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APPENDIX A: PROOFS FOR PROPOSITION 1 AND MAIN LEMMAS

In this section, we prove all key Lemmas in the order they appear in the
main text. Additional Lemmas and their proofs are provided in Appendix
B.

Deviation of sub-Gaussian distribution. Recall that a random vector
w = (W1, · · · ,Wp)

T ∈ R
p is sub-Gaussian if there exist some positive con-

stants a and b such that

P (|vTw| > t) ≤ a exp(−bt2)

for any t > 0 and any vector v ∈ R
p satisfying ‖v‖2 = 1.

Suppose w = (W1, · · · ,Wp) is sub-Gaussian with constants a, b, mean
µ and covariance matrix Σ. Let w1, · · · ,wn be n independent copies of w.
Since w is sub-Gaussian, by Lemma 10, we have w−µ is also sub-Gaussian.
Then there exists some constants ã and b̃ such that

P (|vT (wi − µ)(wi − µ)Tv| > x) ≤ ã exp(−b̃x)

for all x > 0 and ‖v‖2 = 1, which implies that

E{exp[tvT (wi − µ)(wi − µ)Tv]} < ∞

for all 0 < t < b̃ and ‖v‖2 = 1. Similar as in the proof of Lemma 3 in [1], we
know that there exist some constants C > 0 and ρ > 0 depending on ã and
b̃, such that for all 0 < x < ρ and any unit vector ‖v‖ = 1,

(A.1) P{|(1/n)
n∑

i=1

vT (wi − µ)(wi − µ)Tv − vTΣv| > x} ≤ Ce−nx2ρ/2.
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A.1. Proof of Proposition 1. The main idea is to prove that our test
statistic D̃j converges to its population counterpart Dj uniformly over j.
Since Condition 3 ensures that Dj is bounded from below for j ∈ A1 and

Dj = 0 for j ∈ Ac
1, the uniform convergence of D̃j will imply the results in

Proposition 1.
We proceed to prove the uniform convergence of D̃j to Dj . To this end,

we decompose the difference between them into the following five terms:

|D̃j −Dj | ≤
∣∣log(σ̃2

j /σ
2
j )
∣∣+ π

∣∣∣log
[
(σ̃

(1)
j )2/(σ

(1)
j )2

]∣∣∣+ (1− π)
∣∣∣log

[
(σ̃

(2)
j )2/(σ

(2)
j )2

]∣∣∣
(A.2)

+ |n1/n− π| ·
∣∣∣log

[
(σ̃

(1)
j )2

]∣∣∣+ |n2/n− (1− π)| ·
∣∣∣log

[
(σ̃

(2)
j )2

]∣∣∣ .

We will establish successively the deviation bounds of the terms on the
right hand side above. The same notation C will be used to denote a generic
constant without loss of generality.

By Lemma 7, the estimators σ̃2
j converge to σ2

j uniformly over all j =

1, · · · , p, with probability at least 1− p exp(−Cτ̃21,pn
1−2κ). Define this event

as E . We will condition on the event E hereafter. Since x−1
n log(1 + xn) → 1

as xn → 0, it follows that

log(σ̃2
j /σ

2
j )/(σ̃

2
j /σ

2
j − 1) → 1

uniformly for all j as n → ∞. Thus, uniformly over all j = 1, · · · , p, with suf-
ficiently large n, we have the following bound for the first term | log(σ̃2

j /σ
2
j )|

on the right hand side of (A.2)

P (| log(σ̃2
j /σ

2
j )| > 4−1cn−κ|E) ≤ P (|σ̃2

j /σ
2
j − 1| > 8−1cn−κ|E),(A.3)

where constants c and κ are defined in Condition 3. Then (A.3) together
with (A.7) in the proof of Lemma 7 entails that

P (| log(σ̃2
j /σ

2
j )| > 4−1cn−κ|E) ≤ exp(−Cτ̃21,pn

1−2κ).(A.4)

Using the same arguments, for either k = 1 or 2, we can prove that

P (| log[(σ̃(k)
j )2/(σ

(k)
j )2]| > 4−1cn−κ|E) ≤ exp(−Cτ̃21,pn

1−2κ).(A.5)

By the proof of Lemma 6, we know that

τ̃2,p ≥ πλmax(Ω1) + (1− π)λmax(Ω1Σ2Ω1).

Since (σ̃
(1)
j )2 and (σ̃

(2)
j )2 can be bounded from above by λmax(Ω1) and

λmax(Ω1Σ2Ω1), respectively, we know that (σ̃
(k)
j )2 can be bounded from
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above by π−1(1 − π)−1τ̃2,p for k = 1, 2. As n1 =
∑n

i=1∆i, by Hoeffding’s
inequality we get

P (|n1/n− π| · | log[(σ̃(1)
j )2]| > 4−1cn−κ|E)(A.6)

≤ P (| 1
n

n∑

i=1

∆i − π| > cn−κ

4| log[π−1(1− π)−1τ̃2,p]|
|E)

≤ 2 exp(− 2nc2n−2κ

16 log2[π−1(1− π)−1τ̃2,p]
) ≤ exp{−Cn1−2κ/ log2(τ̃2,p)}.

Similarly, we have

P (|n2/n− (1− π)| · | log[(σ̃(2)
j )2]| > 4−1cn−κ|E) ≤ exp{−Cn1−2κ/ log2(τ̃2,p)}.

(A.7)

In view of (A.2), we have

P (|D̃j −Dj | > cn−κ|E)
(A.8)

≤ P (| log(σ̃2
j/σ

2
j )| > 4−1cn−κ|E) + P (| log[(σ̃(1)

j )2/(σ
(1)
j )2]| > 4−1cn−κ|E)

+ P (| log[(σ̃(1)
j )2/(σ

(1)
j )2]| > 4−1cn−κ|E) + P (|n1

n
− π| · | log[(σ̃(1)

j )2]| > 4−1cn−κ|E)

+ P (|n2

n
− (1− π)| · | log[(σ̃(2)

j )2]| > 4−1cn−κ|E).

Combining the probability bounds in (A.4), (A.5), (A.6) and (A.7) gives

P (|D̃j −Dj | > cn−κ|E) ≤ 3 exp(−Cτ̃21,pn
1−2κ) + 2 exp{−Cn1−2κ/ log2(τ̃2,p)}

≤ exp{−Cn1−2κ/[τ̃−2
1,p + log2(τ̃2,p)]}.

