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Determining the precise rank is an important problem in many large-
scale applications with matrix data exploiting low-rank plus noise models. In
this paper, we suggest a universal approach to rank inference via residual sub-
sampling (RIRS) for testing and estimating rank in a wide family of models,
including many popularly used network models such as the degree corrected
mixed membership model as a special case. Our procedure constructs a test
statistic via subsampling entries of the residual matrix after extracting the
spiked components. The test statistic converges in distribution to the stan-
dard normal under the null hypothesis, and diverges to infinity with asymp-
totic probability one under the alternative hypothesis. The effectiveness of
RIRS procedure is justified theoretically, utilizing the asymptotic expansions
of eigenvectors and eigenvalues for large random matrices recently devel-
oped in [11] and [12]. The advantages of the newly suggested procedure are
demonstrated through several simulation and real data examples.

1. Introduction. Matrix data have been popularly encountered in various big data ap-
plications. For example, many science and social applications involve individuals with com-
plicated interaction systems. Such systems can often be modeled using a network with nodes
representing the n individuals and edges representing the connectivity among individuals.
The overall connectivity can thus be recorded in an n×n adjacency matrix whose entries are
zeros and nonzeros, representing the corresponding pair of nodes unconnected or connected,
respectively. Examples include the friendship network, the citation network, the predator-
prey interaction network, and many others.

There has been a large literature on statistical methods and theory proposed for analyzing
matrix data. In the network setting, the observed adjacency matrix is frequently modeled
as the summation of a latent deterministic low rank mean matrix and a random noise matrix,
where the former stores all useful information in the data and is often the interest. One popular
assumption is that the rank K of the latent mean matrix is known. However, in practice,
such K is generally unknown and needs to be estimated. This paper focuses on estimation
and inference on the low rank K in a general model setting including many popularly used
network models as special cases.

In our model, the data matrix X can be roughly decomposed as a low rank mean matrix
H with K spiked eigenvalues and a noise matrix W whose components are mostly indepen-
dent. Here, K is unknown and allowed to slowly diverge with n. To infer K with quantified
statistical uncertainty, we propose a universal approach for Rank Inference by Residual Sub-
sampling (RIRS). Specifically, we consider the hypothesis test

(1) H0 :K =K0 vs. H1 :K >K0
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with K0 some pre-specified positive integer. The spiked mean matrix with rank K0 can be es-
timated by eigen decomposition, subtracting which from the observed data matrix yields the
residual matrix. Then by appropriately subsampling the entries of the residual matrix, we can
construct a test statistic. We prove that under the null hypothesis, the test statistic converges in
distribution to the standard normal, and under the alternative hypothesis, some spiked struc-
ture remains in the residual matrix and the constructed test statistic behaves very differently.
Thus, the hypothesis test in (1) can be successfully conducted. Then by sequentially testing
the hypothesis (1) for K0 = 1, · · · ,Kmax with Kmax some large enough positive integer, we
can estimate K as the first integer that makes our test fail to reject. We provide theoretical
justifications on the effectiveness of our procedure. We show that the size of our test tends
to the desired level α as sample size increases, and establish conditions under which the
power approaches one asymptotically. We also show that the sequential procedure correctly
estimates the true rank with probability tending to 1− α as network size increases.

A key to RIRS’s success is the subsampling step. Although the noise matrix W has mostly
independent components, the residual matrix is only an estimate of W and has correlated
components. Intuitively speaking, if too many entries of the residual matrix are sampled,
the accumulated estimation error and the correlation among sampled entries would be too
large, rendering the asymptotic normality invalid. We provide both theoretical and empirical
guidance on how many entries to subsample. In the special case where the diagonals of the
data matrix X are nonzero independent random variables (which corresponds to selfloops
in network models), a special deterministic sampling scheme can be used and the RIRS test
takes a simpler form.

The structure of low rank mean matrix plus noise matrix is very general and includes
many popularly used network models such as the Stochastic Block Model (SBM, [14, 25,
1]), Degree Corrected SBM (DCSBM, [17]), Mixed Membership (MM) Model, and Degree
Corrected Mixed Membership (DCMM) Model [3] as special cases. RIRS procedure and the
theory established in this paper are applicable to all these network models and go beyond
them. In network model settings, RIRS can accommodate sparse networks and allows for
extreme degree heterogeneity.

Substantial efforts have been made in the literature on estimating K in some specific net-
work models, where K is referred to as the number of communities. For example, [22] pro-
posed an MCMC algorithm based on the allocation sampler to cluster the nodes in SBM
and simultaneously estimate K . [3] developed a general variational inference algorithm to
estimate the parameters in MM model with K chosen according to some BIC criterion. [15]
considered testing (1) with K0 = 1 and proposed a signed polygon statistic which can ac-
commodate the degree heterogeneity in the DCMM model. [13] proposed EZ statistics con-
structed by “frequencies of three-node subgraphs” to test (1) with K0 = 1 in the setting of
DCSBM. [5] introduced a linear spectral statistic to test H0 :K = 1 vs. H1 :K = 2 under
the SBM. [16] proposed a stepwise goodness-of-fit test for estimating K under DCSBM.
[27] suggested an adjusted chi-square test to address the goodness-of-fit testing and model
selection problem for DCSBM. Compared to these works, we consider more general model
and general positive integer K0 that can be larger than 1.

There is also a popular line of work using likelihood based methods to estimate K . For
example, [10], [18], [24], and [26], among others. [8] introduced a universal singular value
thresholding procedure for the matrix estimation which can be applied to estimate K . [9]
proposed a network cross-validation method for estimating K and proved the consistency
of the estimator under SBM. The cross-validation idea was also explored in [21] under the
widely used inhomogeneous Erdös-Renyi model with low rank mean matrix via edge sam-
pling. [19] proposed to estimate K using the spectral properties of two graph operators – the
non-backtracking matrix and the Bethe Hessian matrix. [28] proposed to sequentially extract
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one community at a time by optimizing some extraction criterion, based on which they pro-
posed a hypothesis test for testing the number of communities empirically via permutation
method. [7] proposed a new test based on the asymptotic distribution of the largest eigenvalue
of the appropriately rescaled adjacency matrix for testing whether a network is Erdös Renyi
or not, and suggested a recursive bipartition algorithm for estimating K . [20] generalized
the test in [7] for testing whether a network is SBM with some specific K0, and proposed a
sequential testing idea to estimate the true number of communities.

Among the existing literature reviewed above, the works by [7] and [20] are most closely
related to ours. The main idea in both papers is that under the null hypothesis of SBM with
K0 communities, the model parameters can be estimated and the residual matrix can be cal-
culated and appropriately rescaled. The rescaled residual matrix is close to a generalized
Wigner matrix whose extreme eigenvalues (after recentering and rescaling) converge in dis-
tribution to the Tracy-Widom distribution. However, under the alternative hypothesis, the
extreme eigenvalues behave very differently. At a high level, this idea is related to ours in the
sense that our proposal is also based on the residual matrix.

RIRS test differs from the literature in the way of using the residual matrix. Instead of
investigating the spectral distribution of the residual matrix, we construct RIRS test by sub-
sampling just a fraction of the entries in residual matrix. The subsampling idea ensures that
the noise accumulation caused by estimating the mean matrix does not dominate the signal
which guarantees the nice performance of our test. Compared to the existing literature, RIRS
test behaves more similarly to a nonparameteric test in the sense that there is no assumption
on specific structure of the low rank mean matrix. Yet, it is also simple and fast to implement.
Our asymptotic theory is also new to the literature. It is built on the recent developments
on random matrix theory in [11] and [12], which establishes the asymptotic expansions of
the eigenvalues and eigenvectors for a very general class of random matrices. This powerful
result allows us to establish the sampling properties of RIRS test in equally general setting.

The remaining of the paper is organized as follows: Section 2 presents the model setting
and motivation for RIRS. We introduce our new approach and establish its asymptotic proper-
ties in Section 3. Simulations under various models are conducted to justify the performance
of RIRS in Section 4. We further apply RIRS to a real data example in Section 5. Additional
simulation examples and all proofs are relegated to the Appendix and the Supplementary
material.

1.1. Notations. We introduce some notations that will be used throughout the paper. We
use a≪ b to represent a/b→ 0 and write a≲ b if there exists a positive constant c such that
0≤ a≤ cb. For a matrix A, we use λj(A) to denote the j-th largest eigenvalue, and ∥A∥F ,
∥A∥, and ∥A∥∞ to denote the Frobenius norm, the spectral norm, and the maximum elemen-
twise infinity norm, respectively. In addition, denote by A(k) the kth row of the matrix A.
For a unit vector x= (x1, · · · , xn)T , let dx = ∥x∥∞ =max |xi| represent the vector infinity
norm.

2. Model setting and motivation.

2.1. Model setting. Consider an n× n symmetric random matrix X̃ admitting the fol-
lowing decomposition

(2) X̃=H+W,

where H= E(X̃) is the mean matrix with unknown rank K ≪ n and W is the noise matrix
with bounded and independent entries on and above the diagonals. In network applications,
the observed matrix X is the adjacency matrix and can be either X̃ or X̃− diag(X̃), with
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the former corresponding to network with selfloops and the latter corresponding to network
without selfloops, respectively. An important and interesting question is inferring the un-
known rank K , which corresponds to the number of communities in network models. We
address the problem by testing the hypotheses (1) under the universal model (2).

We note that with some transformation, model (2) can accommodate nonsymmetric matri-
ces. In fact, for any matrix X̃ that can be written as the summation of a rank K mean matrix
and a noise matrix of independent components, we can define a new matrix as(

0 X̃

X̃T 0

)
.

It is seen that this new matrix has the same structure as in (2) with rank 2K , and our new
method and theory both apply. For simplicity of presentation, hereafter we assume the sym-
metric matrix structure for X̃ and X.

Write the eigen-decomposition of H as VDVT , where D = diag(d1, ..., dK) collects
the nonzero eigenvalues of H in decreasing magnitude and V = (v1, · · · ,vK) is the ma-
trix collecting the corresponding eigenvectors. Denote by d̂1, · · · , d̂n the eigenvalues of X in
decreasing magnitude and v̂1, · · · , v̂n the corresponding eigenvectors. We next discuss the
motivation of RIRS.

2.2. Motivation. To gain insights, consider the simple case when the observed data ma-
trix X = X̃ and follows model (2). It is seen that EW = 0. Intuitively, as n → ∞, the
normalized statistic

∑n
i=1wii/

√∑n
i=1Ew2

ii converges in distribution to standard normal.

Meanwhile, we expect
n∑

i=1
Ew2

ii/
n∑

i=1
w2
ii to converge to 1 in probability as n→∞. These two

results entail that

(3)
∑n

i=1wii√∑n
i=1w

2
ii

is asymptotically normal as the matrix size n→∞.
In the ideal case where the eigenvalues d1, · · · , dK and eigenvectors v1, · · · , vK are

known, a test of the form (3) can be constructed by replacing wii with w̃ii where W̃ =

(w̃ij) =X−
∑K0

k=1 dkvkv
T
k . Under the null hypothesis, W̃=W and the corresponding test

statistic (constructed in the same way as (3)) is asymptotically normal. However, under the
alternative hypothesis, W̃ still contains some information from the K −K0 smallest spiked
eigenvalues and the corresponding eigenvectors and the test statistic is expected to exhibit
different asymptotic behavior. Thus, the hypotheses in (1) can be successfully tested by us-
ing this statistic.

In practice, the eigenvalues and eigenvectors of H are unavailable and need to be esti-
mated. A natural estimate of W̃ takes the form

(4) Ŵ= (ŵij) =X−
K0∑
k=1

d̂kv̂kv̂
T
k .

Under H0, the residual matrix Ŵ is expected to be close to W, which motivates us to con-
sider test of the form

(5) T̃n =

∑n
i=1 ŵii√∑n
i=1 ŵ

2
ii

.

Intuitively, the asymptotic behavior of the above statistic should be close to the one in (3).
Thus, by examining the asymptotic behavior of T̃n we can test the desired hypotheses. We
will formalize this intuition in a later section.
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The statistic in (3) is constructed using only the diagonals of W. In theory, the asymp-
totic normality remains true if we aggregate any randomly sampled entries of the matrix
W (instead of just the diagonals) and normalize properly, as long as the sampling size is
large enough, thanks to the independence of the entries on and above the diagonals of W.
However, this does not translate into the asymptotic normality of the test based on Ŵ for
at least two reasons: First, in applications absence of selfloops, the observed data matrix X

takes the form X̃ − diag(X̃) and thus Ŵ estimates W − diag(X̃) which has nonrandom
diagonals. Consequently, test constructed using diagonals of Ŵ becomes invalid. Second,
the entries of Ŵ are all correlated and have errors caused by estimating the corresponding
entries of W. Aggregating too many entries of Ŵ will cause too much noise accumulation.
This together with the correlations among ŵij makes the asymptotic normality of the cor-
responding test statistic invalid. This heuristic argument is formalized in a later Section 3.6.
Thus to overcome these difficulties, we need to carefully choose which and how many entries
to aggregate. These issues are formally addressed in the next section.

3. Rank inference via residual subsampling.

3.1. A universal RIRS test. A key ingredient of RIRS is subsampling the entries of Ŵ.
Specifically, define i.i.d. Bernoulli random variables Yij with P(Yij = 1) = 1

m for 1 ≤ i <
j ≤ n, where m is some positive integer diverging with n at a rate that will be specified later.
In addition, set Yji = Yij for i < j. A universal RIRS test that works under the broad model
(2) takes the following form

(6) Tn =

√
m
∑

i ̸=j ŵijYij√
2
∑

i ̸=j ŵ
2
ij

.

The effect of m is to control on average how many entries of the residual matrix to aggregate
for calculating the test statistic. It will be made clear in a moment that n2/m needs to grow to
infinity in order for the central limit theorem to take effect. However, the growth rate cannot
be too fast because otherwise the noise accumulation and the correlation in ŵij would make
the asymptotic normality invalid.

The following conditions will be used in our theoretical analysis.

CONDITION 1. W is a symmetric matrix with independent and bounded upper triangu-
lar entries (including the diagonals) and Ewij = 0 for i ̸= j.

CONDITION 2. For 1≤ i < j ≤K , if |di| ≠ |dj |, there exists a positive constant c0 such
that |di|

|dj | ≥ 1 + c0.

CONDITION 3. There exists a positive sequence θn, which may converge to 0 as n→∞,
such that σ2

ij = var(wij) ≤ θn and max
1≤i≤n

|hii| ≲ θn. In addition, max{nθn, logn} ≲ α2
n :=

max
i

n∑
j=1

σ2
ij , |dK |≳ α2

n

(log logn)ϵ′
and |dK |

αn
≳ (logn)1+ϵ for some positive constants ϵ, ϵ′.

CONDITION 4. ∥V∥∞ ≲ 1√
n

.

CONDITION 5. It holds that
∑

i ̸=j σ
2
ij ≫m. In addition, for some small positive constant

ϵ1 < ϵ with ϵ the constant in Condition 3,∑
i ̸=j

σ2
ij ≳ (logn)ϵ1

(n∑K
k=1(1

Tvk)
2

m
+ α2

n(logn)
2 +

n

m
+

n2α2
n(logn)

6

md2K

)
.



6

CONDITION 6. The true rank satisfies that K ≤O(log logn).

With the above conditions, Theorem 3.1 below provides the asymptotic null distribution
of RIRS test and Theorem 3.2 establishes the asymptotic alternative distribution.

THEOREM 3.1. Assume Conditions 1-6. Under null hypothesis in (1) we have

(7) Tn
d→N(0,1), as n→∞.

THEOREM 3.2. Assume Conditions 1-6 and the alternative hypothesis in (1). If∑
i ̸=j

( K∑
k=K0+1

dkvk(i)vk(j)
)2 ≪∑

i ̸=j

σ2
ij ,

then as n→∞,

(8) Tn −
√
m
∑

i ̸=j

∑K
k=K0+1 dkvk(i)vk(j)Yij√
2
∑

i ̸=j ŵ
2
ij

d→N(0,1).

In addition, if

(9)

∣∣∣∣∣∣
K∑

k=K0+1

dk
∑
i ̸=j

vk(i)vk(j)

∣∣∣∣∣∣≫√
m

√∑
i ̸=j

σ2
ij +

√
K −K0

K∑
k=K0+1

|dk|

 ,

we have

(10) P(|Tn|>C)→ 1, as n→∞

for arbitrarily large positive constant C .

The result in (8) guarantees that if
∑K

k=K0+1 dk
∑

i ̸=j vk(i)vk(j)Yij is non-negligible

compared with
√

2m−1
∑

i ̸=j ŵ
2
ij , then our test has non-vanishing power. If in addition, the

asymptotic mean is large enough such that (9) is satisfied, then the asymptotic power can
reach one. The results on asymptotic size and power of RIRS test are formally summarized
in the following Corollary.

COROLLARY 1. Under the conditions of Theorem 3.1, we have

lim
n→∞

P(|Tn| ≥Φ−1(1− α/2)|H0) = α,

where Φ−1(t) is the inverse of the standard normal distribution function, and α is the pre-
specified significance level. Alternatively under the same conditions for ensuring (10), we
have

lim
n→∞

P(|Tn| ≥Φ−1(1− α/2)|H1) = 1.

3.2. Remarks on the conditions. Random matrix satisfying Condition 1 is often termed
as generalized Wigner matrix in the literature. Condition 2 allows for eigenvalue multiplicity
and requires that there is enough gap between distinct eigenvalues. The constant c0 can be
replaced with some slowly vanishing term such as (logn)−1 and our main results will still
hold with relevant conditions updated accordingly.
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Condition 3 constraints that the nonzero eigenvalues of the low rank mean matrix
should have enough spikiness. The two constraints |dK | ≳ α2

n(log logn)
−ϵ′ and |dK | ≳

αn(logn)
1+ϵ in Condition 3 are imposed for controlling the noise accumulation in our test

caused by estimating wij . The second constraint is a signal strength condition commonly im-
posed in random matrix theory literature; see [4], [6] and [23], among others. The logarith-
mic factor, (logn)1+ϵ, measures the gap between the signal (spiked) eigenvalue and the noise
eigenvalue, and is hard to be removed completely because otherwise the sample eigenvector
would depend on the noise matrix W in a complicated way that is not useful for statistical
inference. The first constraint can be satisfied by many network models with low rank struc-
ture. To see this, note that if Xij , j ≥ i≥ 1 follows Bernoulli distribution and hij ∼ θn with
maxi,j hij < 1, then α2

n ∼ nθn. Since hij’s and σ2
ij’s are the means and variances of Bernoulli

random variables, respectively, we have hij ∼ σ2
ij ∼ θn and ∥H∥F = {

∑
i,j h

2
ij}1/2 ∼ nθn.

