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Supplement to “Asymptotic Distributions of High-Dimensional Distance
Correlation Inference”

Lan Gao, Yingying Fan, Jinchi Lv and Qi-Man Shao

This Supplementary Material contains all the proofs and technical details. Section A presents
the proofs of the main results in Theorems 1–6 and Propositions 1–3 in Section A.4. We
provide the proofs of Propositions 1–3, some key lemmas with their proofs, and additional
technical details in Sections B–F. In particular, Section D presents the parallel versions of
Theorems 2 and 4 for the case of 1/2 < τ ≤ 1 and their proofs, while Section E discusses
the connections between the normal approximation for Tn and the gamma approximation
for nV∗(X,Y ). Moreover, we provide the proof of the asymptotic normality and associated
rates of convergence for TR in Section F. Throughout the paper, C stands for some positive
constant whose value may change from line to line.

APPENDIX A: PROOFS OF MAIN RESULTS

A.1. Proof of Theorem 1. Note that Huo and Székely (2016) showed that V∗n(X,Y )
is a U-statistic. The main idea of our proof is to apply the Hoeffding decomposition for
U-statistics and the martingale central limit theorem. Lemmas 1–4 in Sections C.1–C.4 of
Supplementary Material, respectively, draw an outline of the proof. In particular, Lemma 1
provides the ratio consistency of V∗n(X) and V∗n(Y ). Thus by (A.48) and (A.49), the de-
nominator of Tn can be replaced with the corresponding population counterpart in Lemma
1. In consequence, by Slutsky’s lemma it suffices to analyze the limiting distribution of the
following random variable

(A.1) T̆n =

√
n(n− 1)

2

V∗n(X,Y )√
V2(X)V2(Y )

.

Moreover, we have the conclusion in Lemma 2 by the Hoeffding decomposition. In fact,
Lemma 2 implies that under the independence of X and Y , T̆n can be decomposed into two
parts W (1)

n (X,Y ) and W (2)
n (X,Y ), where the former is the leading term and the latter is

asymptotically negligible. Hence to obtain the limiting distribution of T̆n, it suffices to focus
on W (1)

n (X,Y ) defined in (A.52).
Recall the definition of the double-centered distance d(·, ·) in (4). Define ζn,1 = 0 and for

k ≥ 2,

(A.2) ζn,k =

√
2

n(n− 1)

k−1∑
i=1

d(Xi,Xk)d(Yi, Yk)√
V2(X)V2(Y )

.

It is easy to see that W (1)
n (X,Y ) =

∑n
k=1 ζn,k. Then by Lemmas 3 and 4, (18) and (19)

directly lead to
n∑
k=1

E[ζ2n,k|Fk−1]→ 1 in probability

with Fk a σ-algebra defined in Lemma 3, and for any ε > 0,
n∑
k=1

E[ζ2n,k1{|ζn,k|> ε}]→ 0.

Therefore, by the Lindeberg-type central limit theorem for martingales (see, for example,
Brown (1971)), we can obtainW (1)

n (X,Y )
D−→N(0,1). This completes the proof of Theorem

1.
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A.2. Proof of Theorem 2. The main idea of the proof is based on the conclusion of
Theorem 4. In view of the definitions of Ex and Lx,τ , by the Cauchy–Schwarz inequality we
can obtain that

Ex ≥
B−2τX L

(2+τ)/(1+τ)
x,τ

{E[(XT
1 X2)2]}2

≥
B−2τX Lx,τ

E[(XT
1 X2)2]

.

In the same manner, we can deduce

Ey ≥
B−2τY Ly,τ

E[(Y T
1 Y2)

2]
.

Note that p+ q→∞ implies that at least one of p and q tends to infinity. First let us assume
that both p→∞ and q→∞. Then by assumption, we have Ex→ 0 and Ey→ 0. Thus for
sufficiently large p and q, it holds that

B−2τx Lx,τ/E[(XT
1 X2)

2]≤ 1

18
and B−2τY Ly,τ/E[(Y T

1 Y2)
2]≤ 1

18
.

It follows from Theorem 4 that if (20) holds, Ex→ 0, and Ey→ 0, then we have

sup
x∈R
|P(Tn ≤ x)−Φ(x)| → 0

with Φ(x) the standard normal distribution function, which yields Tn
D→N(0,1).

We now consider the scenario when only one of p and q tends to infinity. Without loss of
generality, assume that p is bounded and q→∞. Then by assumption, we have Ey→ 0. In
addition, note that Lx,τ ≥

(
E[(XT

1 X2)
2]
)1+τ . Thus it follows from (20) that

n−τLy,τ{
E[(Y T

1 Y2)
2]
}1+τ → 0.

Consequently, an application of bound (24) results in

sup
x∈R
|P(Tn ≤ x)−Φ(x)| → 0,

which concludes the proof of Theorem 2.

A.3. Proof of Theorem 3. The key ingredient of the proof is to replace the denominator
with the population counterpart and apply the convergence rate in the martingale central limit
theorem. In light of the definition in (A.1), we can write

|P(Tn ≤ x)−Φ(x)|=
∣∣∣P(T̆n ·

√
V2(X)V2(Y )

V∗n(X)V∗n(Y )
≤ x
)
−Φ(x)

∣∣∣.
Note that Lemma 1 entails that V∗n(X)/V2(X) and V∗n(Y )/V2(Y ) converge to one in prob-
ability. Thus we can relate the distance between P(Tn ≤ x) and Φ(x) to that between
P(T̆n ≤ x) and Φ(x). Specifically, for small quantities γ1 > 0 and γ2 > 0 it holds that

|P(Tn ≤ x)−Φ(x)| ≤ P1 + P2 + P
(∣∣∣V∗n(X)

V2(X)
− 1
∣∣∣> γ1

)
+ P
(∣∣∣V∗n(Y )

V2(Y )
− 1
∣∣∣> γ2

)
,(A.3)

where

P1 =
∣∣P(T̆n ≤ x(1 + γ1)(1 + γ2)

)
−Φ(x)

∣∣,
P2 =

∣∣P(T̆n ≤ x(1− γ1)(1− γ2)
)
−Φ(x)

∣∣.
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Let us choose

γ1 =
{E[|d(X1,X2)|2+2τ ]

nτ [V2(X)]1+τ

}1/(2+τ)
, γ2 =

{E[|d(Y1, Y2)|2+2τ ]

nτ [V2(Y )]1+τ

}1/(2+τ)
.

Without loss of generality, assume that γ1 ≤ 1/2 and γ2 ≤ 1/2. Otherwise since

(A.4) E[|d(X1,X2)|2+2τ ]≥
{
E[d2(X1,X2)]

}1+τ
= [V2(X)]1+τ

and similar result holds for Y , we have

E[|d(X1,X2)|2+2τ ]E[|d(Y1, Y2)|2+2τ ]

nτ [V2(X)V2(Y )]1+τ
≥max

{E[|d(X1,X2)|2+2τ ]

nτ [V2(X)]1+τ
,
E[|d(Y1, Y2)|2+2τ ]

nτ [V2(Y )]1+τ

}
≥ 2−(2+τ)

and thus the desired result (21) is trivial.
Now we bound the four terms on the right hand side of (A.3). By (A.51), it holds that

P
(∣∣∣V∗n(X)

V2(X)
− 1
∣∣∣> γ1

)
≤ CE[|d(X1,X2)|2+2τ ]

nτγ1+τ1 [V2(X)]1+τ
=C

{E[|d(X1,X2)|2+2τ ]

nτ [V2(X)]1+τ

}1/(2+τ)
(A.5)

and similarly,

P
(∣∣∣V∗n(Y )

V2(Y )
− 1
∣∣∣> γ2

)
≤C

{E[|d(Y1, Y2)|2+2τ ]

nτ [V2(Y )]1+τ

}1/(2+τ)
.(A.6)

Then we deal with term P1. By symmetry, term P2 shares the same bound as term P1.
By Lemma 2, T̆n can be decomposed into two parts, one being the dominating martingale
array and the other being an asymptotically negligible error term. In details, for 0 < γ3 =
n−1/3/4≤ 1/4 we have

P1 ≤ P11 + P12 + P(|W (2)
n (X,Y )|> γ3),

where

P11 =
∣∣P(W (1)

n (X,Y )≤ x(1 + γ1)(1 + γ2)− γ3
)
−Φ(x)

∣∣,
P12 =

∣∣P(W (1)
n (X,Y )≤ x(1 + γ1)(1 + γ2) + γ3

)
−Φ(x)

∣∣.
It follows from Lemma 2 that

P(|W (2)
n (X,Y )|> γ3)≤

1

nγ23
≤ 16n−1/3.(A.7)

Since terms P11 and P12 share the same bound, it suffices to show the analysis for term P11.
It holds that

P11 ≤ sup
x∈R

∣∣P(W (1)
n (X,Y )≤ x

)
−Φ(x)

∣∣+ sup
x∈R

∣∣Φ[x(1 + γ1)(1 + γ2)− γ3]−Φ(x)
∣∣.(A.8)

Observe that by definitions, we have γ1 ≤ 1/2, γ2 ≤ 1/2, and γ3 ≤ 1/4. When |x| ≤ 2, it
is easy to see that

|Φ[x(1 + γ1)(1 + γ2)− γ3]−Φ(x)| ≤C(γ1 + γ2 + γ3).

When |x|> 2, we have |x(1 + γ1)(1 + γ2)|/2> γ3 and thus

|Φ[x(1 + γ1)(1 + γ2)− γ3]−Φ(x)| ≤C(xγ1 + xγ2 + γ3)e
−x2/128

≤C(γ1 + γ2 + γ3).
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Consequently, it follows that

sup
x∈R
|Φ[x(1 + γ1)(1 + γ2) + γ3]−Φ(x)| ≤C(γ1 + γ2 + γ3).(A.9)

As for the bound of
∣∣P(W (1)

n (X,Y ) ≤ x
)
− Φ(x)

∣∣, note that W (1)
n (X,Y ) =

∑n
k=1 ζn,k

and Lemma 3 states that {(ζn,k,Fk), k ≥ 1} is a martingale difference array under the inde-
pendence of X and Y . Hence by Theorem 1 in Haeusler (1988) on the convergence rate of
the martingale central limit theorem and Lemma 4, we can obtain

sup
x∈R
|P
(
W (1)
n (X,Y )≤ x

)
−Φ(x)

∣∣
≤C

{∑n
k=1E[|ζn,k|2+2τ ] +E

(∣∣∑n
k=1E[ζ2n,k|Fk−1]− 1

∣∣1+τ)}1/(3+2τ)

≤C
{(E[g(X1,X2,X3,X4)]E[g(Y1, Y2, Y3, Y4)]

[V2(X)V2(Y )]2

)(1+τ)/2
+

E[|d(X1,X2)|2+2τ ]E[|d(Y1, Y2)|2+2τ ]

nτ [V2(X)V2(Y )]1+τ

}1/(3+2τ)

.(A.10)

By (A.4) and 0< τ ≤ 1, it holds that

E[|d(X1,X2)|2+2τ ]E[|d(Y1, Y2)|2+2τ ]

nτ [V2(X)V2(Y )]1+τ
≥ E[|d(X1,X2)|2+2τ ]

nτ [V2(X)]1+τ

and {E[|d(X1,X2)|2+2τ ]

nτ [V2(X)]1+τ

}1/(2+τ)
≥ n−τ/(2+τ) ≥ n−1/3.

Finally, the desired result (21) can be derived by plugging in (A.5)–(A.10) and noting that all
the error terms can be absorbed into (A.10). This completes the proof of Theorem 3.

A.4. Proof of Theorem 4. The proof is mainly based on the conclusion of Theorem 3. It
is quite challenging to calculate the exact form of the moments that appear in conditions (18)
and (19). Nevertheless, the bounds of these moments can be worked out in concise form under
some general conditions. These bounds are summarized in the following three propositions,
respectively.

PROPOSITION 1. If E[‖X‖4+4τ ] <∞ for some constant τ > 0, then there exists some
absolute positive constant Cτ such that

E(|d(X1,X2)|2+2τ )≤CτB−(1+τ)X Lx,τ .(A.11)

PROPOSITION 2. If E[‖X‖4+4τ ]<∞ for some constant 0< τ ≤ 1/2, then it holds that∣∣V2(X)−B−1X E[(XT
1 X2)

2]
∣∣≤ 9B

−(1+2τ)
X Lx,τ .(A.12)

PROPOSITION 3. If E[‖X‖4+4τ ]<∞ for some constant 0< τ ≤ 1/2, then there exists
some absolute positive constant C such that∣∣E[g(X1,X2,X3,X4)]

∣∣≤B−2X E[(XT
1 ΣxX2)

2] +CB
−(2+2τ)
X L(2+τ)/(1+τ)

x,τ .(A.13)
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The proofs of Propositions 1–3 are presented in Sections A.7–A.9, respectively. We now
proceed with the proof of Theorem 4. Note that condition (22) entails that

9B
−(1+2τ)
X Lx,τ ≤

1

2
B−1X E[(XT

1 X2)
2] and 9B

−(1+2τ)
Y Ly,τ ≤

1

2
B−1Y E[(Y T

1 Y2)
2].

Therefore, it follows from Proposition 2 that

V2(X)≥ 1

2
B−1X E[(XT

1 X2)
2] and V2(Y )≥ 1

2
B−1Y E[(Y T

1 Y2)
2],(A.14)

which together with Propositions 1 and 3 yield the desired results (23) by Theorem 3. This
concludes the proof of Theorem 4.

A.5. Proof of Theorem 5. Recall that

Tn =

√
n(n− 1)

2

V∗n(X,Y )√
V∗n(X)V∗n(Y )

and it has been proved in Lemma 1 in Section C.1 that under condition (18), we have
V∗n(X)/V2(X)→ 1 and V∗n(Y )/V2(Y )→ 1 in probability. Thus it suffices to show that for
any arbitrarily large constant C > 0,

T̆n :=

√
n(n− 1)

2

V∗n(X,Y )√
V2(X)V2(Y )

>C with asymptotic probability 1.

Observe that∣∣∣T̆n −√n(n− 1)

2
R2(X,Y )

∣∣∣=√n(n− 1)

2

|V∗n(X,Y )−V2(X,Y )|√
V2(X)V2(Y )

.

It follows from (A.50), (A.58) and Proposition 1 that there exists some absolute positive
constant C such that

E[(V∗n(X,Y )−V2(X,Y ))2]≤Cn−1E[h2((X1, Y1), (X2, Y2), (X3, Y3), (X4, Y4))]

≤Cn−1(E[d4(X1,X2)]E[d4(Y1, Y2)])
1/2

≤Cn−1B−1X B−1Y L
1/2
x,1L

1/2
y,1 .

Therefore, if
√
nV2(X,Y )/

(
B
−1/2
X B

−1/2
Y L

1/4
x,1/2L

1/4
y,1

)
→∞, it holds that

|V∗n(X,Y )−V2(X,Y )|√
V2(X)V2(Y )

/
R2(X,Y )→ 0 in probability.

This together with nR2(X,Y )→∞ yields for any arbitrarily large constant C > 0, P(T̆n >
C)→ 1 and hence as P(Tn >C)→ 1, which completes the proof of Theorem 5.

A.6. Proof of Theorem 6. The main ingredient of the proof is bounding V2(X,Y ) using
the decomposition developed in Lemma 10 in Section C.10. We will calculate the orders of
terms Ii,1≤ i≤ 5, introduced in Lemma 10. Let us begin with the first term

I1 =
1

4
B

1/2
X B

1/2
Y

(
E[W12V12]− 2E[W12V13]

)
,
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where W12 =B−1X (‖X1−X2‖2−BX) and V12 =B−1Y (‖Y1−Y2‖2−BY ). Denote by Ỹ1 =

Y1−EY = (Y1,1−EY1,1, · · · , Y1,p−EY1,p)T and Ỹ2 = Y2−EY = (Y2,1−EY2,p, · · · , Y2,p−
EY2,p)T the centered random variables, and define

α1(X) = ‖X‖2 −E‖X‖2, α2(X1,X2) =XT
1 X2,

β1(Y ) = ‖Y ‖2 −E‖Y ‖2, β2(Y1, Y2) = Ỹ T
1 Ỹ2.

Since E[α1(X)] = E[β1(Y )] = 0 and E[α2(X1,X2)] = E[β2(Y1, Y2)] = 0, it holds that

E[W12V12] = E
[(
α1(X1) + α1(X2)− 2α2(X1,X2)

)(
β1(Y1) + β1(Y2)− 2β2(Y1, Y2)

)]
= 2E[α1(X1)β1(Y1)] + 4E[α2(X1,X2)β2(Y1, Y2)].

Similarly, we have E[W12V13] = 2E[α1(X1)β1(Y1)]. Thus it follows that

I1 = 4E[α2(X1,X2)β2(Y1, Y2)] = 4

p∑
i,j=1

(cov(X1,i, Y1,j))
2.

Observe that under the symmetry assumptions, there is no linear dependency between X and
Y ; that is, cov(X1,i, Y1,j) = 0 for each 1≤ i, j ≤ p. This together with the representation of
I1 above entails that I1 = 0.

