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We investigate the robustness of the model-X knockoffs framework with
respect to the misspecified or estimated feature distribution. We achieve such
a goal by theoretically studying the feature selection performance of a practi-
cally implemented knockoffs algorithm, which we name as the approximate
knockoffs (ARK) procedure, under the measures of the false discovery rate
(FDR) and k-familywise error rate (k-FWER). The approximate knockoffs
procedure differs from the model-X knockoffs procedure only in that the
former uses the misspecified or estimated feature distribution. A key tech-
nique in our theoretical analyses is to couple the approximate knockoffs pro-
cedure with the model-X knockoffs procedure so that random variables in
these two procedures can be close in realizations. We prove that if such cou-
pled model-X knockoffs procedure exists, the approximate knockoffs proce-
dure can achieve the asymptotic FDR or k-FWER control at the target level.
We showcase three specific constructions of such coupled model-X knock-
off variables, verifying their existence and justifying the robustness of the
model-X knockoffs framework. Additionally, we formally connect our con-
cept of knockoff variable coupling to a type of Wasserstein distance.

1. Introduction. The knockoffs inference framework (Barber and Candès, 2015; Candès
et al., 2018; Barber and Candès, 2019) is a powerful innovative tool for feature selection with
controlled error rates. In particular, the model-X knockoffs (Candès et al., 2018) achieves the
false discovery rate (FDR) control at a predetermined level in finite samples without requir-
ing any specific model assumptions on how the response depends on the features, making it
an attractive option for feature selection in a wide range of statistical applications. The funda-
mental idea of the knockoffs procedure is to construct knockoff variables that are exchange-
able in distribution with the original features but are independent of the response conditional
on the original variables. These knockoff variables serve as a control group for the origi-
nal features, allowing researchers to identify relevant original features for the response. The
model-X knockoffs inference has gained increasing popularity since its inception and there
have been flourishing developments and extensions of the knockoffs framework and spirits,
such as the k-familywise error rate (k-FWER) control with knockoffs (Janson and Su, 2016),
power analysis for knockoffs procedure (Fan et al., 2020a; Spector and Janson, 2022; Wang
and Janson, 2022; Weinstein et al., 2020; Fan et al., 2020b), derandomized knockoffs (Ren,
Wei and Candès, 2021; Ren and Barber, 2022), knockoffs inference for time series data (Chi
et al., 2023), kernel knockoffs procedure (Dai, Lyu and Li, 2022), and FDR control by data
splitting or creating mirror variables (Li and Maathuis, 2021; Dai et al., 2022; Cao, Sun and
Yao, 2021; Guo et al., 2022).

A key assumption in the model-X knockoffs inference is that the joint distribution of
features is known. However, such information is almost never available in practice. There
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has been overwhleming empirical evidence that the model-X knockoffs framework is robust
to misspecified or estimated feature distributions (Candès et al., 2018; Sesia, Sabatti and
Candès, 2019; Jordon, Yoon and van der Schaar, 2018; Lu et al., 2018; Zhu et al., 2021;
Romano, Sesia and Candès, 2020). Yet, the theoretical characterization of its robustness is
still largely missing. A notable exception is the recent work of Barber, Candès and Sam-
worth (2020), where it was formally and elegantly shown that the knockoffs data matrix
collecting the knockoff variables can be generated from a distribution, which we name as the
working distribution for the ease of presentation, that is different from the true underlying
feature distribution, and that the resulting FDR inflation can be measured by the empirical
Kullback–Leibler (KL) divergence between the true conditional distribution Xj |X−j and the
working conditional distribution. Here,Xj ∈R stands for the jth feature,X−j ∈Rp−1 stands
for the feature vector with the jth feature removed, and p is the feature dimensionality. Two
important assumptions in their analyses for ensuring the asymptotic FDR control are 1) the
working distribution should be learned independently from the training data used for feature
selection and 2) the empirical KL divergence between the two knockoffs data matrices (of
diverging dimensionalities) generated from the working and true distributions, respectively,
needs to vanish as the sample size increases. Although their results are general and apply
to arbitrary dependence structure of the response on features, these two assumptions do not
always describe the practical implementation. Our results in the current paper are free of the
two assumptions discussed above.

To put more content into our statements above, especially the one about assumption 2), let
us consider the scenario where the true feature matrix has independent and identically dis-
tributed (i.i.d.) entries from the t-distribution with ν degrees of freedom, but we misspecify it
and use the Gaussian distribution as a working distribution to generate the knockoff variable
matrix X̂ ∈ Rn×p, where n is the sample size. It can be calculated that the empirical KL di-
vergence between X̂ and the model-X knockoff variable matrix X̃ ∈Rn×p defined in Barber,
Candès and Samworth (2020) has mean and variance both at order np

ν(ν+p) . Thus, only when
ν2� nmin(n,p) (which is equivalent to np

ν(ν+p) → 0), the FDR inflation as derived therein

can vanish asymptotically. In contrast, our theory shows that as long as ν2� s4(log p)4+4/γ

for some γ ∈ (0,1) with s� n1/2 a sparsity parameter, the knockoffs procedure based on the
working distribution can achieve the asymptotic FDR control. More details for our results and
model assumptions are summarized formally in Section 4.1. We provide additional compar-
isons of our results with those of Barber, Candès and Samworth (2020) in various parts of the
paper where more specifics can be discussed. We emphasize and acknowledge that Barber,
Candès and Samworth (2020) established general robustness results without specific model
assumptions, while some of our results rely on certain specific model assumptions. The main
point we advocate here is that a different notion of closeness than the KL divergence can be
advantageous in studying the robustness of the model-X knockoffs. We also formally connect
our concept of closeness to a type of Wasserstein distance. We provide detailed comparison
with some other existing work in the literature in Section 6.

The major goal of our paper is to establish a general theory on the robustness of the model-
X knockoffs framework for the FDR and k-FWER control. We approach the problem by
studying the performance of the approximate knockoffs (ARK) procedure, an algorithm that
is most popularly implemented in practice when applying the knockoffs framework. The
ARK procedure differs from the model-X knockoffs in that the former generates the knock-
off feature matrix from a working distribution that can be misspecified or learned from the
same training data for feature selection. By showing that the ARK procedure achieves the
asymptotic FDR and k-FWER control as sample size increases, we can verify the robustness
of the model-X knockoffs. An important idea in our technical analyses is coupling, where we
pair the ARK procedure with the model-X knockoffs procedure in such a way that random
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variables in these two paired procedures are close in realizations with high probability. Here-
after, we will refer to the model-X knockoffs as the perfect knockoffs procedure to emphasize
its difference from the approximate knockoffs procedure. It is important to emphasize that we
require the realizations of random variables in the paired procedures to be close, instead of
the corresponding distributions being close. This is a major distinction from the assumption
in Barber, Candès and Samworth (2020). Our new notion of closeness allows us to justify
the robustness of the model-X knockoffs in some broader contexts not covered by studies in
the existing literature. We also emphasize that although our conditions are imposed on the
perfect knockoff variables, we do not need to know or construct them in implementation; the
existence of such variables is sufficient for our theoretical robustness analyses.

We present our theory by first laying out general conditions on the existence of the cou-
pled perfect knockoff statistics and their closeness to the approximate knockoff statistics in
Section 2, and then provide examples justifying these conditions in Sections 3 and 4. More
specifically, our theory has three layers, related to different stages in applying the knock-
offs inference procedure. Our preliminary theory in Section 2 directly makes assumptions
on the quality of the approximate knockoff statistics (cf. (3)) by requiring the existence and
closeness of their coupled perfect knockoff statistics. Then under some regularity conditions
imposed on the distribution of these perfect knockoff statistics, we prove that the FDR and
k-FWER are controlled asymptotically using the approximate knockoff statistics. This lays
the theoretical foundation for our subsequent analyses in Sections 3 and 4.

The second layer of our theory, presented in Section 3, delves deeper and replaces the
coupling condition imposed on the knockoff statistics in Section 2 with a coupling condition
on the approximate knockoff variables generated from some mispecified or estimated feature
distribution. Similar in nature to the coupling condition in Section 2, this new condition as-
sumes that there exist perfect knockoff variables that can be coupled with approximate knock-
off variables so that their realizations are close to each other with high probability. Since
knockoff statistics are known functions of knockoff variables, such alternative condition in-
tuitively and naturally leads to the verification of the coupling condition on knockoff statistics
in Section 2. Indeed, we showcase using two commonly analyzed knockoff statistics, namely
the marginal correlation statistics and the regression coefficient difference (RCD) statistics,
that the coupling condition on knockoff variables can guarantee the coupling condition on
knockoff statistics. We also verify that for each of these two constructions of knockoff statis-
tics, the other regularity conditions in our preliminary theory in Section 2 also hold, ensuring
the asymptotic FDR and k-FWER control. Notably, our theory also reveals that, the marginal
correlation is of “low accuracy,” and needs more stringent conditions than RCD to achieve
asymptotic FDR control. This message is consistent with Niu et al. (2024) when studying the
conditional randomization test using the model-X framework.

The last layer of our theory is presented in Section 4 and showcases three specific construc-
tions of the coupled perfect knockoff variables. By imposing conditions on the misspecified
or estimated feature distribution, we construct explicitly the coupled perfect knockoff vari-
ables and prove that the coupling conditions in the first and second layers of our general
theory are satisfied. This gives us a complete theory with conditions imposed on the work-
ing distribution for generating knockoff variables and verifies the robustness of the model-X
knockoffs inference procedure. Our theory allows high dimensionality of features and allows
in-sample estimation of the feature distribution.

The rest of the paper is organized as follows. Section 2 first introduces the approximate
knockoffs procedure and then presents the general conditions and theory for the asymptotic
FDR control. We also introduce the coupling idea, a key technique in our theoretical analyses.
We illustrate our general theory using two commonly used constructions of knockoff statistics
in Section 3. Section 4 further provides three specific constructions of the coupled perfect
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knockoff variables. We present companion theory for robust k-FWER control in Section 5.
We provide detailed discussions on some most related works in Section 6, and present some
simulation examples in Section 7. We conclude our paper by summarizing the key results and
discussing some future research directions in Section 8. All the proofs and technical details
are provided in the Supplementary Material.

To facilitate the technical presentation, let us introduce some notation that will be used
throughout the paper. We use an� bn or an = o(bn) to represent an/bn→ 0, an� bn to
represent an/bn→∞, and an . bn or an = O(bn) to represent an ≤ Cbn for an absolute
constant C > 0. Let a ∧ b and a ∨ b be the minimal and maximal values of a and b, re-
spectively. For a vector x ∈ Rp, denote by ‖x‖1, ‖x‖2, and ‖x‖0 the `1-norm, `2-norm, and
`0-norm, respectively. For 1≤ j ≤ p, xj is the jth component of x and x−j is a subvector of
x with the jth component removed. For a matrix M ∈Rn×p, denote by Mi,j the (i, j)th entry
of M, Mj the jth column of M, and MA1,A2

a submatrix of M consisting of (Mi,j)i∈A1,j∈A2

for sets A1 ⊂ {1, · · · , n} and A2 ⊂ {1, · · · , p}. Let ‖M‖max and ‖M‖2 be the maximum
norm and spectral norm of a matrix M, respectively. For 1 ≤ j ≤ p, −j represents the set
{1, · · · , p} \ {j}, and denote by |A| the cardinality of set A. For a positive definite matrix Σ,
let λmin(Σ) and λmax(Σ) be the smallest and largest eigenvalues of Σ, respectively.

2. Preliminary results on robust knockoffs inference via coupling.

2.1. Model setup and model-X knockoffs framework. Assume that we have n i.i.d. ob-
servations {(xi, yi)}ni=1 from the population (X,Y ), where X = (X1, · · · ,Xp)

T is the p-
dimensional feature vector and Y ∈ R is a scalar response. Here, the feature dimensionality
p can diverge with the sample size n. Adopting the matrix notation, the n i.i.d. observations
can be written as the data matrix X = (Xi,j) ∈ Rn×p collecting the values of all the features
and vector y = (y1, · · · , yn)T ∈ Rn collecting the values of the response. A feature Xj is
defined as null (or irrelevant) if and only if it is independent of the response conditional on
all the remaining features; that is, Y ⊥⊥Xj |X−j , where X−j is a subvector of X with the jth
component removed. Denote by H0 = {1 ≤ j ≤ p : Xj is a null feature} the set of null fea-
tures and H1 =Hc0 that of nonnull (or relevant) features. To ensure the model identifiability
and interpretability, we follow Candès et al. (2018) and assume that H1 exists and is unique.
Further assume that the subset of relevant features is sparse such that p1 = |H1|= o(n ∧ p),
where |A| stands for the cardinality of a given set. The goal is to select as many relevant
features as possible while controlling some error rate measure at the prespecified target level.

A commonly used measure for evaluating the feature selection performance is FDR (Ben-
jamini and Hochberg, 1995), where for an outcome Ŝ of some feature selection procedure,
the FDR is defined as

(1) FDR = E[FDP] with FDP = |Ŝ ∩H0|/|Ŝ|.

The model-X knockoffs framework provides a flexible way for controlling the FDR at
some prespecified target level in finite samples (Candès et al., 2018), allowing arbitrary di-
mensionality of X and arbitrary dependence between response Y and feature vector X . A
key step of the model-X knockoffs inference (Candès et al., 2018) is to generate the model-X
knockoff variables X̃ = (X̃1, · · · , X̃p)

T such that X̃ ⊥⊥ Y |X and

(2) (X,X̃)swap(S)
d
= (X,X̃) for each subset S ⊂ {1, · · · , p},

where (X,X̃)swap(S) is obtained by swapping the components Xj and X̃j in (X,X̃) for each
j ∈ S.

The construction of the model-X knockoff variables, which we will refer to as the perfect
knockoff variables in future presentation, requires the exact knowledge of the distribution
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of feature vector X . For example, Algorithm 1 in Candès et al. (2018) provided a general
approach to generating the perfect knockoff variables when such information is available.
However, the exact knowledge of feature distribution is usually unavailable in real applica-
tions. Thus, in practical implementation, the problem becomes identifying the relevant subset
H1 with the approximate knockoff variables generated from a feature distribution that can be
different from the true underlying one; we name the practical procedure as the approximate
knockoffs and formally present it in the next section for completeness. As stated in the In-
troduction, we study the robustness of the model-X knockoffs procedure by investigating the
feature selection performance of the approximate knockoffs procedure.

2.2. Approximate knockoffs and a roadmap of our analysis. In practice, the approximate
knockoffs inference procedure below is implemented popularly for controlling the FDR.

1) Generating approximate knockoff variables. Since the true underlying feature distribution
F (·) is generally unavailable, we generate the knockoff variables from some user-specified
feature distribution F̂ (·), which can depend on the sample (X,y), using the same algo-
rithm proposed for generating the perfect knockoff variables (e.g., Algorithm 1 in Candès
et al. (2018)). Denote by X̂ = (X̂i,j) ∈ Rn×p the resulting approximate knockoff variable
matrix.

2) Constructing approximate knockoff statistics. Pretend that X̂ were perfect knockoff vari-
able matrix and follow the same procedure as in Candès et al. (2018) to calculate the
knockoff statistics Ŵj with j = 1, · · · , p. Specifically, we first compute the feature impor-
tance statistics

(Z1, · · · ,Zp, Ẑ1, · · · , Ẑp)T = t((X, X̂),y),

where t(·) is a measurable function of input ((X, X̂),y), and Zj and Ẑj measure the impor-
tance of the jth feature and its approximate knockoff counterpart relative to the response,
respectively. Then the approximate knockoff statistic Ŵj for the jth feature is defined as

(3) Ŵj = fj(Zj , Ẑj),

where fj(·, ·) is an antisymmetric function satisfying fj(x, y) = −fj(y,x). See Barber
and Candès (2015) for examples and characterizations on the valid construction of knock-
off statistics.

3) Selecting relevant features. Calculate a data-driven threshold T for the knockoff statistics
{Ŵj}pj=1 and select the set of important features as Ŝ = {1≤ j ≤ p : Ŵj ≥ T}. Denoting

Ŵ = {|Ŵ1|, · · · , |Ŵp|}, the threshold for FDR control is defined as

(4) T = min
{
t ∈ Ŵ :

#{j : Ŵj ≤−t}
#{Ŵj ≥ t} ∨ 1

≤ q
}

where q ∈ (0,1) is the prespecified level for the FDR.

It is seen that the only difference of the algorithm above from the perfect knockoffs pro-
cedure (Candès et al., 2018) is how the knockoff variable matrix X̂ is generated. The perfect
knockoffs procedure based on the true feature distribution F (·) has been shown to control
the FDR at the target level (Candès et al., 2018). For the approximate knockoffs inference,
however, it is reasonable to expect some inflation in the FDR control, and the inflation level
depends on the qualities of both the approximate knockoff variable matrix X̂ and the resulting
knockoff statistics {Ŵj}pj=1. A desired property is that as the approximate knockoff statistics
“approach” the perfect knockoff statistics, the level of inflation also vanishes. One contri-
bution of our paper is to formally introduce a notion of closeness measuring the qualities
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of the approximate knockoff statistics {Ŵj}pj=1 and knockoff variable matrix X̂. As will be
discussed in Section 3.4, our closeness measure is closely related to a type of Wasserstein
distance.

We provide a roadmap of our technical analyses. Our theory has three layers, correspond-
ing reversely to the steps in the approximate knockoffs procedure described above. To put it
into more content, note that the set of selected features Ŝ is defined directly as a function of
the approximate knockoff statistics {Ŵj}pj=1. Hence, given {Ŵj}pj=1, feature selection can
be conducted without the knowledge of X̂ or the feature distribution F (·). For this reason, our
layer 1 analysis concerns the quality of {Ŵj}pj=1 for achieving the asymptotic FDR control;
see Section 2.3 for a characterization on qualified knockoff statistics. The second layer of our
analysis studies the quality of X̂ and is built on the first layer. We characterize what kind of X̂
can lead to qualified knockoff statistics {Ŵj}pj=1 satisfying the conditions established in our
layer 1 analysis; see Section 3 for such analysis in our layer 2. Our layer 3 analysis is built
on the first two layers and goes all the way to the root of the knockoffs inference; we pro-
vide specific examples and conditions on F̂ (·) for ensuring that X̂ satisfies conditions in our
layer 2 analysis. The key idea empowering our theoretical investigation is variable coupling
behind the approximate knockoffs (ARK) procedure; we formally introduce such idea in the
next subsection for laying out preliminary results for our subsequent in-depth analysis.

2.3. Layer 1 analysis: knockoff statistics coupling. An important observation is that
the perfect knockoff variables in the model-X knockoffs framework are not unique. Con-
sequently, the knockoff statistics are not unique either. Indeed, even with the same algorithm
(e.g., Algorithm 1 in Candès et al. (2018)), the knockoff variables generated from different
runs of the algorithm are only identically distributed. Our coupling idea is deeply rooted on
such observation. Let us introduce some additional notation to facilitate our formal presenta-
tion of the general theory. Following the model-X knockoffs framework, for a realization of
the perfect knockoff variable matrix X̃ generated from the true feature distribution F (·), we
let

(Z∗1 , · · · ,Z∗p , Z̃1, · · · , Z̃p)T = t((X, X̃),y)

and define the perfect knockoff statistics W̃j = fj(Z
∗
j , Z̃j) for 1 ≤ j ≤ p, where functions

t(·) and fj(·) are identical to the ones in the approximate knockoffs procedure in Section 2.2.
We now establish preliminary theory on the asymptotic FDR control for the approximate

knockoffs inference procedure, with regularity conditions imposed on the Ŵj values.

CONDITION 1 (Coupling accuracy). There exist perfect knockoff statistics {W̃j}pj=1 such
that for some sequence bn→ 0,

(5) P
(

max
1≤j≤p

|Ŵj − W̃j | ≥ bn
)
→ 0.

Conditions on the convergence rate bn for ensuring the asymptotic FDR control will be
specified in the subsequent assumptions. Condition 1 above couples each realization of the
approximate knockoff statistics {Ŵj}pj=1 with a realization of the perfect knockoff statistics

{W̃j}pj=1, and they need to be sufficiently close to each other with high probability. Note that

the existence of such {W̃j}pj=1 is required only for the theory, whereas the implementation

uses only {Ŵj}pj=1. We will provide examples in later sections verifying the existence of

such coupled {W̃j}pj=1. The two conditions below are on the quality of the perfect knockoff

statistics {W̃j}pj=1 and the signal strength in the data as measured by W̃j’s.
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CONDITION 2 (Average concentration of W̃j). There exist deterministic quantities
{wj}pj=1 such that p−1

∑p
j=1 P(|W̃j − wj | ≥ δn) = o(p−1), where δn → 0 is a sequence

satisfying δn ≥ bn.

CONDITION 3 (Signal strength). Let An = {j ∈ H1 : wj ≥ 5δn}. It holds that an =
|An| →∞ and wj >−δn for j ∈A c

n .

As discussed in Barber and Candès (2015) and Candès et al. (2018), a desired property of
the knockoff statistics is to have a large and positive value for W̃j if j ∈H1, and a small and
symmetric around zero value for W̃j if j ∈ H0. Conditions 2 and 3 together formalize this
property. Condition 2 requires that each perfect knockoff statistic W̃j is concentrated around
some population parameter wj with rate δn in an average probability sense. By design, W̃j’s
and wj’s are feature importance measures, and Conditions 2 and 3 characterize the desired
properties they need to possess. Note that there is no requirement that each individual wj
with j ∈ H1 is positive and large; we only need that there exist enough number (i.e., an) of
wj’s with j ∈ H1 that are positive and large enough. Implicitly, an→∞ requires that the
number of relevant features |H1| diverges with sample size as well. The condition δn ≥ bn
requires that the coupling accuracy bn should not exceed the order of concentration error so
that Ŵj’s are as good as W̃j’s for estimating the population quantities wj’s.

Define p0 = |H0| and G(t) = p−1
0

∑
j∈H0

P(W̃j ≥ t). By Candès et al. (2018), the perfect

knockoff statistics W̃j with j ∈H0 are symmetrically distributed around zero. It follows that
G(t) = p−1

0

∑
j∈H0

P(W̃j ≤ −t). We need to impose the technical conditions below on the
distribution of the perfect knockoff statistics for our robustness analysis.

CONDITION 4 (Weak dependence among nulls). For some constants 0 < γ < 1, 0 <
c1 < 1, C1 > 0, and a positive sequence mn = o(an), it holds that

(6) Var
( ∑
j∈H0

1(W̃j > t)
)
≤C1mnp0G(t) + o

((
log p)−1/γ [p0G(t)]2

)
uniformly over t ∈ (0, G−1( c1qanp )].

CONDITION 5 (Distribution of W̃j). Assume that G(t) is a continuous function. For the
same constants γ and c1 as in Condition 4, it holds that as n→∞,

(7) (log p)1/γ sup
t∈(0,G−1(

c1qan
p

)]

G(t− bn)−G(t+ bn)

G(t)
→ 0

and

(8) a−1
n

∑
j∈H1

P
(
W̃j <−G−1(

c1qan
p

) + bn

)
→ 0.

Condition 4 ensures that the random variable
∑

j∈H0
1(W̃j ≥ t) has a standard deviation

negligible compared to its mean, and thus can concentrate around its mean
∑

j∈H0
P(W̃j ≥

t). Condition 1 together with (7) in Condition 5 can guarantee that
∑

j∈H0
1(Ŵj ≥

t) ≈
∑

j∈H0
1(W̃j ≥ t) in probability, via an application of Markov’s inequality. Com-

bining these two results we can prove that
∑

j∈H0
1(Ŵj ≥ t) ≈

∑
j∈H0

1(W̃j ≥ t) ≈∑
j∈H0

P(W̃j ≥ t) and similarly
∑

j∈H0
1(Ŵj ≤−t)≈

∑
j∈H0

P(W̃j ≤−t) uniformly over
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0 < t ≤ G−1( c1qanp ) with asymptotic probability one. In view of the definition of T in (4),
assumption (8) ensures that the numerator in the ratio in (4) is mainly contributed by null
features, which together with Conditions 1–4 proves that threshold T falls into the range
(0,G−1( c1qanp )] with asymptotic probability one; See Lemma 4. Thus,

∑
j∈H0

1(Ŵj ≥ T )≈∑
j∈H0

1(Ŵj ≤−T ) with asymptotic probability one by the symmetry of {W̃j}j∈H0
. Con-

sequently, the FDR of the approximate knockoffs procedure is asymptotically the same as
that of the perfect knockoffs procedure, where the latter has been proved to be controlled at
the target level. This ensures that the FDR of the approximate knockoffs procedure can be
controlled asymptotically, as formally stated in Theorem 1 below.

Condition 4 above can be easily satisfied if W̃j’s with j ∈ H0 are independent of each
other. At the presence of dependence, it imposes an assumption on the strength of corre-
lation among the indicator functions 1(W̃j > t) with j ∈ H0. The ratio G(t−bn)−G(t+bn)

G(t)

in Condition 5 above is closely related to the hazard rate function in survival analysis if
G(t) has a probability density function. Loosely speaking, assumption (7) is satisfied for
bn = o((log p)1/γ) if the hazard rate function has enough smoothness and is more or less
bounded uniformly over the range t ∈ (0, G−1( c1qanp )]; it imposes an important condition on

coupling accuracy bn. Assumption (8) is satisfied if 1) only a fast vanishing fraction of W̃j’s
for important features take negative values with nonvanishing probabilities, or 2) W̃j’s for
important features all take positive values with high probability.

We are now ready to present our first general theorem on the FDR control for the approx-
imate knockoffs inference procedure.

THEOREM 1. Under Conditions 1–5, we have

(9) lim sup
n→∞

FDR≤ q.

3. Layer 2 analysis: knockoff variables coupling.

3.1. Characterization of approximate knockoff variables. Section 2 establishes prelim-
inary theoretical results on the asymptotic FDR control for the approximate knockoffs in-
ference. The key assumption is Condition 1. Since the knockoff statistics are intermediate
results calculated from the knockoff variables, it is important to provide a characterization
on the quality of the approximate knockoff variable matrix X̂ that can guarantee Condition 1.
The assumption below is imposed for such a purpose.

CONDITION 6. For X̂ constructed from the approximate knockoffs procedure, there exists
a perfect knockoff data matrix X̃ and an asymptotically vanishing sequence ∆n such that

(10) P
(
‖X̂− X̃‖1,2 ≥∆n

)
→ 0,

where ‖X̂− X̃‖1,2 := max1≤j≤p n
−1/2‖X̂j − X̃j‖2, and X̂j and X̃j are the jth columns of

the approximate and perfect knockoff variable matrices X̂ and X̃, respectively.

Condition 6 above couples each approximate knockoff variable X̂j with a perfect knockoff
variable X̃j . Similar to Condition 1, we need the realizations instead of the distributions of X̂j

and X̃j to be close, which is a major distinction from the assumption in Barber, Candès and
Samworth (2020). Such distinction allows X̂ to be constructed using sample (X,y) without
data splitting under relaxed estimation accuracy assumptions, as will be illustrated in the next
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two subsections. Later in Section 4, we will provide extensive analysis on the coupling order
∆n using some specific examples of feature distributions.

We next show that the closeness between X̂ and X̃ can lead to the closeness between Ŵj’s
and W̃j’s as required by Condition 1. Since different construction of the knockoff statistics
depends on the feature matrix differently, we showcase the theory using two constructions of
the knockoff statistics: the marginal correlation knockoff statistics and the regression coeffi-
cient difference (RCD) knockoff statistics.

For clarity, we include Table 1 to summarize the sets of assumptions on the model set-
ting, feature distribution, the knockoff statistics, and the corresponding rates for the coupling
accuracy in our layer 2 analysis.

TABLE 1
Summary of key conditions and results for asymptotic FDR control in Layer 2 analysis.

Model setting
Nonparametric model

(14) in Section 3.2
Linear model

y = Xβ+ ε in Section 3.3

Feature distribution X
d∼N(0,Σ) sub-Gaussian

Sparsity assumption Condition 9 on Σ−1 and Σ
Sparse β; sparse precision
matrix for covariates; Condition 11

Knockoff statistics Marginal correlation RCD with debiased Lasso
Ŵj coupling accuracy ∆n ∆ns

√
(log p)/n

∆n requirement
for FDR control

∆n
√
n(log p)1/2+1/γ → 0 ∆ns(log p)1+1/γ → 0

3.2. Marginal correlation knockoff statistics. Marginal correlation is a commonly ana-
lyzed measure on variable importance for feature screening due to its simplicity. Given X̂ and
X̃ satisfying Condition 6, the approximate knockoff statistics based on the marginal correla-
tion difference are defined as

(11) Ŵj = (
√
n‖y‖2)−1(|XT

j y| − |X̂T

j y|) for 1≤ j ≤ p,

and the coupled perfect knockoff statistics are given by

(12) W̃j = (
√
n‖y‖2)−1(|XT

j y| − |X̃T

j y|) for 1≤ j ≤ p.

Observe that W̃j − Ŵj = (
√
n‖y‖2)−1(|X̂T

j y| − |X̃T

j y|) and thus under Condition 6, we have
that with asymptotic probability one,

(13) max
1≤j≤p

|Ŵj − W̃j | ≤∆n.

This result is summarized formally in Lemma 5 in Section A.2 of the Supplementary Mate-
rial.

We consider the flexible nonparametric regression model

(14) Y = f(XH1
) + ε,

where f is some unknown regression function, XH1
= (Xj)j∈H1

contains all the relevant
features for response Y , and ε is the model error satisfying ε ⊥⊥ X and E(ε) = 0. Assume

that feature vector X = (X1, · · · ,Xp)
T d∼ N(0,Σ) with Σ the positive definite covariance

matrix. Moreover, let the distribution of the perfect knockoff variables X̃ = (X̃1, · · · , X̃p)
T

satisfy that

(15) (X,X̃) = (X1, · · · ,Xp, X̃1, · · · , X̃p)
d∼N

(
0,

(
Σ Σ− rIp

Σ− rIp Σ

))
,
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where r > 0 is a constant such that the above covariance matrix is positive definite. Here,
we consider the equicorrelated construction (Candès et al., 2018) for simpler presentation
and the diagonal matrix rIp can be replaced with a general version diag(r1, · · · , rp) with
possibly distinct diagonal entries {rj}pj=1. Note that the Gaussian distribution assumption is
imposed mainly to verify the general Conditions 4 and 5. If one assumes directly these two
conditions, the Gaussian distribution assumption can be removed.

Furthermore, we make the additional technical assumptions below on the generative model
(14) to verify the conditions in our layer 1 analysis presented in Section 2.

CONDITION 7. Y is a sub-Gaussian random variable with sub-Gaussian norm ‖Y ‖ψ2
.

CONDITION 8. Define An = {j ∈ H1 : (EY 2)−1/2(|E(XjY )| − |E(X̃jY )|)| ≥ 5δn}
with

(16) δn =CX,Y
√
n−1 log p,

where CX,Y := max
1≤j≤p

{
16
√

2‖Xj‖ψ2‖Y ‖ψ2

(EY 2)1/2 ∨ 8
√

2|wj |‖Y ‖2ψ2

EY 2

}
. It holds that an := |An| →∞ and

CX,Y is a positive constant that is independent of p and n.

Denote by (Σ−1)j the jth column of matrix Σ−1, Σi,j the (i, j)th entry of matrix Σ, and
ΣH1,j a vector given by (Σi,j)i∈H1

. Recall the definition G(t) = p−1
0

∑
j∈H0

P(W̃j ≥ t) =

p−1
0

∑
j∈H0

P(W̃j ≤−t).

CONDITION 9. For some sequence mn = o(an), matrices Σ−1 and Σ are sparse in
the sense that max1≤j≤p ‖(Σ−1)j‖0 ≤ mn and

∑
j∈H0

1(ΣH1, j 6= 0) ≤ mn. In addition,
C1 < r <min1≤j≤pΣj,j ≤max1≤j≤pΣj,j <C2 for some constants C1 > 0 and C2 > 0.

CONDITION 10. It holds that |H1|−1
∑

j∈H1
P(W̃j <−t)≤G(t) for all t ∈ (0,C3

√
log p
n )

with C3 > 0 some large constant.

Under Conditions 7–10, we can verify that Conditions 2–5 are satisfied. This together with
Condition 6 and our general theorem on the FDR control (cf. Theorem 1) leads to the theorem
below.

THEOREM 2. Assume that Conditions 6–10 are satisfied. In addition, assume that for
some constant 0< γ < 1, (log p)1/γmn/an→ 0 and the coupling accuracy ∆n in Condition
6 satisfies

√
n∆n(log p)1/2+1/γ→ 0. Then for the approximate knockoffs inference based on

the marginal correlation, we have

lim sup
n→∞

FDR≤ q.

Let us make a few remarks on the conditions and result presented in Theorem 2 above.
Condition 8 verifies the signal strength assumption in Condition 3 in the specific context
of model (14) and marginal correlation knockoff statistics. We show in Lemma 6 in Sec-
tion A.2 of the Supplementary Material that Condition 2 holds with δn = O(

√
n−1 log p).

Since we assume Gaussian feature distribution in this section, the dependence among the in-
dicator functions as required by Condition 4 is determined by covariance matrix Σ. Hence,
Condition 9 is imposed to justify the validity of Condition 4. It is worth mentioning that
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the sparse dependence structure assumed in Condition 9 can be replaced with a general as-
sumption that the conditional distribution XH0

|XH1
has sparse pairwise dependency and the

sequence {hj(t;XH1
) := E(1(W̃j ≥ t)|XH1

)}j∈H0
has sparse pairwise correlation for each

given t > 0. Condition 10 is a technical assumption that is intuitive and requires that on
average, the probability of a relevant feature having a negative valued W̃j is smaller than
the corresponding probability of an irrelevant feature. Such condition is compatible with our
requirement that relevant features should have positive and larger magnitude for W̃j .

Note that in this example, wj = EW̃j and the concentration rate δn as in Condition 2
is δn ∼

√
(log p)/n. The assumption

√
n∆n(log p)1/2+1/γ → 0 in Theorem 2 requires that

∆n � n−1/2(log p)−1/2−1/γ , and hence, ∆n � δn. In view of (13), the requirement of
∆n � δn indeed restricts that the quality of Ŵj’s, as measured by ∆n in the current ex-
ample, is of an order smaller than δn. This also suggests that an independent sample of size
N � n may be needed to learn the covariate distribution for constructing the approximate
knockoff variables in order to achieve the desired accuracy of max1≤j≤p |Ŵj−W̃j | ≤∆n�
n−1/2(log p)−1/2−1/γ .

It is worth mentioning that the bound obtained in (13) may be improved under additional
model assumptions. For instance, if additionally the covariates {Xj}pj=1 are independent,

then under Condition 6 we can show that max1≤j≤p |Ŵj − W̃j | ≤ C∆n

√
n−1 log p (see

Lemma 20 in Section B.16 of the Supplementary Material for details). The improved result
is because of the elimination of spurious correlation between null and signal covariates. In
this case, the condition on ∆n in Theorem 2 is relaxed to ∆n(log p)1+1/γ→ 0.

The above discussions suggest that knockoff statistics based on marginal correlation are
of low quality in the sense that they are less robust to estimation error and model mis-
specification. Indeed, we will see in the next section that some other popularly used knockoff
statistics such as RCD can achieve asymptotic FDR control under much relaxed assumptions.

3.3. Regression coefficient difference with debiased Lasso. A popularly used construc-
tion of the knockoff statistics is RCD. We present our results under the following linear
regression model for simplification; the extension to the generalized linear model (GLM) can
be found in Section C of the Supplementary Material. We consider

y = Xβ+ ε,

where β = (βj)1≤j≤p ∈ Rp is the true regression coefficient vector, ε d∼ N(0, σ2In) is the
model error vector, and ε ⊥⊥ X. Assume that feature vector X = (X1, · · · ,Xp)

T has mean
0p ∈ Rp and covariance matrix Σ ∈ Rp×p. Denote by βaug = (βT ,0Tp )T ∈ R2p the aug-
mented true parameter vector.

Let β̂ = (β̂j)1≤j≤2p ∈ R2p be the debiased Lasso estimator (Zhang and Zhang (2014))
based on the augmented design matrix X̂

aug
:= [X, X̂], where X̂ is the approximate knockoff

variable matrix. Assume that Condition 6 is satisfied and X̃ is the coupled perfect knockoffs
variable matrix. Similarly, define X̃

aug
:= [X, X̃]. Then β̂ can be coupled with the debiased

Lasso estimator denoted as β̃ = (β̃j)1≤j≤2p ∈ R2p based on X̃
aug

. Then the RCD knockoff
statistics can be defined as

(17) Ŵj = |β̂j | − |β̂j+p|

(18) and W̃j = |β̃j | − |β̃j+p|

for the approximate and perfect knockoffs procedures, respectively, for 1≤ j ≤ p.
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We provide the explicit definition of the debiased Lasso estimator to assist future presen-
tation. For 1≤ j ≤ 2p, the debiased Lasso estimator is a one-step bias correction from some
initial estimator β̂

init
= (β̂init

j )1≤j≤2p ∈R2p and is defined as

(19) β̂j = β̂init
j +

ẑTj
(
y− X̂

aug
β̂

init)
ẑTj X̂

aug

j

,

where ẑj is the score vector defined as

(20) ẑj = X̂
aug

j − X̂−j γ̂j

with γ̂j := arg minb
{

(2n)−1‖X̂aug

j − X̂
aug

−j b‖22 +λj‖b‖1
}

and {λj}2pj=1 the nonnegative reg-
ularization parameters. We construct the initial estimator as

(21) β̂
init

:= arg min
b

{
(2n)−1‖y− X̂

aug
b‖22 + λ‖b‖1

}
with λ=C

√
n−1 log(2p) the regularization parameter and C > 0 some constant.