Note also that ∥H∥F = {
∑K

i=1 d
2
i }1/2. Assuming that K is finite and d1 ∼ dK , these results

together with α2
n ∼ nθn derived earlier ensure that |dK |≳ α2

n(log logn)
−ϵ′ is satisfied.

Condition 5 characterizes what kind of m can make RIRS succeed. More detailed discus-
sion on the choice of m will be given in Section 3.3. Condition 6 allows the rank K to grow
with network size n.

Condition 4 is a technical condition needed for proving key Lemmas 2-3. We remark that
it can hold under extreme degree heterogeneity in network models. The following example
is used to illustrate this point.

EXAMPLE 1. Consider DCSBM with K = 2 where mean matrix takes the form

(11) H=ΘΠBΠTΘ.

Here, B is a 2× 2 nonsingular matrix with diagonals 1 and off diagonals taking a constant
value in [0,1), Θ is a diagonal matrix with the first n/2 diagonal entries taking the same
value ϑ1 > 0 and the remaining diagonal entries taking the same value ϑ2 > 0, and Π ∈
Rn×2 has the first n/2 rows equal to (1,0) and the remaining ones equal to (0,1). Here,
for simplicity we assume n is an even number. It is seen that the first n/2 nodes belong
to community 1 and share the common degree parameter ϑ1, and the remaining belong to
community 2 and share the common degree parameter ϑ2. Since the population eigenvector
vk, k = 1,2 satisfies

ΘΠBΠTΘvk = λkvk,

we see that vk takes the form (a11
T
n/2, a21

T
n/2)

T with 1n/2 ∈Rn/2 a vectors of 1’s and a1 and
a2 two constants. Since ∥vk∥2 = 1, it follows that max{|a1|, |a2|}≲ 1√

n
and thus Condition

4 holds regardless of the values of ϑ1 and ϑ2.

3.3. Choice of m. It is seen from the previous two theorems that the tuning parameter
m plays a crucial role for RIRS to achieve the desired size with power tending to one. Con-
dition 5 provides general conditions on the choice of m for ensuring the null and alternative
distributions in (7) and (8). For (10) to hold, we also need the additional assumption (9). In
some special cases, these conditions boil down to simpler forms which can provide us more
specific guideline on the choice of m.

As an example, we consider the special case

(logn)δmin
i ̸=j

σ2
ij ≳max

i ̸=j
σ2
ij ,

for K0 <K,
∑
i ̸=j

σ2
ij ≲

∣∣∣∣∣∣
K∑

k=K0+1

dk
∑
i ̸=j

vk(i)vk(j)

∣∣∣∣∣∣ , and |d1|≲ nθn,(12)
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where δ < ϵ is some small positive constant with ϵ the same as in Condition 3. The first
condition above is for guaranteeing both the asymptotic size and power results, while the
remaining two conditions will be only used for verifying (9) which is only needed in es-
tablishing the power results. In network models, the (logn)δ factor in the first condition of
(12) is related to degree heterogeneity. For very extreme degree heterogeneity, we may have
maxi ̸=j σ

2
ij/mini ̸=j σ

2
ij diverge at some polynomial rate of sample size. We remark that sim-

ilar results can be derived using identical proof idea for Theorem 3.3 with some technical
conditions appropriately modified.

We next discuss some more specific network models which can give us more insights
on the three conditions in (12). Consider the same DCSBM in (11) except that Θ =
diag{ϑ1, · · · , ϑn} with ϑj > 0, j = 1, · · · , n the degree parameters. Assume maxi,j{ϑjϑjbCiCj

}
is bounded away from 1 by some constant, where Ci ∈ {1,2} is the membership for node
i, and bkl ∈ (0,1] is the (k, l) entry of matrix B taking constant values. Then we have
σ2
ij ∼ hij = ϑiϑjbCiCj

because the entries of X have Bernoulli distributions. It is seen that
the ratio maxi ̸=j σ

2
ij/mini ̸=j σ

2
ij ∼ maxi ̸=j(ϑiϑj)/mini ̸=j(ϑiϑj). Thus, the first condition

in (12) is satisfied if maxj ϑj/minj ϑj ≲
√

(logn)δ . It is also straightforward to see that
θn = maxi,j{ϑiϑjbCiCj

} and |d1| ∼ ∥H∥F ≲ nmaxi,j{ϑiϑjbCiCj
}. Thus, the last condition

|d1|≲ nθn in (12) holds. The second condition reduces to
∑

i ̸=j σ
2
ij ≲

∣∣∣d2∑i ̸=j v2(i)v2(j)
∣∣∣

in this model setting. Since
∑

i ̸=j σ
2
ij ≤ n2maxi ̸=j{ϑiϑjbCiCj

}, the second condition is sat-

isfied if n2maxi ̸=j ϑiϑjbCiCj
≲
∣∣∣d2∑i ̸=j v2(i)v2(j)

∣∣∣.
The next theorem specifies what kind of m satisfies the two inequalities in Condition 5

and (9).

THEOREM 3.3. Set θn = maxi ̸=j σ
2
ij . Assume (12) and Condition 3, and let ϵ1 ∈ (δ, ϵ)

be some small constant. Then m satisfying the following condition

(13) θ−1
n (logn)δ+ϵ1K+n−1θ−2

n (logn)6+2δ+ϵ1(log logn)2ϵ
′ ≪m≪ (n/K)2θn(logn)

−2δ

makes Condition 5 and inequality (9) hold. Consequently, (7) and (10) hold under Conditions
1–4 and 6. Moreover, a sufficient condition for (13) is n(logn)−2ϵ+ϵ1+2(log logn)−2ϵ′K ≪
m≪ nK−2(logn)2ϵ−δ+2(log logn)2ϵ

′
under Conditions 1–4.

It is seen that Theorem 3.3 allows for a wide range of values for m. In theory, any m
satisfying (13) guarantees the asymptotic size and power of our test. In implementation, we
found smaller m in this range yields better empirical size. It is also seen from (13) that
RIRS works with sparse networks. In fact, the only sparsity condition imposed by (13) is that
θn ≫ n−1K3/2(logn)2+δ+ϵ1/2. Our sparsity condition is weaker than many existing ones in
related work in the literature. In particular, both [7] and [20] considered dense SBM with θn
bounded below by some constant.

We remark that sparse models have been considered in the network literature, though
mostly in estimation instead of inference problems. For example, [26] proposed a model se-
lection criterion for estimating K under the sparse setting of SBM with nθn/ logn→∞. [19]
established the consistency of their method for estimating K under the setting nθn =O(1).
We consider the statistical inference problem of hypothesis testing, which involves more del-
icate analyses for establishing the asymptotic distributions of the test statistic.

3.4. A special case: networks with selfloops. We formalize the heuristic arguments in
Section 2.2 about the ratio statistic T̃n in (5) when the network admits selfloops. In such a
case, the general test (6) still works. However, the simpler one T̃n can enjoy similar asymp-
totic properties without the trouble of choosing m.
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THEOREM 3.4. Suppose that Conditions 1-4 and 6 hold, the network contains selfloops
and

√∑n
i=1 σ

2
ii ≫ (logn)2+ϵ2 for some positive constant ϵ2.

(i) Under null hypothesis we have

(14) T̃n
d→N(0,1), as n→∞.

(ii) Under alternative hypothesis, if further
∑n

i=1(
∑K

k=K0+1 dkv
2
k(i))

2 ≪
∑n

i=1 σ
2
ii, we

have

(15) T̃n −
∑K

k=K0+1 dk√∑n
i=1 ŵ

2
ii

d→N(0,1), as n→∞.

In addition, if |
∑K

k=K0+1 dk|2 ≫
∑n

i=1 σ
2
ii +

∑n
i=1(

∑K
k=K0+1 dkv

2
k(i))

2, then

(16) P(|T̃n|>C)→ 1,

for arbitrarily large positive constant C .

It is seen that with the same critical value Φ−1(1− α/2), T̃n enjoys the same asymptotic
properties on size and power as Tn. In addition, since the construction of T̃n does not depend
on any tuning parameter, the implementation is much easier.

3.5. Estimation of K . RIRS naturally suggests a simple method for estimating the rank
K . The idea is similar to the one in [20]. That is, we sequentially test the following hypotheses

H0 :K =K0 vs. H1 :K >K0,

for K0 = 1,2, ...,Kmax at a given significance level α ∈ (0,1) using RIRS. Here, Kmax is
some prespecified positive integer that should be larger than the true rank. In the application,
we may select Kmax = ⌊C log logn⌋ with some positive constant C . Once RIRS fails to
reject a value of K0, we stop and use it as the estimate of the rank. Denote by K̂ our resulting
estimate.

COROLLARY 2. Suppose there exists some positive constant δ1 such that

(17)

∣∣∣∣∣∣
K∑

k=K0+1

dk
∑
i ̸=j

vk(i)vk(j)

∣∣∣∣∣∣≫
√

m logδ1 n

√∑
i ̸=j

σ2
ij +

√
K −K0

K∑
k=K0+1

|dk|

 ,

holds for all K0 <K . Under the conditions of Theorem 3.2, we have

P(K̂ =K)→ 1− α.

REMARK 1. The additional condition (17) ensures that the estimation procedure rejects
all K0 <K with asymptotic probability 1 even when K diverges.

REMARK 2. Our numerical studies suggest that the RIRS based sequential testing ap-
proach may underestimate K when the network is very sparse or the signal strength is very
low; see simulation results in the Supplementary material. To improve the estimation accu-
racy, we propose to add a penalty on underestimation to |Tn| as follows

(18) |Ťn|= |Tn|+
|maxi

∑
j Xij |1/2

|d̂K0
| − |d̂K0+1|

.

Then we implement our estimation procedure identically with |Tn| replaced with |Ťn|. It is
easy to show that Corollary 2 still holds. The intuition is that the penalty term in (18) tends
to zero with asymptotic probability one when K0 =K , and provides a positive penalty when
K0 <K . This modified test is useful for increasing the estimation accuracy, especially when
K is large, as demonstrated in Table S.3 in the Supplementary file.
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3.6. Networks without selfloops: why subsampling?. In this section, we formalize the
heuristic arguments given in Section 2.2 on why sub-sampling is necessary. We theoretically
show that Tn is no longer asymptotically normal under H0 without the ingredient of sub-
sampling. For technical simplicity, we constraint ourselves to the setting of finite K and no
eigenvalue multiplicity in this subsection.

We start with introducing some additional notations that will be used in this subsection.
For any matrices M1 and M2 of appropriate dimensions, let

(19) R(M1,M2, t) =−
L∑

l=0,l ̸=1

MT
1 EWlM2

tl+1
,

where L= ⌊logn⌋. By Lemma 6 and Theorem 1 of [11], for each k = 1, · · · ,K , there exists
a unique deterministic tk such that tk

dk
→ 1 as n→∞ and d̂k − tk = vT

k Wvk + Op(
αn

|dk|).
Define

bT
ei,k,t = eTi −R(ei,V−k, t)

(
(D−k)

−1 +R(V−k,V−k, t)
)−1

VT
−k,

sk,i = bei,k,tk − eTi vkvk, sk =

n∑
i=1

sk,i, sk(i) = eTi sk,

and rk =V−k(tkD
−1
−k − I)−1VT

−kEW2vk,

where V−k is the submatrix of V by removing the k-th column, and we slightly abuse the
notation and use D−k to denote the submatrix of D by removing the kth diagonal entry.

Further define ak =
∑n

i=1 vk(i), k = 1, · · · ,K and

R(K) = 2

K∑
k=1

1TEW2vkak
tk

− 2

K∑
k=1

a2kv
T
k EW2vk

dk
(20)

+

K∑
k=1

vT
k diag(W)vka

2
k + 2

K∑
k=1

aks
T
k diag(W)vk + 2

K∑
k=1

ak
1T rk
tk

.

We have the following theorems.

THEOREM 3.5. Suppose that Conditions 1–4 hold with no eigenvalue multiplicity, and
(21)∑
i<j

σ2ij

1−
K0∑
k=1

a2kvk(i)vk(j)−
K0∑
k=1

ak

(
vk(j)sk(i) + vk(i)sk(j)

)2

≥ (logn)6+ϵ1
(
n+

n2α2
n

d2K0

)
,

for some positive constant ϵ1.Under null hypothesis, as n→∞, we have

∑
i ̸=j

ŵij +R(K0)

2

√√√√∑
i<j

σ2ij

(
1−

K0∑
k=1

a2kvk(i)vk(j)−
K0∑
k=1

ak
(
vk(j)sk(i) + vk(i)sk(j)

))2

d→N(0,1).

THEOREM 3.6. Suppose that Conditions 1–4 hold with no eigenvalue multiplicity. In
addition, assume (21) holds with K0 and dK0

replaced with K and dK , respectively. Under
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alternative hypothesis, as n→∞, we have∑
i ̸=j

ŵij +R(K)−
K∑

k=K0+1
dka

2
k

2

√√√√∑
i<j

σ2ij

(
1−

K∑
k=1

a2kvk(i)vk(j)−
K∑
k=1

ak

(
vk(j)sk(i) + vk(i)sk(j)

))2

d→N(0,1).

It is seen from Theorems 3.5 and 3.6 that aggregating all entries of the residual matrix
leads to a statistic with bias and variance taking very complicated forms under both null
and alternative hypotheses. The complicated forms of bias and variance limit the practical
usage of the above results. In addition, and more importantly, these asymptotic normality
results may even fail to hold in some cases. To understand this, note that the variance of∑

i ̸=j ŵij +R(K0) in Theorem 3.5 is approximately equal to

4
∑
i<j

σ2
ij

(
1−

K0∑
k=1

a2kvk(i)vk(j)−
K0∑
k=1

ak(vk(j)sk(i) + vk(i)sk(j))

)2

.

Condition (21) is imposed to put a lower bound on the variance. Without this condition, the
asymptotic normality in Theorem 3.5 will no longer hold. We next give an example where
inequality (21) and the asymptotic normality both fail to hold. This justifies the necessity of
the subsampling step.

EXAMPLE 2. Consider networks with eigenvector taking the form v1 =
1√
n
1. Then a1 =√

n. Since vk, k ≥ 2 are orthogonal to v1, we have ak = 0, k ≥ 2. By Condition 4 and
Theorem S.1 in the Supplementary file, we have maxi |s1(i)| ≲ α2

n√
nd2

1

. Combining this with

Condition 3 and using the fact v1 =
1√
n
1, we have

∑
i<j

σ2
ij

(
1−

K0∑
k=1

a2kvk(i)vk(j)−
K0∑
k=1

ak(vk(j)sk(i) + vk(i)sk(j))

)2

=
∑
i<j

σ2
ij

(
1− nv1(i)v1(j)−

√
n
(
v1(j)s1(i) + v1(i)s1(j)

))2
=
∑
i<j

σ2
ij (s1(i) + s1(j))

2

≲
α4
n

nd41

∑
i<j

σ2
ij ≤

α6
n

d41
≲

n2α2
n

d41
≲
(
1 +

n2α2
n

d2K0

)
,

where in the last line we have used
∑

i<j σ
2
ij ≤ nα2

n and α2
n ≲ n. This contradicts (21).

Further, by checking the proof of Theorem 3.5, we see that the intrinsic problem is when
aggregating too many terms from the residual matrix, the noise accumulation is no longer
negligible, canceling the first order term

∑
i ̸=j σ

2
ij , and consequentially makes the central

limit theorem fail. Similar phenomenon happens under the alternative hypothesis as well.

4. Simulation studies. In this section, we use simulations to justify the performance
of RIRS in testing and estimating K . Section 4.1 considers the network model and Section
4.2 considers more general low rank plus noise matrices. The nominal level is fixed to be
α= 0.05 in all settings.



12

4.1. Network models. Consider the DCMM model (11). We simulate two types of
nodes: pure node with πi chosen from the set of unit vectors

PN(K) = {e1, · · · ,eK},

and the mixed membership node with πi chosen from

MM(K,x) =
{
(x,1− x,0, · · · ,0︸ ︷︷ ︸

K−2

), (1− x,x,0, · · · ,0︸ ︷︷ ︸
K−2

), (
1

K
, · · · , 1

K︸ ︷︷ ︸
K

)
}

where x ∈ (0,1). Sections 4.1.1 and 4.1.2 concern the testing performance and Section 4.1.3
focuses on the estimation performance with RIRS.

4.1.1. SBM. When all rows of Π are chosen from the pure node set PN(K) and the de-
gree heterogeneity matrix Θ= ρIn, the DCMM (11) reduces to the SBM with the following
mean matrix structure

(22) H= ρΠBΠT , ρ ∈ (0,1), πi ∈ PN(K), i= 1, · · · , n.

We generate 200 independent adjacency matrices each with n= 1000 nodes and K equal-
sized communities from the above SBM (22). We set B = (Bij)K×K with Bij = s|i−j|,
i ̸= j and Bii = (K + 1− i)/K . The value of ρ ranges from 0.04 to 0.9, with smaller ρ cor-
responding to sparser network model. For all values of K , we choose m=

√
n in calculating

the RIRS test statistics Tn and T̃n for networks without and with selfloops, respectively.
The performance of RIRS is compared with the methods in [20], where two versions of

test – one with and one without bootstrap correction – were proposed when the network
is absent of selfloops. The empirical sizes and powers of both methods when s = 0.1 are
reported in Tables 1 and 2 for K = 2 and 3, respectively. The corresponding computation
times are reported in Table 3. We also test the performance of both methods with different
values of s, and the corresponding results are summarized in Table S.1 in the Supplementary
file.