We now consider the second term I2. Using similar arguments but much more tedious
calculations, we can obtain

I2 =
1

4
B
−1/2
X B

−3/2
Y

(
2E[α2(X1,X2)β

2
2(Y1, Y2)] +E[α2(X1,X2)β1(Y1)β1(Y2)]

− 4E[α2(X1,X2)β1(Y1)β2(Y1, Y2)]
)

+
1

4
B
−3/2
X B

−1/2
Y

(
2E[β2(Y1, Y2)α

2
2(X1,X2)] +E[β2(Y1, Y2)α1(X1)α1(X2)]

− 4E[β2(Y1, Y2)α1(X1)α2(X1,X2)]
)
.

By assumption, we have c2p ≤ BX ≤ c1p and c2p ≤ BY ≤ c1p. Since X has a symmetric
distribution and Y1,j = gj(X1,j) with gj(x),1≤ j ≤ p, symmetric functions, it holds that

E[α2(X1,X2)β
2
2(Y1, Y2)] = E[(XT

1 X2)(Ỹ
T
1 Ỹ2)

2] = E[(−XT
1 X2)(Ỹ

T
1 Ỹ2)

2] = 0.

Similarly, with the symmetry assumptions we can show that E[α2(X1,X2)β1(Y1)β1(Y2)] =
0, E[α2(X1,X2)β1(Y1)β2(Y1, Y2)] = 0, and E[β2(Y1, Y2)α1(X1)α2(X1,X2)] = 0. More-
over, it holds that

E[β2(Y1, Y2)α
2
2(X1,X2)] =

p∑
i,j,k=1

(
E[X1,iX1,j Ỹ1,k]

)2 ≥ 0,

E[β2(Y1, Y2)α1(X1)α1(X2)] =

p∑
i=1

( p∑
j=1

E
[
Ỹ1,i(X

2
1,j −EX2

1,j)
])2
≥ 0.

Thus it follows that I2 ≥ 0.
Let us proceed with terms I3 and I4. By some tedious calculations, we can deduce that

I3 =
1

8
B
−1/2
X B

−5/2
Y

(
4E[α2(X1,X2)β

3
2(Y1, Y2)] + 6E[α2(X1,X2)β1(Y1)β1(Y2)β2(Y1, Y2)]

+ 6E[α2(X1,X2)β
2
1(Y1)β2(Y1, Y2)]− 3E[α2(X1,X2)β1(Y1)β

2
1(Y2)]
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− 12E[α2(X1,X2)β1(Y1)β
2
2(Y1, Y2)]

)
+

1

8
B
−5/2
X B

−1/2
Y

(
4E[β2(Y1, Y2)α

3
2(X1,X2)] + 6E[β2(Y1, Y2)α1(X1)α1(X2)α2(X1,X2)]

+ 6E[β2(Y1, Y2)α
2
1(X1)α2(X1,X2)]− 3E[β2(Y1, Y2)α1(X1)α

2
1(X2)]

− 12E[β2(Y1, Y2)α1(X1)α
2
2(X1,X2)]

)
and

I4 =
1

16
B
−3/2
X B

−3/2
Y

(
4E[α2

2(X1,X2)β
2
2(Y1, Y2)] +

(
E[α1(X)β1(Y )]

)2
+ 8E[α2

2(X1,X2)β
2
2(Y1, Y3)] + 4E[α2

2(X1,X2)]E[β22(Y1, Y2)]

+ 2E[α2
2(X1,X2)β1(Y1)β1(Y2)]− 8E[α2

2(X1,X2)β1(Y1)β2(Y1, Y2)]

+ 2E[α1(X1)α1(X2)β
2
2(Y1, Y2)]− 4E[α1(X1)α1(X2)β1(Y1)β2(Y1, Y2)]

− 8E[α1(X1)α2(X1,X2)β
2
2(Y1, Y2)]− 4E[α1(X1)α2(X1,X2)β1(Y1)β1(Y2)]

+ 8E[α1(X1)α2(X1,X2)β1(Y1)β2(Y1, Y2)] + 8E[α1(X1)α2(X1,X2)β1(Y2)β2(Y1, Y2)]

− 8E[α2
2(X1,X2)β1(Y3)β2(Y1, Y3)]− 8E[α1(X2)α2(X1,X2)β

2
2(Y1, Y3)]

+ 8E[α1(X2)α2(X1,X2)β1(Y3)β2(Y1, Y3)]
)
.

A useful observation is that under the assumptions that X1 has a symmetric distribution and
gj(x) with 1≤ j ≤ p are symmetric functions, many terms in I3 and I4 above in fact become
zero. In particular, we can show that

I3 =
1

8
B
−5/2
X B

−1/2
Y

(
− 3E[β2(Y1, Y2)α1(X1)α

2
1(X2)]

− 12E[β2(Y1, Y2)α1(X1)α
2
2(X1,X2)]

)
.

Denote by D(i) = {(j, k, l) : max(|j − i|, |k− i|, |l− i|)≤ 3m+ 1}. Since {X1,i,1≤ i≤
p} are m-dependent, it holds that

E[β2(Y1, Y2)α1(X1)α
2
1(X2)]

=

p∑
i=1

∑
(j,k,l)∈D(i)

E
[
Ỹ1,i(X

2
1,j −EX2

1,j)
]
E
[
Ỹ1,i(X

2
1,k −EX2

1,k)(X
2
1,l −EX2

1,l)
]

=O(c81m
3p)

and

E[β2(Y1, Y2)α1(X1)α
2
2(X1,X2)]

=

p∑
i=1

∑
(j,k,l)∈D(i)

E
[
Ỹ1,iX1,kX1,l

]
E
[
Ỹ1,i(X

2
1,j −EX2

1,j)X1,kX1,l

]
=O(c81m

3p).

Consequently, it follows that

|I3|. (c1/c2)
8m3p−2,
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where . represents the asymptotic order. By the same token, the symmetry assumptions lead
to

I4 =
1

16
B
−3/2
X B

−3/2
Y

(
4E[α2

2(X1,X2)β
2
2(Y1, Y2)] +

(
E[α1(X)β1(Y )]

)2
+ 8E[α2

2(X1,X2)β
2
2(Y1, Y3)] + 4E[α2

2(X1,X2)]E[β22(Y1, Y2)]

+ 2E[α2
2(X1,X2)β1(Y1)β1(Y2)]− 8E[α2

2(X1,X2)β1(Y1)β2(Y1, Y2)]

+ 2E[α1(X1)α1(X2)β
2
2(Y1, Y2)]− 4E[α1(X1)α1(X2)β1(Y1)β2(Y1, Y2)]

− 8E[α2
2(X1,X2)β1(Y3)β2(Y1, Y3)]

)
.

It is easy to see that
(
E[α1(X)β1(Y )]

)2 ≥ 0, E[α2
2(X1,X2)β

2
2(Y1, Y3)]≥ 0,

E[α2
2(X1,X2)β

2
2(Y1, Y2)] =

p∑
i,j,k,l=1

(
E[X1,iX1,j Ỹ1,kỸ1,l

)2 ≥ ∑
|i−k|>m

(
E[X2

1,i]E[Ỹ 2
1,k]
)2

≥ c82p(p− 2m),

and

E[α2
2(X1,X2)]E[β22(Y1, Y2)] =

p∑
i,j,k,l=1

(
E[X1,iX1,j ]

)2(E[Ỹ1,kỸ1,l]
)2

≥
∑
i,k

(
E[X2

1,i]
)2(E[Ỹ 2

1,k]
)2 ≥ c82p2.

Moreover, since {X1,i,1≤ i≤ p} are m-dependent random variables, we can deduce

E[α2
2(X1,X2)β1(Y1)β1(Y2)] =

p∑
i=1

∑
(j,k)∈D̃(i)

E
[
X1,iX1,j(Y

2
1,k −EY 2

1,k)
]

×E
[
X1,iX1,j(Y

2
1,k −EY 2

1,k)
]

=O(c81m
3p),

where D̃(i) is defined similarly as for D(i). In the same fashion, we can show that

E[α2
2(X1,X2)β1(Y1)β2(Y1, Y2)] =O(c81m

3p),

E[α1(X1)α1(X2)β
2
2(Y1, Y2)] =O(c81m

3p),

E[α1(X1)α1(X2)β1(Y1)β2(Y1, Y2)] =O(c81m
3p),

E[α2
2(X1,X2)β1(Y3)β2(Y1, Y3)] =O(c81m

3p).

As a result, there exists some positive constant A depending on c1, c2, and m such that

I4 ≥Ap−1 +O(p−2).

Finally, we deal with term I5. In view of Lemma 10, the first term for the order of I5 is

B
1/2
X B

1/2
Y (E|W12|5)2/5(E|V12|5)3/5

=B
−3/2
X B

−5/2
Y

(
E[|‖X1 −X2‖2 −BX |5]

)2/5(E[|‖Y1 − Y2‖2 −BY |5]
)3/5

.
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Since {X1,i,1 ≤ i ≤ p} are m-dependent, without loss of generality we assume that s =
p/(m+ 1) is an integer. For each 1≤ u≤m+ 1, define

Eu = {(m+ 1)(j − 1) + u : 1≤ j ≤ s}.

Clearly, {X1,i : i ∈ Eu} are independent random variables for each 1 ≤ u ≤m+ 1. Then it
follows from the basic inequality |

∑n
i=1 ai|r ≤ nr−1

∑n
i=1 |ai|r for r ≥ 1 and Rosenthal’s

inequality for independent random variables that

E[|‖X1 −X2‖2 −BX |5] = E
[∣∣∣ p∑

i=1

[
(X1,i −X2,i)

2 −E(X1,i −X2,i)
2
]∣∣∣5]

= E
[∣∣∣m+1∑

u=1

∑
i∈Eu

[
(X1,i −X2,i)

2 −E(X1,i −X2,i)
2
]∣∣∣5]

≤ (m+ 1)4
m+1∑
u=1

E
[∣∣∣∑
i∈Eu

[
(X1,i −X2,i)

2 −E(X1,i −X2,i)
2
]∣∣∣5]

≤C(m+ 1)4
m+1∑
u=1

{[∑
i∈Eu

E
(

(X1,i −X2,i)
2 −E(X1,i −X2,i)

2
)2]5/2

+
∑
i∈Eu

E
∣∣∣(X1,i −X2,i)

2 −E(X1,i −X2,i)
2
∣∣∣5}.

Note that by assumptions, there exists some absolute positive constant A such that
E
(∣∣(X1,i − X2,i)

2 − E(X1,i − X2,i)
2
∣∣5) ≤ Ac101 and E

([
(X1,i − X2,i)

2 − E(X1,i −
X2,i)

2
]2)≤Ac41, and we have BX ≥ 2c22p. Then it follows that

E[|‖X1 −X2‖2 −BX |5] . c101 m
4 ·m · (p/m)5/2 = c101 m

5/2p5/2.

Similarly, we can obtain

E[|‖Y1 − Y2‖2 −BY |5] . c101 m
5/2p5/2.

Hence it holds that

B
1/2
X B

1/2
Y (E|W12|5)2/5(E|V12|5)3/5 .m5/2p−3/2.

In the same manner, we can deduce that

B
1/2
X B

1/2
Y (E|W12|5)3/5(E|V12|5)2/5 .m5/2p−3/2,

B
1/2
X B

1/2
Y (E|W12|5)1/5(E|V12|5)4/5 .m5/2p−3/2,

B
1/2
X B

1/2
Y (E|W12|5)4/5(E|V12|5)1/5 .m5/2p−3/2,

B
1/2
X B

1/2
Y (E|W12|6)1/2(E|V12|6)1/2 .m3p−2.

Thus substituting the above five inequalities into the order of I5 in Lemma 10 yields that
there exists some positive constant A depending on c1, c2, and m such that

I5 ≤Ap−3/2.

As a consequence, combining all the bounds above leads to

V2(X,Y )≥Ap−1 +O(p−3/2).(A.15)
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Hence this entails that when p = o(
√
n), it holds that

√
nV2(X,Y )→∞. Furthermore, it

follows from Proposition 2 that V2(X) = B−1X E[(XT
1 X2)

2] + O(B−2X Lx,1/2). By the as-
sumptions E(X12

1,i) + E(Y 12
1,i )≤ c121 , var(X1,i)≥ c22, and var(Y1,i)≥ c22, it is easy to see that

2c22p ≤ BX ≤ 2c21p and 2c22p ≤ BY ≤ 2c21p. Since {X1,i,1 ≤ i ≤ p} are m-dependent, we
have

p∑
i=1

(E[X2
1,i])

2 ≤ E[(XT
1 X2)

2] =

p∑
i=1

p∑
j=1

(E[X1,iX1,j ])
2

=

p∑
i=1

∑
|i−j|≤m

(E[X1,iX1,j ])
2,

which yields c42p ≤ E[(XT
1 X2)

2] ≤ 2(m + 1)c41p. In the same manner, we can obtain
Lx,1/2 ≤Cp,Ly,1/2 ≤Cp,Lx ≤Cp2, and Ly ≤Cp2 with some positive constant C depend-
ing on c1, c2, and m. Consequently, there exist some positive constants C1 and C2 depending
on c1, c2, and m such that C1 ≤ V2(X) ≤ C2. Similarly, we have C1 ≤ V2(Y ) ≤ C2. This
along with (A.15) entails thatR2(X,Y )≥Ap−1 +O(p−3/2), where A> 0 is some constant
depending on c1, c2, and m.

From the above analysis, it holds that B1−/2
X B

−1/2
Y L

1/4
x L

1/4
y ≤A1 for some positive con-

stant A1 depending on c1, c2, and m. Thus we can obtain under the assumption of p= o(
√
n)

that

nR2(X,Y )≥Anp−1 +O(np−3/2)→∞
and

√
nV2(X,Y )/(B

−1/2
X B

−1/2
Y L1/4

x L1/4
y )≥A

√
np−1 +O(

√
np−3/2)→∞.

Finally, it follows from Theorem 5 that for any arbitrarily large C > 0, P(Tn > C)→ 1 as
n→∞, which concludes the proof of Theorem 6.

A.7. Proof of Proposition 1. In view of the definition BX = E[‖X1 −X2‖2], we can
write

d(X1,X2) = (‖X1 −X2‖ −B1/2
X )−E[(‖X1 −X2‖ −B1/2

X )|X1]

−E[(‖X1 −X2‖ −B1/2
X )|X2] +E(‖X1 −X2‖ −B1/2

X ).(A.16)

Thus it follows from Jensen’s inequality that for τ > 0,

E[|d(X1,X2)|2+2τ ]≤CτE
[∣∣‖X1 −X2‖ −B1/2

X

∣∣2+2τ ]
=CτE

[ ∣∣‖X1 −X2‖2 −BX
∣∣2+2τ

(‖X1 −X2‖+B
1/2
X )2+2τ

]
≤CτB−(1+τ)X E

[∣∣‖X1 −X2‖2 −BX
∣∣2+2τ ]

.

Moreover, we have

E
[∣∣‖X1 −X2‖2 −BX

∣∣2+2τ ]
≤Cτ

{
E
[∣∣‖X1‖2 −E[‖X1‖2]

∣∣2+2τ ]
+E

[∣∣‖X2‖2 −E[‖X2‖2]
∣∣2+2τ ]

+E[|XT
1 X2|2+2τ ]

}
≤CτLx,τ ,

(A.17)

which completes the proof of Proposition 1.
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A.8. Proof of Proposition 2. The essential idea of the proof is to conduct the Taylor
expansion for function (1 + x)1/2 to relate the L1-norm to the L2-norm. Let us define

b(X1,X2) = ‖X1 −X2‖ −B1/2
X , b1(X1) = E[b(X1,X2)|X1], b1(X2) = E[b(X1,X2)|X2].

Since V2(X) = E[d2(X1,X2)], it follows from (A.16) that

V2(X) = E
{
b(X1,X2)− b1(X1)− b1(X2) +E[b(X1,X2)]

}2
.

Then by expanding the square and the symmetry of X1 and X2, we can obtain

V2(X) = E[b2(X1,X2)]− 2E[b21(X1)] + {E[b(X1,X2)]}2.

Next we will bound the moments E[b2(X1,X2)], E[b21(X1)], and E[b(X1,X2)] by resort-
ing to the basic inequailties in Lemma 7 in Section C.7 of Supplementary Material. Denote
by

W12 =B−1X
(
‖X1 −X2‖2 −BX

)
and W13 =B−1X

(
‖X1 −X3‖2 −BX

)
.

