.08063.

Lloyd, S. (1982). Least squares quantization in PCM. IEEE transactions on information theory, 28(2), 129–137.

Lu, Y., Fan, Y., Lv, J., & Noble, W. S. (2018). DeepPINK: reproducible feature selection in deep neural networks, pp. 8689–8699.

Lv, J. (2013). Impacts of high dimensionality in finite samples. Ann Stat, 41(4), 2236–2262.

van der Maaten, L, & Hinton, G. (2008). Visualizing data using t-SNE. Journal of machine learning research, 9(Nov), 2579–2605.

Majumder, N., Poria, S., Gelbukh, A., & Cambria, E. (2017). Deep learning-based document modeling for personality detection from text. IEEE Intelligent

Systems, 32(2), 74–79.

Mathias, M., Timofte, R., Benenson, R., & Van Gool, L. (2013). Traffic sign recognition—how far are we from the solution? In The 2013 international joint

conference on neural networks (ijcnn) (pp. 1–8). Dallas, Texas, USA: IEEE.

Mhaskar, H. N., & Poggio, T. (2016). Deep vs. shallow networks: An approximation theory perspective. Analysis and Applications, 14(06), 829–848.

Park, D., Caramanis, C., & Sanghavi, S. (2014). Greedy subspace clustering. In Advances in neural information processing systems (pp. 2753–2761). Montréal

Canada.

Patel, A. B., Nguyen, T., & Baraniuk, R. G. (2015). A probabilistic theory of deep learning. arXiv preprint arXiv:1504.00641.

Poggio, T., Kawaguchi, K., Liao, Q., Miranda, B., Rosasco, L., Boix, X., ..., & Mhaskar, H. (2017). Theory of deep learning III: Explaining the non-overfitting

puzzle. arXiv preprint arXiv:1801.00173.

Reshef, D. N., Reshef, Y. A., Finucane, H. K., Grossman, S. R., McVean, G., Turnbaugh, P. J., ..., & Sabeti, P. C. (2011). Detecting novel associations in large

data sets. science, 334(6062), 1518–1524.

Rokach, L., & Maimon, O. (2005). Clustering methods, Data mining and knowledge discovery handbook, pp. 321–352.

Saxe, A., Bansal, Y, Dapello, J, Advani, M, Kolchinsky, A, Tracey, B., & Cox, D. (2018). On the information bottleneck theory of deep learning. In International

Conference on Learning Representations, IOP Publishing, 124020.

Shao, F., Wang, X., Meng, F., Rui, T., Wang, D., & Tang, J. (2018). Real-time traffic sign detection and recognition method based on simplified Gabor

wavelets and CNNs. Sensors, 18(10), 3192.

Socher, R., Huval, B., Bath, B., Manning, C. D., & Ng, A. Y. (2012). Convolutional-recursive deep learning for 3D object classification. In Advances in neural

information processing systems (pp. 656–664). Lake Tahoe, Nevada, USA.

Soltanolkotabi, M., Elhamifar, E., & Candes, E. J. (2014). Robust subspace clustering. The Annals of Statistics, 42(2), 669–699.

Székely, G. J, & Rizzo, M. L. (2013). The distance correlation t-test of independence in high dimension. Journal of Multivariate Analysis, 117, 193–213.

Szkely, G. J., Rizzo, M. L., & Bakirov, N. K. (2007). Measuring and testing dependence by correlation of distances. The Annals of Statistics, 35(6), 2769–2794.

Wang, F., Cheng, J., Liu, W., & Liu, H. (2018). Additive margin softmax for face verification. IEEE Signal Processing Letters, 25(7), 926–930.

Wang, H., Wang, Y., Zhou, Z., Ji, X., Li, Z., Gong, D., ..., & Liu, W. (2018). CosFace: Large margin cosine loss for deep face recognition. arXiv preprint

arXiv:1801.09414.

Wen, Y., Zhang, K., Li, Z., & Qiao, Y. (2019). A comprehensive study on center loss for deep face recognition. International Journal of Computer Vision, 127,

1–16.