From Tables 1 and 2, we observe that when K = 2, the performance of RIRS is relatively
robust to the sparsity level ρ, with size close to the nominal level and power close to 1 in
almost all settings. On contrary, the method in [20] without bootstrap correction has much
worse performance. It suffers from size distortion for smaller ρ (sparser setting). This phe-
nomenon becomes even more severe when K = 3, where the sizes are close or even equal
to one at all sparsity levels. With such distorted size, it is no longer meaningful to compare
the power. Therefore we omit its power in Table 2. With bootstrap correction, the method
in [20] performs much better and is comparable to RIRS when K = 2 except for the setting
of ρ = 0.04, where the size is severely distorted. When K = 3, both methods suffer from
some size distortion when ρ≤ 0.1, where the problem is more severe for the method in [20].
Comparing Table 1 with Table 2, we see that the increased number of communities K makes
the performance of both methods worse. This is reasonable because the network size is fixed
at n= 1000. So larger K results in smaller size of each community. From Table 3 we see that
the computational cost of the bootstrap method in [20] is much higher than that of RIRS. We
also experimented with larger value of K = 5 and the results are summarized in Table S.2 of
the Supplementary file to save space.

Finally, we present in Figure 1 the histogram plots as well as the fitted density curves
of our test statistics from 1000 repetitions when K = 2, s = 0.1, and ρ = 0.7 under the
null hypothesis. The standard normal density curves are also plotted as reference. It visually
confirms that the asymptotic null distribution is standard normal.
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TABLE 1
Empirical size and power under SBM with K = 2 and s= 0.1.

No selfloop Selfloops
RIRS (Tn) Lei (no bootstrap) Lei (bootstrap) RIRS (T̃n)

ρ size power
(K0=1)

size power
(K0=1)

size power
(K0=1)

size power
(K0=1)

0.04 0.055 0.86 1 1 0.575 1 0.140 0.310
0.07 0.060 0.99 1 1 0.055 1 0.060 0.605
0.09 0.055 1 0.995 1 0.040 1 0.085 0.750
0.1 0.025 1 0.995 1 0.035 1 0.085 0.815
0.3 0.025 1 0.24 1 0.02 1 0.06 1
0.5 0.045 1 0.07 1 0.025 1 0.065 1
0.7 0.065 1 0.1 1 0.055 1 0.05 1
0.9 0.04 1 0.045 1 0.065 1 0.075 1

TABLE 2
Empirical size and power under SBM with K = 3 and s= 0.1.

No selfloop Selfloops
RIRS (Tn) Lei

(no bootstrap)
Lei

( bootstrap)
RIRS(T̃n)

ρ size power
(K0=1)

power
(K0=2)

size size power
(K0=1)

power
(K0=2)

size power
(K0=1)

power
(K0=2)

0.04 0.225 0.985 0.235 1 1 1 1 0.35 0.71 0.075
0.07 0.27 1 0.26 1 1 1 1 0.365 0.925 0.09
0.09 0.225 1 0.335 1 0.985 1 1 0.21 1 0.12
0.1 0.065 1 0.36 1 0.895 1 1 0.1 0.98 0.19
0.3 0.075 1 0.795 1 0.06 1 1 0.065 1 0.625
0.5 0.045 1 0.98 0.99 0.02 1 1 0.075 1 0.94
0.7 0.045 1 0.985 0.925 0.04 1 1 0.065 1 1
0.9 0.05 1 1 0.69 0.015 1 1 0.05 1 1

TABLE 3
Average computation time (in seconds) for test statistics in Table 1 and Table 5 in one replication under SBM

with no selfloop, K = 2 and ρ= 0.5.

RIRS (Tn) Lei (no bootstrap) Lei (bootstrap)
Size Estimation Size Estimation Size Estimation

Time 0.504 0.906 0.432 2.88 14.410 147.142
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FIG 1. Histogram plots and the estimated densities (red curves) of RIRS test statistic when K = 2 and ρ= 0.7.
Left: Tn when no selfloop; Right: T̃n when selfloops exist.
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4.1.2. DCMM. Next consider the general DCMM model (11). The number of repetition
is still 200. We simulate the node degree parameters ϑj’s independently from the uniform
distribution over [0.5,1]. The vectors πi are chosen from PN(K) ∪ MM(K,0.2), with n0

pure nodes from each community and (n − Kn0)/3 nodes from each mixed membership
probability mass vector in MM(K,0.2). We select n0 = 0.35n when K = 2 and n0 = 0.25n
when K = 3. The matrix B is chosen to be the same as in the SBM with s= 0.1. The network
size n ranges from 800 to 2000. The empirical sizes and powers are summarized in Table 4.

Since [20] only considers SBM, the tests therein are no longer applicable in this setting.
RIRS performs well and similarly to the SBM setting. Figure 2 presents the histogram plots
as well as the fitted density curves of RIRS under the null hypothesis from 1000 repetitions
when K = 3 and n= 1500. These results well justify our theoretical findings.

TABLE 4
Empirical size and power of RIRS under DCMM model.

K = 2 K = 3

No Selfloop (Tn) Selfloop (T̃n) No Selfloop (Tn) Selfloop (T̃n)
n Size Power

(K0=1)
Size Power

(K0=1)
Size Power

(K0=1)
Power
(K0=2)

Size Power
(K0=1)

Power
(K0=2)

800 0.045 1 0.08 1 0.05 1 0.58 0.08 1 0.845
1000 0.04 1 0.05 1 0.025 1 0.68 0.06 1 0.92
1200 0.065 1 0.05 1 0.045 1 0.77 0.07 1 0.92
1500 0.045 1 0.03 1 0.075 1 0.9 0.055 1 0.98
1800 0.075 1 0.055 1 0.045 1 0.98 0.065 1 0.995
2000 0.075 1 0.065 1 0.05 1 0.965 0.045 1 1
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FIG 2. DCMM. Histogram plots and the estimated densities (red curves) of RIRS when K = 3 and n = 1500.
Left: Tn when no selfloop; Right: T̃n when selfloops exist.

4.1.3. Estimating the Number of Communities. We use the method discussed in Section
3.5 to estimate the number of communities K . Since the approaches in [20] are not applicable
to the DCMM model, we only compare the performance of RIRS with [20] in SBM setting
in the absence of selfloops. The proportions of correctly estimated K are calculated over 200
replications and tabulated in Table 5 for SBM and in Table 6 for DCMM model.

Table 5 shows that RIRS is generally comparable to or is only slightly worse than Lei’s
method under the SBM when ρ is large, and is significantly better than the latter for very
small ρ. While for DCMM model (Table 6), RIRS can also estimate the number of commu-
nities with high accuracy. In particular, the estimation accuracy gets closer and closer to the
expected value of 95% as n increases, which is consistent with our theory.
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TABLE 5
Proportion of correctly estimated K under SBM.

K = 2 K = 3
No Selfloop Selfloop No Selfloop Selfloop

ρ RIRS
Tn

Lei
(no bootstrap)

Lei
(bootstrap)

RIRS
T̃n

RIRS
Tn

Lei
(no bootstrap)

Lei
(bootstrap)

RIRS
T̃n

0.04 0.85 0 0.32 0.345 0.12 0 0 0.015
0.07 0.945 0 0.98 0.59 0.2 0 0 0.04
0.09 0.945 0 0.96 0.775 0.23 0 0.02 0.125
0.1 0.93 0 0.97 0.815 0.285 0 0.165 0.105
0.3 0.94 0.795 0.955 0.96 0.745 0 0.935 0.645
0.5 0.945 0.925 0.925 0.95 0.9 0.005 0.98 0.895
0.7 0.97 0.915 0.945 0.96 0.955 0.065 0.995 0.955
0.9 0.94 0.94 0.935 0.955 0.93 0.275 0.975 0.945

TABLE 6
Proportion of correctly estimated K under DCMM.

K = 2 K = 3
n 800 1000 1200 1500 1800 2000 800 1000 1200 1500 1800 2000

No Selfloop (Tn)
RIRS 0.935 0.935 0.93 0.965 0.935 0.95 0.505 0.625 0.805 0.865 0.915 0.935

Selfloop (T̃n)
RIRS 0.935 0.94 0.955 0.955 0.955 0.945 0.79 0.85 0.93 0.895 0.935 0.965

4.2. Low rank data matrix. RIRS can be applied to other low rank data matrices beyond
the network model. In this section, we generate n × n data matrix X from the following
model

X=H+W=VDVT +W,

where the residual matrix W is symmetric with upper triangle entries (including the diagonal

ones) i.i.d from uniform distribution over (-1,1). Let V = 1√
2

(
V1

V2

)
, where V1 and V2

are n1 × K and (n − n1) × K matrices respectively. We randomly generate an n1 × n1

Wigner matrix and collect its K eigenvectors corresponding to the largest K eigenvalues to
form V1. We set V2 =

√
K√

n−n1
Π with Π = (π1, ...,πn−n1

)T , where πi ∈ PN(K) and the
number of rows taking each distinct value from PN(K) is the same. The diagonal matrix
D = n × diag(K,K − 1, ...,1). We set n1 = n/2 and range the value of n from 100 to
500. When K = 2, the empirical sizes and powers as well as the proportions of correctly
estimated K over 500 repetitions are recorded in Table 7. It is seen that both Tn and T̃n

performs well, with T̃n having slightly higher power. This higher power further translates
into better estimation accuracy (closer to 95%) of estimated K .

TABLE 7
Empirical size and power, and the proportion (Prop) of correctly estimated K over 500 replications.

No Selfloop (Tn) Selfloop (T̃n)
n 100 200 300 400 500 100 200 300 400 500
Size 0.048 0.042 0.05 0.054 0.052 0.05 0.05 0.032 0.062 0.052
Power 0.612 0.914 0.994 1 1 1 1 1 1 1
Prop 0.588 0.856 0.944 0.95 0.954 0.95 0.95 0.968 0.938 0.948
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5. Real data analysis. We consider a popularly studied network of political blogs as-
sembled by [2]. The nodes are blogs over the period of two months before the 2004 U.S.
Presidential Election. The edges are the web links between the blogs. These blogs have
known political divisions and were labeled into two communities (K = 2) by [2] – the lib-
eral and conservative communities. This blog data has been frequently used in the literature,
see [17], [29] and [20] among others. It is widely believed to follow a degree corrected block
model. Following the literature, we ignore the directions and study only the largest connected
component, which has n= 1222 nodes. Consider the following two hypothesis tests:

(HT1) : H0 :K = 1 vs. H1 :K > 1.

(HT2) : H0 :K = 2 vs. H1 :K > 2.

[20] considered (HT2) and obtained test statistic values 1172.3 and 491.5, corresponding
to the test without bootstrap and with bootstrap, respectively. Both are much larger than the
critical value (about 1.454) from the Tracy-Widom distribution, and thus the null hypothesis
in (HT2) was strongly rejected. This is not surprising because the testing procedure in [20]
is based on the SBM. It is possible that the model is misspecified when applying the tests
therein.

RIRS does not depend on any specific network model structure and is expected to be more
robust to model misspecification. Since most of the diagonal entries of X are zero, we use
the test statistic Tn. Noticing that the observed data matrix X is non-symmetric, we consider
two simple transformations:

(23) Method 1 : X̃1 =X+XT ; Method 2 : X̃2 =

(
0 X
XT 0

)
2n×2n

.

The transformation in Method 2 is general and can be applied to even non-square data matrix
X. After the transformations, rank(E(X̃1)) =K and rank(E(X̃2)) = 2K . The results of ap-
plying Tn to the two hypothesis test problems (HT1) and (HT2), together with the estimated
number of communities by the sequential testing procedure are reported in Table 8. We can
see that for both transformations, RIRS consistently estimated the number of communities to
be 2, which is consistent with the common belief in the literature.

TABLE 8
Hypothesis testing and estimation results for the political blog data.

Method 1 Method 2
Decision

Test Statistic P-value Test Statistic P-value
(HT1) 3.3527 0.0008 2.7131 0.0067 Reject H0 in (HT1)
(HT2) -1.2424 0.2141 -0.8936 0.3716 Accept H0 in (HT2)

Estimate 2 2 K = 2

APPENDIX A: PROOF OF THE MAIN RESULTS

We introduce a definition that will be used frequently in the proof.

DEFINITION 1. Let ζn(i) and ξn(i) be random (or deterministic) variables depend on i,
i = 1, . . . , n. We say ξn = Opu

(ζn) if for any positive constants D and ϵ, there exists some
positive integer n0(D,ϵ) depending only on D and ϵ such that for all n≥ n0(D,ϵ) we have

P [∃1≤ i≤ n, s.t.|ξn(i)|> (logn)ϵ|ζn(i)|]≤ (log logn)−D.
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In addition, to facilitate our proof presentation, we introduce some additional notations.
Let K̃ be the number of distinct nonzero eigenvalues of H= (hij). Denote by d̃1, · · · , d̃K̃ the
distinct values in {d1, · · · , dK}, sorting in decreasing magnitudes. In addition, denote by Kj

the multiplicity of d̃j . That is, for each j = 1, · · · , K̃, the cardinality of {1≤ l≤K : dl = d̃j}
is Kj with

∑K̃
j=1Kj =K .

A.1. Outline of The Proof. Our Condition 2 and main results Theorems 3.1–3.4 allow
for multiplicity in eigenvalues. When proving these main results, we consider the case with
and without multiplicity separately. The proof of our main results highly depends on the
asymptotic expansions of the eigenvectors v̂k and eigenvalues d̂k. Briefly speaking, Lemma
1 in Section 7.1 of the Supplementary material establishes the relationship between ŵij and
(v̂k(i), d̂k). This together with the asymptotic expansions of eigenvalues and eigenvectors
gives us the asymptotic expansion of ŵij . Substituting this asymptotic expansion into the
proposed test statistics, we are able to prove our main theorems by additional analysis and
calculations. In the case without eigenvalue multiplicity, the asymptotic expansions of eigen-
values and eigenvectors are established in Lemmas 2 and 3 in the Supplementary material.
The corresponding results in the existence of multiplicity are established in Lemmas 4 and 5
in the Supplementary file. In the main paper we only provide the proof of Theorem 3.1. All
other proofs are relegated to the Supplement.

A.2. Proof of Theorem 3.1. The result in Theorem 3.1 can be obtained by combing the
following two results.

CLT :

√
m
∑

i ̸=j ŵijYij√
2
∑

i ̸=j Ew2
ij

d→N(0,1),(24)

Consistency:

∑
i ̸=j ŵ

2
ij∑

i ̸=j Ew2
ij

= 1+ op(1).(25)

We next proceed with proving (24) and (25).
We first verify the central limit theorem (24). By (S.44) and Corollary S.1 we have∑

i ̸=j

ŵijYij =
∑
i ̸=j

wijYij −
K0∑
k=1

∑
i ̸=j

(vk(i)vk(j)Yij)v
T
k Wvk(26)

−
K0∑
k=1

∑
i ̸=j

Yij
eTi W

2vkvk(j) + eTj W
2vkvk(i)

tk

−
K0∑
k=1

∑
i ̸=j

Yij
rk(i)vk(j) + rk(j)vk(i)

tk
+ 2

K0∑
k=1

vT
k EW2vk

dk

∑
i ̸=j

(vk(i)vk(j)Yij)

− 2

K0∑
k=1

dk
tk

∑
i ̸=j

Yijvk(i)s
T
k,jWvk −

K0∑
k=1

∑
i ̸=j

dke
T
i Wvke

T
j WvkYij

t2k

+
∑
i ̸=j

(YijOpu
(
αn(logn)

3

n|dK0
|

+
1

n3/2
)).

Recall that EYij = 1
m , ak =

∑n
i=1 vk(i) and |ak| ≤

√
n. Our aim is to bound all terms on the

right hand side of equation (26) except for the first term
∑

i ̸=j wijYij . We begin with splitting
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the term ∑
i ̸=j

(vk(i)vk(j)Yij)v
T
k Wvk

into two parts:

1

m

∑
i ̸=j

(vk(i)vk(j))v
T
k Wvk and

∑
i ̸=j

(Yij −
1

m
)(vk(i)vk(j))v

T
k Wvk.

For the first part, first note that since |wij | is bounded, we have |vT
k EWvk| ≲ 1. Then by

Corollary S.1 in the Supplementary material and Condition 1 we have

1

m

∑
i ̸=j

(vk(i)vk(j))v
T
k Wvk =

1

m
(a2k − 1)vT

k Wvk(27)

=
1

m
(a2k − 1)

(
vT
k (W−EW)vk + vT

k EWvk

)
= (a2k + 1)(Opu

(
αn

m
√
n
) +O(

1

m
)).

For the second part, first note that E(vT
k Wvk)

2 = var(vT
k Wvk) + E2(vT

k Wvk) ≲ α2
n/n+

1. Since Yij , i≤ j are i.i.d with EYij = 1
m , Corollary S.1 and Condition 1 ensure that

var(
∑
i ̸=j

(Yij −
1

m
)(vk(i)vk(j))v

T
k Wvk)

= E
[
var
(∑

i ̸=j

(Yij −
1

m
)(vk(i)vk(j))v

T
k Wvk|W

)]

≲
1

m

∑
i ̸=j

(vk(i)vk(j))
2E(vT

k Wvk)
2 ≲

α2
n

mn
+

1

m
,

then

(28)
∑
i ̸=j

(Yij −
1

m
)(vk(i)vk(j))v

T
k Wvk =Op(

αn√
mn

+
1√
m
).

Therefore,

(29)
∑
i ̸=j

(vk(i)vk(j)Yij)v
T
k Wvk = (a2k+1)Opu(

αn

m
√
n
)+O(

a2k + 1

m
)+Op(

αn√
mn

)+Op(
1√
m
).