Observe that W12 ≥ −1,W13 ≥ −1, and E[W12] = E[W13] = 0. For term E[b(X1,X2)], by
(A.59) and (A.60) we have

E[b(X1,X2)] =B
1/2
X

[
E
(
[(1 +W12)

1/2 − 1]1{W12 ≤ 1}
)

+E
(
[(1 +W12)

1/2 − 1]1{W12 > 1}
)]

=B
1/2
X

[1

2
EW121{W12 ≤ 1}+O1EW 2

121{W12 ≤ 1}+O2E|W12|1{W12 > 1}
]

=O1B
1/2
X EW 2

121{W12 ≤ 1}+O3B
1/2
X E|W12|1{W12 > 1}

)
,

(A.18)

where 1{·} denotes the indicator function and O1,O2,O3 are bounded quantities such that
|O1| ≤ 1/2, |O2| ≤ 1, and |O3| ≤ 3/2. Thus it follows that

{E[b(X1,X2)]}2 ≤BX
(1

2
EW 2

121{W12 ≤ 1}+
3

2
E|W12|1{W12 > 1}

)2
≤BX

(1

4
E|W12|31{W12 ≤ 1}+

15

4
EW 2

121{W12 > 1}
)
.(A.19)

If E[‖X‖4+4τ <∞ for some 0< τ ≤ 1/2, then it holds that

{E[b(X1,X2)]}2 ≤
15

4
BXE[|W12|2+2τ ].(A.20)

Similarly, by (A.59) and (A.60) again, for 0< τ ≤ 1/2 we have

E[b2(X1,X2)] =BXE
(
(1 +W12)

1/2 − 1
)2

=BX

(
E
[(1

2
W12 +O5W

2
12

)
1{W12 ≤ 1}

]2
+O4EW 2

121{W12 > 1}
)
,

where |O4| ≤ 1 and |O5| ≤ 1/2. Hence for 0< τ ≤ 1/2, it holds that∣∣∣E[b2(X1,X2)]−
1

4
BXE[W 2

12]
∣∣∣≤BX(5

4
E[W 2

121{W12 > 1}] +
3

4
E[|W12|31{W12 ≤ 1}]

)
≤ 5

4
BXE[|W12|2+2τ ].(A.21)
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Again it follows from (A.59) and (A.60) that for 0< τ ≤ 1/2, we have

E[b21(X1)] = E[b(X1,X2)b(X1,X3)]

=BXE
{

[(1 +W12)
1/2 − 1][(1 +W13)

1/2 − 1]1{max(W12,W13)≤ 1}
}

+BXE
{

[(1 +W12)
1/2 − 1][(1 +W13)

1/2 − 1]1{max(W12,W13)> 1}
}

=BX

(1

4
E[W12W13] +O7E[W 2

12W131{max(W12,W13)≤ 1}]

+O8E[W12W131{max(W12,W13)> 1}]
)

=
1

4
BXE[W12W13] +O9BXE[|W12|2+2τ ],(A.22)

where O7, O8, and O9 are bounded quantities satisfying |O7| ≤ 3/4, |O8| ≤ 5/4, and |O9| ≤
4.

Finally by combining (A.20)–(A.22) we can deduce

(A.23)
∣∣∣V2(X,X)− BX

4
(E[W 2

12]− 2E[W12W13])
∣∣∣≤ 9BXE[|W12|2+2τ ].

Moreover, Lemma 8 in Section C.8 of Supplementary Material yields

BX
4

E[W 2
12 − 2E[W12W13]] =B−1X E[(XT

1 X2)
2].

It follows from (A.17) that

BXE[|W12|2+2τ ]≤B−(1+2τ)
X Lx,τ .

Thus the desired result (A.12) can be derived. This concludes the proof of Proposition 2.

A.9. Proof of Proposition 3. Similar to the proof of Proposition 2, the main idea of the
proof is to conduct the Taylor expansion to relate the L1-norm to the L2-norm. Denote by
∆ = E[b(X1,X2)] = E[‖X1 −X2‖ −B1/2

X ]. In light of (A.16), we have

E[g(X1,X2,X3,X4)]

= E
[(
b(X1,X2)− b1(X1)− b1(X2) + ∆]

)(
b(X1,X3)− b1(X1)− b1(X3) + ∆

)
×
(
b(X2,X4)− b1(X2)− b1(X4) + ∆

)(
b(X3,X4)− b1(X3)− b1(X4) + ∆

)]
.

Expanding the products and noting that X1,X2,X3,X4 are i.i.d. random variables, we can
deduce

E[g(X1,X2,X3,X4)] =G1 − 4G2 + 2G2
3 + 4∆G4 − 4∆2G3 + ∆4,(A.24)

where

G1 = E[b(X1,X2)b(X1,X3)b(X2,X4)b(X3,X4)],

G2 = E[b(X1,X2)b1(X1,X3)b(X2,X4)b(X4,X5)],

G3 = E[b(X1,X2)b(X1,X3)],

G4 = E[b(X1,X2)b(X1,X3)b(X2,X4)].

Next we will analyze the six terms on the right hand side of (A.24) separately. The same
technique as in the proof of Proposition 2 will be used. For any i 6= j, let us define

Wij =B−1X
(
‖Xi −Xj‖2 −BX

)
.
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First for term G1, by definition it holds that

G1 =B2
XE
[
{(1 +W12)

1/2 − 1}{(1 +W13)
1/2 − 1}{(1 +W24)

1/2 − 1}{(1 +W34)
1/2 − 1}

]
.

Denote by

D1 = {max(W12,W13,W24,W34)≤ 1}

and Dc
1 the complement of D1. By separating the integration region into D1 and Dc

1 and
applying (A.59) and (A.60), we can deduce

G1 =B2
XE
([1

2
W12 +O(1)(W 2

12)
][1

2
W13 +O(1)(W 2

13)
]

×
[1
2
W24 +O(1)(W 2

24)
][1

2
W34 +O(1)(W 2

34)
]
1{D1}

)
+O(1)B2

XE[|W12W13W24W34|1{Dc
1}],

where O(1) represents a bounded quantity satisfying |O(1)| ≤ C for some absolute posi-
tive constant C . It follows from expanding the products and Chebyshev’s inequality that if
E[‖X‖4+4τ ]<∞ for some 0< τ ≤ 1/2, then we have∣∣∣G1 −

B2
X

16
E[W12W13W24W34]

∣∣∣≤CB2
XE[|W12|1+2τ |W13||W24||W34|].

Further, by conditioning on X2,X3, applying the Cauchy–Schwarz inequality, and noting
that X1,X2,X3,X4 are i.i.d. random variables, it holds that

E[|W12|1+2τ |W13||W24||W34|] = E
{
E
(
|W12|1+2τ |W13|

∣∣X2,X3

)
E
(
|W24W34|

∣∣X2,X3

)}
≤ E

{(
E[|W12|2+2τ |X2]

) 1+2τ

2+2τ
(
E[|W13|2+2τ |X3]

) 1

2+2τ

×
(
E[|W24|2+2τ |X2]

) 1

2+2τ
(
E[|W34|2+2τ |X3]

) 1

2+2τ
}

= E
{
E[|W12|2+2τ |X2]

}
×E

{(
E[|W13|2+2τ |X3]

) 1

1+τ
}

≤
(
E[|W12|2+2τ ]

) 2+τ

1+τ .(A.25)

Consequently, we have∣∣∣G1 −
B2
X

16
E[W12W13W24W34]

∣∣∣≤CB2
X

(
E[|W12|2+2τ ]

) 2+τ

1+τ .(A.26)

An application of the similar argument as for the proof of (A.26) yields

G2 =
B2
X

16
E[W12W13W24W45] +O(1)B2

X

(
E[|W12|2+2τ ]

) 2+τ

1+τ .(A.27)

As for term G2
3, by the same token we can deduce

G3 =BXE
{

[(1 +W12)
1/2 − 1][(1 +W13)

1/2 − 1]1{max(W12,W13)≤ 1}
}

+BXE
{

[(1 +W12)
1/2 − 1][(1 +W13)

1/2 − 1]1{max(W12,W13)> 1}
}

=
BX
4

E[W12W13] +O(1)BXδ1,

where δ1 = E[W 2
12|W13|1{max(W12,W13) ≤ 1}] + E[|W12W13|1{max(W12,W13) > 1}].

Observe that when 0< τ ≤ 1/2, we have

δ1 · |E[W12W13]| ≤ 2E[|W12|1+2τ |W13|]E[|W12W13|]≤ 2
(
E[|W12|2+2τ ]

) 2+τ

1+τ
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and

δ21 ≤ 4(E[|W12|1+τ |W13|])2 ≤ 4
(
E[|W12|2+2τ ]

) 2+τ

1+τ .

As a consequence, it holds that∣∣∣G2
3 −

B2
X

16

(
E[W12W13]

)2∣∣∣≤CB2
X

(
E[|W12|2+2τ ]

) 2+τ

1+τ .(A.28)

We next deal with term ∆G4. It follows from (A.59) and the Cauchy–Schwarz inequality
that

|G4|=B
3/2
X

∣∣E{[(1 +W12)
1/2 − 1][(1 +W13)

1/2 − 1][(1 +W24)
1/2 − 1]

}∣∣
≤B3/2

X E[|W12W13W24|] =B
3/2
X E{E(|W12W13||X2,X3)E(|W24||X2)}

≤B3/2
X E{(E[W 2

12|X2])
1/2(E[W 2

13|X3])
1/2(E[W 2

24|X2])
1/2}

=B
3/2
X E{E[W 2

12|X2](E[W 2
13|X3])

1/2}

≤B3/2
X (E[W 2

12])
3/2.(A.29)

Moreover, (A.18) entails that for 0< τ ≤ 1/2, we have

|∆|= |E[b(X1,X2)]| ≤CB1/2
X E[|W12|1+2τ ].

As a result, it follows that

|∆G4| ≤CB2
X(E[W 2

12])
3/2E[|W12|1+2τ ]

≤CB2
X

(
E[|W12|2+2τ ]

) 2+τ

1+τ .(A.30)

As for term ∆2G3, note that (A.59) leads to

|G3|=BX
∣∣E{[(1 +W12)

1/2 − 1][(1 +W13)
1/2 − 1]

}∣∣
≤BXE[|W12W13|]≤BXE[W 2

12].

It follows from (A.20) that for 0< τ ≤ 1/2, we have

∆2 ≤CBXE[|W12|2+2τ ].

Hence it holds that

∆2|G3| ≤CB2
XE[|W12|2+2τ ]E[W 2

12]≤CB2
X(E[|W12|2+2τ ])

2+τ

1+τ .(A.31)

Furthermore, note that (A.19) implies that for 0< τ ≤ 1/2, we have

∆4 ≤CB2
X(E[|W12|2+τ ])2 ≤CB2

X(E[|W12|2+2τ ])
2+τ

1+τ .(A.32)

Therefore, by substituting (A.26)–(A.28) and (A.30)–(A.32) into (A.24) we can obtain that
if E‖X‖4+4τ <∞ for some 0< τ ≤ 1/2, then

E[g(X1,X2,X3,X4)] =
B2
X

16

{
E[W12W13W24W34]− 4E[W12W13W24W45]

+ 2(E[W12W13])
2 +O(1)

(
E[|W12|2+2τ ]

) 2+τ

1+τ

}
.

Finally, the desired result (A.13) can be derived from (A.17) and Lemma 9 given in Section
C.9 of Supplementary Material. This completes the proof of Proposition 3.
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APPENDIX B: PROOFS OF PROPOSITIONS 1–3

B.1. Proof of Proposition 1. The desired result follows from Theorem 4. By conditions
(25)–(28), it holds that

B−2τX Lx,τ/E[(XT
1 X2)

2]≤ c1c−(1+2τ)
2 p−τ and B−2τY Ly,τ/E[(Y T

1 Y2)
2]≤ c1c−(1+2τ)

2 q−τ .

Thus by Theorem 4, the fact that p→∞ and q→∞, and substituting the bounds in (25)–(28)
into (23), we can obtain

sup
x∈R
|P(Tn ≤ x)−Φ(x)| ≤A(c1, c2)

[
(pq)−τ(1+τ)/2 + n−τ

]1/(3+2τ)
,

which concludes the proof of Proposition 1.

B.2. Proof of Proposition 2. The proof is based on Theorem 4 in Section 3.3 for the
case of 0 < τ ≤ 1/2 and Theorem 1 in Section D.1 for the case of 1/2 < τ ≤ 1. We need
to calculate the moments involved therein. The main idea is to use the block technique to
deal with the m-dependent structure so that the moment inequalities for independent random
variables can be applied. For simplicity, assume that k = p/(m1 + 1) is an integer. For 1≤
r ≤ k, we define

Hr = {i : (k− 1)(m1 + 1) + 1≤ i≤ k(m1 + 1)}
and

S1,r =
∑
i∈Hr

(X2
1,i −E[X2

1,i]), S2,r =
∑
i∈Hr

X1,iX2,i.

By the m1-dependent component structure of random vector X , the odd blocks are mu-
tually independent and so are the even blocks. Hence {S1,r, r is odd}, {S1,r, r is even},
{S2,r, r is odd}, and {S2,r, r is even} are sequences of independent random variables with
zero mean, respectively.

Let us first analyze term Lx,τ . It holds that

E(|‖X‖2 −E‖X‖2|2+2τ ) = E
(∣∣∣ k∑

r=1

S1,r

∣∣∣2+2τ)
≤C

(
E
[∣∣∣ ∑
r:odd

S1,r

∣∣∣2+2τ]
+E

[∣∣∣ ∑
r:even

S1,r

∣∣∣2+2τ])
.

Then it follows from Rosenthal’s inequality that

E(|‖X‖2 −E‖X‖2|2+2τ )

≤C
{( ∑

r:odd

E[S2
1,r]
)1+τ

+
( ∑
r:even

E[S2
1,r]
)1+τ

+

k∑
r=1

E[|S1,r|2+2τ ]
}
.

Note that for positive numbers s > 1 and t > 1 with s−1 + t−1 = 1, we have∣∣∣ n∑
i=1

aibi

∣∣∣≤ ( n∑
i=1

|ai|s
)1/s( n∑

i=1

bti

)1/t
.(A.33)

Thus we can deduce

E[S2
1,r] = E

[ ∑
i∈Hr

(X2
1,i −E[X2

1,i])
]2

≤ (m1 + 1)
∑
i∈Hr

E[(X2
1,i −E[X2

1,i])
2]≤ (m1 + 1)

∑
i∈Hr

E[X4
1,i]
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and

E[|S1,r|2+2τ ]≤ (m1 + 1)1+2τ
∑
i∈Hr

E[|X2
1,i −E[X2

1,i]|2+2τ ]

≤C(m1 + 1)1+2τ
∑
i∈Hr

E[|X1,i|4+4τ ].

By plugging in the above bounds and applying (A.33), it follows that

E(|‖X‖2 −E‖X‖2|2+2τ )≤C
{

(m1 + 1)1+τ (p/2)τ
∑
r:odd

∑
i∈Hr

(E[X4
1,i])

1+τ

+ (m1 + 1)1+τ (p/2)τ
∑
r:even

∑
i∈Hr

(E[X4
1,i])

1+τ

+ (m1 + 1)1+2τ
k∑
r=1

∑
i∈Hr

E[|X1,i|4+4τ ]
}

≤C(m1 + 1)1+τpτ
p∑
i=1

E[|X1,i|4+4τ ].(A.34)

In a similar fashion, we have

E[|XT
1 X2|2+2τ ] = E

[∣∣∣ k∑
r=1

S2,r

∣∣∣2+2τ]
≤C

{( ∑
r:odd

E[S2
2,r]
)1+τ

+
( ∑
r:even

E[S2
2,r]
)1+τ

+

k∑
r=1

E[|S2,r|2+2τ ]
}
.

In addition, it follows from the basic inequality (A.33) that

E[S2
2,r]≤ (m1 + 1)

∑
i∈Hr

E[X2
1,iX

2
2,i]≤ (m1 + 1)

∑
i∈Hr

E[X4
1,i],

E[|S2,r|2+2τ ]≤ (m1 + 1)1+2τ
∑
i∈Hr

E[|X1,iX2,i|2+2τ ]

≤ (m1 + 1)1+2τ
∑
i∈Hr

E[|X1,i|4+4τ ].

