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OPTIMAL CLASSIFICATION IN SPARSE GAUSSIAN GRAPHIC
MODEL

BY YINGYING FAN1, JIASHUN JIN2 AND ZHIGANG YAO3

University of Southern California, Carnegie Mellon University and Ecole
Polytechnique Fédérale de Lausanne

Consider a two-class classification problem where the number of features
is much larger than the sample size. The features are masked by Gaussian
noise with mean zero and covariance matrix �, where the precision matrix
� = �−1 is unknown but is presumably sparse. The useful features, also
unknown, are sparse and each contributes weakly (i.e., rare and weak) to the
classification decision.

By obtaining a reasonably good estimate of �, we formulate the setting
as a linear regression model. We propose a two-stage classification method
where we first select features by the method of Innovated Thresholding (IT),
and then use the retained features and Fisher’s LDA for classification. In this
approach, a crucial problem is how to set the threshold of IT. We approach this
problem by adapting the recent innovation of Higher Criticism Thresholding
(HCT).

We find that when useful features are rare and weak, the limiting behavior
of HCT is essentially just as good as the limiting behavior of ideal threshold,
the threshold one would choose if the underlying distribution of the signals
is known (if only). Somewhat surprisingly, when � is sufficiently sparse,
its off-diagonal coordinates usually do not have a major influence over the
classification decision.

Compared to recent work in the case where � is the identity matrix [Proc.
Natl. Acad. Sci. USA 105 (2008) 14790–14795; Philos. Trans. R. Soc. Lond.
Ser. A Math. Phys. Eng. Sci. 367 (2009) 4449–4470], the current setting is
much more general, which needs a new approach and much more sophisti-
cated analysis. One key component of the analysis is the intimate relation-
ship between HCT and Fisher’s separation. Another key component is the
tight large-deviation bounds for empirical processes for data with unconven-
tional correlation structures, where graph theory on vertex coloring plays an
important role.

1. Introduction. Consider a two-class classification problem, where we
have n labeled training samples (Xi, Yi),1 ≤ i ≤ n. Here, Xi are p-dimensional
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feature vectors and Yi ∈ {−1,1} are the corresponding class labels. For simplicity,
we assume two classes are equally likely, and the data are centered so that

Xi ∼ N(Yi · μ,�p,p),(1.1)

where μ is the contrast mean vector between two classes, and �p,p is the p × p

covariance matrix. Given a fresh feature vector

X ∼ N(Y · μ,�p,p),(1.2)

the goal is to train (Xi, Yi) to decide whether Y = −1 or Y = 1. We denote �−1
p,p

by �p,p , and whenever there is no confusion, we drop the subscripts “p,p” (and
also that of any estimator of it, say, �̂p,p).

We are primarily interested in the so-called “p � n” regime. In many applica-
tions where p � n (e.g., genomics), we observe the following aspects.

• Signals are rare. Due to large p, the useful features (i.e., the nonzero coordinates
of μ) are rare. For example, for a given type of cancer or disease, there are
usually only a small number of relevant features (i.e., genes or proteins). When
we measure increasingly more features, we tend to include increasingly more
irrelevant ones.

• Signals are individually weak. The training data can be summarized by the z-
vector

Z = 1√
n

n∑
i=1

YiXi ∼ N(
√

nμ,�).(1.3)

Due to the small n, signals are weak in the sense that, individually, the nonzero
coordinates of

√
nμ are small or moderately large at most.

• Precision matrix � is sparse. Take Genetic Regulatory Network (GRN) for ex-
ample. The feature vector X = (X(1), . . . ,X(p))′ represents the expression lev-
els of p different genes, and is approximately distributed as N(μ,�). For any
1 ≤ i ≤ p, it is believed that for all except a few j , 1 ≤ j ≤ p, the gene pair
(i, j) are conditionally independent given all other genes. In other words, each
row of � has only a few nonzero entries, so � is sparse [13].

In many applications, � is unknown and has to be estimated. In many other ap-
plications such as complicate disease or cancer, decades of biomedical studies
have accumulated huge databases which are sometimes referred to as “data-for-
data” [37]. Such databases can be used to accurately estimate � independently of
the data at hand, so � can be assumed as known. In this paper, we investigate both
the case where � is known and the case where � is unknown. In either case, we
assume � has unit diagonals:

�(i, i) = 1, 1 ≤ i ≤ p.(1.4)

Such an assumption is only for simplicity, and we do not use such information for
inference.
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1.1. Fisher’s LDA and modern challenges. Fisher’s Linear Discriminant
Analysis (LDA) [24] is a well-known method for classification, which utilizes
a weighted average of the test features L(X) = ∑p

j=1 w(j)X(j), and predicts
Y = ±1 if L(X) >< 0. Here, w = (w(1), . . . ,w(p))′ is a preselected weight vec-
tor. Fisher showed that the optimal weight vector satisfies

w ∝ �μ.(1.5)

In the classical setting where n � p, μ and � can be conveniently estimated and
Fisher’s LDA is approachable. Unfortunately, in the modern regime where p � n,
Fisher’s LDA faces immediate challenges.

• It is challenging to estimate � simply because there are O(p2) unknown pa-
rameters but we have only O(np) different measurements.

• Even in the simplest case where � = Ip , challenges remain, as the signals are
rare and weak. See [16] for the delicacy of the problem.

The paper is largely focused on addressing the second challenge. It shows that
successful classification can be achieved by simultaneously exploiting the sparsity
of μ (aka. signal sparsity) and the sparsity of � (aka. graph sparsity). For the first
challenge, encouraging progresses have been made recently (e.g., [9, 25]), and
the problem is more or less settled. Still, the paper has a two-fold contribution
along this line. First, we show that the performances of the methods in [9, 25]
can be substantially improved if we add an additional re-fitting step; see details in
Section 4. Second, we carefully analyze how the errors in estimating � may affect
the classification results.

1.2. Innovated thresholding. We wish to adapt Fisher’s LDA to the current
setting. Recall that the optimal choice of weight vector is w ∝ �μ. If we have a
reasonably good estimate of � (see Section 1.8 for more discussion on estimat-
ing �), say, �̂, all we need is a good estimate of μ.

When μ is sparse, one usually estimates it with some type of thresholding [18].
Let Z be the training z-vector as in (1.3). For some threshold t to be determined,
there are three obvious approaches to thresholding:

• Brute-force Thresholding (BT). We apply thresholding to Z directly using the
so-called clipping rule [16]: μ̂Z

t (i) = sgn(Z(i))1{|Z(i)| ≥ t}. Alternatively,
one may use soft thresholding or hard thresholding. However, numeric studies
(e.g., [16]) suggest that different thresholding schemes only have small differ-
ences in classification errors, provided that these schemes use the same thresh-
old picked from the range of interest. For this reason, we only study the clipping
rule; same below.

• Whitened Thresholding (WT). We first whiten the noise by the transformation
Z 
→ �̂1/2Z ≈ N(

√
n�1/2μ, Ip), and then apply the thresholding to the vector

�̂1/2Z in a similar fashion.



2540 Y. FAN, J. JIN AND Z. YAO

• Innovated Thresholding (IT). We first take the transformation Z 
→ �̂Z and then
apply the thresholding by

μ̂Ẑ
t (i) = sgn

(
Ẑ(i)

) · 1
{∣∣Ẑ(i)

∣∣ ≥ t
}
, where Ẑ ≡ �̂Z.(1.6)

The transformation Z 
→ �̂Z is connected to the term of Innovation in the litera-
ture of time series [27], and so the name of Innovated Thresholding.

It turns out that, among the three approaches, IT is the best. To see the point,
note that for any p × p nonsingular matrix M , one could always estimate μ by
applying the thresholding to MZ entry-wise (in BT, WT, and IT, M = Ip,�1/2,
and � approximately). The deal is, what is the best M?

Toward this end, write M = [m1,m2, . . . ,mp]′. For any 1 ≤ i ≤ p, it is
seen that (MZ)(i) ∼ N(

√
nm′

iμ,m′
i�mi). Therefore, if we bet on μ(i) �= 0, we

should choose mi to optimize the Signal-to-Noise Ratio (SNR) of (MZ)(i). By
the Cauchy–Schwarz inequality, the optimal mi satisfies that mi ∝ �μ. Writing
� = [ω1,ω2, . . . ,ωp], it is seen that

�μ = μ(i)ωi + ∑
k �=i

μ(k)ωk ≡ (I ) + (II).(1.7)

When we bet on μ(i) �= 0, (I ) ∝ ωi which is accessible to us. However, (II) is
a very noisy vector and is inaccessible to us, estimating which is equally hard as
estimating μ itself.

In summary, if we bet on μ(i) �= 0, then the “best” accessible choice is mi ∝ ωi .
As this holds for all i and we do not know where the signals are, the optimal choice
for M is M = �. This says that IT is not only the best among the three choices
above, but is also the best choice in more general situations.

The heuristics above are consolidated in Sections 1.7–1.9, where we show that
IT based classifiers achieve the optimal phase diagram for classification, while BT
or WT based classifiers do not, even in very simple settings.

REMARK. The advantage of IT over WT and BT can be illustrated with the
following example, which is further discussed later in Section 1.9 where we com-
pare the phase diagrams of IT, WT, and BT. Suppose � is a block diagonal matrix
where for h ∈ (−1,1) and 1 ≤ i, j ≤ p,

�(i, j) = 1{i = j} + h · 1{j − i = 1, i is odd}
(1.8)

+ h · 1{i − j = 1, i is even}.
According to the block structure of �, we also partition the vector μ into p/2
blocks, and each block has two entries. For simplicity, we suppose each block
of μ has either no signal, or a single signal with a strength τ/

√
n > 0. BT,

WT, and IT apply thresholding to Z, �1/2Z, and �Z, correspondingly, where
Z ∼ N(

√
nμ,�) is the training z-vector as above. In this simple example, the
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SNR for Z, �1/2Z, and �Z are
√

(1 − h2)τ , [√(1 + h) + √
(1 − h)]τ/2 and τ

correspondingly, with the last one being the largest (for the mean vector of �1/2Z

or �Z, the nonzero coordinates have two different magnitudes; the SNR is com-
puted based on the larger magnitude).

REMARK. In (1.7), the point that (II) is generally noninformative in designing
the best mi can be further elaborated as follows: since we do not know the locations
of other nonzero coordinates of μ, it makes sense to model {√nμ(j) : 1 ≤ j ≤
p, j �= i} as i.i.d. samples from

(1 − εp)ν0 + εpHp, εp > 0: small,(1.9)

where ν0 is the point mass at 0 and Hp is some distribution with no mass at 0.
Under general “rare and weak” conditions for μ and sparsity condition for �,
entries of E[(II)] are uniformly small.