It follows that

P ( max
1≤j≤p

|D̃j −Dj | > cn−κ|E) ≤
p∑

j=1

P (|D̃j −Dj| > cn−κ|E)

≤ p exp{−Cn1−2κ/[τ̃−2
1,p + log2(τ̃2,p)]},

which is the deviation of the statistic D̃j from its population counterpart
Dj . By Lemma 7, P (Ec) ≤ p exp(−Cτ̃21,pn

1−2κ). Thus we have

P ( max
1≤j≤p

|D̃j −Dj | > cn−κ) ≤ P ( max
1≤j≤p

|D̃j −Dj | > cn−κ|E) + P (Ec)

≤ p exp{−Cn1−2κ/[τ̃−2
1,p + log2(τ̃2,p)]}.
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Therefore, for any p satisfying log p = O(nγ) with γ > 0, γ + 2κ < 1 and
τ̃−2
1,p + log2(τ̃2,p) = o(n1−2κ−γ), it follows that

P ( max
1≤j≤p

|D̃j −Dj | > cn−κ) ≤ exp{nγ − Cn1−2κ/[τ̃−2
1,p + log2(τ̃2,p)]}

≤ exp{−Cn1−2κ/[τ̃−2
1,p + log2(τ̃2,p)]}.

By Condition 3 and its discussion, we know that Dj ≥ 3cn−κ when j ∈ A1,
and Dj = 0 otherwise. It follows that

{min
j∈A1

D̃j < 2cn−κ} ∪ {max
j∈Ac

1

D̃j > cn−κ} ⊂ { max
j∈{1,··· ,p}

|D̃j −Dj | > cn−κ},

which shows that with probability at least 1−exp{−Cn1−2κ/[τ̃−2
1,p+log2(τ̃2,p)]},

min
j∈A1

D̃j ≥ 2cn−κ and max
j∈Ac

1

D̃j ≤ cn−κ

for sufficiently large n.
As the same conditions hold for the covariance matrix Σ2 and the data

after the second transformation, the results above also apply to the covari-
ates in A2 with the test statistics calculated based on data transformed by
Ω2. This completes the proof of Proposition 1.

A.2. Lemma 1 and its proof.

Lemma 1. Under model setting (2) and conditions in Theorem 1, for
sufficiently large n, with probability at least 1−p exp(−Cτ̃21,pn

1−2κ), it holds
that

max
1≤j≤p

|σ̂2
j /σ̃

2
j − 1| ≤ Tn,p/6

for some positive constant C.

Proof. Let Z = 1n(z̄1, · · · , z̄p) with z̄j =
∑n

i=1 zij/n for the original
data matrix without transformation. We will first bound the term σ̂2

j − σ̃2
j

by writing it as

σ̂2
j − σ̃2

j = eTj [Ω̂1(Z− Z)T (Z− Z)Ω̂1 −Ω1(Z− Z)T (Z− Z)Ω1]ej/n.

Through a further decomposition, it gives

σ̂2
j − σ̃2

j = eTj (Ω̂1 −Ω1)(Z− Z)T (Z− Z)(Ω̂1 −Ω1)ej/n

+2eTj (Ω̂1 −Ω1)(Z− Z)T (Z− Z)Ω1ej/n.(A.9)
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We will then bound the two terms on the right hand side above separately.
Recall that ‖·‖max denotes the componentwise infinity norm for a matrix.

For the first term, we have

|eTj (Ω̂1 −Ω1)(Z− Z)T (Z− Z)(Ω̂1 −Ω1)ej/n|
≤ ‖(Z− Z)T (Z− Z)‖max‖(Ω̂1 −Ω1)ej‖21/n
≤ ‖(Z− Z)T (Z− Z)‖max[(Kp +K ′

p) · C1K
2
p

√
(log p)/n]2/n

= (‖(Z− Z)T (Z− Z)‖max/n) · [(Kp +K ′
p)

2C2
1K

4
p(log p)/n],

where the second inequality follows from the definition of acceptable esti-
mator and the fact that Ω̂1 −Ω1 is (Kp +K ′

p)-sparse.
For the second term, similarly we get

|eTj (Ω̂1 −Ω1)(Z− Z)T (Z− Z)Ω1ej/n|
≤ ‖(Z− Z)T (Z− Z)‖max‖(Ω̂1 −Ω1)ej‖1‖Ω1ej‖1/n
≤ (‖(Z − Z)T (Z− Z)‖max/n) · [(Kp +K ′

p)C1K
2
p

√
(log p)/n] ·Kp‖Ω1‖max.

Since ‖Ω1‖max is assumed to be upper bounded in Condition 4, and the
above two bounds are independent of the index j, in view of (A.9), we know
that there exists some constant C̃ such that

max
1≤j≤p

|σ̂2
j − σ̃2

j | ≤ C̃(‖(Z− Z)T (Z− Z)‖max/n)[(Kp +K ′
p)K

3
p

√
(log p)/n]·

(A.10)

max{(Kp +K ′
p)Kp

√
(log p)/n, 1}.

This together with the definition of Tn,p before Theorem 1 ensures that

max
1≤j≤p

|σ̂2
j − σ̃2

j | ≤ C̃(‖(Z− Z)T (Z− Z)‖max/n) · Tn,pτ̃1,p/(C̃1τ2,p).

By Lemma 6, σ2
j are uniformly bounded from below by τ̃1,p. By Lemma

7, max1≤j≤p |σ̃2
j /σ

2
j − 1| ≤ cn−κ/8. Combining these two results entails that

for n large enough,

σ̃2
j ≥ (1− cn−κ/8)σ2

j > τ̃1,p/2,

uniformly for all j, with probability at least 1−p exp(−Cτ̃21,pn
1−2κ). Denote

by E the event that the results in Lemma 7 hold. By Lemma 8, when C̃1 ≥
12c3C̃, we have

P ( max
1≤j≤p

|σ̂2
j /σ̃

2
j − 1| > Tn,p/6|E)(A.11)

≤ P ( max
1≤j≤p

|σ̂2
j − σ̃2

j | > Tn,pτ̃1,p/12|E)

≤ P (‖(Z− Z)T (Z− Z)‖max/n > c3τ2,p|E) ≤ p2 exp(−C̃2n).
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Under the conditions in Theorem 1, we have log p = o(nγ) with γ > 0
and γ + 2κ < 1. It follows that

P ( max
1≤j≤p

|σ̂2
j /σ̃

2
j − 1| > Tn,p/6) ≤ P ( max

1≤j≤p
|σ̂2

j /σ̃
2
j − 1| > Tn,p/6|E) + P (Ec)

≤ p2 exp(−C̃2n) + p exp(−Cτ̃21,pn
1−2κ) = p exp(−Cτ̃21,pn

1−2κ),

where we use the same notation C here to denote a generic constant without
lost of generality. This completes the proof of Lemma 1.

A.3. Lemma 2 and its proof.

Lemma 2. Under Condition 5, we have

C̃n−1‖Xδ‖22 + pen(θ̂) ≤ ‖n−1εTX‖∞‖δ‖1 + pen(θ0),(A.12)

where C̃ is some positive constant depending on the positive constant πmin

in Condition 6, and δ = θ̂ − θ0 is the estimation error for the regularized
estimator θ̂ defined in (18), and ε = y − E(y|X) with y = (∆1, · · · ,∆n)

T .