Thus an application of the same argument as in (A.34) results in

E[|XT
1 X2|2+2τ ]≤C(m1 + 1)1+τpτ

p∑
i=1

E[|X1,i|4+4τ ],(A.35)

wich together with (A.34) entails that under condition (29), we have

Lx,τ = E(|‖X‖2 −E‖X‖2|2+2τ ) +E(|XT
1 X2|2+2τ )≤Cκ1(m1 + 1)1+τp1+τ .(A.36)
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Next we deal with term E[(XT
1 ΣxX2)

2]. Denote by σij the (i, j)th entry of matrix Σx. By
(32) and the m1-dependent structure, it holds that

E[(XT
1 ΣxX2)

2] = E
[( p∑

i=1

∑
|j−i|≤m1

σijX1,iX2,j

)2]

=

p∑
i=1

p∑
u=1

∑
|j−i|≤m1

∑
|v−u|≤m1

σijσuvE(X1,iX1,u)E(X2,jX2,v)

≤ κ24
p∑
i=1

∑
|u−i|≤m1

∑
|j−i|≤m1

∑
|v−u|≤m1

|E(X1,iX1,u)||E(X2,jX2,v)|

≤Cκ24(m1 + 1)3pκ24 =Cκ44(m1 + 1)3p.(A.37)

Similar results as in (A.36) and (A.37) also hold for Y . That is,

Ly,τ ≤Cκ1(m2 + 1)1+τq1+τ ,(A.38)

E[(Y T
1 ΣyY2)

2]≤Cκ44(m2 + 1)3q.(A.39)

As a consequence, under conditions (29)–(32) there exists some positive constant Cκ de-
pending on κ1, κ2, κ3, and κ4 such that

B−2τX Lx,τ/E[(XT
1 X2)

2]≤ Cκ(m1 + 1)1+τ

pτ
→ 0,

B−2τY Ly,τ/E[(Y T
1 Y2)

2]≤ Cκ(m2 + 1)1+τ

qτ
→ 0,

and

n−τLx,τLy,τ(
E[(XT

1 X2)2]E[(Y T
1 Y2)

2]
)1+τ ≤ Cκ(m1 + 1)1+τ (m2 + 1)1+τ

nτ
,

E[(XT
1 ΣxX2)

2] +B−2τX L
(2+τ)/(1+τ)
x,τ

(E[(XT
1 X2)2])2

≤Cκ(m1 + 1)2+τp−τ ,

E[(Y T
1 ΣyY2)

2] +B−2τY L
(2+τ)/(1+τ)
y,τ

(E[(Y T
1 Y2)

2])2
≤Cκ(m2 + 1)2+τq−τ .

Hence by Theorem 4, we see that (34) holds for 0< τ ≤ 1/2.
We next prove the result for the case of 1/2 < τ ≤ 1. By the previous analysis, it holds

that

B−1X Lx,1/2/E[(XT
1 X2)

2]≤ Cκ(m1 + 1)3/2

p1/2
→ 0,

B−1Y Ly,1/2/E[(Y T
1 Y2)

2]≤ Cκ(m2 + 1)3/2

q1/2
→ 0,

where the convergence to zero is by the assumption of m1 = o(pτ/(2+τ)) and m2 =
o(qτ/(2+τ)). In view of Theorem 1 in Section D.1, it suffices to calculate

∑3
i=1 Gi(X) and



18∑3
i=1 Gi(Y ), where

G1(X) =
∣∣E[(XT

1 X2)
2XT

1 Σ2
xX2]

∣∣,
G2(X) = E[‖X1‖2(XT

1 ΣxX2)
2],

G3(X) = E[XTXXT ]Σ2
xE[XXTX].

Let us begin with considering term G1(X). Note that

G1(X) =
∣∣E[(XT

1 X2)
2XT

1 Σ2
xX2]

∣∣
≤ (E[|XT

1 X2|2+2τ ])1/(1+τ)(E[|XT
1 Σ2

xX2|(1+τ)/τ ])τ/(1+τ).

It follows from (A.35) and assumption (29) that

(E[|XT
1 X2|2+2τ ])1/(1+τ) ≤Cκ1/(1+τ)1 (m1 + 1)p.(A.40)

Then we analyze term E[|XT
1 Σ2

xX2|(1+τ)/τ ]. Denote by X1,Hr the rth block of X1 for 1≤
r ≤ k, and Σi,j the (i, j)th block of Σx for 1≤ i, j ≤ k. In particular, let Σ1,0 and Σk,k+1 be
zero matrices. By the m1-dependent structure, Σx is a tridiagonal block matrix and thus

E[|XT
1 Σ2

xX2|(1+τ)/τ ] = E
[∣∣∣ k∑
r=1

S3,r

∣∣∣(1+τ)/τ],
where

S3,r = (Σr,r−1X1,Hr−1
+ Σr,rX1,Hr + Σr,r+1X1,Hr+1

)T

· (Σr,r−1X2,Hr−1
+ Σr,rX2,Hr + Σr,r+1X2,Hr+1

).

In addition, {S3,r,1 ≤ r ≤ k} is a 3-dependent sequence. For simplicity, assume that
k/8 is an integer. Then it is easy to see that {

∑8(l−1)+4
r=8(l−1)+1 S3,r,1 ≤ l ≤ k/8} and

{
∑8l

r=8(l−1)+5 S3,r,1 ≤ l ≤ k/8} are sequences of independent random variables. Since
2≤ (1 + τ)/τ < 3 when 1/2< τ ≤ 1, it follows from Rosenthal’s inequality that

E[|XT
1 Σ2

xX2|
1+τ

τ ]≤CE
(∣∣∣ k/8∑

l=1

8(l−1)+4∑
r=8(l−1)+1

S3,r

∣∣∣ 1+ττ )+CE
(∣∣∣ k/8∑

l=1

8l∑
r=8(l−1)+5

S3,r

∣∣∣ 1+ττ )

≤C
{(

E
[( k/8∑

l=1

8(l−1)+4∑
r=8(l−1)+1

S3,r

)2]) 1+τ

2τ

+

k/8∑
l=1

E
[∣∣∣ 8(l−1)+4∑
r=8(l−1)+1

S3,r

∣∣∣ 1+ττ ]

+
(
E
[( k/8∑

l=1

8l∑
r=8(l−1)+5

S3,r

)2]) 1+τ

2τ

+

k/8∑
l=1

E
[∣∣∣ 8l∑
r=8(l−1)+5

S3,r

∣∣∣ 1+ττ ]}.
Then by inequality (A.33), we can obtain

E[|XT
1 Σ2

xX2|
1+τ

τ ]≤C
{( k/8∑

l=1

8(l−1)+4∑
r=8(l−1)+1

E[S2
3,r]
) 1+τ

2τ

+
( k/8∑
l=1

8l∑
r=8(l−1)+5

E[S2
3,r]
) 1+τ

2τ

+

k∑
r=1

E[|S3,r|
1+τ

τ ]

}
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≤Ck
1−τ
2τ

{ k/8∑
l=1

8(l−1)+4∑
r=8(l−1)+1

E[|S3,r|
1+τ

τ ] +

k/8∑
l=1

8l∑
r=8(l−1)+5

E[|S3,r|
1+τ

τ ]

}

≤C[p/(m1 + 1)]
1−τ
2τ

k∑
r=1

E[|S3,r|
1+τ

τ ].

Furthermore, it holds that

E[|S3,r|
1+τ

τ ]≤CE
[(
‖Σr,r−1X1,Hr−1

‖2 + ‖Σr,rX1,Hr‖2 + ‖Σr,r+1X1,Hr+1
‖2
) 1+τ

τ
]

≤C
(
E[‖Σr,r−1X1,Hr−1

‖
2+2τ

τ ] +E[‖Σr,rX1,Hr‖
2+2τ

τ ] +E[‖Σr,r+1X1,Hr+1
‖

2+2τ

τ ]
)
.

For 1 ≤ i, j ≤ m1 + 1, denote by Σ
(i,j)
r,r−1 the (i, j)th entry of Σr,r−1 and X

(i)
1,Hr−1

the ith
component of X1,Hr−1

. Observe that by assumption (32), we have

E[‖Σr,r−1X1,Hr−1
‖

2+2τ

τ ]

= E
[∣∣∣m1+1∑

i=1

m1+1∑
j=1

m+1∑
l=1

Σ
(i,l)
r,r−1Σ

(l,j)
r−1,rX

(i)
1,Hr−1

X
(j)
1,Hr−1

∣∣∣ 1+ττ ]

≤ E
[{m1+1∑

i=1

m1+1∑
j=1

m1+1∑
l=1

[E(X
(i)
1,Hr

)2]1/2E[(X
(l)
1,Hr−1

)2][E(X
(j)
1,Hr

)2]1/2|X(i)
1,Hr−1

X
(j)
1,Hr−1

|
} 1+τ

τ
]

≤ (m1 + 1)
1+τ

τ κ
(3−2τ)(1+τ)

τ

4 E
[{m1+1∑

i=1

m1+1∑
j=1

[E(X
(i)
1,Hr

)2]τ−
1

2

× [E(X
(j)
1,Hr

)2]τ−
1

2 |X(i)
1,Hr−1

X
(j)
1,Hr−1

|
} 1+τ

τ
]
.

Moreover, it follows from (A.33) that

E[‖Σr,r−1X1,Hr−1
‖

2+2τ

τ ]

≤ (m1 + 1)
1+τ

τ κ
(3−2τ)(1+τ)

τ

4 E
[(m1+1∑

i=1

[E(X
(i)
1,Hr

)2]τ−
1

2 |X(i)
1,Hr−1

|
) 2+2τ

τ
]

≤ (m1 + 1)
3+2τ

τ κ
(3−2τ)(1+τ)

τ

4

m1+1∑
i=1

[E(X
(i)
1,Hr

)2](τ−
1

2
)(2+2τ)/τE[|X(i)

1,Hr−1
|(2+2τ)/τ ]

≤ (m1 + 1)
3+2τ

τ κ
(3−2τ)(1+τ)

τ

4

m1+1∑
i=1

[E(X
(i)
1,Hr

)4+4τ ]1−
1

2τ [E(X
(i)
1,Hr−1

)4+4τ ]
1

2τ .

Note that for any a > 0, b > 0, and 0<α< 1, we have

(A.41) a1−αbα ≤ a+ b.

Thus it holds that

E[‖Σr,r−1X1,Hr−1
‖

2+2τ

τ ]

≤ (m1 + 1)
3+2τ

τ κ
(3−2τ)(1+τ)

τ

4

(∑
i∈Hr

E[|X1,i|4+4τ ] +
∑

i∈Hr−1

E[|X1,i|4+4τ ]
)
.
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In the same manner, we can deduce

E[‖Σr,rX1,Hr‖
2+2τ

τ ]≤ 2(m1 + 1)
3+2τ

τ κ
(3−2τ)(1+τ)

τ

4

∑
i∈Hr

E[|X1,i|4+4τ ]

E[‖Σr,r+1X1,Hr+1
‖

2+2τ

τ ]≤ (m1 + 1)
3+2τ

τ κ
(3−2τ)(1+τ)

τ

4

(∑
i∈Hr

E[|X1,i|4+4τ ] +
∑

i∈Hr+1

E[|X1,i|4+4τ ]
)
.

Thus by (29), it holds that

E[|XT
1 Σ2

xX2|
1+τ

τ ]≤C[p/(m1 + 1)]
1−τ
2τ (m1 + 1)

3+2τ

τ κ
(3−2τ)(1+τ)

τ

4

k∑
r=1

∑
i∈Hr

E[X
(i)
1,Hr

]4+4τ

=Cκ
(3−2τ)(1+τ)

τ

4 (m1 + 1)
5+5τ

2τ p
1−τ
2τ

p∑
i=1

E[|X1,i|4+4τ ]

≤Cκ1κ
(3−2τ)(1+τ)

τ

4 (m1 + 1)
5+5τ

2τ p
1+τ

2τ ,

which together with (A.40) leads to

G1(X)≤Cκ1κ3−2τ4 (m1 + 1)7/2p3/2.(A.42)

We proceed with bounding term G2(X). Denote by σi,j the (i, j)th entry of matrix Σx.
Under the m1-dependent structure, we have

G2(X) =

p∑
l=1

p∑
i=1

p∑
u=1

∑
|j−i|≤m1

∑
|v−u|≤m1

σi,jσu,vE[X2
1,lX1,iX1,u]E[X2,jX2,v].

Observe that E[X2,jX2,v] = 0 if |j − v|>m1. Thus it follows that

G2(X)≤
p∑
l=1

p∑
i=1

∑
|u−i|≤3m1

∑
|j−i|≤m1

∑
|v−i|≤2m1

σi,jσu,vE[X2
1,lX1,iX1,u]E[X2,jX2,v].

By the Cauchy–Schwarz inequality, we can obtain

G2(X)≤ κ3−2τ4

p∑
l=1

p∑
i=1

∑
|u−i|≤3m1

∑
|j−i|≤m1

∑
|v−i|≤2m1

[
(E[|X1,l|4+4τ ])

1

2+2τ (E[|X1,i|4+4τ ])
τ

2+2τ

× (E[|X1,u|4+4τ ])
τ

2+2τ (E[|X1,j |4+4τ ])
1

4+4τ (E[|X1,v|4+4τ ])
1

4+4τ

]
≤ κ3−2τ4

( p∑
l=1

(E[|X1,l|4+4τ ])
1

2+2τ

){ p∑
i=1

(E[|X1,i|4+4τ ])
τ

2+2τ

×
( ∑
|j−i|≤2m1

(E[|X1,j |4+4τ ])
1

4+4τ

)2( ∑
|u−i|≤3m1

(E[|X1,u|4+4τ ])
τ

2+2τ

)}
.

Further, by the basic inequality (A.33) it holds that

G2(X)

≤ κ3−2τ4

( p∑
l=1

(E[|X1,l|4+4τ ])
1

2+2τ

)( p∑
i=1

E[|X1,i|4+4τ ]
) τ

2+2τ
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×
{ p∑
i=1

( ∑
|j−i|≤2m1

(E[|X1,j |4+4τ ])
1

4+4τ

) 4+4τ

2+τ
( ∑
|u−i|≤3m1

(E[|X1,u|4+4τ ])
τ

2+2τ

) 2+2τ

2+τ
} 2+τ

2+2τ

≤Cκ3−2τ4 (m1 + 1)
1+2τ

1+τ p
1+2τ

2+2τ

( p∑
i=1

E[|X1,i|4+4τ ]
)1/2{ p∑

i=1

( ∑
|j−i|≤2m1

(E[|X1,j |4+4τ ])
1

2+τ

)

×
( ∑
|u−i|≤3m1

(E[|X1,u|4+4τ ])
τ

2+τ

)} 2+τ

2+2τ

.

Hence it follows from the basic inequality (A.41) that

(E[|X1,j |4+4τ ])
1

2+τ (E[|X1,u|4+4τ ])
τ

2+τ ≤
(
E[|X1,j |4+4τ ] +E[|X1,u|4+4τ ]

) 1+τ

2+τ

≤C
(
E[|X1,j |4+4τ ]

) 1+τ

2+τ +C
(
E[|X1,u|4+4τ ]

) 1+τ

2+τ ,

which together with (A.33) and assumption (29) yields

G2(X)≤Cκ3−2τ2 (m1 + 1)
4+5τ

2+2τ p
1+2τ

2+2τ

( p∑
i=1

E[|X1,i|4+4τ ]
)1/2

×
{ p∑
i=1

∑
|j−i|≤3m1

(
E[|X1,j |4+4τ ]

) 1+τ

2+τ

} 2+τ

2+2τ

≤Cκ3−2τ2 (m1 + 1)3p
( p∑
i=1

E[|X1,i|4+4τ ]
)1/2( p∑

j=1

E[|X1,j |4+4τ ]
)1/2

=Cκ3−2τ2 (m1 + 1)3p

p∑
i=1

E[|X1,i|4+4τ ]≤Cκ1κ3−2τ4 (m+ 1)3p2.(A.43)

As for term G3(X), we exploit similar arguments. It is easy to see that the rth block of
E[XT

1 X1X
T
1 ] is given by

(E[XT
1 X1X

T
1 ])(r) = E

[
X1,Hr(‖X1,Hr−1

‖2 + ‖X1,Hr‖2 + ‖X1,Hr+1
‖2)
]
.

Thus the rth block of ΣxE[X1X
T
1 X1] is

(ΣxE[X1X
T
1 X1])

(r) = Σr,r−1E
[
X1,Hr−1

(‖X1,Hr−2
‖2 + ‖X1,Hr−1

‖2 + ‖X1,Hr‖2)
]

+ Σr,rE
[
X1,Hr(‖X1,Hr−1

‖2 + ‖X1,Hr‖2 + ‖X1,Hr+1
‖2)
]

+ Σr,r+1E
[
X1,Hr+1

(‖X1,Hr‖2 + ‖X1,Hr+1
‖2 + ‖X1,Hr+2

‖2)
]
.

Then it follows that

G3(X) = ‖ΣxE[X1X
T
1 X1]‖2 =

k∑
r=1

‖(ΣxE[X1X
T
1 X1])

(r)‖2

≤C
k∑
r=1

∑
u∈{r−1,r,r+1}

{
‖Σr,uE(X1,Hu‖X1,Hu−1

‖2)‖2

+ ‖Σr,uE(X1,Hu‖X1,Hu‖2)‖2 + ‖Σr,uE(X1,Hu‖X1,Hu+1
‖2)‖2

}
.(A.44)
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In fact, the terms on the right hand side of the above inequality share the same bounds. Thus
we show the analysis only for the first term.

Observe that
k∑
r=1

‖Σr,r−1E(X1,Hr−1
‖X1,Hr−2

‖2)‖2

=

k∑
r=1

∑
i∈Hr

∑
j∈Hr

∑
l∈Hr−1

Σ
(i,l)
r,r−1Σ

(l,j)
r−1,rE[X

(i)
1,Hr−1

‖X1,Hr−2
‖2]E[X

(j)
1,Hr−1

‖X1,Hr−2
‖2].