In the literature of variable selection, IT is also called marginal regres-
sion [26]. The connection is not surprising, as approximately, �̂1/2Z ≈ �1/2Z ∼
N(

√
n�1/2μ, Ip) which is a regression model. Both methods apply thresholding

to �Z entry-wise, but marginal regression uses the hard thresholding rule, and IT
uses the clipping thresholding rule [16].

With that being said, challenges remain on how to set the threshold t of IT

[see (1.6)]. If we set t too small or too large, the resultant estimator μ̂Ẑ
t has too

many or too few nonzeros. Our proposal is to set the threshold in a data driven
fashion by using the recent innovation of Higher Criticism Thresholding (HCT).

1.3. Threshold choice by higher criticism. Higher Criticism (HC) is a notion
mentioned in passing by Tukey [44]. In recent years, HC was found to be useful
in sparse signal detection [15], large-scale multiple testing [2, 10, 45], goodness-
of-fit [33], and was applied to nonGaussian detection in Cosmic Microwave Back-
ground [12] and genomics [29, 39]. HC as a method for threshold choice in feature
selection was first introduced in [16] (see also [28]), but the study has been focused
on the case where � is the identity matrix. The case we consider in the current pa-
per is much more complicated, where how to use HC for threshold choice is a
nontrivial problem.

Our proposal is as follows. Let �̂ be a reasonably good estimate of � and let Z

be the training z-vector as in (1.3). As in (1.6), denote for short

Ẑ = Ẑ(Z, �̂,p,n) = �̂Z.(1.10)

The proposed approach contains three simple steps.

• For each 1 ≤ j ≤ p, obtain a p-value by πj = P(|N(0,1)| ≥ |Ẑ(j)|).
• Sort all the p-values in the ascending order π(1) < π(2) < · · · < π(p).
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• Define the HC functional HCp,j = √
p[j/p − π(j)]/√(1 − j/p)j/p, 1 ≤ j ≤

p. Let ĵ be the index at which HCp,j takes the maximum. The Higher Criticism
Threshold (HCT)—denoted by |Ẑ

(ĵ )
|—is defined as the ĵ th largest coordinate

of (|Ẑ(1)|, . . . , |Ẑ(p)|)′.
Moreover, for stability, we need the following refinement. Define

s∗
p =

√
2 log(p), s̃∗

p,n =
√

2 max
{
0, log

(
p/n2

)}
.(1.11)

It is well-understood (e.g., [15, 27]) that the threshold should not be larger than s∗
p .

At the same time, the threshold should not be too small, especially when n is small.
The HCT we use in this paper is

tHC
p =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|Ẑ

(ĵ )
|, if s̃∗

p,n ≤ |Ẑ
(ĵ )

| ≤ s∗
p,

s̃∗
p,n, if |Ẑ

(ĵ )
| < s̃∗

p,n,

s∗
p, if |Ẑ

(ĵ )
| > s∗

p.

(1.12)

See Sections 1.5 and 3 for more detailed discussion.

1.4. HCT trained classifier. We are now ready for classification. Let �̂ be as

above, and let μ̂Ẑ
HC = μ̂Ẑ(Z, �̂,p,n) be defined as

μ̂Ẑ
HC(j) = sgn

(
Ẑ(j)

) · 1
{∣∣Ẑ(j)

∣∣ ≥ tHC
p

}
, 1 ≤ j ≤ p.(1.13)

Compared to μ̂Ẑ
t in (1.6), the only difference is that we have replaced t by tHC

p .
Introduce the HCT classification statistic

LHC(X, �̂) = LHC(X, �̂;Z,p,n) = (
μ̂Ẑ

HC
)′
�̂X.(1.14)

The HCT trained classifier (or HCT classifier for short) is then the decision rule
that decides Y = ±1 according to LHC(X, �̂) >< 0.

The innovation of the procedure is two-fold: using IT for feature selection and
using HCT for threshold choice in the more complicated case where � is unknown
and is nonidentity. The work is connected to other works on HC [16, 27], but the
procedure and the delicate theory it entails are new.

A question is whether IT has any advantages over exsiting variable selection
methods (e.g., the Lasso [42], SCAD [22], Dantzig selector [11]). The answer is
yes, for the following reasons. First, compared to these methods, IT is computa-
tionally much faster and much more approachable for delicate analysis. Second,
our goal is classification, not variable selection. For classification, especially when
features are rare and weak, the choice of different variable selection methods is
secondary, while the choice of the tuning parameter is crucial. The threshold of IT
can be conveniently set by HCT, but how to set the tuning parameter of the Lasso,
SCAD, or Dantzig selector remains an open problem, at least in theory.
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How does the HCT classifier behave? In Sections 1.5–1.6, we set up a theoretic
framework and derive a lower bound for classification errors. In Sections 1.7–1.8,
we investigate the HCT classifier for the cases where � is known and unknown
separately, and show that the HCT classifier yields optimal phase diagram in clas-
sification.

1.5. Asymptotic rare and weak model. Motivated by the application examples
aforementioned, we use a Rare and Weak signal model as follows. We model the
scaled contrast mean vector

√
nμ as

√
nμ(j)

i.i.d.∼ (1 − εp)ν0 + εpHp, 1 ≤ j ≤ p,(1.15)

where as in (1.9), ν0 is the point mass at 0, Hp is some distribution with no mass
at 0, and εp ∈ (0,1) is small [note that (εp,Hp) depend on p but not on j ]. We
use p as the driving asymptotic parameter, and link parameters (n, εp,Hp) to p

through some fixed parameters. In detail, fixing parameters (β, θ) ∈ (0,1)2, we
model

εp = p−β, n = np = pθ .(1.16)

As p tends to ∞, the sample size np grows to ∞ but in a slower rate than that
of p; the signals get increasingly sparser but the number of signals tends to ∞. The
interesting range of parameters (β, θ,Hp) partitions into three regimes, according
to the sparsity level.

• Relatively Dense (RD). In this regime, 0 < β < (1 − θ)/2. The signals are rela-
tively dense and successful classification is possible even when signals are very
faint [e.g., Hp concentrates its mass around a term τp � √

2 log(p)]. In such
cases, (a) successful feature selection is impossible as signals are too weak, and
(b) feature selection is unnecessary for the signals are relatively dense.

• Rare and Weak (RW). In this regime, (1 − θ)/2 < β < (1 − θ), and the signals
are moderately sparse. For successful classification, we need moderately strong
signals [i.e., nonzero coordinates of

√
nμ � √

log(p)]. In this case, feature se-
lection is subtle but could be substantially helpful. In contrast, classification is
impossible if signals are much weaker than

√
log(p), and consistent feature se-

lection is possible (and so the problem of classification is much less challenging)
if the signals are much stronger than

√
log(p).

• Rare and Strong (RS). In this regime, β > (1 − θ), and the signals are very
sparse. For successful classification, we need very strong signals [signal strength
� √

log(p)]. In this case, feature selection is comparably easier to carry out
(but substantially helpful) since the signals are strong enough to stand out for
themselves.

While the statements hold broadly, the most transparent way to understand them
is probably to consider the case where Hp is a point mass at τp (say): in the above
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three regimes, the minimum τp required for successful classification (up to some

multi-log(p) factors in the first and last regimes) are 1/(εp

√
(p/np)),

√
log(p),

and
√

np/(pεp) correspondingly; the proof is elementary so is omitted.
In summary, feature selection is impossible in the RD regime and is relatively

easy in the RS regime. For these reasons, we are primarily interested in the RW
regime where we assume

(1 − θ)/2 < β < (1 − θ).(1.17)

The RD/RS regimes are further discussed in Section 1.10, where we address the
connection between our work and [8, 21, 40]. For β in this range, the most inter-
esting range for the signal strength is when Hp concentrates its mass at the scale
of

√
log(p). In light of this, we fix r > 0 and calibrate the signal strength parame-

ter τp by

τp =
√

2r log(p).(1.18)

Except in Section 1.6 where we address the lower bound arguments, we as-
sume Hp is a point mass [compare (1.15)]:

Hp = ντp , where as in ( 1.18), τp = √
2r log(p) and 0 < r < 1.(1.19)

We focus on the case 0 < r < 1, as the case r > 1 corresponds to RS regime
where the classification is comparably easier. This models a setting where the sig-
nal strengths are equal. The case where the signal strengths are unequal is dis-
cussed in Section 1.12.

Next, we model �. Motivated by the previous example on Genetic Regulatory
Network, we assume each row of � has relatively few nonzeros. Such a matrix
naturally induces a sparse graph G = G(�) = (V ,E), where V = {1,2, . . . , p}
and there is an edge between nodes i and j if and only if �(i, j) �= 0; see [5] for
basic terminology in graph theory.

DEFINITION 1.1. Fix p and 1 ≤ K < p. We call a p × p positive definite
matrix � K-sparse if each row of � has at most K nonzeros. For any graph G , we
call G K-sparse if the degree of each node ≤ K .

When � is K-sparse, the induced graph G(�) is (K − 1) sparse, since by con-
vention, there is no edge between a node and itself.

The class of K-sparse graphs is much broader than the class of banded graphs
(we call G a banded graph with bandwidth K if nodes i and j are not connected
whenever |i − j | > K). In fact, even when G is K-sparse with K = 2, we cannot
always shuffle the nodes of G and make it a banded graph with a small bandwidth.

Let Mp be the class of all p × p positive definite correlation matrices. Fixing
a ∈ (0,1), b > 0, and a sequence of integers Kp , introduce

M∗
p(a,Kp) = {

� ∈ Mp and is Kp-sparse,
∣∣�(i, j)

∣∣ ≤ a, i �= j
}

(1.20)
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and

M̃∗
p(a, b,Kp) = {

� ∈ M∗
p(a,Kp),

∥∥�−1∥∥ ≤ b
}
,(1.21)

where ‖ · ‖ is the spectral norm. In comparison, M̃∗
p(a, b,Kp) is slightly smaller

than M∗
p(a,Kp). The following short-hand notation is frequently used in this pa-

per.

DEFINITION 1.2. We use Lp to denote a strictly positive generic multi-log(p)

term that may vary from occurrence to occurrence but always satisfies that for any
fixed c > 0, limp→∞{Lpp−c} = 0 and limp→∞{Lppc} = ∞.

In this paper, we are primarily interested in the case where Kp is at most multi-
logarithmically large unless stated otherwise:

lim
p→∞Kp = ∞, Kp ≤ Lp;(1.22)

the first requirement is only for convenience. In our classification setting, Xi ∼
N(Yiμ,�), X ∼ N(Yμ,�), and Y = ±1 with equal probabilities. The following
notation is frequently used in the paper.

DEFINITION 1.3. We say the classification problem (1.1)–(1.2) satisfies the
Asymptotic Rare Weak model ARW(β, r, θ,�) if (1.15)–(1.16), (1.19) and (1.22)
hold.