Proof. Define ℓn(θ) = n−1
∑n

i=1 ℓn(x
T
i θ,∆i) where ℓn(x

Tθ,∆) = −∆xTθ+
log[1 + exp(xTθ)]. Then, in matrix form, ℓn(θ) can be rewritten as

ℓn(θ) = −n−1{yTXθ − 1Tb(Xθ)},

where y = (∆1, · · · ,∆n)
T is an n-dimensional response vector with ∆i ∈

{0, 1}, X = (x1, · · · ,xn)
T = (x̃1, · · · , x̃p̃) is an n × p̃ augmented design

matrix, 1 is an n-dimensional vector with each component being one, b(β) =
(b(β1), · · · , b(βn))T is a vector-valued function with βi = xT

i θ and b(u) =
log[1 + exp(u)].

By the definition of θ̂, we have ℓn(θ) + pen(θ) ≤ ℓn(θ0) + pen(θ0) where
θ0 is the true regression coefficient vector of θ. Rearranging terms yields

n−11T [b(Xθ̂)− b(Xθ0)] + pen(θ̂) ≤ n−1yTXδ + pen(θ0),(A.13)

where δ = θ̂− θ0 is the estimation error. Applying Taylor expansion to the
function of 1Tb(Xθ̂) at θ0 gives

1T [b(Xθ̂)− b(Xθ0)] = [b′(Xθ0)]
TXδ + 2−1δTXTHXδ,(A.14)

where H = H(X, θ̃1, · · · , θ̃n) = diag{b′′(xT
1 θ̃1), · · · , b′′(xT

n θ̃n)} is an n × n

diagonal matrix with θ̃i ∈ R
p̃ lying on the line segment adjoining θ̂ and θ0,

i = 1, · · · , n. Combining (A.13) and (A.14) and rearranging terms yield

(2n)−1δTXTHXδ + pen(θ̂) ≤ n−1εTXδ + pen(θ0),(A.15)
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where ε = y − E(y|X) = y − b′(Xθ0). The right hand side of the above
inequality can be bounded as

n−1εTXδ + pen(θ0) ≤ ‖n−1εTX‖∞‖δ‖1 + pen(θ0).(A.16)

By Condition 5, we have

δTXTHXδ ≥ 2C̃‖Xδ‖22

for some positive constant C̃, which depends on the constant πmin in Con-
dition 5. This inequality, together with (A.15) and (A.16), completes the
proof.

A.4. Lemma 3 and its proof.

Lemma 3. Assume that Condition 1 holds. If log(p) = o(n), then with
probability 1−O(p−c̃1), we have ‖n−1εTX‖∞ ≤ 2−1c0

√
log(p)/n, where c0

is some positive constant and ε = y− E(y|X) with y = (∆1, · · · ,∆n)
T .

Proof. Recall that X = (x1, · · · ,xn)
T = (x̃1, · · · , x̃p̃). An application

of the Bonferroni inequality gives that

P (‖n−1εTX‖∞ > λ0) ≤
p̃∑

j=1

P (|n−1εT x̃j | > λ0)(A.17)

for any λ0. The key idea is to bound P (|n−1εT x̃j | > λ0). To this end,
consider the following three cases.

Case 1: j = 1. In this case, x̃j = 1, where 1 is a n-dimensional vector
with each component being one. Recall that ε = (ε1, · · · , εn)T with εi =
∆i − E(∆i|xi) and ∆i ∈ {0, 1}. So −1 ≤ εi ≤ 1 for i = 1, · · · , n. Thus, by
Hoeffding’s inequality [3], we have

P (|n−1εT x̃j| > λ0) = P (|n−1εT1| > λ0) ≤ 2 exp
(
−nλ2

0/2
)
.

Case 2: 2 ≤ j ≤ p + 1. In this case, x̃j = (Z1,j−1, · · · , Zn,j−1)
T . Thus,

n−1εT x̃j = n−1
∑n

i=1 εiZi,j−1. From Lemma 9, under Condition 1, we have
that z = (Z1, · · · , Zp)

T is sub-Gaussian, that is, there exist some positive
constants a1 and b1 such that

P (|vT z| > t) ≤ a1 exp(−b1t
2)
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for any vector v ∈ R
p satisfying ‖v‖2 = 1 and any t > 0. Therefore, for

any 2 ≤ j ≤ p + 1, taking v = ej−1 being a unit vector with the (j − 1)
component being one and zero elsewhere in the inequality above gives

P (|Zj−1| > t) ≤ a1 exp(−b1t
2)

holds uniformly for all 2 ≤ j ≤ p+1. By Lemma 11, we have E(eb1Z
2

j−1
/2) ≤

1 + a1. This, together with the inequality ab ≤ (a2 + b2)/2 for any a, b > 0,
gives

e(b1/2)|εiZi,j−1| ≤ eb1(ε
2

i+Z2

i,j−1
)/4 = eb1ε

2

i /4eb1Z
2

i,j−1
/4

≤ (eb1ε
2

i /2 + eb1Z
2

i,j−1
/2)/2 ≤ (eb1/2 + 1 + a1)/2(A.18)

for all 1 ≤ i ≤ n and 2 ≤ j ≤ p + 1, where we have used the fact that
−1 ≤ εi ≤ 1 in the last inequality. Thus, it follows from Lemma 12 that for
any 0 < λ0 ≤ 1, there exist some positive constants a2 and b2 such that

P (|n−1εT x̃j | ≥ λ0) = P (|n−1
n∑

i=1

εiZi,j−1| ≥ λ0) ≤ a2 exp(−b2nλ
2
0)

for all 2 ≤ j ≤ p+ 1.
Case 3: p + 2 ≤ j ≤ p̃. In this case, x̃j = (Z1,kZ1,ℓ, · · · , Zn,kZn,ℓ)

T for
some 1 ≤ k ≤ ℓ ≤ p. We can use similar arguments for Case 2 to bound
P (|n−1εT x̃j | ≥ λ0). Similarly to (A.18), we have

e(b1/2)|εiZikZiℓ| ≤ e(b1/2)|ZikZiℓ| ≤ eb1(Z
2

ik
+Z2

iℓ
)/4 = eb1Z

2

ik
/4eb1Z

2

iℓ
/4

≤ (eb1Z
2

ik
/2 + eb1Z

2

iℓ
/2)/2 ≤ 1 + a1,

for all 1 ≤ i ≤ n and all 1 ≤ k ≤ ℓ ≤ p. This together with Lemma 12 gives
that for any 0 < λ0 ≤ 1, there exist some positive constants a3 and b3 such
that

P (|n−1εT x̃j| ≥ λ0) = P (|n−1
n∑

i=1

εiZikZiℓ| ≥ λ0) ≤ a3 exp(−b3nλ
2
0)

for all p+ 2 ≤ j ≤ p̃.
Combining Cases 1-3 above yields

P (|n−1εT x̃j| ≥ λ0) ≤ a4 exp(−b4nλ
2
0)(A.19)

for any 0 ≤ λ0 ≤ 1, where a4 = max{2, a2, a3} and b4 = min{1/2, b2, b3}. Let
λ0 = 2−1c0

√
log(p)/n with some positive constant c0. Since log(p) = o(n),
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we have 0 < λ0 ≤ 1 for all sufficiently large n. In view of (A.17) and (A.19),
we have

P (‖n−1εTX‖∞ > 2−1c0
√

log(p)/n) ≤p̃a4 exp{−4−1b4c
2
0 log(p)}

≤3a4p
−(4−1b4c20−2),

where c0 >
√

8/b4 and we have used the fact that p̃ = 1+p+p(p+1)/2 ≤ 3p2.
Thus, we conclude that ‖n−1εTX‖∞ ≤ c0

√
log(p)/n holds with probability

at least 1−O(p−c̃1) with c̃1 = 4−1b4c
2
0 − 2 > 0.