Analogously, the coupled debiased Lasso estimator β̃ can be defined componentwisely as

(22) β̃j = β̃init
j +

z̃Tj
(
y− X̃

aug
β̃

init)
z̃Tj X̃

aug

j

for 1≤ j ≤ 2p,

where

(23) β̃
init

= (β̃init
j )1≤j≤2p := arg min

b

{
(2n)−1‖y− X̃

aug
b‖22 + λ‖b‖1

}
and

(24) z̃j = X̃
aug

j − X̃
aug

−j γ̃j with γ̃j := arg min
b

{
(2n)−1‖X̃aug

j − X̃
aug

−j b‖22 + λj‖b‖1
}
.

It is important to emphasize that the same regularization parameters λ and λj’s in defining
β̂ should be used as in defining β̃ in (22) so that their constructions differ only by the used
feature matrix; this plays a key role in applying our coupling technique. Indeed, we prove
in Lemma 11 in Section A.3 of the Supplementary Material that the coupling technique to-
gether with Condition 6 and some other regularity conditions ensures that with asymptotic
probability one,

(25) max
1≤j≤2p

|β̃j − β̂j |. ∆ns
√
n−1 log p.

The above result guarantees that Ŵj’s and W̃j’s are also uniformly close over 1 ≤ j ≤ p
with max1≤j≤p |Ŵj − W̃j | . ∆ns

√
n−1 log p. As long as s∆n→ 0, this upper bound has

a smaller order than the concentration rate δn of W̃j (cf. Condition 2), because here δn ∼√
n−1 log p as shown in our Lemma 12 in Section A.3. As commented after Theorem 2,

the assumption that the coupling rate of max1≤j≤p |W̃j − Ŵj | is of a smaller order than
the concentration rate δn plays a key role in establishing our theory on the asymptotic FDR
control.

We next introduce some additional notation and formally present the regularity conditions
specific to this section. Observe that by symmetry, the augmented feature vector with the
perfect knockoff variables has covariance matrix

(26) ΣA =

(
Σ Σ−D

Σ−D Σ

)
,
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where D is a diagonal matrix such that matrix ΣA is positive definite. Let ΩA = (ΣA)−1

and γj = (γj,l)l 6=j with γj,l =−ΩA
j,l/Ω

A
j,j . It has been shown in Peng et al. (2009) that the

residuals

ej = X̃aug
j − X̃aug

−j γj

satisfy that Cov(ej , X̃
aug
−j ) = 0, Var(ej) = 1/ΩA

j,j , and Cov(ej , el) =
ΩA
j,l

ΩA
j,jΩ

A
l,l

. For 1 ≤ j ≤

2p, denote by Sj = supp(γj)∪ supp(γ̃j)∪ supp(γ̂j). Let J = supp(βaug)∪ supp(β̃
init

)∪
supp(β̂

init
) and s := ‖βaug‖0 = ‖β‖0 = o(n). We make the technical assumptions below.

CONDITION 11. a) For some constant C4 > 0, P(|J | ≤C4s)→ 1.
b) For some sequencemn . s, it holds that max1≤j≤2p ‖ΩA

j ‖0 ≤mn and P(max1≤j≤2p |Sj | ≤
C5mn)→ 1 with some constant C5 > 0.
c) max1≤j≤2p ‖γj‖2 ≤ C6 and C7 < λmin(ΩA)≤ λmax(ΩA)< C8 with some positive con-
stants C6, C7, and C8.

CONDITION 12 (Restrictive eigenvalues). Assume that with probability 1− o(1),

(27) min
‖δ‖0≤C9s

δT [X̃
aug

]T X̃
aug
δ

n‖δ‖22
≥ κ1

for some large enough constant C9 > 0 and a constant κ1 > 0.

CONDITION 13. The features Xj’s and errors ej’s are sub-Gaussian with sub-Gaussian
norms ‖Xj‖ψ2

≤ φ and ‖ej‖ψ2
≤ φ for some constant φ > 0.

CONDITION 14. Let An = {j ∈ H1 : |βj | �
√
n−1 log p} and it holds that an :=

|An| →∞.

We are now ready to state our results on the FDR control for the approximate knockoffs
inference based on the debiased Lasso coefficients.

THEOREM 3. Assume that Conditions 6 and 10–14 hold,mn/an→ 0, and m1/2
n s(log p)3/2+1/γ

√
n

+

∆ns(log p)1+1/γ→ 0 for some constant 0< γ < 1. Then we have

lim sup
n→∞

FDR≤ q.

Similarly as discussed in the last section, Condition 11 is used to verify the weak de-
pendence assumption in Condition 4. Condition 6 and the two regularity Conditions 12–13
are imposed for verifying the coupling accuracy Condition 1. Condition 14 contributes to
verifying the general signal strength requirement in Condition 3.

3.4. Connection of Condition 6 with Wasserstein distance. We detour slightly and dis-
cuss the connection of Condition 6 with a type of Wasserstein distance and state a conjecture
of ours; it is safe to skip this section and proceed to Section 4 for knockoff variable coupling.

First recall that the knockoff variable matrix is generated in a rowwise fashion independent
of each other. Given a row x of the original data matrix X, denote by µ̂x the estimated or
misspecified conditional distribution for generating the corresponding row in the approximate
knockoff variable matrix X̂, and denote by µ̃x its oracle counterpart based on the true feature
distribution. Conditional on the original data matrix X, let µ̂n = µ̂x1

× µ̂x2
× · · · × µ̂xn and
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µ̃n = µ̃x1
× µ̃x2

× · · ·× µ̃xn , where xi is the ith row of the original data matrix X. Define the
conditional (1,2)-Wasserstein distance between µ̂n and µ̃n as

(28) W1,2(µ̂n, µ̃n|X) = inf
η∈Γ(µ̂n,µ̃n)

E
(vec(X̂),vec(X̃))

d∼η[‖X̂− X̃‖1,2|X],

where Γ(µ̂n, µ̃n) is the set consisting of all couplings of µ̂n and µ̃n, ‖ · ‖1,2 is the matrix
(1,2)-norm as defined in Condition 6, and vec(X̂) stands for vectorization of X̂ by rows,
similarly for vec(X̃).

PROPOSITION 1. Assume that there exists a deterministic sequence cn→ 0 and a cou-
pling η∗ ∈ Γ(µ̂n, µ̃n) such that

PX(W1,2(µ̂n, µ̃n|X)≥ cn)→ 0,(29)

E
(vec(X̂),vec(X̃))

d∼η∗ [‖X̂− X̃‖1,2|X]≤CXW1,2(µ̂n, µ̃n|X),(30)

where CX ≥ 1 depends only on X with well-defined expectation EX [CX ]<∞, and PX and
EX are probability and expectation taken with respect to X, respectively. Then as n→∞,
Condition 6 is satisfied with ∆n chosen such that EX [CX ]cn∆−1

n → 0.

It is seen that assumption (29) and the existence of η∗ in Proposition 1 provide sufficient
conditions ensuring Condition 6. We next verify the existence of η∗ in a special scenario.

In Section 4.2, we present a concrete construction for coupling of the approximate and per-
fect knockoff variable matrices under Gaussian distribution, given by (37) and (38), respec-
tively. The lemma below is based on such constructions. The proof of Lemma 1 is postponed
to Section B.1 of the Supplementary Material.

LEMMA 1 (Gaussian Coupling). Consider Gaussian knockoffs in Section 4.2. Let η∗ be
the conditional coupling measure used for generating (37) and (38). Define D̂ := (2rIp −
r2Ω̂)1/2 and D := (2rIp − r2Ω)1/2, where Ω, Ω̂, and r are the same as defined in Section

4.2. Let Dj and D̂j be the jth columns of D and D̂, respectively. If ‖D̂j‖2‖Dj‖2 − D̂
T

j Dj ≤
C‖D̂j − Dj‖22 for all j = 1, · · · , p with a constant C ∈ (0,1/2), then (30) is satisfied with
CX = 2

1−2C

(
1 +
√

2n−1
)
(r2 ∨ 1).

The condition ‖D̂j‖2‖Dj‖2 − D̂
T

j Dj ≤C‖D̂j −Dj‖22 can be satisfied if the covariates are
close to independent, i.e., Ω close to diagonal. In particular, when Ω and Ω̂ are both diagonal,
it holds that D̂

T

j Dj − ‖D̂j‖2‖Dj‖2 = 0 ≤ ‖D̂j − Dj‖22. We conjecture that for more general
Ω and Ω̂, the coupling measure used for generating (37) and (38) could still satisfy (30).
Proving the existence of η∗ in the general scenario is highly challenging and left for future
research.

4. Layer 3 analysis: construction of coupled knockoff variables. In this section, we
present three specific constructions for the coupled perfect knockoff variables and verify that
they satisfy Condition 6 with the desired convergence rate.

4.1. Knockoffs for multivariate t-distribution. In this example, we will construct knock-
offs for multivariate t-distributed features by leveraging only information of the first two mo-
ments; the knowledge of the t-distribution will not be utilized in the approximate knockoffs
construction. Assume that the underlying true feature distribution for X = (X1, · · · ,Xp)

T is
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the multivariate centered t-distribution tν(0,Ω−1) with unknown parameters ν and Ω−1. We
construct the approximate knockoff variables from the Gaussian distribution with the attempt
to match the first two moments of feature vector X . It is seen that the working distribution F̂
is misspecified. It has been a common practice to use the multivariate Gaussian distribution
to construct knockoff variables in practice; see, e.g., Candès et al. (2018); Bai et al. (2021).

Assume that there is an effective estimator Θ̂ for the precision matrix Θ := [Cov(X)]−1 =
ν−2
ν Ω constructed using data matrix X. We construct the approximate knockoffs variable

matrix X̂ from the misspecified Gaussian distribution as

(31) X̂ = X(Ip − rΘ̂) + Z(2rIp − r2Θ̂)1/2,

where r is a constant such that 2rIp− r2Θ̂ is positive definite, and Z ∈Rn×p is independent
of (X,y) and consists of i.i.d. standard Gaussian entries.

Before suggesting our coupled perfect knockoff variables, it is necessary to review some
properties of the multivariate t-distribution. Note that an alternative representation of the ith
row of X is xi = ηi√

Qi/ν
, where ν > 0 is the degrees of freedom, ηi

d∼N(0,Ω−1), Qi
d∼ χ2

ν ,

and ηi ⊥⊥Qi. Here, χ2
ν is the chi-square distribution with ν degrees of freedom. When ν is

large, the distribution of xi is close to the Gaussian distribution N(0, (ν−2
ν Ω)−1). Using this

alternative representation, the design matrix X can be written as

(32) X = diag(
1√
Q/ν

)η,

where η is the matrix with rows {ηi}ni=1, and diag( 1√
Q/ν

) = diag( 1√
Q1/ν

, · · · , 1√
Qn/ν

).

We are ready to introduce our construction of the coupled perfect knockoff variable matrix

(33) X̃ = X(Ip − rΩ) + diag(
1√
Q/ν

)Z(2rIp − r2Ω)1/2,

where Q, ν, and Ω are identical to the ones in (32), and r and Z are identical to the ones in
(31). Thus, Z is independent of Q and η. In view of (32), we can see that

(X, X̃) = diag(
1√
Q/ν

)
(
η,η(Ip − rΩ) + Z(2rIp − r2Ω)1/2

)
:=diag(

1√
Q/ν

)(η, η̃),

where (η, η̃) have i.i.d. rows that follow the Gaussian distribution N(0,Σaug) with

(34) Σaug =

(
Ω−1 Ω−1 − rIp

Ω−1 − rIp Ω−1

)
.

Thus, this verifies that X̃ forms a perfect knockoff variable matrix for X.
The proposition below verifies that the coupling assumption in Condition 6 holds.

PROPOSITION 2. Assume that Cl ≤ ‖Ω−1‖2 ≤ Cu and ‖(2rIp − r2Ω)−1‖2 ≤ Cu for
some constants Cu > 0 and Cl > 0. Assume further that Ω and Θ̂ are both sparse in the
sense that max1≤j≤p(‖Ωj‖0 + ‖Θ̂j‖0) ≤ ρn almost surely with ρn(n−1 log p)1/2→ 0 and
ρnν

−1/2→ 0, and that there exists a constant C > 0 such that

(35) P
(
‖Θ̂−Θ‖2 ≥Cρn(n−1 log p)1/2

)
→ 0.

Then as ν ≥ 9 and log p= o(n1−4/ν), we have that for some constant C > 0,

(36) P
(
‖X̂− X̃‖1,2 ≤C

(
ρn(n−1 log p)1/2 + ν−1/2

))
→ 1.
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The assumed convergence rate of ρn(n−1 log p)1/2 for precision matrix estimation in (35)
has been verified in many existing works (e.g., Cai, Liu and Luo (2011), Fan, Liao and Liu
(2016), and Fan and Lv (2016)) under the sparsity assumption. Proposition 2 above indicates
that the knockoffs procedure can potentially achieve the asymptotic FDR control even when
the working distribution is misspecified but with the first two moments matched.

We next compare our results to those in Barber, Candès and Samworth (2020). For sim-
plicity, let us further assume that Ω = Ip and is known. Then X d∼ tν(0, Ip) and the con-

structed approximate knockoff variables X̂ d∼ N(0, ν
ν−2Ip). We set r = 1 in (31) and (33)

when constructing the approximate and perfect knockoff matrices, and hence the augmented
covariance matrix in (34) is given by Σaug = I2p. In such case, Proposition 2 guarantees that

P
(

max
1≤j≤p

n−1/2‖X̂j − X̃j‖2 ≤Cν−1/2

)
→ 1.

This implies that Condition 6 is satisfied with ∆n = Cν−1/2. Observe that Xj = Zj√
X 2
ν /ν

with Zj
d∼ N(0,1) and the denominator satisfies that for an absolute constant C > 0 and

ν� log(np),

P
(
|X 2
ν /ν − 1| ≥C

√
ν−1 log(np)

)
=O((np)−C

2/8).

These indicate that the multivariate t-distribution is asymptotically close to the standard
Gaussian distribution when ν� log(np). Thus, under Conditions 10–12 and 14 for the set-
ting of the linear model, if we construct the knockoff statistics as RCD based on the debiased
Lasso, we can prove similarly as Theorem 3 that

lim sup
n→∞

FDR≤ q,

when ν1/2� s(log p)1+1/γ and s(log p)3/2+1/γ

√
n

→ 0 for some 0< γ < 1.
Barber, Candès and Samworth (2020) also derived an upper bound on the FDR inflation.

Directly applying their result and calculating the KL divergence in their upper bound under
the specific model setting stated above, we can obtain the lemma below.

LEMMA 2. By applying Theorem 1 in Barber, Candès and Samworth (2020), it requires
at least ν2� nmin(n,p) for lim supn→∞FDR≤ q.

The intuition behind Lemma 2 above is that Theorem 1 in Barber, Candès and Samworth
(2020) requires the empirical KL divergence maxj∈H0

K̂Lj converging to zero in probability,
where

K̂Lj =

n∑
i=1

[X2
i,j(ν − 2)

2ν
− ν + p

2
log

(
1 +

X2
i,j

ν + ‖Xi,−j‖22

)

−
( X̂

2

i,j(ν − 2)

2ν
− ν + p

2
log

(
1 +

X̂
2

i,j

ν + ‖Xi,−j‖22

))]
.

Here, X = (Xi,j) ∈ Rn×p consists of i.i.d. rows sampled from tν(0, Ip), while X̂ = (X̂i,j) ∈
Rn×p consists of i.i.d. rows sampled from N(0, Ip). As shown in the proof of Lemma 2 in
Section B.2 of the Supplementary Material, K̂Lj is a sum of i.i.d. random variables with
positive mean of order Cp

ν(ν+p) . Hence, K̂Lj is concentrated at Cnp
ν(ν+p) and to ensure that
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TABLE 2
Summary of key conditions and results in Layer 3 analysis

Covariate distribution tν(0,Ω−1) N(0,Ω−1) Nonparanormal
Source of error in
constructing X̂

Misspecified distribution
and estimated Ω

Estimated Ω Estimated Ω

Verified coupling
rate ∆n

ρn(n−1 log p)1/2 + ν−1/2 ρn

√
log p
n ρn

√
log p
n +

√
pρn(logn)3

n

p� n? Yes Yes No
Marginal correlation
knockoff statistics

Out-sample estimation needed for general Ω;
In-sample estimation allowed for diagonal Ω

RCD with
debiased Lasso

In-sample estimation allowed for general Ω with sparsity

K̂Lj
d→ 0, we need at least np

ν(ν+p) → 0, or equivalently, ν2� nmin(n,p). Such condition

is stronger than our requirement ν1/2� s(log p)1+1/γ derived from the coupling technique
when s= o(

√
n) and p≥ n.

4.2. Gaussian knockoffs. We now study the commonly used example of Gaussian
knockoffs with the correctly specified distribution family. Assume that feature vector X =

(X1, · · · ,Xp)
T d∼ N(0,Ω−1) with unknown precision matrix Ω, and we have an effective

estimate Ω̂ that may be constructed using in-sample observations. A popularly used approx-
imate knockoff variable matrix is

(37) X̂ = X(Ip − rΩ̂) + Z(2rIp − r2Ω̂)1/2,

where r > 0 is some constant such that 2rIp−r2Ω̂ is positive definite, and Z = (Zi,j) ∈Rn×p

is independent of (X,y) with i.i.d. entries Zi,j
d∼N(0,1). Note that the approximate knockoff

variable matrix in (37) uses the correctly specified distribution family for X (i.e., the Gaussian
distribution).

We couple X̂ with the perfect knockoff variable matrix

(38) X̃ = X(Ip − rΩ) + Z(2rIp − r2Ω)1/2,

where importantly, Z and r are identical to those used in constructing X̂. We present the
result below regarding the accuracy of the approximate knockoff variables.

PROPOSITION 3. Assume that Cl ≤ ‖Ω−1‖2 ≤ Cu and ‖(2rIp − r2Ω)−1‖2 ≤ Cu for
some constants Cu > 0 and Cl > 0. Assume further that precision matrix Ω and its estimator
Ω̂ are both sparse in the sense that max1≤j≤p ‖(Ωj‖0 + ‖Ω̂j‖0) ≤ ρn almost surely with
ρn(n−1 log p)1/2→ 0, and that there exists a constant C > 0 such that

(39) P
(
‖Ω̂−Ω‖2 ≥Cρn(n−1 log p)1/2

)
→ 0.

Then we have that for some constant C > 0,

(40) P
(
‖X̂− X̃‖1,2 ≤Cρn(n−1 log p)1/2

)
→ 1.

Proposition 3 above implies that Condition 6 is satisfied with coupling accuracy ∆n =
Cρn(n−1 log p)1/2, where ρn represents the sparsity level of Ω and its estimator. We dis-
cuss the implication on FDR control utilizing the previously studied two knockoff statistics,
namely the marginal correlation and RCD statistics, by applying Theorems 2–3, and then
compare with the relevant results in Barber, Candès and Samworth (2020).

First consider the linear model and the RCD knockoff statistics based on the debi-
ased Lasso. It follows from Theorem 3 that under Conditions 10–12 and 14, we have
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lim supn→∞FDR ≤ q provided that sρn(log p)3/2+1/γ = o(
√
n) for some 0 < γ < 1. Our

technical analyses do not require data splitting or an independent pretraining sample. In com-
parison, the results in Barber, Candès and Samworth (2020) require an independent unlabeled
pretraining data set with sample size N to estimate the unknown precision matrix. Specific to
the model setting considered in this section, their results indicate that lim supn→∞FDR≤ q
when N � nρn(log p)2. This again shows the advantage of our coupling technique in the
robustness analyses.

Next we move to the marginal correlation statistics. In view of (40), (13), and Theo-
rem 2, it is seen that in-sample estimation generally cannot meet the required condition
of
√
n∆n(log p)1/2+1/γ → 0 in Theorem 2, and hence there is no guarantee of asymp-

totic FDR control even using our coupling idea. This message is consistent with Niu et al.
(2024), where the model-X framework for conditional independence test is investigated; see
Section 6 for more detailed discussion. In the special case of independent features as dis-
cussed at the end of Section 3.2, in-sample estimation can achieve asymptotic FDR control
if (log p)1+1/γ maxj |σ̂−2

j − σ
−2
j |= op(1), where σ̂2

j and σ2
j are estimated and true variance

for the jth feature, respectively.
We next compare with the relevant results in Barber, Candès and Samworth (2020) for

marginal correlation statistics. It is discussed in their Section 3.2.1 that the KL divergence in
their FDR inflation upper bound can be replaced with someEj defined on summary statistics,
such as

Ej =Ej(XT
j y, X̂

T

j y), with Ej(a, b) = log
(P((XT

j y, X̂
T

j y) = (a, b)|X−j , X̂−j ,y)

P((XT
j y, X̂

T

j y) = (b, a)|X−j , X̂−j ,y)

)
,(41)

and that their FDR inflation upper bound remains to hold. An independent pretraining sam-
ple is required for generating their X̂j’s. Note that Ej above depends on the “closeness”

of X̂
T

j y to XT
j y. For the FDR inflation in their upper bound to asymptotically vanish,

it is required that maxj |Ej | = op(1). It is unclear how maxj |Ej | = op(1) can be trans-
lated into the explicit bound on the estimation accuracy of Ω when the covariate depen-
dence is most general. In the simpler case of independent covariates, the condition re-
duces to maxj |Ej | = Op((log p) max1≤j≤p |σ̂−2

j − σ
−2
j |). Comparing to our condition of

(log p)1+1/γ maxj |σ̂−2
j − σ

−2
j |= op(1) discussed above, the additional term of (log p)1/γ is

the price we pay for in-sample estimation.

4.3. Nonparanormal knockoffs. We further investigate a much more general distribu-
tion family, that is, the Gaussian copula distributions. Assume that X = (X1, · · · ,Xp)

T has

marginal distributions Xj
d∼ Fj(·) and satisfies that (Φ−1(F1(X1)), · · · ,Φ−1(Fp(Xp)))

T d∼
N(0,Ω−1), where the diagonal entries of Ω−1 are all one. Further assume that we have effec-
tive estimators F̂j for Fj and Ω̂ for Ω. Define V̂ = (V̂i,j) ∈Rn×p with V̂i,j = Φ−1(F̂j(Xi,j))

and Ṽ = (Ṽi,j) ∈Rn×p with Ṽi,j = Φ−1(Fj(Xi,j)). Let Û = (Ûi,j) ∈Rn×p be given by

(42) Û = V̂(Ip − rΩ̂) + Z(2rIp − r2Ω̂)1/2,

where r > 0 is some constant such that 2rIp−r2Ω̂ is positive definite, and Z = (Zi,j) ∈Rn×p

is independent of (X,y) with i.i.d. entries Zi,j
d∼ N(0,1). We construct the approximate

knockoff variable matrix as X̂ = (X̂i,j) ∈Rn×p with

(43) X̂i,j = F̂−1
j (Φ(Ûi,j)).

It is seen that this example also uses the correctly specified distribution family for X , i.e., the
Gaussian copula.
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We suggest to construct the coupled perfect knockoff variable matrix as X̃ = (X̃ij) with

(44) X̃i,j = F−1
j (Φ(Ũi,j)),

where Ũi,j represents the (i, j)th entry of matrix

(45) Ũ = Ṽ(Ip − rΩ) + Z(2rIp − r2Ω)1/2

with Z and r identical in values to the ones used in (42). The proposition below characterizes
the coupling rate between X̂ and X̃.

PROPOSITION 4. Assume that (39) is satisfied and both Ω and Ω̂ are sparse in the
sense that max1≤j≤p(‖Ωj‖0 +‖Ω̂j‖0)≤ ρn with pρn = o(n/(logn)3) almost surely. Assume
further that for 1≤ j ≤ p, the distribution estimators satisfy 1

2n ≤ F̂j(x)≤ 1− 1
2n for each

x ∈ supp(Xj), supp(Xj) ⊂ [−b, b] for some constant b > 0, and there exists a constant
M > 0 such that

(46) P
(

max
1≤j≤p

sup
x∈[2Mn−1 logn,1−2Mn−1 logn]

∣∣F̂−1
j (x)− F−1

j (x)
∣∣≥ (Mn−1 logn)1/2

)
→ 0,

P
(

max
1≤j≤p

sup
x∈(F−1

j (2Mn−1 logn),F−1
j (1−2Mn−1 logn))

|F̂j(x)− Fj(x)|
Fj(x)[1− Fj(x)]

≥ (Mn−1 logn)1/2
)

→ 0,

(47)

(48) P
(

max
1≤j≤p

sup
x,y∈(0,1)

∣∣F̂−1
j (x)− F̂−1

j (y)
∣∣

|x− y|+ (n−1(logn)|x− y|)1/2 + n−1 logn
≥M

)
→ 0.

Then we have

(49) P
(
‖X̂− X̃‖1,2 ≤C

(
ρn

√
log p

n
+

√
pρn(logn)3

n

))
→ 1.

REMARK 1. When estimators {F̂j}pj=1 are the empirical distribution functions and p=

o(n), it can be shown that (46), (47), and (48) can be satisfied when the density function fXj
is uniformly bounded on the support.

See, e.g., Liu, Lafferty and Wasserman (2009); Liu et al. (2012) for the estimation of
nonparanormal distributions, and we opt not to discuss it here due to the space constraint.
We also remark that the bounded support assumption of supp(Xj) ⊂ [−b, b] is to simplify
the technical proofs and may be removed by applying the truncation technique and letting b
slowly diverge with n. Since such technical relaxation is not the main focus of the current
paper, we choose not to explore it here.

5. Robust knockoffs for k-FWER control. Model-X knockoffs framework has also
been explored for the purpose of k-FWER control (Lehmann and Romano, 2005), where the
goal is to control

(50) k- FWER = P(|Ŝ ∩H0| ≥ k)
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below a prespecified target level q ∈ (0,1). Given the approximate knockoff statistics
{Ŵj}pj=1, the set of selected features is Ŝ = {1 ≤ j ≤ p : Ŵj ≥ Tv}, where the threshold
is defined as

(51) Tv = sup
{
t ∈ Ŵ : #{j :−Ŵj ≥ t}= v

}
with v the largest integer such that

(52)
∞∑
i=k

2−(i+v)

(
i+ v− 1

i

)
≤ q.

When the true feature distribution is known, Janson and Su (2016) showed that the perfect
knockoffs inference procedure provides precise finite-sample control on the k-FWER. We
now establish the companion theory for the approximate knockoffs inference procedure.

Denote by V̂ = |Ŝ ∩H0| the number of false discoveries. Similar to the FDR analysis, we
assume that the number of relevant features |H1| →∞ as n→∞. Further, we consider the
scenario where k diverges very slowly with n. Our layer 1 theory will again build on the key
Condition 1 that there exist coupled perfect knockoff statistics that are sufficiently close to the
approximate knockoff statistics. However, different from the FDR study where Conditions 2–
5 are needed, we assume instead the two technical conditions below and their interpretations
are similar to Conditions 4–5. Recall the definition that G(t) = p−1

0

∑
j∈H0

P(W̃j ≥ t) and
p0 = |H0|.

CONDITION 15 (Weak dependence). For constants 0< γ < 1 and C > 0, and a positive
sequence mn = o(k), it holds that

(53) Var
( ∑
j∈H0

1(W̃j > t)
)
≤Cmnp0G(t) + o

(
(logk)−1/γ [p0G(t)]2

)
uniformly over t ∈ (G−1(3k

2p ), G−1( k2p)).

CONDITION 16. Assume that G(t) is a continuous function. It holds that as n→∞,

sup
t∈
(
G−1( 3k

2p
),G−1( k

2p
)
) G(t− bn)−G(t+ bn)

G(t)
→ 0(54)

and

k−1
∑
j∈H1

P
(
W̃j <−G−1(

3k

2p
)
)
→ 0(55)

Now we are ready to present our general theorem on the k-FWER control for the approx-
imate knockoffs procedure.

THEOREM 4. Assume that Conditions 1, 15, and 16 are satisfied, k→∞, andmn/k→ 0
as n→∞. Then for each ε > 0, we have

(56) lim sup
n→∞

P(V̂ ≥ k(1 + ε))≤ q.

The main idea for proving Theorem 4 is to compare the approximate knockoff statistics
{Ŵj}pj=1 with their coupled perfect counterparts {W̃j}pj=1 and show that the approximate
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threshold Tv satisfies |Tv − T̃v| ≤ bn as long as max1≤j≤p |Ŵj − W̃j | ≤ bn, where T̃v is
the corresponding threshold from the perfect knockoff statistics. Moreover, we can show
that for each ε > 0, with high probability it holds that T̃v+Mv+1 < T̃v − 2bn ≤ T̃v+Mv

for
some integer Mv ≤ kε. Therefore, the probability of the approximate knockoffs inference
procedure making at least k false discoveries can be related to that of the k-FWER control
with the perfect knockoff statistics, which establishes the desired result in Theorem 4.

Similar to the layer 2 FDR analysis in Section 3, we showcase the general theory using
two constructions of the knockoff statistics: the marginal correlation and the RCD knockoff
statistics, under the coupling accuracy assumption in Condition 6.

With the marginal correlation knockoff statistics, under the same model setting of Section
3.2, the following result on the k-FWER control can be established.

THEOREM 5. Assume the same model setting (14) as in Section 3.2 and the marginal
correlation knockoff statistics (11). Further, assume that Conditions 6, 9, and 10 are satisfied,
k→∞, mn/k→ 0, and ∆n

√
n log p→ 0. Then for each ε > 0, we have

lim sup
n→∞

P(V̂ ≥ k(1 + ε))≤ q.

Analogously, with the RCD knockoff statistics, under the same setting of Section 3.3, we
have the parallel theorem for the k-FWER control below.

THEOREM 6. Assume the same linear model setting as in Section 3.3 and the RCD
knockoff statistics (17). Further, assume that Conditions 6, 10, and 11–13 are satisfied,
k→∞,mn/k→ 0, and m1/2

n s(log p)3/2(logk)1/γ√
n

+∆ns log p→ 0 for some constant 0< γ < 1.
Then for each ε > 0, we have

(57) lim sup
n→∞

P(V̂ ≥ k(1 + ε))≤ q.

6. Connection with literature. We now provide more detailed comparison with three
additional existing works Fan et al. (2020a); Fan et al. (2020b); Niu et al. (2024).

Fan et al. (2020b) investigated the power and robustness of knockoffs inference in the
linear model setting where the features follow a latent factor model with parametric idiosyn-
cratic noise. In-sample estimation is allowed for constructing their approximate knockoff
variables. Condition 4 therein for robustness analysis is essentially a preliminary form of our
knockoff variable coupling condition under their parametric model assumption, and Con-
dition 6 therein is loosely comparable to the proved results in our Theorem 1; these two
conditions are model specific and directly assumed therein without theoretical justification.
Fan et al. (2020a) provided theoretical guarantee for the asymptotic FDR control for the ap-
proximate knockoffs procedure under an assumption that the FDR function is Lipschitz with
respect to feature covariance matrix when the feature distribution is jointly Gaussian. In their
paper, the feature distribution and model sparsity are learned by balanced sample splitting,
and the dependence of response Y on covariates in X can be nonlinear and arbitrary. Their
Lipschitz assumption on FDR function is comparable to the proved results in our Theorem 1.

Niu et al. (2024) studied the robustness of the conditional randomization test (CRT) and
demonstrated that, when the feature distribution is learned in sample, type-I error control
cannot be attained for arbitrary test statistics. In their Section 3, a test statistic that is closely
related to the marginal correlation test was investigated and it was shown that its type-I error
can be arbitrarily inflated when in-sample feature distribution is learned. This message is
similar to ours in the sense that marginal correlation statistics have low accuracy (see Section
3.2). Niu et al. (2024) also established an interesting double-robustness phenomenon: errors
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in fitting the distribution of the features can be compensated for by using a test statistic that
more accurately captures the distribution of the response given the features. Since for FDR or
k-FWER control, there is only one source of error caused by estimated/misspecified covariate
distribution, the double-robustness may not be a relevant property in our study.

Comparing to these existing works, a major innovation of our paper is the introduction of a
new closeness measure for evaluating the qualities of the approximate knockoff variables and
knockoff statistics. This new measure is closely related to the (1,2)-Wasserstein distance. The
coupling idea for knockoffs robustness analysis and the (1,2)-Wasserstein distance are both
new to the literature; they equip us with a much more powerful tool for better understanding
the practical robustness of the model-X framework. Indeed, as revealed in our analysis, the
robustness of model-X procedure goes beyond the scenarios already revealed in the literature.
The connection to the (1,2)-Wasserstein distance also suggests that the robustness of model-
X can be a general phenomenon beyond the covariate distribution examples provided in our
current paper.

There exist some other less related works in the literature that contribute to relaxing the
assumption of fully known feature distribution in the model-X knockoffs framework. For
instance, Huang and Janson (2020) relaxed such assumption via assuming the existence of
sufficient statistic for the model and proposing an alternative conditional exchangeability for
knockoffs given the sufficient statistic.

7. Simulation studies. In this section, we examine the finite-sample performance of the
approximate knockoffs inference using the approximate or misspecified feature distribution
through some simulation examples.

7.1. Approximate feature distribution. Our first simulation example considers Gaussian
feature vector X d∼ N(0,Ω−1), where the precision matrix Ω = (ωij) ∈ Rp×p is unknown
and sparse with entries ωij = 0.2|i−j| for |i− j| < 10 and ωij = 0 for |i− j| ≥ 10. We ap-
ply the James–Stein-type shrinkage estimator for the covariance matrix (as in the R Package
‘knockoff’) and examine the FDR control of the approximate knockoffs inference procedure
with estimated covariance matrix. In-sample estimation is used for learning the feature co-
variance matrix. We consider two settings: the linear regression model and logistic regression
model.

SETTING 1. Assume that Y =Xβ+ ε, where ε is a random error with ε d∼N(0,1). Let
the coefficient β ∈ Rp be sparse with 50 nonzero components, where the nonzero locations
are randomly selected and each nonzero coefficient is randomly generated from {±3}.

SETTING 2. Assume that the response Y depends on X through a logistic regression
model. Let the regression coefficient β ∈Rp be sparse with 30 nonzero components, where the
nonzero locations are randomly selected and each nonzero coefficient is randomly generated
from {±3}.

We consider the construction of knockoff statistics using the debiased Lasso regression
coefficient difference. We set p= 400 and n ∈ {150,250,350,500}. From the numerical re-
sults in Table 3, it is seen that for a few settings of sample size, the FDR is marginally inflated
above the target level q = 0.2 due to the estimated feature distribution and Monte Carlo error.
Overall, the approximate knockoffs inference procedure demonstrates robust FDR control
across various values of sample size n, which verifies our theoretical analysis that the knock-
off statistics based on the debiased Lasso regression coefficient difference can guarantee the
asymptotic FDR control with in-sample learned feature distribution.
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TABLE 3
FDR control for the approximate knockoffs procedure using estimated feature distribution under Settings 1 and

2, with a targeted FDR level q = 0.2. Results are based on 100 replications.

Setting 1 Setting 2
n 150 250 350 500 n 150 250 350 500

FDR 0.186 0.211 0.203 0.189 FDR 0.142 0.205 0.207 0.205

7.2. Misspecified feature distribution. In the second simulation example, we consider
a feature vector X ∈ Rp generated from a multivariate t-distribution tν(0,Σ) with covari-
ance matrix Σ = (σij) ∈Rp×p and σij = 0.5|i−j|. To examine the effect of misspecified fea-
ture distribution, we generate knockoff variables using the misspecified Gaussian distribution
N(0, ν

ν−2Σ) with matched first two moments and explore the FDR control of approximate
knockoffs inference procedure as the number of degrees of freedom ν changes. We fix the
sample size as n = 300 and the dimensionality as p = 400. Again the linear model in Set-
ting 1 and logistic model in Setting 2 are considered. We investigate the FDR control using
knockoff statistics constructed from the debiased Lasso coefficient difference.

The number of degrees of freedom ν determines the closeness between the approximate
and coupled perfect knockoff procedures, as demonstrated in layer 3 analysis in Section 4.1.
We examine the behavior of the approximate knockoffs procedure for ν ∈ {5,10,20,50}. It
is observed from Table 4 that the approximate knockoffs procedure can have slightly inflated
FDR for a small value of ν = 5, while achieving desired FDR control almost always for larger
values of ν = 10, 20, and 50. This again verifies our theoretical analysis.

TABLE 4
FDR control for the approximate knockoffs procedure using misspecified feature distribution under Settings 1

and 2, with a targeted FDR level q = 0.2. Results are based on 100 replications.