REMARK. The normalization in ARW is different from that in conventional
asymptotic settings. In the latter, we usually fix μ and let n increase, so the clas-
sification problem becomes increasingly easier as n increase. In ARW, to focus on
the “most interesting parameter regime”, we fix

√
nμ and let n increase. As a re-

sult, the SNR in the summarizing training Z-vector remain the same, but the SNR
in the testing vector X decrease rapidly as n increase. Therefore, the classification
problem becomes increasingly harder as n increase.

1.6. Lower bound. Introduce the standard phase boundary function

ρ(β) =
⎧⎪⎨⎪⎩

0, 0 < β ≤ 1/2,
β − 1/2, 1/2 < β < 3/4,
(1 − √

1 − β)2, 3/4 ≤ β < 1,

(1.23)

and let

ρ∗
θ (β) = (1 − θ)ρ

(
β/(1 − θ)

)
, (1 − θ)/2 < β < (1 − θ).

The function ρ has appeared before in determining phase boundaries in a seem-
ingly unrelated problem of multiple hypothesis testing [15, 30, 31]. The following
theorem is proved in the supplementary material [23].
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THEOREM 1.1. Fix (β, r, θ) ∈ (0,1)3 such that (1 − θ)/2 < β < (1 − θ) and
0 < r < ρ∗

θ (β). Suppose (1.15)–(1.16), (1.18), and (1.22) hold and that for suffi-
ciently large p, � ∈ M∗

p(a,Kp) and the support of Hp is contained in [−τp, τp].
Then as p → ∞, for any sequence of trained classifiers, the misclassification error
� 1/2.

Note that in Theorem 1.1, we do not require the signals to have the same
strength. Also, recall that in our classification setting (1.1)–(1.2), two classes are
assumed as equally likely; extension to the case where two classes are unequally
likely is straightforward. Theorem 1.1 was discovered before in [16, 32], but the
study has been focused on the case where � = Ip and Hp is the point mass at τp .
The proof in the current case is much more difficult and needs a few tricks, where
graph theory on vertex coloring plays a key role. The following lemma is adapted
from [5], Section V.1.

LEMMA 1.1. Fix K ≥ 1. For any graph G = (V ,E) that is K-sparse, the
chromatic number of G is no greater than (K + 1).

Recall that when � is K sparse, then the induced graph G = G(�) is (K − 1)

sparse, and so the chromatic number of G(�) ≤ K . As a result, we can color
the nodes of G(�) with no more than K different colors, where there is no edge
between any pair of nodes with the same color.

Despite its seemingly simplicity, Lemma 1.1 has far-reaching implications.
Lemma 1.1 is the corner stone for proving the lower bound and for analyzing
the HCT classifier (where we need tight convergence rate of empirical processes
for data with unconventional correlation structures).

1.7. HCT achieves optimal phase diagram in classification (� is known). One
noteworthy aspect of HCT classifier is that it achieves the optimal phase diagram.
In this section, we show this for the case where � is known. In this case, the HCT
classifier LHC(X, �̂) reduces to LHC(X,�) (the term formed by replacing �̂ by �

everywhere in the definition of former). Since we predict the label associated with
X as ±1 according to LHC(X,�) >< 0, the predicted label is correct if and only
if Y · LHC(X,�) > 0. The following theorem is proved in Section 3.3.

THEOREM 1.2. Fix (β, r, θ, a) ∈ (0,1)4 such that (1 − θ)/2 < β < (1 − θ)

and r > ρ∗
θ (β). Consider a sequence of classification problems ARW(β, r, θ,�)

with � ∈ M̃∗
p(a, b,Kp) for sufficiently large p. Then as p tends to ∞, P(Y ·

LHC(X,�) < 0) → 0. When r < β , the condition on � can be relaxed to that of
� ∈ M∗

p(a,Kp).

Call the two-dimensional space {(β, r) : 0 < β < 1,0 < r < 1} the phase space.
Theorems 1.1–1.2 say that the phase space partitions into two separate regions,
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Region of Impossibility and Region of Possibility, where the classification problem
is distinctly different.

• Region of Impossibility. {(β, r) : (1 − θ)/2 < β < (1 − θ),0 < r < ρ∗
θ (β)}. Fix

(β, r) in the interior of this region and consider a sequence of classification
problems with p1−β signals where each signal ≤ √

2r log(p) in strength. Then
for any sequence of “sparse” �, successful classification is impossible. This is
the most difficult case where not much can be done for classification aside from
random guessing.

• Region of Possibility. {(β, r) : (1 − θ)/2 < β < (1 − θ)}, ρ∗
θ (β) < r < 1}. Fix

(β, r) in the interior of this region and suppose signals have equal strength of√
2r log(p). HCT classifier LHC(X,�) yields successful classification (the re-

sults hold much more broadly where equal signal strength assumption can be
largely relaxed).

We call the curve r = ρ∗
θ (β) the separating boundary. Somewhat surprisingly, the

separating boundary does not depend on the off-diagonals of �. The partition of
phase diagram was discovered by [16, 35], and independently by [32], but the
focus was on the case where � = Ip . See also [28]. The study in the current case
is much more difficult. Similar phase diagrams are also found in sparse signal
detection [15], variable selection [34], and spectral clustering [36].

Why HCT works? The key insight is that there is an intimate relationship be-
tween the HC functional and Fisher’s separation; the latter plays a key role in
determining the optimal classification behavior, but is, unfortunately, an oracle
quantity which depends on unknown parameters. In Sections 2–3, we outline a se-
ries of theoretic results, explaining why the HCT classifier is the right approach
and how it achieves the optimality.

1.8. Optimality of HCT classification (� is unknown). When � is unknown,
we first estimate it with the training data.

DEFINITION 1.4. For any sequence of �p,p ∈ M∗
p(a,Kp), we say an esti-

mator �̂p,p is acceptable if it is symmetric and independent of the test feature
vector X, and that there is a constant C > 0 such that for sufficiently large p, �̂p,p

is K ′
p-sparse where K ′

p ≤ Lp , and |�̂p,p(i, j)−�p,p(i, j)| ≤ CK2
p

√
log(p)/

√
np

for all 1 ≤ i, j ≤ p.

Usually, the (Lp/
√

np)-rate cannot be improved, even when � is diagonal. For
Kp-sparse � satisfying (1.22), acceptable estimators can be constructed based on
the recent CLIME approach in [9]. If additionally � satisfies the mutual incoher-
ence condition [38], Assumption 1, then the glasso [25] is also acceptable, pro-
vided the tuning parameters are properly set. If � is banded, then the Bickel and
Levina Thresholding (BLT) method [4] is also acceptable, up to some modifica-
tions.
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With that being said, the numeric performances of all these estimators can be
improved with an additional step of re-fitting. See Section 4 for details.

Naturally, the estimation error of �̂ has some negative effects on the HCT clas-
sifier. Fortunately, for a large fraction of parameters (β, r) in Region of Possibility,
such effects are negligible and HCT continues to yield successful classification. In
detail, recalling that np = pθ , θ ∈ (0,1), we suppose:

• Condition (a). r > max{(1 − 2θ)/4, ρ∗
θ (β)},

• Condition (b). When 0 < θ ≤ 1/3 and (1 − θ)/2 < β < (1 − 2θ), |r −√
1 − 2θ | ≥ √

1 − 2θ − β .

The following theorem is proved in Section 3.3.

THEOREM 1.3. Fix (β, r, θ, a) ∈ (0,1)4 such that (1 − θ)/2 < β < (1 − θ),
and conditions (a)–(b) hold. Consider a sequence of classification problems
ARW(β, r, θ,�) such that � ∈ M∗

p(a,Kp) when r < β and � ∈ M̃∗
p(a, b,Kp)

when r ≥ β . For the HCT classifier LHC(X, �̂), if �̂ is acceptable, then as p tends
to ∞, P(Y · LHC(X, �̂) < 0) → 0.

We remark that, first, when 0 < θ ≤ 1/4 and (1 − θ)/2 < β < 3(1 − 2θ)/4,
condition (a) can be relaxed to that of r > max{β/3, ρ∗

θ (β)}. Second, when θ >

1/2, conditions (a)–(b) automatically hold when r > ρ∗
θ (β). As a result, we have

the following corollary, the proof of which is omitted.

COROLLARY 1.1. When θ > 1/2, Theorem 1.3 holds with conditions (a)–(b)
replaced by that of r > ρ∗

θ (β).

This says that as long as np � √
p, the estimation errors of any acceptable

estimator �̂ have negligible effects over the classification decision.

1.9. Comparison with BT and WT. In disguise, many methods are what
we called “Brute-forth Thresholding” or “BT,” including but not limited to
[3, 19, 20, 43]. Since � is hard to estimate, Bickel and Levina [3], Fan and Fan
[20], and Tibshirani et al. [43] neglect the off-diagonals in � for classification. In
a seemingly different spirit, Efron [19] proposes a procedure where he first selects
features by neglecting the off-diagonals in � and then estimates the correlation
structures among selected features. However, under the Rare and Weak model,
selected features tend to be uncorrelated. Therefore, at least for many cases, the
approach fails to exploit the “local” graphic structure of the data and is “BT” in
disguise. It is also noteworthy that [43] proposes to set the threshold of BT by cross
validation, which is unstable, especially when np is small.

When we replace IT by either BT or WT in HCT classifier, the phase diagram
associated with the resultant procedure is no longer optimal. While the claim holds
very broadly, it can be conveniently illustrated with a simple example as follows.
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Consider the same setting as in Theorem 1.2, except that � is the matrix defined
in (1.8). That is, � is the diagonal block-wise matrix where each diagonal block is
the 2 × 2 matrix with 1 on the diagonals and h on the off-diagonals, h ∈ (−1,1).
In this simple case, by Theorem 1.2, HCT classifier gives successful classification
when r > ρ∗

θ (β), and fails when r < ρ∗
θ (β). In comparison, if we use BT (which

treats � as diagonal and does not incorporate correlations for classification), the
separating function for success and failure becomes r = ρ∗

θ (β)/(1 − h2), which
is higher than r = ρ∗

θ (β) in the β-r plane (a similar claim holds for WT, but the
separating function is r = 2ρ∗

θ (β)/[1+√
1 − h2]; note 2/[1+√

1 − h2] > 1 for all
h �= 0). Recall that when � is given, the only difference between the HCT classifier
built over IT and the HCT classifier built over BT is that, for any threshold t , BT
and IT estimate μ by

μ̂Z
t (i) = sgn

(
Z(i)

)
1
{∣∣Z(i)

∣∣ ≥ t
}

and μ̂Z̃
t (i) = sgn

(
Z̃(i)

)
1
{∣∣Z̃(i)

∣∣ ≥ t
}
,

respectively, where Z̃ = �Z; see Section 1.2 for details. We have the following
theorem, the proof of which is elementary so is omitted.