Then it follows from the Cauchy–Schwarz inequality, assumption (32), and the basic inequal-
ity (A.33) that

k∑
r=1

‖Σr,r−1E(X1,Hr−1
‖X1,Hr−2

‖2)‖2

≤ κ3−2τ4

k∑
r=1

( ∑
l∈Hr−1

(E[X2
1,l])

2τ−1

2

)(∑
i∈Hr

∣∣E[X1,i‖X1,Hr−2
‖2]
∣∣)

×
( ∑
j∈Hr

(E[X2
1,j ])

2τ−1

2

∣∣E[X1,j‖X1,Hr−2
‖2]
∣∣‖)

≤ κ3−2τ4 (m1 + 1)

k∑
r=1

( ∑
l∈Hr−1

(E[X2
1,l])

2τ−1
) 1

2
( ∑
j∈Hr

(E[X2
1,j ])

2τ−1
) 1

2E[‖X1,Hr‖2‖X1,Hr−2
‖4]

≤ κ3−2τ4 (m1 + 1)

k∑
r=1

{ ∑
l∈Hr−1∪Hr

(E[X2
1,l])

2τ−1
}
E[‖X1,Hr‖2‖X1,Hr−2

‖4].

Moreover, note that for any a, b > 0, we have

ab2 ≤ a3 + b3.

Thus in light of (A.33), we can obtain

E[‖X1,Hr‖2‖X1,Hr−2
‖4]≤ E[‖X1,Hr‖6] +E[‖X1,Hr−2

‖6]

≤ (m1 + 1)2
(∑
i∈Hr

E[X6
1,i] +

∑
i∈Hr−2

E[X6
1,i]
)
.

Furthermore, it follows from (A.33) that( ∑
l∈Hr−1∪Hr

(E[X2
1,l])

2τ−1
)(∑

i∈Hr

E[X6
1,i]
)

≤ 2(m1 + 1)
( ∑
l∈Hr−1∪Hr

E[|X1,l|4+4τ ]
) 2τ−1

2+2τ
( ∑
i∈Hr

E[|X1,i|4+4τ ]
) 3

2+2τ

≤ 4(m1 + 1)
{ ∑
l∈Hr−1

E[|X1,l|4+4τ ] +
∑
i∈Hr

E[|X1,i|4+4τ ]
}
.

Similarly, we can deduce( ∑
l∈Hr−1∪Hr

(E[X2
1,l])

2τ−1)( ∑
i∈Hr−2

E[X6
1,i]
)
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≤ 2(m1 + 1)
{∑
l∈Hr

E[|X1,l|4+4τ ] +
∑

l∈Hr−1

E[|X1,l|4+4τ ] +
∑

i∈Hr−2

E[|X1,i|4+4τ ]
}
.

Consequently, it holds that

k∑
r=1

‖Σr,r−1E(X1,Hr−1
‖X1,Hr−2

‖2)‖2

≤Cκ3−2τ4 (m1 + 1)4
k∑
r=1

∑
i∈Hr

E[|X1,i|4+4τ ]

=Cκ3−2τ4 (m1 + 1)4
p∑
i=1

E[|X1,i|4+4τ ]≤Cκ1κ3−2τ4 (m1 + 1)4p.

For the other terms on the right hand side of (A.44), the same bound can be derived in a
similar way. Thus we have

G3(X)≤Cκ1κ3−2τ4 (m1 + 1)4p.(A.45)

Combining (A.42), (A.43), and (A.45), and noting that m1 + 1≤ p, we can obtain

G1(X) + G2(X) + G3(X)≤Cτκ1κ3−2τ4 (m1 + 1)3p2.(A.46)

In the same manner, we can also show that

G1(Y ) + G2(Y ) + G3(Y )≤Cτκ1κ3−2τ4 (m2 + 1)3q2.(A.47)

Hence (34) follows from substituting (A.36)–(A.39) and (A.46)–(A.47) into Theorem 1. Then
we can see that when m1 and m2 satisfy (33), Tn

D→ N(0,1). This completes the proof of
Proposition 2.

B.3. Proof of Proposition 3. Assume that Σx = ΓT1 diag(λX1 , . . . , λ
X
p )Γ1 and Σy =

ΓT2 diag(λY1 , . . . , λ
Y
q )Γ2 for some orthogonal matrices Γ1 and Γ2. A useful fact is that the

Euclidean norm is invariant to orthogonal transformations. Thus X and Y can be replaced
with the transformed random vectors X̆ = Γ1X and Y̆ = Γ2Y , respectively. Clearly the trans-
formed random vectors are distributed as

X̆ ∼N(0,diag(λX1 , . . . , λ
X
p )) and Y̆ ∼N(0,diag(λY1 , . . . , λ

Y
q )).

It is equivalent to analyze the distance correlation between the new multivariate normal ran-
dom variables X̆ and Y̆ . Ii is easy to show that

max
1≤i≤p

E[X̆2
1,i]≤ a2, p−1

∑p
i=1E[|X̆1,i|8]≤Ca42,

p−1E[(X̆T
1 X̆2)

2]≥ a21, p−1BX ≥ a1.

Similar bounds also hold for Y . Then the conditions of Proposition 2 are satisfied and the
independence of coordinates entails that m1 =m2 = 0. Therefore, the desired result can be
derived by applying Proposition 2 with τ = 1 and m1 =m2 = 0. This concludes the proof of
Proposition 3.
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APPENDIX C: SOME KEY LEMMAS AND THEIR PROOFS

C.1. Lemma 1 and its proof.

LEMMA 1. Under condition (18), we have

(A.48) V∗n(X)/V2(X)−→ 1 in probability

and

(A.49) V∗n(Y )/V2(Y )−→ 1 in probability

as n→∞.

Proof. For any X and Y , since V∗n(X,Y ) is a U-statistic and noting that E[V∗n(X,Y )] =
V2(X,Y ) by (15), it follows from the moment inequality of U-statistics (Koroljuk and
Borovskich, 1994, p. 72) and conditional Jensen’s inequality that for 0< τ ≤ 1,

E
[∣∣V∗n(X,Y )−V2(X,Y )

∣∣1+τ ]
≤C

4∑
i=1

(
4

i

)1+τ(n
i

)−τ
E
[∣∣h((X1, Y1), (X2, Y2), (X3, Y3), (X4, Y4))

∣∣1+τ ]
≤Cn−τE

[∣∣h((X1, Y1), (X2, Y2), (X3, Y3), (X4, Y4))
∣∣1+τ ].(A.50)

In fact, the moment of h((X1, Y1), (X2, Y2), (X3, Y3), (X4, Y4)) can be dominated by that of
d(X1,X2)d(Y1, Y2) based on the expression given in Lemma 5 in Section C.5.

By choosing X = Y in (A.58) and the Cauchy–Schwarz inequality, we can obtain that for
0< τ ≤ 1,

E[|h((X1,X1), (X2,X2), (X3,X3), (X4,X4))|1+τ ]≤CE[|d(X1,X2)|2+2τ ].

Thus it follows from (A.50) that

E
[∣∣V∗n(X)/V2(X)− 1

∣∣1+τ ]≤ CE[|d(X1,X2)|2+2τ ]

nτ [V2(X)]1+τ
.(A.51)

Moreover, since E[|d(Y1, Y2)|2+2τ ]≥ (E[d2(Y1, Y2)])
1+τ = [V2(Y )]1+τ , it follows from con-

dition (18) that

E[|d(X1,X2)|2+2τ ]

nτ [V2(X)]1+τ
→ 0,

which yields the ratio consistency (A.48). The result in (A.49) can be obtained similarly. This
completes the proof of Lemma 1.

C.2. Lemma 2 and its proof.

LEMMA 2. If E[‖X‖2] +E[‖Y ‖2]<∞ and X is independent of Y , then we have

T̆n =W (1)
n (X,Y ) +W (2)

n (X,Y ),

where

(A.52) W (1)
n (X,Y ) =

√
2

n(n− 1)

∑
1≤i<j≤n

d(Xi,Xj)d(Yi, Yj)√
V2(X)V2(Y )

and W (2)
n (X,Y ) satisfies E([W

(2)
n (X,Y )]2)≤Cn−1.
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Proof. Recall that V∗n(X,Y ) is a U-statistic and

V∗n(X,Y ) =

(
n

4

)−1 ∑
1≤i1<i2<i3<i4≤n

h((Xi1 , Yi1), . . . , (Xi4 , Yi4)).

It has been shown in Huang and Huo (2017) that under the independence of X and Y ,

E
[
h((X1, Y1), (X2, Y2), (X3, Y3), (X4, Y4))

∣∣(X1, Y1)
]

= 0,

E
[
h((X1, Y1), (X2, Y2), (X3, Y3), (X4, Y4))

∣∣(X1, Y1), (X2, Y2)
]

=
1

6
d(X1,X2)d(Y1, Y2).

Thus by the Hoeffding decomposition (e.g. Koroljuk and Borovskich, 1994, p. 23) and dis-
persion for U-statistics (Koroljuk and Borovskich, 1994, p. 31), when X is independent of Y
we have

V∗n(X,Y ) =

(
n

2

)−1 ∑
1≤i<j≤n

d(Xi,Xj)d(Yi, Yj) +Un(X,Y ),

where

E[U2
n(X,Y )]≤ C

n3
E[h((X1, Y1), (X2, Y2), (X3, Y3), (X4, Y4))]

2.

Furthermore, Lemma 6 given in Section C.6 yields

E[U2
n(X,Y )]≤ CV2(X)V2(Y )

2n3
.

Hence it follows from (A.1) that

E[W (2)
n (X,Y )]2 =

n(n− 1)E[U2
n(X,Y )]

2V2(X)V2(Y )
≤ C

n
,

which concludes the proof of Lemma 2.

C.3. Lemma 3 and its proof.

LEMMA 3. Let Fk = σ{(X1, Y1), . . . , (Xk, Yk)} be a σ-algebra. Then {(ζn,k,Fk), k ≥
1} forms a martingale difference array under the independence of X and Y , where ζn,k is
defined in (A.2).

Proof. It is easy to see that ζn,k ∈Fk and when X is independent of Y ,

E
[ k−1∑
i=1

d(Xi,Xk)d(Yi, Yk)
∣∣Fk−1

]
=

k−1∑
i=1

E
[
d(Xi,Xk)

∣∣Xi

]
E
[
d(Yi, Yk)

∣∣Yi]= 0,

where the last equality is due to E
[
d(X1,X2)

∣∣X1

]
= 0 and E

[
d(X1,X2)

∣∣X2

]
= 0.

C.4. Lemma 4 and its proof.

LEMMA 4. If E[‖X‖2+2τ ] + E[‖Y ‖2+2τ ] <∞ for some constant 0 < τ ≤ 1 and X is
independent of Y , then we have

E
(∣∣∣∣ n∑

k=1

E[ζ2n,k|Fk−1]− 1

∣∣∣∣1+τ)≤C(E[g(X1,X2,X3,X4)]E[g(Y1, Y2, Y3, Y4)]

[V2(X)V2(Y )]2

)(1+τ)/2
+
CE[|d(X1,X2)|2+2τ ]E[|d(Y1, Y2)|2+2τ ]

nτ [V2(X)V2(Y )]1+τ
(A.53)
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and
n∑
k=1

E[|ζn,k|2+2τ ]≤ CE[|d(X1,X2)|2+2τ ]E[|d(Y1, Y2)|2+2τ ]

nτ [V2(X)V2(Y )]1+τ
.(A.54)

Proof. (i) We first prove (A.53). Recall the definition of ζn,k in (A.2). Note that under the
independence of X and Y , we have

n∑
k=1

E[ζ2n,k|Fk−1] =
2
∑n

k=1E
([∑k−1

i=1 d(Xi,Xk)d(Yi, Yk)
]2∣∣∣Fk−1

)
n(n− 1)V2(X)V2(Y )

:=R(1)
n +R(2)

n ,

where R(1)
n is the sum of squared terms given by

R(1)
n =

2
∑n

k=1

∑k−1
i=1 E

[
d2(Xi,Xk)

∣∣Xi

]
E
[
d2(Yi, Yk)

∣∣Yi]
n(n− 1)V2(X)V2(Y )

and R(2)
n is the sum of cross-product terms given by

R(2)
n =

4
∑n

k=1

∑
1≤i<j≤k−1E

[
d(Xi,Xk)d(Xj ,Xk)

∣∣Xi,Xj

]
E
[
d(Yi, Yk)d(Yj , Yk)

∣∣Yi, Yj]
n(n− 1)V2(X)V2(Y )

.

Thus it holds that

E
(∣∣∣∣ n∑

k=1

E[ζ2n,k|Fk−1]− 1

∣∣∣∣1+τ)≤C(E[|R(1)
n − 1|1+τ ] +E[|R(2)

n |1+τ ]
)
.(A.55)

We first bound term E[|R(2)
n |1+τ ]. Let (X ′, Y ′) be an independent copy of (X,Y ) that is

independent of (X1, Y1), . . . , (Xn, Yn). For notational simplicity, define

η1(Xi,Xj) = E
[
d(Xi,X)d(Xj ,X)

∣∣Xi,Xj

]
and η2(Yi, Yj) = E

[
d(Yi, Y )d(Yj , Y )

∣∣Yi, Yj].
By changing the order of summation, we can obtain

E([R(2)
n ]2) =

16E
[∑

1≤i<j≤n
∑

k≥j+1 η1(Xi,Xj)η2(Yi, Yj)
]2

n2(n− 1)2[V2(X)V2(Y )]2

=
16E

[∑
1≤i<j≤n(n− j)η1(Xi,Xj)η2(Yi, Yj)

]2
n2(n− 1)2[V2(X)V2(Y )]2

.

In addition, for pairwisely nonequal i, j, l, it holds that

E[η1(Xi,Xj)η1(Xi,Xl)] = E
{
E[d(Xi,X)d(Xj ,X)d(Xi,X

′)d(Xl,X
′)|Xi,Xj ,Xl]

}
= E[d(Xi,X)d(Xj ,X)d(Xi,X

′)d(Xl,X
′)]

= E
{
E[d(Xi,X)d(Xj ,X)d(Xi,X

′)d(Xl,X
′)|X,X ′]

}
= E

(
E[d(Xi,X)d(Xi,X

′)|X,X ′]E[d(Xj ,X
′)|X ′]E[d(Xl,X

′)|X ′]
)

= 0,

where we have used the fact that E[d(Xj ,X
′)|X ′] = E[d(Xl,X

′)|X ′]
)

= 0.
It is easy to see that E[η1(Xi,Xj)] = E[η2(Yi, Yj)] = 0 for i 6= j. Thus for pairwisely

nonequal i, j, k, l, it holds that

E[η1(Xi,Xj)η1(Xk,Xl)] = 0.
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Then the cross-product terms in the numerator of E([R
(2)
n ]2) vanish. Moreover, in view of the

definition of g(X1,X2,X3,X4) in (17), we have

E
[
η1(Xi,Xj)

]2
= E

{
E
[
d(Xi,X)d(Xj ,X)d(Xi,X

′)d(Xj ,X
′)
∣∣Xi,Xj

]}
= E

[
d(X1,X2)d(X1,X3)d(X2,X4)d(X3,X4)

]
= E[g(X1,X2,X3,X4)].

Consequently, it follows that

E([R(2)
n ]2) =

16
∑

1≤i<j≤n(n− j)2E
[
η1(Xi,Xj)

]2E[η2(Yi, Yj)]2
n2(n− 1)2[V2(X)V2(Y )]2

=
16
∑n

j=1(j − 1)(n− j)2E[g(X1,X2,X3,X4)]E[g(Y1, Y2, Y3, Y4)]

n2(n− 1)2[V2(X)V2(Y )]2

≤ CE[g(X1,X2,X3,X4)]E[g(Y1, Y2, Y3, Y4)]

[V2(X)V2(Y )]2
.

Hence we can obtain

E[|R(2)
n |1+τ ]≤

(CE[g(X1,X2,X3,X4)]E[g(Y1, Y2, Y3, Y4)]

[V2(X)V2(Y )]2

)(1+τ)/2
.(A.56)

Next we deal with term E[|R(1)
n − 1|1+τ ]. Since E[d2(X1,X2)] = V2(X), clearly when X

is independent of Y , we have

E[R(1)
n ] =

2
∑n

k=1

∑k−1
i=1 V2(X)V2(Y )

n(n− 1)V2(X)V2(Y )
= 1.

For simplicity, denote by η3(Xi, Yi) = E
[
d2(Xi,X)

∣∣Xi

]
E
[
d2(Yi, Y )

∣∣Yi]. Then by changing
the order of summation, we deduce

E[|R(1)
n − 1|1+τ ] =

E
[∣∣∣2∑n

k=1

∑k−1
i=1 [η3(Xi, Yi)−Eη3(Xi, Yi)]

∣∣∣1+τ]
[n(n− 1)V2(X)V2(Y )]1+τ

=
E
[∣∣∣2∑n

i=1(n− i)[η3(Xi, Yi)−Eη3(Xi, Yi)]
∣∣∣1+τ]

[n(n− 1)V2(X)V2(Y )]1+τ
.