Setting 1 Setting 2
ν 5 10 20 50 ν 5 10 20 50

FDR 0.238 0.190 0.206 0.195 FDR 0.175 0.162 0.186 0.169

8. Discussions. We have investigated in this paper the robustness of the model-X knock-
offs framework introduced in Candès et al. (2018) by characterizing the feature selection
performance of the approximate knockoffs (ARK) procedure, a popularly implemented ver-
sion of the model-X knockoffs framework in practice. The approximate knockoffs procedure
differs from the model-X knockoffs procedure in that it uses the misspecified or estimated
feature distribution to generate the knockoff variables without the use of sample splitting. We
have proved formally that the approximate knockoffs procedure can achieve the asymptotic
FDR and k-FWER control as the sample size diverges in the high-dimensional setting. A
key idea empowering our technical analysis is coupling, where we pair statistics in the ap-
proximate knockoffs procedure with those in the model-X knockoffs procedure so that they
are close in realizations with high probability. The knockoff variable coupling has been in-
vestigated under some specific distribution assumptions in the current work. An interesting
future study is to investigate the coupling idea under a broader class of or even general feature
distributions.
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SUPPLEMENTARY MATERIAL

Supplement to “ARK: Robust Knockoffs Inference with Coupling”
The Supplementary Material Fan, Gao and Lv (2024) contains all the proofs and technical
details, and an extension of the analysis in Section 3.3 to the setting of the generalized linear
model.
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REN, Z., WEI, Y. and CANDÈS, E. (2021). Derandomizing knockoffs. Journal of the American Statistical Asso-
ciation 1–11.
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Supplement to “ARK: Robust Knockoffs Inference with Coupling”

Yingying Fan, Lan Gao and Jinchi Lv

This Supplementary Material contains the proofs of Theorems 1–6, Propositions 1–4, and
some key technical lemmas. All the notation is the same as defined in the main body of the
paper. Section A presents the Proofs of Theorems 1–6 and Propositions 1–4. We provide
the proofs of the key lemmas and additional technical details in Section B. In Section C,
we extend the analysis in Section 3.3 for knockoff statistics constructed with the regression
coefficient difference to the setting of the generalized linear model (GLM). Throughout the
Supplement, C stands for some positive constant whose value may change from line to line.

APPENDIX A: PROOFS OF THEOREMS 1–6 AND PROPOSITIONS 1–4

A.1. Proof of Theorem 1. It has been shown in Candès et al. (2018) that the model-X
knockoffs inference procedure achieves the exact FDR control when the perfect knockoff
statistics are employed. Note that the approximate knockoff statistics {Ŵj} are expected
to provide a reliable approximation to the perfect knockoff statistics {W̃j}, as assumed in
Condition 1. The main idea of the proof is to establish the FDR control for the approximate
knockoffs inference procedure through a comparison of the approximate knockoff statistics
and a certain realization of the perfect knockoff statistics. The two lemmas below provide a
sketch of the proof and can be established under Conditions 1–5.

LEMMA 3. Assume that Conditions 1, 4, and 5 are satisfied. When an → ∞ and
mn/an→ 0, we have that for some constant 0< c1 < 1,

sup
t∈
(

0,G−1(
c1qan
p

)
]
∣∣∣∣∣
∑

j∈H0
1(Ŵj ≥ t)∑

j∈H0
P(W̃j ≥ t)

− 1

∣∣∣∣∣= op(1),(A.1)

sup
t∈
(

0,G−1(
c1qan
p

)
]
∣∣∣∣∣
∑

j∈H0
1(Ŵj ≤−t)∑

j∈H0
P(W̃j ≤−t)

− 1

∣∣∣∣∣= op(1).(A.2)

LEMMA 4. Under Conditions 1–5, we have that for some constant 0 < c1 < 1, P(T ≤
G−1( c1qanp ))→ 1.

We present the proofs of Lemmas 3 and 4 in Sections B.3 and B.4, respectively. Now we
are ready to prove Theorem 1. Let us define two events B1 = {T ≤G−1( c1qanp )} and

B2,ε =
{

sup
t∈(0,G−1(

c1qan
p

)]

(∣∣∣∑j∈H0
1(Ŵj ≥ t)∑

j∈H0
P(W̃j ≥ t)

− 1
∣∣∣∨ ∣∣∣∑j∈H0

1(Ŵj ≤−t)∑
j∈H0

P(W̃j ≤−t)
− 1
∣∣∣)≤ ε}

for ε > 0. Lemmas 3 and 4 above have shown that P(Bc1)→ 0 and P(Bc2,ε)→ 0 for each
ε > 0. In addition, it holds naturally that 0≤ FDP≤ 1. Then it follows that

FDR≤ E
( ∑

j∈H0
1(Ŵj ≥ T )

1∨
∑p

j=1 1(Ŵj ≥ T )
· 1(B1)1(B2,ε)

)
+ P(Bc1) + P(Bc2,ε)

= E
( ∑

j∈H0
1(Ŵj ≥ T )

1∨
∑p

j=1 1(Ŵj ≥ T )
· 1(B1)1(B2,ε)

)
+ o(1).

(A.3)
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In view of the definition of threshold T in (4), we can deduce that∑
j∈H0

1(Ŵj ≥ T )

1∨
∑p

j=1 1(Ŵj ≥ T )
· 1(B1)1(B2,ε)

=

∑
j∈H0

1(Ŵj ≥ T )∑
j∈H0

1(Ŵj ≤−T )
·
∑

j∈H0
1(Ŵj ≤−T )

1∨
∑p

j=1 1(Ŵj ≥ T )
· 1(B1)1(B2,ε)

≤ q ·
∑

j∈H0
1(Ŵj ≥ T )∑

j∈H0
1(Ŵj ≤−T )

· 1(B1)1(B2,ε).

(A.4)

Furthermore, it is easy to see that on event B1 ∩B2,ε, we have∑
j∈H0

1(Ŵj ≥ T )∑
j∈H0

1(Ŵj ≤−T )
≤ sup
t∈(0,G−1(

c1qan
p

)]

∑
j∈H0

1(Ŵj ≥ t)∑
j∈H0

1(Ŵj ≤−t)

≤ 1 + ε

1− ε
sup

t∈(0,G−1(
c1qan
p

)]

∑
j∈H0

P(W̃j ≥ t)∑
j∈H0

P(W̃j ≤−t)

=
1 + ε

1− ε
,

where the last equation above is obtained by the symmetry of the perfect knockoff statistics
{W̃j}j∈H0

that P(W̃j ≥ t) = P(W̃j ≤−t). Therefore, we can obtain that for any ε > 0,

(A.5) FDR≤ q · 1 + ε

1− ε
+ o(1),

which yields the desired result (9). This completes the proof of Theorem 1.

A.2. Proof of Theorem 2. The main idea of the proof is to directly apply Theorem 1 by
verifying Conditions 1–5 involved. We will show in the lemmas below that Conditions 1–5
are satisfied for the marginal correlation knockoff statistics under Conditions 6–10 and the
setting of nonparametric regression model (14) with normal features. Proofs of Lemmas 5–8
are presented in Sections B.5–B.8.

LEMMA 5. Assume that Condition 6 is satisfied. Then we have that

(A.6) P
(

max
1≤j≤p

|Ŵj − W̃j | ≥∆n

)
→ 0.

Lemma 5 above shows that Condition 1 is satisfied with sequences bn := ∆n. Define
wj = (EY 2)−1/2(|E(XjY )| − |E(X̃jY )|) for 1≤ j ≤ p. Note that wj = 0 for j ∈ H0 since

(Xj ,XH1
)
d
= (X̃j ,XH1

) for j ∈H0 by the exchangeability between Xj and X̃j . Recall from
the definition in (16) that

δn =

√
log p

n
max

1≤j≤p

{16
√

2‖Xj‖ψ2
‖Y ‖ψ2

(EY 2)1/2
∨

8
√

2|wj |‖Y ‖2ψ2

EY 2

}
.

We have the concentration inequality below for W̃j under the sub-Gaussian assumption in
Condition 7.
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LEMMA 6. Assume that Condition 7 is satisfied. When log p= o(n), we have that

(A.7)
p∑
j=1

P(|W̃j −wj | ≥ δn)≤ 6p−1 + p exp
{
− n(EY 2)2

8EY 4

}
.

Lemma 6 above indicates that Condition 2 related to the concentration rate of W̃j is sat-
isfied with δn defined in (16) and that ∆n ≤ δn, where ∆n is the approximation accuracy
of the approximate knockoff statistics obtained in Lemma 5. In addition, from the definition
of wj , under Condition 8 we have that the general Condition 3 on the signal strength is also
satisfied. Next we will turn to the verification of Conditions 4–5.

LEMMA 7. Assume that Condition 9 is satisfied. Then we have that for each t≥ 0,

(A.8)
Var

(∑
j∈H0

1(W̃j ≥ t)
)

p0G(t)
≤ 2mn.

LEMMA 8. Assume that Conditions 9 and 10 are satisfied. Then when (log p)1/γmn/an→
0 and

√
n∆n(log p)1/2+1/γ→ 0 for some constant 0< γ < 1, we have that

(A.9) (log p)1/γ sup
t∈(0,G−1(

c1qan
p

)]

G(t−∆n)−G(t+ ∆n)

G(t)
→ 0

and

(A.10) a−1
n

∑
j∈H1

P
(
W̃j <−G−1(

c1qan
p

) + ∆n

)
→ 0

as n→∞.

Lemma 7 above shows that Condition 4 is satisfied, while Lemma 8 above implies that
Condition 5 is satisfied. Finally, the conclusion of Theorem 2 can be obtained by directly
applying the general Theorem 1. This completes the proof of Theorem 2.

A.3. Proof of Theorem 3. The main idea of the proof is to directly apply Theorem 1
by verifying Conditions 1–5 for the knockoff statistics constructed from the debiased Lasso
coefficients. A key observation is that the debiased Lasso coefficients are asymptotically
normal. Denote by

τj = ‖z̃j‖2/|̃zTj X̃
aug

j |.
The debiased Lasso coefficient can be written as

(A.11)
√
n(β̃j − βaug

j ) =
z̃Tj ε
‖z̃j‖2

·
√
nτj +

∑
k 6=j

√
nz̃Tj X̃

aug

k (βaug
k − β̃init

k )

z̃Tj X̃
aug

j

.

Observe that z̃Tj ε
‖z̃j‖2 ∼N(0, σ2),

√
nτj =Op(1), and the remainder term in (A.11) above is of

order op(1). Thus, the debiased Lasso estimator is asymptotically normal in the sense that

τ−1
j (β̃j − βaug

j )
d→N(0, σ2).

Our proof will build mainly on such intuition. Throughout the proof below, constant C may
take different values from line to line.

We first present two lemmas below about the consistency of Lasso estimators β̃
init

and γ̃j .
We omit the proofs of Lemmas 9 and 10 here to avoid redundancy since they are well-known
results for the consistency of Lasso estimators in the literature.
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LEMMA 9. Under Conditions 11–13, we have that with probability 1− o(p−3),

‖β̃
init
−βaug‖1 ≤Cs

√
log p

n
,(A.12)

‖β̃
init
−βaug‖2 ≤C

√
s log p

n
,(A.13)

‖X̃aug
(β̃

init
−βaug)‖2 ≤C

√
s log p.(A.14)

LEMMA 10. Under Conditions 11–13, we have that with probability 1− o(p−3),

max
1≤j≤2p

‖γ̃j − γj‖1 ≤Cmn

√
log p

n
,(A.15)

max
1≤j≤2p

‖γ̃j − γj‖2 ≤C
√
mn log p

n
,(A.16)

max
1≤j≤2p

‖X̃aug

−j (γ̃j − γj)‖2 ≤C
√
mn log p.(A.17)

In addition, when mn log p
n → 0 we have that with probability 1− o(p−3),

|
√
nτj − (Ee2

j )
−1/2| ≤C

√
mn log p

n
,(A.18)

∣∣̃zTj z̃l −Cov(ej , el)
∣∣≤C√mn log p

n
.(A.19)

The four lemmas below outline the proof for verifying the general Conditions 1–5. Proofs
of Lemma 11–14 are provided in Sections B.9–B.12, respectively.

LEMMA 11. Assume that Conditions 6 and 11–13 are satisfied. Then as ∆ns
1/2→ 0 and√

s log p
n → 0, we have that

(A.20) P
(

max
1≤j≤2p

|β̃j − β̂j | ≥C∆ns

√
log p

n

)
→ 0.

Lemma 11 above indicates that Condition 1 is satisfied with sequences bn :=C∆ns
√

log p
n .

Let us define wj = |βj |.

LEMMA 12. Assume that Conditions 11–13 are satisfied. Then as s
√

mn log p
n → 0, we

have that for some C > 0,
∑p

j=1 P(|W̃j −wj | ≥C
√
n−1 log p)→ 0.

Lemma 12 above shows that Condition 2 related to the concentration rate of W̃j is satisfied
with δn =C

√
n−1 log p. In addition, it holds that bn�C

√
n−1 log p due to the assumption

∆ns→ 0 in Theorem 3. In addition, in light of the definition of wj , under Condition 14 we
have that the general Condition 3 on the signal strength is also satisfied. We next turn to the
verification of Conditions 4–5.
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LEMMA 13. Assume that Conditions 11–13 are satisfied. Then as m1/2
n s(log p)3/2+1/γ

√
n

→ 0,

we have that Var
(∑

j∈H0
1(W̃j > t)

)
≤ V1(t) + V2(t), where for some 0< γ < 1 and 0<

c1 < 1,

(A.21) (log p)1/γ sup
t∈(0,G−1(

c1qan
p

)]

V1(t)

[p0G(t)]2
→ 0

and

(A.22) sup
t∈(0,G−1(

c1qan
p

)]

V2(t)

p0G(t)
.mn.

LEMMA 14. Assume that Conditions 6, 10, and 11 –13 are satisfied. Then when
m1/2
n s(log p)3/2+1/γ

√
n

→ 0 and ∆ns(log p)1+1/γ→ 0, we have that

(A.23) (log p)1/γ sup
t∈(0,G−1(

c1qan
p

)]

G(t− bn)−G(t+ bn)

G(t)
→ 0

and

(A.24) a−1
n

∑
j∈H1

P
(
W̃j <−G−1(

c1qan
p

) + bn

)
→ 0

as n→∞.

Lemma 13 above shows that Condition 4 is satisfied, whereas Lemma 14 implies that
Condition 5 is satisfied. Finally, the conclusion of Theorem 3 can be derived by directly
applying the general Theorem 1. This completes the proof of Theorem 3.

A.4. Proof of Theorem 4. We first define the corresponding threshold T̃v for the perfect
knockoff statistics {W̃j}pj=1 in the model-X knockoffs inference for the k-FWER control as

T̃v = sup{t ∈ W̃ : #{j :−W̃j ≥ t}= v},

where v is defined as in (52) and W̃ = {|W̃1|, · · · , |W̃p|}. As sketched in Lemmas 15–17
below, the main idea of the proof is to show that the threshold Tv based on the approx-
imate knockoff statistics and the threshold T̃v based on the perfect knockoff statistics are
sufficiently close under Condition 1 such that for any ε > 0, the number of W̃j’s that lie be-
tween Tv and T̃v is at most vε with asymptotic probability one, where v satisfies v/k→ 1 as
k→∞. Specifically, let Mv be the integer such that

(A.25) T̃v+Mv
≥ T̃v − 2bn > T̃v+Mv+1.

Then we can establish a bound for Mv as shown in Lemma 17 below. We first present the
three lemmas below that provide an outline of the proof. The proofs of Lemmas 15–17 are
provided in Sections B.13–B.15, respectively.

LEMMA 15. Under Condition 1, we have that

(A.26) P(|Tv − T̃v| ≥ bn)→ 0.

LEMMA 16. Assume that k→∞. Then we have that

(A.27)
v

k
= 1 +O(k−1/2).
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LEMMA 17. Under all the conditions of Theorem 4, we have that for each ε > 0,

(A.28) P(Mv ≤ vε)→ 1.

We are now ready to prove Theorem 4. It follows straightforwardly from Lemma 15 that

P(V̂ ≥ k(1 + 2ε)) = P
( ∑
j∈H0

1(Ŵj ≥ Tv)≥ k(1 + 2ε)
)

≤ P
( ∑
j∈H0

1(W̃j ≥ T̃v − 2bn)≥ k(1 + 2ε)
)

≤ P
( ∑
j∈H0

1(W̃j ≥ T̃v+Mv
)≥ k(1 + 2ε)

)
= P

( ∑
j∈H0

1(−W̃j ≥ T̃v+Mv
)≥ k(1 + 2ε)

)
≤ P

( ∑
j∈H0

1(−W̃j ≥ T̃v)≥ k(1 + 2ε)−Mv

)
,

where the second last step above is because of the symmetry of W̃j’s with j ∈ H0 and the
last step above is due to∑

j∈H0

1(−W̃j ≥ T̃v+Mv
)−

∑
j∈H0

1(−W̃j ≥ T̃v)≤Mv

by the definitions of T̃v and Mv .
Moreover, Lemma 17 above shows that Mv ≤ vε with asymptotic probability one and

Lemma 16 above proves that v/k = 1 + o(1). Then it holds that 2kε >Mv with asymptotic
probability one. Hence, combining the above results and by the union bound, we can deduce
that

P(V̂ ≥ k(1 + 2ε))≤ P
( ∑
j∈H0

1(−W̃j ≥ T̃v)≥ k
)

+ o(1) = q+ o(1).

Consequently, it follows that for each ε > 0,

lim sup
n→∞

P(V̂ ≥ k(1 + 2ε))≤ q.

This concludes the proof of Theorem 4.

A.5. Proof of Theorem 5. The proof of Theorem 5 is analogous to that of Theorem 2 in
Section A.2. We omit the detailed proof here to avoid redundancy.

A.6. Proof of Theorem 6. The proof of Theorem 6 is similar to that of Theorem 3 in
Section A.3. Hence we omit the detailed proof here to avoid redundancy.

A.7. Proof of Proposition 1. Let X̂ and X̃ be matrices generated from the conditional
coupling measure η∗ given X. By Chebyshev’s inequality, we have

P(‖X̂− X̃‖1,2 ≥∆n) = EX [P∗(‖X̂− X̃‖1,2 ≥∆n|X)]≤ EX
[E∗[‖X̂− X̃‖1,2|X]

∆n

]
≤ EX [CX ]cn∆−1

n → 0.
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A.8. Proof of Proposition 2. From the definitions in (31) and (33), we see that

(A.29) X̂− X̃ = rXA + ZB + diag(1− 1√
Q1/ν

, · · · ,1− 1√
Qn/ν

)ZC,

where A = Ω− Θ̂, B = (2rIp − r2Θ̂)1/2 − (2rIp − r2Ω)1/2, and C = (2rIp − r2Ω)1/2. In
view of assumption (35) and the fact that Θ := [Cov(X)]−1 = ν−2

ν Ω, it follows from the
triangle inequality that with probability 1− o(1),

‖Θ̂−Ω‖2 ≤ ‖Θ̂−Θ‖2 + ‖Θ−Ω‖2 = ‖Θ̂−Θ‖2 + 2ν−1‖Ω‖2

≤Cρn

√
log p

n
+ 2ν−1C−1

l .
(A.30)

Now we deal with the three terms on the right-hand side of (A.29) above separately. First,
for the second term above, an application of similar arguments as for (A.52) gives that with
probability 1− o(1),

(A.31) max
1≤j≤p

n−1‖(ZB)j‖22 ≤ 3‖B‖22/2≤C‖Θ̂−Ω‖22 ≤C
(ρ2

n log p

n
+ ν−2

)
.

Regarding the first term on the right-hand side of (A.29) above, observe that

(Xi,j ,Xi,l)
d
= (

ηi,j√
Qi/ν

,
ηi,l√
Qi/ν

),

where (ηi,1, · · · , ηi,p)
d∼N(0,Ω−1) and {Qi}ni=1 are independent and identically distributed

(i.i.d.) chi-square random variables with ν degrees of freedom. It holds that for some large
constant C1 > 0,

P
(
‖n−1XTX−Θ−1‖max ≥C1

√
log p

n
+ ν−1/2

)

= P
(

max
1≤j,l≤p

∣∣∣∣n−1
n∑
i=1

ηi,jηi,l
Qi/ν

−E(ηi,jηi,l)E(
ν

Qi
)

∣∣∣∣≥C1

√
log p

n
+ ν−1/2

)

≤ P
(

max
1≤j,l≤p

∣∣∣∣n−1
n∑
i=1

ν

Qi
(ηi,jηi,l −E(ηi,jηi,l))

∣∣∣∣≥C1

√
log p

n

)

+ P
(

max
1≤j,l≤p

∣∣∣∣n−1
n∑
i=1

E(ηi,jηi,l)
( ν
Qi
−E(

ν

Qi
)
)∣∣∣∣≥ ν−1/2

)
.

(A.32)

Before showing the bounds for the two probabilities on the right-hand side of the expres-
sion above, we first present some basic results for chi-square random variables. Note that
from the property of the chi-square distribution, we have through some immediate calcula-
tions that

E
( ν2

Q2
i

)
=

ν2

(ν − 2)(ν − 4)
,(A.33)

Var
( ν
Qi

)
=

ν2

(ν − 2)(ν − 4)
− (

ν

ν − 2
)2 =O(ν−1),(A.34)

Var
( ν2

Q2
i

)
=

ν4

(ν − 2)(ν − 4)(ν − 6)(ν − 8)
−
( ν2

(ν − 2)(ν − 4)

)2
=O(ν−1).(A.35)
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Thus, noting that E
(
ν2

Q2
i

)
+ ν−1/2 = ν2

(ν−2)(ν−4) + ν−1/2 ≤ 3 and E
(
ν2

Q2
i

)
− ν−1/2 ≥ 2/3

when ν ≥ 9, an application of the Markov inequality leads to

P
(
n−1

n∑
i=1

ν2

Q2
i

≥ 3

)
+ P
(
n−1

n∑
i=1

ν2

Q2
i

≤ 2/3

)

≤ P
(
n−1

n∑
i=1

ν2

Q2
i

≥ E
( ν2

Q2
i

)
+ ν−1/2

)
+ P
(
n−1

n∑
i=1

ν2

Q2
i

≤ E
( ν2

Q2
i

)
− ν−1/2

)

≤ νn−1 Var
( ν2

Q2
i

)
=O(n−1)→ 0.

(A.36)

In addition, noting that e−x/2 ≤ 1 and Stirling’s formula for the gamma function Γ(x) =√
2π/x(x/e)x(1 +O(x−1)) for x > 0, we have through applying the density function of the

chi-square distribution that for each constant C > 0,

P
(

max
1≤i≤n

ν

Qi
≥C

√
n

log p

)
≤ n

∫ C−1ν
√

logp

n

0

xν/2−1e−x/2

2ν/2Γ(ν/2)
dx

≤
2n(C−1ν

√
log p
n )ν/2

ν2ν/2Γ(ν/2)

. n
(
C−2 log p

n

)ν/4 νν/2

ν2ν/2
√

4π/ν(ν/2e)ν/2

=
(
C−2e2 log p

n1−4/ν

)ν/4 1√
4πν
→ 0

(A.37)

when log p= o(n1−4/ν).
Now we are ready to deal with the two probabilities on the right-hand side of (A.32) above.

Let us define two events D1 = {max1≤i≤n
ν
Qi
≤ C2

√
n

log p} for a small constant C2 > 0

and D2 = {2/3 ≤ n−1
∑n

i=1
ν2

Q2
i
≤ 3}. It follows from (A.36) and (A.37) that P(Dc

1)→ 0

and P(Dc
2)→ 0. For the first probability in (A.32) above, since ηi,jηi,l is a sub-exponential

random variable and Qi ⊥⊥ ηi,jηi,l, we can obtain by applying the concentration inequality
for the weighted sum of sub-exponential random variables (cf. Corollary 4.2 in Zhang and
Chen (2021)) that when C1 is large enough and C2 is small enough,

P
(

max
1≤j,l≤p

∣∣∣∣n−1
n∑
i=1

ν

Qi
(ηi,jηi,l −E(ηi,jηi,l))

∣∣∣∣≥C1

√
log p

n

)

≤ P
(

max
1≤j,l≤p

∣∣∣∣n−1
n∑
i=1

ν

Qi
(ηi,jηi,l −E(ηi,jηi,l))

∣∣∣∣≥C1

√
log p

n
,D1 ∩D2

)
+ P(Dc

1) + P(Dc
2)

≤ 2p2 exp{−3 log p}+ o(1)→ 0.

(A.38)
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Regarding the second probability in (A.32), since max1≤j,l≤p |E(ηi,jηi,l)| ≤max1≤j≤pE(η2
i,j)≤

max1≤j≤p(Ω
−1)j,j ≤Cu, an application of the Markov inequality and (A.34) yields that

P
(

max
1≤j,l≤p

∣∣∣∣n−1
n∑
i=1

E(ηi,jηi,l)
( ν
Qi
−E(

ν

Qi
)
)∣∣∣∣≥ ν−1/2

)

≤ P
(∣∣∣∣n−1

∑
i

( ν
Qi
−E(

ν

Qi
)
)∣∣∣∣≥C−1

u ν−1/2

)
≤C−2

u νn−1 Var(
ν

Qi
) =O(n−1)→ 0.

(A.39)

By plugging (A.38) and (A.39) into (A.32), we can show that with probability 1− o(1),

max
δ:‖δ‖0≤ρn

|δT (n−1XTX−Θ−1)δ|
‖δ‖22

≤Cρn
(√ log p

n
+ ν−1/2

)
,

which along with the fact ‖Θ−1‖2 = ν
ν−2‖Ω

−1‖2 ≤ ν
ν−2Cu entails that as ρn = o(

√
n/(log p))

and ρn = o(
√
ν),

(A.40) max
δ:‖δ‖0≤ρn

δTXTXδ
n‖δ‖22

≤C

for some constant C > 0. Using (A.30) and the sparsity assumption that max1≤j≤p ‖Ωj‖0 +
‖Ωn‖0 ≤ ρn, an application of similar arguments as for (A.49) gives that with probability
1− o(1),

max
1≤j≤p

n−1‖XAj‖22 = n−1AT
j XTXAj ≤C max

1≤j≤p
‖Aj‖22

=C‖Θ̂−Ω‖22 ≤C
(ρ2

n log p

n
+ ν−2

)
.

(A.41)

We now proceed with examining the third term on the right-hand side of (A.29) above.
Observe that ZCj

d∼N(0,‖Cj‖22In) and max1≤j≤p ‖Cj‖2 ≤ ‖C‖2 ≤ 2r. Hence, it holds for
some large constant C3 > 0 that

P
(

max
1≤j≤p

n−1
∥∥∥diag(1− 1√

Q1/ν
, · · · ,1− 1√

Qn/ν
)ZCj

∥∥∥2

2
≥C3ν

−1

)

= P
(

max
1≤j≤p

n−1
n∑
i=1

(
1− 1√

Qi/ν

)2
‖Cj‖2Z2

i ≥C3ν
−1

)

≤ P
(
n−1

n∑
i=1

(
1− 1√

Qi/ν

)2
Z2
i ≥C3ν

−1/4r2

)
,

(A.42)

where {Zi}ni=1 are i.i.d. standard normal random variables that are independent of C and
{Qi}ni=1.

Similar to the calculations in (A.34) and (A.35), we can deduce that

E
[(

1− 1√
Qi/ν

)2
Z2
i

]
= E(Z2

i )E
[(

1− 1√
Qi/ν

)2
]

= 1−E
( 2√

Qi/ν

)
+E

( 1

Qi/ν

)
= 1−

√
2νΓ(ν−1

2 )

Γ(ν2 )
+

ν

ν − 2

(A.43)
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and

E
[(

1− 1√
Qi/ν

)4
Z4
i

]

= 3

(
1−

2
√

2νΓ(ν−1
2 )

Γ(ν2 )
+

6(ν − 2)

ν
−
√

2ν3/2Γ(ν−3
2 )

Γ(ν2 )
+

ν2

(ν − 2)(ν − 4)

)
.

(A.44)

By applying the asymptotic series of the gamma function

Γ(x+ 1/2)

Γ(x)
=
√
x
(

1− 1

8x
+O(x−2)

)
,

we can obtain through some direct calculations that

(A.45) E
[(

1− 1√
Qi/ν

)2
Z2
i

]
=O(ν−1) and E

[(
1− 1√

Qi/ν

)4
Z4
i

]
=O(ν−2).

Combining (A.42) and (A.45) and applying the Markov inequality, we have that for some
large enough constant C3 > 0,

P
(

max
1≤j≤p

n−1
∥∥∥diag(1− 1√

Q1/ν
, · · · ,1− 1√

Qn/ν
)ZCj

∥∥∥2

2
≥C3ν

−1

)

≤ P
(
n−1

n∑
i=1

(
1− 1√

Qi/ν

)2
Z2
i −E

[(
1− 1√

Qi/ν

)2
Z2
i

]

≥C3(ν−1)/4r2 −O(ν−1)

)
≤Cν−2n−1 Var

((
1− 1√

Qi/ν

)2
Z2
i

)
≤Cν−2n−1E

(((
1− 1√

Qi/ν

)4
Z4
i

))
=O(n−1)→ 0.

(A.46)

Therefore, a combination of (A.29), (A.31), (A.41), and (A.46) yields the desired conclusion
in (36). This concludes the proof of Proposition 2.

A.9. Proof of Proposition 3. It follows from (37) and (38) that

(A.47) X̂− X̃ = rXA + ZB,

where A = Ω− Ω̂ and B = (2rIp − r2Ω̂)1/2 − (2rIp − r2Ω)1/2. By the Gaussianity of X ,
we see that XjXl is a sub-exponential random variable and thus for 0< u<C ,

P(|n−1XT
j Xl −E(XjXl)| ≥ u)≤ 2 exp{−Cnu2}.

Then we can obtain that

P
(

max
1≤j≤p,1≤l≤p

|n−1XjXl −E(XjXl)| ≥C
√

log p

n

)
= o(1).

Consequently, with probability 1− o(1) it holds that

max
δ:‖δ‖0≤ρn

|δT (n−1XTX−Ω−1)δ|
‖δ‖22

≤Cρn

√
log p

n
,
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which combined with the assumption that ‖Ω−1‖2 ≤Cu leads to

(A.48) max
δ:‖δ‖0≤ρn

δTXTXδ
n‖δ‖22

≤Cu +Cρn

√
log p

n
≤ C̃

for some constant C̃ > 0. Since ‖Aj‖0 = ‖(Ω− Ω̂)j‖0 ≤ Cρn because of the sparsity of Ω

and Ω̂, it follows from (A.48) that with probability 1− o(1),

max
1≤j≤p

n−1‖(XA)j‖22 = max
1≤j≤p

n−1‖XAj‖22 ≤ max
1≤j≤p

C̃‖Aj‖22

= max
1≤j≤p

C̃‖(Ω̂−Ω)j‖22 ≤ max
1≤j≤p

C̃‖Ω̂−Ω‖22

≤ C̃ ρ
2
n log p

n
,

(A.49)

where we have used the accuracy assumption in (39).
Next we proceed with analyzing the term ZB. Observe that given B, Z has i.i.d. standard

normal components and is independent of B, and hence

ZBj |Bj
d∼N(0,‖Bj‖22In).

It holds that ZBj |Bj
d
= (Z1‖Bj‖2, · · · ,Zn‖Bj‖2) with {Zi}ni=1 i.i.d. standard normal random

variables. Then we can deduce that
P( max

1≤j≤p
n−1‖(ZB)j‖22 ≥ 3‖B‖22/2

∣∣B)

= P(max
1≤j≤

n−1‖ZBj‖22 ≥ 3‖B‖22/2
∣∣B)

= P
(

max
1≤j≤p

n−1
n∑
i=1

Z2
i ‖Bj‖22 ≥ 3‖B‖22/2

∣∣B)

≤ P
(
n−1

n∑
i=1

Z2
i ‖B‖22 ≥ 2‖B‖22

∣∣B)

= P
(
n−1

n∑
i=1

Z2
i ≥ 3/2

)
≤ e−n/32→ 0

(A.50)

as n→∞, where we have used the fact that max1≤j≤p ‖Bj‖2 ≤ ‖B‖2 and the concentration
inequality for chi-square random variables that for 0< t < 1,

P
(∣∣∣n−1

n∑
i=1

Z2
i − 1

∣∣∣≥ t)≤ 2e−nt
2/8.

Now we aim to bound ‖B‖2. For two square matrices A and B, it holds that

‖A1/2 −B1/2‖2 = ‖A1/2(B −A)B−1 + (A3/2 −B3/2)B−1‖2

≤ ‖A1/2(B −A)B−1‖2 + 3 max{‖A‖1/22 ,‖B‖1/22 }‖A−B‖2‖B
−1‖2.

Applying the above inequality to B leads to

‖B‖2 ≤ ‖2rIp − r2Ω̂‖1/22 · r2‖Ω̂−Ω‖2 · ‖2rIp − r2Ω‖−1

+ 3 max{‖2rIp − r2Ω̂‖1/22 ,‖2rIp − r2Ω‖1/22 } · r
2‖Ω̂−Ω‖2 · ‖2rIp − r2Ω‖−1

≤C‖Ω̂−Ω‖2.

(A.51)



12

Thus, from (A.50) and assumption (39), we can obtain that with probability 1− o(1),

(A.52) max
1≤j≤p

n−1‖(ZB)j‖22 ≤ 3‖B‖22/2≤C‖Ω̂−Ω‖22 ≤C
ρ2
n log p

n
.

Note that

‖X̂j − X̃j‖2 ≤ r‖XAj‖2 + ‖ZBj‖2.

Therefore, in view of (A.49) and (A.52) we can show that for some constant C > 0,

(A.53) P
(
n−1/2‖X̂j − X̃j‖2 ≤Cρn

√
log p

n

)
→ 1.

This completes the proof of Proposition 3.

A.10. Proof of Proposition 4. In light of the definitions of X̂ and X̃, we can obtain
through the triangle inequality that

n−1/2 max
1≤j≤p

‖X̂j − X̃j‖2

≤ max
1≤j≤p

n−1/2

( n∑
i=1

[
F̂−1
j (Φ(Ûi,j))− F̂−1

j (Φ(Ũi,j))
]2)1/2

+ max
1≤j≤p

n−1/2

( n∑
i=1

[
F̂−1
j (Φ(Ũi,j))− F−1

j (Φ(Ũi,j))
]2)1/2

.

(A.54)

We claim that

P
(

max
1≤j≤p

n−1
n∑
i=1

[
F̂−1
j (Φ(Ûi,j))− F̂−1

j (Φ(Ũi,j))
]2 ≥ C̃(ρ2

n log p

n
+
pρn(logn)3

n

))

→ 0,
(A.55)

P
(

max
1≤j≤p

n−1
n∑
i=1

[
F̂−1
j (Φ(Ũi,j))− F−1

j (Φ(Ũi,j))
]2 ≥ 2Mp(logn)2

n

)
→ 0,

(A.56)

which together with (A.54) yield the desired conclusion of Proposition 4. It remains to estab-
lish (A.55) and (A.56). We will begin with the proof of (A.55).
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Proof of (A.55). From assumption (48) and the observation that logn
n2 � pρn(logn)3

n , it holds
that for some large constant C > 0,

P
(

max
1≤j≤p

n−1
n∑
i=1

[
F̂−1
j (Φ(Ûi,j))− F̂−1

j (Φ(Ũi,j))
]2 ≥C(ρ2

n log p

n
+
pρn(logn)3

n

))

≤ P
(

max
1≤j≤p

n−1
n∑
i=1

[
|Φ(Ûi,j)−Φ(Ũi,j)|2 + (logn)2n−2

+ n−1(logn)|Φ(Ûi,j)−Φ(Ũi,j)|
]
≥C

(ρ2
n log p

n
+
pρn(logn)3

n

))

+ P
(

max
1≤j≤p

sup
x,y∈(0,1)

∣∣F̂−1
j (x)− F̂−1

j (y)
∣∣

|x− y|+ (n−1(logn)|x− y|)1/2 + n−1 logn
≥M

)
≤ P

(
max

1≤j≤p
n−1

n∑
i=1

[
|Φ(Ûi,j)−Φ(Ũi,j)|2

+ n−1(logn)|Φ(Ûi,j)−Φ(Ũi,j)|
]
≥C

(ρ2
n log p

n
+
pρn(logn)3

n

))
+ o(1)

:= P1 + o(1).

(A.57)

We next bound term P1 above. Using the fact that |Φ(x)− Φ(y)| ≤ 1√
2π
|x− y| and the

basic inequality
∑n

i=1 |an| ≤
√
n(
∑n

i=1 an
2)1/2, we have that

P1 ≤ P
(

max
1≤j≤p

(
n−1‖Ûj − Ũj‖22 + (logn)n−3/2‖Ûj − Ũj‖2

)
≥C

(ρ2
n log p

n
+
pρn(logn)3

n

))
.

(A.58)

It suffices to consider the bound of max1≤j≤p n
−1‖Ûj − Ũj‖22. With the aid of the triangle

inequality and the definitions of Û and Ũ, it follows that

max
1≤j≤p

n−1‖Ûj − Ũj‖22 ≤ 3 max
1≤j≤p

n−1‖(V̂− Ṽ)(Ip − rΩ̂)j‖22

+ 3r2 max
1≤j≤p

n−1‖Ṽ(Ω̂j −Ωj)‖22

+ 3 max
1≤j≤p

n−1‖Z[(2rIp − r2Ω̂)1/2 − (2rIp − r2Ω)1/2]‖22.