THEOREM 1.4. Fix (β, θ, r) ∈ (0,1)3 such that (1 − θ)/2 < β < (1 − θ).
Consider a sequence of classification problems ARW(β, r, θ,�) where � is the
diagonal block-wise matrix defined in (1.8). Suppose we apply HCT classifier built
over the Brute-force Thresholding (BT) as in Section 1.2. As p → ∞, the classi-
fication error → 0 if r > ρ∗

θ (β)/(1 − h2), and the classification error → 1/2 if
r < ρ∗

θ /(1 − h2).

1.10. Comparison with works focused on the RS regime. The work is closely
related to the recent approach by Shao et al. [40], the ROAD approach by Fan
et al. [21], and the LPD approach by Cai and Liu [8]. While all approaches at-
tempt to mimic Fisher’s LDA, the difference lies in how we estimate the “ideal
weight vector” w prescribed in (1.5). In our notation, Shao et al. [40] estimates
w by (�∗)−1μ̂Z

t , where �∗ is the regularized estimation of � as in Bickel and
Levina [4] for an appropriate threshold, and μ̂Z

t is the estimation of μ by Brute-
force Thresholding. ROAD estimates w by minimizing (1/2)w′�̂w + λ‖w‖1 +
(1/2)γ (w′Z − 1)2, and LPD estimates w by minimizing ‖w‖1 subject to the con-
straint of ‖�̂β − Z‖∞ ≤ λ, where λ and γ are tuning parameters.

In disguise, these works focused on the “Rare and Strong” regime according
to our terminology. In fact, Shao et al. [40] assumes the minimum signal strength
(smallest coordinate in magnitude of

√
npμ) is of the order of

√
np , and the main

results of Fan et al. [21] and Cai and Liu [8] (i.e., [21], Theorem 3, [8], Theorem 1)
assume a sparsity constraint that can be roughly translated to β > (1 − θ/2) in our
notation. Seemingly, this concerns the RS Regime we mentioned earlier.

Compared to these works, our work focuses on the most challenging regime
where the signals are Rare and Weak, and we need much more sophisticated meth-
ods for feature selection and for threshold choices.
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1.11. Comparison with other popular classifiers. HCT classifier also has ad-
vantages over other well-known classifiers such as the Support Vector Machine
(SVM) [7], Random Forest [6], and Boosting [14]. These methods need tuning
parameters and are internally very complicated, but they do not outperform HCT
classifier even when we replace the IT by BT; see details in [16], where we have
compared all these methods with three well-known gene microarray data sets in
the context of cancer classification.

HCT is also closely related to PAM [43], but is different in some important
aspects. First, HCT exploits the correlation structure while PAM does not. Second,
while both methods perform feature selection, PAM sets the threshold by cross
validations (CVT), and HCT sets the threshold by Higher Criticism. When n is
small, CVT is usually unstable. In [16], we have shown that HCT outperforms
CVT when analyzing three microarray data sets aforementioned. In Section 4, we
further compare HCT with CVT with simulated data.

1.12. Summary and possible extensions. We propose HCT classifier for two-
class classification, where the major methodological innovation is the use of IT for
feature selection and the use of HC for threshold choice.

IT is based on an “optimal” linear transform that maximizes SNR in all signal
locations, and has advantages over BT and WT. IT also has a three-fold advantage
over the well-known variable selection methods such as the Lasso, SCAD, and
Dantzig selector: (a) IT is computationally faster, (b) IT is more approachable in
terms of delicate analysis, and (c) the tuning parameter of IT can be conveniently
set, but how to set the tuning parameters of the other methods remains an open
problem.

The idea of using HC for threshold choice goes back to [16], where the focus
is on the case where � is the identity matrix (see also [28]). In this paper, with
considerable efforts, we extend the ideas to the case where � is unknown but
is presumably sparse, and show that HC achieves the optimal phase diagram in
classification. The optimality of HC is not coincidental, and the underlying reason
is the intimate relationship between the HC functional and Fisher’s separation.
This is explained in Sections 2–3 with details.

In Theorems 1.2–1.3 and Sections 2–3, we assume the signals have the same
signs and strengths. The first assumption is largely for simplicity and can be re-
moved. The second assumption can be largely relaxed, and both Theorems 1.2–1.3
and the intimate relationship between HC and Fisher’s separation continue to hold
to some extent if the signal strengths are unequal. One such example is where the
signal distribution Hp , after scaled by a factor of (log(p))−1/2, has a continuous
density over a closed interval contained in (0,∞) which does not depend on p.

In the paper, we require � to be Kp-sparse where Kp ≤ Lp (see Definition 1.2)
and does not exceed a multi-log(p) term. This assumption is mainly used to control
the chromatic number of the induced graph G(�). Since the chromatic number of
a graph could be much smaller than its maximum degree, the assumption on �
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can be relaxed to that of the chromatic number of g(�) does not exceed a multi-
log(p) term. Also, when � has many small nonzero coordinates, we can always
regularize it first with a threshold t > 0: �∗(i, j) = �(i, j)1{|�(i, j)| ≥ t}, and
the main results continue to hold if �∗ is K-sparse and the difference between two
matrices is “sufficiently small.”

1.13. Content. The remaining part of the paper is organized as follows. In Sec-
tion 2, we introduce two functionals: Fisher’s separation and ideal HC, and show
that the two functionals are intimately connected to each other. In Section 3, we
derive a large-deviation bound on the empirical c.d.f., and then use it to character-
ize the stochastic fluctuation of the HC functional and that of Fisher’s separation.
Theorems 1.2–1.3 are proved at the end of this section. All other claims (theorems
and lemmas) are proved in the supplementary material [23]. Section 4 contains
numeric examples.

1.14. Notation. In this paper, C > 0 and Lp > 0 denote a generic constant
and a generic multi-log(p) term respectively, which may vary from occurrence to
occurrence. For two positive sequences {ap}∞p=1 and {bp}∞p=1, we say that ap � bp

(or ap � bp) if there is a sequence {�p}∞p=1 such that �p → 0 and ap(1 + �p) ≥
bp [or ap(1 + �p) ≤ bp]. We say that ap ∼ bp if ap � bp and ap � bp , and we
say that ap � bp if there is a constant c0 > 1 such that for sufficiently large p,
c−1

0 ≤ ap/bp ≤ c0.
The notation � and � are always associated with each other by � = �−1, and

(Xi, Yi) represents a training sample while (X,Y ) represents a test sample. The
summarizing z-vector for the training data set is denoted by Z, with Z̃ = �Z and
Ẑ = �̂Z, where �̂ is some estimate of �.

2. Ideal threshold and ideal HCT. In Sections 2–3, we discuss the behav-
ior of HCT classifier. We limit our discussion to the ARW(β, r, θ,�) model, but
the key ideas are valid beyond the ARW model and extensions are possible; see
discussions in Section 1.12.

The key insight behind the HCT methodology is that in a broad context,

HCT ≈ ideal HCT ≈ ideal threshold.

The ideal HCT is the nonstochastic counterpart of HCT, and the ideal threshold is
the threshold one would choose if the underlying signal structure were known.

In this section, we elaborate the intimate connection between the ideal HCT and
the ideal threshold, and their connections to Fisher’s separation. We also investi-
gate the performance of “ideal classifier” where we assume � is known and the
threshold is set ideally.

The connection between HCT and ideal HCT is addressed in Section 3, which is
new even in the case of � = Ip; compare [17]. Theorems 1.2–1.3 are also proved
in Section 3.
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2.1. Fisher’s separation and classification heuristics. Fix a threshold t > 0
and let �̂ be an acceptable estimator of �. We are interested in the classifier that
estimates Y = ±1 according to Lt(X, �̂) >< 0, whereas in (1.13)–(1.14),

Lt(X, �̂) = (
μ̂Ẑ

t

)′
�̂X where μ̂Ẑ

t (j) = sgn
(
Ẑ(j)

)
1
{∣∣Ẑ(j)

∣∣ ≥ t
}
.

For any fixed p × 1 vector Z and p × p positive definite matrix A, we introduce

Mp(t,Z,μ,A) = Mp(t,Z,μ,A;np) = (
μ̂Z

t

)′
Aμ

and

Vp(t,Z,A) = Vp(t,Z,A;�) = (
μ̂Z

t

)′
A�−1Aμ̂Z

t ,

where loosely, “M” and “V ” stand for the mean and variance, respectively. In our
model, given (μ, Ẑ, �̂), the test sample X ∼ N(Y · μ,�−1); see (1.2) and note
that �̂ is independent of X since it is acceptable. It follows that

Lt(X, �̂) ∼ N
(
Y · Mp(t, Ẑ,μ, �̂),Vp(t, Ẑ, �̂)

)
,

and the misclassification error rate of Lt(X, �̂) is

P
(
Y · Lt(X, �̂) < 0|μ, Ẑ, �̂

) = �̄

(
Mp(t, Ẑ,μ, �̂)√

Vp(t, Ẑ, �̂)

)
,(2.1)

where �̄ = 1 − � denotes the survival function of N(0,1).
The right-hand side of (2.1) is closely related to the well-known Fisher’s sepa-

ration (Sep) [1], which measures the standardized interclass distance Sep(t, Ẑ,μ,

�̂) = Sep(t, Ẑ,μ, �̂;�,p):

Sep(t, Ẑ,μ, �̂;�,p) = E[Lt(X, �̂)|Y = 1] − E[Lt(X, �̂)|Y = −1]
SD(Lt(X, �̂))

.(2.2)

In fact, it is seen that Sep(t, Ẑ,μ, �̂) = 2Mp(t, Ẑ,μ, �̂)/

√
Vp(t, Ẑ, �̂), and (2.1)

can be rewritten as

P
(
Y · Lt(X, �̂) < 0|μ, Ẑ, �̂

) = �̄
(1

2 Sep(t, Ẑ,μ, �̂)
)
.

By (1.15) and (1.19), the overall misclassification error rate is then

P
(
Y · Lt(X, �̂) < 0

) = Eεp,τpE
[
�̄

(1
2 Sep(t, Ẑ,μ, �̂)

)]
,(2.3)

where E is the expectation with respect to the law of (Ẑ, �̂|μ), and Eεp,τp is the
expectation with respect to the law of μ; see (1.15) and (1.19).