How to cite this article: Wu H, Fan Y, Lv J. Statistical insights into deep neural network learning in subspace classification. Stat.

2020;9:e273. https://doi.org/10.1002/sta4.273

https://doi.org/10.1002/sta4.273

WU ET AL. 11 of 16

APPENDIX A

One real-life problem that motivates our study is shown in Figure A1, where we classify cats and dogs from the a collection of images capturing

different activities (e.g., eating, playing, and sleeping). In our model, we mimic the set of images through a high-dimensional space, which is the

union of three subspaces, and each low-dimensional subspace corresponds to one type of activities.

A.1 Building deep neural networks

We train and test different structures of DNNs over 100 training and test data sets with the same sample size, which are randomly generated

according to our model setting. We choose the optimal hyper parameters on the validation set (10% of the training set). DNNs are run on

both CPUs and GPUs; we discover that when the network is shallow or has small number of hidden units, CPUs outperform GPUs in terms of

computational speed. However, as the number of hidden layers and units increases, GPUs definitely run faster.

A.2 Proof of Theorem 2

Proof. Recall that under our model assumption, class Y = 0 observations have feature vectors independently drawn from the mixture of

two degenerate Gaussian distributions  (A1𝝁
(1)
0
,A1AT

1
) and  (A2𝝁

(2)
0
,A2AT

2
) with equal mixing probability. Similarly, class Y = 1 observations

have feature vectors independently drawn from the mixture of two degenerate Gaussian distributions  (A1𝝁
(1)
1
,A1AT

1
) and  (A2𝝁

(2)
1
,A2AT

2
)

FIGURE A1 Classification of cats and
dogs (copyright by Google Images)

Layer Training error Test error Run time (s)

CPU GPU CPU GPU CPU GPU

1 0.1282 0.1283 0.1548 0.1536 8.1665 14.4766

2 0.0923 0.0875 0.1328 0.1274 9.5305 21.9774

3 0.1016 0.1262 0.1518 0.1521 11.0447 19.4718

4 0.0993 0.0961 0.1555 0.1580 12.7921 26.6293

5 0.1104 0.1263 0.1697 0.1826 14.3730 28.7950

10 0.4439 0.4483 0.4540 0.4575 22.6595 38.1027

Abbreviations: CPU, central processing unit; DNN, deep neural network;
GPU, graphics processing unit.

TABLE A1 DNN with hidden units [10]

Layer Training error Test error Run time (s)

CPU GPU CPU GPU CPU GPU

1 0.1051 0.1085 0.1324 0.1339 9.5807 19.5555

2 0.0500 0.0510 0.0940 0.0956 12.1759 21.2431

3 0.0391 0.0399 0.1033 0.1051 14.8497 23.4055

4 0.0330 0.0330 0.1213 0.1233 18.1428 26.5479

5 0.0342 0.0318 0.1469 0.1433 21.0214 37.0104

10 0.2165 0.1794 0.2649 0.2371 35.0329 50.8225

Abbreviations: CPU, central processing unit; DNN, deep neural network;
GPU, graphics processing unit.

TABLE A2 DNN with hidden units [20]

12 of 16 WU ET AL.

TABLE A3 DNN with hidden units [50] Layer Training error Test error Run time (s)

CPU GPU CPU GPU CPU GPU

1 0.0848 0.0847 0.1139 0.1137 10.1360 19.5282

2 0.0306 0.0300 0.0795 0.0795 15.1895 17.0301

3 0.0105 0.0105 0.0812 0.0812 20.1912 16.5940

4 0.0057 0.0054 0.0967 0.0956 25.2243 17.9423

5 0.0033 0.0030 0.1389 0.1342 30.0675 29.2289

10 0.0170 0.0255 0.1565 0.1599 53.2125 40.1224

Abbreviations: CPU, central processing unit; DNN, deep neural network;
GPU, graphics processing unit.