Then it follows from the von Bahr–Esseen inequality (Lin and Bai, 2010, p. 100) for inde-
pendent random variables that when 0< τ ≤ 1,

E[|R(1)
n − 1|1+τ ]≤

C
∑n

i=1(n− i)1+τE[|η3(Xi, Yi)|1+τ ]

[n2V2(X)V2(Y )]1+τ

≤ CE[|η3(Xi, Yi)|1+τ ]

nτ [V2(X)V2(Y )]1+τ

≤ CE[|d(X1,X2)|2+2τ ]E[|d(Y1, Y2)|2+2τ ]

nτ [V2(X)V2(Y )]1+τ
,

which along with (A.55) and (A.56) leads to (A.53).
(ii) We now show (A.54). Note that

n∑
k=1

E[|ζn,k|2+2τ ] =
21+τ

∑n
k=1E

[∣∣∑k−1
i=1 d(Xi,Xk)d(Yi, Yk)

∣∣2+2τ
]

[n(n− 1)V2(X)V2(Y )]1+τ
.(A.57)
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Given (Xk, Yk), {d(Xi,Xk)d(Yi, Yk),1 ≤ i ≤ k − 1} is a sequence of independent random
variables and under the independence of X and Y ,

E[d(Xi,Xk)d(Yi, Yk)|Xk, Yk] = E[d(Xi,Xk)|Xk]E[d(Yi, Yk)|Yk] = 0.

Thus it follows from Rosenthal’s inequality for independent random variables that

E
[∣∣∣ k−1∑

i=1

d(Xi,Xk)d(Yi, Yk)
∣∣∣2+2τ]

= E
[
E
(∣∣∣ k−1∑

i=1

d(Xi,Xk)d(Yi, Yk)
∣∣∣2+2τ ∣∣∣(Xk, Yk)

)]

≤CE
[
E
([ k−1∑

i=1

d(Xi,Xk)d(Yi, Yk)
]2∣∣∣(Xk, Yk)

)]1+τ
+C(k− 1)E

(
|d(X1,X2)|2+2τ

)
E
(
|d(Y1, Y2)|2+2τ

)
.

Since given (Xk, Yk), {d(Xi,Xk)d(Yi, Yk),1≤ i≤ k − 1} is a sequence of independent
random variables with zero means under the independence of X and Y , it is easy to see that

E
([ k−1∑

i=1

d(Xi,Xk)d(Yi, Yk)
]2∣∣∣(Xk, Yk)

)
=

k−1∑
i=1

E
[
d2(Xi,Xk)d

2(Yi, Yk)
∣∣(Xk, Yk)

]
,

= (k− 1)E
[
d2(X,Xk)|Xk

]
E
[
d2(Y,Yk)

∣∣Yk].
Then it follows from the conditional Jensen’s inequality that when X is independent of Y ,

E
[
E
([ k−1∑

i=1

d(Xi,Xk)d(Yi, Yk)
]2∣∣∣(Xk, Yk)

)]1+τ
≤ (k− 1)1+τE[|d(X1,X2)|2+2τ ]E[|d(Y1, Y2)|2+2τ ].

Finally we can obtain

n∑
k=1

E
[∣∣∣ k−1∑

i=1

d(Xi,Xk)d(Yi, Yk)
∣∣∣2+2τ]

≤C
n∑
k=1

(k− 1)1+τE[|d(X1,X2)|2+2τ ]E[|d(Y1, Y2)|2+2τ ]

≤Cn2+τE[|d(X1,X2)|2+2τ ]E[|d(Y1, Y2)|2+2τ ].

Substituting the above bound into (A.57) results in (A.54). This completes the proof of
Lemma 4.

C.5. Lemma 5 and its proof. The following lemma provides a useful representation of
the kernel function h((X1, Y1), (X2, Y2),
(X3, Y3), (X4, Y4)) in terms of the double-centered distance d(·, ·).

LEMMA 5. For any random vectors X and Y with finite first moments, we have

h((X1, Y1), (X2, Y2), (X3, Y3), (X4, Y4))

=
1

4

∑
1≤i,j≤4,
i 6=j

d(Xi,Xj)d(Yi, Yj)−
1

4

4∑
i=1

( ∑
1≤j≤4,
j 6=i

d(Xi,Xj)
∑

1≤j≤4,
j 6=i

d(Yi, Yj)

)

+
1

24

∑
1≤i,j≤4,
i 6=j

d(Xi,Xj)
∑

1≤i,j≤4,
i 6=j

d(Yi, Yj).(A.58)
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Proof. Let us define

a1(X1,X2) = ‖X1 −X2‖ −E[‖X1 −X2‖], a1(Y1, Y2) = ‖Y1 − Y2‖ −E[‖Y1 − Y2‖],

a2(X1) = E[a1(X1,X2)|X1], a3(Y1) = E[a1(Y1, Y2)|Y1].

We divide the proof into two steps.
Step 1. Recall the definition of h((X1, Y1), (X2, Y2), (X3, Y3), (X4, Y4)) given in (16). It

is easy to show that

1

4

∑
1≤i,j≤4,
i 6=j

‖Xi −Xj‖‖Yi − Yj‖

=
1

4

∑
1≤i,j≤4,
i 6=j

a1(Xi,Xj)a1(Yi, Yj) +
1

4
E[‖X1 −X2‖]

∑
1≤i,j≤4,
i 6=j

a1(Yi, Yj)

+
1

4
E[‖Y1 − Y2‖]

∑
1≤i,j≤4,
i 6=j

a1(Xi,Xj) + 3E[‖X1 −X2‖]E[‖Y1 − Y2‖],

1

4

4∑
i=1

( ∑
1≤j≤4,
j 6=i

‖Xi −Xj‖
∑

1≤j≤4,
j 6=i

‖Yi − Yj‖
)

=
1

4

4∑
i=1

( ∑
1≤j≤4,
j 6=i

a1(Xi,Xj)
∑

1≤j≤4,
j 6=i

a1(Yi, Yj)

)
+

3

4
E[‖X1 −X2‖]

∑
1≤i,j≤4,
i 6=j

a1(Yi, Yj)

+
3

4
E[‖Y1 − Y2‖]

∑
1≤i,j≤4,
i 6=j

a1(Xi,Xj) + 9E[‖X1 −X2‖]E[‖Y1 − Y2‖],

and
1

24

∑
1≤i,j≤4,
i 6=j

‖Xi −Xj‖
∑

1≤i,j≤4,
i 6=j

‖Yi − Yj‖

=
1

24

∑
1≤i,j≤4,
i 6=j

a1(Xi,Xj)
∑

1≤i,j≤4,
i 6=j

a1(Yi, Yj) +
1

2
E[‖X1 −X2‖]

∑
1≤i,j≤4,
i 6=j

a1(Yi, Yj)

+
1

2
E[‖X1 −X2‖]

∑
1≤i,j≤4,
i 6=j

a1(Yi, Yj) + 6E[‖X1 −X2‖]E[‖Y1 − Y2‖].

By these equalities and (16), we can obtain

h((X1, Y1), (X2, Y2), (X3, Y3), (X4, Y4))

=
1

4

∑
1≤i,j≤4,
i 6=j

a1(Xi,Xj)a1(Yi, Yj)−
1

4

4∑
i=1

( ∑
1≤j≤4,
j 6=i

a1(Xi,Xj)
∑

1≤j≤4,
j 6=i

a1(Yi, Yj)

)
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+
1

24

∑
1≤i,j≤4,
i 6=j

a1(Xi,Xj)
∑

1≤i,j≤4,
i 6=j

a1(Yi, Yj).

Step 2. Since d(X1,X2) = a1(X1,X2)− a2(X1)− a2(X2), it holds that∑
1≤i,j≤4,
i 6=j

a1(Xi,Xj)a1(Yi, Yj)

=
∑

1≤i,j≤4,
i 6=j

d(Xi,Xj)d(Yi, Yj) + 2
∑

1≤i,j≤4,
i 6=j

d(Xi,Xj)a3(Yi) + 2
∑

1≤i,j≤4,
i 6=j

d(Yi, Yj)a2(Xi)

+ 4

4∑
i=1

a2(Xi)a3(Yi) + 2
( 4∑
i=1

a2(Xi)
)( 4∑

i=1

a3(Yi)
)
,

4∑
i=1

( ∑
1≤j≤4,
j 6=i

a1(Xi,Xj)
∑

1≤j≤4,
j 6=i

a1(Yi, Yj)

)

=

4∑
i=1

( ∑
1≤j≤4,
j 6=i

d(Xi,Xj)
∑

1≤j≤4,
j 6=i

d(Yi, Yj)

)
+
( 4∑
j=1

a3(Yj)
)( ∑

1≤i,j≤4,
i 6=j

d(Xi,Xj)
)

+
( 4∑
j=1

a2(Xj)
)( ∑

1≤i,j≤4,
i 6=j

d(Yi, Yj)
)

+ 2
∑

1≤i,j≤4,
i 6=j

d(Xi,Xj)a3(Yi)

+ 2
∑

1≤i,j≤4,
i 6=j

d(Yi, Yj)a2(Xi) + 8
( 4∑
i=1

a2(Xi)
)( 4∑

i=1

a3(Yi)
)

+ 4

4∑
i=1

a2(Xi)a3(Yi),

and ∑
1≤i,j≤4,
i 6=j

a1(Xi,Xj)
∑

1≤i,j≤4,
i 6=j

a1(Yi, Yj)

=
∑

1≤i,j≤4,
i 6=j

d(Xi,Xj)
∑

1≤i,j≤4,
i 6=j

d(Yi, Yj) + 6
( 4∑
i=1

a2(Xi)
)( ∑

1≤i,j≤4,
i 6=j

d(Yi, Yj)
)

+ 6
( 4∑
i=1

a3(Yi)
)( ∑

1≤i,j≤4,
i 6=j

d(Xi,Xj)
)

+ 36
( 4∑
i=1

a2(Xi)
)( 4∑

i=1

a3(Yi)
)
.

Combining the above three equalities yields (A.58). This concludes the proof of Lemma 5.

C.6. Lemma 6 and its proof.

LEMMA 6. If X is independent of Y , it holds that

E[h((X1, Y1), (X2, Y2), (X3, Y3), (X4, Y4))]
2 =

1

2
V2(X)V2(Y ).
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Proof. From Lemma 5, we can deduce

E[h((X1, Y1), (X2, Y2), (X3, Y3), (X4, Y4))]
2 =

6∑
k=1

Ik,

where

I1 =
1

16
E
[( ∑

1≤i,j≤4,
i 6=j

d(Xi,Xj)d(Yi, Yj)
)2]

,

I2 =
1

16
E
{[ 4∑

i=1

( ∑
1≤j≤4,
j 6=i

d(Xi,Xj)
∑

1≤j≤4,
j 6=i

d(Yi, Yj)

)]2}
,

I3 =
1

576
E
[( ∑

1≤i,j≤4,
i 6=j

d(Xi,Xj)
∑

1≤i,j≤4,
i 6=j

d(Yi, Yj)
)2]

,

I4 =−1

8
E
{( ∑

1≤i,j≤4,
i 6=j

d(Xi,Xj)d(Yi, Yj)
)[ 4∑

i=1

( ∑
1≤j≤4,
j 6=i

d(Xi,Xj)
∑

1≤j≤4,
j 6=i

d(Yi, Yj)
)]}

,

I5 =
1

48
E
[( ∑

1≤i,j≤4,
i 6=j

d(Xi,Xj)d(Yi, Yj)
)( ∑

1≤i,j≤4,
i 6=j

d(Xi,Xj)
)( ∑

1≤i,j≤4,
i 6=j

d(Yi, Yj)
)]
,

and

I6 =− 1

48
E
{[ 4∑

i=1

( ∑
1≤j≤4,
j 6=i

d(Xi,Xj)
∑

1≤j≤4,
j 6=i

d(Yi, Yj)
)]

×
( ∑

1≤i,j≤4,
i 6=j

d(Xi,Xj)
)( ∑

1≤i,j≤4,
i 6=j

d(Yi, Yj)
)}

.

Since E[d(X1,X2)d(X1,X3)] = 0 and E[d(X1,X2)] = 0, under the independence of X
and Y we have

I1 =
3

2
E[d2(X1,X2)]E[d2(Y1, Y2)]

and

I2 =
1

16

4∑
i=1

[
E
( ∑

1≤j≤4,
j 6=i

d(Xi,Xj)
)2

E
( ∑

1≤j≤4,
j 6=i

d(Yi, Yj)
)2]

+
1

16

∑
1≤i,k≤4,
i 6=k

{
E
[( ∑

1≤j≤4,
j 6=i

d(Xi,Xj)

)( ∑
1≤l≤4,
l 6=k

d(Xk,Xl)

)]

×E
[( ∑

1≤j≤4,
j 6=i

d(Yi, Yj)

)( ∑
1≤l≤4,
l 6=k

d(Yk, Yl)

)]}
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=
1

16
× 4× 3E[d2(X1,X2)]× 3E[d2(Y1, Y2)] +

1

16

∑
1≤i,k≤4,
i 6=k

E[d2(Xi,Xk)]E[d2(Yi, Yk)]

= 3E[d2(X1,X2)]E[d2(Y1, Y2)].

Similarly, we can obtain

I3 =
16

576
E
( ∑

1≤i<j≤4
d(Xi,Xj)

)2
E
( ∑

1≤i<j≤4
d(Yi, Yj)

)2
= E[d2(X1,X2)]E[d2(Y1, Y2)],

I4 =−1

4

4∑
i=1

E
{( ∑

1≤k<l≤4
d(Xk,Xl)d(Yk, Yl)

)( ∑
1≤j≤4,
j 6=i

d(Xi,Xj)
)( ∑

1≤j≤4,
j 6=i

d(Yi, Yj)
)}

=−1

4
× 4× 3E[d2(X1,X2)]E[d2(Y1, Y2)] =−3E[d2(X1,X2)]E[d2(Y1, Y2)],

I5 =
8

48

∑
1≤i<j≤4

E
[
d(Xi,Xj)d(Yi, Yj)

( ∑
1≤k<l≤4

d(Xk,Xl)
)( ∑

1≤k<l≤4
d(Yk, Yl)

)]
= E[d2(X1,X2)]E[d2(Y1, Y2)],

and

I6 =− 4

48

4∑
i=1

{
E
[( ∑

1≤j≤4,
j 6=i

d(Xi,Xj)
)( ∑

1≤k<l≤4
d(Xk,Xl)

)]

×E
[( ∑

1≤j≤4,
j 6=i

d(Yi, Yj)
)( ∑

1≤k<l≤4
d(Yk, Yl)

)]}

=−4× 4× 9

48
E[d2(X1,X2)]E[d2(Y1, Y2)] =−3E[d2(X1,X2)]E[d2(Y1, Y2)].

Consequently, it follows that

E[h((X1, Y1), (X2, Y2), (X3, Y3), (X4, Y4))]
2 =

6∑
k=1

Ik =
1

2
E[d2(X1,X2)]E[d2(Y1, Y2)]

=
1

2
V2(X)V2(Y ),

which completes the proof of Lemma 6.

C.7. Lemma 7 and its proof. The following lemma provides some basic inequalities
that are based on the Taylor expansion and serve as the fundamental ingredients for the proofs
of Propositions 1–3.
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LEMMA 7. For x≥−1, it holds that ∣∣(1 + x)1/2 − 1
∣∣≤ |x|,(A.59) ∣∣(1 + x)1/2 − (1 + x/2)
∣∣≤ x2/2,(A.60) ∣∣(1 + x)1/2 − (1 + x/2− x2/8)
∣∣≤ 3|x3|/8,(A.61) ∣∣(1 + x)1/2 − (1 + x/2− x2/8 + x3/16)
∣∣≤ x4.(A.62)

Proof. (i) We first prove (A.59). It is evident that 1 + x≤ (1 + x)1/2 ≤ 1 for x ∈ [−1,0] and
1< (1 + x)1/2 < 1 + x for x ∈ (0,∞). Thus we can obtain (A.59) directly.

(ii) We next show (A.60). Define u1(x) = (1 + x)1/2 − (1 + x/2). Then we have the
derivative

u′1(x) = [(1 + x)−1/2 − 1]/2,

u′1(x) > 0 for x ∈ [−1,0), and u′1(x) < 0 for x ∈ (0,∞). Since u1(0) = 0, it holds that
u1(x)≤ 0 for x≥−1. It remains to show that for x≥−1,

u1(x)≥−x2/2.

Denote by u2(x) = (1 + x)1/2 − (1 + x/2) + x2/2. Then we have

u′2(x) =
1

2
(1 + x)1/2 − 1

2
+ x,

u′′2(x) =−1

4
(1 + x)−3/2 + 1,

u′′2(x) ≤ 0 for −1 ≤ x ≤ 4−2/3 − 1, and u′′2(x) > 0 for x > 4−2/3 − 1. In addition,
it holds that u′2(−1) = +∞, u′2(0) = 0, and u′2(+∞) = +∞, which lead to u2(x) ≥
min{u2(−1), u2(0)}= 0. Hence the proof of (A.60) is completed.

