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In this supplement we present the technical proofs for the main
work [2]. Equation and theorem references made to the main docu-
ment do not contain letters.

APPENDIX A: PROOFS FOR MAIN THEOREMS AND LEMMAS

In this section, we prove all key theorems and lemmas in the order they
appear (except for Theorem 1.2-1.3 which are proved in Section 3.3). Sec-
ondary lemmas are proved in APPENDIX B.

A.1. Proof of Theorem 1.1. For short, write n = n,,. Recall that the
training samples are X; ~ N (Y;u,Q71), 1 < i < n, where Y; € {~1,1} are
given. Consider an (independent) test sample X ~ N (Y -, Q71), where Y =
+1 with equal probabilities. Let f4; be the joint of density of (X7, ..., X, X)
in the case where Y = 1 and Y = —1, respectively, and let H(f,g) be the
Hellinger distance between two density functions f and g. To show the claim,
it is sufficient to show H(f1,f-1) — 0 as p — oo, uniformly for all Q €
M (a, Kp). Let fo be the joint density of (X1,..., X,, X) in the case where
X ~ N(0,Q71) (but the distributions of X; remain the same). By triangle
inequality and symmetry, H(f1, f-1) < H(f1, fo) + H(f-1, fo) = 2H(f1, fo)-

Therefore, it is sufficient to show

(A1) H(fr, fo) = 0.

Since 2 is a Kp-sparse correlation matrix, by Lemma 1.1, there is a per-
mutation matrix P and an integer M, = M,(Q, K,) such that M, < K,
and

QH . QlMp
(A.2) PQP =1 ... )

QMI,I . QMpMp
where on the diagonal, M, .., Q M, M, are identity matrices. Since permut-
ing the coordinates of X7, Xo,..., X simultaneously does not change the

Hellinger distance H(f1, fo), we assume P = I, for simplicity.
1
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Now, corresponding to the partition of  in (A.2), we partition the mean-
vector 1 as p o= (M), ..., (uMe))Y. For 0 < m < My, let Py, be the
projection matrix such that Ppu = (MY, ..., (u"™),0,...,0), where
generically, 0 denotes a row vector of zeros, and let f("™ be the joint density
of (X1,...,Xn, X) under the law that X; ~ N(Y;u, Q71 forall 1 <i<n
and X ~ N(Ppu, Q7 1). Note that fo = £ and f; = fMp) and that by
triangle inequality,

M,
(A.3) H(fO, fMp)y < Z H(fm=1 glm)y,
m=1

Recalling M, < K, and K, < L,, where L, is a generic multi-log(p) term
as in Definition 1.2, (A.1) follows by Lemma A.1 below. O

LEMMA A.1. There is a constant co = co(B,r,0) > 0 such that for any
1<m< M, -1,

(A.4) H(fm=D, fmy < L,p=.

A.2. Proofof Lemma A.1. Denote K = K,, M = M, and n = n,, for
short. Recall that each of X, X1,..., X, can be partitioned into M blocks.
We simultaneously swap the first block and the m-th block of X and of each
X;, 1 <1 < n, but still denote the resultant vectors by X and X; for nota-
tional simplicity. Denote 7 = p(™, o = ((uMY, ..., (™), 0,...,0), and
o= (MY, (@Y, (DY (DY (pD)Y After swapping,
f(m) is the joint density of (X1,..., X5, X), where the common mean vector
of X1,..., X, (which we still denote by p for simplicity) is p = (7, i')’, the
mean vector of X is (#,7')’, and the common precision matrix (still denote
by Q for simplicity) of Xi,...,X,, X is

(A.5) Q:(é_if, g),

where I is a k x k identity matrix with & = k(Q2, m) equaling to the size
of the m-th block (before swapping) and D is a correlation matrix. Sim-
ilarly, f(™=1 is the joint density of (Xi,...,Xn,X), where the laws of
X1,...,Xn, X are the same as that of f(™ except for that the mean vector
of X is (0,7')" instead.

Denote for short fo = f™=D, f; = f0™ Since (V;, X;) are given and
Y; € {—1,1}, we assume Y; = 1 for notational simplicity (when Y; =
—1, we can always multiply —1 to both Y; and X;). Consequently, Z =
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ﬁ o YiX; reduces to Z = % >y Xi. By definitions and elementary
statistics, fo(z1,...,%n,z) = ¢(z, Q) 7 p(x;, Q) -1, and f1(z1,...,T0,2) =
Oz, O d(z4,Q) - 11, where

I — / V' Qa= B 1 QY+ (07)0a— 55 Do g 1),

7 — / VP Q= G (7 )0 (191420 B+5 D) g o 1)

and F(u) denotes the cdf of u. Here, z and x; are p x 1 vectors, z =
ﬁ Sz, and ¢(x, Q) is the joint density of N(0,Q7!). For 1 < i < k,
denote the i-th row of B in (A.5) by m/. Also, write Qz = (#,2') and
Qz = (#,7') so that both the length of # and the length of % are k.

For simplicity, we assume H,, is a point mass at 7,; the proof for general
cases is similar since the support of H), is contained in [—7,, 7], but we
need an extra layer of integral so the expression is much more cumbersome.
Introduce g = g(Z, i), h = h(%, %, i,7), and w = w(Z, i, 7) by

9= Hf:l [(1 - 6p) + € ePFi— 2 _fTP(m17N):|
hg = Hf:l [(1 — Ep) + €p eTpZz +(7p/V/n)E z*%T 7%Tp pr(m“H) (Tp/\/ﬁ)(mi,l:/)]’

and } o
w— e\/ﬁﬁ’zw'az—ﬂz Dfi—15'Do

Here, we have suppressed the expressions of g, h, and w as long as there is
no confusion. Since that 7 and [ are independent and that the entries of
Vv/ni are iid samples from (1 — €,)1p + €1y, integrating over 7 gives

I:/e\/ﬁﬁ’£+\/ﬁﬁ’§+§’§—g”ﬁQ—nﬂ’Bﬁ—gﬁ’Dﬁ 55D g p(5)dF ()
= [ (T (0 = )+ cpem ] oS4 5 8D AT D ),

By definitions, this implies that I = [ gwdF(j1). Similarly, IT = [ hgwdF (f1).
Recall that H(fo, f1) is the Hellinger distance between fy and f;. Let Ey
be the expectation under the law that X1, ..., Xy, X are iid from N (0, Qfl).
By Holder inequality, H(fo, f1) < Eo[([(h — 1)gwdF (i fgwdF )] <
Eo[[(h —1)%2gwdF (f)). Since Eo[[ hgwdF(i1)] = 1 and Eo [ gwdF ()] = 1

it is seen

(A.6) H(fo, 1) < B / W2 guwdF ()] —
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Note that h2g does not depend on  and Z. Also, note that (Z|Z) and (|2) are
the realizations of two (conditional) random vectors that are independent of
each other and that distributed as N(B'Z, D — B'B) and N(B'2, D — B'B),
respectively. It follows that E[w|(%, )] = exp(y/nfi' B'2— 2/ B'Bji+v' B'i —
%5’ B’ Bﬁ), where w should also be interpreted as a random vector, not a
realization of the random vector; we misuse the notation a little bit so that
we don’t have to introduce a new notation. Denote the right hand side
by v = v(&, 2, fi,). It follows that Eo[[ h®gwdF(f1)] = Eol[ h%gvdF (i1)].
Combining this with (A.6) gives

(A7) H(fo, f1) < C(EO[/ h2gudF(ji)] — 1) = C(IV —1).

We now evaluate IV. Denote for short a; = (1 —¢,) and b; = epexp(7,2; —
.

2 ~
2 —/n1p(m;, 1)), 1 <i < k. By direct calculations, IV equals to

-
(A.8)
= =2 [ai + b‘e%ii_%_%(m“;)]
B, { / e, <e\/ﬁ(mi,ﬁ>z¢g(mi,m2 i+ i
a; +b;

Recall that © and Z denote the realizations of k£ x 1 sub-vectors of 2X and
QZ, respectively, where two random vectors are independent of each other,
and each is normally distributed with the mean vector being 0 and the
covariance matrix being the identity matrix. It follows

(A.9)
g 12 Tp (% PN ™
Eo[(arl-bz’e\/%xl T (M ))QG(m“V)xl_%(m“V)Q] = (a;+b;)*+ (e —1)b7.

2

e T )dF(ﬁ)].

Denote for short /n(m;, i) = d;7,. By definitions and direct calculations,

(A.10) Eo[eVmemz=5mui) (q; 1 b)] =1
and
(A.11)
i n 2 24d;)Tpzi—(2+d;)%T2 /2
Eb[evﬁ“”“ﬁﬁf‘%“nwﬁfggfzg,]::GQéﬁ'<E (2 di)Tpzi—(2+di)? 72/
a; +b; P R
(1_€p)+€p€pl 2 iTp

Inserting (A.9)-(A.11) into (A.8) gives

= b2 -
\f(mzvﬂ) (mivﬂ) /n _ 7 F([
(e S o4 b4 (@F - )] )ar G

v

(A.12) /
/

72 (2+di)7pzi_(2+di)2’r2/2 B
= [t 1[ + (e — 1) B[~ — ]]dF(,z).
1—¢€+ epeTpgi_Tp_biTg



2 . T2
Write %’egeﬂgE [6(2Tp+di)zi*(27P+di)2/2/[(1 —€p) —i—epeTPZi_Tp_diTP]] = A;+ By,
where

2 2
T, T,

7 (7p+bi)zi—(Tp+b;)2 /2 ™ \a
B; = gﬁp T A VTR gep (tp — 7p),
and t, = [(r + B)/(2r)]7,. First, by Mills’ ratio [4], A; < L,p~2/+2=9.
Second, for B;, noting that ¢,/7, > 1 in the range of interest, so B; <
Lpp*(ﬁ”)Q/(‘”)*e. By our assumptions, there is a constant ¢y = co(5,r,0) >

0 such that min{25 — 2r + 6, (BI:)Q + 60} > 1+ ¢p. Combining these gives

2 21p+d;)zi—(2mp+d; 2/2
(A13) (Tp ]20 72 )E|: e2rptdi)zi—(2mp 2)/ :| < Lpp*(lJFCO).
n

- T
1—¢+ epeTPZ'i_Tp—diTP

Inserting (A.13) into (A.12), IV < 14 p~“. Inserting this into (A.7) gives
the claim. g

A.3. Proof of Lemmas 2.1-2.2. Before we prove these two lemmas,
we need some preparations. Recall that D; = {k: 1 < k < p,Q(j, k) # 0}
for 1 < j < p. Introduce events Ayg; = {u(k) = 0,Vk € D;}, Ay =
{u(k) # 0 for exactly one k € D;}, and Ag; = {u(k) # 0 for some k € Dj, k #
j}. Let o = Qu. It is seen that

e Over the event Ag;, fi(j) = 0.

e Over the event Ay; N {u(j) # 0}, /mpfi(j) = \/mpp(j) = 7p.

e Over the event Ay; N {u(j) = 0}, /nplia(5)| < amp.
Let ho(t) = hg(t,Gp,Tp,Q) =p! p P(|Z(j)| > t; Aoj), b (t) = hi (¢, GP,Tp,Q) =
P US0L PAZG) > A £ 00). B () = A ey 70 ©) = p1 32 PUZ(G) <
—t; Ay 0 {u(j) # 0}), and ga(t) = X2 52 Eli(j)sen(Z(5)) - 1I2(j >r >
t}|As;|P(Agj). Further, recall that g(t) = 21) P P(Z(j)| > t, Ay ;). B
definitions, it follows that
(A.14)

E(t) = ho(t)+hi (1) +hy (6)+91(t), mp(t) = ny,2pry (hf (6) =y (8) +92(1)).

Lemma A.2 below summarizes some basic properties of these quantities, the
proof of which is elementary so we omit it.
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LEMMA A.2.  For anyt > 0, we have (a) (1—Kpe,)W(t) < ho(t) < U(t),
(b) (1= Kpep)ep®(t — 1) < hi (1) < Pt —7), (1= Kpep)ep®(t + 7,
hi (t) < @(t+ 1), (c) 0 < g1(t) < KpepWar, () + (erp)z‘ij(l—&-a)w
C(Kpep)®, (d) 0 < ga(t) < Kpgu(t), and () (1 — Kpep)(W(t) + 6p\I/Tp(

F(t).
Next, the following lemma is proved in APPENDIX B.

LEMMA A.3. Fiza€ (0,1) and T > 0. Let (X,Y) be a bivariate normal
distribution with mean vector (0,7)’, variance one and correlation p. Then
there is a constant C = C(a) > 0 such that for all p € [—a,a], P(|X| >

Za)t2
tIY] > 1) < C(1+ texp(— §7o).

By Lemma A.3, we have the following lemma which is proved in Section
A4

LeEMMA A4. For any t > 0, we can write vy(t) = p(ﬁ(t) + rem(t)),
where the reminder term rem(t)/F(t) can be bounded from above by

(A.15)
Lyp~ mntn 53 A} 4 L1 gy exp (= S74), 7 < B and t <7+,
K, r>Bort>T1,+ 5,

where 5, = \/max{2(8 —r), (B +r)}logp. Moreover, when r < 3 and t <
Tp + Sp, we have vy(t)/(pF(t)) > 1 —o(1). In addition, if the smallest eigen-
value of 2 is bounded from below by b > 0, then vy,(t)/[pF(t)] > b.