(A.59)

We will investigate the three terms in the upper bound above separately. Regarding the third
term above, under the assumption in (39) it has been shown in (A.52) that with probability
1− o(1),

(A.60) max
1≤j≤p

n−1‖Z[(2rIp − r2Ω̂)1/2 − (2rIp − r2Ω)1/2]‖22 ≤C
ρ2
n log p

n
.

As for the second term in the upper bound in (A.59), noting that the rows of Ṽ are i.i.d.
and follow the Gaussian distribution N(0,Ω−1), an application of similar arguments as for
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(A.49) gives that with probability 1− o(1),

(A.61) max
1≤j≤p

n−1‖Ṽ(Ω̂j −Ωj)‖22 ≤C
ρ2
n log p

n
.

For the first term in the upper bound in (A.59) above, noting that ‖Ip − rΩ̂)j‖ ≤ ρn + 1 by
the sparsity assumption that ‖Ω̂j‖ ≤ ρn, we have that

max
1≤j≤p

n−1‖(V̂− Ṽ)(Ip − rΩ̂)j‖22 ≤ max
J :|J |≤ρn+1

‖n−1(V̂J − ṼJ)T (V̂J − ṼJ)‖2

× max
1≤j≤p

‖(Ip − rΩ̂)j‖22.
(A.62)

For the second term in the bound above, from the triangle inequality and inequality
‖Aj‖2 ≤ ‖A‖2 for each matrix A, it is easy to see that

max
1≤j≤p

‖(Ip − rΩ̂)j‖2 ≤ ‖Ip − rΩ̂‖2 ≤ ‖Ip − rΩ‖2 + r‖Ω̂−Ω‖2.

Thus it follows from assumption (39) that for a constant C > 0, with probability 1− o(1) we
have

(A.63) max
1≤j≤p

‖(Ip − rΩ̂)j‖2 ≤C.

Regarding the first term on the right-hand side of (A.62) above, using the definitions of V̂ and
Ṽ, and inequality ‖A‖2 ≤ d‖A‖max for each square matrix A ∈Rd×d, we can deduce that

max
J :|J |≤ρn+1

‖n−1(V̂J − ṼJ)T (V̂J − ṼJ)‖2

≤ (ρn + 1)‖n−1(V̂− Ṽ)T (V̂− Ṽ)‖max

≤ (ρn + 1) max
1≤j≤p

n−1
n∑
i=1

|V̂i,j − Ṽi,j |2

= (ρn + 1) max
1≤j≤p

n−1
n∑
i=1

|Φ−1(F̂j(Xi,j))−Φ−1(Fj(Xi,j))|2.

(A.64)

Denote by Hj,n = [F−1
j (2Mn−1 logn), F−1

j (1− 2Mn−1 logn)] with constant M as given
in assumption (47). We can write that

max
1≤j≤p

n−1
n∑
i=1

|Φ−1(F̂j(Xi,j))−Φ−1(Fj(Xi,j))|2

= max
1≤j≤p

n−1
n∑
i=1

|Φ−1(F̂j(Xi,j))−Φ−1(Fj(Xi,j))|21(Xi,j ∈Hj,n)

+ max
1≤j≤p

n−1
n∑
i=1

|Φ−1(F̂j(Xi,j))−Φ−1(Fj(Xi,j))|21(Xi,j /∈Hj,n)

:=E1 +E2.

(A.65)
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Let us first consider term E2 above. Observe that

E2 ≤ max
1≤j≤p

n−1
n∑
i=1

|Φ−1(F̂j(Xi,j))|21(Xi,j /∈Hj,n)

+ max
1≤j≤p

n−1
n∑
i=1

|Φ−1(Fj(Xi,j))|21(Xi,j /∈Hj,n).

(A.66)

For the first term in the bound above, notice that

|Φ−1(F̂j(Xi,j))|=O(
√

logn)

due to the assumption that 1
2n ≤ Fj(x) ≤ 1 − 1

2n for each x ∈ supp(Xj). Then it follows
from the union bound, the Markov inequality, and the definition of Hj,n that

P
(

max
1≤j≤p

n−1
n∑
i=1

|Φ−1(Fj(Xi,j))|21(Xi,j /∈Hj,n)≥ p(logn)3

n

)

≤
p∑
j=1

P
(
n−1 logn

n∑
i=1

1(Xi,j /∈Hj,n)≥ p(logn)3

n

)

≤ n

p(logn)2

p∑
j=1

P(Xi,j /∈Hj,n)

=
pn

p(logn)2
· 4Mn−1 logn

= 4M(logn)−1→ 0.

(A.67)

As for the second term in the upper bound in (A.66) above, an application of the Markov
inequality and the fact that Fj(Xi,j) follows the standard uniform distribution gives that

P
(

max
1≤j≤p

n−1
n∑
i=1

|Φ−1(Fj(Xi,j))|21(Xi,j /∈Hj,n)≥ p(logn)3

n

)

≤ n

p(logn)3

p∑
j=1

E
(
|Φ−1(Fj(Xi,j))|21(Xi,j /∈Hj,n)

)

=
2n

(logn)3

∫ Φ−1( 2M logn

n
)

−∞

1√
2π
u2e−u

2/2du

≤ 2n

(logn)3|Φ−1(2M logn
n )|

∫ Φ−1( 2M logn

n
)

−∞

1√
2π
|u|3e−u2/2du

≤C n

(logn)3|Φ−1(2M logn
n )|

·
∣∣Φ−1(

2M logn

n
)
∣∣3 ·Φ(Φ−1(

2M logn

n
))

≤C(logn)−1→ 0,

(A.68)

where in the last step above, we have used the facts that |Φ−1(M logn
n )| ≤ C

√
logn,∫

u3e−u
2/2du = −(u2 + 2)e−u

2/2, and e−x
2/2/Φ(x) = O(|x|) for x < −2. Combining

(A.66), (A.67), and (A.68) yields that with probability 1− o(1),

(A.69) E2 ≤
p(logn)3

n
.
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Next we proceed with studying term E1. First, note that when |Φ−1(y)|> 2, it holds that

[Φ−1(y)]′ =
1

Φ′(Φ−1(y))
≤C 1

(y ∧ (1− y))|Φ−1(y)|

due to the fact that Φ′(x)/(1−Φ(x))≥ Cx for x > 2 and Φ′(x)/Φ(x)≥ C|x| for x <−2.
When |Φ−1(y)| ≤ 2, it is easy to see that

[Φ−1(y)]′ =
1

Φ′(Φ−1(y))
≤C.

Thus, combining the previous two results shows that for y ∈R,

(A.70) [Φ−1(y)]′ ≤ C

(y ∧ (1− y))|Φ−1(y)|
≤ C

(y ∧ (1− y))
.

Let us define an interval

δj(x) =

[
Fj(x)−

√
M [Fj(x)∧ (1− Fj(x))] logn

n
,Fj(x)+

√
M [Fj(x)∧ (1− Fj(x))] logn

n

]
.

Observe that under assumption (47), we have that

P(E1 ≥ x)

≤ P
(

max
1≤j≤p

n−1(
M logn

n
)

n∑
i=1

(
sup

y∈δj(Xi,j)

[Φ−1(y)]′
)2
Fj(Xi,j)(1− Fj(Xi,j)

· 1(Xi,j ∈Hj,n)≥ x
)

+ o(1).

(A.71)

When Xi,j ∈Hj,n, it holds that Fj(Xi,j) ∈ [2Mn−1 logn,1− 2Mn−1 logn] and hence

sup
y∈δ(Xi,j)

∣∣∣ y

F (Xi,j)
− 1
∣∣∣≤√ M logn

nFj(Xi,j)
≤ 1/
√

2.

Similarly, we have that

sup
y∈δ(Xi,j)

∣∣∣ 1− y
1− F (Xi,j)

− 1
∣∣∣≤ 1/

√
2.

The above two bounds combined with (A.70) yields that for Xi,j ∈Hj,n,

sup
y∈δj(Xi,j)

[Φ−1(y)]′ ≤ sup
y∈δj(Xi,j)

C

y ∧ (1− y)
≤ C

Fj(Xi,j)∧ (1− Fj(Xi,j))
.
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In view of the above bound, (A.71), and the fact that Fj(Xi,j) follows the standard uniform
distribution, we can deduce that

P
(
E1 ≥

p(logn)3

n

)
≤ P

(
max

1≤j≤p
n−1(

M logn

n
)

n∑
i=1

C

Fj(Xi,j)∧ (1− Fj(Xi,j))
1(Xi,j ∈Hj,n)

≥ p(logn)3

n

)
+ o(1)

≤ CM

p(logn)2

p∑
j=1

E
( 1

Fj(Xi,j)∧ (1− Fj(Xi,j))
1(Xi,j ∈Hj,n)

)

=
CM

(logn)2

∫ 1−2Mn−1 logn

2Mn−1 logn

1

u∧ (1− u)
du

≤ CM

(logn)2
·C logn

≤ CM

logn
→ 0.

(A.72)

A combination of (A.64), (A.65), (A.69), and (A.72) shows that with probability 1− o(1),

max
J :|J |≤ρn+1

‖n−1(V̂J − ṼJ)T (V̂J − ṼJ)‖2 ≤
Cpρn(logn)3

n
,(A.73)

which together with (A.59)–(A.63) entails that with probability 1− o(1),

n−1 max
1≤j≤p

‖Ûj − Ũj‖22 ≤C
(ρ2

n log p

n
+
pρn(logn)3

n

)
(A.74)

and

(A.75) (logn)n−3/2 max
1≤j≤p

‖Ûj − Ũj‖2 ≤C(logn)n−1
(
ρn

log p

n
+

√
pρn(logn)3

n

)
.

Plugging (A.74) into (A.58), it follows that

(A.76) P1→ 0.

Therefore, substituting (A.76) into (A.77) derives the desired result (A.55). It remains to
establish (A.56).
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Proof of (A.56). Let us define In = [2Mn−1 logn,1− 2Mn−1 logn]. It holds that

P
(

max
1≤j≤p

n−1
n∑
i=1

[
F̂−1
j (Φ(Ũi,j))− F−1

j (Φ(Ũi,j))
]2 ≥ 2Mp(logn)2

n

)

= P
(

max
1≤j≤p

n−1
n∑
i=1

[
F̂−1
j (Φ(Ũi,j))− F−1

j (Φ(Ũi,j))
]2
1(Φ(Ũi,j) ∈ In)

≥ Mp(logn)2

n

)
+ P
(

max
1≤j≤p

n−1
n∑
i=1

[
F̂−1
j (Φ(Ũi,j))− F−1

j (Φ(Ũi,j))
]2
1(Φ(Ũi,j) /∈ In)

≥ Mp(logn)2

n

)
.

(A.77)

For the first term on the right-hand side of (A.77) above, under assumption (46) we have that

P
(

max
1≤j≤p

n−1
n∑
i=1

[
F̂−1
j (Φ(Ũi,j))− F−1

j (Φ(Ũi,j))
]2
1(Φ(Ũi,j) ∈ In)

≥ Mp(logn)2

n

)
≤ P

(
M logn

n
≥ Mp(logn)2

n

)
+ o(1)

= 0 + o(1)→ 0.

(A.78)

Regarding the second term on the right-hand side of (A.77) above, observe that |F−1
j (Φ(Ũi,j))| ≤

b and |F̂−1
j (Φ(Ũi,j))| ≤ b by the assumption supp(Xj) ∈ [−b, b]. In addition, Φ(Ũi,j) fol-

lows the standard uniform distribution and thus P(Φ(Ũi,j) /∈ In) = 4Mn−1 logn. Then we
can deduce that

P
(

max
1≤j≤p

n−1
n∑
i=1

[
F̂−1
j (Φ(Ũi,j))− F−1

j (Φ(Ũi,j))
]2
1(Φ(Ũi,j) /∈ I1,n)

≥ Mp(logn)2

n

)
≤ P

(
max

1≤j≤p
n−1

n∑
i=1

1(Φ(Ũi,j) /∈ In)≥ Mp(logn)2

4nb2

)

≤ 4nb2

Mp(logn)2
· pP(Φ(Ũi,j /∈ In))

=
16b2

logn
→ 0.

(A.79)

Finally, combining (A.77)–(A.79) leads to the desired result (A.56). This concludes the proof
of Proposition 4.
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APPENDIX B: PROOFS OF SOME KEY LEMMAS

B.1. Proof of Lemma 1. We claim the following upper bound for E[‖X̂− X̃‖21,2|X] as
presented in (A.80) and lower bound for W1,2(µ̂n, µ̃n) as shown in (A.81)

(A.80) E[‖X̂− X̃‖21,2|X]≤ 2
(
1 +
√

2n−1
)
(r2 ∨ 1) max

1≤j≤p

(
n−1AT

j XTXAj + ‖Bj‖22
)
,

(A.81)
W1,2(µ̂n, µ̃n)≥ max

1≤j≤p

(
n−1r2AT

j XTXAj +
(
(2r− r2Ω̂j,j)

1/2 − (2r− r2Ωj,j)
1/2
)2)

,

where A = Ω̂−Ω and B = D̂− D, and Aj and Bj stand for the jth columns of A and B,
respectively. Their proofs are postponed to the end of the proof. In what follows, we will use
subscript j to denote the jth column of a generic matrix.

Next we will show that the upper bound in (A.80) can be bounded from above by the lower
bound in (A.81) up to a multiplicative constant. Define the eigen-decompositions 2rIp −
r2Ω̂ = P̂ T Λ̂P̂ and 2rIp− r2Ω = P TΛP , where Λ̂ and Λ are diagonal matrices with positive
eigenvalues, and P̂ and P are the corresponding eigenvector matrices. By definition, we have
D̂ = P̂ T Λ̂1/2P̂ and D = P TΛ1/2P . For the second term in the upper bound in (A.80), it holds
that

‖Bj‖22 = ‖D̂j −Dj‖22

= P̂ Tj Λ̂P̂j + P Tj ΛPj − 2P̂ Tj Λ̂1/2P̂P TΛ1/2Pj

= (2r− r2Ω̂j,j) + (2r− r2Ωj,j)− 2D̂
T

j Dj .

(A.82)

Moreover, the second term in the lower bound presented in (A.81) can be written as(
(2r− r2Ω̂j,j)

1/2 − (2r− r2Ωj,j)
1/2
)2

=
(
(P̂ Tj Λ̂P̂j)

1/2 − (P Tj ΛPj)
1/2
)2

= (2r− r2Ω̂j,j) + (2r− r2Ωj,j)− 2(P̂ Tj Λ̂P̂jP
T
j ΛPj)

1/2

= (2r− r2Ω̂j,j) + (2r− r2Ωj,j)− 2‖D̂j‖2‖Dj‖2.

(A.83)

Therefore, under the assumption that ‖D̂j‖2‖Dj‖2 − D̂
T

j Dj ≤ C‖D̂j − Dj‖22 for a constant
C < 1/2, we have

‖Bj‖22 ≤
(
(2r− r2Ω̂j,j)

1/2 − (2r− r2Ωj,j)
1/2
)2

+ 2C‖Bj‖22
and hence

‖Bj‖22 ≤
1

1− 2C

(
(2r− r2Ω̂j,j)

1/2 − (2r− r2Ωj,j)
1/2
)2
.

This combined with (A.80) and (A.81) proves the desired result in the lemma

(A.84) E[‖X̂− X̃‖21,2|X]≤ 2

1− 2C

(
1 +
√

2n−1
)
(r2 ∨ 1)W1,2(µ̂n, µ̃n).

It remains to prove (A.80) and (A.81). We first prove (A.80). Recall our construction of
coupling in (37) and (38) that

X̂ = X(Ip − rΩ̂) + ZD̂,

X̃ = X(Ip − rΩ) + ZD,
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where Z = (Zi,j) ∈ Rn×p is independent of (X,y) and consists of i.i.d. standard normal

entries Zi,j
d∼N(0,1). It immediately follows that

X̂− X̃ =−rXA + ZB.

Therefore, we have

E[‖X̂− X̃‖21,2|X] = E
[

max
1≤j≤p

n−1‖X̂j − X̃j‖22
∣∣∣X]

= E
[

max
1≤j≤p

n−1‖rXAj + ZBj‖22
∣∣∣X]

≤ 2E
[

max
1≤j≤p

(
r2n−1AT

j XTXAj + n−1BTj ZTZBj
)∣∣∣X]

≤ 2 max
1≤j≤p

(r2n−1AT
j XTXAj + ‖Bj‖22)

+ 2E
[

max
1≤j≤p

∣∣n−1BTj ZTZBj − ‖Bj‖22
∣∣∣∣∣X],

(A.85)

where the second last inequality follows from the Cauchy–Schwarz inequality. To deal with
the second term E

[
max1≤j≤p

∣∣n−1BTj ZTZBj −‖Bj‖22
∣∣∣∣∣X] in the above upper bound, a key

observation is that ZBj
d
= (Z̃1‖Bj‖2, · · · , Z̃n‖Bj‖2), where {Z̃i} are i.i.d. standard normal

random variables and are independent of all other variables. Hence, it can be obtained that

E
[

max
1≤j≤p

∣∣n−1BTj ZTZBj − ‖Bj‖22
∣∣∣∣∣X]= E

[
max

1≤j≤p
‖Bj‖22

∣∣∣n−1
n∑
i=1

(Z̃2
i − 1)

∣∣∣∣∣∣∣X]

= max
1≤j≤p

‖Bj‖22 E
[∣∣∣n−1

n∑
i=1

(Z̃2
i − 1)

∣∣∣]

≤ max
1≤j≤p

‖Bj‖22
(
E
[∣∣∣n−1

n∑
i=1

(Z̃2
i − 1)

∣∣∣2])1/2

=

√
2

n
max

1≤j≤p
‖Bj‖22,

(A.86)

where we have used the fact that E[(Z̃2
i − 1)2] = 2. Combining (A.85) and (A.86) yields the

desired result (A.80).
Now we proceed to prove the lower bound in (A.81). Note that by Jensen’s inequality,

W2
1,2(µ̂n, µ̃n) = inf

γ∈Γ(µ̂n,µ̃n)
E

(vec(X̂),vec(X̃))
d∼γ

(
max

1≤j≤p
n−1‖X̂j − X̃j‖22

)
≥ inf
γ∈Γ(µ̂n,µ̃n)

max
1≤j≤p

E
(vec(X̂),vec(X̃))

d∼γ

(
n−1‖X̂j − X̃j‖22

)
.

Observe that given X, we have X̂j
d∼ ν̂nj and X̃j

d∼ ν̃nj , where ν̂nj is the Gaussian distribution
N(X(Ip−rΩ̂)j , (2r−r2Ω̂j,j)In) and ν̃nj is the Gaussian distribution N(X(Ip−rΩ)j , (2r−
r2Ωj,j)In). Given X, let Γ(ν̂nj , ν̃

n
j ) be the set of all couplings of ν̂nj and ν̃nj . Note that if

(vec(X̂),vec(X̃))
d∼ γ for some γ ∈ Γ(µ̂n, µ̃n), then it must hold that (X̂j , X̃j)

d∼ γj for some
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γj ∈ Γ(ν̂nj , ν̃
n
j ). Therefore, we can obtain that

W2
1,2(µ̂n, µ̃n)≥ inf

γ∈Γ(µ̂n,µ̃n)
max

1≤j≤p
inf

γj∈Γ(ν̂nj ,ν̃
n
j )
E

(X̂j ,X̃j)
d∼γj

(
n−1‖X̂j − X̃j‖22

)
= max

1≤j≤p
inf

γj∈Γ(ν̂nj ,ν̃
n
j )
E

(X̂j ,X̃j)
d∼γj

(
n−1‖X̂j − X̃j‖22

)
= max

1≤j≤p
n−1W2

2(ν̂nj , ν̃
n
j ),

(A.87)

where W2
2(ν̂nj , ν̃

n
j ) is the squared 2-Wasserstein distance between ν̂nj and ν̃nj . By the well-

known result for the 2-Wasserstein distance for Gaussian measures (Givens and Shortt
(1984)), we have

n−1W2
2(ν̂nj , ν̃

n
j ) = n−1‖rXAj‖22 +

(
(2r− r2Ω̂j,j)

1/2 − (2r− r2Ωj,j)
1/2
)2
.(A.88)

Plugging (A.88) into (A.87) derives (A.81). This completes the proof of Lemma 1.

B.2. Proof of Lemma 2. Let gj(·|x−j) be the conditional density function of Xj |X−j =

x−j for X = (X1, · · · ,Xp)
T d∼ tν(0, Ip) and hj(·|x−j) the conditional density function of

X̂j |X̂−j = x−j for X̂ = (X̂1, · · · , X̂p)
T d∼N(0, ν

ν−2Ip). Following the definition in Barber,
Candès and Samworth (2020), we define

(A.89) K̂Lj :=

n∑
i=1

log

(
gj(Xi,j |Xi,−j)hj(X̂i,j |Xi,j)

hj(Xi,j |Xi,−j)gj(X̂i,j |Xi,−j)

)
,

where X = (Xi,j) ∈ Rn×p consists of i.i.d. rows sampled from tν(0, Ip) and X̂ = (X̂i,j) ∈
Rn×p consists of i.i.d. rows sampled from N(0, Ip). Note that Theorem 1 in Barber, Candès
and Samworth (2020) states that

(A.90) FDR≤min
ε≥0

{
qeε + P

(
max
j∈H0

K̂Lj > ε

)}
.

We claim that if np
ν(ν+p) ≥ C for some constant C > 0, there exists some positive constant α

such that

(A.91) P
(
K̂Lj ≥C/4

)
≥ α.

Then it holds that for 0< ε<C/4,

P
(

max
1≤j≤p

K̂Lj ≥ ε
)
≥ α,

and thus we cannot obtain the desired asymptotic FDR control lim sup(n,p) FDR ≤ q via
applying Theorem 1 in Barber, Candès and Samworth (2020). By contradiction, to allow
P
(

max1≤j≤p K̂Lj ≥ ε
)
→ 0, we must have that np

ν(ν+p) → 0 , which is equivalent to ν2�
nmin(n,p). Hence, Lemma 2 is proved. Now it remains to establish (A.91).

Proof of (A.91). Note that Ding (2016) showed that the conditional density gj(xj |x−j) of the
multivariate t-distribution satisfies that

gj(Xi,j |Xi,−j)∝
(

1 +
X2
i,j

ν + ‖Xi,−j‖22

)−(ν+p)/2

.
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It is easy to see that the conditional density hj(Xi,j |Xi,−j) of the standard normal distribution
satisfies that

hj(Xi,j |Xi,−j)∝ exp{−X2
i,j(ν − 2)/2ν}.

Plugging the two expressions above into (A.89) yields that

K̂Lj =

n∑
i=1

[X2
i,j(ν − 2)

2ν
− ν + p

2
log

(
1 +

X2
i,j

ν + ‖Xi,−j‖22

)

−
( X̂

2

i,j(ν − 2)

2ν
− ν + p

2
log

(
1 +

X̂
2

i,j

ν + ‖Xi,−j‖22

))]
.

Applying the basic inequality that | log(1 + x)− (x− x2/2)| ≤ x3 for each x > 0, we can
obtain that

K̂Lj =R1,j +R2,j +O(R3,j),(A.92)

where

R1,j =

n∑
i=1

[ X2
i,j(ν + p)

2(ν + ‖Xi,−j‖22)

(
ν + ‖Xi,−j‖22

ν + p
· ν − 2

ν
− 1

)
−

X̂
2

i,j(ν − 2)

2ν

(
1− ν + p

ν + ‖Xi,−j‖22

)]
,

(A.93)

R2,j =

n∑
i=1

ν + p

4

( X̂
4

i,j

(ν + ‖Xi,−j‖22)2
−

X4
i,j

(ν + ‖Xi,−j‖22)2

)
,

(A.94)

R3,j =

n∑
i=1

ν + p

2

( X̂
6

i,j

(ν + ‖Xi,−j‖22)3
+

X6
i,j

(ν + ‖Xi,−j‖22)3

)
.

(A.95)

We now calculate the mean and variance of K̂Lj separately. Observe that
√

ν−2
ν X̂i,j

d∼

N(0,1), (p− 1)−1‖Xi,−j‖22
d∼ Fp−1,ν , Xi,−j ⊥⊥

√
ν+p

ν+‖Xi,−j‖22
Xi,j , and√

ν + p− 1

ν + ‖Xi,−j‖22
Xi,j

d∼ tν+p−1

as shown in Ding (2016). Using the properties of the multivariate t-distribution and F -
distribution, some straightforward calculations show that

E(R1,j) =
n

2

[
ν + p

ν + p− 3

(
ν(ν + p− 3)

(ν − 2)(ν + p)
· ν − 2

ν
− 1

)
−
(

1− (ν + 2)(ν + p)

ν(ν + p− 1)

)]
= n

(
2p

ν(ν + p)
+O(ν−2)

)
,

(A.96)

E(R2,j) =
3n(ν + p)

4

[
1

(ν + p− 3)(ν + p− 5)
− ν + 2

ν(ν + p− 1)(ν + p+ 1)

]
=O(

n

ν(ν + p)
),

(A.97)
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and

E(R3,j)≤Cn(ν + p)−2.(A.98)

Combining (A.96)–(A.98) yields that when ν and p are large,

(A.99) E(K̂Lj) =
np

ν(ν + p)
+O(nν−2)≥ np

2ν(ν + p)
.

Next we analyze the variance of K̂Lj . Notice that

Var(K̂Lj) = E
(
(K̂Lj −EK̂Lj)2

)
≤C

n∑
i=1

E
{[ X2

i,j(ν + p)

2(ν + ‖Xi,−j‖22)

(
ν + ‖Xi,−j‖22

ν + p
· ν − 2

ν
− 1

)

−
X̂

2

i,j(ν − 2)

2ν

(
1− ν + p

ν + ‖Xi,−j‖22

)]2}

+C

n∑
i=1

E
[

(ν + p)2

16

( X̂
4

i,j

(ν + ‖Xi,−j‖22)2
−

X4
i,j

(ν + ‖Xi,−j‖22)2

)2]

≤ Cnp

ν(ν + p)
,

(A.100)

where in the last step above, we have used the facts that

E
( X4

i,j(ν + p)2

(ν + ‖Xi,−j‖22)2

)
≤C,

E
[(

ν + ‖Xi,−j‖22
ν + p

· ν − 2

ν
− 1

)2]
=

2p

ν(ν + p)
+O(ν−2),

E
[(

1− ν + p

ν + ‖Xi,−j‖22

)2]
=

2p

ν(ν + p)
+O(ν−2).

In view of the results on the mean and variance of K̂Lj shown in (A.98) and (A.99) above,
we see that if np

ν(ν+p) ≥C for some constant C > 0,

E(K̂Lj)≥
np

2ν(ν + p)
≥C/2.

Therefore, we can obtain through the one-sided Markov inequality that for a small constant

α> 0 (noting that E(K̂Lj)> 2α

√
Var(K̂Lj) if α is small),

P(K̂Lj ≥C/4)≥ P(K̂Lj ≥ E(K̂Lj)/2)

≥ P
(
K̂Lj ≥ E(K̂Lj)− α

√
Var(K̂Lj)

)
≥ 1− Var(K̂Lj)

Var(K̂Lj) + α2 Var(K̂Lj)

=
α2

1 + α2
,

(A.101)

which establishes (A.91). This completes the proof of Lemma 2.
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B.3. Proof of Lemma 3. Recall that G(t) = p−1
0

∑
j∈H0

P(W̃j ≥ t) and G(t) is a de-
creasing, continuous function. The main idea of the proof is to divide the continuous interval
(0,G−1( c1qanp )] into a diverging number of smaller intervals with end points {ti}lni=0 such
that t0 ≥ t1 ≥ · · · ≥ tln and

|G(ti)/G(ti+1)− 1| → 0

uniformly for 0 ≤ i ≤ ln as ln → ∞. Then the supreme over the continuous interval
(0,G−1( c1qanp )] can be reduced to the supreme over the set of discrete points {ti}lni=0 and
hence, we can apply the union bound to establish the desired result. Similar arguments have
also been used in Liu (2013), Cai and Liu (2016), and Guo et al. (2022). We detail only the
proof of (A.1) here since (A.2) can be shown in a similar fashion.

We start with defining a sequence 0≤ z0 < z1 < · · ·< zln = 1 and

ti =G−1(zi),

where z0 = c1qan
p , zi = c1qan

p + hnei
γ

p , and ln = [log((p− c1qan)/hn)]1/γ with 0< γ < 1 and
sequence hn→∞ satisfying that hn/an→ 0. As long as mn/an = o(1), we can choose

hn =
an

(an/mn)η

for some η ∈ (0,1). Then an application of similar technical analysis as in Guo et al. (2022)
shows that as an→∞,

(A.102) sup
0≤i≤ln

|G(ti)/G(ti+1)− 1| → 0.

For t ∈ (0,G( c1qanp )], there exists some 0≤ i≤ ln− 1 such that t ∈ [ti+1, ti]. It follows from

the monotonicity of P(W̃j ≥ t) and 1(Ŵj ≥ t) that∣∣∣∣
∑

j∈H0
1(Ŵj ≥ t)

p0G(t)
− 1

∣∣∣∣≤max

{∣∣∣∣
∑

j∈H0
1(Ŵj ≥ ti+1)

p0G(ti)
− 1

∣∣∣∣,∣∣∣∣
∑

j∈H0
1(Ŵj ≥ ti)

p0G(ti+1)
− 1

∣∣∣∣}.
The two terms within the brackets on the right-hand side of the expression above can be
bounded similarly and we will provide only the details on how to bound the first term for
simplicity.

With the aid of the fact that |xy − 1| ≤ |x− 1||y − 1|+ |x− 1|+ |y − 1| for all x, y ∈R,
we can deduce that∣∣∣∣
∑

j∈H0
1(Ŵj ≥ ti+1)

p0G(ti)
− 1

∣∣∣∣≤ ∣∣∣∣
∑

j∈H0
1(Ŵj ≥ ti+1)

p0G(ti+1)
− 1

∣∣∣∣ · sup
0≤i≤ln

∣∣∣∣ G(ti)

G(ti+1)
− 1

∣∣∣∣
+

∣∣∣∣
∑

j∈H0
1(Ŵj ≥ ti+1)

p0G(ti+1)
− 1

∣∣∣∣+ sup
0≤i≤ln

∣∣∣∣ G(ti)

G(ti+1)
− 1

∣∣∣∣
≤
∣∣∣∣
∑

j∈H0
1(Ŵj ≥ ti+1)

p0G(ti+1)
− 1

∣∣∣∣ · (1 + o(1)) + sup
0≤i≤ln

∣∣∣∣ G(ti)

G(ti+1)
− 1

∣∣∣∣,
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where the last step above is because of (A.102) and the o(1) term is uniformly over all i.
Combining the above two results and applying (A.102) again lead to∣∣∣∣

∑
j∈H0

1(Ŵj ≥ t)
p0G(t)

− 1

∣∣∣∣
≤max

{∣∣∣∣
∑

j∈H0
1(Ŵj ≥ ti+1)

p0G(ti+1)
− 1

∣∣∣∣, ∣∣∣∣
∑

j∈H0
1(Ŵj ≥ ti)

p0G(ti)
− 1

∣∣∣∣}
×
(
1 + o(1)

)
+ o(1).

(A.103)

Thus, to prove the desired result, it is sufficient to show that

(A.104) Dn := sup
0≤i≤ln

∣∣∣∑j∈H0
1(Ŵj ≥ ti)

p0G(ti)
− 1
∣∣∣= op(1).

We now proceed with establishing (A.104). Let us define an event

B3 = {max
1≤j≤p

|Ŵj − W̃j | ≤ bn}.

From Condition 1, it holds that P(Bc3)→ 0. Note that for any two events A and B, we have
that P(A)≤ P(A∩B) +P (Bc). Repeatedly using such inequality, the union bound, and the
property that P(Bc3)→ 0, we can deduce that for each ε > 0,

P(Dn ≥ ε)≤
ln∑
i=0

P
(∣∣∣∑j∈H0

{1(Ŵj ≥ ti)− P(W̃i ≥ ti)}
p0G(ti)

∣∣∣≥ ε,B3

)
+ P(Bc3)

≤
ln∑
i=0

P
(∣∣∣∑j∈H0

{1(W̃j ≥ ti)− P(W̃i ≥ ti)}
p0G(ti)

∣∣∣≥ ε/2)

+

ln∑
i=0

P
(∣∣∣∑j∈H0

[1(Ŵj ≥ ti)− 1(W̃i ≥ ti)]
p0G(ti)

∣∣∣≥ ε/2,B3

)
+ o(1)

≤
ln∑
i=0

4E
[{∑

j∈H0
[1(W̃j ≥ ti)− P(W̃i ≥ ti)]

}2]
ε2p2

0G
2(ti)

+

ln∑
i=0

2
∑

j∈H0
P
(
ti − bn ≤ W̃j ≤ ti + bn

)
εp0G(ti)

+ o(1),

(A.105)

where the last step above is due to the Markov inequality and the fact that |1(Ŵj ≥ ti) −
1(W̃i ≥ ti)| ≤ 1(ti − bn ≤ W̃j ≤ ti + bn) on event B3.

We next bound the first two terms on the very right-hand side of (A.105) above. For the
first term, under Condition 4 for the weak dependence between {Wj}, we have that

ln∑
i=0

4E
[{∑

j∈H0
[1(W̃j ≥ ti)− P(W̃i ≥ ti)]

}2]
ε2p2

0G
2(ti)

≤C
ln∑
i=0

mnp0G(ti) + o
(
(log p)−1/γ [p0G(ti)]

2
)

ε2p2
0G

2(ti)

=Cε−2mn

ln∑
i=0

1

p0G(ti)
+Cε−2o

(
ln(log p)−1/γ

)
.

(A.106)
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Moreover, it holds that
ln∑
i=0

1

p0G(ti)
= p−1

0

ln∑
i=0

1

zi
=

p

p0

ln∑
i=0

1

c1qan + hnei
γ

≤Ch−1
n ,

(A.107)

where the last inequality above is related to the proof of Theorem 3 in Guo et al. (2022).
In light of the definition of hn and the assumption of mn/an→ 0, we have that

mn/hn = (mn/an)1−η→ 0.

Therefore, combining (A.106)–(A.107) and the fact that

ln = [log((p− c1qan)/hn)]1/γ ≤ (log p)1/γ

shows that the first term for the bound in (A.105) tends to zero as n→∞. Moreover, since
ln ≤ (log p)1/γ , the second term on the very right-hand side of (A.105) above is bounded by

2

ε
(log p)1/γ sup

t∈(0,G−1(
c1qan
p

)]

G(t− bn)−G(t+ bn)

G(t)
,

which converges to zero as n→∞ under Condition 5. Finally, we can obtain that for each
ε > 0,

P(Dn > ε)→ 0,(A.108)

which establishes the desired result in (A.1). This concludes the proof of Lemma 3.

B.4. Proof of Lemma 4. We will show that with asymptotic probability one, it holds
that for some 0< c1 < 1,

(A.109) 1 +

p∑
j=1

1
(
Ŵj <−G−1(

c1qan
p

)
)
≤ qan ≤ q

p∑
j=1

1
(
Ŵj ≥G−1(

c1qan
p

)
)
.

Then from the definition of T , we can obtain the desired result of the lemma. We aim to
establish (A.109). The main idea of the proof is to prove that the population counterpart of
(A.109) holds. Then with an application of Lemma 3 to both left- and right-hand sides of
(A.109), we can connect it to the population counterpart and thus prove that (A.109) holds
with asymptotic probability one.

First, it follows from the union bound and the fact that P(A)≤ P(A∩B) +P(Bc) for any
two events A and B that under Conditions 1–3,

P(Ŵj < 3δn for some j ∈An)

≤ P(Ŵj < 3δn for some j ∈An, max
1≤j≤p

|Ŵj − W̃j |< bn) + P( max
1≤j≤p

|Ŵj − W̃j | ≥ bn)

≤ P(W̃j < 3δn + bn for some j ∈An) + P( max
1≤j≤p

|Ŵj − W̃j | ≥ bn)

≤
∑
j∈An

P(W̃j −wj < 3δn + bn −wj) + o(1)

≤
∑
j∈An

P(|W̃j −wj |> δn) + o(1)

≤
p∑
j=1

P(|W̃j −wj |> δn) + o(1)→ 0.
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Then we have

P(∩j∈An{Ŵj ≥ 3δn})→ 1

and thus with asymptotic probability one,

(A.110)
p∑
j=1

1(Ŵj ≥ 3δn)≥ an,

where an = |An|.
In addition, since wj >−δn for 1≤ j ≤ p by assumption, we can deduce that

p∑
j=1

P(Ŵj <−3δn)≤
p∑
j=1

P(Ŵj <−3δn, max
1≤j≤p

|Ŵj − W̃j |< bn)

+ P( max
1≤j≤p

|Ŵj − W̃j | ≥ bn)

≤
p∑
j=1

P(W̃j <−3δn + bn) + o(1)

≤
p∑
j=1

P(W̃j −wj ≤−3δn + bn −wj) + o(1)

≤
p∑
j=1

P(|W̃j −wj |> δn) + o(1)→ 0,

(A.111)

which yields
∑p

j=1 P(Ŵj < −3δn)→ 0. Using similar arguments as for (A.111), it holds
that

p∑
j=1

P(W̃j ≤−3δn)→ 0.