(iii) We now prove (A.61). First, the result is trivial when x = 0. Define u3(x) = (1 +
x)1/2 − (1 + x/2− x2/8). Then we have

u′3(x) =
1

2
[(1 + x)−1/2 − 1 + x/2]

=
1

2
(1 + x)−1

[
(1 + x)1/2 − (1 + x/2− x2/2)

]
.

It has been shown in the proof above that (1 + x)1/2 − (1 + x/2) + x2/2 ≥ 0 for x ≥ −1.
Thus u′3(x) ≥ 0 for x ≥ −1. It follows that u3(x) ≤ 0 for −1 ≤ x ≤ 0 and u3(x) > 0 for
x > 0. Now it remains to show that for x ∈ [−1,0)∪ (0,∞),

u3(x)/x3 ≤ 3/8.

It is easy to show that (u3(x)

x3

)′
=
u4(x)

2x4
,

where u4(x) =−5(1 + x)1/2 − (1 + x)−1/2 + 2x− x2/4 + 6.
Observe that

u′4(x) =−5

2
(1 + x)−1/2 +

1

2
(1 + x)−3/2 + 2− x

2
,

u′′4(x) =
5

4
(1 + x)−3/2 − 3

4
(1 + x)−5/2 − 1

2
,

u′′′4 (x) =−15

8
x(1 + x)−7/2,
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u′′′4 (x) > 0 for x ∈ [−1,0), and u′′′4 (x) < 0 for x > 0. Furthermore, u′′4(0) = 0 and thus
u′′4(x) ≤ 0 for any x ∈ [−1,0) ∪ (0,∞). In addition, u′4(0) = 0 and thus u′4(x) > 0 for
x ∈ [−1,0) and u′4(x) < 0 for x ∈ (0,∞). Since u4(0) = 0, it follows that u4(x) < 0 for
any x ∈ [−1,0)∪ (0,∞), which entails that

u3(x)

x3
≤ u3(x)

x3

∣∣∣
x=−1

=
3

8
.

Similay by taking derivatives, (A.62) can be proved. We omit its proof to avoid redundancy.
This concludes the proof of Lemma 7.

C.8. Lemma 8 and its proof.

LEMMA 8. If E[‖X‖2]<∞, then we have

E[W 2
12] =B−2X

(
2[E‖X‖4 − (E‖X‖2)2] + 4E[(XT

1 X2)
2]
)
,(A.63)

E[W12W13] =B−2X [E‖X‖4 − (E‖X‖2)2].(A.64)

Proof. Define α1(X) = ‖X‖2 − E[‖X‖2] and α2(X1,X2) = XT
1 X2. By the definition of

W12 and W13, we have

E[W 2
12] =B−2X E

{[
α1(X1) + α1(X2)− 2α2(X1,X2)

]2}
,

E[W12W13] =B−2X E
{[
α1(X1) + α1(X2)− 2α2(X1,X2)

][
α1(X1) + α1(X3)− 2α2(X1,X3)

]}
.

Since E[α1(X)] = 0 and E(X) = 0, by expanding the products above we can deduce

E[W 2
12] =B−2X

(
2E[α2

1(X1)] + 4E[α2
2(X1,X2)]

)
=B−2X

(
2[E‖X‖4 − (E‖X‖2)2] + 4E[(XT

1 X2)
2]
)

(A.65)

and

E[W12W13] =B−2X E[α2
1(X1)] =B−2X [E‖X‖4 − (E‖X‖2)2].(A.66)

The desired result then follows immediately. This completes the proof of Lemma 8.

C.9. Lemma 9 and its proof.

LEMMA 9. If E[‖X‖4]<∞, then we have

E[W12W13W24W34]− 4E[W12W13W24W45] + 2(E[W12W13])
2

= 16B−4X E[(XT
1 ΣxX2)

2].(A.67)

Proof. By the definition of Wij , we have

E[W12W13W24W34]

=B−4X E
{[
α1(X1) + α1(X2)− 2α2(X1,X2)

][
α1(X1) + α1(X3)− 2α2(X1,X3)

]
×
[
α1(X2) + α1(X4)− 2α2(X2,X4)

][
α1(X3) + α1(X4)− 2α2(X3,X4)

]}
.

Noting that E[α1(X1)] = 0 and E[X] = 0, it follows from expanding the above product and
the symmetry of X1, · · · ,X4 that

E[W12W13W24W34] =B−4X
{

2(E[α2
1(X)])2 + 16E[α2(X1,X2)α2(X1,X3)α1(X2)α1(X3)]

+ 16E[α2(X1,X2)α2(X1,X3)α2(X2,X4)α2(X3,X4)]
}
.
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By the same token, we can deduce

E[W12W13W24W45]

=B−4X E
{[
α1(X1) + α1(X2)− 2α2(X1,X2)

][
α1(X1) + α1(X3)− 2α2(X1,X3)

]
×
[
α1(X2) + α1(X4)− 2α2(X2,X4)

][
α1(X4) + α1(X5)− 2α2(X4,X5)

]}
,

=B−4X
{

(E[α2
1(X)])2 + 4E[α2(X1,X2)α2(X1,X3)α1(X2)α1(X3)]

}
.

Therefore, combining the above expressions with (A.66) results in

E[W12W13W24W34]− 4E[W12W13W24W45] + 2(E[W12W13])
2

= 16B−4X E[α2(X1,X2)α2(X1,X3)α2(X2,X4)α2(X3,X4)] = 16B−4X E[(XT
1 ΣxX2)

2],

which concludes the proof of Lemma 9.

C.10. Lemma 10 and its proof.

LEMMA 10. For any random vectors X ∈ Rp and Y ∈ Rq satisfying E[‖X‖12] +
E[‖Y ‖12]<∞, we have

V2(X,Y ) = I1 + I2 + I3 + I4 + I5,

where

I1 =
1

4
B

1/2
X B

1/2
Y

(
E[W12V12]− 2E[W12V13]

)
,

I2 =− 1

16
B

1/2
X B

1/2
Y

(
E[W12V

2
12]− 2E[W12V

2
13] +E[W 2

12V12]− 2E[W 2
12V13]

)
,

I3 =
1

32
B

1/2
X B

1/2
Y

(
E[W12V

3
12]− 2E[W12V

3
13] +E[V12W

3
12]− 2E[V12W

3
13]
)
,

I4 =
1

64
B

1/2
X B

1/2
Y

(
E[W 2

12V
2
12]− 2E[W 2

12V
2
13] +E[W 2

12]E[V 2
12]
)
,

I5 =O
{
B

1/2
X B

1/2
Y

[
(E|W12|5)2/5(E|V12|5)3/5 + (E|W12|5)3/5(E|V12|5)2/5

+ (E|W12|5)1/5(E|V12|5)4/5 + (E|W12|5)4/5(E|V12|5)1/5

+ (E|W12|6)1/2(E|V12|6)1/2
]}
.

Proof. We will conduct the Taylor expansion to V2(X,Y ) = E[d(X1,X2)d(Y1, Y2)]. In light
of (A.16), some straightforward calculations lead to

V2(X,Y ) = E[b(X1,X2)b(Y1, Y2)]− 2E[b(X1,X2)b(Y1, Y3)] +E[b(X1,X2)]E[b(Y1, Y2)],

where b(X1,X2) = ‖X1 −X2‖ −B1/2
X and b(Y1, Y2) = ‖Y1 − Y2‖ −B1/2

Y . Define

Wij =B−1X (‖Xi −Xj‖2 −BX) and Vij =B−1Y (‖Yi − Yj‖2 −BY ).

Observe that b(X1,X2) = B
1/2
X [(1 +W12)

1/2 − 1]. An application of similar arguments as
those in the proof of Proposition 2 by resorting to (A.62) in Lemma 7 yields

E[b(X1,X2)b(Y1, Y2)] =B
1/2
X B

1/2
Y

{1

4
E[W12V12]−

1

16

(
E[W12V

2
12] +E[W 2

12V12]
)

+
1

64
E[W 2

12V
2
12] +

1

32

(
E[W12V

3
12] +E[W 3

12V12]
)

+O
(
E[|W12|V 4

12] +E[W 4
12|V12|]

+E[W 2
12|V 3

12|] +E[|W 3
12|V 2

12] +E[|W12|3|V12|3]
)}
.
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By the same token, we can deduce that

E[b(X1,X2)b(Y1, Y3)] =B
1/2
X B

1/2
Y

{1

4
E[W12V13]−

1

16

(
E[W12V

2
13] +E[W 2

12V13]
)

+
1

64
E[W 2

12V
2
13] +

1

32

(
E[W12V

3
13] +E[W 3

12V13]
)

+O
(
E[|W12|V 4

13] +E[W 4
12V13]

+E[W 2
12|V13|3] +E[|W12|3V 2

13] +E[|W12|3|V13|3]
)}

and

E[b(X1,X2)]E[b(Y1, Y2)] =B
1/2
X B

1/2
Y

{ 1

64
E[W 2

12]E[V 2
12] +O

(
E[W 2

12]E[|V12|3]

+E[|W 3
12|]E[V 2

12]
)}
.

Therefore, the desired decomposition follows from a combination of the above three repre-
sentations and the Cauchy–Schwarz inequality, which completes the proof of Lemma 10.

APPENDIX D: THEORETICAL RESULTS FOR THE CASE OF 1/2< τ ≤ 1

D.1. Theory. In this section, we introduce our parallel results of Theorems 2 and 4
for the case of 1/2 < τ ≤ 1. When E[‖X‖2+2τ ] + E[‖Y ‖2+2τ ] < ∞ for a larger value
of τ with 1/2 < τ ≤ 1, the key ingredient is that higher-order Taylor expansions can be
applied while bounding E[g(X1,X2,X3,X4)]. We start with presenting the expansion of
E[g(X1,X2,X3,X4)] for 1/2< τ ≤ 1. Let us define

G1(X) =
∣∣E[(XT

1 X2)
2XT

1 Σ2
xX2]

∣∣, G2(X) = E[‖X1‖2(XT
1 ΣxX2)

2],

G3(X) = E[XTXXT ]Σ2
xE[XXTX],

Nτ (X) =
E[(XT

1 ΣxX2)
2] +B−2τX L

(2+τ)/(1+τ)
x,τ +B−1X

∑3
i=1 Gi(X)

(E[(XT
1 X2)2])2

.

We also have G1(Y ),G2(Y ),G3(Y ), and Nτ (Y ) that are defined in a similar way.

PROPOSITION 4. If E[‖X‖4+4τ ] <∞ for some 1/2 < τ ≤ 1, then there exists some
absolute positive constant C such that∣∣E[g(X1,X2,X3,X4)]

∣∣
≤C

{
B−2X E[(XT

1 ΣxX2)
2] +B−3X

∑3
i=1 Gi(X) +B

−(2+2τ)
X L

(2+τ)/(1+τ)
x,τ

}
.(A.68)

The proof of Proposition 4 is given in Section D.3. We can obtain the following central
limit theorem and the associated rate of convergence for the case of 1/2< τ ≤ 1 by substi-
tuting the bounds in Propositions 1–2 and 4 into Theorem 3.

THEOREM 1. Assume that E[‖X‖4+4τ ] +E[‖Y ‖4+4τ ]<∞ for some 1/2< τ ≤ 1 and

B−1X Lx,1/2/E[(XT
1 X2)

2]≤ 1

18
,(A.69)

B−1Y Ly,1/2/E[(XT
1 X2)

2]≤ 1

18
.(A.70)
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Then under the independence of X and Y , we have

sup
x∈R
|P(Tn ≤ x)−Φ(x)|

≤C
{

[Nτ (X)Nτ (Y )](1+τ)/2 +
n−τLx,τLy,τ(

E[(XT
1 X2)2]E[(Y T

1 Y2)
2]
)1+τ }1/(3+2τ)

.(A.71)

The proof of Theorem 1 is provided in Section D.2. Theorem 2 below is a direct corollary
of Theorem 1.

THEOREM 2. Assume that E[‖X‖4+4τ ] + E[‖Y ‖4+4τ ]<∞ for some 1/2< τ ≤ 1 and
(20) holds as n→∞ and p+ q→∞. In addition, assume that (A.69) and Nτ (X)→ 0 are
satisfied as p→∞, and that(A.70) and Nτ (Y )→ 0 are satisfied as q→∞. Then under the
independence of X and Y , we have

Tn
D→N(0,1).

D.2. Proof of Theorem 1. Note that (A.69), (A.70), and Proposition 2 entail that

V2(X)≥B−1X E[(XT
1 X2)

2]/2 and V2(Y )≥B−1Y E[(Y T
1 Y2)

2]/2,(A.72)

which together with (A.68) leads to

|E[g(X1,X2,X3,X4)]E[g(Y1, Y2, Y3, Y4)]|
[V2(X)V2(Y )]2

≤Nτ (X)Nτ (Y ).

It follows from Proposition 1 and (A.72) that

E[|d(X1,X2)|2+2τ ]E[|d(Y1, Y2)|2+2τ ]

nτ [V2(X)V2(Y )]1+τ
≤ n−τLx,τLy,τ

(E[(XT
1 X2)2]E[(Y T

1 Y2)
2])1+τ

.

Therefore, we can obtain the desired result (A.71) by Theorem 3, which concludes the proof
of Theorem 1.

D.3. Proof of Proposition 4 . It suffices to analyze the terms on the right hand side of
(A.24). Compared to Proposition 3, we assume higher moments and thus we can conduct
higher-order Taylor expansions for term (1 +W12)

1/2.
Let us first deal with term G1. Denote by D1 = {max(W12,W13,W24,W34)≤ 1} and Dc

1
the complement of D1. Following the notation in the proof of Proposition 3, by (A.59) and
(A.61) we can deduce

G1 =B2
XE
([1

2
W12 −

1

8
W 2

12 +O(1)(|W12|3)
][1

2
W13 −

1

8
W 2

13 +O(1)(|W13|3)
]

×
[1
2
W24 −

1

8
W 2

24 +O(1)(|W24|3)
][1

2
W34 −

1

8
W 2

34 +O(1)(|W34|3)
]
1{D1}

)
+O(1)B2

XE[|W12W13W24W34|1{Dc
1}].

By expanding the products and reorganizing the terms, it holds that

G1 =
B2
X

16

(
E[W12W13W24W34]−E[W 2

12W13W24W34] +O(1)E[W 2
12W

2
13|W24W34|1{D1}]

+O(1)E[W 2
12W

2
34|W13W24|1{D1}] +O(1)E[|W12|3|W13W24W34|1{D1}]

+O(1)E[|W12W13W24W34|1{Dc
1}]
)
.
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Furthermore, if E[‖X‖4+4τ ]<∞ for some 1/2< τ ≤ 1, then an application of Chebyshev’s
inequality and the Cauchy–Schwarz inequality results in

|E[W 2
12W

2
13|W24W34|1(D1)]|

≤ E[|W12|1+τ |W13|1+τ |W24W34|]

= E
{
E[|W12|1+τ |W13|1+τ |X2,X3]E[|W24W34||X2,X3]

}
= E

{
(E[|W12|2+2τ |X2])

2+τ

2+2τ

}
E
{

(E[|W13|2+2τ |X3])
2+τ

2+2τ

}
≤ (E[|W12|2+2τ ])

2+τ

2+2τ (E[|W13|2+2τ ])
2+τ

2+2τ = (E[|W12|2+2τ ])
2+τ

1+τ .

By the same token, we can obtain

E[W 2
12W

2
34|W13W24|1(D1)]≤ E[|W12|1+τ |W34|1+τ |W13W24|]

≤ (E[|W12|2+2τ ])
2+τ

1+τ ,

E[|W12|3|W13W24W34|1(D1)]≤ E[|W12|1+2τ |W13W24W34|]

≤ (E[|W12|2+2τ ])
2+τ

1+τ ,

and

E[|W12W13W24W34|1(Dc
1)]≤ 4E[|W12|1+2τ |W13W24W34|]

≤ 4(E[|W12|2+2τ ])
2+τ

1+τ .

In consequence, it follows that

G1 =
B2
X

16

(
E[W12W13W24W34]−E[W 2

12W13W24W34] +O(1)(E[|W12|2+2τ ])
2+τ

1+τ

)
.

(A.73)

As for term G2, let D2 = {max(W12,W13,W24,W45) ≤ 1} and Dc
2 be its complement.