Recall that in (2.17) and (2.8), we define Wy(¢) and its proxy Wo(t),
respectively. Define a(t) = /p(Wo(t)) " [h] (£) + hy (t) + g1(t)](vp(t)) /2
and Sy(t) = (vp(t))*l/Q[\/ﬁ(gg(t) —g1(t) —2hy (t))]. Then Sep(t, ep, 7, 2) =
2757/p/npla(t)Wo(t) + S1(t)]. The following two lemmas are proved in Sec-
tions A.5 and A.6, respectively.

LEMMA A5, Fiz (8,r) € (0,1)* and Q € M3 (a, Kp). Then
(A.16)
sup [S1(t)] < Ly(p~*2 4+ p7 ) 4 Lyp=oBr) sup Wo(t),
{0<t<7p+5p} {0<t<oo}
where co(B,7,a) is defined in (2.12) and 5y is defined in Lemma A.4. If in
addition Q) € Mv;(a, b, K},), then the above inequality holds with the left hand
side replaced with sup g~y [51()]-
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Also, ifr < f andt < 1,435,, then |a(t)—1] < Lyp~ min{r, 555 (1-a) (8—ar)} .
Ly(1+t)exp (— %), and if in addition Q) € Mv;(a, b, K}), then K, 1/2
a(t) b2,

LEMMA A.6. Fiz (r,8) € (0,1)2. Then

KpepWar, (t
(A17)  sup [Wo(t) — Wo(t)| < Lp~%2 42 sup Pep )
{t>0} {£>0} [ (t) + KpepVar, ()

= Lyp~ 382 4 Lyp= B9 sup Wy(t),
{t>0}

where co(B,r,a) is defined in (2.12).

We will also need the following lemma, which is proved in APPENDIX
B.

LeMMA A.7.  Let t,(q) = v/2qlogp with ¢ € (0,1). If r < B, then as
D — o0,

()2 — ) _
0221 {(1+tp(q)) exp (-W)W@ (tp(q))} ~ Lyp~to(Bira) oilqlgl Wolt(q))-

We now prove Lemma 2.1 and Lemma 2.2 separately.

Consider Lemma 2.1 first. Write for short Sep(t) = Sep(t, €y, 7, 2). We
consider the two cases 1) t > 7, + §, and 2) t < 7, + §, separately, where 5,
is as in Lemma A 4. -

First consider case 1). We will show that (1a) Sep(t) < Lpp%_max{ﬁ —3m
and (1b) Wo(t) < Ly,p~ max{#—37 5=} Then combining (1a) and (1b) com-
pletes the proof of the lemma in case 1). We now proceed to prove (la) and
(1b). The result (1b) follows immediately from the definition of Wg(t) and

the inequalities Wo(t) < \/&¥s, (1) < Lpp~ max{4f=2r,38+r}/4 Tt remains to
prove (la). Let n be a p x 1 vector such that n(j) = 1{(9,&?)(]) # 0},

1 < j < p. Also, for any p x 1 vectors x and y, let x oy be the p x 1 vec-
tor such that (oy)(d) =2(j)y(j), 1 <j < p. By definition, it is seen that

my(t) = E[My(t )] E[

35+r}

(i1 tZ) ] E[(af ) 2(uon)]. Using Cauchy-Schwartz
inequality, my,(t) < (E[(4f) Q,ut 71) 1/2 (E[(Mon)’Q(,uon)])l/2. Recalling that
vp(t) = E[Vp(t )] E[(a?)QpiZ), it follows that

(A.18) |Sep(t)] = 2my () (vp(1)) "2 < 2(E[(uon) Quon)]) .
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Since the largest eigenvalue of {2 is no greater than K, the last term above
< 2K (E|pon|?)Y/? and so |Sep(t)| < 2K/ *(E|won|?)Y/2. It remains to
study F||p o n|/?. By definition,

P72 L2 P ]
Blluon|P =Y~ FP(u(i) # 0,(247)(0) #0) < iz Z 0, 42(j) £0)
i=1 P =1 jeD:
T2 B B
= L3N Pu(i) #0.1Z()] 2 1) < Lyp' (69T, (1) + 6 Var, (1) + OKpey).

P i=1 jeD;

Since we consider the range ¢t > 7, + 5,, the above expectation can be
bounded as E|jpon||? < Lyp'—0-max{48-2r36+7}/2 nserting this into (A.18)
we complete the proof of (1a).

Now we consider the case 2). Recall that Sep(t) = 27,/ D/ npla(t)Wo(t) +
S1(t)]. Noting that n, = p’, the key is to show

(A.19)
sup | (27) B2 Sep(t) = Wo(t)| < Lpp 2 4 Lyp P
{0<t<1p+5p}
+ Lp (p— min{r,%,(l—a)(ﬂ—ar)} +p—c0(6,r,a) _|_p—61(,8,'r,a)> sup /Wo(t))

{t>0}

In fact, once this is proved, the claim follows by using Lemma A.6.
We now show (A.19). By Lemma A.5,

(A.20) SUD{o<i<r, 15,) 1pO=D72(27,) " Sep(t) — Wo (1))
< SUPfoct<r, 15,1 [a(t) — HWo(t) + supgoci<r, 45,3 [S1(1)]-

The second term on the right was studied in Lemma A.5 inequality (A.16).
We now study the first term on the right. By lemma A.5,

(A.21)  supgoci<r 45,1 la(t) — HWo(t) < supgoy 11(t) + supg>oy L2(t),

where Iy(t) = L, (p~ ™n{r5550-a)(B-ar} 4 (1 4 ¢) exp(— (11 £2)) Wo(t),

and Io(t) = Ly|Wo(t) — Wo(#)|-
Consider I5(t) first. By Lemma A.6,

(A.22) sup ;>0 12 (t) < Ly (p—:w/z + P_CO(B’T’G) SUP{o<t<oo} WO (t))

Consider I1(t) next. Write I1(t) = I14(t) + L1p(t), where I1,(t) = Ly
2 (mE W (1) and Ly(t) = Ly(1 + t) exp(— i) Wo(t).



We first study I1(¢). By Lemma A.7,

l-a 17 —¢é r.a 17
sup {(1+ exp(— -2t} = Lp oG sy TWo(e),
{0<t<oo} 2(1+a) {0<t<oo}
where é(/3,7,a) is defined in (2.12). Combining these results and comparing
terms yields

(A.23) sup (1) < Lp(pi min{r,%7(17a)(ﬁfar)}_|_p*60(5,r,a)> sup Wo(t).
t>0 {0<t<oo}

Combing (A.23) and (A.22) with (A.21) yields

sup a(t) — 1[Wo(t) < Lyp*/?
{0<t<Tp+3p}

+ <p— min{r,%,(l—a)([o’—ar)} +p—co(ﬁ,r,a) + p—éo(b’,r,a)) sup Wo(t).
{0<t<oo}
Inserting this and (A.16) into (A.20) shows the claim for the case where
t < 7, + 5. This completes the proof of Lemma 2.1.

We now show Lemma 2.2. First, we consider (a)-(b). By Lemma A.5,
(27,) " \/np/pSep(t) < b~ 12Wy(t) + Sy (t), where Wy(t) is defined in (2.17),
and S1(t) is as in Lemma A.5. The key is to prove that there is a constant
dop > 0 such that for any fixed ¢ satisfying either 0 < t < /2Blogp —

dologlogp/+/logp or t > 7, + 24/log(K, logp),

2,/be be
(A.24) Wo(t) S 37 Sl(ﬂﬁw%-

In fact, once these are proved, then

(A25)  Seplt) < 2mp 2 AWo(0) + $1(0)] S Sy 02,

and parts (a)-(b) of the lemma follow.
We now show (A.24). Recall that by the proof of Lemmas A.5-A.6,

CKpepVyr (t
(A.26) 1S1(8)] < Lp(p~3%/2 4 pB7) 4 — P p_( )
VIO + Kpepar, (1)
= CKpepV,r (t
(A.27) 0 < Wo(t) — Wo(t) < Lyp~2#/2 + pepVar, (1) :

\/\Il(t) + Kpep U, ()

note that the last terms in the above two inequalities are the same. We
now consider the case t < y/2F1logp — dyloglogp/+/logp and the case t >

7p + 24/log (K, log p) separately.
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In the first case, by Mills’s ratio [4], with the constant dy > 0 being
appropriately chosen, W(t) + Kpe,War, () > 9C?b~ 1 K, (log p)?e, and W(t) +
epVr, (1) > 9b™ 1K2€p As a result,

CKpepWar, (1) Y bep Wo(t) = epWr, (1) Y bep
VIO + Kpe U, ()~ 3HKplogr

Inserting these into (A.26) and (A.27), the claim follows by noting that
€p = p‘ﬂ. B ,
Consider the second case. In this case, €,Uqr, (t) = o(e,p~1=2""). Thus,

KpepWar (1) - _ B
PP <\ KpepWar, (1) = o( K, (logp) /&),
V) + Kpep B, (1)

€ /7
\/\I/ p—i-ep o ( ol \/g/ )

Inserting these into (A.26) and (A.27) proves (A.24), the claim follows by
similar reasons.

Next, consider (c). Write for short s, = /28logp — dgloglogp/+/logp.
Since the eigenvalue of €2 is bounded from above by K,,, by definition we have

vp(t) < KppF(t). Thus, Sep(t) = 2my(t)//v,(t) > 2K, *m,(t)/\/pE(#).
By definitions in (A.14) and Lemma A.2 we can further obtain that

and

O b @) o 207 [(1— Kpe)e®(t—7,) — ¢ B(t + 1)

Sep(t) >

BP0 BT+ ol 0+ Ko () + Oy )

When s, <t < Tp, the numerator above ~ 2Tpp¥_ﬁ , and the denomina-
tor above < K,p~ g, Thus, Sep( ) > 27, K*1 (1=0-5)/2 On the other hand,
recall that sup; Wg( ) = Lyp~?/? when r > j3, which together with Lem-
mas A.5-A.6 ensures supt>0 Wo(t) < Lyp~P/? and sup,~ S1(t) < Lyp~ /2.
Since (27,)71\/n,/ pSep(t) < b=Y2Wy(t) + Sy(t), combining these entails
Sep( ) < Lpp(l ~0-8)/2, This shows part (c) and completes the proof of
Lemma 2.2. O

A.4. Proof of Lemma A.4. The last claim follows trivially from the
assumption on the minimum eigenvalue of 2. And in the case of r > 3, by
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definition of v,(t) and noting that the maximum eigenvalue of €2 is bounded

by K, we obtain that v,(t) < Kppﬁ(t). So we only need to prove the first
claim in the case of r < 8 and the second claim.

Consider the first claim. Let D; = {j : Q(i,5) # 0} and D; = D; \

>

{i}. Write h(t) = ho(t) + hi(t), where h(t) = _1 b _12jen, P(1Z()]
E1Z() = 1) ho(t) =p~' 32, jep, PUZ(D)] = ¢, |Z( )l >t (i) = 0 or A(j) =

0), bi(t) = p '3, jep, PUZ(D)] = t,1Z(4)| > t, fi(i) # 0 and fi(j) # 0). By
definitions, it is seen that

(A.28) wvp(t) = p(F(t) +rem(t)), where |rem(t)| < h(t) = ho(t) + le(t).

To show the claim, it is sufficient to show that the ratio [ho(t) + hy (£)]/F(t)
does not exceed the right hand side of (A.15).

First, consider ho(t). If at least one of Z(i) and Z(j) has mean 0, by
Lemma A.3 and definitions, P(|Z(i)| > t,|Z(5)] >t ,u( )=0orfi(j)=0) <

CK,(1 +t)exp(— (21(11&2)( (1Z(i)| > t) + P(|Z(j)| > t)). Since D; has at

most K, components, it follows from the definition of F( ) that

(A.29)
~ —Qa 2
ho<t>gcz<p<1+t>exp<—w>pl > (PUZG) = )+ PUZ(7)] = 1))
ijeD;
a2 -
< CKg(l +t)exp (— (21<1+);>)F(t).

Next, consider h;(t). Define events A ;; = {u(k) # 0 for some k € D; \
D;}, Agij = {u(k) # 0 for exactly one k, which is in D; N D;}, and As;; =
{u(k) # 0 for two or more k, all of which are in D; N D;}. It is seen that

() = Y2 PUZO) 2 4120)] 2 1) # 0 and i) £0)
= hl,l( )+ h1,2( )+ h173(t),

where ];1’1( ) prl leeD (|Z )’ > t, ‘Z( ’ >t AlZ] ﬁAljZ‘) hl 2( ) =
P N jen PUZ(0)] 2 1 Z(5)] 2 t, Azgj)  and hus(t) = p~' 32, e, P(IZ(0)] 2
LIZ(G) =t Asg)-
We first consider hj 1(t). Note that
P(\Z(@)] > t,|Z(j)] = t, Avgj 0 A ji)
< P(|Z(i)] 2 t, Avij) Kpep < KpepP(1Z(i)] 2 1)
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Thus, 1 (1) < K20~ S, P(IZ()] > 1) = Lo, F(1).