Then we can obtain that

G(3δn) = p−1
0

∑
j∈H0

P(W̃j ≤−3δn)≤ p−1
0

p∑
j=1

P(W̃j ≤−3δn)

= o(p−1
0 ).

Since an→∞, p0/p→ 1, and G(t) is a nonincreasing, continuous function, it follows that
G(3δn)≤ c1qan

p and thus

G−1(
c1qan
p

)≤ 3δn

for some constant 0< c1 < 1 when n is sufficiently large. This together with (A.110) entails
that with asymptotic probability one,

p∑
j=1

1(Ŵj ≥G−1(
c1qan
p

))≥ an.

This completes the proof of the second inequality in (A.109).
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It remains to establish the first inequality in (A.109). From the definition of G(t) and
Lemma 3, it holds that

c1qan
p

= p−1
0

∑
j∈H0

P(W̃j ≤−G−1(
c1qan
p

))

= (1 + op(1)) · p−1
0

∑
j∈H0

1
(
Ŵj <−G−1(

c1qan
p

)
)
.

(A.112)

Then for some constant c2 satisfying 0 < c1 < c2 < 1, we can obtain that with asymptotic
probability one,

(A.113) 1 +
∑
j∈H0

1
(
Ŵj <−G−1(

c1qan
p

)
)
≤ c1qanp0

p
(1 + op(1))≤ c2qan,

where we have used the assumption of p0/p→ 1. Further, under (8) in Condition 5, an appli-
cation of the union bound yields that

P
( ∑
j∈H1

1
(
Ŵj <−G−1(

c1qan
p

)
)
≥ (1− c2)qan

)
≤ P

( ∑
j∈H1

1
(
W̃j <−G−1(

c1qan
p

) + bn
)
≥ (1− c2)qan, max

1≤j≤p
|Ŵj − W̃j |< bn

)
+ o(1)

≤ 1

(1− c2)qan

∑
j∈H1

P
(
W̃j <−G−1(

c1qan
p

) + bn

)
+ o(1)→ 0,

(A.114)

which together with (A.113) implies that

(A.115) 1 +

p∑
j=1

1
(
Ŵj <−G−1(

c1qan
p

)
)
≤ qan

with asymptotic probability one. This proves the first inequality in (A.109), which completes
the proof of Lemma 4.

B.5. Proof of Lemma 5. Recall that the perfect and approximate knockoff statistics
based on the marginal correlation are defined as

W̃j = (
√
n‖y‖2)−1(|XT

j y| − |X̃T

j y|) and Ŵj = (
√
n‖y‖2)−1(|XT

j y| − |X̂T

j y|),

respectively. By the triangle inequality, it is easy to see that

max
1≤j≤p

|Ŵj − W̃j | ≤ max
1≤j≤p

(
√
n‖y‖2)−1|(X̂j − X̃j)

T y|.

Then an application of the Cauchy–Schwarz inequality gives that

max
1≤j≤p

|Ŵj − W̃j | ≤ (
√
n)−1 max

1≤j≤p
‖X̂j − X̃j‖2.

Thus, the conclusion of Lemma 5 can be derived under Condition 6. This completes the proof
of Lemma 5.
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B.6. Proof of Lemma 6. From the definitions of W̃j and wj and the triangle inequality,
it holds that

P(|W̃j −wj | ≥ δn)

≤ P
(

(n−1‖y‖22)−1/2
∣∣∣n−1(|XT

j y| − |X̃T

j y|)− (|E(XjY )| − |E(X̃jY )|)
∣∣∣≥ δn/2)

+ P
(∣∣∣(n−1‖y‖22)−1/2 − (EY 2)−1/2

∣∣∣ · ∣∣∣|E(XjY )| − |E(X̃jY )|
∣∣∣≥ δn/2)

:= P1 + P2.

We will aim to show that for δn→ 0,

(A.116) P1 ≤ 4 exp
{
− nδ2

nEY 2

256‖Xj‖2ψ2
‖Y ‖2ψ2

}
+ exp

{
− n(EY 2)2

8EY 4

}
and

P2 ≤ 2 exp
{
− nδ2

n(EY 2)2

64|wj |2‖Y ‖4ψ2

}
+ exp

{
− n(EY 2)2

8EY 4

}
.(A.117)

Then setting δn =
√

log p
n max

1≤j≤p

{
16
√

2‖Xj‖ψ2
‖Y ‖ψ2

(EY 2)1/2 ∨ 8
√

2|wj |‖Y ‖2ψ2

EY 2

}
, a combination of the

above results leads to the desired conclusion of this lemma.
We proceed with proving (A.116). Since ‖y‖22 =

∑n
i=1 y

2
i is the sum of i.i.d. random vari-

ables, an application of Bernstein’s inequality yields that

(A.118) P(n−1‖y‖22 ≤ E[Y 2]/2)≤ exp
{
− n(EY 2)2

8EY 4

}
.

It follows from the triangle inequality and (A.118) that

P1 ≤ P
(∣∣∣n−1(|XT

j y| − |X̃T

j y|)− (|E(XjY )| − |E(X̃jY )|)
∣∣∣≥ δn(EY 2)1/2

2
√

2

)
+ P(n1/2(‖y‖2)−1 ≥

√
2(E[Y 2])−1/2)

≤ P
(

1

n

∣∣∣ n∑
i=1

[Xi,jyi −E(XjY )]
∣∣∣≥ δn(EY 2)1/2

4
√

2

)

+ P
(

1

n

∣∣∣ n∑
i=1

[X̃i,jyi −E(X̃jY )]
∣∣∣≥ δn(EY 2)1/2

4
√

2

)

+ exp
{
− n(EY 2)2

8EY 4

}
.

We next bound the first two terms on the right-hand side of the expression above. Un-
der Condition 7, we see that Xi,jyi and X̃i,jyi are both sub-exponential random variables,
with sub-exponential norms ‖Xj‖ψ2

‖Y ‖ψ2
and ‖Xj‖ψ2

‖Y ‖ψ2
, respectively. Then we can

obtain through applying Bernstein’s inequality for sub-exponential random variables (see,
e.g., Corollary 2.8.3 in Vershynin (2018)) that when δn = o(1),

P
(

1

n

∣∣∣ n∑
i=1

[Xi,jyi −E(XjY )]
∣∣∣≥ δn(EY 2)1/2

4
√

2

)
≤ 2 exp

{
− nδ2

nEY 2

256‖Xj‖2ψ2
‖Y ‖2ψ2

}
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and

P
(

1

n

∣∣∣ n∑
i=1

[X̃i,jyi −E(X̃jY )]
∣∣∣≥ δn(EY 2)1/2

4
√

2

)
≤ 2 exp

{
− nδ2

nEY 2

256‖Xj‖2ψ2
‖Y ‖2ψ2

}
.

Thus, combining the above three inequalities establishes (A.116).
As for term P2, noting that wj = (EY 2)−1/2(|E(XjY )| − |E(X̃jY )|) and∣∣∣(n−1‖y‖22)−1/2 − (EY 2)−1/2

∣∣∣= |n−1‖y‖22 −EY 2|
n−1/2‖y‖2(EY 2)1/2((EY 2)1/2 + n−1/2‖y‖2)

,

we can deduce that

P2 = P
(
|wj |

|n−1‖y‖22 −EY 2|
n−1/2‖y‖2((EY 2)1/2 + n−1/2‖y‖2)

≥ δn/2
)

≤ P
(
|wj |

|n−1‖y‖22 −EY 2|
n−1/2‖y‖2(EY 2)1/2

≥ δn/2
)

= P
(
|n−1‖y‖22 −EY 2| ≥ δnEY 2

2
√

2|wj |

)
+ P(n−1‖y‖22 ≤ EY 2/2).

(A.119)

The very last term above can be bounded by applying (A.118).
Again we can see that under Condition 7, y2

i is a sub-exponential random variable with
sub-exponential norm ‖Y ‖2ψ2

. With the aid of Bernstein’s inequality for sub-exponential ran-
dom variables (Corollary 2.8.3 in Vershynin (2018)), we can obtain that for δn = o(1),

P
(

1

n

∣∣∣ n∑
i=1

[y2
i −E(Y 2)]

∣∣∣≥ δnEY 2

2
√

2|wj |

)
≤ 2 exp

{
− nδ2

n(EY 2)2

64|wj |2‖Y ‖4ψ2

}
.

Therefore, the bound for term P2 in (A.117) can be shown. This concludes the proof of
Lemma 6.

B.7. Proof of Lemma 7. The main idea of the proof is to apply the law of total variance
and decompose the total into two terms by conditioning on (XH1

,ε), where XH1
= (Xj)j∈H1

and ε= (ε1, · · · , εn)T . Specifically, it holds that

Var

( ∑
j∈H0

1(W̃j ≥ t)
)

= E

{
E
[( ∑

j∈H0

1(W̃j ≥ t)−
∑
j∈H0

P(W̃j ≥ t|XH1
,ε)

)2∣∣∣∣XH1
,ε

]}

+E

{( ∑
j∈H0

P(W̃j ≥ t|XH1
,ε)−

∑
j∈H0

P(W̃j ≥ t)
)2
}

:= V1 + V2.

(A.120)

We will bound terms V1 and V2 above separately.
Let us begin with the first term V1. We can expand the square and obtain that

V1 =
∑
j∈H0

∑
`∈H0

E

{
E
[(

1(W̃j ≥ t)− P(W̃j ≥ t|XH1
,ε)

)

×
(
1(W̃` ≥ t)− P(W̃` ≥ t|XH1

,ε)

)∣∣∣∣XH1
,ε

]}
.

(A.121)
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Observe that conditional on (XH1
,ε), it follows from model (14) that y is deterministic. In

addition, W̃j depends only on Xj and X̃j besides y. Thus, we need only to consider the
conditional distribution of (Xj , X̃j ,Xk, X̃k)|(XH1

,ε). We will aim to show that each W̃j

depends on at most mn random variables in {W̃k : k ∈H0}. Indeed, it suffices to show that
conditional on (XH1

,ε), the number of (Xk, X̃k)’s that are dependent on (Xj , X̃j) is at most
mn. Since the rows of (X, X̃) are i.i.d. and are independent of ε, we need only to consider the

distribution of a single row; that is, (Xj , X̃j ,Xk, X̃k)|(XH1
, ε)

d
= (Xj , X̃j ,Xk, X̃k)|XH1

.
In view of the multinormal distribution in (15), it follows that the conditional distribution

(Xj , X̃j ,Xk, X̃k)|XH1
is still normal. We can obtain from the conditional distribution that

Cov

{((
Xj

X̃j

)
,

(
Xk

X̃k

))∣∣∣∣∣XH1

}

=

(
Σj,k −Σj,H1

Σ−1
H1,H1

ΣH1,k Σj,k −Σj,H1
Σ−1
H1,H1

ΣH1,k

Σj,k −Σj,H1
Σ−1
H1,H1

ΣH1,k Σj,k −Σj,H1
Σ−1
H1,H1

ΣH1,k

)
.

In particular, (Xj , X̃j) and (Xk, X̃k) are independent conditional on XH1
if and only if

Σj,k −Σj,H1
Σ−1
H1,H1

ΣH1,k = 0.

Thus, to count the number of dependent pairs of (Xj , X̃j) and (Xk, X̃k) for j, k ∈ H0, we
need only to count the number of nonzero (Σj,k −Σj,H1

Σ−1
H1,H1

ΣH1,k)’s. Without loss of
generality, let us assume that X = (XH1

,XH0
) and

Σ =

(
ΣH1,H1

ΣH1,H0

ΣH0,H1
ΣH0,H0

)
.

Using the formula for the block matrix inverse, it holds that

Σ−1 =

(
(Σ−1)11 (Σ−1)12

(Σ−1)21 ΣH0,H0
−ΣH0,H1

Σ−1
H1,H1

ΣH1,H0

)
,

where

(Σ−1)11 = Σ−1
H1,H1

+ Σ−1
H1,H1

ΣH1,H0
(ΣH0,H0

−ΣH0,H1
Σ−1
H1,H1

ΣH1,H0
)−1ΣH0,H1

Σ−1
H1,H1

,

(Σ−1)12 =−Σ−1
H1,H1

ΣH1,H0
(ΣH0,H0

−ΣH0,H1
Σ−1
H1,H1

ΣH1,H0
)−1,

and (Σ−1)21 = (Σ−1)T12. In addition, Condition 9 assumes that max1≤j≤p ‖(Σ−1)j‖0 ≤mn,
which indicates that

max
j∈H0

‖(ΣH0,H0
−ΣH0,H1

Σ−1
H1,H1

ΣH1,H0
)j‖0 ≤mn

since it is a submatrix of Σ−1. Hence, we can obtain that for a given j ∈H0,∑
k∈H0

1

(
Σj,k −Σj,H1

Σ−1
H1,H1

ΣH1,k = 0
)
≤mn.

Consequently, we see that conditional on (XH1
,ε), the number of k ∈ H0 such that

(Xk, X̃k) is dependent on (Xj , X̃j) is at most mn. For j ∈H0, let us define

N(j) := {k ∈H0 : W̃k 6⊥⊥ W̃j |(XH1
,ε)}.



32

Then it holds that |N(j)| ≤mn. From (A.121) and the fact that the indicator function takes
values between 0 and 1, we can deduce that

V1 =
∑
j∈H0

∑
`∈N(j)

E

{
E

[
1(W̃j ≥ t) · 1(W̃` ≥ t)

∣∣∣XH1
,ε

]}

−
∑
j∈H0

∑
`∈N(j)

E

{
E

[
P(W̃j ≥ t|XH1

,ε)P(W̃` ≥ t
∣∣∣XH1

,ε)

]}

≤
∑
j∈H0

∑
`∈N(j)

E
{
E
[
1(W̃j ≥ t) · 1(W̃` ≥ t)

∣∣∣XH1
,ε
]}

≤mn

∑
j∈H0

E
{
E
[
1(W̃j ≥ t)

∣∣∣XH1
,ε
]}

=mn

∑
j∈H0

P(W̃j ≥ t) =mnp0G(t).

(A.122)

We next proceed with showing the bound for term V2. We can expand V2 as

V2 =
∑
j∈H0

∑
`∈H0

E
{(

P(W̃j ≥ t|XH1
,ε)− P(W̃j ≥ t)

)
×
(
P(W̃` ≥ t|XH1

,ε)− P(W̃` ≥ t)
)}
.

(A.123)

The key idea of the proof is to examine the conditional distribution P(W̃j ≥ t|XH1
,ε) and

show that given j ∈ H0, the number of dependent P(W̃` ≥ t|XH1
,ε) is at most mn. Since

(X,X̃) is multinormal, it holds that

(Xj , X̃j)
∣∣(XH1

, ε)
d∼N

((
Σj,H1

Σ−1
H1,H1

XH1

Σj,H1
Σ−1
H1,H1

XH1

)
,Covcond

)
,

where

Covcond =

(
Σj,j −Σj,H1

Σ−1
H1,H1

ΣH1,j Σj,j − r−Σj,H1
Σ−1
H1,H1

ΣH1,j

Σj,j − r−Σj,H1
Σ−1
H1,H1

ΣH1,j Σj,j −Σj,H1
Σ−1
H1,H1

ΣH1,j

)
.

Since the rows of the augmented data matrix (X, X̃) are i.i.d. and y is deterministic given
(XH1

,ε), we can obtain that( XT
j y

√
n‖y‖2

,
X̃
T

j y
√
n‖y‖2

)∣∣∣∣(XH1
,ε)

d∼N
(

(
√
n‖y‖2)−1

(
Σj,H1

Σ−1
H1,H1

XT
H1

y
Σj,H1

Σ−1
H1,H1

XT
H1

y

)
, n−1 Covcond

)
.

(A.124)

Note that when ΣH1,j = 0, the conditional distribution above does not depend on (XH1
,ε)

and hence any term involving such j ∈H0 in the expansion of V2 will disappear. Denote by

Ndep = {j ∈H0 : ΣH1,j 6= 0}.
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It follows from Condition 9 that |Ndep| ≤mn. Then we have that

V2 =
∑
j∈H0

∑
`∈Ndep

E
{(

P(W̃j ≥ t|XH1
,ε)− P(W̃j ≥ t)

)
×
(
P(W̃` ≥ t|XH1

,ε)− P(W̃` ≥ t)
)}

≤
∑
j∈H0

∑
`∈Ndep

E
{
P(W̃j ≥ t|XH1

,ε)P(W̃` ≥ t|XH1
,ε)
}

≤
∑
j∈H0

∑
`∈Ndep

E
{
P(W̃j ≥ t|XH1

,ε)
}
≤mnp0G(t).

(A.125)

Therefore, substituting (A.122) and (A.125) into (A.120) yields (A.8). This completes the
proof of Lemma 7.

B.8. Proof of Lemma 8. Proof of (A.9). In the proof of Lemma 7 in Section B.7 (cf.
(A.124)), we have shown that

(A.126)
(XT

j y
‖y‖2

,
X̃
T

j y
‖y‖2

)∣∣∣∣(XH1
,ε)

d∼N

((
µj
µj

)
, σ2
j

(
1 ρj
ρj 1

))
,

where

µj = ‖y‖−1
2 Σj,H1

Σ−1
H1,H1

XT
H1

y,

σ2
j = Σj,j −Σj,H1

Σ−1
H1,H1

ΣH1,j , ρj = 1− r/σ2
j ,

and r is as given in (15). Recall the definition Ndep = {j ∈H0 : ΣH1,j 6= 0} in the proof of
Lemma 7. It holds that |Ndep| ≤mn in view of Condition 9. Furthermore, note that

G(t)≥ c1qan/p

for t ∈ (0, G−1( c1qanp )]. Let us define

(A.127) Rn := sup
t∈(0,G−1(

c1qan
p

)]

∑
j∈H0∩Nc

dep
P(t−∆n ≤ W̃j < t+ ∆n)∑

j∈H0∩Nc
dep

P(W̃j ≥ t)
.

Then we can write

sup
t∈(0,G−1(

c1qan
p

)]

G(t−∆n)−G(t+ ∆n)

G(t)

= sup
t∈(0,G−1(

c1qan
p

)]

∑
j∈H0∩Ndep P(t−∆n ≤ W̃j < t+ ∆n)

p0G(t)
+Rn

≤ mnp

c1qanp0
+Rn.

(A.128)

From the assumptions that (log p)1/γmn/an→ 0 and p0/p→ 1, we have that

(log p)1/γ mnp

c1qanp0
→ 0.
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It remains to establish (log p)1/γRn→ 0. A key observation is that when j ∈ H0 ∩N c
dep, it

follows that the conditional distribution

(A.129)
(XT

j y
‖y‖2

,
X̃
T

j y
‖y‖2

)∣∣∣∣(XH1
,ε)

d∼N

((
0
0

)
,

(
Σ2
j,j Σ2

j,j − r
Σ2
j,j − r Σ2

j,j

))
,

which does not depend on (XH1
,ε). Then we see that the distribution of W̃j does not depend

on (XH1
,ε) and satisfies that

(A.130) P(
√
nW̃j ≥ t) = P(|Z1| − |Z2| ≥ t),

where (Z1,Z2)T is a two-dimensional multinormal random variable with mean (0,0)T and
covariance matrix (

Σ2
j,j Σ2

j,j − r
Σ2
j,j − r Σ2

j,j

)
.

For j ∈H0 ∩N c
dep and t > 0, the density function of

√
nW̃j is given by

f√
nW̃j

(t) =

√
2√

πc2,j

[
1−Φ

( t

c1,j

)]
exp

{
− t2

2c2
2,j

}
+

√
2√

πc1,j

[
1−Φ

( t

c2,j

)]
exp

{
− t2

2c2
1,j

}
,

(A.131)

where c1,j =
√

4Σ2
j,j − 2r and c2,j =

√
2r. Based on the density function of

√
nW̃t above

and the basic inequality that 1−Φ(x)≤ e−x2/2 for x≥ 0, it is easy to see that

P(W̃j ≥ t) = P(
√
nW̃j ≥

√
nt)

≤
∫ ∞
√
nt

√
2√

πc2,j
exp

{
− x2

2c2
2,j

}
dx+

∫ ∞
√
nt

√
2√

πc1,j
Φ
(−x
c2,j

)
dx

≤
(

2 +
2c2,j

c1,j

)[
1−Φ

(√nt
c2,j

)]
.

(A.132)

Then we can obtain that

G(t)≤max
j∈H0

(
2 +

2c2,j

c1,j

)[
1−Φ

(√nt
c2,j

)]
.

Setting t=G−1( c1qanp ) in the inequality above yields that

G−1(
c1qan
p

) =O(

√
log p

n
)

when C1 < r <Σ2
j,j <C2 with some absolute constants C1 > 0 and C2 > 0 for each j ∈H0.

We will bound the ratio in Rn by considering two ranges of t ∈ (0,4n−1/2 maxj∈H0
c1,j ∨

c2,j) and t ∈ [4n−1/2 maxj∈H0
c1,j ∨ c2,j ,G

−1(c1qan/p)] separately. When t falls into the
first range, in view of (A.131) the denominator G(t) in the ratio in Rn is of a constant order,
while the numerator is uniformly bounded from above by O(

√
n∆n) over all t in this range

because the density f√
nW̃j

(t) is bounded from above by a constant.

We now consider the ratio in Rn in the second range of t ∈ [4n−1/2 maxj∈H0
c1,j ∨

c2,j ,G
−1(c1qan/p)]. We will bound the numerator and denominator in (7) separately in
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this range. It follows from (A.131) and the mean value theorem that there exists some
ξ ∈ (
√
nt−

√
n∆n,

√
nt+

√
n∆n) such that

P(
√
nt−

√
n∆n ≤

√
nW̃j ≤

√
nt+

√
n∆n)

= 2
√
n∆n

{ √
2√

πc2,j

[
1−Φ

( ξ

c1,j

)]
exp

{
− ξ2

2c2
2,j

}
+

√
2√

πc1,j
exp

{
− ξ2

2c2
1,j

}[
1−Φ

( ξ

c2,j

)]}
.

Moreover, since
√
nt ≤

√
nG−1( c1qanp ) = O(

√
log p) and ∆n

√
n log p→ 0, we can obtain

through some direct calculations that∣∣∣∣∣ 1−Φ
(

ξ
c1,j

)
1−Φ

(√
nt

c1,j

) − 1

∣∣∣∣∣≤C√nt · √n∆n =O(∆n

√
n log p).

Similarly, it holds that∣∣∣∣∣ exp
{
− ξ2

2c21,j

}
exp

{
− (
√
nt)2

2c21,j

} − 1

∣∣∣∣∣≤C√nt · √n∆n =O(∆n

√
n log p).

Combining the above three inequalities yields that when ∆n
√
n log p→ 0,

P(t−∆n ≤ W̃j < t+ ∆n)

= P(
√
nt−

√
n∆n ≤

√
nW̃j ≤

√
nt+

√
n∆n)

≤C
√
n∆n[1 +O(

√
n∆n log p)]

{ √
2√

πc2,j

[
1−Φ

(√nt
c1,j

)]
exp

{
− (
√
nt)2

2c2
2,j

}

+

√
2√

πc1,j

[
1−Φ

(√nt
c2,j

)]
exp

{
− (
√
nt)2

2c2
1,j

}}
.

(A.133)

Next we need to deal with the denominator P(
√
nW̃j ≥ t). Via integration by parts, we

can deduce that for t ∈ [4n−1/2 maxj∈H0
c1,j ∨ c2,j ,G

−1(c1qan/p)],

P(
√
nW̃j ≥

√
nt) = 2

[
1−Φ

(√nt
c1,j

)][
1−Φ

(√nt
c2,j

)]
≥C

{
(
√
nt)−1

[
1−Φ

(√nt
c1,j

)]
exp

{
− (
√
nt)2

2c2
2,j

}
+ (
√
nt)−1

[
1−Φ

(√nt
c2,j

)]
exp

{
− (
√
nt)2

2c2
1,j

}}
≥ C̃(

√
nt)−1f√

nW̃j
(
√
nt),

(A.134)

where we have used the definition of the density in (A.131) and the fact that

1−Φ(x)≥ 0.75x−1e−x
2/2

for x≥ 4, and C̃ is some constant depending on c1,j and c2,j .
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Combining (A.133) and (A.134) and using some direct calculations, we can obtain the
bound for the ratio in Rn in the second range

sup
t∈[4n−1/2 maxj∈H0 c1,j∨c2,j ,G−1(c1qan/p))

∑
j∈H0∩Nc

dep
P(t−∆n ≤ W̃j < t+ ∆n)∑

j∈H0∩Nc
dep

P(W̃j ≥ t)

≤ C̃
√
n∆n ·

√
nG−1(

c1qan
p

) =O(
√
n∆n

√
log p).

(A.135)

This together with the result for the first range proven previously leads to

Rn =O(
√
n∆n

√
log p).(A.136)

Finally, plugging (A.136) into (A.128) yields (A.9) because (log p)1/γmn/an→ 0 and
√
n∆n(log p)1/2+1/γ→ 0.

Proof of (A.10). Recall from Condition 10 that

p−1
1

∑
j∈H1

P(W̃j <−t)≤G(t)

for t ∈ (0,C
√
n−1 log p) with C some large constant. Also, note that

∆n = o(G−1(
c1qan
p

))

since
√
n∆n→ 0 by assumption and G−1( c1qanp ) =O(

√
n−1 log p) as shown in the proof of

(A.9). It follows from some direct calculations that

a−1
n

∑
j∈H1

P
(
W̃j <−G−1(

c1qan
p

) + ∆n

)
≤ a−1

n (p− p0)G
(
G−1(

c1qan
p

)−∆n

)
=
c1q(p− p0)

p
+ a−1

n (p− p0)|G′(ξ)|∆n,

(A.137)

where ξ is some number lying between G−1( c1qanp ) and G−1( c1qanp ) −∆n. From (A.131)
and f√

nW̃j
(
√
nξ)≤C with C > 0 some constant, we can deduce that

|G′(ξ)|=
∑
j∈H0

p−1
0

√
nf√

nW̃j
(
√
nξ)

≤ C
√
nmn

p0
+ p−1

0

∑
j∈H0∩Nc

dep

√
nf√

nW̃j
(
√
nξ)

≤ C
√
nmn

p0
+Cp−1

0

√
n ·
√
nG(

c1qan
p

)
∑

H0∩Nc
dep

P
(
W̃j ≥G(

c1qan
p

)
)

≤ C
√
nmn

p0
+Cp−1

0

√
n log pp0

c1qan
p

,

where the second last step above is due to (A.134).
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Therefore, substituting the bound above into (A.137) gives that

a−1
n

∑
j∈H1

P
(
W̃j <−G−1(

c1qan
p

+ ∆n

)

≤ c1q(p− p0)

p
+
C∆n

√
nmn(p− p0)

anp0

+
C∆n

√
n log pq(p− p0)

p

→ 0,

where we have used the assumption that p0/p→ 1, ∆n
√
n log p→ 0, and mn/an→ 0. This

derives (A.10), which concludes the proof of Lemma 8.

B.9. Proof of Lemma 11. The main intuition of the proof is that when the approximate
augmented data matrix X̂

aug
is close to its perfect counterpart X̃

aug
, the corresponding Lasso

estimators would be close as well. From the definitions of β̃j in (22) and β̂j in (19), it holds
that

max
1≤j≤2p

|β̃j − β̂j | ≤ max
1≤j≤2p

|β̃init
j − β̂init

j |

+ max
1≤j≤2p

∣∣∣∣ z̃Tj
(
y− X̃

aug
β̃

init)
z̃Tj X̃

aug

j

−
ẑTj
(
y− X̂

aug
β̂

init)
ẑTj X̂

aug

j

∣∣∣∣.(A.138)

We will aim to prove that for some large enough constant C ,

(A.139) P
(
‖β̃

init
− β̂

init
‖2 ≤C∆ns

√
log p

n

)
→ 1,

(A.140) P
(

max
1≤j≤2p

∣∣∣∣ z̃Tj
(
y− X̃

aug
β̃

init)
z̃Tj X̃

aug

j

−
ẑTj
(
y− X̂

aug
β̂

init)
ẑTj X̂

aug

j

∣∣∣∣≤C∆ns

√
log p

n

)
→ 1.

Then combining the two results above can establish the desired conclusion of Lemma 11. We
next proceed with proving (A.139) and (A.140).

Proof of (A.139). It follows from the Karush–Kuhn–Tucker (KKT) condition that

n−1[X̃
aug

]T X̃
aug

(β̃
init
−βaug) = n−1[X̃

aug
]Tε− λζ̃,(A.141)

n−1[X̂
aug

]T X̂
aug

(β̂
init
−βaug) = n−1[X̂

aug
]Tε− λζ̂,(A.142)

where ζ̃ = (ζ̃1, · · · , ζ̃2p) and ζ̂ = (ζ̂1, · · · , ζ̂2p) with

ζ̃j =

{
sgn(β̃init

j ) if β̃init
j 6= 0,

∈ [−1,1] if β̃init
j = 0,

and ζ̂j =

{
sgn(β̂init

j ) if β̂init
j 6= 0,

∈ [−1,1] if β̂init
j = 0.

Taking the difference between (A.141) and (A.142) above leads to

n−1[X̃
aug

]T X̃
aug

(β̃
init
− β̂

init
) + n−1

(
[X̃

aug
]T X̃

aug − [X̂
aug

]T X̂
aug
)

(β̂
init
− β̃

init
)

=−n−1
(

[X̃
aug

]T X̃
aug − [X̂

aug
]T X̂

aug
)

(β̃
init
−βaug)

+ n−1
(

X̃
aug − X̂

aug
)T
ε− λ(ζ̃ − ζ̂).
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Furthermore, multiplying both sides of the equation above by (β̃
init
− β̂

init
)T yields that

n−1‖X̃aug
(β̃

init
− β̂

init
)‖22

= n−1(β̃
init
− β̂

init
)T
(

[X̃
aug

]T X̃
aug − [X̂

aug
]T X̂

aug
)

(β̃
init
− β̂

init
)

− n−1(β̃
init
− β̂

init
)T
(

[X̃
aug

]T X̃
aug − [X̂

aug
]T X̂

aug
)

(β̃
init
−βaug)

+ n−1(β̃
init
− β̂

init
)T
(

X̃
aug − X̂

aug
)T
ε− λ(β̃

init
− β̂

init
)T (ζ̃ − ζ̂).

(A.143)

We claim that the last term on the right-hand side of the expression above satisfies that

(β̃
init
− β̂

init
)T (ζ̃ − ζ̂)≥ 0.

To understand this, observe that when both β̃init
j and β̂init

j are nonzero or zero, it is easy to
see that

(β̃init
j − β̂init

j )(ζ̃j − ζ̂j)≥ 0.

When either of β̃init
j and β̂init

j is zero, without loss of generality let us assume that β̃init
j = 0

and β̂init
j 6= 0. When β̃init

j = 0 and β̂init
j > 0, it follows that ζ̃j ≤ 1 = ζ̂j and hence

(β̃init
j − β̂init

j )(ζ̃j − ζ̂j) =−β̂init
j ((ζ̃j − ζ̂j))≥ 0.

Similarly, we can show that

(β̃init
j − β̂init

j )(ζ̃j − ζ̂j)≥ 0

when β̃init
j = 0 and β̂init

j < 0. Thus, the last term on the right-hand side of (A.143) above
satisfies that

−(β̃
init
− β̂

init
)T (ζ̃ − ζ̂)≤ 0.

We next examine the three terms on the right-hand side of the earlier expression above sepa-
rately.

First, we observe that∥∥∥n−1[X̃
aug

]T X̃
aug − [X̂

aug
]T X̂

aug
∥∥∥

max

≤
∥∥∥n−1[X̃

aug
]T (X̃

aug − X̂
aug

)
∥∥∥

max
+ ‖n−1(X̃

aug − X̂
aug

)]T X̂
aug‖max

≤max
j
‖n−1/2X̃

aug

j ‖2 max
j
‖n−1/2(X̃

aug

j − X̂
aug

j )‖2

+ max
j
‖n−1/2X̂

aug

j ‖2 max
j
‖n−1/2(X̃

aug

j − X̂
aug

j )‖2.

Under Condition 6 and the sub-Gaussian assumption for X, it can be shown that

(A.144) P
(∥∥∥n−1[X̃

aug
]T X̃

aug − [X̂
aug

]T X̂
aug
∥∥∥

max
≥C∆n

)
→ 0

for some constant C > 0. From the sparsity of β̃ and β̂ in Condition 11, we have that with
probability 1− o(1), the first term on the right-hand side of (A.143) can be bounded as

n−1

∣∣∣∣(β̃init
− β̂

init
)T
(

[X̃
aug

]T X̃
aug − [X̂

aug
]T X̂

aug
)

(β̃
init
− β̂

init
)

∣∣∣∣
≤C∆ns‖β̃

init
− β̂

init
‖22.

(A.145)
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By the Cauchy–Schwarz inequality, we can bound the second term on the right-hand side of
(A.143) as∣∣∣∣n−1(β̃

init
− β̂

init
)T
(

[X̃
aug

]T X̃
aug − [X̂

aug
]T X̂

aug
)

(β̃
init
−βaug)

∣∣∣∣
≤ ‖β̃

init
− β̂

init
‖2
∥∥∥n−1

(
[X̃

aug
]T X̃

aug − [X̂
aug

]T X̂
aug
)

(β̃
init
−βaug)

∥∥∥
2
.

Finally, with the aid of Condition 11 on sparsity and Condition 12 on the restrictive eigen-
values, the left-hand side of (A.143) can be lower bounded by c1‖β̃

init
− β̂

init
‖22. Combining

all the results above and applying the Cauchy–Schwarz inequality to the second and third
terms on the right-hand side of (A.143), we can deduce that as ∆ns→ 0, the representation
in (A.143) entails that with probability 1− o(1),

‖β̃
init
− β̂

init
‖2 .

∥∥∥n−1
(

[X̃
aug

]T X̃
aug − [X̂

aug
]T X̂

aug
)

(β̃
init
−βaug)

∥∥∥
2

+ max
J :|J |≤Cs

∥∥∥n−1
(

X̃
aug

J − X̂
aug

J

)T
ε
∥∥∥

2
:= I1 + I2.

(A.146)

We will bound the two terms I1 and I2 above separately. It follows from (A.144), the
sparsity of β̃ and βaug, and Lemma 9 that with probability 1− o(1),

(A.147) I1 ≤C∆ns
1/2‖β̃

init
−βaug‖2 ≤C∆ns

√
log p

n
.

As for term I2, conditional on (X̃
aug
, X̂

aug
) we have that for each 1≤ j ≤ 2p,

n−1/2
(

X̃
aug

j − X̂
aug

j

)T
ε

d∼N
(

0, n−1
∥∥∥X̃

aug

j − X̂
aug

j

∥∥∥2

2

)
.

Thus, it holds that

P
(
I2 ≥Cσ∆n

√
s logn

n

)
≤ P

(
s max

1≤j≤2p

(
n−1/2

(
X̃

aug

j − X̂
aug

j

)T
ε
)2
≥C2σ2∆2

ns logn

)
= P

(
max

1≤j≤2p
n−1/2

∥∥∥X̃
aug

j − X̂
aug

j

∥∥∥
2
|Z| ≥Cσ∆n

√
logn

)
,

where Z d∼N(0, σ2) is independent of X̃
aug

and X̂
aug

.
Moreover, Condition 6 implies that

max
1≤j≤2p

n−1/2‖X̃aug

j − X̂
aug

j ‖2 ≤∆n

with probability 1− o(1). Then using the union bound, we can obtain that for some constant
C >
√

2,

P
(
I2 ≥Cσ∆n

√
s logn

n

)
≤ P

(
|Z|>Cσ

√
logn

)
+ P( max

1≤j≤2p
‖X̃aug

j − X̂
aug

j ‖2 ≥∆n)→ 0.

(A.148)
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Consequently, substituting (A.147) and (A.148) into (A.146) leads to (A.139). Further, ap-
plying (A.143) again with the bounds in (A.146), (A.147), (A.148), and (A.139) yields that

(A.149) P
(
n−1/2‖X̃aug

(β̃
init
− β̂

init
)‖2 ≤C∆ns

√
log p

n

)
→ 1.

Proof of (A.140). Let us first state three results (A.150), (A.151), and (A.152) below that will
be used repeatedly in our proof. With similar arguments as for (A.139) and (A.149) and the
union bound, we can deduce that under Conditions 11–13,

(A.150) P
(

max
1≤j≤2p

‖γ̃j − γ̂j‖2 ≤C
(
m1/2
n ∆n + ∆nmn

√
log p

n

)
≤Cm1/2

n ∆n

)
→ 1,

(A.151) P
(
n−1/2 max

j
‖X̃aug

−j (γ̃j − γ̂j)‖2 ≤Cm1/2
n ∆n

)
→ 1,

where we have used
√

mn log p
n → 0 for showing (A.150). Observe that for 1≤ j ≤ 2p,

‖n−1/2(z̃j − ẑj)‖2 ≤ ‖n−1/2(X̃
aug

j − X̂
aug

j )‖2 + ‖n−1/2X̃
aug

−j (γ̃j − γ̂j)‖2

+ ‖n−1/2(X̃
aug

−j − X̂
aug

−j )γj‖2

+ ‖n−1/2(X̃
aug

−j − X̂
aug

−j )(γ̂j − γj)‖2.