TABLE A4 DNN with hidden units [100] Layer Training error Test error Run time (s)

CPU GPU CPU GPU CPU GPU

1 0.0781 0.0777 0.1077 0.1073 12.8185 18.7767

2 0.0201 0.0206 0.0765 0.0764 21.2060 21.5077

3 0.0030 0.0031 0.0770 0.0775 29.3675 24.0765

4 0.0013 0.0013 0.0813 0.0807 37.3774 26.7721

5 0.0009 0.0008 0.1002 0.0990 45.5618 23.3326

10 0.0021 0.0045 0.1422 0.1404 84.7540 42.6131

Abbreviations: CPU, central processing unit; DNN, deep neural network;
GPU, graphics processing unit.

with equal mixing probability. Therefore, for a random observation x ∈ R
D from class k, we have the condition mean

mk ≡ E[x|Y = k] =

(1

2
𝜇
(1)
k

1

2
𝜇
(2)
k

)
,

and the conditional covariance matrix

Var(x|Y = k) =

(1

2
Ip + 1

4
𝜇
(1)
k
(𝜇(1)

k
)T 0

0 1

2
Ip + 1

4
𝜇
(2)
k
(𝜇(2)

k
)T

)
.

Therefore, for an observation randomly drawn, the unconditional covariance matrix can be calculated as

Var(x) = E[Var(x|Y)] + Var(E[x|Y]) = (
C11 C12

C21 C22

)
,

where

C11 = 1
2

Ip +
3

16
(𝜇(1)

0
(𝜇(1)

0
)T + 𝜇

(1)
1
(𝜇(1)

1
)T),

C12 = 1
16

(𝜇(1)
0
(𝜇(2)

0
)T + 𝜇

(1)
1
(𝜇(2)

1
)T),

C21 = 1
16

(𝜇(2)
0
(𝜇(1)

0
)T + 𝜇

(2)
1
(𝜇(1)

1
)T),

C22 = 1
2

Ip +
3

16
(𝜇(2)

0
(𝜇(2)

0
)T + 𝜇

(2)
1
(𝜇(2)

1
)T).

Recall that we assume 𝝁
(1)
0

= 0 and 𝝁
(2)
1

= 0. Thus, the above conditional mean and unconditional covariance matrix can be simplified as

m0 = E[x|Y = 0] =

(
0

1

2
𝜇
(2)
0

)
,

m1 = E[x|Y = 1] =

(
1

2
𝜇
(1)
1

0

)
,

and

Σ0 ≡ Var(x) =

(1

2
Ip + 3

16
𝜇
(1)
1
(𝜇(1)

1
)T 0

0 1

2
Ip + 3

16
𝜇
(2)
0
(𝜇(2)

0
)T

)
,

respectively.

WU ET AL. 13 of 16

Now, suppose we completely ignore the subspace structure and use the Bayes rule from two class Gaussian classifications, that is, by

pretending that the data were from Gaussian distributions

 (m0,Σ0) and  (m1,Σ0) ,

we obtain the following decision rule

𝛿(x) = 𝟙{r(x) ∶=
(

x −
m0 + m1

2

)T
Σ0

−1(m1 − m0) > 0}. (A1)

We next calculate the classification error of the above decision rule (A1). For a new observation x with true class label Y, by conditional

probability,

P(𝛿(x) ≠ Y) = P(𝛿(x) = 0|Y = 1)1
2
+ P(𝛿(x) = 1|Y = 0)1

2
. (A2)

We first calculate P(𝛿(x) = 0|Y = 1). Because conditional on class 1, a random observation has equal probability of coming from the two

subspaces, we have

P(𝛿(x) = 0|Y = 1) = 1
2

P(𝛿(x) = 0|Y = 1, x ∈ S1) +
1
2

P(𝛿(x) = 0|Y = 1, x ∈ S2). (A3)

Now, recall that for a random observation x from class Y = 1 and subspace S1, we have

x ∼  (A1𝝁
(1)
1
,A1AT

1).