Now we consider hy o(t ) For any (4,7) € Agj, we use (Z*(i), Z*(5)) to
denote the demeaned pair of (Z(i),Z(j)). By definition there exists a k
such that \/mpu(k) = 7p, fi(i) = Qi k)u(k) and i(j) = Q(j, k)pu(k). Thus,
[ /pi)| £ a7y or |y/pi(i)] < ary and

P(IZ(i)] 2 t,1Z(j)] 2 t, Avij) < KpepP(|Z7(i)] 2 t = amp) = KpepWar, (1).
Then Ay o(t) < K2e,Wr, (t). Direct calculations yield
(A.30)

A , -
Mo KoV (l) a6 gorant < gy 45,

W(t) + epWr, () ~ U(t) + 6P (1) —

By Lemma A.2, F(t) > W (t)+€p W, (). It follows that hyo(t) < Lpp*(lfa)(ﬁ*“’")ﬁ(t).
Now, consider hi3(t). Observe that hiz(t) < p~* >ijen, P(Asij) <
K,(Kpep)?. By Lemma A.2,
hat) _ 1 Kp(Kpe)?) CKye,

By S 1= Koy U(0) + ey 0r (1)~ T(0) T ep0r (1)

Whenr < fandt < Tp+§p, we have ‘i/(t)—i—ep\T/Tp (t) > Lyp~ max{4f—2r3B+r}/2,
and thus CK3€2/[U(t) + e, U, (1)] < Lp(p~P="/2 +p~). When t > 7, + 5,
by the deﬁnitlon of wvp(t) and recalling that the largest eigenvalue of 2 is
bounded by K, we have v,(t) < Kppf( t). Comblnlng these together and
noting that F(t) > W(t)+e, ¥, (1), we obtain hy 3(t)/F(t) < K ift > 7,45,
and hy 3(t)/F(t) < Ly(p~P~" N2 4 pr) it < 7+ 5

Combining the bounds on hy1(t), h12(t) and hi3(t) entails that when
r < B, ﬁl(t)/ﬁ(t) < p= (B2 4 por 4 = (=a)(Bmar) jf ¢ < 7, + §p and
hi(t)/F(t) < K, if t > 7, + 5,. These together with (A.28) and (A.29)
completes the proof of the first claim when r < j.

Next, we consider the second claim. The goal is to show that v,(t)/ (pF(t)) =
1, assuming r < § and t < 7, + 5,. We consider the cases (a) d3loglogp <
t < 1, + 5, and (b) t < dgloglogp separately, where d3 > 0 is a large
constant.

In Case (a), using (A.15), it is seen that |rem(t)|/F(t)] = o(1), uniformly
for all dgloglogp <t < 7,4+ 35,. Using (A.28), |’Up(t)/(pﬁ(t)) —1] =0(1) and
the claim follows. )

In Case (b), recall that v, (¢ ) = [(ﬂtZ) O], where if (j) = sen(Z(j))1{|2(5)] >
t} and Z = QZ. Write Z = g+ W, where i = Qu and W ~ N(0,Q).
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Let fi; be the counterpart of ,&tZ defined by fit(5) = sgn(W()1{|W(j)| >
t}. We claim (b1) E[(a#)Quf] = E[(ju)'Qju] + O(Lyp'~"/?) and (b2)
E[(fw)'Qu] > pF(t). The claim follows by combining (b1) and (b2) and
noting that pF(t) > Lyp(1 — Kpep) when t < dzloglog p.

Consider (bl). Let S = {1 < i < p: ﬂtZ(z) # fit(7)}. Note that for
all p x 1 vectors £ and 7, by Schwartz inequality and that the spectral
norm of Q@ < K, [(€ +1)'QE + 1) — 1/ < €+ 2((€'9Q6) - (' W)]'/? <

Ly[lIEl? + liglnlll- Applying this with n = iy, £ = 47 — fi, and noting
that each coordinate of fif — ji; has magnitude no greater than 2, we claim

that | E[(37) Q7] — Bl(je) Q]| < LpE(S] + VoIST) < LyE[/aIST). Note
that for any i € S, we must have fi(i ) # 0. Therefore, by definitions, |S| <

1{(Q/~L)( ) 7& 0} < Zz IZ]Qz]);éO 1{M( ) 7é 0} < K, Zz: 1{/1’( )
0} where we have used the assumption that () is K,-sparse. Note that

L 1{u(i) # 0} ~ Binomial(p, ¢,), where ¢, = p~?, so E[\/p|S]] ~ p'~5/2.
Comblmng these gives (bl).

Consider (b2). Denoting B = Eljifi;], we have E[(fit)' Q] = E[Qpfi;] =
tr(Q2B). We claim that for any ¢ # j such that Q(i,j) # 0, B(i, ) has the
same sign as that of (i, j). To see the point, write B(, j) = E[sgn(Z('))sgn(Z(j))-
1{|Z( | > t,|Z2(5)] > t}. By symmetry and basic statistics, B(i, j) = 2[P(Z(5) >
t, Z(5) > t|Qi, 7)) — P(Z(i) > t, Z(j) > t| — Q(i,5))], where for any p €
(=1,1), P(Z(i) > t, Z(j) > t|p) is evaluated at the law that corr(Z(i), Z(j)) =
p. The claim follows by noting that for any p > 0, P(Z(j) > t,Z(j) >
tlp) > P(Z(i) > t)P(Z(j) > t) > P(Z(i) > t, Z(j) > t| — p). As a result,
tr(QB) > tr(B) = pF(t), where we have used the fact that the diagonals of
2 are ones. This proves (b2). O

A.5. Proof of Lemma A.5. Consider the first claim. By Lemma A.2
(part (d)), |g2(t)| < Kpg1(t). So by definitions,

(A31) [S,(0)] < (K, +1)f91( ) L2V O DBy + But).

Vop(t Vup(t)
Consider By(t) first. Rewrite By(¢ [g1(t)/ \/ F(t \/ pE(t )/vp(t). Note

that when » < 8 and t < 7, + 5p, pF( )/vp(t) S 1, and when r > 3 and
Qe M (a,b, K}), by the last claim of Lemma A 4, pF(t )/vp(t) < b=t This
says that pﬁ(t)/vp(t) < C and so By(t) < Cgi(t)/\/F(t), where C > 0

is a generic constant. At the same time, by definitions and Lemma A.2,
F(t) = ho(t) + hi (t) + hy () + 91(t) = (1 = Kpep) [ (1) + €7, (8)] + g1(8),
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so we have

Bo(t) < Car(t)/ () + T, () + 1 (1)

Finally, using Lemma A.2 and noting that x/v/A + x is an increasing func-
tion in z € (0,00) for any number A > 0, we obtain

C(K €p an< ) + (Kpep) ‘T’(Ha)-rp( ) + (Kpep 3) .
) V‘P + W (1) + KpepWar, (1) + (Kpep) W (1 ayr, (1) + (Kpp)?

where the right hand side < I + IT + C(Kpe,)?/?, with

I =

Cerp‘ian (t) 17 — C(erp)2i’(1+a)rp (1)
\/\Tl(t) + KpepWar, (t) \/ep‘IJTp (t) + KpepWar, (t) + (erp)2\i](1+ll)7p (t)

The above two terms have been considered in Lemma A.6 (see the last two
terms of (A.34)). Using the results over there we can show that

(A.32) sup  By(t) < Lyp~ %% + Lp= B0 sup  Wy(t).
{0<t<5,} {0<t<oo}

Next we consider By (). Write By (t) = 2-[(pF (t)/v,(t))/2]-[h7 (¢)(F(t)) /2.
We have just proved pﬁ(t)/vp(t) < Cwhenr > for0<t<m7,+5
with C > 0 some generic constant. At the same time, using (A.14) and
parts (a)-(b) of Lemma A.2, first, hy (t) < €,®(t + 73,), and second, F(t) >
ho(t) + hi(t) + hy (t) > (1 — Kpep)[¥(t) + €,¥+, (t)]. Combining these gives

hT (1) (F())Y2 < Ce,®(t + rp)/\/\i(t) + epWr, (t). It follows that By (t) <

Cep®(t+1,)/ \/ U(t) + €,V (¢). This together with direct calculations yields

d(t
(A.33) sup Bi(t) < Ce, sup U)
0<t<3p 0<t<oo \I/( ) + EP\IJTp (t)

_ Cp*(ﬂﬂ") )

Inserting (A.32) and (A.33) into (A.31) completes the proof.
Consider the last two claims. Write a(t) = A; - A - A3, where

q_ MO+ O+l (‘T’(t) +ep U, (t) + gl(t))l/Q
1 V() +ar(t) F(t)

)

and A = (pF(t) /v,(t))"/”. First, by Lemma A.2 (part (b)), e,(1—Kpep) ¥y (£) <
hi(t) + hi(t) < eWr (t) and thus 1 — Kye, < A; < 1. Second, simi-
larly, by Lemma A.2, 1 < Ay < (1 — Kpe,)~'/2. Since by basis algebra,
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|AB —1| < |A—1|+ |B — 1] 4+ |A — 1||B — 1| for any numbers A and B,
we have |a(t) — 1| < CKpep(1 +|Az — 1|) +|A3 — 1|. Now, by Lemma A.4,
|As—1| < L, (p— min{r, £5%,(1-a)(0=ar)} | (1 4 £) exp (— (1*“”2)) when r < 8

2(1+a)
and 0 < t < 7, + §,, and K;1/2 < As(t) < b~Y2 when Q € M;‘,(a, b, K,),
and so the claim follows. O
A.6. Proof of Lemma A.6. Recall that Wy(t) = f”%p(f)ﬂh(t) ,
VIO +ep T, (D+91(1)

where ¢ (t) is as in Lemma A.2. We will compare Wy(t) with Wo(t) defined
in (2.8). On one hand, since (A + x)/v/ B + x is an increasing function of x
when 0 < A < B, it is seen that Wy(t) > Wy(t). On the other hand, writing
for short b(t) = KpepWar, (t) + (erp)Q\TJ(Ha)Tp(t), it follows from Lemma
A.2(c) that

(A.34)
epWr, (t) +b(t) + CK3ep

\/ U(t) + 6,0, () + b(t) + CK3e3

Wo(t) <

KpepWar, (1) n K3V (1+ayr, (1)
\/ U(t) + KpepWar, (t) \/ epWr, (1) + b(t)

< Wo(t) + CK3/2p=30/2

Combining these and recalling €, = p~ P, we have

sup [Wo(t) — Wo(t)| < Lyp 2 + T+ 11,
0<t<oo

where

2 2
I= sup erp\IJan(t) : II= sup Kpﬁqu(l-‘ra)rp(t)

O0<t<oo \ () + KpepWar, () O<t<oo [, W, (t) + b(t)
To show the first inequality of claim, it is sufficient to show

(A.35) i

11 < Lpp_?’ﬁ/Q+Lpp_5/2 sup KpepWar, (1)
O<t<oo \/ U(t) + KpepWar, (1)

= L,p 3024 Lp P21

Towards this end, we write I < Ila + I1b, where Ila and IIb are the
supremums of ngg\if(ua)fp (t)/+/ep¥r, (t) 4+ b(t) over the intervals 0 < ¢ <
7p and 7, < t < 00, respectively. Consider I7a. When 0 <t < 7, \f/Tp (t) >
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Y (1taym, () 3/2 .
1/2, and so Ila < Kle: SUP{0<t<r,} % < Lpep/ . Consider 17b. By

definitions and change-of-variable, and recalling €, = p P,

, .
K220, 4 0y (1) K26,y (1)

I1Ib < sup = sup

{mp<t<oo} \/ep\i/Tp (t) + ng%‘I’(1+a)Tp (t) {0<t<oo} \/‘i’(t) + Kng‘I’a‘rp (t)
< Lp611,/2 ] = Lpp_’ﬁ/2 <.

Combining these proves (A.35). Consequently, the first inequality of the
claim follows.

To show the second inequality in the claim, we use similar calculations as
in [1] and get

sup {Wo(t)} = Lpp_é(,nﬁ)’ I — Lpp_é(G’Qr?ﬁ) = Lpp_CO(ﬁﬂq’a) sup WO(t),
{0<t<oco} 0<t<co

where we have used co(3,7,a) = 6(3,a?r) — 6(3,r) as in (2.10). O

A.7. Proof of Lemmas 2.3-2.4. Write for short W (t) = p~Y/2HC(t, F).

Recalling Wo(t) = e, () + g1(5)]//T(t) + €T, (1) + g1(t) as defined in
(2.17), where gi(t) is as in Lemma A.2, we let a1(t) = (Wo(t))  [F(t) —
ho(t)] - (F(£)(1 = F(t))7"/2, and Wi(t) = [¥(t) — ho(t)] - (F(1)(1 — F(1))"'/2,
where ho(t) is as in Lemma A.2. By these notations, W (t) = a;(t)Wy(t) —
W1 (t). The following lemma is proved in Section A.8.

LEMMA A.8. Fix a sufficiently large p. There is a universal constant
C > 0 such that for all @ € My (a, K}),

(A.36)
0 < Wi(t) < CRyepU (1)) T(t) + s, (1), for allt > T (1/2)

(A.37)
1— CKpep < ar(t) < (14 CKpep)(1 — U(t) — Kpep) Y2, for all t > 0.

Consider Lemma 2.3. Using Lemma A.8, |a1(t) — 1| < C(Kpe, + ¥(t)) for
all t > 0. Recalling W (t) = a1 (t)Wy(t) — Wi (t), we have

(A.38)
sup W () — Woh) < sup {Jas(t) — LWo(t)} + sup  WA(2)
{t>0-1(1)} {t>0} {t>v-1(3)}

< L,(I +IT + III),
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where I = Kpepsupy>pg {Wo(t)}, 11 = sup{tzo}{\fl(t)Wo(t)}, and III =
PG (1)) OV (1),
First, consider I. By basic algebra and Lemma A.6,

1< Lyey[ sup Wo(t) +sup [Wo(t) = Wo(D)]] < Lyp~ [/ + sup {Wo(t)}].
{t>0} t>0 {t>0}

Next, consider I1. Write

(A39) II< {sup}[qz(t)m(t)] + {Sup}[\I'(t)|Wo(t) —Wo(t)|] = ITa + ITb.
t>0 t>0

On one hand, elementary calculus shows that ITa < p~”. On the other
hand, by similar argument as in the proof of Lemma A.6, I1b < Lp(p_ﬁ +

ﬁ_

a27‘
p~ 5 P4+ p~38/2). Combining these, IT < Lp(p’ﬂ +p~ 5 P4 p38/2) Last,
consider I1I. By (A.36) and direct calculations,

ITT < CKyeysup gy (U (1) /) (1) + 6U(t — 1)} < Lyp™”.