Then it follows from the sparsity of Sj = supp(γj) ∪ supp(γ̃j) ∪ supp(γ̂j), the sub-
Gaussianity of Xj , and the bound in (A.150) that with probability 1− o(p−1),

max
1≤j≤2p

‖n−1/2(z̃j − ẑj)‖2

≤C
(

∆n + ∆nm
1/2
n + ∆nm

1/2
n max

1≤j≤2p
‖γj‖2 +mn∆n

√
log p

n

)
≤C∆nm

1/2
n .

(A.152)

We are now ready to establish (A.140). In particular, we have the decomposition for the
main term in (A.140)

max
1≤j≤2p

∣∣∣∣ z̃Tj
(
y− X̃

aug
β̃

init)
z̃Tj X̃

aug

j

−
ẑTj
(
y− X̂

aug
β̂

init)
ẑTj X̂

aug

j

∣∣∣∣
≤ max

1≤j≤2p

∣∣∣∣(z̃j − ẑj)T
(
y− X̃

aug
β̃

init)
z̃Tj X̃

aug

j

∣∣∣∣+ max
1≤j≤2p

∣∣∣∣ ẑTj
(
X̂

aug
β̂

init
− X̃

aug
β̃

init)
z̃Tj X̃

aug

j

∣∣∣∣
+ max

1≤j≤2p

∣∣∣∣̂zTj (y− X̂
aug
β̂

init)( 1

ẑTj X̂
aug

j

− 1

z̃Tj X̃
aug

j

)∣∣∣∣ := P1 + P2 + P3.

(A.153)

We will investigate the three terms P1, P2, and P3 above separately. Let us first deal with
term P1. Note that

(A.154) P1 ≤ max
1≤j≤2p

∣∣∣∣(z̃j − ẑj)T X̃
aug(

β̃
init
−βaug

)
z̃Tj X̃

aug

j

∣∣∣∣+ max
1≤j≤2p

∣∣∣∣(z̃j − ẑj)T ε
z̃Tj X̃

aug

j

∣∣∣∣.
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Since ε d∼ N(0, In) and is independent of design matrix X, it holds that conditional on
design matrix X,

(z̃j − ẑj)T ε
z̃Tj X̃

aug

j

d∼N
(

0,
‖z̃j − ẑj‖22
[̃zTj X̃

aug

j ]2

)
.

This together with the bounds in (A.152) and (A.186) leads to

P
(

max
1≤j≤2p

∣∣∣∣(z̃j − ẑj)Tε
z̃Tj X̃

aug

j

∣∣∣∣>Cm1/2
n ∆n

√
log p

n

)

=

2p∑
j=1

P
(
‖z̃j − ẑj‖2
|̃zTj X̃

aug

j |
· |Z|>Cm1/2

n ∆n

√
log p

n

)

≤
2p∑
j=1

P
(
‖z̃j − ẑj‖2

n
· |Z|>Cm1/2

n ∆n

√
log p

n

)
+ o(1)

≤
2p∑
j=1

P(|Z|>C
√

log p) + o(1) = o(1),

(A.155)

where Z d∼N(0, σ2) is independent of X̃
aug

and X̂
aug

, and C is some large constant that may
take different value at each appearance.

In addition, from (A.186), the Cauchy–Schwarz inequality, Lemma 9, and (A.152), we can
deduce that with probability 1− o(1),

max
1≤j≤2p

∣∣∣∣(z̃j − ẑj)T X̃
aug(

β̃
init
−βaug

)
z̃Tj X̃

aug

j

∣∣∣∣≤ max
1≤j≤2p

‖z̃j − ẑj‖2‖X̃
aug

(βaug − β̃
init

)‖2
|̃zTj X̃

aug

j |

≤C∆nm
1/2
n

√
s log p

n
.

(A.156)

Substituting (A.155) and (A.156) into (A.154) yields that with probability 1− o(1),

(A.157) P1 ≤C∆nm
1/2
n

√
s log p

n
.

We next turn to the bound for term P2. It is easy to see that

P2 ≤ max
1≤j≤2p

∣∣∣∣ z̃Tj X̃
aug(

β̃
init
− β̂

init)
z̃Tj X̃

aug

j

∣∣∣∣+ max
1≤j≤2p

∣∣∣∣ z̃Tj (X̃
aug − X̂

aug
)β̂

init

z̃Tj X̃
aug

j

∣∣∣∣
+ max

1≤j≤2p

∣∣∣∣(ẑj − z̃j)T X̃
aug(

β̃
init
− β̂

init)
z̃Tj X̃

aug

j

∣∣∣∣
+ max

1≤j≤2p

∣∣∣∣(ẑj − z̃j)T (X̃
aug − X̂

aug
)β̂

init

z̃Tj X̃
aug

j

∣∣∣∣
:= P21 + P22 + P23 + P24.

(A.158)
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Regarding term P21, in view of (A.139) and the definition of z̃j , we have that with probability
1− o(1),

P21 ≤ max
1≤j≤2p

|β̃init
j − β̂init

j |+ max
1≤j≤2p

∣∣∣∣ z̃Tj X̃
aug

−j
(
β̃

init

−j − β̂
init

−j
)

z̃Tj X̃
aug

j

∣∣∣∣
≤C∆ns

√
log p

n
+ max

1≤j≤2p

∣∣∣∣(ej + X̃
aug

−j (γj − γ̃j))T X̃
aug

−j
(
β̃

init

−j − β̂
init

−j
)

z̃Tj X̃
aug

j

∣∣∣∣
≤C∆ns

√
log p

n
+ max

1≤j≤2p

∣∣∣∣eTj X̃
aug

−j
(
β̃

init

−j − β̂
init

−j
)

z̃Tj X̃
aug

j

∣∣∣∣
+ max

1≤j≤2p

∣∣∣∣ [X̃aug

−j (γj − γ̃j)]T X̃
aug

−j
(
β̃

init

−j − β̂
init

−j
)

z̃Tj X̃
aug

j

∣∣∣∣.

(A.159)

We will bound the last two terms on the very right-hand side of the expression above sepa-
rately.

Since for ` 6= j, n−1E[eTj X̃
aug

` ] = 0 due to zero correlation between ej and Xaug
−j , and ej

and X̃
aug

` both have i.i.d. sub-Gaussian entries, we can show that for ` 6= j,

P
(

max
1≤j≤2p

max
` 6=j

n−1|eTj Xaug
` | ≥C

√
log p

n

)
≤Cp−1→ 0.(A.160)

This combined with (A.186), the sparsity assumption that |J | = |supp(β) ∪ supp(β̃) ∪
supp(β̂)| . s, and the result in (A.139) yields that with probability 1 − o(1), the second
term on the very right-hand side of (A.159) above can be bounded as

max
1≤j≤2p

∣∣∣∣eTj X̃
aug

−j
(
β̃

init

−j − β̂
init

−j
)

z̃Tj X̃
aug

j

∣∣∣∣
≤Cn−1 max

1≤j≤2p
max

J ′:|J ′|.s
‖eTj X̃

aug

J ′\{j}‖2 · ‖β̃
init

J ′\{j} − β̂
init

J ′\{j}‖2

≤C
√
s log p

n
·∆ns

√
log p

n
≤C∆ns

√
log p

n
,

(A.161)

where the last inequality above holds due to the assumption that
√

s log p
n → 0. By the

Cauchy–Schwarz inequality, we can deduce that with probability 1 − o(1), the third term
on the very right-hand side of (A.159) above can be bounded as

max
1≤j≤2p

∣∣∣∣ [X̃aug
(γj − γ̃j)]T X̃

aug

−j
(
β̃

init

−j − β̂
init

−j
)

z̃Tj X̃
aug

j

∣∣∣∣
≤Cn−1 max

1≤j≤2p
‖X̃aug

(γj − γ̃j)‖2 · ‖X̃
aug

−j
(
β̃

init

−j − β̂
init

−j
)
‖2.

(A.162)
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An application of Lemma 10, (A.139), and the sub-Gaussian assumption of Xj gives that
with probability 1− o(1), the second term on the right-hand side above can be bounded as

max
1≤j≤2p

n−1/2‖X̃aug

−j
(
β̃

init

−j − β̂
init

−j
)
‖2

≤ n−1/2‖X̃aug(
β̃

init
− β̂

init)
‖2

+ max
1≤j≤2p

n−1/2‖X̃aug

j ‖2|β̃j − β̂j |

≤C∆ns

√
log p

n
.

(A.163)

Then plugging (A.163) into (A.162) yields that

max
1≤j≤2p

∣∣∣∣ [X̃aug
(γj − γ̃j)]T X̃

aug

−j
(
β̃

init

−j − β̂
init

−j
)

z̃Tj X̃
aug

j

∣∣∣∣
≤C

√
mn log p

n
·C∆ns

√
log p

n
≤C∆ns

√
log p

n
,

(A.164)

where the last inequality above is due to the assumption that
√

s log p
n → 0 and mn . s.

Hence, it follows from substituting (A.161) and (A.164) into (A.159) that with probability
1− o(1),

(A.165) P21 ≤C∆ns

√
log p

n
.

We next proceed with considering term P22 introduced in (A.158). Observe that

X̃
aug − X̂

aug
= [0, X̃− X̂]

and βaug = (βT ,0T )T . Then it holds that

(X̃
aug − X̂

aug
)βaug = 0.

From (A.186) and the Cauchy–Schwarz inequality, we can deduce that

P22 ≤ max
1≤j≤2p

∣∣∣∣ z̃Tj (X̃
aug − X̂

aug
)βaug

z̃Tj X̃
aug

j

∣∣∣∣+ max
1≤j≤2p

∣∣∣∣ z̃Tj (X̃
aug − X̂

aug
)(β̂

init
−βaug)

z̃Tj X̃
aug

j

∣∣∣∣
≤Cn−1 max

1≤j≤2p
‖z̃j‖2 · ‖(X̃

aug − X̂
aug

)(β̂
init
−βaug)‖2.

Moreover, we have z̃j = ej + X̃
aug

−j (γj − γ̃j). Since the components of ej are i.i.d. sub-
Gaussian random variables, it is easy to see that

P( max
1≤j≤2p

‖n−1/2ej‖2 ≥C)→ 0

for some large enough constant C > 0. Further, it follows from the sub-Gaussianity of Xj

and the sparsity of γj and γ̃j that

max
1≤j≤2p

n−1/2‖X̃aug

−j (γj − γ̃j)‖2 ≤Cm1/2
n

√
mn log p

n

≤Cmn

√
log p

n
→ 0.
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Thus, when mn

√
log p
n → 0 we have

(A.166) P(n−1/2 max
1≤j≤2p

‖z̃j‖2 ≥C)→ 0.

Similarly, based on Lemma 9 and the sparsity of β̂
init

and βaug, it holds that with proba-
bility 1− o(1),

n−1/2‖(X̃
aug − X̂

aug
)(β̂

init
−βaug)‖2

≤ max
J ′:|J ′|.s

(∑
j∈J ′

n−1‖X̃aug

j − X̂
aug

j ‖22
)1/2

· ‖β̂
init

J ′ −β
aug
J ′ ‖2

≤Cs1/2∆n · (
√
s log p

n
+ ∆ns

√
log p

n
)

≤C∆ns

√
log p

n
,

(A.167)

where the last inequality above holds due to ∆ns
1/2→ 0. Consequently, combining the above

three inequalities shows that with probability 1− o(1),

(A.168) P22 ≤C∆ns

√
log p

n
.

We now deal with term P23 in (A.158). In view of the Cauchy–Schwarz inequality and
∆nm

1/2
n → 0, (A.186), (A.152), and (A.149), we can obtain that with probability 1− o(1),

P23 ≤ max
1≤j≤2p

‖ẑj − z̃j‖2
z̃Tj X̃

aug

j

· ‖X̃aug(
β̃

init
− β̂

init
)‖2

≤C∆nm
1/2
n ·∆ns

√
log p

n

≤C∆ns

√
log p

n
.

(A.169)

As for term P24, since (X̃
aug − X̂

aug
)β = 0 it follows that with probability 1− o(1),

P24 = max
1≤j≤2p

∣∣∣∣(ẑj − z̃j)T (X̃
aug − X̂

aug
)(β̂

init
−βaug)

z̃Tj X̃
aug

j

∣∣∣∣
≤ max

1≤j≤2p

‖ẑj − z̃j‖2
z̃Tj X̃

aug

j

· ‖(X̃
aug − X̂

aug
)(β̂

init
−βaug)‖2

≤C∆nm
1/2
n ·∆ns

√
log p

n

≤C∆ns

√
log p

n
,

(A.170)

where we have applied the bounds in (A.152), (A.167), and (A.186). Consequently, plugging
(A.165), (A.168), (A.169), and (A.170) into (A.158) yields that with probability 1− o(1),

(A.171) P2 ≤C∆ns

√
log p

n
.
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Now we proceed with dealing with term P3. Note that

(A.172) P3 ≤ max
1≤j≤2p

|̂zTj (y− X̂
aug
β̂

init
)| ·
∣∣̂zTj X̂

aug

j − z̃Tj X̃
aug

j

∣∣∣∣̂zTj X̂
aug

j

∣∣ · ∣∣̃zTj X̃
aug

j

∣∣ .
From (A.152) and (A.166), we can see that with probability 1− o(1),

max
1≤j≤2p

n−1/2‖ẑj‖2 ≤ max
1≤j≤2p

n−1/2‖z̃j‖2 + max
1≤j≤2p

n−1/2‖z̃j − ẑj‖2

≤C +Cm1/2
n ∆n ≤C.

(A.173)

It follows from (A.152), Condition 6, and the sub-Gaussian distribution of X̃
aug

j that with
probability 1− o(1),

n−1|(ẑj − z̃j)T X̃
aug

j | ≤C∆nm
1/2
n ,(A.174)

n−1 |̂zTj (X̃
aug

j − X̂
aug

j )| ≤C∆n.(A.175)

Then with the aid of (A.186), we can show that with probability 1− o(1),

min
1≤j≤2p

n−1 |̂zTj X̂
aug

j |

≥ min
1≤j≤2p

n−1 |̃zTj X̃
aug

j | − max
1≤j≤2p

(
n−1|(ẑj − z̃j)T X̃

aug

j | − n−1 |̂zTj (X̃
aug

j − X̂
aug

j )|
)

≥C −Cmn∆n −C∆n

≥C

(A.176)

as mn∆n→ 0.
As for the second component on the right-hand side of (A.172) above, combining the

results in (A.174), (A.175), and (A.176) gives that with probability 1− o(1),

max
1≤j≤2p

∣∣̂zTj X̂
aug

j − z̃Tj X̃
aug

j

∣∣∣∣̂zTj X̂
aug

j

∣∣ · ∣∣̃zTj X̃
aug

j

∣∣ ≤ max
1≤j≤2p

∣∣(z̃j − ẑj)T X̃
aug

j

∣∣∣∣̂zTj X̂
aug

j

∣∣ · ∣∣̃zTj X̃
aug

j

∣∣
+ max

1≤j≤2p

∣∣̂zTj (X̃
aug

j − X̂
aug

j )
∣∣∣∣̂zTj X̂

aug

j

∣∣ · ∣∣̃zTj X̃
aug

j

∣∣
≤Cn−1(m1/2

n ∆n + ∆n).

(A.177)

Regarding the first component on the right-hand side in (A.172), from (X̃
aug − X̂

aug
)β = 0

we can deduce that

max
1≤j≤2p

n−1
∣∣̂zTj (y− X̂

aug
β̂

init
)
∣∣≤ max

1≤j≤2p
n−1

∣∣̂zTj ε|+ max
1≤j≤2p

n−1
∣∣̂zTj X̃

aug
(βaug − β̂

init
)
∣∣

+ max
1≤j≤2p

n−1
∣∣̂zTj (X̃

aug − X̂
aug

)β̂
init∣∣.

Since ε d∼N(0, σ2In), it is easy to see that for the standard normal random variable Z ,

P
(

max
1≤j≤2p

n−1
∣∣̂zTj ε|>C

√
log p

n

)
= P

(
max

1≤j≤2p
n−1‖ẑj‖2 · |Z|>C

√
log p

n

)
≤ P(|Z|>C

√
log p)→ 0.
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Further, by Lemma 9, the sub-Gaussianity of Xj , and the sparsity of βaug and β̂
init

, we
can obtain that with probability 1− o(1),

n−1 |̂zTj X̃
aug

(βaug − β̂
init

)| ≤ n−1 |̂zTj X̃
aug

(βaug − β̃
init

)|+ n−1 |̂zTj X̃
aug

(β̃
init
− β̂

init
)|

≤C
(√

s log p

n
+ ∆ns

√
log p

n

)

≤C
√
s log p

n
.

Similarly, since (X̃
aug − X̂

aug
)β = 0, it holds that with probability 1− o(1),

n−1 |̂zTj (X̃
aug − X̂

aug
)β̂

init
|= n−1 |̂zTj (X̃

aug − X̂
aug

)(β̂
init
−βaug)|

≤C∆ns
1/2 ·

√
s log p

n

≤C
√
s log p

n
.

Consequently, by mn . s in Condition 11 we have that with probability 1− o(1),

(A.178) P3 ≤Cm1/2
n ∆n ·

√
s log p

n
≤C∆ns

√
log p

n
.

Finally, a combination of (A.153), (A.157), (A.171), and (A.178) establishes (A.140). This
completes the proof of Lemma 11.

B.10. Proof of Lemma 12. Using the definitions of W̃j and wj and the triangle inequal-
ity, we see that

p∑
j=1

P(|W̃j −wj | ≥C
√
n−1 log p)

≤
p∑
j=1

P
(√

n
∣∣|β̃j − βj | − |β̃j+p − βj+p|∣∣≥C√log p

)

≤
p∑
j=1

[
P
(√

n|β̃j − βj | ≥C
√

log p/2
)

+ P
(√

n|β̃j+p − βj+p| ≥C
√

log p/2
)]
.

(A.179)

The main idea of the proof is to exploit the decomposition in (A.11) and the observation that
the main term therein follows the normal distribution. Let us start with bounding the error
term in (A.11). We claim that with probability 1− o(p−1),

(A.180) max
1≤j≤2p

∣∣∣∣∣∑
k 6=j

√
nz̃Tj X̃

aug

k (βaug
k − β̃init

k )

z̃Tj X̃
aug

j

∣∣∣∣∣≤ Cm
1/2
n s log p√
n

.
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From the fact that βaug
j+p = 0 for 1 ≤ j ≤ p and the bound in (A.180), since m1/2

n s log p√
n

�
√

log p we can deduce through the union bound that
p∑
j=1

P
(√

n|β̃j − βj | ≥C
√

log p/2
)

≤
p∑
j=1

P
( |̃zTj ε|
‖z̃j‖2

·
√
nτj ≥C

√
log p/3

)

+

p∑
j=1

P
(

max
1≤j≤2p

∣∣∣∣∣∑
k 6=j

√
nz̃Tj X̃

aug

k (βk − β̃init
k )

z̃Tj X̃
aug

j

∣∣∣∣∣> Cm
1/2
n s log p√
n

)

≤
p∑
j=1

P
( |̃zTj ε|
‖z̃j‖2

·
√
nτj ≥C

√
log p/3

)
+ o(1).

(A.181)

Recall the result (A.265) in Lemma 10 and that zTj ε
‖zj‖2 ∼ N(0, σ2). As mn log p

n = o(1), it
holds that for some large constant C > 0,

p∑
j=1

P
( z̃Tj ε
‖z̃j‖2

·
√
nτj ≥C

√
log p/3

)

≤
p∑
j=1

P
( z̃Tj ε
‖z̃j‖2

≥ C̃
√

log p
)

= p exp{−C̃2 log p/2}→ 0.

Similarly, we can show that

(A.182)
p∑
j=1

P
( z̃Tj+pε
‖z̃j+p‖2

·
√
nτj ≥C

√
log p

)
→ 0.

Plugging the two inequalities above into (A.179) leads to the desired result in Lemma 12. It
remains to establish (A.180).

Proof of (A.180). Observe that for k 6= j,

n−1z̃Tj X̃
aug

k = n−1(X̃
aug

j − X̃
aug

−j γ̃j)
T X̃

aug

k

= n−1eTj X̃
aug

k + n−1(γj − γ̃j)T (X̃
aug

−j )T X̃
aug

k .
(A.183)

Since ej and X̃
aug

k are uncorrelated, it follows from the sub-Gaussian assumption in Condition
13 that for some constant C > 0,

P
(
n−1|eTj X̃

aug

k | ≥C
√

log p

n

)
≤ 2p−3.

In light of lemma 10 and the sub-Gaussian assumption on X̃j , we can deduce that with prob-
ability 1− o(p−3),

|n−1(γj − γ̃j)T (X̃
aug

−j )T X̃
aug

k | ≤ ‖n−1/2X̃
aug

−j (γj − γ̃j)‖2‖n−1/2X̃
aug

k ‖2

≤C
√
mn log p

n
.

(A.184)
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Plugging the above two results into (A.183), when mn log p = o(n) an application of the
union bound shows that with probability 1− o(p−1),

max
1≤j≤p

max
k 6=j

n−1 |̃zTj X̃
aug

k | ≤C
√

log p

n
+C

√
mn log p

n

≤C
√
mn log p

n
.

(A.185)

Similarly, when
√

log p
n = o(1), we can show that there exists some constant C > 0 such

that with probability 1− o(p−1),

(A.186) min
1≤j≤p

n−1z̃Tj X̃
aug

j ≥C.

Consequently, plugging (A.185), (A.186), and (A.259) into Lemma 9 yields that with proba-
bility 1− o(p−1),

max
1≤j≤p

∣∣∣∣∣∑
k 6=j

√
nz̃Tj X̃

aug

k (βk − β̃init
k )

z̃Tj X̃
aug

j

∣∣∣∣∣
≤
√
n

max1≤j≤pmaxk 6=j |̃zTj X̃
aug

k |
min1≤j≤p |̃zTj X̃

aug

j |
· ‖βaug − β̃

init
‖1

≤C
√
mn log p · s

√
log p

n
=
Cm

1/2
n s log p√
n

,

(A.187)

which establishes (A.180). This concludes the proof of Lemma 12.

B.11. Proof of Lemma 13. The intuition of the proof is that the sparsity of ΩA im-
plies the weak dependence among the components of the knockoff statistic vector W̃ =

(W̃1, · · · , W̃p), which entails the weak dependence among the indicator functions 1(W̃j >
t)’s. For 1≤ j ≤ p, let us define

Nj = {l ∈H0 : ΩA
j,l 6= 0}.

From the sparsity assumption on ΩA in Condition 11, we see that |Nj | ≤mn for any 1≤ j ≤
p. Then we can obtain through expanding the variance that

Var
( ∑
j∈H0

1(W̃j > t)
)

=
∑
j∈H0

∑
l∈Nc

j∩H0

l 6=j

(
P(W̃j ≥ t, W̃l ≥ t)− P(W̃j ≥ t)P(W̃l ≥ t)

)

+
∑
j∈H0

∑
l∈Nj∪{j}

(
P(W̃j ≥ t, W̃l ≥ t)− P(W̃j ≥ t)P(W̃l ≥ t)

)
:= V1(t) + V2(t).

(A.188)

We will deal with terms V1(t) and V2(t) above separately.
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Regarding the second term V2(t), it follows from |Nj ∪ {j}| ≤mn + 1 that

sup
t∈(0,G−1(

c1qan
p

)]

V2(t)

p0G(t)
≤ sup
t∈(0,G−1(

c1qan
p

)]

∑
j∈H0

∑
l∈Nj∪{j} P(W̃j ≥ t)∑

j∈H0
P(W̃j ≥ t)

≤ sup
t∈(0,G−1(

c1qan
p

)]

∑
j∈H0

(mn + 1)P(W̃j ≥ t)∑
j∈H0

P(W̃j ≥ t)

≤mn + 1.

(A.189)

We claim that as m1/2
n s(log p)3/2+1/γ

√
n

→ 0,

(A.190) (log p)1/γ sup
t∈(0,G−1(

c1qan
p

)]

V1(t)

[p0G(t)]2
→ 0.

Therefore, combining (A.188), (A.189), and (A.190) leads to the desired result of Lemma
13. It remains to establish (A.190).

Proof of (A.190). Let {ηj}pj=1 be a sequence of independent random variables with ηj having
density function given by

hj(t) =

√
2√
πaj

[
1−Φ(b−1

j t)
]

exp
{
− t2/(2v2

j )
}

+

√
2√
πbj

[
1−Φ(v−1

j t)
]

exp
{
− t2/(2b2j )

}
,

(A.191)

where vj =
√

2(Ee2
j )
−1(1− corr(ej , ej+p)) and bj =

√
2(Ee2

j )
−1(1 + corr(ej , ej+p)). For

1≤ j ≤ 2p, let us define ξj =
√
nτj ·

z̃Tj ε
‖z̃j‖2 . The essential step in the proof is to show that for

l ∈N c
j ∩H0,

(|ξj | − |ξj+p|, |ξl| − |ξl+p|)
d→ (ηj , ηl).

We proceed with proving such result. Define δn = Cm1/2
n s log p√

n
. We claim that for l 6= j and

l ∈N c
j ∩H0,

P(W̃j ≥ t, W̃l ≥ t)

≤ P(ηj ≥
√
nt− δn)P(ηl ≥

√
nt− δn)

(
1 +O

(√mn(log p)3

n

))
+O(p−3),

(A.192)

P(W̃j ≥ t, W̃l ≥ t)

≥ P(ηj ≥
√
nt+ δn)P(ηl ≥

√
nt+ δn)

(
1 +O

(√mn(log p)3

n

))
+O(p−3),

(A.193)

P(W̃j ≥ t)≥ P(ηj ≥
√
nt+ δn)

(
1 +O

(√mn(log p)3

n

))
+O(p−3),(A.194)
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(A.195) P(W̃j ≥ t)≤ P(ηj ≥
√
nt− δn)

(
1 +O

(√mn(log p)3

n

))
+O(p−3).

The proofs for (A.192)–(A.195) above are analogous. Without loss of generality, we will
present only the proof of (A.192) and postpone it to the end of the proof for Lemma 13. In
view of (A.192)–(A.195) above and the definition of V1(t) in (A.188), we can deduce that

V1(t) =
∑
j∈H0

∑
l∈Nc

j∩H0

l 6=j

(
P(W̃j ≥ t, W̃l ≥ t)− P(W̃j ≥ t)P(W̃l ≥ t)

)

≤
∑
j∈H0

∑
l 6=j

{
P(ηj ≥

√
nt− δn)P(ηl ≥

√
nt− δn)

(
1 +O

(√mn(log p)3

n

)

− P(ηj ≥
√
nt+ δn)P(ηj ≥

√
nt+ δn)

(
1 +O

(√mn(log p)3

n

))}
+O(p−1)

=
∑
j∈H0

∑
l 6=j

P(
√
nt− δn ≤ ηj ≤

√
nt+ δn)P(ηl ≥

√
nt− δn)

+
∑
j∈H0

∑
l 6=j

P(ηj ≥
√
nt− δn)P(

√
nt− δn ≤ ηl ≤

√
nt+ δn)

+
∑
j∈H0

∑
l 6=j

P(ηj ≥
√
nt− δn)P(ηl ≥

√
nt− δn) ·O

(√mn(log p)3

n

)
+O(p−1)

:= V11(t) + V12(t) + V13(t) +O(p−1).

(A.196)

Recall that p0G(t) =
∑

j∈H0
P(W̃j ≥ t). Then it follows from the definition of V11(t) and

(A.194) that

V11(t)

[p0G(t)]2
≤
∑

j∈H0

∑
l 6=j P(

√
nt− δn ≤ ηj ≤

√
nt+ δn)P(ηl ≥

√
nt− δn)[∑

j∈H0
P(ηj ≥

√
nt+ δn)

(
1 +O(

√
mn(log p)3

n )
)

+O(p−2)
]2 .(A.197)

We will consider two ranges t ∈ (0,4n−1/2 max1≤j≤p(vj∨bj)) and t ∈ [4n−1/2 max1≤j≤p(vj∨
bj),G

−1( c1qanp )] separately. For the first range t ∈ (0,4n−1/2 max1≤j≤p(vj ∨ bj)), we can
see that

√
nt is upper bounded by a constant. Since δn = o(1) by the assumption that

m1/2
n s(log p)3/2+1/γ

√
n

→ 0, it follows that
√
nt + δn and

√
nt − δn are both of a constant

order. Hence, by the definition of the density function hj(·) of ηj shown in (A.191),
max1≤j≤p hj(u) is bounded by a constant for u ∈ [

√
nt− δn,

√
nt+ δn], and

C1 ≤ min
1≤j≤p

P(ηj ≥
√
nt+ δn)≤ max

1≤j≤p
P(ηj ≥

√
nt− δn)≤C2

for some positive constants C1 <C2. Thus, it is easy to see that

sup
t∈(0,4n−1/2 max1≤j≤p(vj∨bj))

V11(t)

[p0G(t)]2

≤C
p2

0δnmax1≤j≤p supu∈[
√
nt−δn,

√
nt+δn] hj(u) max1≤j≤p P(ηj ≥

√
nt− δn)

p2
0[min1≤j≤p P(ηj ≥

√
nt+ δn)]2

≤Cδn =C
m

1/2
n s log p√

n
.

(A.198)
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We proceed with considering the second range t ∈ [4n−1/2 max1≤j≤p(vj∨bj),G−1( c1qanp )).
An application of similar arguments as for (A.135) shows that

max
1≤j≤p

sup
t∈[4n−1/2 max1≤j≤p(vj∨bj)),G−1(

c1qan
p

)]

∑
j∈H0

P(
√
nt− δn ≤ ηj ≤

√
nt+ δn)∑

j∈H0
P(ηj ≥

√
nt+ δn)

≤C
√
nG−1(

c1qan
p

) · δn.
(A.199)

Moreover, it follows from plugging t=G−1( c1qanp ) into (A.195) and taking summation over
j ∈H0 that

c1qanp0

p
≤
∑
j∈H0

P(ηj ≥
√
nG−1(

c1qan
p

)− δn)

(
1 +O

(√mn(log p)3

n

))
+O(p−3).

(A.200)

Then from the density function hj(t) for ηj , we can obtain through some direct calculations
that

(A.201) P(ηj ≥ t) = 2[1−Φ(v−1
j t)][1−Φ(b−1

j t)].

Further, combining (A.200) and (A.201) yields that

G−1(
c1qan
p

) =O(

√
log p

n
).

Substituting this bound into (A.199) implies that

max
1≤j≤p

sup
t∈[4n−1/2 max1≤j≤p(vj∨bj)),G−1(

c1qan
p

)]

∑
j∈H0

P(
√
nt− δn ≤ ηj ≤

√
nt+ δn)∑

j∈H0
P(ηj ≥

√
nt+ δn)

≤Cm
1/2
n s(log p)3/2

√
n

,

(A.202)

where in the last inequality above we have utilized the definition of δn. Thus as m1/2
n s(log p)3/2√

n
→

0, it holds that

max
1≤j≤p

sup
t∈[4n−1/2 max1≤j≤p(vj∨bj)),G−1(

c1qan
p

)]

∣∣∣∣
∑

j∈H0
P(ηj ≥

√
nt− δn)∑

j∈H0
P(ηj ≥

√
nt+ δn)

− 1

∣∣∣∣
≤Cm

1/2
n s(log p)3/2

√
n

→ 0.

(A.203)

Since p0G(t)≥ c1qanp0/p→∞ for 0≤ t≤G−1( c1qanp ), it follows from taking summa-

tion over j ∈H0 on both sides of (A.195) that as m1/2
n (log p)3/2/

√
n→ 0,∑

j∈H0

P(ηj ≥
√
nt− δn)≥C

(c1qanp0

p
+O(p−2)

)
→∞,

which along with (A.203) implies that∑
j∈H0

P(ηj ≥
√
nt+ δn)≥C

(c1qanp0

p
+O(p−2)

)
→∞.
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Combining this with (A.202), we can further bound the ratio in (A.197) in the second range
of t ∈ [4n−1/2 max1≤j≤p(vj ∨ bj)),G−1( c1qanp )) as

sup
t∈[4n−1/2 max1≤j≤p(vj∨bj)),G−1(

c1qan
p

)]

V11(t)

[p0G(t)]2

≤

{[∑
j∈H0

P(
√
nt− δn ≤ ηj ≤

√
nt+ δn)

]2[∑
j∈H0

P(ηj ≥
√
nt+ δn)

]2 +

∑
j∈H0

P(
√
nt− δn ≤ ηj ≤

√
nt+ δn)∑

j∈H0
P(ηj ≥

√
nt+ δn)

}

×
(

1 +O
(√mn(log p)3

n
+ p−2

))

≤Cm
1/2
n s(log p)3/2

√
n

.

Hence, we see from the above result and (A.198) that

(A.204) sup
t∈(0,G−1(

c1qan
p

))

V11(t)

[p0G(t)]2
≤Cm

1/2
n s(log p)3/2

√
n

.

In a similar manner, we can deduce that

(A.205) sup
t∈(0,G−1(

c1qan
p

))

V12(t)

[p0G(t)]2
≤Cm

1/2
n s(log p)3/2

√
n

and

(A.206) sup
t∈(0,G−1(

c1qan
p

))

V13(t)

[p0G(t)]2
≤C

√
mn(log p)3

n
.

Combining (A.196) and (A.204)–(A.206) yields (A.190) as m1/2
n s(log p)3/2+1/γ

√
n

→ 0. This com-
pletes the proof of (A.190). It remains to establish (A.192).

Proof of (A.192). Note that for j ∈H0, it holds that βaug
j = βaug

j+p = 0 under the setting of the
linear model. Then it follows that

W̃j = |β̃j | − |β̃j+p|= |β̃j − βaug
j | − |β̃j+p − β

aug
j+p|.

For 1≤ j ≤ 2p, let us define ξj =
√
nτj ·

z̃Tj ε
‖z̃j‖2 . In view of the expression in (A.11) and the

bound of the remainder term established in (A.180), an application of the total probability
inequality gives that

P
(
W̃j ≥ t, W̃l ≥ t

)
≤ P

(
|ξj | − |ξj+p| ≥

√
nt− δn, |ξl| − |ξl+p| ≥

√
nt− δn

)
+ P
(

max
1≤j≤2p

∣∣∣∣∣∑
k 6=j

√
nz̃Tj X̃

aug

k (βk − β̃init
k )

z̃Tj X̃
aug

j

∣∣∣∣∣> δn

)
= P

(
|ξj | − |ξj+p| ≥

√
nt− δn, |ξl| − |ξl+p| ≥

√
nt− δn

)
+O(p−3).

(A.207)
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It suffices to consider probability P
(
|ξj | − |ξj+p| ≥ t − δn, |ξl| − |ξl+p| ≥ t − δn

)
for t ∈

(0,
√
nG−1( c1qanp )]. A useful observation is that

P
(
|ξj | − |ξj+p| ≥ t− δn, |ξl| − |ξl+p| ≥ t− δn

)
≤ P

(
|ξj | − |ξj+p| ≥ t− δn, |ξl| − |ξl+p| ≥ t− δn,

max{|ξj |, |ξj+p|, |ξl|, |ξl+p|} ≤C
√

log p
)

+ P
(

max{|ξj |, |ξj+p|, |ξl|, |ξl+p|}>C
√

log p
)

:= P1 + P2.

(A.208)

We will consider terms P1 and P2 above separately.
Let us first deal with term P2. From the definition of ξj , (A.265) in Lemma 10, and the

fact that z̃Tj ε
‖z̃j‖2

d∼N(0,1), we can obtain through the union bound that as mn log p
n → 0 and for

some large constant C > 4(Ee2
j )
−1/2,

P(|ξj | ≥C
√

log p)≤ P
(∣∣∣∣ z̃Tj ε
‖z̃j‖2

∣∣∣∣≥ 2C(Ee2
j )

1/2
√

log p/3

)
+ P(
√
nτj ≥ 3(Ee2

j )
−1/2/2)

=O(p−3).

Hence, the inequality above implies that

(A.209) P2 =O(p−3).

We next proceed with analyzing term P1. Given X̃
aug

, denote by fξ,ξj+p(x, y) the density
of (ξi, ξj+p) and fξl,ξl+p|(ξj ,ξj+p)(u,w|x, y) the conditional density of (ξl, ξl+p)|(ξj , ξj+p).
Then probability P2 can be written as

P
(
|ξj | − |ξj+p| ≥ t− δn, |ξl| − |ξl+p| ≥ t− δn,

max{|ξj |, |ξj+p|, |ξl|, |ξl+p| ≤C
√

log p

)

= EX̃
aug

[∫
|x|−|y|≥t−δn
|x|≤C

√
log p

|y|≤C
√

log p

fξ,ξj+p(x, y)

·
∫
|u|−|w|≥t−δn
|u|≤C

√
log p

|w|≤C
√

log p

fξl,ξl+p|(ξj ,ξj+p)(u,w|x, y)dudv dxdy

]
.