A.5. Lemma 4 and its proof.

Lemma 4. Assume that there exists some constant φ > 0 such that

δT Σ̃δ ≥ φ2δTSδS(A.20)

for any δ ∈ R
p̃ satisfying ‖δSc‖1 ≤ 4(s1/2 + λ−1

1 λ2‖θ0‖2)‖δS‖2, where Σ̃ =
E(xTx). If both z(1) and z(2) are sub-Gaussian, 5s1/2 + 4λ−1

1 λ2‖θ0‖2 =
O(nξ/2), and log(p) = o(n1/2−2ξ) with constant 0 ≤ ξ < 1/4, then with
probability at least 1−O(p−c̃2),

n−1/2‖Xδ‖2 ≥ (φ/2)‖δS‖2

holds for any δ ∈ R
p̃ satisfying ‖δSc‖1 ≤ 4(s1/2 + λ−1

1 λ2‖θ0‖2)‖δS‖2 when
n is sufficiently large.

Proof. The idea is to show that the desired inequality holds conditioning
on an event and the probability of this event occurring is at most O(p−c̃2)
with some positive constant c̃2.

Conditioning the event E4 =
{
‖n−1XTX− Σ̃||∞ < C1n

−ξ
}

where posi-

tive constant C1 will be specified later, we have

|δT (n−1XTX− Σ̃)δ| < C1n
−ξ‖δ‖21 = C1n

−ξ(‖δS‖1 + ‖δSc‖1)2

≤ C1n
−ξ(s1/2‖δS‖2 + ‖δSc‖1)2,

where the last inequality follows from the Cauchy-Schwarz inequality. The
following arguments are all conditioning on the event E4. Thus, for any
δ ∈ R

p̃ satisfying ‖δSc‖1 ≤ 4(s1/2 + λ−1
1 λ2‖θ0‖2)‖δS‖2, we obtain

|δT (n−1XTX− Σ̃)δ| ≤ C1n
−ξ(5s1/2 + 4λ−1

1 λ2‖θ0‖2)2‖δS‖22.
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Since 5s1/2 + 4λ−1
1 λ2‖θ0‖2 = O(nξ/2), there exists some positive constant

C2 such that 5s1/2 + 4λ−1
1 λ2‖θ0‖2 ≤ C2n

ξ/2. Thus,

|δT (n−1XTX− Σ̃)δ| ≤ C1C
2
2‖δS‖22

for any δ ∈ R
p̃ satisfying ‖δSc‖1 ≤ 4(s1/2 + λ−1

1 λ2‖θ0‖2)‖δS‖2. Note that
n−1δTXTXδ = δT (n−1XTX− Σ̃)δ + δT Σ̃δ. This, together with the above
inequality and the assumption (A.20), yields

n−1δTXTXδ ≥ −C1C
2
2‖δS‖22 + δT Σ̃δ ≥ (φ2 − C1C

2
2 )‖δS‖22.

Choose C1 = 3φ2/(4C2
2 ). Thus, with probability 1− P (Ec

4), we have

n−1/2‖Xδ‖2 ≥ (φ/2)‖δS‖2

for any δ ∈ R
p̃ satisfying ‖δSc‖1 ≤ 4(s1/2 + λ−1

1 λ2‖θ0‖2)‖δS‖2.
It remains to show that P (Ec

4) ≤ O(p−c̃2) with some positive constant c̃2.
For any matrix A, denote by ‖A‖∞ the entrywise matrix infinity norm of A
and (A)kℓ the (k, ℓ) entry of A. Since both z(1) and z(2) are sub-Gaussian,
by Lemmas 9, 10, 11, and 13, we have

P (Ec
4) = P

{
‖n−1XTX− Σ̃||∞ ≥ K2/(2C

2
2 )n

−ξ
}

≤
p̃∑

k=1

p̃∑

ℓ=1

P{|(n−1XTX− Σ̃)kℓ| ≥ K2/(2C
2
2 )n

−ξ}

≤p̃2a exp(−4−1bC−2
2 K2

2n
1/2−2ξ) ≤ O(p−c̃2)

for all n sufficiently large, where a, b, c̃2 are positive constants and the last
inequality holds since p̃ = 1 + p+ p(p + 1)/2 and log(p) = o(n1/2−2ξ). This
completes the proof of Lemma 4.

A.6. Lemma 5 and its proof.

Lemma 5. Assume that w = (W1, · · · ,Wp)
T ∈ R

p is sub-Gaussian.
Then for any positive constant c1, there exists some positive constant C2

such that

P

{
max
1≤j≤p

|Wj| > C2

√
log(p)

}
= O(p−c1).

Proof. Since w = (W1, · · · ,Wp)
T is sub-Gaussian, there exist some pos-

itive constants c̃1 and c̃2 such that P (|vTw| > t) ≤ c̃1 exp(−c̃2t
2) for any
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v ∈ R
p satisfying ‖v‖2 = 1 and any t > 0. Taking v be a unit vector with

jth component 1 and all other components 0 yields

P (|Wj | > t) ≤ c̃1 exp(−c̃2t
2)

for all 1 ≤ j ≤ p. An application of the Bonferroni inequality gives

P ( max
1≤j≤p

|Wj | > t) ≤
p∑

j=1

P (|Wj | > t) ≤ pc̃1 exp(−c̃2t
2).

If we choose t = C2

√
log(p) with some positive constant C2 =

√
1 + c1/c̃2,

then we have P
{
max1≤j≤p |Wj | > C2

√
log(p)

}
= O(p−c1). This completes

the proof of Lemma 5.

APPENDIX B: PROOFS FOR SECONARY LEMMAS

B.1. Lemma 6 and its proof.

Lemma 6. Under Condition 2, it holds that

τ̃1,p ≤ λmin[cov(z̃)] ≤ λmax[cov(z̃)] ≤ τ̃2,p,

where τ̃1,p = {πτ−1
2,p + (1−π)τ1τ

−2
2,p} ∧ 1 and τ̃2,p = {πτ−1

1 +(1−π)τ−2
1 τ2,p+

π(1− π)τ−2
1 ‖µ1‖22} ∨ exp(1).