Inserting these into (A.38) gives the claim.
Next, we show Lemma 2.4. The first claim has already been proved in
Lemma A.6. So we only need to prove claims (a)—(c) in the case of r > .
First consider claims (a) and (b) in Lemma 2.4. Comparing Lemma A.6
and the desired claim, it is sufficient to verify that

(A.40) Wo(t) < pP2/V/2, if t < \/28logp — Ay or t > 7,

where A1 = dg(loglogp)/+/logp is as defined in the statement of Lemma
2.4. Once this is proved, recalling that W (t) = aq(t)Wp(t) — Wi (t) and we
have just proved Suptzi,—l(l/Q){\il(t)WO(t)} < Lpp~#, then by Lemma A.8
we have

W (t) < a(®)Wo(t) S (1+ CU(t) + CKye,)Wo(t) S p~7?/V2.

We now proceed to prove (A.40). By the proof of Lemma A.6 (inequality
(A.34)), we have

(AA1) 0 < Wo(t) = Wo(t) < Lyp ™ + KpeyTar, (1)/1/ () + KB, (1),

where we have noted that the last term in (A.34) is bounded by Kpepy /¥ (14q)7, (1) <
Lpp_ﬂ. First consider the case when ¢t < /28logp — Ay. By Mills’s ratio,
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for appropriately chosen dy in A; = do(loglog p)/+/logp, we have ¥(t) +
KpepWar, (t) > 8K ey, and WU(t) 4 €,War, (t) > 8¢, As a result,

KpepWar, (1) eV, (1)
\/\Tl(t) + KpepTar, () \/\Tl(t) + e, (1)

Inserting these into (A.41), we complete the proof of (A.40) when ¢ <
Vv2Blogp — A1. Now we consider the case of t > 7,. Since €,V (t) =

o(t—tpp_(l_“)zr)7 it follows that

< V264, Wo(t) <

SN

erp\Ifan (t)
V) + Kpey B, (1)

¥ <\/ep 7 ( _\/ep/2.
\/\Il —|—ep Tp

Inserting these into (A.41) proves (A.40) when ¢ > 7,

Finally we prove part (c). Write for short s, = v/281logp — A;. By (A.37)
and recalling that we have just proved sup,.,Wi(t) < L/pp*ﬂ , we obtain
that V() = a1 (Wa(t) — W4(1) 2 (1 = Ky () — supecg W1 (1) > (1
CKpep)Wo(t)—Lpp ~B. Further recall that in Lemma A.6, we have shown that

Wo(t) > Wo(t) for all t > 0. Thus, W(t) > (1-CK ep)WO( )—Lpp~". Taking

ty, = *8;; “Tp, it is seen that for sufficiently large p, s, < t, < 7p. Therefore,

SUP{s,<t<r,} W(t) = (1 - CKpep) SUP{s,<t<7,} Wo(t) > (1 - Cerp)WO(t;)a
and the first inequality of part ¢) follows from V[N/O(t*) p~P/2 and €p = =p B
for large enough p. On the other hand, by Lemma A.6 and recall r > B,
we have sup;.o Wo(t) < Lpsup, Wo(t) ~ Lyp~P/2. Further, by (A.37)
and the expression W (t) = a1(t)Wo(t) — Wi(t), we have sup, <<, W(t) <
SUp,, <¢<r, 101(O)Wo(t)} < C'sup, <<, Wol(t) ~ L,p~#/%. Thus, the second
inequality in the claim follows. O

KpEp\ilan (t) = 0(p75/2)

and

A.8. Proof of Lemma A.8. Let ho(t), hi(t) and g (t) be as in Lemma
A.4. Consider the first claim. By Lemma A.2 parts (a) and (e), we have

(A.42) 0 < W(t)—ho(t) < Kpep¥(t), ﬁ(t) 2 (1_Kp€p)[‘ij(t)+€p@7p(t)]-

At the same time, note that F(t) < ¥(t) 4+ Kpe,. Combining these ensures
that

(A.43) 1< (1= F@) Y2 <[1—0(t) — Kpep) V2.
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Inserting (A.42) and (A.43) into the definition of Wi (t) gives

) < Kpep V(1) .
V= T(0) — Ky (1= Ky )[D(E) + T, (1)

0 < Wit

Thus the first claim follows by noting (1 — W(t) — Kpep) > 1/2 — Kpe, for
all t > U~1(1).

Consider the second claim. Recall that F(t) = hg (t)+h{ () +hy ) +g1(D).
By definitions,
(A.44) al(t)=(1—F(t) V2 1-1I,

where I = [h (t) + hy (t) + 91())/[ep¥r, (t) + g1(t)], and

17 = \JO() + 6 (1) + 91(6)/y/ho() + b5 (1) + () + g ().
By (a) and (b) in Lemma A.2, we have
(A.45) (1-Kpe)) <I<1, 1<IT<(1-Kpe) V2

Inserting (A.43) and (A.45) into (A.44), we obtain that there is a universal
constant C' > 0 such that (A.37) holds. O

A.9. Proof of Theorems 2.1-2.2. The following lemma is proved in
Section A.10.

LEMMA A.9. Fiz (B,r) € (0,1)? and a sufficiently large p. When t ranges
in (0,00), Wy(t) first strictly increases and reaches the mazimum at t =
t+* ~ min{2, T;f }mp (= t), and then strictly decreases. Additionally, if r <
B, then there are positive constants ¢y = c4(B,7) and c5 = c5(8,r) such that

Jor all |t — 3| < eqry !, Wé’(t) < —2e5Wo(t).

Denote by W (t) = p~Y2HC(t, F). By the first claim in Lemma 2.3 and
Lemma A.6, and noting that 5 > ¢o(8,r,a), we obtain

(A46)  supgoy [W(E) — Wo(t)] < Lplp™? + p=@r sup o, Wo(t)].

First, we show Theorem 2.1, where we assume r < 3. Once the first claim
is proved, the second claim follows by combining Taylor expansion with
Lemmas 2.3, 2.4, and A.9, so we only show the first claim. The idea is to
prove Txc and T;g.4; are both close to t;*, then they are close to each other.
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We first prove that Ty and ¢;* are close. We will show that (i) W (¢, +
u) — W(ty*) <0 for all p=* < |u| < cq/7p, and (ii) W(ty* +u) — W(t*) <
0 for all |u| > ¢4/7p. Then combining these proves

(A.47) Te(F) — 7] < p~@,
with ¢; = ¢1(B,7,a) > 0 some constant to be specified later. -
We now prove the first case (i). Recall that ¢;* is the maximizer of Wy (t)
and Wo(t;*) = Lyp~ %67 where 6(3,7) is as in (2.10). Thus, Wé(t;*) =0.By
Taylor expansion, Wo(t;* +u) — Wo(t;;*) = ”—;Wé’ (tp), where £, lies between
ty* and t;* + u. Next, by Lemma A.9, for |u| < % we can further write
Wo(ts + u) — Wo(ts") < —csu®Wo(ty) = —esuWo(ts") — esu?(Wo(ty) —
Wo(t5)) < —esu®Wo(t5*) — esu?(Wo(t* + u) — Wo(t5*)), where the last
step is because of /V[v/g(t;;* +u) < Wo(fp). Thus, the inequality can be further
written as Wo (£5* +u) —Wo(£5*) < —esu?Wo(t5*)/(1+c5u?). Then by (A.46)
we obtain that
(A.48)
Wt +u) = W(t) = (Wt +u) — Wo(t;* +u) — (W(t") - Wo(t;*))
(ot +w) — Tolt) < Ly + 5O Wo(t) + (Wolty* +u) ~ Wo(t;")
< Lyp P+ (Lpp~ P79 — c5u? /(1 + c5u?)) Wo (t57).

It is easy to check that p‘cO(ﬁ’T’“)Wo(t;*) > Lpp_ﬁ when pj(8) < r <
B. By Lemma A.9, we obtain that if |u| > p~ with ¢ = ¢1(8,7,a) €
(0, 2co(B,7,a)), then for all p~© < |u| < ca/7,

W (£ +u) — W) < —Lpp 2 BraW, () (1 4 0(1)) < 0,

which completes the proof of case (i). It remains to prove case (ii). Di-
rect calculations yield Wo(t;* +ca/7p) S €_C5W0(t;*), where ¢ > 0 is
a constant depending on whether r < (/3 or r > (/3. By Lemma A.9,
Wo(t) < Wolts" £ ca/mp) S e~ Wo(ts*) for all [t — t3*| > c4/7,. Thus, simi-
lar to (A.48) we have W (t)-W (t3*) < Lp(p_ﬁ+p_‘30(5”’a)Wo(t;*))+(wo(t)—
Wo(t;*)) SLpp P (e -1+ Lpp_co(ﬁ’r’a))WO(t;*) =Lpp P+ (e -1+
Lpp*c‘)(ﬁ”’“))p*‘;(ﬁ”) < 0, where the last step is because § > §(3,r). This
proves case (ii). Consequently, we have proved (A.47).

Using similar method as above and in view of Lemma 2.1 we can also
prove that for appropriately chosen ¢; > 0,

(A.49) | Tideat (€ps Tp, ) — 1| < p™°'.
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Thus the claim in Theorem 2.1 follows when r < .

We now show Theorem 2.2, where we assume r > 3. In this range Wo (t)

. .. e _B
is maximized at t}* = B;, “1p and Wo(t;*) ~ p~2. By Lemma 2.4 we see that

the maximizer of Wy(¢) is in the range [/28logp — Ay, 7). By (A.40) and
Lemma 2.3 we obtain that if 0 <t < /2F8logp — Ay or 7, <t < o0,

1
<
V2

W (t) = Wo(t) + (W(t) — Wo(t) < ——pB/2 1+ Lp~® = \jipﬂ/zu +o(1)),

and if /28logp — Ay <t < 7,
W (t) = Wo(t) + (W(t) = Wo(t)) > p™P/2 — Lyp™@ = p™P/2(1 = o(1)).

Thus, the maximizer Tyc(F') is in the interval [\/281logp — A1, 7).
By Lemma 2.2, the maximizer of Sep(t, €, 7, 2) is in the interval [\/25 log p—
Ay, 7y + Ay), and Theorem 2.2 follows immediately. O

A.10. Proof of Lemma A.9. Let ¢ (t) = ¢(t — 1) + o(t + 7)
and (t) = 2¢(t). Introduce mo(t) = (t)/¥(t), mi(t) = V. ()/¢r, (1),
d(t) = =5, (8)/Ur, (), alt) = er,(t)/¥(t), R(t) = ma(t)/mo(t), and
g(t) = (1/2)(1 + a(t))/(R7(t) + a(t)). The following lemma is proved in
APPENDIX B.

LEMMA A.10. Fiz a sufficiently large p, R(t) > 1 and is strictly decreas-
ing for all t > 0.

Consider the first claim. By direct calculations and our notations,

(A50) T30/ Tle) = 3 [+ 0] = 708 = a(0) = 1)/ 1),

To show the claim, it suffices to show that equation g(t) = 1 has exactly one
solution. Recall that g(t) = (1/2)(1+ a(t))/(R™1(t) + a(t)), where R(t) > 1
and both a(t) and R™!(¢) are strictly increasing in ¢. It follows from basic
calculus that g(t) is strictly decreasing in (0, 00), and the equation g(t) =1
has at most one solution.

The equation also has at least one solution. Note that g(0) > Ces/?
which > 1 for sufficiently large p, it suffices to show that there is a ¢ such
that ¢g(t) < 1. We show this for the case of < /3 and r > (/3 separately.
In the first case, for all ¢ such that [t — 27, < 47, 1 a(t) is algebraically
small, and so by Mills’ ratio [4], for any fixed b,
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and the claim follows. Note that this shows that the solution ¢7* of the equa-
tion g(t) = 1 satisfies [£3* — 27,| < 27!, In the second case, a(+/2log(p)) =
Lpplfﬁf(lfﬁ)z, where the the exponent > 0 since r > /3 and r > p(p)
(recall that p() is the standard phase function). Therefore, g(t9) ~ 1/2 and
the claim follows. This completes the proof of the first claim.

Consider the second claim. We discuss for the case 0 < r < (/3 and
B/3 < r < (B separately.

Consider the first case. Recalling that [t;* — 2Tp| < 27,71, it is sufficient
to show that for all ¢ such that [t, — 27, < 47, /vaé’(t)/wo(t) < —1/2.
Introduce s(t) = [typ(t) + d(t)r, (£)] - [W(t )+€p‘1’rp (0)/[(2) +eptr, (1)) By

direct calculations,
—~ ~ 1
(A.51) W"/W(t)=1+1I— ST,

where

I=(g(t)=1)*/mi(t), II = d(t)/ma(t)—mi*(t), I1T = (s(t)~1)g*(t)m1*(¢).