(A.210)

Since ε d∼N(0, In) and is independent of X̃
aug

, it is easy to see that for j 6= l, conditional on
X̃

aug
we have

(ξj , ξj+p, ξl, ξl+p)
T
∣∣X̃aug d∼N(0,V),
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where the covariance matrix is given by V =

(
V11V12

V21V22

)
with

V11 =

 nτ2
j

nz̃Tj z̃j+p
|z̃Tj X̃

aug

j ||z̃Tj+pX̃
aug

j+p|
nz̃Tj z̃j+p

|z̃Tj X̃
aug

j ||z̃Tj+pX̃
aug

j+p|
nτ2

j+p

 ,

V12 = VT
21 =


nz̃Tj z̃l

|z̃Tj X̃
aug

j ||z̃Tl X̃
aug

l |

nz̃Tj z̃l+p
|z̃Tj X̃

aug

j ||z̃Tl+pX̃
aug

l+p|
nz̃Tl z̃j+p

|z̃Tl X̃
aug

l ||z̃Tj+pX̃
aug

j+p|

nz̃Tl+pz̃j+p
|z̃Tl+pX̃

aug

l+p||z̃Tj+pX̃
aug

j+p|

 ,

V22 =

 nτ2
l

nz̃Tl z̃l+p
|z̃Tl X̃

aug

l ||z̃Tl+pX̃
aug

l+p|
nz̃Tl z̃l+p

|z̃Tl X̃
aug

l ||z̃Tl+pX̃
aug

l+p|
nτ2

l+p

 .

It follows from the conditional distribution of the multivariate normal distribution that
given X̃

aug
,

fξl,ξl+p|(ξj ,ξj+p)(u, v|x, y)

=
1

2π|V22 −V21V−1
11 V12|1/2

×

exp

{
− 1

2

[(
u
v

)
−V21V−1

11

(
x
y

)]T
(V22 −V21V−1

11 V12)−1

·
[(
u
v

)
−V21V−1

11

(
x
y

)]}
.

(A.211)

For l 6= j and l ∈N c
j , it holds that

E(ej , el) =
ΩA
j,l

ΩA
j,jΩ

A
l,l

= 0.

Since ΩA
j,l = ΩA

j,l+p = ΩA
j+p,l = ΩA

j+p,l+p due to the symmetric structure of Ω, we also have

E(ej , el+p) = E(ej+p, el) = E(ej+p, el+p) = 0

for l 6= j and l ∈N c
j . Then it follows from (A.266) in Lemma 10 that for l 6= j and l ∈N c

j ,
with probability 1−O(p−3)

n−1z̃Tj z̃l ≤C
√
mn log p

n
, n−1z̃Tj z̃l+p ≤C

√
mn log p

n
,

n−1z̃Tj+pz̃l ≤C
√
mn log p

n
, n−1z̃Tj+pz̃l+p ≤C

√
mn log p

n
.

(A.212)

Similarly, for 1≤ j ≤ 2p we can show that with probability 1−O(p−3),

(A.213) n−1z̃Tj X̃
aug

j ≥C.
Then from (A.212), (A.213), and the definition of V12, we can obtain that with probability
1−O(p−3),

(A.214) ‖V12‖max ≤C
√
mn log p

n
.
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We have shown in (A.214) that

‖V12‖max ≤C
√
mn log p

n

with probability 1−O(p−3). Similarly, when Ee2
jEe2

j+p − (E[ejej+p])
2 >C for some con-

stant C > 0, it can be shown that |V11| ≥ C and |V22| ≥ C with probability 1−O(p−3). Let
us define an event

C =

{
X̃

aug
: ‖V12‖max ≤C1

√
mn log p

n
, |V22| ≥C2, |V11| ≥C2,

‖V11‖max ≤C3, ‖V22‖max ≤C3

}
.

We have shown that P(C)≥ 1−O(p−3). Then it is straightforward to see that conditional on
event C, we have

(A.215)
1

2π|V22 −V21V−1
11 V12|1/2

=
1

2π|V22|−1/2

(
1 +O

(mn log p

n

))
and

(A.216) ‖V−1
22 − (V22 −V21V−1

11 V12)−1‖max ≤C
mn log p

n
.

In addition, given event C and the range that |x| ≤C
√

log p and |y| ≤C
√

log p, it holds that

(A.217)
∥∥∥∥V21V−1

11

(
x
y

)∥∥∥∥
2

≤C
√
mn

n
log p.

Further, given event C and that max{|u|, |w|, |x|, |y|} ≤C
√

log p, it follows from (A.215)–
(A.217) that as mn(log p)3

n = o(1),∣∣∣∣∣
[(

u
w

)
−V21V−1

11

(
x
y

)]T
(V22 −V21V−1

11 V12)−1

[(
u
w

)
−V21V−1

11

(
x
y

)]

−
(
u
w

)T
V−1

22

(
u
w

)∣∣∣∣∣≤C
√
mn(log p)3

n
.

(A.218)

Hence, substituting the bounds in (A.215) and (A.218) into (A.211) yields that as mn(log p)3

n =
o(1),

fξl,ξl+p|(ξj ,ξj+p)(u,w|x, y)

=
1

2π|V22|1/2
exp

{
− 1

2

(
u
w

)T
V−1

22

(
u
w

)}
·
(

1 +O
(√mn(log p)3

n

))

= fξl,ξl+p(u,w)

(
1 +O

(√mn(log p)3

n

))
,

(A.219)
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which entails that (ξl, ξl+p) is asymptotically independent of (ξj , ξj+p) for l 6= j and l ∈N c
j .

By plugging (A.219) into (A.210), we can deduce that

P1 ≤ E
{
1(C)P

(
|ξj | − |ξj+p| ≥ t− δn,max{|ξj |, |ξj+p|} ≤C

√
log p | X̃aug)

× P
(
|ξl| − |ξl+p| ≥ t− δn,max{|ξl|, |ξl+p|} ≤C

√
log p | X̃aug)}

×
(

1 +O
(√mn(log p)3

n

))
+ P(Cc),

(A.220)

where P(Cc) =O(p−3).
We next show that given X̃

aug
, |ξj | − |ξj+p| converges in distribution to ηj . Given X̃

aug
,

we see that

(ξj , ξj+p)
d∼N(0,V11).

Without ambiguity, let us denote by

V11 =

(
σ2

1,n ρnσ1,nσ2,n

ρnσ1,nσ2,n σ2
2,n

)
for simpler notation, where σ2

1,n = nτ2
j , σ2

2,n = nτ2
j+p, and ρn = z̃Tj z̃j+p/(‖z̃j‖2‖z̃j+p‖2).

We define an event

E =

{
|σ2

1,n − (Ee2
j )
−1| ≤C

√
mn log p

n
, |σ2

2,n − (Ee2
j+p)

−1| ≤C
√
mn log p

n
,

and
∣∣ρn − corr(ej , ej+p)

∣∣≤C√mn log p

n

}
.

It follows from Lemma 10 that P(E)≥ 1−O(p−3). Some straightforward calculations show
that for t > 0, given X̃

aug
the density of |ξj | − |ξj+p| can be written as

f|ξj |−|ξj+p|(t) =

√
2√

πa1,n

[
1−Φ(a−1

2,nt)
]

exp
{
− t2/(2a2

1,n)
}

+

√
2√

πa3,n

[
1−Φ(a−1

4,nt)
]

exp
{
− t2/(2a2

3,n)
}
,

(A.221)

where

a1,n =
√
σ2

1,n + σ2
2,n − 2ρnσ1,nσ2,n, a2,n =

σ1,nσ2,na1,n

√
(1− ρ2

n)

σ2
2,n − ρnσ1,nσ2,n

,

a3,n =
√
σ2

1,n + σ2
2,n + 2ρnσ1,nσ2,n, a4,n =

σ1,nσ2,na3,n

√
(1− ρ2

n)

σ2
2,n + ρnσ1,nσ2,n

.

Recall the notation

vj =
√

2(Ee2
j )
−1(1− corr(ej , ej+p))

and

bj =
√

2(Ee2
j )
−1(1 + corr(ej , ej+p)).
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It holds that E(e2
j ) = (ΩA

j,j)
−1 = (ΩA

j+p,j+p)
−1 = E(e2

j+p) due to the symmetry of ΩA. On
event E , we have that

|a1,n/vj − 1| ≤C
√
mn log p

n
, |a2,n/bj − 1| ≤C

√
mn log p

n
,

|a3,n/bj − 1| ≤C
√
mn log p

n
, |a4,n/vj − 1

∣∣∣≤C√mn log p

n
.

Thus, in view of the definition of hj(t) in (A.191) and (A.221), it follows that as |t| ≤
C
√

log p,

f|ξj |−|ξj+p|(t) = hj(t)

(
1 +O

(√mn(log p)3

n

))
.

With the aid of the above result, we can deduce that on event E ,

P
(
|ξj | − |ξj+p| ≥ t− δn,max{|ξj |, |ξj+p|} ≤C

√
log p | X̃aug)

≤ P
(
|ξj | − |ξj+p| ≥ t− δn, |ξj | − |ξj+p| ≤C

√
log p | X̃aug)

≤
(∫ C

√
log p

t−δn
hj(u)du

)(
1 +O

(√mn(log p)3

n

))

= P(t− δn ≤ ηj ≤C
√

log p)

(
1 +O

(√mn(log p)3

n

))

=
[
P(ηj ≥ t− δn)− P(ηj >C

√
log p)

](
1 +O

(√mn(log p)3

n

))
.

(A.222)

Moreover, in light of (A.201) it is easy to see that

P(ηj >C
√

log p) =O(p−3)

for some large constant C , which together with (A.223) leads to

P
(
|ξj | − |ξj+p| ≥ t− δn,max{|ξj |, |ξj+p|} ≤C

√
log p | X̃aug)

≤ P(ηj ≥ t− δn)

(
1 +O

(√mn(log p)3

n

))
+O(p−3).

(A.223)

Plugging (A.223) into (A.220) shows that

(A.224) P1 ≤ P(ηj ≥ t− δn)P(ηl ≥ t− δn)

(
1 +O

(√mn(log p)3

n

))
+O(p−3).

Finally, combining (A.207), (A.208), (A.209), and (A.224) yields (A.192). Similarly, we can
also establish (A.193)–(A.195). This completes the proof of Lemma 13.

B.12. Proof of Lemma 14. Let us first prove (A.274). In the proof of Lemma 13 in
Section B.11, we have established the lower bound and upper bound for P(W̃j ≥ t) in
(A.194) and (A.195), respectively. Recall the definitions that δn = Cm1/2

n s log p√
n

and bn =
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C∆ns
√

log p
n . For the numerator and denominator in (A.274), we can write that

p0(G(t− bn)−G(t+ bn)) =
∑
j∈H0

[
P(W̃j ≥ t− bn)− P(W̃j ≥ t+ bn)

]
≤
∑
j∈H0

P(ηj ≥
√
nt−

√
nbn − δn)

(
1 +O

(√mn(log p)3

n

))
−
∑
j∈H0

P(ηj ≥
√
nt+

√
nbn + δn)

(
1 +O

(√mn(log p)3

n

))
+O(p−2)

≤
∑
j∈H0

P(
√
nt−

√
nbn − δn ≤ ηj ≤

√
nt+

√
nbn + δn)

+
∑
j∈H0

P(ηj ≥
√
nt−

√
nbn − δn) ·O

(√mn(log p)3

n

)
+O(p−2)

(A.225)

and

(A.226) p0G(t)≥
∑
j∈H0

P(ηj ≥
√
nt+ δn)

(
1 +O

(√mn(log p)3

n

))
+O(p−2),

respectively.
It follows from (A.225)–(A.226), similar arguments as for (A.204), and G−1( c1qanp ) =

O(
√

log p
n ) in the proof of Lemma 13 that as

√
nG−1( c1qanp )(

√
nbn + δn)→ 0,

sup
t∈(0,G−1(

c1qan
p

)]

G(t− bn)−G(t+ bn)

G(t)
≤C

√
log p(

√
nbn + δn) +C

√
mn(log p)3

n

≤C
(m1/2

n s(log p)3/2

√
n

+ ∆ns log p
)
.

Thus, we see that when m1/2
n s(log p)3/2+1/γ

√
n

+ ∆ns(log p)1+1/γ→ 0, the desired result (A.274)
holds.

We next proceed with establishing (A.275). In view of Condition 10, it holds that

p−1
1

∑
j∈H1

P(W̃j <−t)≤G(t)

for t=O(
√
n−1 log p). Moreover, we have

bn =C∆ns

√
log p

n
= o(G−1(

c1qan
p

))

due to the assumption ∆ns→ 0 and G−1( c1qanp ) =O(
√

log p
n ). Then it follows that

a−1
n

∑
j∈H1

P
(
W̃j <−G−1(

c1qan
p

) + bn

)
≤ a−1

n (p− p0)G
(
G−1(

c1qan
p

)− bn
)

=
c1q(p− p0)

p
+ a−1

n (p− p0)

[
G
(
G−1(

c1qan
p

)− bn
)
−G

(
G−1(

c1qan
p

)
)]
.

(A.227)



ARK 59

For notational simplicity, let us define

tn =G−1(
c1qan
p

).

With the aid of the upper and lower bounds for P(W̃j ≥ t) given in (A.194) and (A.195), we
can deduce that

G(tn − bn)−G(tn)

≤ p−1
0

∑
j∈H0

P(ηj ≥
√
ntn −

√
nbn − δn)

(
1 +O

(√mn(log p)3

n

))

− p−1
0

∑
j∈H0

P(ηj ≥
√
ntn + δn)

(
1 +O

(√mn(log p)3

n

))
+O(p−2)

= p−1
0

∑
j∈H0

P(
√
ntn −

√
nbn − δn ≤ ηj ≤

√
ntn + δn)

+ p−1
0

∑
j∈H0

P(ηj ≥
√
ntn −

√
nbn − δn) ·O

(√mn(log p)3

n

)
+O(p−2).

(A.228)

An application of similar arguments as for (A.135) leads to

P(
√
ntn −

√
nbn − δn ≤ ηj ≤

√
ntn + δn)

P(ηj ≥
√
ntn + δn)

≤C
√
ntn(
√
nbn + δn)

≤C
(m1/2

n s(log p)3/2

√
n

+ ∆ns log p
)(A.229)

and

(A.230)
∣∣∣∣P(ηj ≥

√
ntn −

√
nbn − δn)

P(ηj ≥
√
ntn + δn)

− 1

∣∣∣∣≤C(m1/2
n s(log p)3/2

√
n

+ ∆ns log p
)
.

It follows from the lower bound in (A.194) and G(tn) = G(G−1( c1qanp )) = c1qan
p that as

mn(log p)3

n → 0,

(A.231) p−1
0

∑
j∈H0

P(ηj ≥
√
ntn + δn)≤C(

c1qan
p

+O(p−3))≤C c1qan
p

.

Therefore, combining (A.228)–(A.231) shows that

G(tn − bn)−G(tn)≤C
(m1/2

n s(log p)3/2

√
n

+ ∆ns log p
)
· c1qan

p
+C

√
mn(log p)3

n
· c1qan

p

+O(p−2)

≤C
(m1/2

n s(log p)3/2

√
n

+ ∆ns log p
)
· c1qan

p
+O(p−2).
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Finally, substituting the above bound into (A.227) yields that as m1/2
n s(log p)3/2√

n
+∆ns(log p)→

0,

a−1
n

∑
j∈H1

P
(
W̃j <−G−1(

c1qan
p

+ ∆n

)

≤ c1q(p− p0)

p
+C

(m1/2
n s(log p)3/2

√
n

+ ∆ns log p
)
· c1q(p− p0)

p

+O(
p− p0

anp2
)

→ 0,

where we have used the assumption that p0/p→ 1. This establishes (A.275), which concludes
the proof of Lemma 14.

B.13. Proof of Lemma 15. The proof of this lemma relies on the definitions of Tv and
T̃v , with the intuition that T̃v resembles the vth order statistic of −W̃j , while Tv resembles
the vth order statistic of −Ŵj . Intuitively, this means that if the distance between W̃j and
Ŵj is bounded by bn, the distance between the corresponding order statistics should also be
bounded by bn. We will formalize such argument next.

Let us define an event

C := {max
1≤j≤p

|Ŵj − W̃j | ≤ bn}.

Condition 1 assumes that P(C )→ 1. Denote by

(A.232) Ŝv =
{

1≤ j ≤ p :−Ŵj ≥ Tv
}

and

(A.233) S̃v =
{

1≤ j ≤ p :−W̃j ≥ T̃v
}
.

Observe that |Ŝv| = v and |S̃v| = v by the definitions of Tv and T̃v . If j0 ∈ Ŝv , on event C
we have that

(A.234) − W̃j0 =−Ŵj0 + (Ŵj0 − W̃j0)≥ Tv − bn,

which entails that
∑p

j=1 1(−W̃j ≥ Tn−bn)≥ v. Moreover, since T̃v satisfies
∑p

j=1 1(−W̃j ≥
T̃v) = v, it follows that

T̃v ≥ Tv − bn
by the monotonicity of the indicator function. Similarly, we can also show that

Tv ≥ T̃v − bn
on event C . Thus, (A.26) is derived. This concludes the proof of Lemma 15.

B.14. Proof of Lemma 16. Note that k is the number of failures before v successes
in a binomial process with success probability 1

2 . The major intuition of the desired result
(A.27) is that by the law of large numbers, the number of failures and successes should
become asymptotically comparable as the number of trials tends to infinity. Let Dk+v−1 be
a binomial random variable with distribution B(k + v − 1, 1

2) and Lv the negative binomial
random variable with distribution NB(v, 1

2). Observe that (52) is equivalent to P(Lv ≥ k)≤
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q. According to the relationship between the negative binomial distribution and binomial
distribution, we have that

P(Lv ≥ k) = 1− P(Lv ≤ k− 1)

= 1− P(Dk+v−1 ≥ v)

= P(Dk+v−1 ≤ v− 1).

(A.235)

By the central limit theorem, it holds that when k+ v→∞,

P(Dk+v−1 ≤ v− 1) = Φ
( v− 1− k√

k+ v− 1

)
+ o(1).

Therefore, (52) implies that

(A.236)
v− 1− k√
k+ v− 1

≤Φ−1(q− o(1)).

In addition, since v is the largest integer such that (52) holds, we have that

P(Lv+1 ≥ k)> q.

Using similar arguments as for (A.236), it follows that as k+ v→∞,

P(Lv+1 ≥ k) = P(Dk+v ≤ v) = Φ
( v− k√

k+ v

)
+ o(1)

and hence

(A.237)
v− k√
k+ v

≥Φ−1(q− o(1)),

which along with (A.236) leads to (A.27). This completes the proof of Lemma 16.

B.15. Proof of Lemma 17. The proof of this lemma consists of two steps. We will first
establish the tight bounds below for T̃v . In the second step, noting that T̃v+Mv+1 < T̃v−2bn ≤
T̃v+Mv

by the definition of Mv in (A.25), we will show that Mv is bounded as long as bn is
sufficiently small.

LEMMA 18. For 0< ε< 1/8, under Conditions 1, 15, and 16 we have that

(A.238) P
(
G−1

(v(1 + ε)

p0

)
< T̃v <G−1

(v(1− ε)
p0

))
→ 1.

LEMMA 19. Under Condition 16, we have that

2bn <G−1
(v(1 + ε)

p0

)
−G−1

(v(1 + 3ε)(1− ε)
p0

)
.

Using similar arguments as in the proof of Lemma 18 below, we can show that under
Conditions 1, 15, and 16,

(A.239) P
(
G−1

(v(1 + 3ε)(1 + ε)

p0

)
< T̃v(1+3ε) <G−1

((v(1 + 3ε))(1− ε)
p0

))
→ 1.

Then it follows that

T̃v(1+3ε) <G−1(
v(1 + 3ε)(1− ε)

p0
)<G−1(

v(1 + ε)

p0
)< T̃v.
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Additionally, applying Lemmas 18 and 19 together with the definition of T̃v gives that with
asymptotic probability one,

T̃v+Mv
≥ T̃v − 2bn

≥G−1(
v(1 + ε)

p0
)−
[
G−1(

v(1 + ε)

p0
)−G−1(

v(1 + 3ε)(1− ε)
p0

)
]

=G−1(
v(1 + 3ε)(1− ε)

p0
)> T̃v(1+3ε).

Therefore, we can obtain that

P(Mv < 3vε)→ 1

since T̃v is decreasing with respect to v. This will conclude the proof of Lemma 17.
We will present the formal proofs of Lemmas 18 and 19 below.

Proof of Lemma 18. The main idea of the proof is to establish the convergence of the empirical
distribution of {W̃j} that

∑
j∈H0

1(W̃j ≥ t) is close to
∑

j∈H0
P(W̃j ≥ t). Using similar

arguments as in the proof of Lemma 3 in Section B.3, we can obtain that when mn/k→ 0
(which combined with Lemma 16 implies that mn/v→ 0),

(A.240) sup
t∈(G−1( 3k

2p
),G−1( k

2p
))

∣∣∣∣
∑

j∈H0
1(W̃j ≤−t)∑

j∈H0
P(W̃j ≤−t)

− 1

∣∣∣∣= op(1).

Since
∑

j∈H0
P(W̃j ≤−G−1(v(1+ε)

p0
) = v(1 + ε), we see from (A.240) that

p∑
j=1

1(−W̃j ≥G−1(
v(1 + ε)

p0
))≥

∑
j∈H0

1(W̃j ≤−G−1(
v(1 + ε)

p0
))

= v(1 + ε)(1 + op(1))> v

(A.241)

holds with asymptotic probability one. Hence, from the definition of T̃v , we have that

(A.242) P
(
T̃v >G−1(

v(1 + ε)

p0
)
)
→ 1.

We next prove the upper bound for T̃v . Note that
∑p

j=1 1(W̃j ≤−T̃v) = v. We will aim to
show that with asymptotic probability one,

(A.243)
∑
j∈H1

1(W̃j ≤−T̃v)< vε/2.

Then with asymptotic probability one, it holds that

(A.244)
∑
j∈H0

1(W̃j ≤−T̃v)≥ v(1− ε/2).

On the other hand, applying (A.240) and similar argument as for (A.241), we can obtain that
with asymptotic probability one,

(A.245)
∑
j∈H0

1(W̃j ≤−G−1(
v(1− εn)

p0
)< v(1− ε/2).
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Combining the above two results shows that with asymptotic probability one,

T̃v ≤G−1(
v(1− ε)
p0

),

which completes the proof for the upper bound.
It remains to establish (A.243). Since p0/p→ 1 and v/k→ 1 (cf. Lemma 16), we have

that

G−1(
3k

2p
)<G−1(

v(1 + ε)

p0
)

when n and p are sufficiently large and 0 < ε < 1/8. Then from (A.242), it holds that
G−1(3k

2p )≤ T̃v and hence with asymptotic probability one,

(A.246)
∑
j∈H1

1(W̃j ≤−T̃v)≤
∑
j∈H1

1(W̃j <−G−1(
3k

2p
)).

Moreover, an application of the Markov inequality, Lemma 16, and (55) in Condition 16
yields that as n→∞,

P
( ∑
j∈H1

1(W̃j <−G−1(
3k

2p
))> vε/2

)
≤ 2

vε

∑
j∈H1

P
(
W̃j <−G−1(

3k

2p
)
)
→ 0.

(A.247)

Therefore, (A.243) is derived in view of (A.246). This completes the proof of Lemma 18.

Proof of Lemma 19. Let us observe that

(A.248)
v(1 + 3ε)(1− ε)

p0
− v(1 + ε)

p0
=

v

p0
(ε− 3ε2).

By the assumptions that p0/p→ 1 and mn/k→ 0, and applying Lemma 16 and the observa-
tion above, it follows that when k and p are sufficiently large,

(A.249)
v(1 + 3ε)(1− ε)

p0
− v(1 + ε)

p0
≥ kε

2p
.

Note that assumption (54) in Condition 16 entails that

(A.250) sup
t∈(G−1( 3k

2p
),G−1( k

2p
))

[G(t− bn)−G(t+ bn)] = o(
k

p
).

Combining the above two results and Lemma 16, we can obtain that

(A.251)
v(1 + 3ε)(1− ε)

p0
− v(1 + ε)

p0
� sup

t∈(G−1( 3k

2p
),G−1( k

2p
))

[G(t− bn)−G(t+ bn)].

Notice that

G−1(
v(1 + 3ε)(1− ε)

p0
) ∈ (G−1(

3k

2p
),G−1(

k

2p
))

and

G−1(
v(1 + ε)

p0
) ∈ (G−1(

3k

2p
),G−1(

k

2p
))

when k and p are sufficiently large. Therefore, using proof by contradiction and the mono-
tonicity of function G(·), we can establish the desired result of Lemma 19. This concludes
the proof of Lemma 19.
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B.16. Lemma 20 and its proof. Following the definitions in Section 3.2, let us consider
the marginal correlation approximate knockoff statistics defined as Ŵj = (

√
n‖y‖2)−1(|XT

j y|−
|X̂T

j y|) and the coupled perfect knockoff statistics given by W̃j = (
√
n‖y‖2)−1(|XT

j y| −
|X̃T

j y|) with 1 ≤ j ≤ p. When features X1, · · · ,Xp are independent, we can obtain the fol-

lowing sharper bound of order ∆n

√
log p
n for the coupling accuracy of the knockoff statistics,

compared to the general bound ∆n in (13).

LEMMA 20. Assume that features {Xj}pj=1 are independent and follow a Gaussian dis-

tribution Xj
d∼ N(0, σ2

j ). Let the approximate and coupled knockoff variable matrices be
defined as

X̂ = Z diag(σ̂1, · · · , σ̂p) and X̃ = Z diag(σ1, · · · , σp),

where Z = (Zij) ∈Rn×p has i.i.d. standard normal entries and is independent of (X,y), and
σ̂j is the estimator of σj , which can be learned in sample. Then under Condition 6, we have
that when log p= o(n),

(A.252) max
1≤j≤p

|Ŵj − W̃j | ≤ 4∆n

√
log p

n
.

Proof of Lemma 20. We first show that Condition 6 leads to P(max1≤j≤p |σ̂j−σj | ≤ 2∆n)→
1. First note that P(min1≤j≤p n

−1/2‖Zj‖2 > 1/2)→ 1 since log p= o(n), due to the concen-
tration inequality for the sum of i.i.d χ2

1 random variables. If max1≤j≤p n
−1/2‖X̂j − X̃j‖2 ≤

∆n with probability approaching one, then we have ∆n ≥max1≤j≤p n
−1/2|σ̂j−σj |‖Zj‖2 ≥

max1≤j≤p |σ̂j − σj |min1≤j≤p n
−1/2‖Zj‖2 > 1

2 max1≤j≤p |σ̂j − σj | with asymptotic proba-
bility one. This proves that Condition 6 leads to

P( max
1≤j≤p

|σ̂j − σj |< 2∆n)→ 1.

Then we can deduce that

P
(

max
1≤j≤p

|Ŵj − W̃j | ≥ 4∆n

√
log p

n

)
≤ P

(
max

1≤j≤p
(
√
n‖y‖2)−1

∣∣(X̂
T

j − X̃j)
T y
∣∣≥ 4∆n

√
log p

n

)
≤ P

(
max

1≤j≤p
|σ̂j − σj | max

1≤j≤p
(
√
n‖y‖2)−1

∣∣ZTj y
∣∣≥ 4∆n

√
log p

n

)
≤ P

(
max

1≤j≤p
|σ̂j − σj | ≥ 2∆n

)
+
∑

1≤j≤p
P
(

(
√
n‖y‖2)−1

∣∣ZTj y
∣∣≥ 2

√
log p

n

)
.

Observing that (
√
n‖y‖2)−1ZTj y d∼N(0, n−1) and max1≤j≤p |σ̂j − σj | ≤ 2∆n with asymp-

totic probability one, we have

P( max
1≤j≤p

|Ŵj − W̃j | ≥ 4∆n

√
log p

n
)≤ o(1) + p−1→ 0.

This completes the proof of Lemma 20.
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APPENDIX C: RCD WITH DEBIASED LASSO IN GLM

In this section, we extend the results in Section 3.3 to the setting of the generalized linear
model (GLM)

E[Y |X] = g−1(XTα0),

where α0 = (α0
j )1≤j≤p ∈ Rp is the true regression coefficient vector and g is the link

function. Assume that feature vector X = (X1, · · · ,Xp)
T has zero mean. Define X̃aug =

(XT , X̃T )T ∈ R2p and X̂aug = (XT , X̂T )T ∈ R2p, where X̃ and X̂ are the perfect knock-
offs and the approximate knockoffs forX , respectively. Denote by β0 = ((α0)T ,0Tp )T ∈R2p

the augmented true parameter vector.
Consider the negative log-likelihood function ρ(y;a) : a 7→R defined as ρ(y;a) =−ya+

b(a), up to a constant independent of the unknown parameters, where b(·) is a known
strictly convex and twice continuously differentiable function. Define the loss function
ρβ(Y ; X̃aug) = ρ(Y ; (X̃aug)Tβ). Denote by ρ̇β := ∂

∂βρβ and ρ̈β := ∂2

∂β∂βT
ρβ the partial

derivatives. Note that ρ̇β = ρ̇(Y ; (X̃aug)Tβ)X̃aug and ρ̇β = ρ̈(Y ; (X̃aug)Tβ)X̃aug(X̃aug)T .
Let b̂ = (̂bj)1≤j≤2p be the debiased estimator for the GLM given in van de Geer et al.

(2014) based on the augmented design matrix X̂
aug

:= [X, X̂] ∈ Rn×2p, where X̂ is the ap-
proximate knockoff variable matrix. Assume that Condition 6 is satisfied and X̃ is the coupled
perfect knockoffs variable matrix. Similarly, define X̃

aug
:= [X, X̃] ∈ Rn×2p. Then b̂ can be

coupled with the debiased Lasso estimator denoted as b̃ = (̃bj)1≤j≤2p ∈R2p based on X̃
aug

.
The regression coefficient difference knockoff statistics can be defined as

(A.253) Ŵj = |̂bj | − |̂bj+p| and W̃j = |̃bj | − |̃bj+p|, 1≤ j ≤ p

for the approximate and the coupled perfect knockoffs procedures, respectively..
We provide the explicit definition of the debiased Lasso estimator to assist future pre-

sentation. For each 1 ≤ j ≤ 2p, the debiased Lasso estimator b̂ = (̂bj)1≤j≤2p is a one-step
bias correction from the Lasso estimator β̂ = (β̂j)1≤j≤2p ∈R2p. First, the Lasso estimator is
given by

(A.254) β̂ = arg min
β∈R2p

{
n−1

n∑
i=1

ρβ(yi; X̂
aug

i,· ) + λ‖β‖1
}
,

where X̂
aug

i,· is the ith row (observation) of the augmented design matrix X̂
aug

. To obtain the
debiased Lasso estimator, define

Σ̂ = n−1
n∑
i=1

ρ̈
β̂

(yi; X̂
aug

i,· ) = n−1(X̂
aug

)T D̂X̂
aug
,

where D̂ = diag(ρ̈(y1; X̂
aug

1,· β̂), · · · , ρ̈(yn; X̂
aug

n,· β̂)) ∈ Rn×n is a diagonal matrix. Further, for
1≤ j ≤ 2p, define

γ̂j = arg min
γ∈R2p−1

(Σ̂j,j − 2Σ̂j,−jγ + γT Σ̂−j,−jγ + 2λj‖γ‖1),

where λ and {λj}2pj=1 are the nonnegative regularization parameters. In addition, let

τ̂2
j = Σ̂j,j − Σ̂j,−j γ̂j .
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Then the debiased Lasso estimator for GLM (van de Geer et al. (2014)) based on the approx-
imate augmented design matrix X̂

aug
is defined as

(A.255) b̂j = β̂j −
n−1ρ̇T

β̂
(X̂

aug

j − X̂
aug

−j γ̂j)

τ̂2
j

, 1≤ j ≤ p,

where ρ̇
β̂

:= (ρ̇(y1; X̂
aug

1,· β̂), · · · , ρ̇(yn; X̂
aug

n,· β̂)) ∈Rn.

Analogously, the coupled debiased Lasso estimator β̃ = (β̃j)1≤j≤2p based on the perfect
augmented design matrix X̃

aug
can be defined componentwisely as

(A.256) b̃j = β̃j −
n−1ρ̇T

β̃
(X̃

aug

j − X̃
aug

−j γ̃j)

τ̃2
j

,

where ρ̇
β̃

:= (ρ̇(y1; X̃
aug

1,· β̃), · · · , ρ̇(yn; X̃
aug

n,· β̃)) ∈Rn,

(A.257) β̃ = arg min
β∈R2p

{
n−1

n∑
i=1

ρβ(yi; X̃
aug

i,· ) + λ‖β‖1
}
,

γ̃j = arg min
γ∈R2p−1

(Σ̃j,j − 2Σ̃j,−jγ + γT Σ̃−j,−jγ + 2λj‖γ‖1), τ̃2
j = Σ̃j,j − Σ̃j,−iγ̃j ,

and

Σ̃ = n−1
n∑
i=1

ρ̈
β̃

(yi; X̃
aug

i,· ) = n−1(X̃
aug

)T D̃X̃
aug
.

In the above, D̃ = diag(ρ̈(y1; X̃
aug

1,· β̃), · · · , ρ̈(yn; X̃
aug

n,· β̃)) ∈Rn×n is a diagonal matrix.
It is important to emphasize that the same regularization parameters λ and λj’s in defining

b̂ should be used as in defining b̃ in (A.256) so that their constructions differ only by the used
design matrix; this plays a key role in applying our coupling technique.

Indeed, we prove in Lemma 21 that the coupling technique together with Condition 6 and
some other regularity conditions ensures that with asymptotic probability one,

(A.258) max
1≤j≤2p

|̃bj − b̂j |. ∆ns

√
log p

n
+
s3/2 log p

n
.

The above result guarantees that Ŵj’s and W̃j’s are also uniformly close over 1 ≤ j ≤ p
with max1≤j≤p |Ŵj − W̃j | . ∆ns

√
(log p)/n + s3/2(log p)/n. As long as s∆n → 0 and

s3/2
√

(log p)/n→ 0, this upper bound has a smaller order than the concentration rate δn
of W̃j (cf. Condition 2), because here δn ∼

√
n−1 log p as shown in our Lemma 22. As

commented after Theorem 2, the assumption that the coupling rate of max1≤j≤p |W̃j − Ŵj |
is of a smaller order than the concentration rate δn plays a key role in establishing our theory
on the asymptotic FDR control.

We next introduce some additional notation and formally present the regularity con-
ditions specific to this section. Let D = diag(ρ̈(y1; X̃

aug

1,· β
0), · · · , ρ̈(yn; X̃

aug

n,· β
0)) ∈ Rn×n

be a diagonal matrix and U = D1/2X̃
aug

the weighted perfect design matrix. We define
Σ = n−1E[UTU] = n−1E[(X̃

aug
)TDX̃

aug
]. Let Ω = Σ−1 and γj = (γj,l)l 6=j with γj,l =

−Ωj,l/Ωj,j . For 1 ≤ j ≤ 2p, denote by Sj = supp(γj) ∪ supp(γ̃j) ∪ supp(γ̂j). Let
J = supp(β0)∪ supp(β̃)∪ supp(β̂) and s := ‖β0‖0 = ‖α0‖0 = o(n). We make the techni-
cal assumptions below.
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CONDITION 17. For a large constant r > 0, it holds with probability 1−O(p−r) that

‖β̃−β0‖1 ≤Cs
√

log p

n
,(A.259)

‖β̃−β0‖2 ≤C
√
s log p

n
,(A.260)

‖X̃aug
(β̃−β0)‖2 ≤C

√
s log p.(A.261)

CONDITION 18. For a large constant r > 0, it holds with probability 1−O(p−r) that

max
1≤j≤2p

‖γ̃j − γj‖1 ≤C(s+mn)

√
log p

n
,(A.262)

max
1≤j≤2p

‖γ̃j − γj‖2 ≤C
√

(s+mn) log p

n
,(A.263)

max
1≤j≤2p

‖X̃aug

−j (γ̃j − γj)‖2 ≤C
√

(s+mn) log p,(A.264)

max
1≤j≤2p

|τ̃2
j −Ω−1

j,j | ≤C
√

(s+mn) log p

n
,(A.265)

max
1≤j,l≤2p

∣∣∣n−1(X̃
aug

j − X̃
aug

−j γ̃j)
TD(X̃

aug

l − X̃
aug

−l γ̃l)−
Ωj,l

Ωj,jΩl,l

∣∣∣
≤C

√
(s+mn) log p

n
,

(A.266)

where mn is the sparsity level of Ω defined in Condition 20.

Conditions 17 and 18 are well-known results about the the consistency of the GLM Lasso
estimator and hold under some regularity conditions (van de Geer et al. (2014)).