We introduce two proxies for Fisher’s separation. Throughout this paper,

Z̃ = �Z.(2.4)
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For the first proxy, recall that Ẑ = �̂Z [e.g., (1.10)]. Heuristically, �̂ ≈ � and
so Ẑ ≈ Z̃. We expect that Sep(t, Ẑ,μ, �̂) ≈ Sep(t, Z̃,μ,�); the latter is Fisher’s
separation for the idealized case where � is known and is defined as

Sep(t, Z̃,μ,�) = 2Mp(t, Z̃,μ,�)/

√
Vp(t, Z̃,�).(2.5)

For the second proxy, we note that when p is large, some regularity ap-
pears, and we expect that Mp(t, Z̃,μ,�) ≈ mp(t, εp, τp,�) and Vp(t, Z̃,�) ≈
vp(t, εp, τp,�), where

mp(t, εp, τp,�) = E
[
Mp(t, Z̃,μ,�)

]
,

(2.6)
vp(t, εp, τp,�) = E

[
Vp(t, Z̃,�)

]
.

In light of this, a second proxy separation is the population Sep:

S̃ep(t) = S̃ep(t, εp, τp,�) = 2mp(t, εp, τp,�)/
√

vp(t, εp, τp,�).

In summary, we expect to see that

Sep(t, Ẑ,μ, �̂) ≈ Sep(t, Z̃,μ,�) ≈ S̃ep(t, εp, τp,�),

and that

P
(
Y · Lt(X, �̂) < 0

) ≈ �̄
(1

2 S̃ep(t)
)
.(2.7)

In Section 3, we solidify the above connections. But before we do that, we study
the ideal threshold—the threshold that maximizes S̃ep(t).

2.2. Ideal threshold. Ideally, one would choose t to minimize the classifica-
tion error of Lt(X, �̂). In light of (2.7), this is almost equivalent to choosing t as
the ideal threshold.

DEFINITION 2.1. The ideal threshold Tideal(εp, τp,�) is the maximizing
point of the second proxy: Tideal(εp, τp,�) = argmax{0<t<∞} S̃ep(t, εp, τp,�).

In general, S̃ep(t, εp, τp,�) and Tideal(εp, τp,�) may depend on � in a com-
plicated way. Fortunately, it turns out that for large p and all � in M∗

p(a,Kp)

[see (1.20)], the leading terms of S̃ep(t) and Tideal(εp, τp,�) do not depend on the
off-diagonals of � and have rather simple forms.

DEFINITION 2.2 (Folding). Denote �τ(t) = P(|N(τ,1)| ≤ t). When τ = 0,
we drop the subscript and write �(t). Also, denote �̄τ = 1 − �τ(t) and �̄(t) =
1 − �(t).
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In detail, let

W̃0(t) = W̃0(t, εp, τp;�) = εp�̄τp(t)/
√

�̄(t) + εp�̄τp(t),(2.8)

t∗p(β, r) = min
{

2,
r + β

2r

}
τp(2.9)

and

δ(β, r) =

⎧⎪⎪⎨⎪⎪⎩
β − r, r ≤ β/3,
(β + r)2

8r
, β/3 < r < β,

β/2, β ≤ r < 1.

(2.10)

Elementary calculus shows that for large p,

argmax
{0≤t<∞}

{
W̃0(t)

} ∼ t∗p(β, r), sup
{0≤t<∞}

W̃0(t) = Lp · p−δ(β,r).(2.11)

It turns out that there is an intimate relationship between S̃ep(t, εp, τp,�) and
W̃0(t, εp, τp), where the latter does not depend on the off-diagonals of �. To see
the point, we discuss the cases r < β and r ≥ β separately.

In the first case, for a as in M∗
p(a,Kp), we let

c0(β, r, a) = δ
(
β,a2r

) − δ(β, r),
(2.12)

c̃0(β, r, a) = c̃1(β, r, a) − δ(β, r),

where c0(β, r, a) > 0 for r < β; if a < 1/3, c̃1(β, r, a) = β , and otherwise,

c̃1(β, r, a) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(3a − 1)r

3 − a
+ β, r ≤ 3 − a

1 + 5a
β,

3 − a

1 + a

(β + r)2

8r
,

3 − a

1 + 5a
β < r < β.

The following lemma is proved in the supplementary material [23].

LEMMA 2.1. Fix (β, r, θ, a) ∈ (0,1)4 such that ρ∗
θ (β) < r < β and (1 −

θ)/2 < β < (1 − θ). In the ARW(β, r, θ,�) model, as p → ∞,

sup
t>0

sup
{�∈M∗

p(a,Kp)}
∣∣p(θ−1)/2S̃ep(t, εp, τp,�) − 2τpW̃0(t, εp, τp)

∣∣
≤ Lpp−max{β−r/2,(3β+r)/4}

+ Lp

[
p−min{r,(β−r)/2,(1−a)(β−ar)} + p−c0(β,r,a) + p−c̃0(β,r,a)]

× sup
{0<t<∞}

W̃0(t, εp, τp).
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Note that δ(β, r) < max(β − r/2, (3β + r)/4). As a result, approximately,
S̃ep(t, εp, τp,�) ∝ W̃0(t, εp, τp) for all � ∈ M∗

p(a,Kp). Combining this
with (2.11), we expect to have

Tideal(εp, τp,�) ∼ t∗p(β, r),
(2.13)

sup
0<t<∞

S̃ep(t, εp, τp,�) = Lpp(1−θ)/2−δ(β,r).

Next, consider the case r ≥ β . The lemma below is proved in the supplementary
material [23].

LEMMA 2.2. Fix (β, r, θ, a) ∈ (0,1)4 such that r ≥ β and (1 − θ)/2 < β <

(1 − θ). Let �1 = d0 log(log(p))/
√

logp and �2 = 2
√

log(Kp logp), where d0 >

0 is some constant. In the ARW(β, r, θ,�) model with � ∈ M̃∗
p(a, b,Kp), as

p → ∞,

(a) sup{0<t<
√

2β log(p)−�1} S̃ep(t, εp, τp,�) � 5
3τpK−1

p p(1−θ−β)/2,

(b) sup{t≥τp+�2} S̃ep(t, εp, τp,�) � 5
3τpK−1

p p(1−θ−β)/2,

(c) sup{√2β logp−�1≤t<τp} S̃ep(t, εp, τp,�) � 2τpK−1
p p(1−θ−β)/2 and

sup{t>0} S̃ep(t, εp, τp,�) ≤ Lpp(1−θ−β)/2.

A direct result of Lemma 2.2 is that, for all � ∈ M̃∗
p(a, b,Kp) [see (1.20)],√

2β log(p) � Tideal �
√

2r log(p),
(2.14)

sup
{0<t<∞}

{
S̃ep(t)

} � Lpp(1−θ−β)/2,

where Tideal = Tideal(εp, τp,�) and S̃ep(t) = S̃ep(t, εp, τp,�) for short. In
this case, the function S̃ep(t) sharply increases and decreases in the intervals
(0,

√
2β log(p)) and (

√
2r log(p),∞), respectively, but is relatively flat in the

interval (
√

2β log(p),
√

2r log(p)); in this interval, the function reaches the maxi-
mum but varies slowly at the magnitude of O(Lpp(1−θ−β)/2). In the current case,
on one hand, it is not critical to pin down Tideal, as S̃ep(t) = Lpp(1−θ−β)/2 for all t

in the whole interval. On the other hand, it is hard to pin down Tideal uniformly for
all � under consideration, if possible at all.

2.3. Ideal HCT. Ideal HCT is a counterpart of HCT and a nonstochastic
threshold that HCT tries to estimate. Introduce a functional which is defined over
all survival functions associated with a positive random variable:

HC(t,G) = √
p

[
G(t) − �̄(t)

]
/

√
G(t)

(
1 − G(t)

)
, t > 0.
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We are primarily interested in thresholds that are neither too small or too large as
far as HCT concerns; see (1.11). In light of this, we introduce the HCT functional

THC(G) = argmax
{�̄−1(1/2)<t<s∗

p}
HC(t,G),

where the term �̄−1(1/2) is chosen for convenience, and can be replaced by some
other positive constants. Recall that Z̃ = �Z and Ẑ = �̂Z [e.g., (2.4) and (1.10)].
For any t > 0, let

F̄p(t) = 1

p

p∑
j=1

1
{∣∣Ẑ(j)

∣∣ ≥ t
}

(2.15)

and

F̃p(t) = 1

p

p∑
j=1

1
{∣∣Z̃(j)

∣∣ ≥ t
}
,

(2.16)
F̃ (t) = F̃ (t, εp,πp,�) = Eεp,πp

[
F̃p(t)

]
.

Note that the only difference between F̃p(t) and F̃ (t) is the subscript p. Heuristi-
cally, for large p, we expect to have F̄p(t) ≈ F̃p(t) ≈ F̃ (t). As a result, we expect
that

THC(F̄p) ≈ THC(F̃p) ≈ THC(F̃ ),

where THC(F̄p) is the HCT where � is unknown and has to be estimated, THC(F̃p)

is the HCT when � is known, and THC(F̃ ) is a nonstochastic counterpart of
THC(F̃p). Note that in disguise, THC(F̄p) is the same as t∗HC, the HCT defined
in (1.12).

DEFINITION 2.3. We call THC(F̃ ) the ideal Higher Criticism Threshold (ideal
HCT).

Similarly, the leading term of ideal HCT has a simple form that is easy to ana-
lyze. Fix 1 ≤ j ≤ p. Let Dj = {k : 1 ≤ k ≤ p,�(j, k) �= 0}, and let

g1(t) = g1(t;�,εp, τp)

= 1

p

p∑
j=1

P
(∣∣Z̃(j)

∣∣ ≥ t,μ(k) �= 0 for some k ∈ Dj , k �= j
)
.

The following is a counterpart of W̃0(t) defined in (2.8) and can be well approxi-
mated by the latter:

W0(t) = W0(t, εp, τp,�) = εp�̄τp(t) + g1(t)√
�̄(t) + εp�̄τp(t) + g1(t)

.(2.17)

The following lemmas are proved in the supplementary material [23].
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LEMMA 2.3. Fix (β, r, θ, a) ∈ (0,1)4 such that r > ρ∗
θ (β) and (1 − θ)/2 <

β < (1 − θ). In the ARW(β, r, θ,�) model, as p → ∞,

sup
{t>�̄−1(1/2)}

sup
{�∈M∗

p(a,Kp)}
{∣∣p−1/2 HC(t, F̃ ) − W0(t, εp, τp,�)

∣∣} ≤ Lpp−β.

LEMMA 2.4. Fix (β, r, θ, a) ∈ (0,1)4 such that r > ρ∗
θ (β) and (1 − θ)/2 <

β < (1 − θ). In the ARW(β, r, θ,�) model, as p → ∞, we have

sup
{t>0}

sup
{�∈M∗

p(a,Kp)}
∣∣W0(t, εp, τp,�) − W̃0(t, εp, τp)

∣∣
≤ Lp

[
p−3β/2 + p−c0(β,r,a) sup

{t>0}
W̃0(t)

]
.