Similar to (29), we get

vT
k EW2vk

dk

∑
i ̸=j

(vk(i)vk(j)Yij) =Opu
(
a2k
m

+
1√
m
),

and

(30)
∑
i ̸=j

Yij
eTi W

2vkvk(j) + eTj W
2vkvk(i)

tk
=Opu

(
|ak|

√
n

m
+

1√
m
).

Next we split the term
∑

i ̸=j Yij
dksTk,jWvkvk(i)

tk
into the following two parts

1

m

∑
i ̸=j

dks
T
k,jWvkvk(i)

tk
and

∑
i ̸=j

(Yij −
1

m
)
dks

T
k,jWvkvk(i)

tk
.
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By (S.85), we have

∥R(1,V−k, tk)
(
(D−k)

−1 +R(V−k,V−k, tk)
)−1

VT
−k∥

= ∥
∑
i

R(ei,V−k, tk)
(
(D−k)

−1 +R(V−k,V−k, tk)
)−1

VT
−k∥=Opu

(
√
n).

In light of (S.46), (S.85), Corollary S.1 in the Supplementary material and Condition 4, the
following three results hold:

dk(sk − 1)TWvkak
tk

=−
dkakR(1,V−k, tk)

(
(D−k)

−1 +R(V−k,V−k, tk)
)−1

VT
−kWvk

tk

−
dka

2
kv

T
k Wvk

tk
=Opu

(αn + |ak|
√
n) +Opu

(|ak|αn),

1

m

∑
i ̸=j

dks
T
k,jWvkvk(i)

tk
=

1

m
ak

dk1
T (W−EW)vk

tk
+Opu

(
(|ak|+ 1)αn

m
)

=Opu
(
(|ak|+ 1)αn

m
)

and
∑
i ̸=j

(Yij −
1

m
)
dks

T
k,jWvkvk(i)

tk
=Op(

αn√
m
),

where the calculation of the variance of the second part
∑
i ̸=j

(Yij − 1
m)

dksTk,jWvkvk(i)

tk
is similar

to that of (28). Therefore,

(31)
∑
i ̸=j

Yij
dks

T
k,jWvkvk(i)

tk
=Opu

(
(|ak|+ 1)αn + |ak|

√
n

m
) +Op(

αn√
m
).

For the term
∑

i ̸=j Yij
rk(i)vk(j)+rk(j)vk(i)

tk
, we write∑

i ̸=j

Yij
rk(i)vk(j) + rk(j)vk(i)

tk
=

1

m

∑
i ̸=j

rk(i)vk(j) + rk(j)vk(i)

tk

+
∑
i ̸=j

(Yij −
1

m
)
rk(i)vk(j) + rk(j)vk(i)

tk
.(32)

It follows from Conditions 2–4 and 6, tk
dk

→ 1 in Section 3.6 and Corollary S.1 that

|1T rk|= |1TV−k(tkD
−1
−k − I)−1VT

−kEW2vk|=Opu
(
√
nα2

n),

|rk(i)|= |eTi V−k(tkD
−1
−k − I)−1VT

−kEW2vk|=Opu
(
α2
n√
n
),

and thus
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1

m

∑
i ̸=j

rk(i)vk(j) + rk(j)vk(i)

tk
=

2ak1
T rk

tkm
− 2

m

n∑
i=1

rk(i)vk(i)

tk
=Opu

(
|ak|

√
n+ 1

m
).

As for (28), calculating the variance of the second term on the right hand side of (32) yields∑
i ̸=j

(Yij −
1

m
)
rk(i)vk(j) + rk(j)vk(i)

tk
=Opu

(
1√
m
).

Therefore,

(33)
∑
i ̸=j

Yij
rk(i)vk(j) + rk(j)vk(i)

tk
=Opu

(
|ak|

√
n

m
) +Opu

(
1√
m
).

Now for the term
∑

i ̸=j
dkeT

i WvkeT
j WvkYij

t2k
, similarly we write

∑
i ̸=j

dke
T
i Wvke

T
j WvkYij

t2k
=
∑
i ̸=j

dke
T
i Wvke

T
j Wvk

mt2k
+
∑
i ̸=j

dke
T
i Wvke

T
j Wvk(Yij − 1

m )

t2k
.

It follows from Corollary S.1 and Theorem S.1 that the first part has order∑
i ̸=j

dke
T
i Wvke

T
j Wvk

mt2k
=

dk1
TWvk1

TWvk

mt2k
−

n∑
i=1

dk(e
T
i Wvk)

2

mt2k

=Opu
(
α2
n(logn)

2

m|dk|
) =Opu

(
(logn)2

m
).

Moreover, calculating the variance, we have

var
(∑
i ̸=j

dke
T
i Wvke

T
j Wvk(Yij − 1

m )

t2k

)

= E
(var(∑

i ̸=j

dke
T
i Wvke

T
j Wvk(Yij − 1

m )

t2k

)∣∣∣W
)

≲

∑
i ̸=j E(eTi Wvke

T
j Wvk)

2

md2k
≤

∑
i ̸=j

√
E(eTi Wvk)

4E(eTj Wvk)
4

md2k

≲

∑
i ̸=j

√
[E(eTi Wvk −EeTi Wvk)4 + (EeTi Wvk)4][E(eTj Wvk −EeTj Wvk)4 + (EeTj Wvk)4]

md2k

≲
α4
n

md2k
=Opu(

1

m
).

Therefore

(34)
∑
i ̸=j

dke
T
i Wvke

T
j WvkYij

t2k
=Opu

(
(logn)2

m
) +Opu

(
1√
m
).

Finally, consider the residual term∑
i ̸=j

(YijOpu
(
αn(logn)

3

n|dK0
|

+
1

n3/2
))
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=
∑
i ̸=j

Opu
(
αn(logn)

3

n|dK0
|

+
1

n3/2
)(Yij −

1

m
) +

1

m

∑
i ̸=j

Opu
(
αn(logn)

3

n|dK0
|

+
1

n3/2
).

Note that Yij is independent of Opu
(αn(logn)3

n|dK0 |
+ 1

n3/2 ). Calculating the variance of
∑
i ̸=j

Opu
(αn(logn)3

n|dK0 |
+

1
n3/2 )(Yij − 1

m) gives us∑
i ̸=j

Opu
(
αn(logn)

3

n|dK0
|

+
1

n3/2
)(Yij −

1

m
) =Op(

1√
m
)×Opu

(
αn(logn)

3

|dK0
|

+
1

n1/2
).

The “mean” of the residual term should be

1

m

∑
i ̸=j

Opu
(
αn(logn)

3

n|dK0
|

+
1

n3/2
) =Opu

(
nαn(logn)

3

m|dK0
|

+

√
n

m
).

Therefore we have∑
i ̸=j

(YijOpu
(
αn(logn)

3

n|dK0
|

+
1

n3/2
))(35)

=Opu
(
nαn(logn)

3

m|dK0
|

+

√
n

m
) +Op(

1√
m
)×Opu

(
αn(logn)

3

|dK0
|

+
1√
n
).

So far we have found the orders of all other terms on the right hand side of equation (26)
except for

∑
i ̸=j wijYij . Note that

(36) var(
∑
i ̸=j

wijYij) =
2

m

∑
i ̸=j

Ew2
ij .

According to the orders (29), (30), (31), (33), (34) and (35), we can conclude that as long as

2

m

∑
i ̸=j

Ew2
ij ≥ (logn)ϵ1(

∑K0

k=1 a
2
kn

m2
+

(αn logn)
2

m
+

n

m2
+

n2α2
n(logn)

6

m2d2K0

),

the term
∑

i ̸=j wijYij dominates all other terms on the right hand side of (26). Moreover, by
the condition

∑
i ̸=j Ew2

ij ≫m, the fact EY 4
ij ≲ 1/m and the independence between Yij and

wij we have

m2

(
∑

i ̸=j Ew2
ij)

2

∑
i ̸=j

Ew4
ijY

4
ij ≲

m
∑

i ̸=j Ew4
ij

(
∑

i ̸=j Ew2
ij)

2
≲

m

(
∑

i ̸=j Ew2
ij)

→ 0.

Therefore, the central limit theorem (24) holds by Lyapunov CLT.
We now show the consistency of

∑
i ̸=j ŵ

2
ij in (25). By (S.31), we have

ŵ2
ij =w2

ij + 2wijOpu
(
(αn logn)

2

n|dK0
|

+
1

n
)− 2

K0∑
k=1

wij

dk(e
T
i Wvkvk(j) + eTj Wvkvk(i))

tk

+Opu
(
(αn logn)

4

n2|dK0
|2

+
1

n2
) + (

K0∑
k=1

dk(e
T
i Wvkvk(j) + eTj Wvkvk(i))

tk
)2

− 2Opu
(
(αn logn)

2

n|dK0
|

+
1

n
)

K0∑
k=1

dk(e
T
i Wvkvk(j) + eTj Wvkvk(i))

tk
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and ∑
i ̸=j

ŵ2
ij =

∑
i ̸=j

w2
ij + 2

∑
i ̸=j

(wijOpu
(
(αn logn)

2

n|dK0
|

+
1

n
))(37)

− 2

K0∑
k=1

∑
i ̸=j

(wij

dk(e
T
i Wvkvk(j) + eTj Wvkvk(i))

tk
)

+Opu
(
α2
n(logn)

4

|dK0
|

+ 1) +
∑
i ̸=j

(

K0∑
k=1

dk(e
T
i Wvkvk(j) + eTj Wvkvk(i))

tk
)2

− 2
∑
i ̸=j

Opu
(
(αn logn)

2

n|dK0
|

+
1

n
)

K0∑
k=1

dk(e
T
i Wvkvk(j) + eTj Wvkvk(i))

tk
.

Combing the fact var(
∑

i ̸=j w
2
ij)≤

∑
i ̸=j Ew4

ij ≲
∑

i ̸=j Ew2
ij with Conditions 3 and 5

(38)
∑
i ̸=j

Ew2
ij ≫ (logn)2+ϵ1 ,

we have

(39)

∑n
i ̸=j w

2
ij∑n

i ̸=j Ew2
ij

= 1+Opu
(

1

(logn)ϵ1/2
).

Then to prove (25), it suffices to show

(40)

∑
i ̸=j ŵ

2
ij∑

i ̸=j w
2
ij

= 1+Opu
(

1

(logn)ϵ1/2
).

We now check the other terms on the right hand side of (37) to verify (40). First of all,

|
∑
i ̸=j

wijOpu
(
(αn logn)

2

n|dK0
|

+
1

n
)| ≤

∣∣∣∣Opu
(
(αn logn)

2

|dK0
|

+ 1)×
√∑

i ̸=j

w2
ij

∣∣∣∣
=Opu

(αn(logn)

√∑
i ̸=j

Ew2
ij).

Condition 5 further implies that

(41) |
∑
i ̸=j

wijOpu
(
(αn logn)

2

n|dK0
|

+
1

n
)|= (

∑
i ̸=j

Ew2
ij)×Opu

(
1

(logn)ϵ1/2
).

Now consider the term
∑

i ̸=j wij
dk(eT

i Wvkvk(j)+eT
j Wvkvk(i))

tk
. We will only provide detail for

proving
∑

i ̸=j wij
dkeT

i Wvkvk(j)
tk

because the other part can be proved similarly. Write∑
i ̸=j

wij
dke

T
i Wvkvk(j)

tk
=
∑
i ̸=j

dkw
2
ijv

2
k(j)

tk
+
∑

i ̸=j,l ̸=j

dkwijwilvk(j)vk(l)

tk
.

Direct calculations yield

E
∣∣∣∣∑
i ̸=j

dkw
2
ijv

2
k(j)

tk

∣∣∣∣≲ 1

n

∑
i ̸=j

Ew2
ij ,

∑
i ̸=j,l ̸=j

E
dkwijwilvk(j)vk(l)

tk
= 0, and
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var(
∑

i ̸=j,l ̸=j

dkwijwilvk(j)vk(l)

tk
)≲

∑
i ̸=j,l ̸=j

Ew2
ijw

2
ilv

2
k(j)v

2
k(l)≲

α2
n

n2

∑
i ̸=j

Ew2
ij .

Thus,
∑

i ̸=j wij
dkeT

i Wvkvk(j)
tk

=Opu
( 1√

n
)×
∑

i ̸=j Ew2
ij . And consequently,

(42)
∑
i ̸=j

wij

dk(e
T
i Wvkvk(j) + eTj Wvkvk(i))

tk
=Opu

(
1√
n
)×
∑
i ̸=j

Ew2
ij .

Next by Theorem S.1 and Condition 5, we have∑
i ̸=j

Opu
(
(αn logn)

2

n|dK0
|

+
1

n
)

K0∑
k=1

dk(e
T
i Wvkvk(j) + eTj Wvkvk(i))

tk

=Opu
(
(αn logn)

3

|dK0
|

+ αn logn) =Opu
(α2

n log
2 n) =Opu

(
1

(logn)ϵ1/2

∑
i ̸=j

Ew2
ij).(43)

Finally, similar to (43), it holds by Condition 5 that∑
i ̸=j

( K0∑
k=1

dk(e
T
i Wvkvk(j) + eTj Wvkvk(i))

tk

)2
(44)

≲
K0∑
k=1

∑
i ̸=j

d2k(e
T
i Wvkvk(j) + eTj Wvkvk(i))

2

t2k

=Opu
(α2

n log
2 n) =Opu

(
1

(logn)ϵ1/2

∑
i ̸=j

Ew2
ij).

Substituting the arguments (39), (41), (42), (43) and (44) into equation (37), we complete the
proof of (40). Thus, (25) is proved and the results in the theorem follow automatically.
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This Supplementary material contains some additional simulation examples, theorems, key
lemmas and their proofs as well as additional technical details. Condition 2 in the main text
allows for multiplicity of eigenvalues. For the clarity of technical arguments, we will separate
the proof under the assumption of no-multiplicity from the one with multiplicity. Specifically,
we will first prove Lemmas 1, 2 and 3 under the assumption of no-multiplicity. Based on these
results, we can prove Theorems 3.1–3.6 when there is no multiplicity. Then we will prove
Lemmas 4-5, which are the counterparts of Lemmas 2-3 when multiplicity exists. We will
then discuss in the proof of Theorem S.2 how Lemmas 4-5 can be used to prove our main
results when multiplicity exists.

Also, let us recall some notations: K̃ is the number of distinct nonzero eigenvalues of H=
(hij). We denote by d̃1, · · · , d̃K̃ the distinct values in {d1, · · · , dK}, sorting in decreasing
magnitudes. In addition, denote by Kj the multiplicity of d̃j . That is, for each j = 1, · · · , K̃,

the cardinality of {1≤ l ≤K : dl = d̃j} is Kj with
∑K̃

j=1Kj =K . Moreover, we say that
an event En holds with high probability if P(En) = 1 − O((log logn)−l) for some positive
constant l > 3 and sufficiently large n.

6. Additional simulation results. We consider the same model setting used for Table 1
of the main paper but vary the value of s. Simulation results over 200 repetitions are summa-
rized in Table S.1 below. Comparing Tables 1 and 5 with Table S.1, we observe that when s

is larger, that is, denser connections between communities, both Tn and T̃n perform slightly
worse, which is reasonable because the separation between nodes within communities and
between communities is weaker.

Next we consider a larger value of K = 5. We use the same SBM as defined in (22) of
the main paper, but set B= (Bij)K×K with Bij = s|i−j|, i ̸= j and Bii = (2K +1− i)/2K .
We let ρ vary from 0.04 to 0.9, and fix s = 0.05 and n = 2500. The simulation results are
reported in Table S.2. It is seen that RIRS with Tn controls the size at the desired level even
when ρ is small, while RIRS with T̃n has some size distortion when ρ is small. In addition,
the power is low when ρ < 0.1, and increases significantly as ρ increases.

It is seen from Table S.2 that RIRS based sequential testing approach tends to underes-
timate the true rank in finite samples when ρ is small. We experiment the performance of
modified test proposed in Remark 2 of our main paper. Table S.3 summarizes the corre-
sponding simulation results with the constant c in the penalty term taken as 1/2. The model
setting is the same as in the above Table S.2. Compared with Table S.2, it is seen that the
additional penalty greatly improves the estimation accuracy for small ρ.

*Yingying Fan and Qing Yang serve as co-corresponding authors.
MSC2020 subject classifications: Primary 62F03, 62F12; secondary 60B20, 62F35.
Keywords and phrases: Rank inference, Robustness, Low-rank models, High dimensionality, Asymptotic ex-

pansions, Eigenvectors, Eigenvalues, Large random matrices.

1

https://imstat.org/journals-and-publications/annals-of-statistics/
mailto:xhan011@ustc.edu.cn
mailto:yangq@ustc.edu.cn
mailto:fanyingy@marshall.usc.edu
https://mathscinet.ams.org/mathscinet/msc/msc2020.html


2

TABLE S.1
Empirical size, power and proportion of correctly estimated K (Prop) under SBM when K = 2, s= 0.2 or 0.3.

s= 0.2 s= 0.3

No selfloop (Tn) Selfloop (T̃n) No selfloop (Tn) Selfloop (T̃n)
ρ Size Power

(K0=1)
Prop Size Power

(K0=1)
Prop Size Power

(K0=1)
Prop Size Power

(K0=1)
Prop

0.04 0.065 0.445 0.425 0.095 0.235 0.265 0.08 0.165 0.16 0.2 0.24 0.19
0.07 0.04 0.565 0.53 0.14 0.515 0.495 0.045 0.125 0.18 0.11 0.35 0.34
0.09 0.03 0.625 0.645 0.105 0.71 0.675 0.035 0.26 0.24 0.08 0.435 0.44
0.1 0.035 0.74 0.675 0.085 0.675 0.68 0.055 0.275 0.265 0.085 0.515 0.48
0.3 0.065 1 0.96 0.065 0.99 0.95 0.04 0.63 0.63 0.055 0.99 0.96
0.5 0.04 1 0.97 0.055 1 0.975 0.03 0.92 0.89 0.035 1 0.955
0.7 0.06 1 0.955 0.04 1 0.97 0.03 0.965 0.93 0.035 1 0.945
0.9 0.05 1 0.96 0.05 1 0.935 0.055 1 0.93 0.065 1 0.94

TABLE S.2
Empirical size, power and proportion of correctly estimated K (Prop) under SBM when K = 5, α= 0.05.

n= 2500 No selfloop, RIRS (Tn) Selfloop, RIRS(T̃n)
ρ size power

(K0=1)
power
(K0=2)

power
(K0=3)

power
(K0=4)

Prop size power
(K0=1)

power
(K0=2)

power
(K0=3)

power
(K0=4)

Prop

0.04 0.05 1 1 0.92 0.28 0.19 0.17 1 1 0.8 0.09 0.16
0.07 0.05 1 1 1 0.27 0.34 0.09 1 1 0.97 0.32 0.17
0.09 0.02 1 1 1 0.32 0.38 0.14 1 1 0.98 0.4 0.4
0.1 0.06 1 1 1 0.48 0.42 0.07 1 1 1 0.48 0.5
0.3 0.04 1 1 1 0.86 0.8 0.05 1 1 1 0.98 0.96
0.5 0.06 1 1 1 0.99 0.93 0.03 1 1 1 1 0.92
0.7 0.06 1 1 1 1 0.94 0.06 1 1 1 1 0.98
0.9 0.04 1 1 1 1 0.94 0.04 1 1 1 1 0.98

TABLE S.3
Proportion of correctly estimated K by using |Ťn| in Remark 2, K = 5, no selfloop.