CONDITION 19 (Loss function). The derivatives ρ̇(y;a) := ∂
∂aρ(y;a) and ρ̈(y;a) :=

∂2

∂a2 ρ(y;a) exist for all (y, a), and for some δ-neighborhood with δ > 0, ρ̈(y;a) is Lipschitz
such that

max
a0∈{XTα0}

sup
|a−a0|∨|a′−a0|≤δ

sup
y∈Y

|ρ̈(y;a)− ρ̈(y;a′)|
|a− a′|

≤C4,

where Y is the space in which the response variable Y lives. In addition, the derivatives are
bounded such that for constants K1,K2 > 0,

max
a0∈{XTα0}

sup
y∈Y
|ρ̇(y;a0)| ≤K1, max

a0∈{XTα0}
sup
y∈Y
|ρ̈(y;a)| ≤K2, min

a0∈{XTα0}
min
y∈Y
|ρ̈(y;a)| ≥K3.

CONDITION 20 (Sparsity). (i) For some constant C5 > 0, P(|J | ≤C5s)→ 1.
(ii) For some sequencemn . s, it holds that max1≤j≤2p ‖Ωj‖0 ≤mn and P(max1≤j≤2p |Sj | ≤
C6mn)→ 1 with some constant C6 > 0.
(iii) max1≤j≤2p ‖γj‖2 ≤ C7 and C8 < λmin(Ω) ≤ λmax(Ω) < C9 with some positive con-
stants C7, C8, and C9.
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CONDITION 21 (Compatibility). Assume that with probability 1− o(1),

(A.267) min
‖β‖0≤C9s

βTUTUβ
n‖β‖22

≥ κ1

for some large enough constant C9 > 0 and a small constant κ1 > 0.

CONDITION 22 (boundedness). Assume that ‖X̃‖∞ = maxi,j |X̃i,j | ≤M for a constant
M > 0. In addition, ‖X̃aug

−j γj‖∞ ≤M .

Note that the boundedness assumption in Condition 22 is for technical simplicity; it can
be replaced with a less stringent sub-Gaussian condition and the results in Theorem 7 remain
to hold.

CONDITION 23 (Signal strength). Let An = {j ∈H1 : |β0
j | �

√
n−1 log p} and it holds

that an := |An| →∞.

We are now ready to state our results on the FDR control for the approximate knockoffs
inference based on the debiased Lasso coefficients for GLM.

THEOREM 7. Assume that Conditions 6, 10, and 17–23 hold, mn/an → 0, and
s3/2(log p)3/2+1/γ

√
n

+ ∆ns(log p)1+1/γ→ 0 for some constant 0< γ < 1. Then we have

lim sup
n→∞

FDR≤ q.

C.1. Proof of Theorem 7. The main idea of the proof is to directly apply Theorem 1 by
verifying Conditions 1–5 for the knockoff statistics constructed from the debiased Lasso coef-
ficients under the GLM. There are two key observations. The first one is that the Lasso estima-
tors based on the approximate knockoffs and the perfect coupling counterpart should be close
if the design matrices X̂

aug
and X̃

aug
are close to each other. The second key observation is

that the debiased Lasso coefficients are asymptotically normal (van de Geer et al. (2014)). Let
ρ̇β0 := (ρ̇(y1; X̂

aug

1,· β
0), · · · , ρ̇(yn; X̂

aug

n,· β
0)) = (ρ̇(y1; X̃

aug

1,· β
0), · · · , ρ̇(yn; X̃

aug

n,· β
0)) ∈ Rn. It

follows from the Taylor expansion that ρ̇(yi; X̃
aug

i,· β
0)− ρ̇(yi; X̃

aug

i,· β̃) = ρ̈(yi; ξ)X̃
aug

i,· (β0−β̃)

for some ξ locating between X̃
aug

i,· β
0 and X̃

aug

i,· β̃. By Condition 19, we can obtain that
(A.268)∣∣ρ̇(yi; X̃

aug

i,· β
0)− ρ̇(yi; X̃

aug

i,· β̃)− ρ̈(yi; X̃
aug

i,· β̃)X̃
aug

i,· (β0 − β̃)
∣∣≤C4[X̃

aug

i,· (β0 − β̃)]2.
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In view of (A.255), the debiased Lasso coefficient can be written as

√
n(̃bj − β0

j ) =
√
n(β̃j − β0

j )−
n−1/2ρ̇T

β̃
(X̃

aug

j − X̃
aug

−j γ̃j)

τ̃2
j

=−
n−1/2ρ̇Tβ0(X̃

aug

j − X̃
aug

−j γ̃j)

τ̃2
j

+
√
n(β̃j − β0

j )

+
n−1/2(D̃X̃

aug
(β0 − β̃))T (X̃

aug

j − X̃
aug

−j γ̃j)

τ̃2
j

+
C4n

−1/2R̃|X̃aug

j − X̃
aug

−j γ̃j |
τ̃2
j

=−
n−1/2ρ̇Tβ0(X̃

aug

j − X̃
aug

−j γ̃j)

τ̃2
j

+
C4n

−1/2R̃|X̃aug

j − X̃
aug

−j γ̃j |
τ̃2
j

+
n−1/2(β0

−j − β̃−j)T (X̃
aug

−j )T D̃(X̃
aug

j − X̃
aug

−j γ̃j)

τ̃2
j

,

(A.269)

where R̃ = ([X̃
aug

1,· (β0 − β̃)]2, · · · , [X̃aug

n,· (β0 − β̃)]2), and we have used the equality τ̃2
j =

Σ̃j,j − Σ̃j,−j γ̃j = (X̃
aug

j )T D̃(X̃
aug

j − X̃
aug

−j γ̃j).
By the property of GLM, we have E[ρ̇(yi; X̃

aug

i,· β
0)|X̃aug

] = 0, and hence E[ρ̇Tβ0(X̃
aug

j −
X̃

aug

−j γ̃j)] = 0. In addition, it holds that

Var[n−1/2ρ̇Tβ0(X̃
aug

j − X̃
aug

−j γ̃j)|X̃
aug

] = n−1(X̃
aug

j − X̃
aug

−j γ̃j)
TD(X̃

aug

j − X̃
aug

−j γ̃j)

≈ τ̃2
j .

Thus, as the remainders in (A.269) are asymptotically negligible, the debiased Lasso estima-
tor is asymptotically normal in the sense that

(A.270)
√
nτ̃j (̃bj − β0

j )
d→N(0,1).

Our proof will build mainly on such intuition. Throughout the proof below, constant C may
take different values from line to line.

The four lemmas below outline the proof for verifying the general Conditions 1–5. Proofs
of Lemma 21–24 are provided in Sections C.2–C.5, respectively.

LEMMA 21. Assume that Conditions 6 and 17–22 are satisfied. Then as ∆ns
1/2→ 0 and

s
√

log p
n → 0, we have that

(A.271) P
(

max
1≤j≤2p

|̃bj − b̂j | ≥C
(

∆ns

√
log p

n
+
s3/2 log p

n

))
→ 0.

Lemma 21 above indicates that Condition 1 is satisfied with convergence rate bn :=

C(∆ns
√

log p
n + s3/2 log p

n ). Let us define wj = |β0
j |.

LEMMA 22. Assume that Conditions 17–22 are satisfied. Then as s3/2
√

log p
n → 0, we

have that for some C > 0,
∑p

j=1 P(|W̃j −wj | ≥C
√
n−1 log p)→ 0.
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Lemma 22 above shows that Condition 2 related to the concentration rate of W̃j is satisfied
with δn =C

√
n−1 log p. In addition, it holds that bn�C

√
n−1 log p due to the assumptions

∆ns→ 0 and s
√

log p
n → 0 in Theorem 7. In addition, in light of the definition of wj , under

Condition 23 we have that the general Condition 3 on the signal strength is also satisfied. We
next turn to the verification of Conditions 4–5.

LEMMA 23. Assume that Conditions 17–22 are satisfied. Then as s3/2(log p)3/2+1/γ

√
n

→ 0,

we have that Var
(∑

j∈H0
1(W̃j > t)

)
≤ V1(t) + V2(t), where for some 0< γ < 1 and 0<

c1 < 1,

(A.272) (log p)1/γ sup
t∈(0,G−1(

c1qan
p

)]

V1(t)

[p0G(t)]2
→ 0

and

(A.273) sup
t∈(0,G−1(

c1qan
p

)]

V2(t)

p0G(t)
.mn.

LEMMA 24. Assume that Conditions 6, 10, and 17–22 are satisfied. Then when
s3/2(log p)3/2+1/γ

√
n

→ 0 and ∆ns(log p)1+1/γ→ 0, we have that

(A.274) (log p)1/γ sup
t∈(0,G−1(

c1qan
p

)]

G(t− bn)−G(t+ bn)

G(t)
→ 0

and

(A.275) a−1
n

∑
j∈H1

P
(
W̃j <−G−1(

c1qan
p

) + bn

)
→ 0

as n→∞.

Lemma 23 above shows that Condition 4 is satisfied, whereas Lemma 24 implies that
Condition 5 is satisfied. Finally, the conclusion of Theorem 7 can be derived by directly
applying the general Theorem 1. This completes the proof of Theorem 7.

C.2. Proof of Lemma 21. The proof is analogous to that of Lemma 11. The main idea is
to apply the KKT condition to the GLM Lasso and then use Condition 6. From the definitions
of b̂j in (A.255) and the coupled counterpart b̃j in (A.256), we have that

max
1≤j≤2p

|̂bj − b̃j | ≤ max
1≤j≤2p

|β̂j − β̃j |

+ max
1≤j≤2p

∣∣∣∣n−1ρ̇T
β̂

(X̂
aug

j − X̂
aug

−j γ̂j)

τ̂2
j

−
n−1|ρ̇T

β̃
(X̃

aug

j − X̃
aug

−j γ̃j)

τ̃2
j

∣∣∣∣.(A.276)

We will show that for some constant C > 0, it holds that

(A.277) P
(
‖β̂− β̃‖2 ≤C

(
∆ns

√
log p

n
+
s3/2 log p

n

))
→ 1,

P
(

max
1≤j≤2p

∣∣∣∣n−1ρ̇T
β̂

(X̂
aug

j − X̂
aug

−j γ̂j)

τ̂2
j

−
n−1|ρ̇T

β̃
(X̃

aug

j − X̃
aug

−j γ̃j)

τ̃2
j

∣∣∣∣
≤C

(
∆ns

√
log p

n
+
s3/2 log p

n

))
→ 1.

(A.278)
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Then combining the two results above can establish the desired conclusion of Lemma 21. We
next proceed with proving (A.277) and (A.278).

Proof of (A.277). Recall the definitions of Lasso estimators β̂ in (A.254) and β̃ in (A.257).
It follows from the KKT condition that

n−1
n∑
i=1

ρ̇(yi; X̂
aug

i,· β̂)(X̂
aug

i,· )T + λζ̂ = 0,(A.279)

n−1
n∑
i=1

ρ̇(yi; X̃
aug

i,· β̃)(X̃
aug

i,· )T + λζ̃ = 0,(A.280)

where ζ̃ = (ζ̃1, · · · , ζ̃2p) and ζ̂ = (ζ̂1, · · · , ζ̂2p) with

ζ̃j =

{
sgn(β̃j) if β̃j 6= 0,

∈ [−1,1] if β̃j = 0,
and ζ̂j =

{
sgn(β̂j) if β̂j 6= 0,

∈ [−1,1] if β̂j = 0.

Taking the difference between (A.279) and (A.279) above and multiplying both sides by
β̂− β̃ lead to

n−1
n∑
i=1

ρ̇(yi; X̂
aug

i,· β̂)(X̂
aug

i,· )(β̂− β̃)− n−1
n∑
i=1

ρ̇(yi; X̃
aug

i,· β̃)(X̃
aug

i,· )(β̂− β̃)

=−λ(ζ̂ − ζ̃)T (β̂− β̃)≤ 0.

Further applying the Taylor expansion for function ρ̇ and Condition 19 yields

n−1
n∑
i=1

[
ρ̇(yi; X̂

aug

i,· β
0) + ρ̈(yi; X̂

aug

i,· β
0)X̂

aug

i,· (β̂−β0)
]
X̂

aug

i,· (β̂−β0)

− n−1
n∑
i=1

[
ρ̇(yi; X̃

aug

i,· β
0) + ρ̈(yi; X̃

aug

i,· β
0)X̃

aug

i,· (β̃−β0)
]
X̃

aug

i,· (β̃−β0)

≤C4n
−1

n∑
i=1

∣∣X̃aug

i,· (β̃−β0)
∣∣3,

(A.281)

which can be equivalently written in the matrix form as

n−1(β̂− β̃)T (X̂
aug − X̃

aug
)T ρ̇β0 + n−1(β̂− β̃)T (X̃

aug
)TDX̃

aug
(β̂− β̃)

+ n−1(β̂− β̃)T [(X̂
aug

)TDX̂
aug − (X̃

aug
)TDX̃

aug
](β̂− β̃)

+ n−1(β̂− β̃)T [(X̂
aug

)TDX̂
aug − (X̃

aug
)TDX̃

aug
](β̃−β0)

≤C4n
−1

n∑
i=1

∣∣X̃aug

i,· (β̃−β0)
∣∣3.

(A.282)

Note that by Condition 20, |supp(β̂) ∪ supp(β̃) ∪ supp(β0)| ≤ Cs with probability ap-
proaching one. Thus, by a similar technique of proving (A.146), we can obtain from Condi-
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tions 20 and 21 that

‖β̂− β̃‖2 . max
J :|J |≤Cs

∥∥n−1(X̂
aug

J − X̃
aug

J )T ρ̇β0

∥∥
2

+ max
J :|J |≤Cs

∥∥n−1[(X̂
aug

J )TDX̂
aug − (X̃

aug

J )TDX̃
aug

](β̃−β0)
∥∥

2

+ max
J :|J |≤Cs

n−1
n∑
i=1

(
X̃

aug

i,· (β̃−β0)
)2∥∥X̃i,J

∥∥
2

:=R1 +R2 +R3.

(A.283)

Observe that given (X, X̃), ρ̇β0 is a vector consisting of i.i.d bounded random variables with
zero mean and bounded variance. Following the same technique of proving (A.147) and
(A.148), we can obtain that

(A.284) P
(
R1 ≤C∆n

√
s logn

n

)
→ 1

and

(A.285) P
(
R2 ≤C∆ns

√
log p

n

)
→ 1.

Regarding R3, it follows from Conditions 17 and 22 that with probability 1− o(1),

R3 ≤C
√
sMn−1‖X̃aug

(β̃−β0)‖22 ≤C
√
sMn−1s log p≤C s

3/2 log p

n
.(A.286)

Combining (A.284)–(A.286) derives (A.277). Further, applying (A.282) again with the
bounds in (A.284)–(A.286) and (A.277) yields that

(A.287) P
(
n−1/2‖D1/2X̃

aug
(β̂− β̃)‖2 ≤C

(
∆ns

√
log p

n
+
s3/2 log p

n

))
→ 1.

Therefore, it follows by Condition 19 that

(A.288) P
(
n−1/2‖X̃aug

(β̂− β̃)‖2 ≤C
(

∆ns

√
log p

n
+
s3/2 log p

n

))
→ 1.

Proof of (A.278). Observe that γ̂j and γ̃j can be equivalently written as

(A.289) γ̂j = arg min
γ∈R2p−1

‖D̂1/2
X̂

aug

j − D̂
1/2

X̂
aug

−j γ‖22 + λj‖γ‖1.

In addition, it can be obtained from Conditions 17, 19, 20, and 22 that with probability 1−
o(1),

|ρ̈(yi; X̃i,·β̃)− ρ̈(yi; X̃i,·β
0)| ≤C|X̃i,·(β̃−β0)| ≤CM

√
s

√
s

log p

n
=CMs

√
log p

n
→ 0.
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Hence, under Conditions 6, 17, 19, 20, and 22, we have that with probability 1− o(1),

n−1/2‖D̂1/2
X̂

aug

j − D̃
1/2

X̃
aug

j ‖2

≤ n−1/2‖(D̂
1/2 − D̃

1/2
)X̂

aug

j ‖2 + n−1/2‖D̃1/2
(X̂

aug

j − X̃
aug

j )‖2

≤CMn−1/2‖X̂aug
β̂− X̃

aug
β̃‖2 + n−1/2‖D1/2(X̂

aug

j − X̃
aug

j )‖2

+ n−1/2‖(D̃
1/2 −D1/2)(X̂

aug

j − X̃
aug

j )‖2

≤CMn−1/2‖(X̂
aug − X̃

aug
)(β̂−β0)‖2 +CMn−1/2‖X̃aug

(β̂− β̃)‖2

+ n−1/2‖D1/2(X̂
aug

j − X̃
aug

j )‖2 + n−1/2‖(D̃
1/2 −D1/2)(X̂

aug

j − X̃
aug

j )‖2

. ∆ns

√
log p

n
+ ∆n

(
1 + s

√
log p

n

)
. ∆n.

(A.290)

Consequently, using similar argument as for (A.277) and (A.287), we can obtain that

(A.291) P
(

max
1≤j≤2p

‖γ̃j − γ̂j‖2 ≤Cm1/2
n ∆n

)
→ 1,

(A.292) P
(
n−1/2 max

1≤j≤2p
n−1/2‖X̃aug

−j (γ̃j − γ̂j)‖2 ≤Cm1/2
n ∆n

)
→ 1.

Moreover, by similar arguments as for (A.152), (A.185), and (A.186), we can deduce that
with probability 1− o(p−1),

(A.293) ‖X̂aug

j − X̂
aug

−j γ̂j − (X̃
aug

j − X̃
aug

−j γ̃j)‖2 . ∆nm
1/2
n ,

(A.294) min
1≤j≤p

τ̃2
j = min

1≤j≤p
n−1(X̃

aug

j )T D̃(X̃
aug

j − X̃
aug

−j γ̃j)≥C,

and

(A.295) max
1≤j≤p

max
k 6=j

n−1
∣∣(X̃

aug

k )T D̃(X̃
aug

j − X̃
aug

−j γ̃j)
∣∣≤C√(mn + s) log p

n
.

Now we are ready to establish (A.278). Specifically, the main term in (A.278) can be
decomposed into the three terms below

max
1≤j≤2p

∣∣∣∣n−1(ρ̇
β̂
− ρ̇

β̃
)T (X̃

aug

j − X̃
aug

−j γ̃j)

τ̃2
j

∣∣∣∣
+ max

1≤j≤2p

∣∣∣∣n−1ρ̇T
β̂

(
X̂

aug

j − X̂
aug

−j γ̂j − (X̃
aug

j − X̃
aug

−j γ̃j)
)

τ̃2
j

∣∣∣∣
+ max

1≤j≤2p

∣∣∣∣n−1ρ̇T
β̂

(X̂
aug

j − X̂
aug

−j γ̂j)

(
1

τ̃2
j

− 1

τ̂2
j

)∣∣∣∣ := I1 + I2 + I3.

(A.296)

We will deal with the three terms I1, I2, and I3 separately. First for I1, it follows from
Condition 19 that

I1 ≤ max
1≤j≤2p

∣∣∣∣n−1[(X̂
aug
β̂− X̃

aug
β̃)]T D̃(X̃

aug

j − X̃
aug

−j γ̃j)

τ̃2
j

∣∣∣∣
+C max

1≤j≤2p

∣∣∣∣n−1
∑n

i=1(X̂
aug

i,· β̂− X̃
aug

i,· β̃)2|X̃aug

i,j − X̃
aug

i,−jγ̃j |
τ̃2
j

∣∣∣∣ := I11 + I12.

(A.297)
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Regarding I12, in view of Conditions 18 and 22, and (A.294), we have

I12 ≤C max
1≤j≤2p

n−1
n∑
i=1

(X̂
aug

i,· β̂− X̃
aug

i,· β̃)2|X̃aug

i,j − X̃
aug

i,−jγj |

+C max
1≤j≤2p

n−1
n∑
i=1

(X̂
aug

i,· β̂− X̃
aug

i,· β̃)2|X̃aug

i,−j(γ̃j − γj)|

≤CM
(

1 +m1/2
n

√
(s+mn) log p

n

)
n−1‖X̂aug

β̂− X̃
aug
β̃‖22

≤CMn−1‖X̂aug
β̂− X̃

aug
β̃‖22,

(A.298)

where we have applied the assumption that s
√

log p
n → 0 and mn . s. In addition, noting

that (X̂
aug − X̃

aug
)β0 = 0 by definition, we obtain from (A.288) and Condition 17 that with

probaility 1− o(1),

n−1‖X̂aug
β̂− X̃

aug
β̃‖22 ≤ n−1‖X̃(β̃− β̂)‖22 + n−1‖(X̂

aug − X̃
aug

)(β̂−β0)‖22

.
∆2
ns

2 log p

n
+
s3(log p)2

n2
+ ∆2

ns
s log p

n

.
∆2
ns

2 log p

n
+
s3(log p)2

n2
,

(A.299)

which together with (A.298) yields

(A.300) I12 ≤C
(

∆2
ns

2 log p

n
+
s3(log p)2

n2

)
.

Now we proceed with examining I11. Observe that it admits the decomposition

I11 ≤ max
1≤j≤2p

∣∣∣∣n−1(β̃− β̂)T (X̃
aug

)T D̃(X̃
aug

j − X̃
aug

−j γ̃j)

τ̃2
j

∣∣∣∣
+ max

1≤j≤2p

∣∣∣∣n−1β̂
T

(X̃
aug − X̂

aug
)T D̃(X̃

aug

j − X̃
aug

−j γ̃j)

τ̃2
j

∣∣∣∣
≤ max

1≤j≤2p
|β̃j − β̂j |+ max

1≤j≤2p

∣∣∣n−1(β̃−j − β̂−j)T (X̃
aug

−j )T D̃(X̃
aug

j − X̃
aug

−j γ̃j)
∣∣∣

+ max
1≤j≤2p

n−1
∣∣∣β̂T (X̃

aug − X̂
aug

)T D̃(X̃
aug

j − X̃
aug

−j γ̃j)
∣∣∣

:= I111 + I112 + I113.

(A.301)

As for I112, it follows from (A.277) and (A.295) that with probability 1− o(1),

I112 ≤ max
1≤j≤2p

max
J :|J |≤Cs

n−1
∥∥β̃−j − β̂−j∥∥2

∥∥(X̃
aug

J\{j})
T D̃(X̃

aug

j − X̃
aug

−j γ̃j)
∥∥

2

≤Cs1/2
∥∥β̃− β̂∥∥

2
max

1≤j≤2p
max
k 6=j

n−1
∣∣(X̃

aug

k )T D̃(X̃
aug

j − X̃
aug

−j γ̃j)
∣∣

≤ s
√

log p

n

(
∆ns

√
log p

n
+
s3/2 log p

n

)
. ∆ns

√
log p

n
+
s3/2 log p

n
,

(A.302)

where we have used the assumption that s
√

log p
n → 0.
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Regarding I113, noting that (X̂
aug − X̃

aug
)β0 = 0, by a similar argument as for (A.168),

we have that with probability 1− o(1),

I113 = max
1≤j≤2p

n−1
∣∣∣(β̂−β0)T (X̃

aug − X̂
aug

)T D̃(X̃
aug

j − X̃
aug

−j γ̃j)
∣∣∣

≤ n−1/2‖(X̃
aug − X̂

aug
)(β̂−β0)‖2 max

1≤j≤2p
n−1/2‖D̃(X̃

aug

j − X̃
aug

−j γ̃j)‖2

. ∆ns

√
log p

n
.

(A.303)

Combining (A.277), (A.301), (A.302), and (A.303), we can derive that with probability 1−
o(1),

(A.304) I11 . ∆ns

√
log p

n
+
s3/2 log p

n
,

which together with (A.297) and (A.300) gives that

(A.305) P
(
I1 ≤C

(
∆ns

√
log p

n
+
s3/2 log p

n

))
→ 1.

Next we turn to I2 in (A.296). Applying the Taylor expansion and Condition 19, we can
obtain that

I2 . max
1≤j≤2p

∣∣∣n−1ρ̇Tβ0

(
X̂

aug

j − X̂
aug

−j γ̂j − (X̃
aug

j − X̃
aug

−j γ̃j)
)∣∣∣

+ max
1≤j≤2p

∣∣∣n−1(β̂−β0)T (X̂
aug

)TD
(
X̂

aug

j − X̂
aug

−j γ̂j − (X̃
aug

j − X̃
aug

−j γ̃j)
)∣∣∣

+ max
1≤j≤2p

n−1
n∑
i=1

[X̂
aug

i,· (β̂−β0)]2
∣∣X̂aug

i,j − X̂
aug

i,−jγ̂i,j − (X̃
aug

i,j − X̃
aug

i,−jγ̃j)
∣∣

:= I21 + I22 + I23.

(A.306)

Note that E[ρ̇β0 |(X, X̃, X̂)] = 0 and with probability 1− o(p−1),

Var(n−1ρ̇Tβ0

(
X̂

aug

j − X̂
aug

−j γ̂j − (X̃
aug

j − X̃
aug

−j γ̃j)
)
|(X, X̃, X̂))

= n−2
(
X̂

aug

j − X̂
aug

−j γ̂j − (X̃
aug

j − X̃
aug

−j γ̃j)
)TD

(
X̂

aug

j − X̂
aug

−j γ̂j − (X̃
aug

j − X̃
aug

−j γ̃j)
)

. n−2‖X̂aug

j − X̃
aug

j + X̃
aug

−j (γ̃j − γ̂j) + (X̃
aug

−j − X̂
aug

−j )γ̂j‖22
. n−1(∆2

n + ∆2
nmn + ∆2

nmn) . n−1∆2
nmn.

Since the components of ρ̇β0 are all bounded by K1 under Condition 19, we see that
n−1ρ̇Tβ0

(
X̂

aug

j − X̂
aug

−j γ̂j − (X̃
aug

j − X̃
aug

−j γ̃j)
)

is sub-Gaussian, which entails that with prob-
ability 1− o(1),

(A.307) I21 ≤C∆n

√
mn log p

n
.

In the same manner of proving (A.156), we can show that with probability 1− o(1),

(A.308) I22 .

√
s log p

n
∆nm

1/2
n . ∆ns

√
log p

n
.
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Regarding I23, it holds that with probability 1− o(1),

I23 ≤ n−1‖X̂aug
(β̂−β0)‖22‖X̂

aug

j − X̂
aug

−j γ̂j − (X̃
aug

j − X̃
aug

−j γ̃j)‖2

≤ s log p

n
∆nm

1/2
n . ∆ns

√
log p

n
.

(A.309)

A combination of (A.306)–(A.309) leads to

(A.310) P
(
I2 ≤C∆ns

√
log p

n

)
→ 1.

Now we proceed to deal with I3 in (A.296). Note that

(A.311) I3 ≤ max
1≤j≤2p

∣∣n−1ρ̇T
β̂

(X̂
aug

j − X̂
aug

−j γ̂j)
∣∣ · max

1≤j≤2p

|τ̂2
j − τ̃2

j |
|τ̃2
j τ̂

2
j |

:= I31 · I32.

It can be seen that

I31 . max
1≤j≤2p

∣∣n−1ρ̇Tβ0(X̂
aug

j − X̂
aug

−j γ̂j)
∣∣+ max

1≤j≤2p

∣∣n−1(ρ̇
β̂
− ρ̇β0)T (X̂

aug

j − X̂
aug

−j γ̂j)
∣∣.

By a similar argument as for (A.307), we can show that with probability 1− o(1),

max
1≤j≤2p

∣∣n−1ρ̇Tβ0(X̂
aug

j − X̂
aug

−j γ̂j)
∣∣.√ log p

n
.

In addition, we have under Condition 19 that with probability 1− o(1),

max
1≤j≤2p

∣∣n−1(ρ̇
β̂
− ρ̇β0)T (X̂

aug

j − X̂
aug

−j γ̂j)
∣∣

. max
1≤j≤2p

|n−1(X̂
aug

(β̂−β0))TD(X̂
aug

j − X̂
aug

−j γ̂j)|

. max
1≤j≤2p

n−1‖X̂aug
(β̂−β0)‖2‖X̂

aug

j − X̂
aug

−j γ̂j‖2 .
√
s log p

n
.

Thus, we can obtain that with probability 1− o(1),

(A.312) I31 .

√
s log p

n
.

As for I32, by definition it holds that

|τ̂2
j − τ̃2

j |= n−1
∣∣(X̂

aug

j )T D̂(X̂
aug

j − X̂
aug

−j γ̂j)− (X̃
aug

j )T D̃(X̃
aug

j − X̃
aug

−j γ̃j)
∣∣

≤ n−1
∣∣(X̂

aug

j − X̃
aug

j )T D̂(X̂
aug

j − X̂
aug

−j γ̂j)
∣∣

+ n−1
∣∣(X̃

aug

j )T (D̂− D̃)(X̂
aug

j − X̂
aug

−j γ̂j)
∣∣

+ n−1
∣∣(X̃

aug

j )T D̃(X̂
aug

j − X̂
aug

−j γ̂j − (X̃
aug

j − X̃
aug

−j γ̃j))
∣∣.

(A.313)

Furthermore, it can be shown that with probability 1− o(1),

n−1
∣∣(X̂

aug

j − X̃
aug

j )T D̂(X̂
aug

j − X̂
aug

−j γ̂j)
∣∣

. n−1‖X̂aug

j − X̃
aug

j ‖2‖X̂
aug

j − X̂
aug

−j γ̂j‖2

. ∆n

(A.314)
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and

n−1
∣∣(X̃

aug

j )T (D̂− D̃)(X̂
aug

j − X̂
aug

−j γ̂j)
∣∣

≤ n−1
n∑
i=1

|X̂aug

i,· β̂− X̃
aug

i,· β̃||X̃i,j ||X̂
aug

i,j − X̂
aug

i,−jγ̂j |

≤ n−1M

n∑
i=1

|X̂aug

i,· β̂− X̃
aug

i,· β̃||X̂
aug

i,j − X̂
aug

i,−jγ̂j |

≤ n−1M‖X̂aug
β̂− X̃

aug
β̃‖2‖X̂

aug

j − X̂
aug

−j γ̂j‖2

. ∆ns

√
log p

n
+
s3/2 log p

n
,

(A.315)

where we have applied the bound obtained in (A.299).
Moreover, we have that

n−1
∣∣(X̃

aug

j )T D̃(X̂
aug

j − X̂
aug

−j γ̂j − (X̃
aug

j − X̃
aug

−j γ̃j))
∣∣

. n−1‖X̃aug

j ‖2‖X̂
aug

j − X̂
aug

−j γ̂j − (X̃
aug

j − X̃
aug

−j γ̃j)‖2

. ∆nm
1/2
n ,

(A.316)

which together with (A.294), (A.313), (A.314), and (A.316) yields that with probability 1−
o(1),

(A.317) I32 = max
1≤j≤2p

|τ̂2
j − τ̃2

j |
|τ̃2
j τ̂

2
j |

. ∆nm
1/2
n +

s3/2 log p

n
.

Combining (A.311), (A.312), and (A.317) leads to

(A.318) P
(
I3 ≤C

(
∆ns

√
log p

n
+
s3/2 log p

n

))
→ 1.

Consequently, substituting (A.305), (A.310), and (A.318) into (A.296) gives the desired result
(A.278). This completes the proof of Lemma 21.

C.3. Proof of Lemma 22. The main idea of the proof is to bound the remainders in the
decomposition of

√
n(̃bj − β0

j ) as presented in (A.269) and use the fact that the main term is
sub-Gaussian. Note that by the triangle inequality and the fact that wj = |β0

j |= |β0
j |− |β0

j+p|,
it holds that

p∑
j=1

P
(
|W̃j −wj | ≥C

√
n−1 log p

)
≤

p∑
j=1

[
P(
√
n|̃bj − β0

j | ≥C
√

log p/2) + P(
√
n|̃bj+p − β0

j+p| ≥C
√

log p/2)
]

=

2p∑
j=1

P(
√
n|̃bj − β0

j | ≥C
√

log p/2).

(A.319)
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For the second remainder in (A.269), applying the bounds in (A.295), (A.294), and (A.259),
we have that with probability 1− o(p−3),

max
1≤j≤p

n−1/2(β0
−j − β̃−j)T (X̃

aug

−j )T D̃(X̃
aug

j − X̃
aug

−j γ̃j)

τ̃2
j

≤ max
1≤j≤p

n−1/2
∑
k 6=j

n−1/2|(X̃
aug

k )T D̃(X̃
aug

j − X̃
aug

−j γ̃j)|β̃k − β0
k|

τ̃2
j

≤ max
1≤j≤p

max
k 6=j

n−1/2|(X̃
aug

k )T D̃(X̃
aug

j − X̃
aug

−j γ̃j)|‖β̃−β0‖1

.
s3/2 log p√

n
.

(A.320)

Regarding the first remainder in (A.269), applying (A.261), (A.264), (A.294), and the fact
that ‖X̃j − X̃−jγj‖ ≤M for some M > 0, we can obtain that with probability 1− o(p−3),

(A.321)
n−1/2R̃|X̃aug

j − X̃
aug

−j γ̃j |
τ̃2
j

. n−1/2‖X̃aug
(β̃−β0)‖22 .

s log p√
n
.

Further, observe that the main term n−1/2ρ̇β0(X̃
aug

j − X̃
aug
γ̃j) in (A.269) is sub-Gaussian

since ‖X̃aug

j − X̃
aug
γ̃j‖∞ ≤M and ‖ρ̇β0‖∞ ≤M for some constant M > 0. Moreover, it

holds that

Var(n−1/2ρ̇β0(X̃
aug

j − X̃
aug
γ̃j)|X̃

aug
) = n−1(X̃

aug

j − X̃
aug
γ̃j)

TD(X̃
aug

j − X̃
aug
γ̃j)≤M

for some constant M > 0. Therefore, using similar arguments as in the proof of Lemma 12,
we can establish the desired result in Lemma 22.

C.4. Proof of Lemma 23. We will apply the moderate deviation result (i.e., the rate of
convergence) for multivariate normal approximation (Saulis (1992)), and the remaining proof
can proceed by the same technique as used for proving Lemma 13. From the decomposition
for
√
n(̃bj − β0

j ) outlined in (A.269) and the bounds in (A.320) and (A.321), it is seen that

the main term is ξj := − ρ̇
T
β0 (X̃

aug

j −X̃
aug

−j γ̃j)√
nτ̃2
j

and the two remainders in (A.269) are bounded

by C s3/2 log p√
n

with probability 1− o(p−1). Denote by z̃j = X̃
aug

j − X̃
aug

−j γ̃j for 1 ≤ j ≤ 2p.

Observe that given X̃
aug

, (ξj , ξj+p, ξl, ξl+p)
T d∼N(0,V), where the covariance matrix V is

given by V =

(
V11V12

V21V22

)
with

V11 =
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Let us define the event

E :=

{
max

1≤j,l≤2p

∣∣∣n−1z̃jDz̃l −
Ωj,l

Ωj,jΩl,l

∣∣∣≤C√s log p

n

}
.
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By Condition 18, we see that P(E)≥ 1− o(p−3).

Let (Z1,Z2,Z3,Z4)T
d∼ N(0,V). Given X̃

aug
and event E , it follows from the rate of

convergence (i.e., the moderate deviation theorem) for multivariate normal approximate (e.g.
Theorem 1 in Saulis (1992)) that for any 1≤ j 6= l≤ 2p,

(A.322)
∣∣∣∣P(ξj+p ≥ 0, ξj − ξj+p ≥ t, ξl+p ≥ 0, ξl − ξl+p ≥ t)

P(Z2 ≥ 0,Z1 −Z2 ≥ t,Z4 ≥ 0,Z3 −Z4 ≥ t)
− 1

∣∣∣∣≤C 1 + t3√
n

uniformly for t ∈ [0,C
√

log p] when log p = o(n1/3). Noting that P(|ξj | − |ξj+p| ≥ t, |ξl −
ξl+p| ≥ t) can be decomposed into 16 probabilities that are similar to the numerator in
(A.322), we can deduce that for any 1≤ j 6= l≤ 2p,

(A.323)
∣∣∣∣P(|ξj | − |ξj+p| ≥ t, |ξl − ξl+p| ≥ t)
P(|Z1| − |Z2| ≥ t, |Z3| − |Z4| ≥ t)

− 1

∣∣∣∣≤C 1 + t3√
n

uniformly for t ∈ [0,C
√

log p] when log p= o(n1/3). Analogously, we can show that for any
1≤ j 6= 2p,

(A.324)
∣∣∣∣P(|ξj | − |ξj+p| ≥ t)
P(|Z1| − |Z2| ≥ t)

− 1

∣∣∣∣≤C 1 + t3√
n

uniformly for t ∈ [0,C
√

log p] when log p= o(n1/3). Therefore, following exactly the same
procedure for proving Lemma 13, we can establish Lemma 23. To avoid redundancy, we omit
the proof details here.

C.5. Proof of Lemma 24. By the moderate deviation result in (A.324), the probability
P(W̃j ≥ t)≈ P(|ξj | − |ξj+p| ≥ t) can be approximated by the probability P(|Z1| − |Z2| ≥ t)
of normal distribution with controlled relative rate of convergence as t ≤ C

√
log p. By the

same technique for proving Lemma 14, but just with slightly different definitions that δn =
s3/2 log p√

n
and bn = C(∆ns

√
log p
n + s3/2 log p

n ), we can establish the desired results in Lemma
24. To avoid redundancy, we omit the proof details here.
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