Consider I first. When [t — 27,| < 47, L on one hand, by Mills’ ratio,
my(t) ~ (t — 1) ~ 7. On the other hand, by similar argument, |g(t) —
1] < CT};Z. It follows that I < CTZ;2. Consider I1 next. By Mills’ ratio,
mitt) = (t — 1) + ﬁ + O(7,3). Since |d(t) — (t — 7p)| is algebraically
small, it follows from basic algebra that I ~ —1. Consider I1I. Note that
both the ratio yr, (t)/1(t) and the ratio €, ¥ (t)/ ¥, (t) are algebraically
small. Combining this with U (¢)/v(t) = (1/t) — (1/t3) + O(t™9) gives

ty ()W
(¥(1))

Recall that m;'(t) ~ 7, and g(t) ~ 1, it follows that IT1 ~ —472 [1* ~ —1.

Inserting these into (A.51) gives that for all [t —27,| < 47,1, fW/é’(t)/fWJQ(t) S
—1/2 and the second claim follows.
Consider the second case, where r > (. For a constant 19 € (0,1) to be

determined, choose to and t;)t such that a(tg) = ?:[;:f , and a(tff) =1+

no)a(to). It is seen that |7§Zj,E - BQJ;TTM < Cr,t, and |t — ﬁ;TTp| < ot
Combining these with definitions and Mills’ ratio, for ¢, <t < &f, R71(t) ~
(t—1p)/t ~(B—1r)/(B+71), and that

1

s(t) = (2) +0(7,°) =1= 5 +0(7, ),

1 1+ af(t)
2 [(B=7)/(B+7)]+alt)

(A52) g(t) ~
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By direct calculations, g(t,) > 1 and g(t;}) < 1. Since g(t;*) = 1, we have
t, <t <tr.

We now use (A.51) to calculate W (t)/Wo(t) with. First, recall that
IT ~ —1. Second, by similar argument, my*(t) ~ (t — 7,) ~ (8 — 1)/ (2r)7.
Combining this with (A.52),

B—r
2r

1 1+ a(t)
e ram )

I=m*(1)g(t)—1)* = (
Last, by similar argument,

t(t) + epd(H)¢r, (1) (B+

(1) + et g
T +e¥,0) (B
oty o JBE /B =)+ (O] -[(8 =)/ (B -+ 1) +a(t)

(1 +a(t)? |

Combining this with (A.52), ITI equals to (527’)27'3 : [W‘%]Q times

[[(5 +7)/B=r)+a®)]-[(B—7)/(B+r)+a(t)]
(1+a(t)?
Inserting these into (A.51) and recalling that a(to) = (3r — 8)/(B +r), i
follows from basic algebra that W”(to)/W (to) < —23(2 b R (521]“)2 2 Recall
that a(tg[) = (1 £ no)a(tp). By the continuity of I and III on a(t ), if we
choose 7o sufficiently small, then for all ¢, < < t]‘f ,

T T 3r—f8 B—r
W0/t < — =2 E Ly

and the claim follows. O

(=) +alt) S-r .,
(B+r)+alt) 2r P

r)/
r)/

—1+o0(1)].

A.11. Proof of Theorem 2.3. We write %(t) = %(t, €p, Tp, (),
Sep(t) = Sep(t, Z, 1, Q), and Tigear = Tideai (€p, Tp, ) for short. The follow-
ing lemmas are proved in Section A.12 and Section A.13 respectively.

LEMMA A.11. Fiz a constant k > 0. As p — oo, for any sequence t), €
(0, 7p+ 5] with 5, defined in Lemma A.4 such that Sep(t,) > L,p", we have
P(YLi(X,Q) <0t =tp) = @((1 + 0(1))%Sep(tp)).

LEMMA A.12. For any sequence of closed subset A, C [0, 7, 5,] with s,

defined in lemma A.J, if there exists a constant k > 0 such that sup;c 4 {Sep(t)} >
p® for sufficiently large p, then with pmbabz’lity at least 1 — o(1/p),

sup Sep(t) ( + o(1/+/logp ) sup ge?n(t).

teAp 0<t§rp+§p
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Now we proceed to prove the theorem. The key is to show

. _ 1—
(A53)  min P(YL(X,Q) <0lf) > <1>((1 n 0(1))§Sep(Tideal)>,
and

. _ 1—
(A54) | min  P(YL(X,0) < 0]f) = <I>((1 n o(1))§sep(z;dw,)).

Then combining the above results completes the proof of the theorem.
We first prove (A.53). When r < 3, by proof (1b) in Lemma 3.4 we have

Sep(t, Z, 1,Q) < Lppl%e*i max{48-2r36+4} for a1l ¢ > Tp+35, with probability
at least 1 — o(p~!). When r > 3, by Lemma 3.4 we have

Sep(t) = Sep(t) + (Sep(t) — Sep(t)) < Sep(t) + Lyp ™"/,

Following the same line as that in the proof of Lemma 2.2 we can show that
for r > 83, %(t) < Lppl%g_c8 with cg = ¢g(8,7) > §(58,r) for all t > 7, +5),.
Combining these and recalling that r» > p;(f) and 3 € (%, 1 —0), we have
Sep(t) < Lpp%fq’(ﬁ ") with ¢o(f, r) some constant whose value depends on
whether » < 8 or r > (3 and satisfies cg(8,r) > 6(8,r), for all t > 7, + 5,
with probability at least 1 —o(p~!). Recall that %(ﬂdeal) = Lpp¥75(5 ),
Thus,

P(YLi(X,Q) < 0Jt) = E(é(%Sep(t))) > 3 (L,p'700) (1~ ofp™)

> i)((l +o(1)) %%(Tidml)).

This completes the proof of (A.53).
Next we prove (A.54). We only need to prove that uniformly over all
0<t<7+35p

_ 1 __
(A.55) P(YLy(X,Q) < 0ft) > <I>((1 +o(1)=  sup Sep(t)).
0<t<Tp+3p

Then, taking t, = Tjgeq in Lemma A.11 and noting that Tjgeq € (0,7, +
5p] shows P(YLy(X,Q) < 0[Tigeat) = @((1 + 0(1))%sup0<t§w+§p Sep(t)).
Combining this with (A.55) yields (A.54). -

We now proceed to prove (A.55). Define A, = {t : t € (0, 7,+5,], Sep(t) <
%sup0<tSTp+§p{Sep(t)}}. Then by Lemma A.12, with probability at least
1- 0(p_1)7

1 1 —
)5 8WPo<t<r, +3,15€p(t)}-

supea, Sep(t) < (14 of Toap) 2

:
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We claim that it remains to show with probability at least 1 — o(1/p), uni-
formly for all ¢t € AS = (0,7, + 5p) \ 4p,

1 ——
(A.56) Sep(t) < (1+ Lpp™")5  sup _ Sep(t),

0<t<7p+35p

where k = (1—-0)/2—6(8,r) > 0. Then, combining the above two inequalities
yields that uniformly for all ¢t € (0,7, + 5],

PYLAX,) < 01 > 8((+ ol )y swp 5ep(0) (1 o)

—o((1+ o) b Sen(t)).

which completes the proof of (A.55).
We proceed to prove the above claim (A.56). Introduce the event

| M () — mp(t)] < Ly Va(t) —

WOl _
————=— < Lyp "},
teAg mp(t) tGA“ pF( ) " }

where & is as introduced in (A.56). Then on the event B,

(A 57)
a1 e
MORA% (L + Lpp™")mp(t)/\fvp(t) < (L+ Lyp™")5  sup  Sep(t),
0<t<Tp+3p
and the above claim (A.56) holds by noting Sep(t) (t)/ \/7 Next

we show that P(Bj,) > 1—o0(1/p). Recall that we have proved in (2.13) that

SUPy< i< /aTogp O€P(t) = Lypp”®. By Lemma A.4 and (A.87), v,(t) > CpF(t)
with some constant C' > 0, where the value of C' depends on whether r < 3
or 7 > . Moreover, by definition of Ag, Sep(t) > %Lpp_” for t € A7, Tt

follows that my(t) = %\/vp Sep ) > \/Cva(t)Lpp’“‘. On the other hand,

by Lemma A.15 mp( ) < Lypt~ 0/2F(t), so we can derive pF(t) > Lyp?r+?
and consequently, \/mpymy(t) > Lyp* ™ and vp(t) > Lyp** . By Lemma
A.17 and using similar arguments as those in Lemma A.16, we can prove
that for each ¢ € A7,

P<|Mp(t) — mp(t)| > Lppﬂ(”) < 0(&)7 P(‘Vp(t) — vp(t)] > Lpp—n) < o(i

my(t) P’ vp(t) P
Using the grid point method as that in the proof of Lemma 3.1 shows that
P(By) > 1 —o0(1/p). This completes the proof of (A.56) and the results in
the theorem follow immediately.

O
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~A.12. Proof of Lemma A.11. Write for short %(t) = %(t, €ps Tps 2),
Mp(t) = Mp(tv Z,Q, ), ‘/p(t) = Vp(t7 Z,4), mp(t) = mp(tv €p> Tps Q)’ and
vp(t) = vp(t, €p, 7p, ). Define event

B, = {HN/:D(tp)_Up(tp)’ < Lppie/Qpﬁ(tp)a ‘Mp(tp)_mp(tp)‘ < Lppie/Qmp(tp)}‘

The key is to first show that (a)

(A58) P <exp( — losm)(Sen(ty)) - (14 0(1)),

and then show that (b) the desired claim in the lemma holds on the event
B,. Combining (a) and (b) proves that the desired claim holds.

We first prove claim (a). Note that by Lemma A.4, v,(t) > CpF(t) with
some constant C' > 0, where the value of C' depends on whether » >
or r < . Further by Lemma A.15, 0 < |/nym,(t) < Kz(logp)3/2pl7’(t) <
C’K;(logp)g/zvp(t), and so that \/n,m,(t) > C’npm%(t)/[Kg(10gp)3/2vp(t)] =
O (Sep(t))2. Taking A, — K, (log p) (Y22 2)) '/ h
K2(log 1)) D . Taking X, »( 0gp)< v ) mp(tp), then A, <
Lymy(ty). Tt follows that P(\/mp|Mp(t,) — my(ty)| > K3 - Lymy(ty)) <
P(\/@U\Zp(tp) —mp(ty)| > Kg)\p), where by Lemma A.17, the right hand
side

< KS exp ( — (Sep(tp))Q(logp)>.

Since SA’e;)(tp) > L,p™ — 00, it follows easily that
(A.59)

P(|Mp(tp)_mp(tp)| > Lpp_e/Qmp(tp)) < exp <— (%(tp))g(Ing)(1+0(l))>-

Next we consider Vj,(t). Let \, = %(tp) \/(1ogp)Kppf(tp). Using the

same technique as for proving (A.59) we obtain that X, < Lpp_(’/ Qpﬁ (t).
Further, by Lemma A.17 we have
(A.60)

P(’Vp(tp) _Up<tp>‘ > Lpp_e/zpﬁ(tp)) < exp (_ (%(tp))Q(logp)(1+o(l))>.

Combing (A.59) with (A.60) proves (A.58).

. = Vi(t
On the Sfit By, since v,(t,) > CpF(t,) by Lemma A.4, we have v:étﬁ)) =
M

1+0(1), iy = 1t o(1). Therefore,

(A.61) 1+ 0(1)) = Sep(ty) (1 + o(1)).

My (ty) _ myp(tp) (
VVlty) V()
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Combining (A.58) with (A.61), the misclassification rate can be bounded
as

PYL(X,9) < 0ft,) < & (;gvep@p)(l ¥ o(l))) +P(BY) S B (;gzp@p)(l - o<1>)) |
and

P(YL(X,Q) <0ty > ® <;%(tp)(l + 0(1))> P(B,) 2 ® (;S’Zg(tp)u + 0(1))> .
Thus the claim follows easily. O

A.13. Proof of Lemma A.12. Write SAe]/o(t) = SA'e;)(t, €p, Tp, 1) for
short. We consider the cases (a) pF'(t) > Kg(logpy, /Ty (t) > Kg(log p)7,
(b) /Ipmy(t) < KS(logp)7,pF(t) > Kg(logp)7, and (c)/mpymp(t) > KS(logpy,
pF(t) < Kj(log p)7 separately.

For case (a), define the event

o M) —my()] 1 ORGP
Bp_{tefg; @) - Vlgp ek pE() < Vlogp

We will first prove P(By) < o(1/p). Let A = A, = C’Klj3(logp)*1/2\/TTpmp(t)
with C' > 0 some constant. Then by Lemma A.17, using similar arguments
as those in Lemma A.16 we obtain that with probability at least 1 —o(p~3),
| M, (t) —my(t)| < (logp)~*/?m,(t). Using the grid points method as that in
Lemma 3.1, we can prove that except for a probability of o(1/p),

. 18,() — my (1)
teAy.ipmy (2K (logp)* (1)

< (logp) /2.

As for V,,(t), using similar arguments and Lemma A.16 we obtain that with
probability at least 1 — o(1/p),

(A62) sup M S (logp)_l/z'
t€A, pF(t)> K] (log p)? pE(t)

Thus we have proved the desired claim that P(B,) > 1 —o(1/p).
Next by Lemma A.4, pF(t)/v,(t) < C for all 0 < ¢t < 7, + 5,. Then on
the event B,

!
!
l

SO WO _ 1 wF 1
T R W A 3 B v e M by
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where the o(1) is uniformly over all ¢. Therefore, for any ¢t € A,

Sept) = 31,0/ Ty(1) = (1-+ ol )y (0)/ (1)

1
= S
o222 50

and the desired claim in the lemma has been proved.