ρ 0.04 0.07 0.09 0.1 0.3 0.5 0.7 0.9
Remark 2(α= 0.05) 0.255 0.675 0.755 0.755 0.930 0.920 0.945 0.940
Remark 2(α= 0.01) 0.615 0.720 0.615 0.700 0.875 0.970 0.970 0.990

7. Proof of other main results.

7.1. Lemma 1 and its proof. Recall the definition of the residual matrix Ŵ in (4). In
this section we connect its entries ŵij with (v̂k(i), d̂k), which is important for analyzing the
asymptotic properties of ŵij .

LEMMA 1. Let ∆(dk) = d̂k − dk and ∆(vk(i)) = v̂k(i)− vk(i). For K ≥K0, we have

ŵij =wij + δ(K >K0)

K∑
k=K0+1

dkvk(i)vk(j)−
K0∑
k=1

[
∆(dk)v̂k(i)v̂k(j)(S.1)

+ dk∆(vk(i))vk(j) + dk∆(vk(j))vk(i) + dk∆(vk(i))∆(vk(j))
]
,

where δ(K >K0) =

{
1, K >K0,

0, otherwise.

PROOF. By the definition of Ŵ, we have

Ŵ=X−
K0∑
k=1

d̂kv̂kv̂
T
k =W+

K∑
k=1

dkvkv
T
k −

K0∑
k=1

d̂kv̂kv̂
T
k .(S.2)

Equation (S.1) follows directly from (S.2) by considering each entry separately.



RANK INFERENCE 3

7.2. Proof of Theorem 3.2. According to Lemma 1, under the alternative hypothesis
(K >K0), we have the following expansion

ŵij −
K∑

k=K0+1

dkvk(i)vk(j) =wij −
K0∑
k=1

[
∆(dk)v̂k(i)v̂k(j) + dk∆(vk(i))vk(j)(S.3)

+ dk∆(vk(j))vk(i) + dk∆(vk(j))∆(vk(i))
]
.

The only difference from the expression of ŵij under the null hypothesis is the extra term∑K
k=K0+1 dkvk(i)vk(j) on the left hand side of (S.3). Notice that this term is non random.

Define

w̃ij = ŵij −
K∑

k=K0+1

dkvk(i)vk(j).

Then the central limit theorem for
∑

i ̸=j w̃ij can be obtained by using the same proof as that
for Theorem 3.1. Thus,

(
Tn −

√
m
∑

i ̸=j

∑K
k=K0+1 dkvk(i)vk(j)Yij√
2
∑

i ̸=j ŵ
2
ij

)√∑i ̸=j ŵ
2
ij√∑

i ̸=j w̃
2
ij

(S.4)

=

√
m
∑

i ̸=j w̃ijYij√
2
∑

i ̸=j w̃
2
ij

d→N(0,1).

Note that w̃ij is the residual term under the alternative hypothesis. Similar to (25), we also
have

(S.5)

∑
i ̸=j w̃

2
ij∑

i ̸=j Ew2
ij

= 1+ op(1).

Moreover, direct calculations show that

(S.6)
∑
i ̸=j

ŵ2
ij =

∑
i ̸=j

w̃2
ij + 2

∑
i ̸=j

w̃ij

( K∑
k=K0+1

dkvk(i)vk(j)
)
+
∑
i ̸=j

( K∑
k=K0+1

dkvk(i)vk(j)
)2

.

We first prove (8) in Theorem 3.2. It follows from Cauchy-Schwarz inequality, (S.5) and

the condition
∑
i ̸=j

(
K∑

k=K0+1

dkvk(i)vk(j))
2 ≪

∑
i ̸=j

Ew2
ij that

|
∑
i ̸=j

w̃ij(

K∑
k=K0+1

dkvk(i)vk(j))| ≤

√√√√∑
i ̸=j

w̃2
ij

∑
i ̸=j

(

K∑
k=K0+1

dkvk(i)vk(j))2

= op(
∑
i ̸=j

Ew2
ij).(S.7)

Combing (S.6) with (S.7) and in view of (S.5) we arrive at

(S.8)

∑
i ̸=j ŵ

2
ij∑

i ̸=j Ew2
ij

= 1+ op(1).

This together with (S.4) and (S.5) completes the proof of (8) in Theorem 3.2.
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Next consider the case when condition (9) holds. The definition of w̃ij entails that

∑
i ̸=j

ŵ2
ij =

∑
i ̸=j

(w̃ij +

K∑
k=K0+1

dkvk(i)vk(j))
2(S.9)

≤ 2
(∑

i ̸=j

w̃2
ij +

∑
i ̸=j

(

K∑
k=K0+1

dkvk(i)vk(j))
2
)

≤ 2
(∑

i ̸=j

w̃2
ij + (K −K0)

K∑
k=K0+1

d2k
∑
i ̸=j

v2
k(i)v

2
k(j)

)

≤ 2
(∑

i ̸=j

w̃2
ij + (K −K0)

K∑
k=K0+1

d2k

)

≤ 2
∑
i ̸=j

w̃2
ij + 2(K −K0)(

K∑
k=K0+1

|dk|)2 ≲
(√∑

i ̸=j

w̃2
ij +

√
K −K0

K∑
k=K0+1

|dk|
)2

.

By (S.4), (S.5) and (S.9), in order to obtain (10), it suffices to show that

(S.10)

√∑
i ̸=j w̃

2
ij +

√
K −K0

∑K
k=K0+1 |dk|

√
m|
∑K

k=K0+1 dk
∑

i ̸=j vk(i)vk(j)Yij |
= op(1).

For the term
∑K

k=K0+1 dk
∑

i ̸=j vk(i)vk(j)Yij in the numerator, we calculate its expectation
and variance respectively as follows:

E
K∑

k=K0+1

dk
∑
i ̸=j

vk(i)vk(j)Yij =

∑K
k=K0+1 dk

∑
i ̸=j vk(i)vk(j)

m

and

var(

K∑
k=K0+1

dk
∑
i ̸=j

vk(i)vk(j)Yij)≲
(
∑K

k=K0+1 |dk|)2

m

Therefore we have

(S.11)
K∑

k=K0+1

dk
∑
i ̸=j

vk(i)vk(j)Yij =

K∑
k=K0+1

dk
∑
i ̸=j

vk(i)vk(j)

m
+Op

( K∑
k=K0+1

|dk|
√
m

)
.

Combining (S.11) with condition (9) that
|
∑K

k=K0+1 dk

∑
i̸=j vk(i)vk(j)|

√
m(
√∑

i̸=j Ew2
ij+

√
K−K0

∑K
k=K0+1 |dk|)

≫ 1 as well

as (S.8) for the denominator, we conclude (S.10) and thus complete the proof.

7.3. Proof of Theorem 3.3. We start with analyzing the first inequality
∑

i ̸=j σ
2
ij ≫m in

Condition 5. Combing the assumptions θn =max
i ̸=j

σ2
ij , min

i ̸=j
σ2
ij ≳ θn(logn)

−δ with Condition

3, we can see that

(S.12) nθn(logn)
−δ ≲ α2

n ≲ nθn and
∑
i ̸=j

σ2
ij ≳ n2θn(logn)

−δ.
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Then the first inequality
∑

i ̸=j σ
2
ij ≫m is satisfied if

(S.13) (n/K)2θn(logn)
−2δ ≫m.

By Conditions 3 and (S.12), we have

(S.14)
|dK |
αn

≳
αn

(log logn)ϵ′
≳
√

nθn(logn)−δ(log logn)−2ϵ′ .

Moreover, the assumption |d1|≲ nθn yields

(S.15)
|dK |
αn

≲
|d1|
αn

≲
√

nθn.

It follows from (S.14) and (S.15) that

(S.16) θn ≳ n−1(logn)δ+2ϵ+2(log logn)2ϵ
′

is a sufficient condition for ensuring |dK |
αn

≳ (logn)1+ϵ in Condition 3. In view of (S.13) and
(S.16), any m satisfying

(S.17) m≪ nK−2(logn)2ϵ−δ+2(log logn)2ϵ
′

makes the first inequality in Condition 5 hold.
Next, we discuss the second inequality in Condition 5, i.e.∑

i ̸=j

σ2
ij ≳ (logn)ϵ1(

n
∑K

k=1(1
Tvk)

2

m
+ α2

n(logn)
2 +

n2α2
n(logn)

6

md2K
+

n

m
).

By assumption (12) and θn =max
i ̸=j

σ2
ij and min

i ̸=j
σij ≳ θn(logn)

−δ , it suffices to have

∑
i ̸=j

σ2
ij ≳ n2θn(logn)

−δ ≫
n(logn)ϵ1

∑K
k=1(1

Tvk)
2

m
(S.18)

+(logn)2+ϵ1α2
n +

n2(logn)6+ϵ1α2
n

md2K
+

n(logn)ϵ1

m
.

Now we compare the four terms on the very right hand side of (S.18) with n2θn(logn)
−δ

one by one. Note that the second term (logn)2+ϵ1α2
n ≲ n(logn)2+ϵ1θn ≪ n2θn(logn)

−δ ,
making no contribution to the choice of m. For the fourth term, by Condition 3, we have
the inequality that n(logn)ϵ1 ≪ n2θn(logn)

−δ , and therefore this term makes no contri-
bution to the choice of m either. For the third term, it is easy to see from (S.14) that
nθn ≲ d2Kα−2

n (logn)δ(log logn)2ϵ
′
, which guarantees that

n2(logn)6+ϵ1α2
n

md2K
≲

n(logn)6+δ+ϵ1(log logn)2ϵ
′

mθn
.

Therefore, any m satisfying

(S.19) m≫ n−1θ−2
n (logn)6+2δ+ϵ1(log logn)2ϵ

′

ensures that n2(logn)6+ϵ1α2
n

md2
K

≪ n2θn(logn)
−δ . Finally, for the first term, it suffices to have

(S.20) m≫ n−1θ−1
n (logn)δ+ϵ1

K∑
k=1

(1Tvk)
2.
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By Cauchy-Schwarz inequality we know that
∑K

k=1(1
Tvk)

2 ≤ nK . The above two results
entail that (S.20) is satisfied as long as

(S.21) m≫ θ−1
n (logn)δ+ϵ1K.

Combining (S.18), (S.19) and (S.21), it is easy to see that any m satisfying

(S.22) m≫ θ−1
n (logn)δ+ϵ1K + n−1θ−2

n (logn)6+2δ+ϵ1(log logn)2ϵ
′

can make the second inequality in Condition 5 hold. Moreover, it follows from (S.16) that

(S.23) m≫ n(logn)−2ϵ+ϵ1−2(log logn)−2ϵ′K + n(logn)ϵ1−4ϵ+2(log logn)−2ϵ′

is a sufficient condition for (S.22).
Summarizing the arguments above tells that (13) in Theorem 3.3 is sufficient for Condition

5 (see (S.13) and (S.22)), and n(logn)−2ϵ+ϵ1+2(log logn)−2ϵ′K ≪m≪ nK−2(logn)2ϵ−δ+2(log logn)2ϵ
′

is a sufficient condition to ensure (13) (see (S.17) and (S.23)).
To complete the proof of Theorem 3.3, it remains to verify inequality (9) in Theorem

3.2 under condition (13). By (S.12) and Condition 3 we have nθn(logn)
−δ(log logn)−ϵ′ ≲

|dk|≲ nθn ≲ n
√
θn for all k = 1, · · · ,K . This together with (S.12) entails that

n
√

θn(logn)−δ ≲
√∑

i ̸=j

σ2
ij +

K∑
k=K0+1

|dk|≲ nK
√

θn.

This implies that the inequality

(S.24)
√
m≪

|
∑K

k=K0+1 dk
∑

i ̸=j vk(i)vk(j)|
nK

√
θn

is sufficient for (9). Furthermore, it follows from (12) and (S.12) that

|
∑K

k=K0+1 dk
∑

i ̸=j vk(i)vk(j)|
n
√
θn

≳

∑
i ̸=j σ

2
ij

n
√
θn

≳ n
√

θn(logn)
−δ.

Thus, any m≪ (n/K)2θn(logn)
−2δ is sufficient for (9). This completes our proof.

7.4. Proof of (14) in Theorem 3.4. The asymptotic distribution (14) under the null hy-
pothesis in Theorem 3.4 can be concluded from the following two results:

(S.25)
∑n

i=1 ŵii√∑n
i=1Ew2

ii

d→N(0,1) and

(S.26)
∑n

i=1 ŵ
2
ii∑n

i=1Ew2
ii

= 1+ op(1).

We first prove (S.25). Under the null hypothesis (K =K0), Lemma 1 ensures that

ŵij = wij −
K0∑
k=1

[
∆(dk)v̂k(i)v̂k(j) + dk∆(vk(i))vk(j)(S.27)

+dk∆(vk(j))vk(i) + dk∆(vk(i))∆(vk(j))
]
.
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By (S.81) in Lemma 3, Theorem S.1 and Corollary S.1 as well as Condition 4, we have

∆(dk) = d̂k − dk =
vTk EW

2vk
dk

+ vTk EWvk + vTk
(
W−EW

)
vk +Opu(

1√
n
+

αn

|dk|
)

=
O(α2

n)

dk
+Opu(min{1, αn√

n
}) +Opu(

1√
n
+ 1)

= Opu(1) +Opu(
√

θn),(S.28)

where in the second step we have used vT
k EWvk = 0 because the network has self loops.

Recall the definition of rk in Section 3.6. Note that the following results can be proved by
Theorem S.1, Corollary S.1 and (S.84):

|rk(i)|= |eTi V−k(tkD
−1
−k − I)−1VT

−kEW2vk|=Opu
(
1√
n
· α2

n),(S.29)

|sTk,iWvk − eTi Wvk|

= |R(ei,V−k, tk)
(
(D−k)

−1 +R(V−k,V−k, tk)
)−1

VT
−kWvk + eTi vkv

T
k Wvk|

≲
∥∥∥R(ei,V−k, tk)

(
(D−k)

−1 +R(V−k,V−k, tk)
)−1∥∥∥ · ∥∥∥VT

−kWvk

∥∥∥
+
∣∣∣eTi vkv

T
k Wvk

∣∣∣
=

1√
n
·Opu

(1).

By Lemma 3, it is easy to see that dk ∼ tk for all k = 1, · · · ,K . Furthermore, we have

(S.30)

∆(vk(i)) = v̂k(i)− vk(i)

=
eTi Wvk

tk
+

rk(i)

t2k
+

eTi W
2vk

t2k
− vk(i)

3vT
k EW2vk

2t2k
+

sTk,iWvk − eTi Wvk

tk

+Opu
(
(αn logn)

3

√
n|tk|3

+
(αn logn)

2

n|tk|2
)

=
eTi Wvk

tk
+

Opu
(α2

n)√
nt2k

+
Opu

((αn logn)
2/
√
n) +O(α2

n/
√
n)

t2k
+Opu

(
1√
n|tk|

)

+
Opu

((αn logn)
3)√

n|tk|3

=
eTi Wvk

tk
+Opu

(
(αn logn)

2

√
n|dk|2

+
1√
n|dk|

),

uniformly for all i = 1, · · · , n, where the penultimate step uses Theorem S.1, Corollary
S.1 and (S.29). Condition 4 together with (S.30) and Corollary S.1 ensures ∥v̂k∥∞ ≲
1√
n
+Opu

(αn logn√
n|dk| ). Using this and Condition 6 and substituting (S.28) and (S.30) into (S.27)

gives us

(S.31) ŵij =wij +Opu
(
(αn logn)

2

n|dK0
|

+
1

n
)−

K0∑
k=1

dk(e
T
i Wvkvk(j) + eTj Wvkvk(i))

tk
.
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Therefore,

(S.32)
1

n

n∑
i=1

ŵii =
1

n

n∑
i=1

wii +Opu
(
(αn logn)

2

n|dK0
|

+
1

n
)− 2

K0∑
k=1

dkv
T
k Wvk

ntk
.

Since X contains selfloops, EvT
k Wvk = 0. Together with Corollary S.1 and the fact that

∥vk∥∞ ≲ 1√
n

, we have

vT
k Wvk =Opu

(
αn√
n
).

Then it follows from αn ≲
√
n and Condition 6 that (S.32) can be simplified to

(S.33)
1

n

n∑
i=1

ŵii =
1

n

n∑
i=1

wii +Opu
(
1

n
+

(αn logn)
2

n|dK0
|

).