Proof. In order to prove Lemma 6, we will first calculate the covariance
matrix of z = ∆z(1) + (1 − ∆)z(2). Recall that µ2 = E(z(2)) = 0 and ∆
is a Bernoulli variable taking value 1 with probability π. We will apply
the formula cov(z) = cov[E(z|∆)] +E[cov(z|∆)] to calculate the covariance
matrix of z.

For the first term cov[E(z|∆)], we can calculate it as

E(z|∆) = ∆E(z(1)) + (1−∆)E(z(2)) = ∆µ1,

which gives cov[E(z|∆)] = cov(∆)µ1µ
T
1 = π(1− π)µ1µ

T
1 .

For the second term E[cov(z|∆)], since ∆2 = ∆, (1 − ∆)2 = 1 − ∆ and
∆(1−∆) = 0, we have

cov(z|∆) = E(zzT |∆)− E(z|∆)E(z|∆)T

= ∆2{E(z(1)z(1)
T

)− µ1µ
T
1 }+ (1−∆)2E(z(2)z(2)

T

) = ∆Σ1 + (1−∆)Σ2.
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After taking expectation on both sides, we get

E[cov(z|∆)] = πΣ1 + (1− π)Σ2.

Thus we have cov(z) = πΣ1 + (1− π)Σ2 + π(1− π)µ1µ
T
1 .

Recall that z̃ = Ω1z. It follows that

cov(z̃) = Ω1cov(z)Ω1 = πΩ1 + (1− π)Ω1Σ2Ω1 + π(1 − π)Ω1µ1µ
T
1 Ω1.

Therefore, under Condition 2, we get

λmax[cov(z̃)] ≤ πλmax(Ω1) + (1− π)λmax(Ω1Σ2Ω1) + π(1− π)λmax(Ω1µ1µ
T
1 Ω1)

≤ πτ−1
1 + (1− π)τ−2

1 τ2,p + π(1− π)τ−2
1 ‖µ1‖22;

λmin[cov(z̃)] ≥ πλmin(Ω1) + (1− π)λmin(Ω1Σ2Ω1) + π(1− π)λmin(Ω1µ1µ
T
1 Ω1)

≥ πτ−1
2,p + (1− π)τ1τ

−2
2,p .

It completes the proof of Lemma 6.

B.2. Lemma 7 and its proof.

Lemma 7. Under model setting (2) and conditions in Proposition 1, for
sufficiently large n, with probability at least 1−p exp(−Cτ̃21,pn

1−2κ), it holds
that

max
1≤j≤p

|σ̃2
j /σ

2
j − 1| ≤ cn−κ/8,

for some positive constant C, where c and κ are constants defined in Con-
dition 3.

Proof. We will first decompose σ̃2
j−σ2

j into several terms, and then prove
deviation bounds for each term. Denote ‖Ω1‖2 by the operator norm of Ω1.
Note that under Condition 2, ‖Ω1‖2 is bounded from above by constant
τ−1
1 . So z̃(k) = Ω1z

(k) for k = 1, 2 are also sub-Gaussian distributed. Recall

that Z̃ = ZΩ1 is the transformed data matrix. Denote by Z̃ = (z̃ij)n×p.
Then z̃ij are independent and identically distributed across i with mixture
sub-Gaussian distribution and variance σ2

j . Since σ̃2
j is the pooled sample

variance estimate for the jth transformed feature Z̃j, we have

σ̃2
j =

n∑

i=1

(z̃ij − ¯̃zj)
2/n,



INNOVATED INTERACTION SCREENING 13

where ¯̃zj =
∑n

i=1 z̃ij/n is the pooled sample mean estimate for Z̃j . Let

µ̃j = E(z̃ij) and µ̃
(1)
j = E(z̃

(1)
ij ). It is clear that µ̃j = πµ̃

(1)
j . By some simple

calculation, we have the following decomposition for σ̃2
j − σ2

j ,

σ̃2
j − σ2

j =
n∑

i=1

([z̃ij − µ̃j]
2 − σ2

j )/n− (¯̃zj − µ̃j)
2.

Since z̃ij = ∆iz̃
(1)
ij +(1−∆i)z̃

(2)
ij , we have z̃ij − µ̃j = ∆i(z̃

(1)
ij − µ̃

(1)
j )+ (1−

∆i)z̃
(2)
ij +(∆i−π)µ̃

(1)
j , where z̃

(1)
ij −µ̃

(1)
j and z̃

(2)
ij are sub-Gaussian distributed

with mean 0 and variances (σ
(1)
j )2 and (σ

(2)
j )2, respectively. By the proof of

Lemma 6, we know that σ2
j = π(σ

(1)
j )2 + (1 − π)(σ

(2)
j )2 + π(1 − π)(µ̃

(1)
j )2.

As ∆2
i = ∆i, (1−∆i)

2 = 1−∆i and ∆i(1−∆i) = 0, by replacing z̃ij with

∆iz̃
(1)
ij +(1−∆i)z̃

(2)
ij and spreading out the terms, we can further decompose

σ̃2
j − σ2

j as

σ̃2
j − σ2

j =
1

n

n∑

i=1

{
∆i[(z̃

(1)
ij − µ̃

(1)
j )2 − (σ

(1)
j )2] + (1−∆i)[(z̃

(2)
ij )2 − (σ

(2)
j )2]

+ [(∆i − π)2 − π(1− π)](µ̃
(1)
j )2 + (∆i − π)[(σ

(1)
j )2 − (σ

(2)
j )2]

+ 2(∆i − π)µ̃
(1)
j [∆i(z̃

(1)
ij − µ̃

(1)
j ) + (1−∆i)z̃

(2)
ij ]
}
− (¯̃zj − µ̃j)

2.

Let S = {1 ≤ i ≤ n : ∆i = 1} and εn be any positive sequence such that
εn → 0 and εnτ̃1,p → 0 as n → ∞. It follows from the above decomposition
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that

P (|σ̃2
j − σ2

j | > εnσ
2
j /2) ≤ P (

1

n
|
∑

i∈S

[(z̃
(1)
ij − µ̃

(1)
j )2 − (σ

(1)
j )2]| >

εnσ
2
j

12
)

(A.21)

+ P (
1

n
|
∑

i∈Sc

[(z̃
(2)
ij )2 − (σ

(2)
j )2]| >

εnσ
2
j

12
)

+ P (
1

n
|

n∑

i=1

[(∆i − π)2 − π(1− π)](µ̃
(1)
j )2| >

εnσ
2
j

12
)

+ P (
1

n
|(

n∑

i=1

∆i − nπ)[(σ
(1)
j )2 − (σ

(2)
j )2]| >

εnσ
2
j

12
)

+ P (
1

n
|

n∑

i=1

2(∆i − π)µ̃
(1)
j [∆i(z̃

(1)
ij − µ̃

(1)
j ) + (1−∆i)z̃

(2)
ij ]| >

εnσ
2
j

12
)

+ P{(¯̃zj − µ̃j)
2 >

εnσ
2
j

12
}.