Therefore, the classification rule 𝛿(x) has Gaussian distribution with mean and variance

E[r(x)|Y = 1, x ∈ S1] =
3
8
(𝝁(1)

1
)T

(
1
2

Ip +
3

16
𝜇
(1)
1
(𝜇(1)

1
)T

)−1

𝝁
(1)
1

+ 1
8
(𝝁(2)

0
)T

(
1
2

Ip +
3

16
𝜇
(2)
0
(𝜇(2)

0
)T

)−1

𝝁
(2)
0

= 3
4

||𝝁(1)
1
||2

2

1 + 3

8
||𝝁(1)

1
||2

2

+ 1
4

||𝝁(2)
0
||2

2

1 + 3

8
||𝝁(2)

0
||2

2

=
||𝝁(1)

1
||2

2

1 + 3

8
||𝝁(1)

1
||2

2

Var(r(x)|Y = 1, x ∈ S1) =
1
4
(𝝁(1)

1
)T

(
1
2

Ip +
3

16
𝜇
(1)
1
(𝜇(1)

1
)T

)−2

𝝁
(1)
1

=
||𝝁(1)

1
||2

2

(1 + 3

8
||𝝁(1)

1
||2

2
)2
,

respectively, where we have used the assumption that ||𝝁(2)
0
||2

2
= ||𝝁(1)

1
||2

2
. Thus, it can be calculated that

P(𝛿(x) = 0|Y = 1, x ∈ S1) = Φ̄
(||𝝁(1)

1
||2

)
.

Similarly, it can be derived that

P(𝛿(x) = 0|Y = 1, x ∈ S2) = Φ
(||𝝁(2)

1
||2

)
= 1∕2,

P(𝛿(x) = 1|Y = 0, x ∈ S1) = Φ
(||𝝁(1)

0
||2

)
= 1∕2,

P(𝛿(x) = 1|Y = 0, x ∈ S2) = Φ̄
(||𝝁(2)

0
||2

)
.

This proves the first result of the theorem.

Combining the above result with Equations (A2) and (A3), we arrive at

R(𝛿B) = P(𝛿(x) ≠ Y) = 1
4
+ 1

2
Φ̄
(||𝝁(2)

0
||2

)
.

When the population parameters are estimated from sample, as long as the sample size satisfying that p∕n → 0, then using similar arguments

as in Li and Shao (2015), we can prove that conditional on training data, the classification error rate of the plug-in classifier 𝛿F(x) satisfies

that with asymptotic probability 1,

Rn(𝛿F) → R(𝛿B).

This completes the proof of the theorem.

A.3 Some heuristic arguments on how DNN learns in subspace classification

In this section, we intend to provide some heuristic statistical arguments on how DNN learns in our simple subspace classification model

introduced earlier. In such a model, there are k subspaces Sj's of the ambient feature space R
D with 1 ≤ j ≤ k; and within each subspace, there are

two classes that are labelled as 0 and 1. For simplicity, we assume that the k subspaces Sj's are generated independently and that each subspace

Sj has dimensionality p = pj and is uniformly distributed on the Grassmann manifold GD,p, which is composed of all p-dimensional subspaces

of RD. See, for example, Lv (2013) for some brief background on the geometry and invariant measure of Grassmann manifold. To simplify the

technical exposition, we further assume that for each subspace Sj, the data distributions corresponding to the two classes 0 and 1 are  (0, Ipj
)

and  (𝝁j, Ipj
), respectively, and that each class on each subspace has sample size n0. Thus, the total sample size is n = 2kn0. Moreover, assume

that the k vectors 𝝁j's are also statistically independent of each other. Denote by Hj the (pj − 1)-dimensional affine hyperplane passing through

point 2−1
𝝁j and with normal vector 𝝁j. The half space of subspace Sj containing point 𝝁j is referred to as the positive half space for brevity. Then

14 of 16 WU ET AL.

FIGURE A2 Traffic signs of labels 0 to 61

an ideal classification procedure is assigning the true subspace cluster label to each data point and classifying it as class 1 or 0 according to

whether or not the data point lies in the positive half space of the corresponding subspace. Such an ideal classification procedure is an optimal

classifier because it knows the true subspace cluster label and the underlying classifier given each subspace is the Bayes classifier.