It is easy to see that E( 1n
n∑

i=1
wii) = 0 and

√
var( 1n

n∑
i=1

wii) =
1
n

√
n∑

i=1
Ew2

ii ≫
1
n(logn)

2+ϵ2

by the condition of Theorem 3.4. Therefore (S.33) can be rewritten as

1

n

n∑
i=1

ŵii =
1

n

n∑
i=1

wii + op(

√√√√var(
1

n

n∑
i=1

wii)).(S.34)

Moreover, according to Condition 1 it holds that∑n
i=1Ew4

ii

(
∑n

i=1Ew2
ii)

2
≲

∑n
i=1Ew2

ii

(
∑n

i=1Ew2
ii)

2
→ 0,

satisfying Lyapunov’s condition. Thus,
∑n

i=1wii/
√∑n

i=1Ew2
ii

d→ N(0,1). This together
with (S.34) proves (S.25).

Next we prove (S.26). Condition 1 yields

var(

n∑
i=1

w2
ii)≤

n∑
i=1

Ew4
ii ≲

n∑
i=1

Ew2
ii,

which implies that

var(

∑n
i=1w

2
ii∑n

i=1Ew2
ii

)≲
1∑n

i=1Ew2
ii

→ 0.

Therefore we have

(S.35)
∑n

i=1w
2
ii∑n

i=1Ew2
ii

= 1+ op(1).

Then to verify (S.26), it suffices to show that∑n
i=1 ŵ

2
ii∑n

i=1w
2
ii

= 1+ op(1).

By equation (S.35) and the condition
∑n

i=1Ew2
ii ≥ (logn)4+2ϵ2 in Theorem 3.4, we only

need to show

(S.36)
n∑

i=1

ŵ2
ii =

n∑
i=1

w2
ii +Opu

((logn)2).



RANK INFERENCE 9

In view of equation (S.31), it holds uniformly over all i= 1, · · · , n that

ŵ2
ii = w2

ii + 2wiiOpu
(
(αn logn)

2

n|dK0
|

+
1

n
)− 4

K0∑
k=1

wii
dke

T
i Wvkvk(i)

tk
+Opu

(
(αn logn)

4

n2|dK0
|2

+
1

n2
)

+4
( K0∑

k=1

dke
T
i Wvkvk(i)

tk

)2
− 4Opu

(
(αn logn)

2

n|dK0
|

+
1

n
)

K0∑
k=1

dke
T
i Wvkvk(i)

tk
,

(S.37)

and thus
n∑

i=1

ŵ2
ii =

n∑
i=1

w2
ii + 2

n∑
i=1

(wiiOpu
(
(αn logn)

2

n|dK0
|

+
1

n
))− 4

K0∑
k=1

n∑
i=1

(wii
dke

T
i Wvkvk(i)

tk
)

+Opu
(
(αn logn)

4

n|dK0
|2

+
1

n
) + 4

n∑
i=1

(

K0∑
k=1

dke
T
i Wvkvk(i)

tk
)2

− 4

n∑
i=1

K0∑
k=1

Opu
(
(αn logn)

2

n|dK0
|

+
1

n
)
dke

T
i Wvkvk(i)

tk
.(S.38)

To prove (S.36), we study the terms on the right hand side of (S.38). To begin with, we know
that
(S.39)

|
n∑

i=1

wiiOpu
(
(αn logn)

2

n|dK0
|

+
1

n
)| ≤

n∑
i=1

|wii||Opu
(
(αn logn)

2

n|dK0
|

+
1

n
)|=Opu

((logn)2).

Next, we write

(S.40)
n∑

i=1

wii
dke

T
i Wvkvk(i)

tk
=

n∑
i=1

dkw
2
iiv

2
k(i)

tk
+

∑
1≤l ̸=i≤n

dkwiiwilvk(i)vk(l)

tk
.

For the first term on the right hand side of (S.40), it follows from E|
n∑

i=1

dkw2
iiv

2
k(i)

tk
| ≲

1
n

n∑
i=1

Ew2
ii ≲ 1 that

n∑
i=1

dkw
2
iiv

2
k(i)

tk
=Opu

(1).

For the second term, it follows from the calculations

E
( ∑

1≤l ̸=i≤n

dkwiiwilvk(i)vk(l)

tk

)
= 0 and

var
( ∑

1≤l ̸=i≤n

dkwiiwilvk(i)vk(l)

tk

)
≲

∑
1≤l ̸=i≤n

Ew2
iiEw2

ilv
2
k(j)v

2
k(l)

≲
α2
n

n2

n∑
i=1

Ew2
ii ≲

∑n
i=1Ew2

ii

n
≲ 1
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that ∑
1≤l ̸=i≤n

dkwiiwilvk(i)vk(l)

tk
=Opu

(1).

Therefore,

(S.41)
n∑

i=1

wii
dke

T
i Wvkvk(i)

tk
=Opu

(1)

and
K0∑
k=1

n∑
i=1

wii
dke

T
i Wvkvk(i)

tk
=Opu

(1).

Since EW= 0, it follows from dk ∼ tk, Condition 4 and Corollary S.1 that

dke
T
i Wvkvk(i)

tk
=Opu

(αn/n) =Opu
(
1√
n
).

By Condition 4, Condition 6 and Corollary S.1 we can see that
n∑

i=1

(

K0∑
k=1

dke
T
i Wvkvk(i)

tk
)2 ≤K0

K0∑
k=1

n∑
i=1

d2k(e
T
i Wvkvk(i))

2

t2k
(S.42)

=Opu
(
α2
n

n
) =Opu

(1).

And we also have

|
n∑

i=1

K0∑
k=1

Opu
(
(αn logn)

2

n|dK0
|

+
1

n
)
dke

T
i Wvkvk(i)

tk
|

=

n∑
i=1

K0∑
k=1

Opu
(
(αn logn)

2

n|dK0
|

+
1

n
)Opu

(
1√
n
) =Opu

(
(logn)2√

n
).(S.43)

Then (S.36) is concluded from combining the arguments (S.38), (S.39), (S.41), (S.42) and
(S.43). Therefore, equation (S.26) holds and the proof of (14) in Theorem 3.4 is completed.

7.5. Proof of Theorem 3.5. Recall that Theorem 3.5 assumes the null hypothesis K =
K0. Plugging the expansions of ∆(dk) and ∆(vk(i)) in Lemma 3 into the expression in
Lemma 1, and using results in Theorem S.1, Corollary S.1 and (S.29) we arrive at

ŵij =wij −
K0∑
k=1

vk(i)vk(j)(−2
vT
k EW2vk

dk
+ vT

k Wvk)(S.44)

−
K0∑
k=1

eTi W
2vkvk(j) + eTj W

2vkvk(i)

tk

−
K0∑
k=1

rk(i)vk(j) + rk(j)vk(i)

tk
−

K0∑
k=1

dk(s
T
k,iWvkvk(j) + sTk,jWvkvk(i))

tk

−
K0∑
k=1

dke
T
i Wvke

T
j Wvk

t2k
+Opu

(
αn(logn)

3

n|dK0
|

+
1

n3/2
),
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uniformly over all i, j. Summing up (S.44) over subscripts i and j yields

∑
i ̸=j

ŵij =
∑
i ̸=j

wij −
K0∑
k=1

vT
k Wvk

∑
i ̸=j

(vk(i)vk(j))

(S.45)

−
K0∑
k=1

∑
i ̸=j

eTi W
2vkvk(j) + eTj W

2vkvk(i)

tk
−

K0∑
k=1

∑
i ̸=j

rk(i)vk(j) + rk(j)vk(i)

tk

+ 2

K0∑
k=1

vT
k EW2vk

dk

∑
i ̸=j

(vk(i)vk(j))− 2

K0∑
k=1

sTkWvk

n∑
i=1

vk(i) +Opu
(
nαn(logn)

3

|dK0
|

+
√
n),

where we have made use of the following relationship, which is a direct consequence of
Theorem S.1 and Corollary S.1

K0∑
k=1

∑
i ̸=j

dke
T
i Wvke

T
j Wvk

t2k
=

K0∑
k=1

dk1
TWvk1

TWvk

t2k
−

K0∑
k=1

n∑
i=1

dk(e
T
i Wvk)

2

t2k

=Opu
(
α2
n(logn)

2

dK0

).

Recall that ak =
∑n

i=1 vk(i). By Cauchy–Schwarz inequality, |ak| ≤
√
n. Furthermore,

Corollary S.1 ensures that

1T (W2 −EW2)vk =Opu
(α2

n).

Therefore by Theorem S.1 and Corollary S.1 we have
K0∑
k=1

∑
i ̸=j

eTi W
2vkvk(j) + eTj W

2vkvk(i)

tk

=

K0∑
k=1

∑
i ̸=j

eTi EW2vkvk(j) + eTj EW2vkvk(i)

tk

+

K0∑
k=1

∑
i ̸=j

eTi (W
2 −EW2)vkvk(j) + eTj (W

2 −EW2)vkvk(i)

tk

= 2

K0∑
k=1

1TEW2vkak
tk

+ 2

K0∑
k=1

1T (W2 −EW2)vkak
tk

−2

K0∑
k=1

n∑
i=1

eTi W
2vkvk(i)

tk

= 2

K0∑
k=1

1TEW2vkak
tk

+Opu
(
nαn

|dK0
|
),

where we have used the simple inequality that αn ≲
√
n. Then (S.45) can be written as∑

i ̸=j

ŵij =
∑
i ̸=j

wij(1−
K0∑
k=1

a2kvk(i)vk(j))−
K0∑
k=1

a2kv
T
k diag(W)vk
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− 2

K0∑
k=1

1TEW2vkak
tk

− 2

K0∑
k=1

ak
1T rk
tk

+ 2

K0∑
k=1

vT
k EW2vk

dk
a2k

− 2

K0∑
k=1

aks
T
kWvk +Opu

(
nαn(logn)

3

|dK0
|

+
√
n)

= 2
∑
i<j

wij(1−
K0∑
k=1

a2kvk(i)vk(j)−
K0∑
k=1

ak(vk(j)sk(i) + vk(i)sk(j)))

−
K0∑
k=1

a2kv
T
k diag(W)vk − 2

K0∑
k=1

1TEW2vkak
tk

− 2

K0∑
k=1

ak
1T rk
tk

+ 2

K0∑
k=1

vT
k EW2vk

dk
a2k − 2

K0∑
k=1

aks
T
k diag(W)vk +Opu

(
nαn(logn)

3

|dK0
|

+
√
n)

= 2
∑
i<j

wij(1−
K0∑
k=1

a2kvk(i)vk(j)−
K0∑
k=1

ak(vk(j)sk(i) + vk(i)sk(j)))

−R(K0) +Opu
(
nαn(logn)

3

|dK0
|

+
√
n).

Therefore,∑
i ̸=j

ŵij +R(K0)

= 2
∑
i<j

wij(1−
K0∑
k=1

a2kvk(i)vk(j)−
K0∑
k=1

ak(vk(j)sk(i) + vk(i)sk(j)))︸ ︷︷ ︸
Sn

+Opu
(
nαn(logn)

3

|dK0
|

+
√
n),

where Sn is the sum of independent random variables and its variance equals to

var(Sn) = 4
∑
i<j

σ2
ij

(
1−

K0∑
k=1

a2kvk(i)vk(j)−
K0∑
k=1

ak(vk(j)sk(i) + vk(i)sk(j))

)2

.

In addition, by (S.85) and the definition of sk(j), we have

(S.46) ∥sk(j)− ej∥≲
1√
n
.

This together with |ak| ≤
√
n implies that

max
1≤i<j≤n

|1−
K0∑
k=1

a2kvk(i)vk(j)−
K0∑
k=1

ak(vk(j)sk(i) + vk(i)sk(j))|≲ 1.

Combining the above result with the condition max1≤i<j≤n |wi,j | ≤C and (21) we have

[var(Sn)]
−2 ×

[
2
∑
i<j

Ew4
ij(1−

K0∑
k=1

a2kvk(i)vk(j)−
K0∑
k=1

ak(vk(j)sk(i) + vk(i)sk(j))
4
]
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≲ [var(Sn)]
−1 → 0.

Combining (21) with Lyapunov’s condition, we can conclude that
∑

i ̸=j ŵij +R(K0) con-
verges weakly to the standard normal distribution after centralization and normalization, i.e.∑

i ̸=j
ŵij +R(K0)

2

√√√√∑
i<j

σ2ij

(
1−

K0∑
k=1

a2kvk(i)vk(j)−
K0∑
k=1

ak(vk(j)sk(i) + vk(i)sk(j))

)2

d→N(0,1).

This completes the proof of the theorem.

7.6. Proof of (15) and (16) in Theorem 3.4. Recall (S.3). The proof of (15) and (16) in
Theorem 3.4 is similar to that of Theorem 3.2 and thus we omit the details.

7.7. Proof of Theorem 3.6. The proof of Theorem 3.6 is almost the same as Theorem 3.2
by defining w̃ij = ŵij −

∑K
k=K0+1 dkvk(i)vk(j) and thus we omit the details.

7.8. Proof of Corollary 2. The proof is similar to the one of Theorem 3.2. The only
difference lies in the fact that the additional condition (17) ensures the estimation procedure
rejects all K0 <K with probability 1 even when K diverges. We below show the key steps.
According to the proof of Theorem 3.2, we know that

(
Tn −

√
m
∑

i ̸=j

∑K
k=K0+1 dkvk(i)vk(j)Yij√
2
∑

i ̸=j ŵ
2
ij

)√∑i ̸=j ŵ
2
ij√∑

i ̸=j w̃
2
ij

(S.47)

=

√
m
∑

i ̸=j w̃ijYij√
2
∑

i ̸=j w̃
2
ij

d→N(0,1).

Moreover, by Bernstein inequality we have

(S.48)

√
m
∑

i ̸=j wijYij√
2
∑

i ̸=j Ew2
ij

=Opu
(1).

Note that w̃ij is the residual term under the alternative hypothesis. Similar to (39), we also
have

(S.49)

∑
i ̸=j w̃

2
ij∑

i ̸=j Ew2
ij

= 1+Opu
(

1

(logn)ϵ1/2
).

Consider the case when condition (17) holds. Recall that (S.9) tells

(S.50)
∑
i ̸=j

ŵ2
ij ≲

(√∑
i ̸=j

w̃2
ij +

√
K −K0

K∑
k=K0+1

|dk|
)2

.

Without loss of generality, we assume that δ1 < ϵ1. By (S.47), (S.49) and (S.50), in order to
obtain the conclusion, it suffices to show that

(S.51)

√∑
i ̸=j w̃

2
ij +

√
K −K0

∑K
k=K0+1 |dk|

√
m|
∑K

k=K0+1 dk
∑

i ̸=j vk(i)vk(j)Yij |
=Opu

(
1

(logn)δ1/3
).
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For the term
∑K

k=K0+1 dk
∑

i ̸=j vk(i)vk(j)Yij in the numerator, by (S.11) we have

(S.52)
K∑

k=K0+1

dk
∑
i ̸=j

vk(i)vk(j)Yij =

K∑
k=K0+1

dk
∑
i ̸=j

vk(i)vk(j)

m
+Opu

( K∑
k=K0+1

|dk|
√
m

)
.

Combining (S.52) with condition (17) that
|
∑K

k=K0+1 dk

∑
i̸=j vk(i)vk(j)|√

m logδ1 n(
√∑

i̸=j Ew2
ij+

√
K−K0

∑K
k=K0+1 |dk|)

≫ 1

as well as (S.49) for the denominator, we conclude (S.51). This together with (S.48) and the
condition K ≤O(log logn) completes the proof.

8. Lemmas and their proofs. Before presenting the key Lemmas, we first state the
following Corollary, which is a consequence of Lemmas 7, 8 in [1] and Lemma 11 in [2] by
carefully checking the corresponding proofs. This corollary is used to control the small term
containing vT

k W
lvt in this paper.

COROLLARY S.1. Under Conditions 1-4, it holds that for any positive integers l, and
unit vectors x and y,

(S.53) E
[
xT (Wl −EWl)y

]2
≤ c(c1l)

2l(min{αl−1
n , dxα

l
n, dyα

l
n})2.

(S.54)
∣∣∣E[xTWly

]∣∣∣≤ c(c1l)
lαl

n,

where dx = ∥x∥∞, dy = ∥y∥∞ and c and c1 are some positive constants independent of l.

REMARK 1. Corollary S.1 bounded the second moment of |xT (Wl − EWl)y|. If a
stronger but nontrivial tail probability of |vT

l (W
l − EWl)vk| can be proved, it is possi-

ble to extend our theoretical results to the case K =O(logn). We leave it to the future work.

The following Theorem S.1 is a direct consequence of Lemma 5.4 in [3], which we include
here for easier reference. One should notice that although Lemma 5.4 in [3] is proved under
Model (1) in [3], by checking the proof of Lemma 5.4 carefully, we can see that it can be
trivially extended to our model by almost the same proof.

THEOREM S.1. Under Conditions 1-4, there exists a positive constant C0 such that for
any positive constant ϵ0 < ϵ, we have

(S.55) P (|eTi Wly|> (C0αn)
l(logn)l(1+ϵ0)dy)≤Ce−

1

3
(logn)1+ϵ0

,

where l is a positive integer not larger than logn, C is an positive integer independent of n
and y is a unit vector. Furthermore, we have

(S.56) |eTi EWly| ≤ ll(C0αn)
ldy.

Now we are ready to proceed to the key lemmas as well as their proofs.
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8.1. Lemma 2. We will need the following notations for the proof of the lemma.

P(M1,M2, t) = tR(M1,M2, t).

Ax,k,t =P(x,vk, t)−P(x,V−k, t)
[
t(D−k)

−1 +P(V−k,V−k, t)
]−1P(V−k,vk, t),

P̃k,t =
[
t2(Avk,k,t/t)

′]−1
,

where R(·) is defined at the beginning of Section 3.6, x is a vector of appropriate dimension
and the derivative in (·)′ is with respect to t.