We will bound the six terms on the right hand side above one by one using
some deviation results. The same notation C will be used to denote a generic
positive constant without loss of generality.

Recall that n1 =
∑n

i=1 ∆i and n2 = n−n1. By Lemma 6, σ2
j are uniformly

bounded from below by τ̃1,p. Thus, by the deviation of sub-Gaussian in (A.1),
conditioning on any realization of ∆ = (∆1, · · · ,∆n)

T , we obtain

P (
1

n
|
∑

i∈S

[(z̃
(1)
ij − µ̃

(1)
j )2 − (σ

(1)
j )2]| >

εnσ
2
j

12
|∆)

≤ P (
1

n1
|
∑

i∈S

[(z̃
(1)
ij − µ̃

(1)
j )2 − (σ

(1)
j )2]| > εnτ̃1,p

12
|∆) ≤ C exp(−ρε2nτ̃

2
1,pn1/12

2)

≤ exp(−Cε2nτ̃
2
1,p

n∑

i=1

∆i).

Since εnτ̃1,p → 0 as n → ∞ and
∑n

i=1∆i is a Binomial random variable
with probability of success π, for sufficiently large n such that εnτ̃1,p is small
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enough, taking expectation on both sides above yields

P (
1

n
|
∑

i∈S

[(z̃
(1)
ij − µ̃

(1)
j )2 − (σ

(1)
j )2]| >

εnσ
2
j

12
) ≤ E{exp(−Cε2nτ̃

2
1,p

n∑

i=1

∆i)}

(A.22)

= {1− π + π exp(−Cε2nτ̃
2
1,p)}n = exp{n ln[1− π + π exp(−Cε2nτ̃

2
1,p)]}

≤ exp{−nπ[1− exp(−Cε2nτ̃
2
1,p)]} ≤ exp(−2nπCε2nτ̃

2
1,p) = exp(−Cε2nτ̃

2
1,pn),

where we have used the inequalities that log(1+x) ≤ x for any x > −1, and
1 − exp(−x) ≤ 2x for sufficiently small x > 0. This gives an upper bound
on the first term in (A.21).

Similar to (A.22), the second term in (A.21) can be bounded as

P (
1

n
|
∑

i∈Sc

[(z̃
(2)
ij )2 − (σ

(2)
j )2]| >

εnσ
2
j

12
) ≤ exp(−Cε2nτ̃

2
1,pn).(A.23)

As z̃(1) is sub-Gaussian distributed, it follows from Lemma 11 that |µ̃(1)
j |

are uniformly bounded from above by some positive constant across j. Since
∆i are independently Bernoulli distributed with success probability π, we
know that E{(∆i − π)2} = π(1 − π) and (∆i − π)2 are i.i.d. and bounded
from above by 1. By Hoeffding’s inequality, we have the following bound for
the third term in (A.21),

P (
1

n
|

n∑

i=1

[(∆i − π)2 − π(1− π)](µ̃
(1)
j )2| >

εnσ
2
j

12
)(A.24)

≤ P (| 1
n

n∑

i=1

(∆i − π)2 − π(1− π)| > εnτ̃1,p

12(µ̃
(1)
j )2

) ≤ 2 exp(−
2ε2nτ̃

2
1,pn

122(µ̃
(1)
j )4

)

≤ exp(−Cε2nτ̃
2
1,pn).

Due to the fact that σ2
j = π(σ

(1)
j )2 + (1 − π)(σ

(2)
j )2 + π(1 − π)(µ̃

(1)
j )2,

we have σ2
j ≥ π(1 − π)[(σ

(1)
j )2 + (σ

(2)
j )2]. Similar to (A.24), by applying
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Hoeffding’s inequality, the fourth term in (A.21) can be bounded as

P (
1

n
|(

n∑

i=1

∆i − nπ)[(σ
(1)
j )2 − (σ

(2)
j )2]| >

εnσ
2
j

12
)

(A.25)

≤ P (| 1
n

n∑

i=1

∆i − π|[
σ2
j

π(1 − π)
] >

εnσ
2
j

12
) ≤ P (| 1

n

n∑

i=1

∆i − π| > π(1− π)εn
12

)

≤ 2 exp(−2nπ2(1− π)2ε2n
122

) ≤ exp(−Cε2nτ̃
2
1,pn).

For the fifth term in (A.21), we first decompose it as

P (
1

n
|

n∑

i=1

2(∆i − π)µ̃
(1)
j [∆i(z̃

(1)
ij − µ̃

(1)
j ) + (1−∆i)z̃

(2)
ij ]| >

εnσ
2
j

12
)

(A.26)

≤ P (
1

n
|
∑

i∈S

2(1− π)(z̃
(1)
ij − µ̃

(1)
j )−

∑

i∈Sc

2πz̃
(2)
ij ]| >

εnσ
2
j

12µ̃
(1)
j

)

≤ P (
1

n
|
∑

i∈S

2(1− π)(z̃
(1)
ij − µ̃

(1)
j )| >

εnσ
2
j

24µ̃
(1)
j

) + P (
1

n
|
∑

i∈Sc

2πz̃
(2)
ij | >

εnσ
2
j

24µ̃
(1)
j

).

Recall that σ2
j ≥ π(σ

(1)
j )2 and max1≤j≤p |µ̃(1)

j | can be bounded from above
by some positive constant. Applying Bernstein’s inequality to the sum of
independent sub-Gaussian random variables yields

P (
1

n
|
∑

i∈S

2(1− π)(z̃
(1)
ij − µ̃

(1)
j )| >

εnσ
2
j

24µ̃
(1)
j

|∆)

≤ P (
1

n1
|
∑

i∈S

( z̃(1)ij − µ̃
(1)
j

σ
(1)
j

)
| >

√
πεnσj

48(1 − π)µ̃
(1)
j

|∆)

≤ exp(− πε2nτ̃1,pn1

962(1− π)2(µ̃
(1)
j )2

) ≤ exp(−Cε2nτ̃
2
1,p

n∑

i=1

∆i).

Applying the same argument as in (A.22), taking expectation on both
sides above then we can obtain

P (
1

n
|
∑

i∈S

2(1− π)(z̃
(1)
ij − µ̃

(1)
j )| >

εnσ
2
j

24µ̃
(1)
j

) ≤ exp(−Cε2nτ̃
2
1,pn).
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Similarly we have

P

(
1

n
|
∑

i∈Sc

2πz̃
(2)
ij | >

εnσ
2
j

24µ̃
(1)
j

)
≤ exp(−Cε2nτ̃

2
1,pn).