We next gain some statistical insights into how DNN tries to mimic closely the above ideal classification procedure without recovering the

latent subspace cluster label. Although the k subspaces Sj's lie in the same ambient Euclidean space R
D, it is more useful to view them as points on

the Grassmann manifolds, which are compact Riemannian homogeneous spaces. To ease the technical presentation of the underlying geometry,

we further assume that all the k subspaces Sj's have the same dimensionality p. Thus, (Sj)1≤j≤k is simply an independent and identically distributed

(i.i.d.) sample from the uniform (Haar) distribution on the Grassmann manifold GD,p. By the classical manifold embedding theory from geometry

and topology, the Grassmann manifold GD,p, which is a curved space of dimension p(D − p), can be embedded into a higher dimensional Euclidean

space where the distance on the Grassmann manifold is preserved. Here, in a similar spirit, DNN tries to embed the points on each subspace Sj in

a high-dimensional latent Euclidean space that is different than the original ambient Euclidean space R
D.

Let us consider DNN with multiple hidden layers and the sigmoid layer at the top for two-class classification. As is common in the more

recent deep learning literature, we consider the rectified linear unit (ReLU) activation function for all the neurons in the hidden layers. For a

given ReLU neuron l, assume that the inputs are zi with 1 ≤ i ≤ ml, the bias is w0l, and the network weights are wil with 1 ≤ i ≤ ml. Denote

by zl = (1, z1, … , zml
)T and wl = (w0l,w1l, … ,wml l)

T the input vector and the weight vector, respectively, associated with this particular ReLU

neuron, where the bias is regarded as the weight for the constant input 1. Then the output of this neuron is given by hl(zl,wl) = (zT
l

wl)+, where

a+ = max(0, a) for each scalar a. In view of such a representation, each ReLU neuron in the first (bottom) hidden layer projects the input vector

x = (x1, … , xD)T ∈ R
D onto the line {t(w1l, … ,wml l)

T ∶ t ∈ R} with a given centre and scale and zeros out all the negative values of this new

coordinate, that is, collapsing the negative half of the real line to a single point zero.

Assume that there are at least kp ReLU neurons in the bottom hidden layer. It is easy to see that for each 1 ≤ j ≤ k, there exist a set of p ReLU

neurons with some suitable bias and weight parameters such that the resulting p ReLU coordinates as given above provide a one-to-one mapping

from the positive half space associated with subspace Sj to R
p
+ and shrink the corresponding negative half space toward the origin (by comparing

each data point in the positive half space and its mirror image with respect to Hj), where R+ stands for the positive half of the real line. To simplify

the arguments, assume that the total number of ReLU neurons in the bottom hidden layer is exactly kp; otherwise, we assign zero values to all the

parameters of those remaining ReLU neurons for the moment. By our construction, the network parameters for the p ReLU neurons associated

WU ET AL. 15 of 16

FIGURE A3 Instances of traffic signs in
each cluster

FIGURE A4 Classification error rates of linear discriminant analysis
(LDA) and deep neural network (DNN)

with subspace Sj depend only on Sj and 𝝁j and thus are independent of all other Sl's and 𝝁l's with 1 ≤ l ≠ j ≤ k. To mimic the random initialization

of network parameters in the training of DNN, let us further add some small independent Gaussian noises to the network parameters for the

bottom hidden layer. Applying the classical deviation bounds for light-tailed distributions with conditioning, we can show that as the growth rates

of k, p, and D relative to sample size n are properly controlled, the above choice of random network weights maps each subspace Sj into a higher

dimensional space R
kp
+ ; and with significant probability, such a mapping is a small perturbation of the aforementioned mapping from subspace Sj

to R
p
+; see, for example, the technical arguments in Fan and Lv (2008), Fan and Lv (2013), Fan and Tang (2013), and Lv (2013).