Now we consider case (b). By the proof of Lemma A.16 we obtain that
except for a probability of o(1/p), for any t € A, Mp(t) < rer(t)—l—L]m;l/2
Lpngl/Q. Since we assumed that pF(t) > K3(logp)”, by (A.62) and the same

< (14 of

arguments as that for (A.93), we have L/E((g =1+ O(\/liﬁ) except for a

probability of o(1/p). Since by Lemma A.4, v,(t) > CpF(t) > C(logp)~1/2
with some constant C' > 0 whose value depends on whether » > 3 or r < 3.
Thus, with probability at least 1 — o(1/p), for any ¢t € Ay,

(A.63) Sep(t) t)/\/V, <Lpn_1/2/ vp(t) < Lpn _1/2

Thus, the claim in the lemma follows automatically by the assumption that
Supye 4,{9ep(t)} > p* with > 0.

Finally we consider case (c). By Lemma 3.1, pﬁp(t) < L, with probability
at least 1 — o(1/p). Thus, using the same arguments as those for proving
Lemma 3.4, part (1b) we obtain that with probability at least 1 — o(p~!),

(A.64) Sep(t) (t)/\/ Vp(t) < Lpn

Using similar arguments as in case (b), we prove that the desired claim in
the lemma continue to hold in case (c). This completes the proof of the
lemma. U

A.14. Proof of Lemmma 3.1. The following lemma is proved in Section
A.15.

LEMMA A.13. As p — oo, there is a constant C' > 0 such that with
probability at least 1 — o(1/p?), for all 0 < t < /2log(p),

IN

\/ﬁ’ﬁp(t) - ﬁ(t)\ { CK]?(]Og(p))l/Q’ if §~> pﬁ( H> log5/4( .
F(t)(1 - F(t)) CK3(log(p)*, if pE(t) < log”(p).
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We now prove Lemma 3.1. Put an evenly spaced grid on [0,/2logp]| by
tr = (v2logp/p*)k, 0 < k < p?. Denote by V() = \/p(Fp(t)—F(t))(F(t)(1—
F(t)))~Y2. For each 0 < i < p? — 1, we claim that

(A.65) sup g, <i<t;yy |V (O < max{|[V (&), [V (tir1) [} + Lp/p.
In fact, as both F, »(t) and F(t) are monotone functions, we have

(tit1) (ti) Fy(t) — F(t) ﬁ() F( z+1)
JFw F VRt

Let h; = ((“L)l) Since F(t) < 3.8 supyy, <t<tl+1}{|V )]} does not exceed
(A.66)

max{\ﬁv o Il )+ VP E) — )] RIF () — <z+1>|).
F(tz) F(t1+1)

Fy(t

Since the derivative of (—F(t)) is the density of a location normal mixture,
and is therefore bounded from above. Moreover, for 0 < t < y/2logp and

sufficiently large p, F(t) > F(v/2logp) > 2(1 — K. 26p)®(v21ogp) > p 'L,
Using Taylor expansion,

(A.67)

VBIE () = F(tir)| fIF( i) = F(ti)| b Ly
B(t) Fltw)  \PPF(t) \JpF(tin)

Similarly, we can show |h; —1| < L, /p. Inserting this and (A.67) into (A.66)

gives (A.65).
Combining (A.65) with Lemma A.13, the claim follows from

< Lp/P-

B E,(t) — F(t L
sup [f' (1) — H )‘} — s [VOISC swp V(R
{0<t</2Tog)} Ly / F(£)(1 — F(1)) {0<t<\/2Tog(p)} {0<i<p?} p
where C' > 0 is some constant. O

A.15. Proof of Lemma A.13. The following lemma is proved in Sec-
tion A.16.

LEMMA A.14. There are partitions {1, 2, ,p}=RIURy...URy =
R{URy .. .URY, such that N1 < K, Ny < K, and that for any fired 1 < j <
Ny and 1 < k < Ny, the collection of mndom varwbles {Z(i)— (i), i € R}
are independent of each other, and the same are {i(i), i € R]}.
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We now show Lemma A.13. The key idea is to combine Lemma 1.1 with
the well-known Bennett’s inequality (e.g., [3]). The Bennett’s inequality
only applies to sum of independent random variables. To apply it in the
current setting, note that by Lemma A.14, we can partition {1,2,...,p}
into N different subsets Ri,..., Ry, where N < Kg’, such that the col-
lection of random variables {Z(i) : i € Ry} are independent, for each

1 < k < N. In light of this, we write F w(t) = 1 Ziv 1 S(k) (t), where
S;l(,k) (t) = Xier, 1{|Z(i)| > t} is the sum of 1ndependent random variables,
to which the Bennet’s inequality can be applied directly.
In detail, let S®(t) = B[S (¢)] and s; = |Rg|, 1 <k < N, and S(t) =
]kvzl S®)(£). Since we are only interested in the region of ¢ such that F(t) <
1/2, it follows easily that

VBIE,(t) — F(t) _ V2|8 < Y V215 (1) — s®) (1))
(A.68) < :
Ft)(1—F(t)) VS kz:: VS

For each 1 < k < N, using Bennet’s inequality [3, Page 851] yields

(A.69) P(IS$ — sk @) > A) < 26Xp<— A ¢(A)>,

QSkUI% SkUl%

where ¢ is as in [3, Page 851] and syo} = Var(SI(,k) (t)). First, note that zv(z)

is monotonely increasing in & € (0,00). Second, by definitions and basic

property of Bernoulli random variables, sgo? < S*)(t) < S(t). Inserting

these into (A.69) gives

P<[s§f> - SO > )\> < exp<2;\zt)w(5?t))).

Let A = C/(logp)S(t) if S(t) > (logp)>/* and A = C(logp)>/? if S(t) <
2(log p)5/ 4 where C > 0is a constant. By elementary calculus and the
property of 1,

P([s},@ -5t > A) < { exp(—pED), S(t)i

exp(—5EL),  S(t)

Inserting this into (A.68) and noting that pF (t) > (logp) /2 give the claim.
O
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A.16. Proof of Lemma A.14. Recall that Z — ji ~ N(0,Q), the first
claim follows directly from Lemma 1.1. For the second claim, introduce a
graph G = (V, E) where V = {1,2,...,p}, and nodes i and j are connected
if and only if S; N S; =0, where S; = {1 <k <p: Q(i,k) #0}, 1 <i <p.
Since 2 is K)-sparse, G is Kg—sparse. Also, fi(7) and fi(j) are independent if
and only if nodes ¢ and j are disconnected. Applying Lemma 1.1 to G gives
the claim. 0

5 A.17. Proof of Lemma 3.3. Recall that n, = Y, 7 = QZ, and
Z = QZ. A direct result of Lemma 3.2 is that there is a term 0 < 7, <
C’Kg(logp)p_(’/2 such that with probability at least 1 — o(1/p),

HIZ(G) = B-H{Z()| = ) < Ut —np < |Z(j)] < t+mp}, ¥t >0 and 1 < j < p.

Let Gy(t) = Fy(t —mp) — Fy(t +1p) and G(t) = F(t —1,) — F(t +n,). By
the above inequality, it is seen that with probability at least 1 — o(1/p),

(A.70) |Ep(t) = Fp(t)] < Gy(t).

We now analyze G (t). By definitions and the triangle inequality,
(ATL) Gy(t) < G(b) + | Fy(t — 1) = F(t = mp)| + | Fp(t + 1p) = F(¢ +1p)].
A key fact is that there is a universal constant C' > 0 such that
(A.72) |F'(t)| < C(K,m, + t)F(1).

To see the point, we write F/(t) = % b, E[\Tl\/@ﬂ(i) (t)] and F'(t) = —% D Elp(t—
VIpii(i)) + ¢t + \/npii(i))], where ¢ is the density function of N(0,1).
Note that there is a constant C' > 0 such that ¢(x) < C|z|®(z), and that
|t + \/npfi(i)| < t+ Kp7p for all 1 <i < p, the desired claim follows.
Now, first, write G(t) = F(t—n,) — F(t+m,) = 2n,F'(€) for some number
¢ with |€ — t| < n,. Using (A.72), |F'(€)| < CKppF(€) ~ CK,mpF(t). Tt
follows

(A.73) G(t) < CK,mpF(t)n,.

Second, by Lemma 3.1 and monotonicity, with probability at least 1—o(1/p),
|Fp(t£m,) —F(t+n,)| < CK;’(logp)W‘Lp’l/Q(F(tinp))l/Q, where by (A.72),

F(t+mn,) < F(t). It follows that with probability at least 1 — o(1/p),

(A.74) |Fy(t £ mp) — F(t £ )| < CK(logp)*p~ 2 (F (1),
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Recall that 1, < Kg’(logp)p_eﬂ. Inserting (A.73)-(A.74) into (A.71) gives
(AT5)  Gy(t) < CK(logp)*/*p /2 F(t) + CK3(log p)*p~ /2 (F(1))'/.
Combining (A.75) with (A.70) gives

(A.76) B
VOIF(t) = F (if)l< WIG()I

JROU_F©)  JFO0-F

and the claim follows. O

< C(Kp(logp)*2(p' " F(t))"/? + K3(log p)?),

A.18. Proof of Theorem 3.1. We consider the case when pF(t) <
Kg(log(p))5 and when pF(t) > Kg(log(p))5 separately. )
In the first case, it is sufficient to show that |[HC(t, F,)| < L, and
|HC(t, F, p)| < Ly. By Lemmas 3.3 and 3.1, with probability at least 1 —
o(1/p), p|F,(t) — ()|<L By Lemma A .4, F()_(l—Kep)\ll()and
thus, p¥(t) < L,. Since HC(t, F},) is defined in a way such that F,(t) > 1/p,
it is easy to see that HC(t, F,)) < p|Fp(t) — U(t)| < p|F,(t) — F(t)| +pF(t) +
pV(t) < Ly,. Similarly, we can prove that HC!(t, ﬁp) < L. The claim follows
easily.
In the second case, let h(t) = (F(t)(1— F(t N)/(Fp(t )( — F,(t)) and write
for short g(t) = /p(Fp(t) — F »(1)) (F( )(1 f(t))f . By definitions, we

can write
(A77)  HC(t,F,)) — HC(t, F) )\/h(t) + HC(t, F)(+/h(t) — 1).
We first prove |h(t) — 1| < o(1). To see this, note that (A.76) and Lemma

A .13 ensure that with probability at least 1 — o(1/p),

(AT8) |Ep(t)/F(t) — 1] < [(Fy(t) — Fy(t)/F(t)] + | Fp(t)/F(t) — 1]
< CK}(log p)*/?p~*"? + CK3(log p)2(pF (1)) /2.

By the assumption of pﬁ(t) > Kg(logp)5, the right hand side of (A.78)
tends to 0. Thus, with probability at least 1 —o(1/p), 0 < F,(t), F(t) <2/3
for all t > W—1(1/2) and pF(t) > K} (logp)®. Note that for all z,y € (0,2/3),
[[z(1—2)]/[y(1—y)]—1| < C|xz/y—1|. It follows from (A.78) and definitions
that

(A79)  |h(t) — 1] < CIE(1)/F(t) — 1] < Lo + (0P (1) 712),
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where the right hand side tends to 0 since pF(t) > Kg(logp)5. At the same
time, since F(t) > (1 — Kpe,)¥(t), we have |F(t) — U(t)| < F(t) + U(t) <
2F(t). It follows from 1 — F(t) > 1 — U(t) — Kyep > 1/2 — Kpe,, that

(A80) [HC(t,F)| = pIF(t) = U()(F(t)(1 - F(1)""* < CpF(¢)"/*.
Combining (A.79) and (A.80) gives
(A81) HO(, F)VAW® — 1] < Lyl F() 2 + 1.

At the same time, a direct use of Lemma 3.3 also gives that with probability
at least 1 — o(1/p),

(A.82) g(t) < Lyl(p' ' F(t))"/? + 1).

Inserting (A.81) and (A.82) into (A.77) and recalling |h(t) — 1| — 0 gives
the claim. m

A.19. Proof of Theorem 3.2. Write for short Wp(t) =p '2HCO(t, F))
and W (t) = p~/2HC(t, F).

First consider the case of > % By triangle inequality, Theorem 3.1, and
Lemma 2.3 we have

(A.83)
Cosup W) —Wot)] < sup  [W(t) — W)+ sup  [W(t) — Wo(t)]
T-1(L<t<sy T-1(Ly<t<sy t>T—1(1)

< sup L P 4p P\ F@) +p ) < L +p7P).
T-1(§)<t<sp

This result is parallel to Lemma 2.3. When r < 3, similar to (A.48) we can
obtain that for all u satisfying |u| < ¢4/,

(A.84)

—~ —~

2
*x _ *k -2 — —c r.a
Wylty" +u) = Wy(ty") < Ly(p~2 +p %) + [Lyp~0Pre) —

cru —~
sup Wy(t),
T+ a2 {t>0} )

for some constant c; > 0, where ¢;* is as in (A.48). It is easy to check
that supg>o Wo(t) = Lpp_‘s(ﬁ””) > p_% > p 02 ¢y(B,7,a,0) < B, and
pco(Bma) SUP;>q Wo(t) > p~P. Thus, for any u > Lpp_CQ(fB’“a) with co(8,r,a) <
min{ =200 0Bray it nolds that W (£ +u)— Wy (t5+) = —Lyp=228m) (14

2
o(1)) < 0 for all |u| < c4/7p. Again, using similar arguments as in Theorem
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2.1, we can prove that /Wp(t) - Wp(t;*) < 0 for all [t —t3*[ > c4/7p. Thus,
we have proved that

[t5' = b3 = |Tre(Fy) — t7| < Lyp~2Fr).
This together with (A.49) completes the proof of the Theorem when r < .
Now we consider the case where r > 8. If t > 7, or t < \/@—Al with
Ay = dyloglog p/+/log p, by Lemma 2.4 and (A.83), it holds W, (¢) = Wy (¢)+
(Wy(t) — Wo(t) < 35072+ Lyp™ + Lyp~/. Recall that 8 < 1—6 < 6.
Thus /Wp(t) < %p‘ﬁ/z(l +0(1)). If /2B8logp — Ay < t < 7p, using similar
argument we obtain that W\p(t) = Wo(t)—k(wp(t) —Wo(t)) 2 p~B/2(1—0(1)).