Similarly, by (A.59) and (A.61) we can obtain

G2 =
B2
X

64

(
4E[W12W13W24W45]−E[W 2

12W13W24W45]−E[W12W
2
13W24W45]

−E[W12W13W
2
24W45]−E[W12W13W24W

2
45] +O(1)(E[|W12|2+2τ ])

2+τ

1+τ

)
.(A.74)

We now consider term G2
3. Define D3 = {max(W12,W13) ≤ 1} and Dc

3 its complement.
Similarly, we can show that

G3 =BX

(1

4
E[W12W13]−

1

8
E[W 2

12W131{D3}] +O(1)δ2

)
,

where δ2 = E[W 2
12W

2
131{D3}]+E[|W12W

3
13|1{D3}]+E[|W12W13|1{Dc

3}]. Note that when
E‖X‖4+4τ <∞ for some 1/2< τ ≤ 1, it follows from Chebyshev’s inequality that

δ2 · |E[W12W13]| ≤ E[|W12|1+τ |W13|1+τ ]E[|W12W13|] + 3E[|W12||W13|1+2τ ]E[|W12W13|]

≤ 4(E[|W12|2+2τ ])
2+τ

1+τ ,

δ2E[|W 2
12W13|]≤ 4E[|W12||W13|2τ ]E[|W 2

12W13|]≤ 4(E[|W12|2+2τ ])
2+τ

1+τ ,
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δ22 ≤ 3
(
E[W 2

12W
2
131(D3)]

)2
+ 3
(
E[|W12W

3
13|1(D3)]

)2
+ 3
(
E[|W12W13|1(Dc

3)]
)2

≤ 18
(
E[|W12||W13|1+τ ]

)2 ≤ 18(E[|W12|2+2τ ])
2+τ

1+τ ,

E[|W12W13|]E[|W 2
12W13|1(Dc

3)]≤ E[|W12W13|]
(
E[|W12|2|W13|2τ ] +E[|W12|1+2τ |W13|]

)
≤ 2(E[|W12|2+2τ ])

2+τ

1+τ ,

and (
E[W 2

12W131(D3)]
)2 ≤ (E[W 2

12|W13|τ ]
)2 ≤ (E[|W12|2+2τ ])

2+τ

1+τ .

Thus we can deduce

G2
3 =

B2
X

16

(
(E[W12W13])

2 −E[W12W13]E[W 2
12W13] +O(1)(E[|W12|2+2τ ])

2+τ

1+τ

)
.(A.75)

Then we deal with term ∆G4. Denote by D4 = {max(W12,W13,W24) ≤ 1} and Dc
4 its

complement. By (A.59) and (A.60), we have for 1/2< τ ≤ 1,

G4 =B
3/2
X E

{
[(1 +W12)

1/2 − 1][(1 +W13)
1/2 − 1][(1 +W24)

1/2 − 1]
}

=B
3/2
X E

{
[W12/2 +O(W 2

12)][W13/2 +O(W 2
13)][W24/2 +O(W 2

24)]1(D4)
}

+O(1)E[|W12W13W24|1(Dc
4)]

=B
3/2
X

(1

8
E[W12W13W24] +O(1)

(
E[|W12|2τ |W13W24|] +E[|W13|2τ |W12W24|]

))
.

Moreover, it holds that

∆ =B
1/2
X E[(1 +W12)

1/2 − 1]

=B
1/2
X E

[(
W12/2−W 2

12/8 +O(1)(W 3
12)
)
1{W12 ≤ 1}

]
+O(1)B

1/2
X E[|W12|1{W12 > 1}]

=B
1/2
X

(
− 1

8
E[W 2

12] +O(1)
(
E[|W12|31{W12 ≤ 1}] +E[|W12|21{W12 > 1}]

))
.

Observe from (A.29) that for 1/2< τ ≤ 1, we have

E[|W12W13W24|]
(
E[|W12|31{W12 ≤ 1}] +E[|W12|21{W12 > 1}]

)
≤C(E[W 2

12])
3/2E[|W12|1+2τ ]

≤C(E[|W12|2+2τ ])
2+τ

1+τ

and(
E[|W12|2τ |W13W24|] +E[|W13|2τ |W12W24|]

)(
E[|W12|31{W12 ≤ 1}] +E[|W12|21{W12 > 1}]

)
≤
(
E[|W12|2τ |W13W24|] +E[|W13|2τ |W12W24|]

)
E[W 2

12]

≤ 2(E[|W12|2+2τ ])
2+τ

1+τ .

Hence it follows that

∆G4 =
B2
X

64

(
−E[W 2

12]E[W12W13W24] +O(1)(E[|W12|2+2τ ])
2+τ

1+τ

)
.(A.76)

As for term ∆2G3, by (A.20) and (A.59) we have for 1/2< τ ≤ 1,

|∆2G3| ≤CB2
XE[|W12|2+2τ ]E[|W12W13|]

≤CB2
X(E[|W12|2+2τ ])

2+τ

1+τ .(A.77)
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Note that (A.19) entails that

|∆4| ≤CB2
X

(
E[|W12|31{W12 ≤ 1}] +E[W 2

121{W12 > 1}]
)2

≤CB2
X(E[|W12|2+τ ])2 ≤CB2

X(E[|W12|2+2τ ])
2+τ

1+τ .(A.78)

Finally, substituting (A.73)–(A.78) into (A.24) yields

E[g(X1,X2,X3,X4)] =
B2
X

16

(
E1 +E2 +O(1)(E[|W12|2+2τ ])

2+τ

1+τ

)
,(A.79)

where

E1 = E[W12W13W24W34]− 4E[W12W13W24W45] + 2(E[W12W13])
2

and

E2 =−E[W 2
12W13W24W34] +E[W 2

12W13W24W45] +E[W12W
2
13W24W45]

+E[W12W13W
2
24W45] +E[W12W13W24W

2
45]− 2E[W12W13]E[W 2

12W13]

−E[W 2
12]E[W12W13W24].(A.80)

By some algebra, we can obtain Lemma 11 in Section D.4. Recall that BX = 2E[‖X‖2].
Then the equalities obtained above along with Lemma 9 lead to

E1 +E2 = 16B−5X

(
6E[‖X‖2]E[(XT

1 ΣxX2)
2] +E[XTXXT ]Σ2

xE[XXTX]

+ 2E[(XT
1 X2)

2XT
1 Σ2

xX2]− 4E[‖X1‖2(XT
1 ΣxX2)

2]
)
.

Therefore, we can obtain the desired result (A.68), which completes the proof of Proposition
4.

D.4. Lemma 11 and its proof.

LEMMA 11. It holds that

E2 = 16B−5X

(
E[XTXXT ]Σ2

xE[XXTX] + 2E[(XT
1 X2)

2XT
1 Σ2

xX2]

− 4E[‖X1‖2(XT
1 ΣxX2)

2] + 4E[‖X‖2]E[(XT
1 ΣxX2)

2]
)
.(A.81)

Proof. In view of the notation in the proofs of Lemmas 8 and 9, it holds that α1(X) =
‖X‖2 −E[‖X‖2] and α2(X1,X2) =XT

1 X2. Thus we have

W12 =B−1X [α1(X1) + α1(X2)− 2α2(X1,X2)].

Then it follows that

E[W 2
12W13W24W34]

=B−5X E
{[
α1(X1) + α1(X2)− 2α2(X1,X2)

]2[
α1(X1) + α1(X3)− 2α2(X1,X3)

]
×
[
α1(X2) + α1(X4)− 2α2(X2,X4)

][
α1(X3) + α1(X4)− 2α2(X3,X4)

]}
.

The idea of the proof is to expand the products. Since X1,X2,X3, and X4 are i.i.d., we can
deduce

E[W 2
12W13W24W34]

=B−5X (2D1 + 8D2 − 20D3 − 16D4 − 8D5 + 24D6 + 32D7 + 16D8 − 48D9 − 32D10 + 64D11),
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where

D1 = E[α2
1(X)]E[α3

1(X)],

D2 = E[α2
1(X)]E[α2

2(X1,X2)α1(X2)],

D3 = E[α2
1(X)]E[α1(X1)α1(X2)α2(X1,X2)],

D4 = E[α1(X3)α2(X1,X3)α
2
2(X1,X2)α1(X2)],

D5 = E[α2
2(X1,X2)]E[α1(X1)α1(X2)α2(X1,X2)],

D6 = E[α1(X3)α2(X1,X3)α2(X1,X2)α
2
1(X2)],

D7 = E[α2(X3,X4)α2(X1,X3)α1(X4)α
2
2(X1,X2)],

D8 = E[α1(X1)α1(X2)α1(X3)α2(X1,X3)α2(X1,X2)],

D9 = E[α2(X3,X4)α1(X4)α2(X1,X3)α2(X1,X2)α1(X2)],

D10 = E[α2(X3,X4)α2(X2,X4)α2(X1,X3)α
2
2(X1,X2)],

D11 = E[α2(X3,X4)α2(X1,X3)α2(X2,X4)α1(X1)α2(X1,X2)]
]
.

Similarly, we can show that

E[W 2
12W13W24W45] =B−5X (D1 + 4D2 − 8D3 − 8D4 + 8D6 + 8D8),

E[W12W
2
13W24W45] =B−5X (D1 + 4D2 − 8D3 − 8D5 + 4D6 + 16D7 − 16D9),

E[W12W13W
2
24W45] =B−5X (D1 + 4D2 − 8D3 − 8D4 + 8D6 + 8D8),

E[W12W13W24W
2
45] =B−5X (D1 + 4D2 − 8D3 − 8D5 + 4D6 + 16D7 − 16D9),

E[W12W13]E[W 2
12W13] =B−5X (D1 + 4D2 − 4D3),

E[W 2
12]E[W12W13W24] =−B−5X (4D3 + 8D5).

Thus by plugging the above equalities into (A.80), it holds that

E2 = 16B−5X (D9 + 2D10 − 4D11).

It is easy to see that

D9 = E[XTXXT ]Σ2
xE[XXTX],

D10 = E[(XT
1 X2)

2XT
1 Σ2

xX2],

D11 = E[‖X1‖2(XT
1 ΣxX2)

2]−E[‖X‖2]E[(XT
1 ΣxX2)

2].

Therefore, we can obtain the desired result (A.81), which concludes the proof of Lemma 11.

APPENDIX E: CONNECTIONS BETWEEN NORMAL APPROXIMATION AND
GAMMA APPROXIMATION

For the test of independence based on the sample distance covariance, empirically one can
use the gamma approximation to calculate the limiting p-values. Huo and Székely (2016)
showed that under some moment conditions and the independence of X and Y , it holds that

nV∗n(X,Y )
D−−−→

n→∞

∞∑
i=1

λi(Z
2
i − 1),
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where {λi}i≥1 are some values depending on the underlying distribution and {Zi}i≥1 are
i.i.d. standard normal random variables. In practice, it is infeasible to apply this limiting
distribution directly and thus the gamma approximation can serve as a surrogate. By Huang
and Huo (2017), it follows that

∞∑
i=1

λi = E[‖X −X ′‖]E[‖Y − Y ′‖] and
∞∑
i=1

λ2i = V2(X)V2(Y ),

and hence
∑∞

i=1 λi(Z
2
i − 1) can be approximated by a centered gamma distribution

Γ(β1, β2)−β1β−12 , where the shape and rate parameters β1 and β2 are determined by match-
ing the first two moments. To this end, we define

β1 =

(∑∞
i=1 λi

)2
2
∑∞

i=1 λ
2
i

=

(
E[‖X −X ′‖]E[‖Y − Y ′‖]

)2
2V2(X)V2(Y )

and

β2 =

∑∞
i=1 λi

2
∑∞

i=1 λ
2
i

=
E[‖X −X ′‖]E[‖Y − Y ′‖]

2V2(X)V2(Y )
.

For a simple illustration, let us consider a specific case when both X and Y consist of i.i.d.
components. Then it holds that E[‖X −X ′‖] = O(

√
p) and E[‖Y − Y ′‖] = O(

√
p). More-

over, it follows from Proposition 2 that V2(X) and V2(Y ) are bounded from above and below
by some positive constants, which entails that β1 =O(pq) and β1→∞ as max{p, q}→∞.
Recall the fact that the gamma random variable can be represented as a sum of certain i.i.d.
exponential random variables. Thus by the central limit theorem, we have

Γ(β1, β2)− β1β−12√
β1β

−2
2

D→N(0,1)

as max{p, q} →∞. Since β1β−22 = 2V 2(X)V 2(Y ) and Lemma 1 has provided the consis-
tency of V∗n(X) and V∗n(Y ), it holds that

P(Tn ≤ x) =P
(√n(n− 1)

2

V∗n(X,Y )√
V∗(X)V∗(Y )

≤ x
)

≈P
( nV∗n(X,Y )√

2V2(X)V2(Y )
≤ x
)
≈P

(Γ(β1, β2)− β1β−12√
β1β

−2
2

≤ x
)

→Φ(x),

where Φ(x) stands for the standard normal distribution function. Therefore, the gamma ap-
proximation for nV∗(X,Y ) may be asymptotically equivalent to the normal approximation
to Tn under certain scenarios. It is worth mentioning that the above analysis intends to build
some connections between the normal approximation and the gamma approximation, but is
not a rigorous proof. A rigorous theoretical foundation for the gamma approximation still
remains undeveloped.

APPENDIX F: ASYMPTOTIC NORMALITY OF TR

An anonymous referee asked a great question on whether similar asymptotic normality
as in Theorem 1 and associated rates of convergence as in Theorem 3 hold for the studen-
tized sample distance correlation TR. The answer is affirmative as shown in the following
proposition.
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PROPOSITION 5. Under the same conditions of Theorem 1, we have TR
D→ N(0,1).

Moreover, under the conditions of Theorem 3, the same rate of convergence as in (21) holds
for TR.

Proof. By Lemma 1, we have V∗n(X)/V2(X)
p→ 1 and V∗n(Y )/V2(Y )

p→ 1 under condition
(18). In addition, it follows from (A.50) and Lemma 5 that for 0< τ ≤ 1,

E[|V∗n(X,Y )−V2(X,Y )|1+τ ]≤Cn−τ
[
E(|d(X1,X2)|2+2τ )E(|d(Y1, Y2)|2+2τ )

]1/2
.

Hence under condition (18), it holds that

E
[∣∣∣ V∗n(X,Y )√
V2(X)V2(Y )

−R2(X,Y )
∣∣∣1+τ]

≤ C

nτ/2

([E(|d(X1,X2)|2+2τ )E(|d(Y1, Y2)|2+2τ )
]

nτ [V2(X)V2(Y )]1+τ

)1/2
→ 0.

This entails that V∗
n(X,Y )√

V 2(X)V2(Y )

p→R2(X,Y ) and thusR∗n(X,Y )
p→R2(X,Y ) as well. Under

the null hypothesis, it holds that R2(X,Y ) = 0 and hence R∗n(X,Y )
p→ 0. In light of the

definition of T ∗n , it holds that

TR = Tn ·

√
n(n− 3)− 2

n(n− 1)
· 1√

1−R∗n(X,Y )
.

By Theorem 1, we have Tn
p→N(0,1). As a consequence, under the conditions of Theorem

1, it holds that TR
D→N(0,1) as well.

Next we proceed to show that the rates of convergence in Theorem 3 also apply to TR. It
follows from the definitions of Tn and TR that for x > 0 (similar analysis applies for x≤ 0),

P(TR > x) =P

(
Tn > x ·

√
n(n− 1)

2x2 + n(n− 3)− 2

)
.

Thus it holds that for x > 0,

|P(TR > x)− [1−Φ(x)]|

≤

∣∣∣∣∣P
(
Tn > x ·

√
n(n− 1)

2x2 + n(n− 3)− 2

)
−
[
1−Φ

(
x ·

√
n(n− 1)

2x2 + n(n− 3)− 2

)]∣∣∣∣∣
+

∣∣∣∣∣
[
1−Φ

(
x ·

√
n(n− 1)

2x2 + n(n− 3)− 2

)]
− [1−Φ(x)]

∣∣∣∣∣.
Note that the first term on the right hand side of the above inequality is bounded by the
convergence rate in Theorem 3. As for the second term, observe that when 0 < x ≤ cn for
some small constant c > 0, we have∣∣∣∣x ·

√
n(n− 1)

2x2 + n(n− 3)− 2
− x
∣∣∣∣

=
x

1 +
√

n(n−1)
2x2+n(n−3)−2

·
∣∣∣∣ 2x2 − 2n− 2

2x2 + n(n− 3)− 2

∣∣∣∣
≤ x ·

∣∣∣∣ 2x2 − 2n− 2

2x2 + n(n− 3)− 2

∣∣∣∣=O
{
x
(x2
n2

+
1

n

)}
.
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By the properties of normal distribution function, we can obtain that for 0< x≤ cn,∣∣∣∣∣
[
1−Φ

(
x ·

√
n(n− 1)

2x2 + n(n− 3)− 2

)]
− [1−Φ(x)]

∣∣∣∣∣=O
( 1

n

)
.(A.82)

When x > cn, it is easy to see that 1−Φ(x)≤ e−x2/2 ≤C1n
−1 for some constant C > 0

depending on c. In addition, it holds that

x ·

√
n(n− 1)

2x2 + n(n− 3)− 2
=

√
n(n− 1)

2 + n(n− 3)/x2 − 2/x2
≥C2n,

where C2 > 0 is some constant depending on c. Then it follows that for some positive con-
stant C3 depending on c,

1−Φ

(
x ·

√
n(n− 1)

2x2 + n(n− 3)− 2

)
≤C3n

−1.

Thus (A.82) still holds for the case of x > cn. In view of the convergence rate in Theorem 3,
it is easy to see that O( 1

n) is of a smaller order. Finally, we obtain that the same convergence
rate as stated in Theorem 3 also applies to TR, which completes the proof of Proposition 5.
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