Observe that in our above probabilistic and geometric construction, all the data points in the positive half space associated with each subspace

Sj tend to concentrate on a relatively large compact set in R
kp
+ ∖{0} under the latent ReLU coordinates, whereas all the remaining data points

tend to concentrate around the origin due to the shrinkage effect mentioned before. Such a geometric representation of the two classes in a

higher dimensional latent Euclidean space leads to the fact that the training loss of the DNN can approximate closely that of the above ideal

classification procedure as the sample size n increases. Therefore, the resulting classification accuracy of the DNN can mimic closely that of the

ideal classification procedure. Meanwhile, it is important to notice that by its nature, the latent representation given by the ReLU neurons in the

hidden layers generally does not lead to successful recovery of the latent subspace cluster labels.

If the width of the neural network is limited or there are multiple classes within each subspace cluster, we need to use the ReLU neurons in

additional hidden layers to build up effective embedding of the subspaces in a high-dimensional latent Euclidean space. A formal, rigorous theory

on the above heuristic arguments and statistical insights for DNN in the subspace classification model will be presented in a separate paper.

A.4 Figures from real data application

A.5 Additional large-scale simulation study

Additionally, we simulate nk = 8,000 observations from each subspace Sk , and we set D = 1,000 and p = 40. So we end up with n = 24,000

observations (xi,Yi) in total, where each feature vector xi has dimensionality D = 1,000. The patterns and phenomenon observed previously stay

the same in the large scale.

The classification error rate of LDA without clustering is 0.1795, whereas the classification error rate of DNN (without clustering) is 0.0361,

which is comparable with the value 0.0371 for LDA with the knowledge of cluster identities; see Figures A4 and A5 for details.

16 of 16 WU ET AL.

FIGURE A5 Classification error rate for linear discriminant analysis
(LDA) regarding subspaces

TABLE A5 Bias-corrected distance correlations (DCs) Variable 1 Variable 2 DC

Xc Zsubspace 0.8944

XbottomLayer Zsubspace 0.2014

XtopLayer Zsubspace 0.1501

Note. Xc : transformed X via clustering;
XbottomLayer: n-vector representing the hidden
layer after the input layer; XtopLayer: n-vector
representing the hidden layer before the out-
put layer; Zsubspace: the latent subspace label
for each observation. Bold data emphasize the
trend.

TABLE A6 Clustering error rates on hidden layers Method XbottomLayer XtopLayer XbottomLayer + XtopLayer

GreedySC 0.479288 0.555154 0.540575

RSCT 0.498617 0.495413 0.497163

K-means 0.502529 0.513588 0.509113

SVD + K-means 0.510063 0.513175 0.506933

Hierarchical 0.666613 0.666617 0.666625

SVD + Hierarchical 0.666613 0.666617 0.666613

Abbreviations: GreedySC, greedy subspace clustering; RSCT, robust sub-
space clustering via thresholding; SVD, singular value decomposition.

To examine whether any layers of DNN carry the latent cluster information, again, we apply various popularly used clustering methods to the

bottom hidden layer (bHidden), top hidden layer (tHidden), and the combination of the two hidden layers (bHidden + tHidden) in Table A6. We

also calculate the bias-corrected distance correlation of Zsubspace paired with Xc , XbottomLayer, and XtopLayer in Table A5. As seen in these tables, the

high clustering error rates and decreasing trend of bias-corrected distance correlations stay the same in the large scale, suggesting that DNN

does not really do clustering in any of its layers in the large-scale model setting.

	Statistical insights into deep neural network learning in subspace classification
	Abstract
	INTRODUCTION
	EXPERIMENTS
	Model setting and some initial results
	Classification methods without clustering versus with clustering
	DNNs via TensorFlow

	SOME STATISTICAL INSIGHTS AND HEURISTIC ARGUMENTS
	Gaussian classification in one subspace
	Gaussian classification in two subspaces

	REAL DATA APPLICATION
	CONCLUSION
	Data Accessibility
	References
	Appendix A
	Building deep neural networks
	Proof of Theorem 2
	Some heuristic arguments on how DNN learns in subspace classification
	Figures from real data application
	Additional large-scale simulation study