Thus,
tfc € (v2Blogp — A1, 1p)
and the claim in the theorem follows.
Next we consider the case where 6 < % By Theorem 3.1 and Lemma 2.4

and noting that 1 — 0 > 8 > 15, for any ¢,t +u € [s,(0), sp] we have

Wt +u) = Wy(t) = (Wy(t +u) = Wo(t +u)) = (W(t) = Wo(#))

+ (Wo(t +u) = Wo(1) < Lyp™ "/ F(t) + Lyp™? + (Wo(t +u) — Wo(t)).
Since p~?F(t) < p~'*? and 8 > (1 — 6)/2, it follows that
(A.85) Wy(t+u) — Wy(t) < Lyp~ =02 4 Lp= + (Wo(t + u) — Wo(1)).

So the stochastic behavior of Wy (t) in the range ¢ € [s,(0), s;] determines

the stochastic behavior of /Wp(t +u) — /Wp(t). By direct calculations, we
obtain that if (8, r,6) falls in either of the six sub-regions as follows

« 1/3<0<1/2, (1-0)/2< B <1-0,r>max{pj(8), 5},
el <0<l (1-0)/2<p <1207 > max{152 pj(8)}, Ir -

VI—26|>1-20-p3

o %<0§%71_25<5§1—6,r>max{%m2(ﬁ)}

¢ 0< <1 (1-6)/2<p<3(1-20)/4,r>max{5,p(8)}, Ir—
VI-20|>VT-20-5

¢ 0<0 <1 31-20)/4<p8<1-20r>max{52 p5(8)}, Ir —
VI-20|>VI-20-3

° 0<9§%,1—29<B<1—0,r>max{%w,p*(ﬁ)},

then 7% € (sp(0), s;) and the maximum of Wy(t) is achieved in (s,(0), s;).
So it reduces to the § > 1/2 case. Note that the six regions above can be
summarized into Condition (a)-(b) in Theorem 1.3. By (A.85) and using

similar proof as that for § > % we finish the proof of Theorem 3.2. O
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A.20. Proof of Lemma 3.4. Introduce uy(t) = uy(t, €, 7, Q) = 225,
H|Z3)| > t}]. The following lemma is proved in APPENDIX B.

LEMMA A.15. For any t > 0, there are universal constants Cp > 0
. . 1
and Co > 0 such that for sufficiently large p, Ci mm{t,Kp\/TTg},/ » <

Mo lber ) < Co(141) /Ty and my(t, 6, 7p, Q) < Co(1+) K 2r2n, PpE(t),

up(t, €psTp, Q)

where F(t) is defined in Lemma A.2.
The following lemma is proved in Section A.21.

LEMMA A.16. There is a constant C > 0 such that with probability at
least 1 — o(1/p), for all 0 <t < /2log(p),

(A86) \/"TP‘MP(ta Z?:u) - ’I?’Lp(t, €p> Tps Q)| < CKS(logp)l?)/ll pﬁ(t),
(A8T)  |Vp(t, Z, 1) — vp(t, €, 7, Q)| < CKp(logp)*/?\/pF (2).

Write for short Vi,(t) = Vu(t,Z,Q), My(t) = My(t, Z,Q,pn), my(t) =
My (t, €p, T, ), Vp(t) = vp(t, €p, 7, ), :STG-]/)(t) = Sep(t €p, Tp, K1), Sep(t) =
Sep(t, Z, 1, ), ﬁ(t) = ﬁ(t,ﬁp,Tp,Q) and ﬁp( t) = F, »(t, Z, 11,9). We consider
the two cases 1) t > 7, + 5, or pE(t) < Kg(logp) ,and 2) t < 7, + §, and
pﬁ(t) > Kg(log p)*, separately, where 5, is defined in Lemma A.4.

Consider the first case. It suffices to show (1a) p(g_l)/2%(t) < Lyp~ Y2+
Lppf max{48-2r,38+1}/4 454 (lb) p(éfl)/2S€p(t) < Lpp* max{45—2r,36+r}/4 +
Lpp_l/ 2. Claim (1a) can be proved using the same arguments as in Lemma
2.1, so we only need to prove (1b).

Consider (1b). Let n be a p x 1 vector such that n(j) = 1{(9,&?)(]) # 0},
1 < j < p. Also, for any p x 1 vectors x and y, let x oy be the p x 1
vector such that (z o y)(j) = z(j)y(j), 1 < j < p. By definitions, it
is seen that M,(t) = (i Z) = (2#)'Q(p o n). Using Cauchy-Schwartz
inequality, ]M @) < ((as )Qut) 12 ((won)Quo 77))1/2. Recalling that

Vi (t) = (if ) Q,ut , it follows that

|Sep(t)] = 2|, ()| (Vy(£) ™2 < 2((u o m)/ Qo m)) .

Since the largest eigenvalue of ) is no greater than K, the last term above
< 2K1/ ||peon|| and so |Sep(t)| < 2K1/2Huo77H At the same time, by Lemma
3.1, with probability at least 1 — o(1/p), pF,(t) < p|E,(t) — F(t)| + pF(t) <

Lp(p]:’(t))l/2 + pE(t) < Lyp'~max{48-2r36+1}/2 if ¢ > 7 4 5, Similarly, we

E[f(j)*
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can show that pF,(t) < L, if pF(t) < K3(logp)*. Thus, in case (1b) we have
pﬁp(t) < Lyptmax{4f=2r36+r}/2 1 [ By definitions, this implies that 7
has no more than Lpplfmax{w —2r3f4r}/2 4 L, non-zero coordinates. Since (2
is K,-sparse, n also has no more than L pl_max{‘m_zr 36+r}/2 4 L,, nonzero
coordinates. Therefore, ||uon|| < Lpp 30 —max{46-2r38+r}/4 4 [ p_(’/2 and
(1b) follows from the assumption that K, < L.

Consider the second case. Denote h(t) = vp(t) /Vyy(t). The key is to show

(A.88) |h(t) = 1] < Ly(pF(t) ">

Towards this end, we write |h(t) — 1| = I - II - h(t) - (pF(t))~Y/2, where
I = [Vy(t) = vp(0)|(pF(t) 72, and IT = (pF(t))/vy(t). First, by Lemma
A.16, I < L, with probability at least 1 — o(1/p). Second, by Lemma A 4,
11 < C with some constant C' > 0 whose value depends on whether r <
and ¢t < 7,4+ 5, or r > (. Last, by Lemma A.16 and (A.87), with probability
at least 1—o(1/p), V(1) /,(t) > 1-CK*(logp)*/> PELLE > 1-0(1), where
we note that pFN( ) > K3 (logp)* and C’Kf;(log(p))?’ﬂ(11)?(15))1/2(vp(t))_1 S
K;;(log(p))?’/z(pF(t))_1/2 = 0o(1). As a result, with probability at least 1 —

o(1/p), h(t) = g/:g)) < 1. Combining these gives (A.88).
Next, write

(A.89) |Sep(t) — Sepl(t) _|\/v() - \’/”5() | < IIT+1V,
where ITT = | M(t (t)]|\/R( /«/vp t)and IV = my(t)[\/h(t)—1|/\/vp(t).

Recall that h(t) < 1 + L and that CpF(t) < vp(t). It follows from Lemma
A.16 that with probability at least 1—o(1/p), ITT < | My (t)—my,(t)|(pE,(t)) /% <
Lyny, /2 At the same time, note that IV < |h(t)—1|m,(t)(v,(t))~*/2. On one
hand, by Lemmas A.4 and A.15, my(t) < Lpnp/ up(t) < LyK2n _1/2p15( t).
On the other hand, since v,(t) > CpFE(t), by (A.88), we have IV < Lyny 1/2
with probability at leats 1 — o(1/p). Combining these with (A.89) gives the
claim. N

By going through the proof above we see that if further 2 € M (a, b, Kp),

then the two cases at the very beginning can be reduced to 1) pF( ) <
Kg(logp) , and 2) pF(t) > Kg(logp) , and the claim |Sep(t) — Sep( )| <

~1/2
Lypny
proved.

can be proved using the same arguments. Thus, Lemma 3.4 is

O
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~A.21. Proof of Lemma A.16. Write for short M,(t) = My(t, Z,1,9Q),
Vp(t) = Vp(t, Z,Q), mp(t) = mp(t, €p, 7, ), and v,(t) = E[V,(t, Z,)]. The

following lemma is proved in Section A.22.

LEMMA A.17. For any t € (0,+/2logp],

P\l () = my (1) > K3N)
)\202 Aco

2K/ 2log(p)nymy(t) v ( \/%mp(t) )> ’

% — U 3 36X — )\2 )\
P(pr(t) ()] = Kp}‘) s Kp exp ( 4Kppﬁ(t)¢(2Kppﬁ(t))> ’

3
§erxp<—

where 1 is as in Bennett’s lemma [3, Page 851].

Since the proofs are very similar, we only show the first one. The goal is to
show that with probability 1—o(1/p?), | M, (t)—m,(t)| < CK} (log(p))3/4(pF (t))"/2
for any 0 <t < /2log(p). Once this is shown, we lay out an evenly spaced
grid on [0, y/2log(p)] with an inter-distance of 1/p, and the claim follows by
similar argument as in the proof of Lemma 3.1.

Since Lemma A.15 ensures that m,,(t) < CK2(log p)3/2pn51/2ﬁ(t), by the
monotonicity of x¢(x) and Lemma A.17,

(4.90)  P(mpliy(t) = my(t)] = KN
)\262 w( )\62 )>
2CK3(logp)®pF(t)  CKZ(logp)*/?pF(t)

3
Serxp(—

We now show the desired claim for the case pE(t) > (log(p))** and the case
pF(t) < (log(p))®/* separately.

Consider the first case. Let A = CKg(log p)?/2\/pF (t). Direct calculations
show that \/[K2(log p)>/2pF(t)] < C(pF(t))~"/? and A?/[K3(log p)*pF ()] >
C?log(p)K,. By (A.90) and noting that lim, o4 1 (z) = 1,

P (@]M,,(t) — my(t)] = CK;?(logp)g/Q\/p?(t)}>

CQKp(logp)

3
§erxp<— >

) < ol1/p?).

Consider the second case. Let A = CK2(log p)®. It is seen that /\/[KZ(logp)g/Qpﬁ(t)] >
C(log(p))®?/(pF(t)). Using Lemma A.17 where we note that 1 (z) ~ @
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when x — oo [3, Page 852],
- C(lo
P (Al (0) — my(0) > CKZ0gp)?) < Kdexp (- TUEL) < (1),

This together with pF(t) > p(1 — Kuep)¥(t) 2 (logp)~'/? yields the desired
claim. O

A.22. Proof of Lemma A.17. Since the proofs are similar, we only
show the first one. By Lemma 1.1, we can partition {1,---,p} into N =
N1Ny < KS sets Ry, -+, Ry such that for any fixed index 1 < k < N, the

collection of bivariate random variables {(fi(j), Z@G): g € Ry} are indepen-
dent of each other. Recall that My(t) = ?:1 a(g)sen(Z(5)1{1Z2 ()| > t}
and my(t) = E[Mp(t)]. The partition allows us to write My(t) — my(t) =
SR 1) (1) = my? (1)), where M (1) = 52, i(0)sen(Z(0))HIZ ()] >
t} and m,(f) (t) = E[M,gk) (t)], 1 <k < N. It follows that for any A > 0,

N
(A91) P(y/mp|Mp(t)=my(t)] = NA) < Y P(/ip | MEE (6) =P (1)] = N).
k=1

Fix 1 < k < N, using Bennett’s inequality [3, Page 851],

5 (AKpm>> |

~ 2|Ry|o? |Ry |0

PN () — mf (8)] > A) < exp (

where 1 is as in [3, Page 851, and |Ry|o? is the variance of ,/anIS’“) (t).
Using Lemma A.15, |Rg|o? < nyuy(t) < ¢y Kpy/2log(p)nym,(t). By the
monotonicity of the function z¢(x) [3, Page 851], it follows that

Aey ACo

2K /2 log(p)npymy(t) w( \/@mp(t) )> .

Inserting this into (A.91), the claim follows by recalling N < KS. O

Py (0-mP 0] 2 A) < exp (-

A.23. Proof of Lemma 3.5. Write for short Mp(t) = M,(t, Z.u, Q),
Mp(t) = Mp(t7 Z: 1, €2), ‘A/P(t) = %(tv 27 ), and ‘717(75) = V}?(t7 Z? Q), mp(t) =
myp(t, €p, Tp, ), and vy (t) = vp(t, €p, 7, ). We discuss the case 1) t > 7,+ 35,
or pF(t) < K}°(logp)” and the case 2) t < 7, + 5, and pE(t) > K;°(logp)”
separately.