LEMMA 2. Assume there is no eigenvalue multiplicity. Under Conditions 1-4 and 6, we
have the following expansion

eTi v̂kv̂
T
k vk =

[
P̃k,tk − 2t−1

k P̃2
k,tkv

T
k Wvk +Opu

(
(αn logn)

2

√
nt2k

)
]

×
[
Aei,k,tk − t−1

k bT
ei,k,tkWvk −

eTi (W
2 −EW2)vk

t2k
+Opu

(
(αn logn)

3

√
n|tk|3

)
]

×
[
Avk,k,tk − t−1

k bT
vk,k,tkWvk +Opu

(
(αn logn)

2

√
nt2k

)
]
.(S.57)

In addition, we have

(S.58) d̂k = tk + vT
k Wvk +Opu

(
1√
n
).

PROOF. Proof of this lemma is similar to the one of Lemma 8 in [2] (one can also refer to
Theorems 4 and 5 of [1]) and we focus on the proof of (S.57). Recall the conditions required
in the Lemma 8 of [2]. Condition 1 therein is our Condition 2. And according to their proof,
Conditions 2 and 4 therein are needed just for the sake of following two statements:

1). Lemma 6 of [2] holds, that is max1≤k≤K ∥vk∥∞ = ∥V∥∞ ≲ 1√
n

. This is Condition 4
of our paper.

2). |dK |
αn

≥ nϵ for some positive constant ϵ. This is actually stronger than Condition 3 of

our paper that |dK |
αn

≥ (logn)1+ϵ. We will state how to relax the conditions in the proof of
Lemma 8 in [2] to fit our model.

Actually, the crucial difference between |dK |
αn

≥ (logn)1+ϵ and |dK |
αn

≥ nϵ in the proof of
Lemma 8 is to control the small order term

∑∞
l=3 z

−l−1uTWlvk, |z| ≳ |dk|, u = vl,ei,
l= 1, . . . ,K , i= 1, . . . , n.

Let L = logn, without loss of generality we assume logn is an integer. By the simple
inequality αn ≲

√
n we have the following inequality

(S.59)
√
nαL+1

n (C logn)(L+1)/2

|dK |L−3
≤

√
nα4

n(C logn)(L+1)/2

(logn)(L−3)(1+ϵ)
≤ C(L+1)/2n2

(logn)(logn−7)/2
→ 0

for any positive constant C . In view of u= vl, it is sufficient to establish the following two
equations

(S.60)
∞∑

l=L+1

z−(l+1)uTWlvk =Opu
(

1√
n|z|5

)
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and

(S.61)
L∑
l=3

z−(l+1)uT (Wl −EWl)vk =Opu
(

α3
n√

n|z|4
)

for |z| ≳ dK . In fact, (S.60) is a direct consequence of (S.59) and Theorem 6.2 of [4] (e.g.
the proof of Lemma 1 in [2]). Moreover, for any positive constant C and sufficiently large n,
we can conclude that

(S.62)
{
αl
n(C logn)l

|z|l

}
is a decreasing sequence when l is increasing.

Then it follows from Corollary S.1, K ≲ log logn and (S.62) that

9∑
l=3

z−(l+1)uT (Wl −EWl)vk =Opu
(

α3
n√

n|z|4
),u= vl,(S.63)

∣∣∣∣∣∣E
 L∑
l=

√
L

z−(l+1)uT (Wl −EWl)vk

2∣∣∣∣∣∣≤ L

L∑
l=

√
L

|z|−(2l+2)E
[
uT (Wl −EWl)vk

]2

≤CL

L∑
l=

√
L

(c1l)
2lα2l−2

n

|z|2l+2
≤CL

L∑
l=

√
L

(c1 logn)
2lα2l−2

n

|z|2l+2

≤ c(logn)8
(c1)

2
√
lognα4

n

|z|8(logn)ϵ(2
√
logn−6)

≪ α4
n

n|z|8
,

(S.64)

and∣∣∣∣∣∣E
 √

L∑
l=10

z−(l+1)uT (Wl −EWl)vk

2∣∣∣∣∣∣≤√
L

√
L∑

l=10

|z|−(2l+2)E
[
uT (Wl −EWl)vk

]2

≤C
√
L

√
L∑

l=10

(c1l)
2lα2l

n

n|z|2l+2
≤C

√
L

√
L∑

l=10

(c1
√
logn)2lα2l

n

n|z|2l+2

≤C logn
α4
n((c1)

2 logn)10(log logn)8ϵ
′

n|z|8(logn)14(1+ϵ)
≪ α4

n

n|z|8
.

(S.65)

Here the constants C and c1 may vary from line to line. Combining (S.63)–(S.65) yields
(S.61). For u= ei, (S.60) also holds. Then it suffices to prove similar inequality as (S.61) for
u= ei. Actually, by Theorem S.1 we have

(S.66)
L∑
l=3

z−(l+1)uT (Wl −EWl)vk =Opu
(
(αn logn)

3

√
n|z|4

), u= ei.

Therefore, by almost the same proof, Lemma 8 in [2] also holds under the conditions of
our paper replacing O≺ therein with Opu

, which directly implies (S.58) and the following
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expansion

uT v̂kv̂
T
k vk =

d̂2ku
T
[
G(d̂k)−Fk(d̂k)

]
vkv

T
k

[
G(d̂k)−Fk(d̂k)

]
vk

d̂2kv
T
k

[
G′(d̂k)−F′

k(d̂k)
]
vk

=
[
P̃k,tk − 2t−1

k P̃2
k,tkv

T
k Wvk +Opu

(
(αn logn)

2

√
nt2k

)
]

×
[
Au,k,tk − t−1

k bT
u,k,tkWvk +Opu

(
(αn logn)

2

√
nt2k

)
]

×
[
Avk,k,tk − t−1

k bT
vk,k,tkWvk +Opu

(
(αn logn)

2

√
nt2k

)
]
,(S.67)

for u= ei or vk, where

(S.68) G(z) = (W− zI)−1

and

(S.69) Fk(z) =G(z)V−k[D
−1
−k +VT

−kG(z)V−k]
−1VT

−kG(z).

Comparing (S.67) with Lemma 2, we see that to prove Lemma 2 we only need to show when
u = ei, the term

[
Aei,k,tk − t−1

k bT
ei,k,tk

Wvk + Opu
( (αn logn)2√

nt2k
)
]

in (S.67) can be further

expanded as
[
Aei,k,tk − t−1

k bT
ei,k,tk

Wvk − eT
i (W

2−EW2)vk

t2k
+ Opu

( (αn logn)3√
n|tk|3 )

]
. In fact, by

comparing these two terms we see that Lemma 2 indeed provides higher order expansion of
the remainder term Opu

( (αn logn)2√
nt2k

) in (S.67). We next discuss how to obtain this higher order
expansion.

By Theorem S.1, Corollary S.1, (S.60)-(S.61) and (S.66), we have

eTi G(z)y=−z−1eTi y− z−2eTi Wy−
L∑
l=2

z−(l+1)eTi EWly

(S.70)

−
∞∑

l=L+1

z−(l+1)eTi W
ly−

L∑
l=2

z−(l+1)eTi (W
l −EWl)y

=−z−1eTi y− z−2eTi Wy− z−3eTi W
2y−

L∑
l=3

z−(l+1)eTi EWly+Opu

(
(αn logn)

3

√
n|z|4

)
,

vT
k G(z)y=−z−1vT

k y− z−2vT
k Wy−

L∑
l=2

z−(l+1)vT
k EWly

(S.71)

−
∞∑

l=L+1

z−(l+1)vT
k W

ly−
L∑
l=2

z−(l+1)vT
k (W

l −EWl)y

=−z−1vT
k y− z−2vT

k Wy− z−3vT
k W

2y−
L∑
l=3

z−(l+1)vT
k EWly+Opu

(
α3
n√

n|z|4

)
,
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for all z ∼ tk and ∥y∥∞ ≲ 1√
n

. By Theorem S.1 and Corollary S.1, we have the following
higher order expansions

eTi G(z)vk =−z−1eTi vk − z−2eTi Wvk − z−3eTi W
2vk −

L∑
l=3

z−(l+1)eTi EWlvk

+Opu
(
(αn logn)

3

√
n|z|4

),(S.72)

vT
k G(z)vk =−z−1 − z−2vT

k Wvk −
L∑
l=2

z−(l+1)vT
k EWlvk +Opu

(
α2
n√

n|z|3
),(S.73)

vT
k G(z)V−k =−z−2vT

k WV−k −
L∑
l=2

z−(l+1)vT
k EWlV−k +Opu

(
α2
n√

n|z|3
),(S.74)

eTi G(z)V−k =−z−1eTi V−k − z−2eTi WV−k − z−3eTi W
2V−k

−
L∑
l=3

z−(l+1)eTi EWlV−k +Opu
(
(αn logn)

3

√
n|z|4

),(S.75)

VT
−kG(z)V−k =−z−1 − z−2VT

−kWV−k −
L∑
l=2

z−(l+1)VT
−kEWlV−k

+Opu
(

α2
n√

n|z|3
).(S.76)

It follows from (S.72)-(S.75) that

eTi Fk(z)vk =R(ei,V−k, z)
[
D−1

−k +R(V−k,V−k, z)
]−1R(V−k,vk, z)

− z−2R(ei,V−k, z)
[
D−1

−k +R(V−k,V−k, z)
]−1

VT
−kWvk +Opu

(
(αn logn)

3

√
n|z|4

).(S.77)

Moreover, according to the proof in [1], the term
[
Au,k,tk −t−1

k bT
u,k,tk

Wvk+Opu
( (αn logn)2√

nt2k
)
]

is the expansion of d̂kuT
[
G(d̂k)−Fk(d̂k)

]
vk, i.e.

(S.78) d̂ku
T
[
G(d̂k)−Fk(d̂k)

]
vk =Au,k,tk − t−1

k bT
u,k,tkWvk +Opu

(
(αn logn)

2

√
nt2k

).

Therefore by (S.58), (S.72) and (S.77) we have

(S.79)

d̂ke
T
i

[
G(d̂k)−Fk(d̂k)

]
vk

=P(ei,vk, d̂k)−P(ei,V−k, d̂k)
[
d̂kD

−1
−k +P(V−k,V−k, d̂k)

]−1

×P(V−k,vk, d̂k)− d̂−1
k eTi Wvk − d̂−2

k eTi (W
2 −EW2)vk + d̂−1

k R(ei,V−k, d̂k)

×
[
D−1

−k +R(V−k,V−k, d̂k)
]−1

VT
−kWvk +Opu

(
(αn logn)

3

√
n|tk|3

)
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=P(ei,vk, tk)−P(ei,V−k, tk)
[
tkD

−1
−k +P(V−k,V−k, tk)

]−1

×P(V−k,vk, tk)− t−1
k eTi Wvk − t−2

k eTi (W
2 −EW2)vk + t−1

k R(ei,V−k, tk)

×
[
D−1

−k +R(V−k,V−k, tk)
]−1

VT
−kWvk +Opu

(
(αn logn)

3

√
n|tk|3

)

=Aei,k,tk − t−1
k bT

ei,k,tkWvk − t−2
k eTi (W

2 −EW2)vk +Opu
(
(αn logn)

3

√
n|tk|3

).

That is to say, we can replace (S.79) with (S.78) and this completes the proof.

8.2. Lemma 3.

LEMMA 3. Assume there is no eigenvalue multiplicity. Under Conditions 1-4 and 6,
fixing the direction v̂k such that v̂T

k vk ≥ 0, we have the following expansion

v̂k(i) = vk(i) +
rk(i)

t2k
+

eTi W
2vk

t2k
− vk(i)

3vT
k EW2vk

2t2k
+

sTk,iWvk

tk

+Opu
(
(αn logn)

3

√
n|tk|3

+
(αn logn)

2

n|tk|2
)

=vk(i) +
rk(i)

t2k
+

eTi W
2vk

t2k
− vk(i)

3vT
k EW2vk

2t2k
+

sTk,iWvk

tk
+Opu

(
αn(logn)

3

√
nd2k

),

(S.80)

where rk and sk,i are defined in Section 3.6. Moreover,

(S.81) d̂k − dk =
vT
k EW2vk

dk
+ vT

k Wvk +Opu
(
1√
n
+

αn

|dk|
).

PROOF. We prove (S.80) first. By Corollary S.1, we have

(S.82) tkR(vk,vk, tk) =P(vk,vk, tk) =−1 +Opu
(
α2
n

t2k
)

and

(S.83) ∥tkR(vk,V−k, tk)∥= ∥P(vk,V−k, tk)∥=Opu
(
α2
n

t2k
).

By Theorem S.1 and Corollary S.1, we have the following inequalities

(S.84) R(ei,vk, tk)≲
1√
n|tk|

,

(S.85)

∥bei,k,tk − ei∥= ∥R(ei,V−k, t)
(
(D−k)

−1 +R(V−k,V−k, tk)
)−1

VT
−k∥=Opu

(
1√
n
),

(S.86)

∥bvk,k,tk − vk∥= ∥P(vk,V−k, t)

tk

(
(D−k)

−1 +R(V−k,V−k, tk)
)−1

VT
−k∥=Opu

(
α2
n

t2k
),
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∥Avk,k,tk + 1+
vT
k EW2vk

t2k
∥ ≤ ∥P(vk,vk, tk) + 1+

vT
k EW2vk

t2k
∥(S.87)

+∥P(vk,V−k, tk)
(
t(D−k)

−1 +P(V−k,V−k, tk)
)−1

P(V−k,vk, tk)∥

= ∥
L∑
l=3

1

tlk
vT
k EWlvk∥+Opu

(
α4
n

t4k
) =Opu

(
α3
n

|tk|3
),

t2kR̃′(vk,vk, tk) = (1 +
2

t2k
vT
k EW2vk +

L∑
l=3

l

tlk
vT
k EWlvk)

−1(S.88)

= (1+
2

t2k
vT
k EW2vk +O(

α3
n

|tk|3
))−1 = 1− 2

t2k
vT
k EW2vk +O(

α3
n

|tk|3
).

Similarly we have

t2kR̃′(vk,V−k, tk) = (

L∑
l=2

l

tlk
vT
k EWlvk)

−1 =Opu
(
α2
n

|tk|2
).(S.89)

By (83) and (A.16) of [1], we have

(S.90)
∥∥∥{[D−1

−k +R(V−k,V−k, tk)
]−1
}′ ∥∥∥=Opu

(1),

and

(S.91)
∥∥∥[D−1

−k +R(V−k,V−k, tk)
]−1
∥∥∥=Opu

(|tk|).

By (86) of [1], (S.82), (S.82), (S.88), (S.89), (S.90) and (S.91), we conclude that

1

t2kP̃k,tk

=

(
Avk,k,tk

tk

)′

=R′(vk,vk, tk)− 2R′(vk,V−k, tk)
[
D−1

−k +R(V−k,V−k, tk)
]−1 ×R(V−k,vk, tk)

−R(vk,V−k, tk)
{[

D−1
−k +R(V−k,V−k, tk)

]−1
}′

R(V−k,vk, tk)

=
1

t2k
− 2

t4k
vT
k EW2vk +Opu

(α3
n/|tk|5).

(S.92)

Therefore

P̃k,tk = 1+
2

t2k
vT
k EW2vk +Opu

(α3
n/|tk|3).(S.93)

Recalling the definition of rk in Section 3.6, we have

(S.94)

∥Aei,k,tk + vk(i) +
1

t2k
eTi EW2vk + eTi rk∥

≤ ∥P(ei,vk, tk) + vk(i) +
1

t2k
eTi EW2vk∥
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+ ∥P(ei,V−k, tk)
(
tk(D−k)

−1 +P(V−k,V−k, tk)
)−1

P(V−k,vk, tk) + eTi rk∥

= ∥
L∑
l=3

1

tlk
eTi EWlvk∥+Opu

(
α3
n√

n|tk|3
) =Opu

(
α3
n√

n|tk|3
).

By Corollary S.1 and Theorem S.1 we have

|bT
ei,k,tk(W−EW)vk|+ |vT

k (W−EW)vk|=Opu
(
αn logn√

n
).

It follows from (S.85) and (S.86) that

(S.95) EbT
ei,k,tkWvk =Opu

(
θn√
n
),

(S.96) EbT
vk,k,tkWvk −EvT

k Wvk =Opu
(
α2
nθn
t2k

).

By the expressions from (S.82)-(S.96) and Lemma 2, we have

eTi v̂kv̂
T
k vk =

[
P̃k,tk − 2t−1

k P̃2
k,tkv

T
k Wvk +Opu

(
(αn logn)

2

√
nt2k

)
]

(S.97)

×
[
Aei,k,tk − t−1

k bT
ei,k,tkWvk −

eTi (W
2 −EW2)vk

t2k
+Opu

(
(αn logn)

3

√
n|tk|3

)
]

×
[
Avk,k,tk − t−1

k bT
vk,k,tkWvk +Opu

(
(αn logn)

2

√
nt2k

)
]

= P̃k,tkAei,k,tkAvk,k,tk + t−1
k sTk,iWvk −

P̃k,tkAvk,k,tke
T
i (W

2 −EW2)vk

t2k

+Opu
(
(αn logn)

3

√
n|tk|3

+
(αn logn)

2

n|tk|2
).

= P̃k,tkAei,k,tkAvk,k,tk + t−1
k sTk,iWvk −

P̃k,tkAvk,k,tke
T
i (W

2 −EW2)vk

t2k

+Opu
(
αn(logn)

3

√
n|tk|2

).

Choosing u= vk in (S.67), similar to Lemma 8 in [2] we have

(vT
k v̂k)

2 =
d̂2kv

T
k

[
G(d̂k)−Fk(d̂k)

]
vkv

T
k

[
G(d̂k)−Fk(d̂k)

]
vk

d̂2kv
T
k

[
G′(d̂k)−F′

k(d̂k)
]
vk

(S.98)

=
[
P̃k,tk − 2t−1

k P̃2
k,tkv

T
k Wvk +Opu

(
α2
n√
nt2k

)
]

×
[
Avk,k,tk − t−1

k bT
vk,k,tkWvk +Opu

(
α2
n√
nt2k

)
]2

= P̃k,tkA
2
vk,k,tk +Opu

(
α2
n√
nt2k

).
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Since we fix the direction of v̂k such that vT
k v̂k ≥ 0, we can obtain the expansion of vT

k v̂k

as follows

vT
k v̂k =−

√
P̃k,tkAvk,k,tk +Opu

(
α2
n√
nt2k

).