If additionally r ≥ β , then:

(a) sup{0≤t<
√

2β log(p)−�1} W0(t, εp, τp,�) � ( 1√
2
)p−β/2,

(b) sup{τp≤t<∞} W0(t, εp, τp,�) � ( 1√
2
)p−β/2,

(c) 3
4p−β/2 � sup{√2β log(p)−�1<t<τp} W0(t, εp, τp,�) ≤ Lpp−β/2,

where �1 = d0 log log(p)/
√

log(p) is defined in Lemma 2.2.

Lemmas 2.3–2.4 say that, approximately, HC(t, F̃ ) ∝ W0(t), and that two func-
tions W̃0(t) and W0(t) are generally close.

2.4. Relationship between two ideal thresholds and classification by the ideal
classifier. Together, Lemmas 2.1–2.4 consolidate the intimate relationship be-
tween the ideal threshold and the ideal HCT. To see the point, we discuss the cases
r < β and r ≥ β separately.

For the first case, write Tideal = Tideal(εp, τp,�) and S̃ep(t) = S̃ep(t, εp, τp,�)

for short as before. The following theorem is proved in the supplementary mate-
rial [23].

THEOREM 2.1. Fix (β, r, θ, a) ∈ (0,1)4 such that ρ∗
θ (β) < r < β and (1 −

θ)/2 < β < (1 − θ). In the ARW(β, r, θ,�) model with � ∈ M∗
p(a,Kp), as

p → ∞, there is a constant c1 = c1(β, r, a) > 0 such that |THC(F̃ ) − Tideal| ≤
Lpp−c1(β,r,a), and so S̃ep(THC(F̃ )) ∼ S̃ep(Tideal) = Lpp(1−θ)/2−δ(β,r).

Consider the second case. Lemma 2.4 says that
√

2β log(p) � THC(F̃ ) �√
2r log(p). While it is hard to further elaborate how close two ideal thresholds

are, in light of (2.14), HC classification with any t in this range is successful, so it
is not critical to pin down the ideal HCT. The following theorem is proved in the
supplementary material [23].
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THEOREM 2.2. Fix (β, r, θ, a) ∈ (0,1)4 such that r ≥ β and (1 − θ)/2 <

β < (1 − θ). In the ARW(β, r, θ, a) model where � ∈ M̃∗
p(a, b,Kp), as p →

∞, we have that 2τpK−1
p p(1−θ−β)/2 � S̃ep(THC(F̃ )) ≤ S̃ep(Tideal(εp, τp,�)) =

Lpp(1−θ−β)/2.

To conclude this section, we investigate the “ideal” classifier Lt(X,�), where
� is known to us. Note that for each fixed t , the misclassification error of Lt(X,�)

is P(Y · Lt(X,�) < 0) = Eεp,πpE[�̄(1
2 Sep(t, Z̃,μ,�)]. The following theorem

is proved in the supplementary material [23].

THEOREM 2.3. Fix (β, r, θ, a) ∈ (0,1)4 such that (1 − θ)/2 < β < (1 − θ)

and r > ρ∗
θ (β). In the ARW(β, r, θ, a) model with � ∈ M̃∗

p(a, b,Kp), as p → ∞,

min
t

P
(
Y · Lt(X,�) < 0|t) = �̄

((
1 + o(1)

) · 1
2 S̃ep(Tideal)

)
.

When r < β , the condition � ∈ M̃∗
p(a, b,Kp) can be relaxed to that of � ∈

M∗
p(a,Kp).

Combining Theorem 2.3 with Theorems 2.1–2.2,

min
t

P
(
Y · Lt(X,�) < 0|t) = �̄

(
h(t) · S̃ep

(
THC(F̃ )

))
,

where h(t) = h(t;β, r, θ, a,�p,p) satisfies h(t) = 1/2 + o(1) when r < β and
h(t) = Lp when r ≥ β . Recall that in both cases, S̃ep(Tideal) = LpS̃ep(THC(F̃ )) =
Lpp(1−θ)/2−δ(β,r), where the exponent (1 − θ)/2 − δ(β, r) is strictly positive by
the assumption of r > ρ∗

θ (β). Therefore, if (β, r) fall in Region of Possibility and
if we set t as either of the two ideal thresholds, then Lt(X,�) not only gives
successful classification, but the classification error converges to 0 very fast.

3. Classification by HCT. In the preceding section, we have been focusing on
two ideal thresholds. In this section, we study the empirical quantities, and char-
acterize the stochastic fluctuation of HCT and Sep defined in (2.2). We conclude
the section by proving Theorems 1.2–1.3. The main results in this section are new,
even in the idealized case where � = Ip .

3.1. Stochastic control on the HC functional. Recall that

HC(t, F̄p) = √
p

[
F̄p(t) − �̄(t)

]
/

√
F̄p(t)

(
1 − F̄p(t)

)
.

When F̄p(t) = 0, the above is not well defined, and we modify the definition
slightly by replacing F̄p(t) with 1/p. The change does not affect the proof of the
results. The stochastic fluctuation of HCT comes from that of F̄p(t), which con-
sists of two components: that of estimating � and that of the data. This is captured
in the following triangle inequality [see (2.15)–(2.16)]:∣∣F̄p(t) − F̃ (t)

∣∣ ≤ ∣∣F̃p(t) − F̃ (t)
∣∣ + ∣∣F̄p(t) − F̃p(t)

∣∣.
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Consider |F̃p(t) − F̃ (t)| first. The key is to study

√
p

(
F̃p(t) − F̃ (t)

)
/

√
F̃ (t)

(
1 − F̃ (t)

)
.

When � = Ip , this is the standard uniform stochastic processes [41] and much
is known about its stochastic fluctuation. In the more general case where � �= Ip ,
it is usually hard to derive a tight bound on the tail probability of this process.
Fortunately, when � is Kp-sparse, tight bounds are possible, and the key is graph
theory on the chromatic number introduced in Lemma 1.1.

Recall that s∗
p = √

2 log(p) [e.g., (1.11)]. The following lemma is the direct
result of Lemma 1.1 and the well-known Bennet’s inequality [41], and is proved
in the supplementary material [23].

LEMMA 3.1. Fix (β, r, θ, a) ∈ (0,1)4 and consider an ARW(β, r, θ,�)

model with � ∈ M∗
p(a,Kp). As p → ∞, there is a constant C > 0 such that

with probability at least 1 − o(p−1), for all t satisfying �̄−1(1/2) < t < s∗
p ,

√
p

∣∣F̃p(t) − F̃ (t)
∣∣/√

F̃ (t)
(
1 − F̃ (t)

) ≤ CK3
p

(
log(p)

)7/4
.

Next, consider |F̃p(t) − F̄p(t)|. Recall that np = pθ . By definition, if �̂ is an
acceptable estimator of �, then there is a constant C > 0 such that with probability
at least 1 − o(p−1),

max{1≤i,j≤p}
{∣∣�̂(i, j) − �(i, j)

∣∣} ≤ CK2
p

√
2 log(p) · p−θ/2.(3.1)

As a result, we have the following lemma, whose proof is straightforward and thus
omitted. Recall that Ẑ = �̂Z and Z̃ = �Z [e.g., (1.10) and (2.4)].

LEMMA 3.2. For any acceptable estimator �̂, max{1≤j≤p}{|Ẑ(j) − Z̃(j)|} ≤
CK3

p log(p)p−θ/2 with probability at least 1 − o(1/p).

Write for short ηp = CK3
p log(p)p−θ/2. By Lemma 3.2, with probability

at least 1 − o(1/p), for all 1 ≤ j ≤ p, |1{|Ẑ(j)| ≥ t} − 1{|Z̃(j)| ≥ t}| ≤
1{t − ηp ≤ |Z̃(j)| ≤ t + ηp}. As a result,∣∣F̃p(t) − F̄p(t)

∣∣ ≤ F̃p(t − ηp) − F̃p(t + ηp),

where we note that heuristically,

F̃p(t − ηp) − F̃p(t + ηp) ≈ F̃ (t − ηp) − F̃ (t + ηp) ≈ 2ηp

∣∣F̃ ′(t)
∣∣.

Combining these, with probability at least 1 − o(1/p), for any t > �̄−1(1
2),

√
p|F̃p(t) − F̄p(t)|√
F̃ (t)(1 − F̃ (t))

≤ 2
√

2pηp

∣∣F̃ ′(t)
∣∣/√

F̃ (t) = 2
√

2p(1−θ)/2∣∣F̃ ′(t)
∣∣/√

F̃ (t).
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Recall s∗
p = √

2 log(p). The above heuristic is captured in the following lemma,
which is proved in the supplementary material [23].

LEMMA 3.3. Fix (β, r, θ, a) ∈ (0,1)4. In the ARW(β, r, θ,�) model with � ∈
M∗

p(a,Kp), there exists a constant C > 0 such that with probability at least 1 −
o(1/p), for all t such that �̄−1(1

2) < t < s∗
p ,

√
p

∣∣F̄p(t) − F̃p(t)
∣∣ · [

F̃ (t)
(
1 − F̃ (t)

)]−1/2 ≤ Lp max
{(

p(1−θ)F̃ (t)
)1/2

,1
}
.

Combining Lemmas 3.1 and 3.3, we have the following theorem, which is
proved in the supplementary material [23].

THEOREM 3.1. Fix (β, r, θ, a) ∈ (0,1)4. In the ARW(β, r, θ,�) model with
� ∈ M∗

p(a,Kp), as p → ∞, with probability at least 1 − o(p−1),∣∣HC(t, F̄p) − HC(t, F̃ )
∣∣ ≤ Lp

[(
p1−θ F̃ (t)

)1/2 + 1
] ∀�̄−1(1

2

)
< t < s∗

p.

By Theorem 3.1, in order for |THC(F̄p) − THC(F̃ )| to be small, we must have
that for all t in the vicinity of THC(F̃ ),∣∣HC(t, F̄p) − HC(t, F̃ )

∣∣ � HC(t, F̃ ).

When θ > 1/2, this holds for all (β, r) in Region of Possibility since it can be
checked that Lp[(p1−θ F̃ (t))1/2 + 1] � HC(t, F̃ ). When θ ≤ 1/2, this might not
hold for all (β, r) in this region, as the estimation error of �̂ is simply too large.
This explains why we need to restrict HCT to be no less than s̃∗

p,n as in (1.11). This
also explains why we need conditions (a)–(b) in Theorem 1.3, but we do not need
such conditions in Theorem 1.2 and Corollary 1.1.