Consider the first case. First, in the proof of Lemma 3.4, we have shown

~ 1-6 1
that Sep(t, Z, 1, Q) < Lpp 2 ~4 max{4f—2r,36+r} | Lpp_e/Q. Second, by simi-
lar argument as in the proof Lemma 3.4 part (1b), and using Lemma 3.3, we
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can prove that Sep(t,Z,u, Q) <L p 57— max{40-2r.38+r} + Lyp —0/2, Com-
bining these gives the claim.
Consider the second case. The key is that with probability at least 1 —

o(1/p),

(A.92)
max{ /7| My (t) — Mp(t)], [V (t) = Vp(8)]} < Ly - [p" 92 F (1) + (pF(1))"/?),
(A.93)

max{|(Vy(t) = vp()) /0p(t)], [\/7tp(My(t) — my(t))/vp(t)[} = o(1).

for all ¢ < 7 + §p. To see (A.92), note that |M,(t) — M,(t)| = |(ﬂtZ -
70l < 1 = 1 - [ where by the Kosparsity of 2. [ <
Kymyny %, and so [N,(t) — My(t)] < Kpmpny 2lif = pf |1 Similarly,
1027 + i)l < NQANAE + i oo ~S 2K, and so [Vp(t) — V,(t)| <
\(,ut —pfy Q(,ut + p7)| < 2K, ||ut — 7 |l1. By similar argument as in the
proof of Lemma 3.3, it is seen that with probability at least 1 — o(1/p),
|47 — @Z |1 < pGp(t), where Gp(t) is defined therein. It is shown in Lemma
3.3 that G,(t) < CK}(log p)3/2p—0/2ﬁ(t) + CK3(logp)®p~V/2(F(t))"/? with
probability at least 1 — o(1/p). Combining these gives (A.92).

To see (A.93), note that by Lemma A.16, with probability at least 1 —

o(1/p),
(A.94) V(1) — vp(t)] < CEKp((log(p))*/*(pF ().

Recall that by Lemma A.4, v,(t) > CpF(t) with some constant C' > 0
whose value depends on whether » < 8 or r > (. Combining this with
the fact that pF(t) > K}%(logp)” for all t < 7, + §p, it is seen that
CKp((log(p))**(pF(1)'/? = o(pF (1)) = o(vy(t)). Inserting this into (A.94)
gives that [(V},(t) — vp(t))/vp(t)] = o(1) with probability at least 1 —o(1/p).
By similar argument, \\/@(Mp(t) —my(t))/vp(t)] = o(1) with probability at
least 1 — o(1/p). Combining these gives (A.93).

We now proceed to show the lemma in the second case. Let h(t) =
V,(t)/V,y(t). Write
(A.95)

Vgl Sep(t, Z,p, Q) — Sep(t, Z, 1, Q)| < \/1/h(t) - T + |\/1/h(t) = 1| - I,

where I = /g (t) — My(8)|(Vp(6) 12 and IT = Nl (6)(Vy(6)) /2.
Recall that by Lemmas A.4 and A.15, \/mpymy(t) < K2(logp)3/ pF(t) <
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Kg(logp)3/zvp(t). Using Lemma A.4 and (A.92)-(A.93),

‘h(t) - 1‘ = ) Up(t> |V})(t) — %(t)“pﬁ(t))—l < Lp[p—G/Q + (logp)5/2(pﬁ(t))_1/2],

1< Ly(pF() /(1) (0 (1) 2[R (0)+ (1) 2] < Lyelp 2 (pF (1) V2 +1],

and
IT 5 (pF(8) /vp(1)) (0 (£)) ™" y/p | My (1) = myp(8)] + my(1)] < L.

Recall that pF(t) > K%(logp)”. This together with the inequality above for
h(t) ensures that |h(t) — 1| < o(1). Inserting these into (A.95) gives

|Sep(t, Z, 11, Q) — Sep(t, Z, 1, Q)| < Ly, -0 Y2 [p~ 02 (pF (1)) V% + 1],

and the claim follows. .
Similarly to Lemma 3.4, we see that if in addition Q2 € M, (a,b, Kp), then

the term Lpp%fi max{45=2r,36+7} in the upper bound of the claim can be

removed using the same proof as above. This concludes the proof of the
lemma. 0

APPENDIX B: PROOFS FOR SECONDARY LEMMAS

B.1. Proof of Lemma A.3. Note that P(|X|>t,|Y|>t) = P(X >
LY > )4+ P(—X>tY > )+ P(X > t,-Y >t)+ P(—X >t,-Y >t) =
I + I + I3 + I;. Consider I3. Define Y = 27 — Y. Then (X,Y) has joint
normal distribution with mean (0,7) and correlation —p. Since 7 > 0, it is
seen that Is = P(X > Y >t+ 27) < P(X > t,Y > t). Similarly, we can
obtain that Iy < P(X >tY > t) with X=-XandY =27r - Y. So we
only need to bound I; and Is.

Since the proofs are similar, we only show the case p > 0. Write P(X >
Y >t)=P(X >t,Y >t)/P(Y >t). First, by elementary calculus,

Cexp(—%), (t—7) < pt,

Coxp(~ =20 (1 =7) = p.

Second, note that when 0 <t < 7, P(Y >t) > 1/2, and that when ¢t > T,
P(Y >t)=®(t—7) > C[1+(t—7)] '¢(t—7) (e.g., by Mills’ ratio [4]), where
we note that [1 + (t —7)]7! > (1 +¢)~!. Combining these with elementary
algebra,

P(th,th)g{

Cexp(—t?/2), 0<t<r,
2_ —r 2 -
_ T 2
C(L+ exp(—580E™), 1> r
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Since 0 < p < a, the claim follows by basic algebra. O

B.2. Proof of Lemma A.7. Define f(t) = (1 + t)exp ( — %)Wg(t)
with @ = (1—a)/(1+a). We separate the cases of ¢ < r and ¢ > r. In the first
case, U (t,(q)) = (tp(q) — 1) + ®(tp(q) + 1) ~ C, where C' > 0 is some
constant. At the same time, by Mills’ ratio we have ®(t,(q)) ~ p~9/t,(q)
as p — 0o. Thus ¥(t,(q)) ~ 2p~9/t,(q). Combining these and noting that
exp(—% 2(0)?) =p~ %, t,(q) = Lp, and ¢, = p~ B, we obtain that as p — oo,

(B.1) F(tp(@) ~ Lpp~ "7 J5/p=t +p~F, it g <.

In the second case, by Mills’ ratio we have ¥, (t,(q)) ~ Lpp*(ﬁ*ﬁ)Q. Thus,
similarly we have

(B.2)  flty(q)) ~ Lyp~ %P~ Wi-vD*) \/p‘q +p B-VaIV? if g >

Define 6(q;7, 8) = B+ (g — v/r)? if ¢ <r, and é(q;r, 8) = B if ¢ > .
Then combining (B.1) with (B.2) yields

Fltp(a)) ~ Lyp~®36m8) [0 4 p-itard)

Since r < 3, direct calculation shows that

sup f(tp(q)) ~ Lyp~@Bma)=0r) — [ p=0(Bra) sup Wy(t,(q)), as p — oo,
0<g<1 0<q<1

where ¢o(8,, a) is defined in (2.12).

B.3. Proof of Lemma A.10. Write h(t) = ®(t)/¢(t) for short. For
positive functions f(¢) and g¢(t) defined over (0,00), we say that f(t) =<
g(t) if there are constants Cy > C7 > 0 such that C; < f(¢)/g(t) < Cs
for all ¢ > 0. The following claims can be proved by elementary calculus
and Mills’ ratio [4] so we omit the proof. (a) h(t) < Cmin{l,1/t}, (b)
h'(t)/h(t) =t —1/h(t) and (t71 —t73) < h(t) < (71 —t73 +6t°), and (c)
h'(—t)/h(—t) < —C'max{1,t} for all t > 0.

To show the lemma, it suffices to show that m4(¢) < 0 for all ¢ > 0. Write

L ®(t—m1p) +P(t+7) 1 h(t—7p)p(t — 1) + h(t + 1) (t + rp)'

P
ma(f) = h(t) ¢(t — 1) + o(t + 1) h(t) ot — 1) + ot + 1)

We show this for the case of t > 7, and the case of ¢t < 7, separately.
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Consider the first case. By direct calculations, it is seen
(B.3)

1 e—QTpt
ma(t)

= m[h(t—Tp)/h(t)]‘Fm[h(t"‘Tp)/h(t)] = maq(t)+map(t).

Write for short £(t) = h'(t — 1) /h(t — 1) — W' (t) /h(t). By (a)-(b) and direct

calculations,
by ()] < O™, b (1) = £t — 7) /()] + Olyte ™),

where we note h(t — 7,)/h(t) > C. Note that the claim follows trivially
if t < 7, 4+ 3. Therefore, to show the claim, it is sufficient to show &(t) <
—CTp_l min{1, (7,/t)?} for all t > 7, + 3. Toward this end, note that by basic
algebra and (b),

B 1 1 (t— Tp) ¢
e e I 10 A (T (e e e ey A

By basic algebra, we have that for sufficiently large 7, and ¢t > 7, + 3,

1—6(t—1,)72

1/t + 2t73.
t—Tp)_2+6(t—Tp)_4] +1/t+

&) < (- [
—
The claim now follows from elementary calculus.
Consider the second case. Rewrite

1 e 2wt h(t+ 7))
———h(t— P
[1+ e27!|h(t) (t=p)+ 1+ e 2wt R(t)

ma(t) = = mac(t)h(t—7p)+maa(t),

and so
my(t) = my (DAt — 7p) + mac(t)h'(t — 7p) + miy(t).

Similarly, by (a)-(c),
[mia(t)] < C1y7 b, mib,(8) < O, mao()h (t-17,) < —Cmax{1, thmax{1, (r,—) }h(t—7).
Combining these gives

mb(t) < C[—max{1,t} - max{1, (1, — t)} + Clh(t — 1) + C.

Since h(t — 7,) > C, it is seen that m/(t) < 0 for sufficiently large 7, and
the claim follows.

The second claim mgy(t) > 1 follows directly from the first claim and
lim¢_,oo ma(t) = 1, which can be obtained immediately by (B.3). O
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B.4. Proof of Lemma A.15. Recall that ® = 1 — @ is the survival
function of N(0,1). The following lemma is proved below.

LEmMMA B.1. For anyt > 0 and u > 0, there are universal constants

Cy1 >0 and Cy > 1 such that Cq min{t, } < % % < Co(1+1t).

We now show Lemma A.15. Let g = Qu for short. First, by definitions,
Vpmp(t) = Ely/mpfi(7)sgn(Z(1)H{|Z () = t}] = 2251 Ely/npi(5)(2(t—

Vpi(g)) — (t + VTpii(7)))]. Noting that for any fixed ¢ > 0, u[®(t — u) —
®(t + u)] is a symmetric function,

(BA4) Apmp(t) = Elly/Api()|(2(t — |y/Apia(5)]) — Bt + [y/Apfi(5)]))]-
J=1

Similarly, we have
(B5)  mpup(t) = > Elnpi® () (B(t — |y/mpfi(i)]) + &t + |y/Apia(5)]))].
7=1

Since that Q is Kp-sparse and that |,/n,u(j)| < 7 < \/21log(p), |/npii(j
b1 190, k)| - |/rpp(k)] < Kpy/2log(p). Comparing (B.4) and (B.5), the

first claim follows by Lemma B.1. The second claim follows easily from the
first claim and that |,/n,f(j)| < Kp7p. O

B.5. Proof of Lemma B.1. Consider the first inequality first. Let ¢(-)
be the density of N(0,1). For any real number v, write

i)(t—’l)) fO t—U))dJI _ > —(t—v)z —x2/2
ot —v) ¢<t+v> ‘/o © e T

where the right hand side is strictly monotone in v. Therefore, ®(t—u)/¢(t—
u) > ®(t+u)/d(t+u) or equivalently, ®(t+u)/®(t —u) < ¢p(t+u)/p(t—u).
Combining this with basic algebra,
(B.6) )
1[P(t—u)— Dt +u)] . [qS(t —u) — ot +u)] ot [et“ - e_t“}
— P

“u|ot —u)F ot +u)|  ut|etfetu]

When 0 < ut < 1, the right hand side > ¢- mf0<1<1{xex+7@§} When ut > 1,
by the monotonlclty of the function (e — e™%)/(e® + e~*), the right hand
side > (1/u)-|[(e! —e*t“)/(et“—i—e*t“)] > (1/u)-[(e—e 1) /(e+e1)]. Letting

—_e~ 2

C1 = min{infoc,<1 {25 G (e — e 1/(e+e 1)} gives the claim.
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Consider the second inequality. When u > 1, the claim follows trivially,
so we consider the case 0 < u < 1 only. By Taylor expansion, there is a
constant ¢3 > 1 such that

1 é(t - u) (t + U) < 2u max{tju<s<t+u}{¢(5)} < ¢s

1 -0 ot — u)
w®(t —u)+ Ot +u) ~ O(t — u) D

(B.7) 0 u)

where in the second inequality we have used ¢ > 0 and u < 1. At the
same time, By Mills’ ratio [4], there is a constant ¢4 > 0 such that ®(¢) <
cq - (tp(t)). Therefore, ¢(t —u)/®(t —u) < ca(1+ [t —u|) < 2¢4(1+1). Insert
this into (B.7). The claim follows by letting Co = max{1, 2c3c4}. O
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