In view of (A.26), the two bounds we obtained yield

P (
1

n
|

n∑

i=1

2(∆i − π)µ̃
(1)
j [∆i(z̃

(1)
ij − µ̃

(1)
j ) + (1−∆i)z̃

(2)
ij ]| >

εnσ
2
j

12
) ≤ exp(−Cε2nτ̃

2
1,pn),

(A.27)

which is the upper bound for the fifth term in (A.21).
Applying Bernstein’s inequality similarly to the sixth term in (A.21) gives

P{(¯̃zj − µ̃j)
2 >

εnσ
2
j

12
} ≤ P (|

¯̃zj − µ̃j

σj
| >

√
εn
12

) ≤ exp(−εnn

24
).

Combining the six bounds for the terms in (A.21) that we have obtained
yields

P (|σ̃2
j /σ

2
j − 1| > εn/2) ≤ P (|σ̃2

j − σ2
j | > εnσ

2
j /2) ≤ exp(−Cε2nτ̃

2
1,pn).

(A.28)

It follows that

P ( max
1≤j≤p

|σ̃2
j /σ

2
j − 1| > εn/2) ≤

∑

1≤j≤p

P (|σ̃2
j /σ

2
j − 1| > εn/2)(A.29)

≤ p exp(−Cε2nτ̃
2
1,pn).

Let εn = cn−κ/4 with constants c and κ defined in Condition 3. Since
τ̃1,p ≤ 1, we know that εnτ̃1,p → 0 as n → ∞. Thus we can replace εn with
cn−κ/4 in (A.29) and get

(A.30) P ( max
1≤j≤p

|σ̃2
j /σ

2
j − 1| > cn−κ/8) ≤ p exp(−Cτ̃21,pn

1−2κ).

This completes the proof of Lemma 7.

B.3. Lemma 8 and its proof.

Lemma 8. Under model setting (2) and Condition 2, for sufficiently large
n, with probability at least 1− p2 exp(−C̃2n), it holds that

‖(Z− Z)T (Z− Z)‖max/n ≤ c3τ2,p

for some positive constants C̃2 and c3 > 2, where Z = 1n(z̄1, · · · , z̄p) with
z̄j =

∑n
i=1 zij/n and 1n the n× 1 column vector with all components 1.
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Proof. The deviation bound of ‖(Z−Z)T (Z−Z)‖max/n can be obtained
by bounding each component of (Z−Z)T (Z−Z). Recall that µj = E(z̄j) =

πµ
(1)
j with µ

(1)
j = E(z

(1)
ij ). Note that the jth diagonal component of (Z −

Z)T (Z− Z)/n can be bounded as

n∑

i=1

(zij − z̄j)
2/n =

n∑

i=1

(zij − µj)
2/n− (z̄j − µj)

2 ≤
n∑

i=1

(zij − µj)
2/n,

(A.31)

Let Z = (zij)n×p, then the components of each row in Z are independent
and identically distributed (i.i.d.) with a mixture sub-Gaussian distribution

which can be written as zij = ∆iz
(1)
ij + (1 − ∆i)z

(2)
ij , where ∆i are i.i.d.

Bernoulli random variables. Denote by Σ1 = (σ
(1)
ij )p×p and Σ2 = (σ

(2)
ij )p×p.

Then for each j = 1, · · · , p, the random variables z
(1)
ij − µ

(1)
j and z

(2)
ij are

independent across i with mean 0 and variances σ
(1)
jj and σ

(2)
jj , respectively.

We will then bound
∑n

i=1(zij −µj)
2/n by some deviation results. The same

notation C̃2 will be used to denote a generic constant without loss of gener-
ality.

For any 1 ≤ i ≤ n, we have the following decomposition for
∑n

i=1(zij −
µj)

2/n,

n∑

i=1

(zij − µj)
2/n = n−1

n∑

i=1

{∆i(z
(1)
ij − µ

(1)
j )2 + (1−∆i)(z

(2)
ij )2 + (∆i − π)2(µ

(1)
j )2

+ 2(∆i − π)µ
(1)
j [∆i(z

(1)
ij − µ

(1)
j ) + (1−∆i)(z

(2)
ij )]}.(A.32)

Recall that S = {1 ≤ i ≤ n : ∆i = 1}, n1 =
∑n

i=1∆i and n2 = n − n1.

By Condition 2, both σ
(1)
jj and σ

(2)
jj can be uniformly bounded from above

by τ2,p across j. For the first term in (A.32) and any positive constant c3,
applying the argument with sub-Gaussian deviation and Taylor expansion
similarly as in (A.22) gives

P (n−1
n∑

i=1

{∆i(z
(1)
ij − µ

(1)
j )2} > τ2,p + c3) ≤ P (n−1

∑

i∈S

(z
(1)
ij − µ

(1)
j )2 > σ

(1)
jj + c3)

≤ P (n−1|
∑

i∈S

[(z
(1)
ij − µ

(1)
j )2 − σ

(1)
jj ]| > c3) ≤ exp(−C̃2n).

Similarly, we have for the second term in (A.32),

P (n−1
n∑

i=1

(1−∆i)(z
(2)
ij )2 > τ2,p + c3) ≤ exp(−C̃2n).
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Since |µ(1)
j | are uniformly bounded from above by some positive constant

across j from Lemma 11, similar to (A.24), by Hoeffding’s inequality, we
have the following bound for the third term in (A.32),

P{n−1
n∑

i=1

(∆i − π)2(µ
(1)
j )2 > π(1− π)(µ

(1)
j )2 + c3} ≤ exp(−C̃2n).

For the last term in (A.32), similar to (A.27), by Bernstein’s inequality we
have

P{n−1
n∑

i=1

2(∆i − π)µ
(1)
j [∆i(z

(1)
ij − µ

(1)
j ) + (1−∆i)(z

(2)
ij )] > c3} ≤ exp(−C̃2n).

In view of (A.32), by the similar argument as in (A.21), combining the
four bounds we have obtained gives

P (
n∑

i=1

(zij − µj)
2/n > 2τ2,p + C3) ≤ exp(−C̃2n),

where C3 = π(1 − π)(µ
(1)
j )2 + 4c3. As shown in (A.31),

∑n
i=1(zij − z̄j)

2/n

can be bounded from above by
∑n

i=1(zij − µj)
2/n. Thus we have

P (
n∑

i=1

(zij − z̄j)
2/n > 2τ2,p + C3) ≤ exp(−C̃2n).

Then for the (i, j)th component of (Z − Z)T (Z − Z), by the Cauchy-
Schwarz inequality, it follows that

P (
n∑

k=1

(zki − z̄i)(zkj − z̄j)/n > 2τ2,p + C3)

≤P{[n−1
n∑

k=1

(zki − z̄i)
2][n−1

n∑

k=1

(zkj − z̄j)
2] > [2τ2,p + C3]

2}

≤P{n−1
n∑

k=1

(zki − z̄i)
2 > 2τ2,p + C3}+ P{n−1

n∑

k=1

(zkj − z̄j)
2 > 2τ2,p + C3}

≤ exp(−C̃2n).