In the ARW(β, r, θ,�) model, np = pθ . Therefore,

s̃∗
p,n = sp(θ) if we let sp(θ) =

√
2 max

{
(1 − 2θ),0

}
log(p);

see (1.11). Accordingly, the HCT defined in (1.12) can be rewritten as

tHC
p =

⎧⎪⎪⎨⎪⎪⎩
THC(F̄p), if sp(θ) ≤ THC(F̄p) ≤ s∗

p,

sp(θ), if THC(F̄p) < sp(θ),
s∗
p, if THC(F̄p) > s∗

p.

It is worthy to note here that the ideal threshold always falls below s∗
p , which is

defined as
√

2 log(p); see Section 2.2 and especially (2.9). It is also worthy to
note that when θ < 1/2 and when � is unknown, the estimation error of � may
have a major effect over the classification error, especially when the threshold
is small. To alleviate such an effect, one possible approach is to set a number
sp(β, r, θ) (say), and never allow the threshold to be smaller than sp(β, r, θ). Since
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(β, r) are unknown to us [but θ ≡ log(np)/ log(p) is known to us], so from a
practical perspective, we must select sp(β, r, θ) in a way so that it does not depend
on (β, r). Our calculations show that sp(θ) = √

2 max{(1 − 2θ),0} log(p) is one
of such choices.

The main result in this section is as follows, which is proved in the supplemen-
tary material [23].

THEOREM 3.2. Fix (β, r, θ, a) ∈ (0,1)4 such that (1 − θ)/2 < β < 1 − θ and
r > ρ∗

θ (β). In the ARW(β, r, θ,�) model with � ∈ M∗
p(a,Kp),

(1) If θ > 1
2 , then as p → ∞, there are positive constants c2 = c2(β, r, a, θ)

and d0 = d0(β, r, a, θ) such that with probability at least 1 − o(1/p), |tHC
p −

Tideal(εp, τp,�)| ≤ Lpp−c2 when r < β , and tHC
p ∈ [√2β logp − �1, τp) when

r ≥ β , where �1 = d0 log(log(p))/
√

log(p).
(2) If 0 < θ ≤ 1

2 and (β, r, θ) satisfy the conditions in Theorem 1.3, then with
probability at least 1 − o(1/p), |tHC

p − Tideal(εp, τp,�)| ≤ Lpp−c3 for some

constant c3 = c3(β, r, a) > 0 when r < β , and tHC
p ∈ [√2β logp − �1, τp) for

�1 = d1 log(log(p))/
√

logp when r ≥ β , where d1 = d1(β, r, a) > 0 is a con-
stant.

3.2. Stochastic fluctuation of Fisher’s separation. Similarly, the stochastic
fluctuation of Sep(t, Ẑ,μ, �̂) contains two parts: that from Z̃ = �Z, and that from
the estimation �̂. In detail,∣∣Sep(t, Ẑ,μ, �̂) − S̃ep(t, εp, τp,�)

∣∣ ≤ 2 · (I + II),

where I = 1
2 |Sep(t, Z̃,μ,�) − S̃ep(t, εp, τp,�)| and II = 1

2 |Sep(t, Ẑ,μ, �̂) −
Sep(t, Z̃,μ,�)|.

Consider I first. Recall that

Sep(t, Z̃,μ,�) = 2Mp(t, Z̃,μ,�)/

√
Vp(t, Z̃,�).

Heuristically, Mp(t, Z̃,μ,�) = mp(t, εp, τp,�) + Op(
√

mp(t, εp, τp,�)) and

Vp(t, Z̃,μ,�) = vp(t, εp, τp,�) + Op(
√

vp(t, εp, τp,�)); see (2.6). Combining
these with the definitions, we expect that

Sep(t, Z̃,μ,�)

= S̃ep(t, εp, τp,�)(3.2)

×
[
1 + Op

(
1√

mp(t, εp, τp,�)
+ 1√

vp(t, εp, τp,�)

)]
,
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where in the square brackets, the second term is much smaller than 1. This is elab-
orated in the following lemma which is proved in the supplementary material [23].
In detail, let

q(t) = q(t;β, r, θ,�p,p) =
{

p(1−θ)/2−max{4β−2r,3β+r}/4, r < β,
0, r ≥ β.

LEMMA 3.4. Fix (β, r, θ, a) ∈ (0,1)4 such that r > ρ∗
θ (β) and (1 − θ)/2 <

β < (1 − θ). In the ARW(β, r, θ,�) model with � ∈ M̃∗
p(a, b,Kp), as p → ∞,

with probability at least 1 − o(1/p),

sup
{t>0}

∣∣Sep(t, Z̃,μ,�) − S̃ep(t, εp, τp,�)
∣∣ ≤ Lp

[
q(t) + p−θ/2]

.

When r < β , the condition on � can be relaxed to that of � ∈ M∗
p(a,Kp).

Next, we consider II. The following lemma, which is proved in the supplemen-
tary material [23], characterizes the order of II.

LEMMA 3.5. Under the same conditions as in Lemma 3.4, as p → ∞,
with probability at least 1 − o(1/p), for all t such that sp(θ) < t < s∗

p ,

|Sep(t, Ẑ,μ, �̂) − Sep(t, Z̃,μ,�)| ≤ Lp[p−θ (pF̃ (t))1/2 + q(t) + p−θ/2]. When
r < β , the condition on � can be relaxed to that of � ∈ M∗

p(a,Kp).

Combining Lemmas 3.4–3.5 gives the following theorem, the proof of which is
omitted (note that Theorem 3.3 is parallel to Theorem 3.1).

THEOREM 3.3. Under the same conditions as in Lemma 3.4, as p → ∞, with
probability at least 1 − o(p−1), for all t such that sp(θ) < t < s∗

p ,∣∣Sep(t, Ẑ,μ, �̂) − S̃ep(t, εp, τp,�)
∣∣ ≤ Lp

[
p−θ (

pF̃ (t)
)1/2 + q(t) + p−θ/2]

.

When r < β , the condition on � can be relaxed to that of � ∈ M∗
p(a,Kp).

3.3. Proof of Theorems 1.2–1.3. We are now ready to prove Theorems 1.2–
1.3, where � is assumed as known and unknown, respectively. The proofs are
similar, so we only show Theorem 1.3. Consider LHC(X, �̂), where �̂ is an ac-
ceptable estimator. The misclassification error is

P
(
Y · LHC(X, �̂) < 0

) = Eεp,τpE
[
�̄

(1
2 Sep

(
tHC
p , Ẑ,μ, �̂

))]
.(3.3)

We now prove for the case of r < β and r ≥ β separately.
In the first case, we note that Lp[p−θ (pF̃ (t))1/2 + p−θ/2] ≤ Lppmin{0,1/2−θ}

for sp(θ) < t < s∗
p . Write Tideal = Tideal(εp, τp,�) and S̃ep(t) = S̃ep(t, εp, τp,�)

for short as before. By Theorem 3.3, with probability 1 − o(1/p),∣∣Sep
(
tHC
p , Ẑ,μ, �̂

) − S̃ep
(
tHC
p

)∣∣
(3.4)

≤ Lp

[
pmin{0,1/2−θ} + p(1−θ)/2−max{β−r/2,(3β+r)/4}].
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At the same time, by Theorem 3.2, with probability 1 − o(1/p), |tHC
p − Tideal| is

algebraically small. Note that S̃ep(t) is a nonstochastic function, and that in the
vicinity of Tideal, the second derivative of S̃ep at t has the same magnitude as that
of S̃ep(t), up to a multi-log(p) term (the first derivative is 0 at t = Tideal). By
Taylor’s expansion and Lemma 2.1,

S̃ep
(
tHC
p

) = (
1 + o(1)

)
S̃ep(Tideal) = Lpp(1−θ)/2−δ(β,r),(3.5)

where δ(β, r) is as in (2.10). By definitions, max{4β − 2r,3β + r}/4 > δ(β, r).
Inserting (3.4)–(3.5) into (3.3) gives

P
(
Y · LHC(X, �̂) < 0

) = (
1 + o(1/p)

)
�̄

(
Lpp(1−θ)/2−δ(β,r)) + o(1/p),(3.6)

and the claim follows since (1 − θ)/2 − δ(β, r) > 0.
In the second case,

√
2β logp � tHC

p � √
2r logp with probability at least 1 −

o(1/p). Combining this with Theorem 3.3, with probability at least 1 − o(1/p),∣∣Sep
(
tHC
p , Ẑ,μ, �̂

) − S̃ep
(
tHC
p

)∣∣ ≤ Lppmin{0,1/2−θ}.(3.7)

At the same time, by similar argument as that of the proof of Theorem 2.2,

2τpK−1
p p(1−θ−β)/2 � S̃ep

(
tHC
p

) ≤ S̃ep(Tideal) = Lpp(1−θ−β)/2.

Combining this with (3.3) and (3.7) gives

P
(
Y · LHC(X, �̂) < 0

) = (
1 + o(1/p)

)
�̄

(1
2Lpp(1−θ)/2−δ(β,r)) + o(1/p),(3.8)

and the claim follows since 1−θ
2 − δ(β, r) > 0. This proves Theorem 1.3.

We conclude this section by a remark on the convergence rate. At the end of Sec-
tion 2, we show that the “ideal” classifier Lt(X,�) has very fast convergence rate
with t being either the ideal threshold or the ideal HCT. In comparison, the con-
vergence rate of LHC(X, �̂) is unfortunately much slower (but is still algebraically
fast). To explain this, we note that the rate of convergence of tHC

p to THC(F̃ ) and

the rate of convergence of �̂ to � are both algebraically fast; if these convergence
rates can be improved, then the misclassification error rate of LHC(X, �̂) can be
improved as well.