Since the above inequality holds for any (i, j)th component of (Z−Z)T (Z−
Z), similar to (A.29), we conclude that

P (‖(Z− Z)T (Z− Z)‖max/n > 2τ2,p + C3) ≤ p2 exp(−C̃2n)
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As τ2,p is allowed to diverge, we can choose some constant c3 > 2 such that
c3τ2,p > 2τ2,p +C3, which gives

P (‖(Z− Z)T (Z− Z)‖max/n > c3τ2,p) ≤ p2 exp(−C̃2n).(A.33)

It completes the proof of Lemma 8.

B.4. Lemma 9 and its proof.

Lemma 9. Assume that z(1) ∈ R
p and z(2) ∈ R

p are sub-Gaussian,
and ∆ follows a Bernoulli distribution with probability of success π. Let
z = ∆z(1) + (1−∆)z(2). Then z is also sub-Gaussian.

Proof. Since z(1) ∈ R
p is sub-Gaussian, there exists some positive con-

stants a1 and b1 such that P (|vT z(1)| > t) ≤ a1 exp(−b1t
2) for any vector

v ∈ R
p satisfying ‖v‖2 = 1 and any t > 0. Similarly, there exists some

positive constants a2 and b2 such that P (|vT z(2)| > t) ≤ a2 exp(−b2t
2) for

any vector v ∈ R
p satisfying ‖v‖2 = 1 and any t > 0 since z(2) ∈ R

p is
sub-Gaussian.

Let a3 = max{a1, a2} and b3 = min{b1, b2}. Then we have

P (|vT z(k)| > t) ≤ a3 exp(−b3t
2)

for k = 1, 2. This, together with the law of total probability, yields

P (|vT z| > t)

=P (|vT z| > t|∆ = 1)P (∆ = 1) + P (|vT z| > t|∆ = 0)P (∆ = 0)

=πP (|vT z(1)| > t) + (1− π)P (|vT z(2)| > t) ≤ a3 exp(−b3t
2).

Thus z is sub-Gaussian.

B.5. Lemma 10 and its proof.

Lemma 10. If a random vectorw = (W1, · · · ,Wp)
T ∈ R

p is sub-Gaussian,
then so is w− E(w).

Proof. If w is sub-Gaussian, then there exist some positive constants a1
and b1 such that

P (|vTw| > t) ≤ a1 exp(−b1t
2)
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for any vector v ∈ R
p satisfying ‖v‖2 = 1 and any t > 0. Let µ = E(w).

Thus from the Cauchy-Schwarz inequality and Lemma 11, we have

(vTµ)2 = E2(vTw) ≤ E[(vTw)2] ≤ (1 + a1)c
−1

with c = b1/2. Note that (|a− b|)2 ≤ (|a|+ |b|)2 ≤ 2(a2 + b2) for any a and
b. Thus, for any vector v ∈ R

p satisfying ‖v‖2 = 1 and any t > 0,

P{|vT [w− E(w)]| > t} ≤ P{|vTw|+ |vTµ| > t}
≤P{2(vTw)2 + 2(vTµ)2 > t2} ≤ P{ec(vTw)2 > ect

2/2−c(vTµ)2}
≤e−ct2/2+c(vTµ)2E[ec(v

Tw)2 ] ≤ (1 + a1)e
1+a1 · e−ct2/2 = a2 exp(−b2t

2)

with a2 = (1 + a1)e
1+a1 and b2 = c/2 = b1/4. Thus w − E(w) is sub-

Gaussian.

B.6. Lemma 11 and its proof.

Lemma 11. Let W be a nonnegative random variable such that P (W >
t) ≤ a exp(−bt2) for any t > 0, where a and b are positive constants. Then
E[exp(2−1bW 2)] ≤ 1 + a and E(W 2m) ≤ (1 + a)(2/b)mm! for any integer
m ≥ 0.

Proof. Denote by F (t) the cumulative distribution function of W . Then
for all x > 0, we have 1−F (t) = P (W > t) ≤ a exp(−bt2). For any constant
0 < c < b, integration by parts yields

E(ecW
2

) = −
∫ ∞

0
ect

2

d[1− F (t)] = 1 +

∫ ∞

0
2ctect

2

[1− F (t)] dt

≤ 1 +

∫ ∞

0
2cate−(b−c)t2 dt = 1 +

ca

b− c
.

Thus letting c = b/2 gives E[exp(2−1bW 2)] ≤ 1 + a.
Note that

2−mbmE(W 2m)

m!
≤

∞∑

k=0

E(2−1bW 2)k

k!
= E[exp(2−1bW 2)] ≤ 1 + a.

This implies E(W 2m) ≤ (1 + a)(2/b)mm! for any integer m ≥ 0. This com-
pletes the proof of Lemma 11.
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B.7. Lemma 12.

Lemma 12 (Lemma 8 of Hao and Zhang [2]). Let W1, · · · ,Wn be inde-
pendent random variables with zero mean. If E[exp(T0|Wi|α)] ≤ c̃1 for some
constants T0 > 0, c̃1 > 0 and 0 < α ≤ 1, then there exist positive constants
c̃2 and c̃3 such that

P (|n−1
n∑

i=1

Wi| > ε) ≤ c̃2 exp(c̃3n
αε2)

for any 0 < ε ≤ 1.

B.8. Lemma 13 and its proof.

Lemma 13. Assume that max1≤j≤pE[exp(c̃1Z
2
1j)] ≤ c̃2 holds with some

positive constants c̃1 and c̃2. If for each 1 ≤ j ≤ p, the random variables
Z1j , · · · , Znj are independent and identically distributed, then

P

{
|n−1

n∑

i=1

[Zij − E(Zij)]| ≥ ε

}
≤ c̃3 exp(−c̃4nε

2)

P

{
|n−1

n∑

i=1

[ZijZik − E(ZijZik)]| ≥ ε

}
≤ c̃3 exp(−c̃4nε

2)

P

{
|n−1

n∑

i=1

[ZijZikZiℓ −E(ZijZikZiℓ)]| ≥ ε

}
≤ c̃3 exp(−c̃4n

2/3ε2)

P

{
|n−1

n∑

i=1

[ZikZiℓZik′Ziℓ′ − E(ZikZiℓZik′Ziℓ′)]| ≥ ε

}
≤ c̃3 exp(−c̃4n

1/2ε2)

for any 0 < ε < 1, where 1 ≤ j, k, ℓ, k′, ℓ′ ≤ p, and c̃3 and c̃4 are generic
positive constants which may vary from line to line.

Proof. The idea of the proof is to use Lemma 12 and similar to that for
Lemma 9 in Hao and Zhang [2]. So we omit the details here.
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