4. Simulations. We have conducted a small-scale numerical study. The idea
is to select a few sets of representative parameters for experiments, and compare
the performance of HCT classifier (HCT) with three other methods: ordinary HCT
(oHCT), pseudo HCT (pHCT), and CVT. All these methods are very similar to
HCT, except that (a) in pHCT, we assume � is known to us, (b) in CVT, we set
the threshold of IT by a 5-fold cross validation, and (c) in oHCT, we pretend � is
diagonal, and estimate � accordingly. Note that CVT reduces to PAM [43] if we
do not utilize the correlation structure; see more discussion in [16].
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4.1. Estimating �. For some of the procedures, we need to estimate �. We use
Bickel and Levina’s Thresholding (BLT) procedure [4]. Alternatively, one could
use the glasso [25] or the CLIME [9]. But since the main goal is to investigate the
performance of HCT, we do not include glasso and CLIME in the study: if HCT
performs well with � estimated by BLT, we expect it to perform even better if �

is estimated more accurately.
At the same time, each of these methods can be improved numerically with

an additional re-fitting stage. Take the BLT for example. For the training data
{(Xi, Yi)}ni=1, let X̄ = 1

n

∑n
i=1 YiXi , and let �̂ = 1

n

∑n
i=1(YiXi − X̄)′(YiXi − X̄)

be the empirical covariance matrix. BLT starts by obtaining an estimate of � using
thresholding:

�∗(i, j) = �̂(i, j)1
{∣∣�̂(i, j)

∣∣ ≥ η
}
, 1 ≤ i, j ≤ p,(4.1)

and then estimate � by �̂∗∗ = (�∗)−1. Here, η > 0 is a tuning parameter.
We propose the following refitting stage to improve the estimator. Fixing a tun-

ing parameter ζ > 0, we further improve �̂∗∗ via coordinate-wise thresholding and
call the resultant estimator �̂∗:

�̂∗(i, j) = �̂∗∗(i, j)1
{∣∣�̂∗∗(i, j)

∣∣ ≥ ζ
}
.(4.2)

For each 1 ≤ i ≤ p, let Si = {1 ≤ j ≤ p : �̂∗(i, j) �= 0}, and let Ai be the sub-
matrix of �̂ formed by restricting the rows/columns of �̂ to Si . Denote the
final estimate of � by �̂ = [ω1,ω2, . . . ,ωp]. We define ωi as follows. Write
Si = {j1, j2, . . . , jk}, where k = |Si |. Let ei be the p × 1 vector such that ei(j) =
1{i = j}, 1 ≤ j ≤ p, and let ξi be the k × 1 vector formed by restricting the rows
of ei to Si . Define ηi = A−1

i ξi . We let ωi(j�) = ηi(�), 1 ≤ � ≤ k, and let ωi(j) = 0
if j /∈ Si .

The resultant estimation of the refitting procedure is a symmetric matrix, which
is also positive definite, provided that Kp is sufficiently small (say,

√
log(p)Kp �√

n) and that the smallest eigenvalue of � is bounded from below by a constant
C > 0; recall that Kp is the maximum of the number of nonzeros in each row of �.

4.2. Numerical experiments. Fix (p,n, εp,Hp,�) and an integer m, each
simulation experiment contains the following main steps.

1. Generate a p × 1 vector μ according to (
√

nμ(j))
i.i.d.∼ (1 − εp)ν0 + εpHp .

2. Generate training data (Xi, Yi), 1 ≤ i ≤ n, by letting Yi = 1 for i ≤ n/2 and
Yi = −1 for i > n/2, and Xi ∼ N(Yi · μ,�−1).

3. Generate m test vectors, each of which has the form of X ∼ N(Y · μ,�−1),
where Y = ±1 with equal probabilities.

4. Use the training data to build all four classifiers (HCT, oHCT, pHCT and
CVT), apply them to the test set, and then record the test errors.
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FIG. 1. Comparison of classification errors by HCT (solid), oHCT (dashed) and pHCT (dash-dot-
ted). The x-axis is a, and the y-axis is the classification error (Experiment 1a).

When we need to estimate �, we use BLT with the aforementioned refitting stage.
The study contains three different experiments, which we now discuss separately.

Experiment 1. In this experiment, we compare HCT with oHCT and pHCT. The
experiment contains three sub-experiments 1a, 1b and 1c.

In Experiment 1a, we fix (p,n, εp, τp,m) = (3000,2000,0.1,4,500), and let
Hp be the point mass at τp . Also, we choose � to be the tridiagonal matrix

�(i, j) = 1{i = j} + a · 1
{|i − j | = 1

}
, 1 ≤ i, j ≤ p,(4.3)

where a takes values from {0.05,0.15,0.2,0.35,0.4,0.45}. The results are re-
ported in Figure 1. The tuning parameter η in (4.1), which varies with the val-
ues of a, n and p, is calculated from trials of comparing (�∗)−1 with the true �.
The tuning parameter ζ in (4.2), which also varies with the values of a, n and p,
is chosen so that there are only k nonzero coordinates in each row of �̂∗ after
thresholding of �̂∗∗. We let k = 2,3 if � is tridiagonal and k = 4,5 if � is five-
diagonal (see experiments below). In this experiment, η is set accordingly from
{0.1,0.1,0.15,0.15,0.2,0.25} and ζ is from {0.05,0.1,0.1,0.2,0.25,0.3}. The
results suggest that HCT outperforms oHCT, but is slightly inferior to pHCT since
we have to pay a price for estimating �. As a increases, the correlation structure
becomes increasingly influential, so the advantage of HCT over oHCT becomes
increasingly prominent (but differences between HCT and pHCT remain almost
the same).

In Experiment 1b, for various (p,n, εp, τp), we choose m = 500 and let � be
either of the following tridiagonal matrix or five-diagonal matrix. In the first case,
� is a p × p tridiagonal matrix with 1 on the diagonal and a on the off-diagonal.
In the second case, � is a p × p five-diagonal matrix with 1 on the diagonal,
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TABLE 1
Classification errors by HCT, oHCT and pHCT. � is tridiagonal (left two columns) or five-diagonal

matrix (right column). Rows 1–2: Experiment 1b. Row 3: Experiment 1c

n = 2000, p = 3000
n = 1000,p = 2000 n = 2000,p = 3000 a1 = 0.45, a2 = 0.2

a = 0.05, εp = 0.1, τp = 4 a = 0.45, εp = 0.2, τp = 3 εp = 0.1, τp = 4

oHCT 0.0508 0.2818 0.1492
pHCT 0.0384 0.0698 0.1015
HCT 0.0523 0.0742 0.1053

n = 2000, p = 3000
n = 500,p = 1000 n = 2000, p = 3000 a1 = 0.35, a2 = 0.2,

a = 0.05, εp = 0.1, τp = 4 a = 0.45, εp = 0.05, τp = 5 εp = 0.05, τp = 4

oHCT 0.0560 0.2629 0.2183
pHCT 0.0571 0.1398 0.1893
HCT 0.0572 0.1438 0.1959

n = 1000,p = 2000 n = 2000,p = 3000 n = 2000, p = 3000
Hp = U(3.5,4.5) Hp = U(2.5,3.5) Hp = U(3.5,4.5)

a = 0.05, εp = 0.1 a = 0.45, εp = 0.2 a1 = 0.45, a2 = 0.2, εp = 0.1

oHCT 0.0444 0.2672 0.1648
pHCT 0.0522 0.0733 0.1159
HCT 0.0508 0.0843 0.0977

a1 on the first off-diagonal, and a2 on the second off-diagonal. Experiment 1c
uses a very similar setting, except that we take Hp as the uniform distribution
over [τp − 0.5, τp + 0.5]. We select ζ and η similarly as in Experiment 1a. The
results based on 25 repetitions for Experiment 1b–1c are reported in Table 1, which
suggest that HCT outperforms oHCT and that pHCT slightly outperforms HCT.

Experiment 2. In this experiment, we compare the pHCT with the CVT assum-
ing � is known (the case � is unknown is discussed in Experiment 3). Experi-
ment 2 contains two sub-experiments, 2a and 2b.

In Experiment 2a, we consider 6 different combinations of (p,n, εp, τp) with
m = 500, and let � be the tridiagonal matrix as in (4.3) with a = 0.2. Averages of
the selected thresholds and classification errors across different replications are re-
ported in Table 2. The results over 25 repetitions suggest that the threshold choices
by HC and cross validations are considerably different, with the former being more
accurate and more stable. Note that HCT is also computationally much more effi-
cient than the CVT.
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TABLE 2
Comparison of thresholds (Column 2, 4, 6) and classification errors (Column 3, 5, 7) by pHCT and

CVT. (p, τp) = (3000,1.8), and εp = 0.1 (top) and 0.05 (bottom). Left to right: n = 100,50,20
(Experiment 2a)

Threshold Error Threshold Error Threshold Error

pHCT 1.9 0.05 2.16 0.002 1.99 0
CVT 2.5 0.08 1 0.018 1 0

pHCT 2.39 0.18 2.06 0.10 2.13 0.02
CVT 1.9 0.224 2.00 0.14 1.1 0.09

In Experiment 2b, we set (p, εp,m) = (3000,0.05,500), n ∈ {20,40}, and let �

be the same as in Experiment 2a. We let τp range from 1 to 2.5 with an increment of
0.1. The classification errors over 25 repetitions by pHCT and CVT are in Figure 2,
where a conclusion similar to that in Experiment 2a can be drawn.

Experiment 3. We compare the performance of HCT with CVT for the case
where � is unknown and needs to be estimated. Note that for small n (say, less
than 500) we might not have reasonable accuracy on estimating � using BLT. For
small p, say 100–300, the CVT is computationally very slow and it is very likely
that the refitting procedure for BLT would not have decent performance. We take
(p,n, εp) = (5000,500,0.1) and let � be the block diagonal matrix consisting 10
diagonal blocks, each is a big five-diagonal matrix C = C500,500(a1, a2), where
C(i, j) = 1{i = j} + a1 · 1{|i − j | = 1} + a2 · 1{|i − j | = 2}, 1 ≤ i, j ≤ 500, and
a1 = 0.45, a2 = 0.1. We let τp range from 1 to 3 with an increment of 0.2. The
tuning parameters ζ and η are set in the same way as in Experiment 1. The results

FIG. 2. Classification errors of pHCT (solid) and CVT (dashed) for n = 20 (left) and 40 (right)
and various τp (x-axis) (Experiment 2b).
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FIG. 3. Classification errors by HCT (solid) and CVT (dashed) for various τp (x-axis) (Experi-
ment 3).

are reported in Figure 3. Due to high computational cost, we only conduct m = 6
repetitions, so the results are a bit noisy. Still, it is seen that HCT outperforms
CVT.

In summary, for a reasonably large sample size n, HCT outperforms oHCT
and is only slightly inferior to pHCT. The reason we need a relatively large n is
mainly due to that we need to estimate �. The relative performance of pHCT,
HCT, and oHCT is intuitive, since pHCT utilizes the true correlation structure
among the features, HCT estimates the correlation structure, while oHCT ignores
it. The comparisons of pHCT with CVT in Experiments 2a–2b suggest that if �

is known, then HCT dominates CVT. Experiment 3 shows that when p is several
times larger than n (e.g., 10 times larger), HCT has smaller classification errors
than CVT does, and the precision matrix � can bez estimated reasonably well.

For larger p, the advantages of the HCT are even more prominent than those
considered here. We skip the comparisons for larger p due to high computational
cost, which mainly comes from the BLT procedure (we must run the algorithm
many times to select a good tuning parameter η). In the future, if we could find a
more efficient method for estimating �, then HCT will be both more effective and
more convenient to use for large p.

SUPPLEMENTARY MATERIAL

Supplementary material for “Optimal classification in sparse Gaussian
graphic model” (DOI: 10.1214/13-AOS1163SUPP; .pdf). We include all tech-
nical proofs omitted from the main text.

http://dx.doi.org/10.1214/13-AOS1163SUPP
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