Divide (S.97) by vT
k v̂k. According to (S.87) and (S.93) we can expand the estimator v̂k(i)

to higher order as follows

v̂k(i) = vk(i) +
rk(i)

t2k
+

eTi W
2vk

t2k
− vk(i)

3vT
k EW2vk

2t2k
+

sTk,iWvk

tk

+Opu
(
(αn logn)

3

√
n|tk|3

+
(αn logn)

2

n|tk|2
)

= vk(i) +
rk(i)

t2k
+

eTi W
2vk

t2k
− vk(i)

3vT
k EW2vk

2t2k
+

sTk,iWvk

tk
+Opu

(
αn(logn)

3

√
nd2k

),

(S.99)

where we have used the inequality that α2
n

(log logn)ϵ′
≲ |dk| by Condition 3. This completes the

proof of (S.80).
Now we focus on the proof of (S.81). From (S.58) we have

d̂k = tk + vT
k Wvk +Opu

(
1√
n
).

Combining with the definition of tk and
(S.100)

1+dk
(
R(vk,vk, z0)−R(vk,V−k, z0)(D

−1
−k+R(V−k,V−k, z))

−1R(V−k,vk, z0)
)
=Opu(

α3
n

d3k
),

z0 = dk +
vT

k EW2vk

dk
, we conclude that

tk = z0 +Opu
(
αn

|dk|
).

Hence we have

d̂k − dk =
vT
k EW2vk

dk
+ vT

k Wvk +Opu
(
1√
n
+

αn

|dk|
).

This proves (S.81), and thus concludes the proof of the lemma.

8.3. Lemmas with multiplicity and their proofs. In the following sections we will con-
sider the case with eigenvalue multiplicity. We first introduce some notations that will be used
frequently hereafter. Define

Vj = (vKj−1+1, . . . ,vKj
), j = 1, . . . , K̃,

Ax,j,t =P(x,Vj , t)−P(x,V−j , t)
[
t(D−j)

−1 +P(V−j ,V−j , t)
]−1P(V−j ,Vj , t),

BT
M,j,t =MT −R(M,V−j , t)

(
(D−j)

−1 +R(V−j ,V−j , t)
)−1

VT
−j ,

Sj,i =Bei,j,d̃j
−VjVT

j ei, Sj =

n∑
i=1

Sj,i, Sj(i) = eTi Sj ,

and Rj = V−j(d̃jD
−1
−j − I)−1VT

−jEW2Vj ,
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where M is some matrix or vector with appropriate dimensions, and we slightly abuse the
notation by using D−j to denote the submatrix of D by removing all diagonal entries with the
same value d̃j . Moreover, Vj is the matrix of spiked eigenvectors with the same eigenvalue
d̃j , and V−j is the matrix of spiked eigenvectors whose eigenvalues are different from d̃j ,
j = 1, · · · , K̃.

Now we are ready to proceed to the key lemmas regarding the asymptotic expansion of
eigenvectors and eigenvalues with multiplicity as well as their proofs.

8.3.1. Lemma 4 and its proof.

LEMMA 4. Under Conditions 1-4 and 6, we have the following expansion

eTi V̂jV̂T
j Vj =AT

ei,j,d̃j
AVj ,j,d̃j

+
AT

ei,j,d̃j

VT
j WBVj ,j,d̃j

d̃j
−

BT
ei,j,d̃j

WVjAVj ,j,d̃j

d̃j

+Opu
(
αn(logn)

3

√
nd̃2j

) +
eTi (W

2 −EW2)Vj

d̃2j
−

3eTi VjVT
j EW2Vj

d̃2j
+

eTi Rj

d̃2j
.

(S.101)

PROOF. There are four major steps in our proof. First, we write eTi V̂jV̂T
j Vj as an integral

which is a functional of X = H +W. By doing so we can deal with the matrix H +W
instead of the eigenvectors. Second, for the functional of H+W obtained in the previous
step we extract the H part from H + W and further obtain a functional of W. Roughly
speaking, we can get an explicit function of form f((W − d̃jI)

−1). Third, by the matrix
series expansion (W− d̃jI)

−1 =−
∑∞

l=0 d̃
−(l+1)
j Wl, the function f((W− d̃jI)

−1) can be

approximated by f(−
∑L

l=0 d̃
−(l+1)
j Wl) for some positive integer L. Fourth, we can then

calculate the first (second or higher) order expansion of f(−
∑L

l=0 d̃
−(l+1)
j Wl) since we

have an explicit expression of the function f .
In various parts of this proof, we will use the Sherman–Morrison–Woodbury formula

which we give a brief review here. For any matrices A, B, C, and F of appropriate di-
mensions, it holds that

(A+BFC)−1 =A−1 −A−1B(F−1 +CA−1B)−1CA−1,(S.102)

when the corresponding matrices for matrix inversion are nonsingular.
Let Ω be a contour centered at d̃j with radius min

{∣∣|d̃j | − |d̃j−1|
∣∣, ∣∣|d̃j | − |d̃j+1|

∣∣∣ }/2.

Since we consider z on the contour Ω enclosing d̃j , it follows that |z| ≥ c|d̃j | for some
positive constant c by Condition 2. Similar to the argument of (S.59), let L = logn. Thus,
with probability tending to 1, we have

(S.103)

∥∥∥∥∥
∞∑

l=L+1

z−(l+1)Wl

∥∥∥∥∥≤
∞∑

l=L+1

(C logn)l/2αl
n

|z|l+1
≤ 1√

n|z|4
,

where C > 0 is a constant.
By Theorem 6.2 of [4], Condition 3, Corollary S.1, and Weyl’s inequality we have

(S.104) |d̂k − d̃j | ≤ ∥W∥=O(αn

√
logn), k ∈ {Kj−1 + 1, . . . ,Kj},

|d̂k − d̃j | ≥ |dk − d̃j | − |d̂k − dk| ≫ αn

√
logn, k /∈ {Kj−1 + 1, . . . ,Kj}.
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with high probability. In other words, the contour Ω encloses only eigenvalues {d̂k, k =
Kj−1+1, . . . ,Kj} with probability tending to 1. By Cauchy’s residue theorem we have with
asymptotic probability one,

− 1

2πi

∮
Ω

1

d̂k − z
dz =

{
1, if k ∈ {Kj−1 + 1, . . . ,Kj}
0, otherwise.

Note that (X − zI)−1 =
∑n

i=1(d̂i − z)−1v̂iv̂
T
i . Thus, it follows from Cauchy’s residue

theorem that for k ∈ {Kj−1 + 1, . . . ,Kj}, with asymptotic probability one,

eTi V̂jV̂T
j Vj =

Kj∑
k=Kj−1+1

eTi v̂kv̂
T
k Vj =− 1

2πi

∮
Ω
eTi

n∑
k=1

v̂kv̂
T
k

d̂k − z
Vjdz

=− 1

2πi

∮
Ω
eTi (X− zI)−1Vjdz.

Since X− zI =W − zI+ V−jD−jVT
−j + d̃jVjVT

j , it follows from (S.102) that the above
bilinear form can be further written as

eTi V̂jV̂T
j Vj =− 1

2πi

∮
Ω
eTi

(
W− zI+ V−jD−jVT

−j + d̃jVjVT
j

)−1
Vjdz

=
1

2πi

∮
Ω
d̃je

T
i

(
W− zI+ V−jD−jVT

−j

)−1
Vj

{
I+ d̃jVT

j

(
W− zI+ V−jD−jVT

−j

)−1Vj

}−1

×VT
j

(
W− zI+ V−jD−jVT

−j

)−1
Vjdz,

(S.105)

where in the last step we have used
∮
Ω eTi (W − zI+ V−jD−jVT

−j)
−1Vjdz = 0 by the fact

that (W− zI+V−jD−jVT
−j)

−1 is analytic inside the circle Ω (following from Condition 2).
Another application of (S.102) leads to

(S.106)(
W− zI+ V−jD−jVT

−j

)−1
=G(z)−G(z)V−j

[
D−1

−j + VT
−jG(z)V−j

]−1
VT
−jG(z),

where the Green function G(z) associated with only the noise part W is defined in (S.68).
To simplify the expression, let

(S.107) F(z) =G(z)V−j

[
D−1

−j + VT
−jG(z)V−j

]−1
VT
−jG(z).

Then in view of (S.106), the last line integral in (S.105) can be further represented as

eTi V̂jV̂T
j Vj =

1

2πi

∮
Ω
d̃je

T
i [G(z)−F(z)]Vj

×
(
I+ d̃jVT

j [G(z)−F(z)]Vj

)−1
VT
j [G(z)−F(z)]Vjdz.(S.108)

It is challenging to analyze the terms in (S.108) directly since the expression of F(z) is
complicated and we need to study the asymptotic expansion of F(z) carefully. We will use the
truncation idea. Recall L= logn. Similar to (S.60) we have ∥

∑∞
l=L+1 z

−(l+1)eTi W
lVj∥=

Opu
(n−1/2αn|z|−4) for z on the contour Ω. Similar to the proof of (S.61)-(S.66), it follows

from Corollary S.1 and Conditions 3-4 that

∥
L∑
l=s

z−(l+1)xT (Wl −EWl)Vj∥= n−1/2Opu
((αn logn)

s|z|−(s+1)).
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Moreover, since for z ∈Ω we have |z|−(s+2) ≤ αn|z|−(s+1) by Condition 3. Similar to (S.70)
we can further obtain

xTG(z)Vj =−z−1xTVj − z−2xTWVj − z−3xT (W2 −EW2)Vj

−
L∑
l=2

z−(l+1)xTEWlVj +Opu
(n−1/2(αn logn)

3|z|−4)

=−z−1xTVj − z−2xTWVj −
L∑
l=2

z−(l+1)xTEWlVj +Opu
(n−1/2(αn logn)

2|z|−3).

(S.109)

In fact, the probabilistic event associated with the small order term Opu
(n−1/2(αn logn)

2|z|−3)

in (S.109) holds uniformly over z since the term Opu
(n−1/2(αn logn)

2|z|−3) is simply
n−1/2|z|−3Opu

((αn logn)
2).

Using similar idea as for proving (S.77), it follows from (S.107) and (S.109) that

eTj F(z)Vj =R(ej ,V−j , z)
[
D−1

−j +R(V−j ,V−j , z)
]−1

R(V−j ,Vj , z)

− z−2R(ej ,V−j , z)
[
D−1

−j +R(V−j ,V−j , z)
]−1

VT
−jWVj

− z−2eTj WV−j

[
D−1

−j +R(V−j ,V−j , z)
]−1

R(V−j ,Vj , z)

+ z−2R(ej ,V−j , z)
[
D−1

−j +R(V−j ,V−j , z)
]−1

VT
−jWV−j

×
[
D−1

−j +R(V−j ,V−j , z)
]−1

R(V−j ,V, z)

+Opu
(n−1/2(αn logn)

3d̃−4
j + n−1(αn logn)

2|d̃j |−3),

=R(ej ,V−j , z)
[
D−1

−j +R(V−j ,V−j , z)
]−1

R(V−j ,Vj , z)

− z−2R(ej ,V−j , z)
[
D−1

−j +R(V−j ,V−j , z)
]−1

VT
−jWVj

+Opu
(n−1/2(αn logn)

3|d̃j |−4 + n−1(αn logn)
2|d̃j |−3)(S.110)

and

VT
j F(z)Vj = VT

j G(z)V−j

[
D−1

−j + VT
−jG(z)V−j

]−1
VT
−jG(z)Vj

=R(Vj ,V−j , z)
[
D−1

−j +R(V−j ,V−j , z)
]−1

R(V−j ,Vj , z)

− 2z−2R(Vj ,V−j , z)
[
D−1

−j +R(V−j ,V−j , z)
]−1

VT
−jWVj +Opu

(n−1/2α3
nd̃

−4
j )

=R(Vj ,V−j , z)
[
D−1

−j +R(V−j ,V−j , z)
]−1

R(V−j ,Vj , z)

+Opu
(n−1/2(αn logn)

3d̃−4
j ),

(S.111)

where F(z) is defined in (S.107) and R is defined in (19).
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Now we are ready to consider the right hand side of (S.108). By (S.109) –(S.111) we have

eTi [G(z)−F(z)]Vj =
AVj ,j,z

z
−

BT
ei,j,z

WVj

z2
− eTi (W

2 −EW2)Vj

z3

+Opu
(
(αn logn)

3

√
nd̃4j

+
(αn logn)

2

n|d̃j |3
),(S.112)

(S.113) VT
j [G(z)−F(z)]Vj =

AVj ,j,z

z
−

VT
j WBVj ,j,z

z2
+Opu

(
α2
n√

n|d̃j |3
),

and

(I+ d̃jVT
j [G(z)−F(z)]Vj)

−1

= (1− d̃j
z
)−1I+ (1− d̃j

z
)−2(

d̃jVT
j WVj

z2
+

d̃jVT
j EW2Vj

z3
) +Opu

(
α4
n

d̃4j
).(S.114)

Plugging the expansion (S.114) into (S.108) will result in two main terms and a smaller order
term, where the first term can be further written as

1

2πi

∮
Ω
d̃j(1−

d̃j
z
)−1eTi [G(z)−F(z)]VjVT

j [G(z)−F(z)]Vjdz

=AT
ei,j,d̃j

AVj ,j,d̃j
−

AT
ei,j,d̃j

VT
j WBVj ,j,d̃j

d̃j
−

BT
ei,j,d̃j

WVjAVj ,j,d̃j

d̃j

+
eTi (W

2 −EW2)Vj

d̃2j
+

eTi Rj

d̃2j
+Opu

(
αn(logn)

3

√
nd̃2j

).(S.115)

For the second term, by the equation that di

z(z−di)
= 1

z−di
− 1

z , we have

1

2πi

∮
Ω
d̃j(1−

d̃j
z
)−2eTi [G(z)−F(z)]Vj(

d̃jVT
j WVj

z2
+

d̃jVT
j EW2Vj

z3
)VT

j

× [G(z)−F(z)]Vjdz

= d̃2j ((
Aei,j,z

z
)′TVT

j WVj
AVj ,j,z

z
+

Aei,j,z

z

T

VT
j WVj(

AVj ,j,z

z
)′)|z=d̃j

−
3eTi VjVT

j EW2Vj

d̃2j
+Opu

(
(αn logn)

4

√
nd̃4j

).(S.116)

Combining the above two results, the right hand side of (S.108) can be further written as

eTi V̂jV̂T
j Vj =AT

ei,j,d̃j
AVj ,j,d̃j

−
AT

ei,j,d̃j

VT
j WBVj ,j,d̃j

d̃j
−

BT
ei,j,d̃j

WVjAVj ,j,d̃j

d̃j
+

eTi Rj

d̃2j

+Opu
(
αn(logn)

3

√
nd̃2j

) + d̃2j ((
Aei,j,z

z
)′TVT

j WVj
AVj ,j,z

z
+

Aei,j,z

z

T

VT
j WVj(

AVj ,j,z

z
)′)|z=d̃j

−
3eTi VjVT

j EW2Vj

d̃2j
+

eTi (W
2 −EW2)Vkj

d̃2j
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=AT
ei,j,d̃j

AVj ,j,d̃j
+

AT
ei,j,d̃j

VT
j WBVj ,j,d̃j

d̃j
−

BT
ei,j,d̃j

WVjAVj ,j,d̃j

d̃j
+

eTi Rj

d̃2j

+Opu
(
αn(logn)

3

√
nd̃2j

) +
eTi (W

2 −EW2)Vkj

d̃2j
−

3eTi VjVT
j EW2Vj

d̃2j
,

(S.117)

where d̃2j ((
Aei,j,z

z )′TVT
j WVj

AVj ,j,z

z +
Aei,j,z

z

T
VT
j WVj(

AVj ,j,z

z )′)|z=d̃j
= −2eT

i VjVT
j WVj

d̃j

+

Opu
(αn(logn)3√

nd̃2
j

). Therefore, we complete our proof.

8.3.2. Lemma 5 and its proof.

LEMMA 5. Let Vj = (vKj−1+1, . . . ,vKj
). Under Conditions 1-4 and 6, There exists an

orthogonal matrix Un such that
(S.118)

V̂j(i)Un = Vj(i)+
Rj(i)

d̃2j
+
eTi W

2Vj

d̃2j
−Vj(i)

3VT
j EW2Vj

2d̃2j
+
ST
j,iWVj

d̃j
+Opu

(
αn(logn)

3

√
nd̃2j

),

where Rj and Sj,i are defined at the beginning of Section 8.3. Moreover,

(S.119) d̂k − d̃j =O(
α2
n

|d̃j |
) +Opu

(θ) +Opu
(
1√
n
+

αn

|d̃j |
), k ∈ {Kj−1 + 1, . . . ,Kj}.

PROOF. Replacing ei by Vj , following the same lines in the proof of Lemma 4 we have

VT
j V̂jV̂T

j Vj =AT
Vj ,j,d̃j

AVj ,j,d̃j
−

3VT
j EW2Vj

d̃2j
+Opu

(
α2
n√
nd̃2j

).(S.120)

By Theorem S.1 and Corollary S.1, we have ∥AT
Vj ,j,d̃j

AVj ,j,d̃j
− 3VT

j EW2Vj

d̃2
j

− I∥∞ = o(1),

which means that AT
Vj ,j,d̃j

AVj ,j,d̃j
− 3VT

j EW2Vj

d̃2
j

is invertible positive definite matrix for large

n. Define a matrix (maybe random) Ũn as

Ũn = (AT
Vj ,j,d̃j

AVj ,j,d̃j
−

3VT
j EW2Vj

d̃2j
)−1/2VT

j V̂j .

By (S.120), we have

ŨnŨ
T
n = I+Opu

(
α2
n√
nd̃2j

).

Therefore, there exists an orthogonal matrix Un such that

∥Un − Ũn∥=Opu
(

α2
n√
nd̃2j

).

Combining the above three results, we obtain that

VT
j V̂j = (AT

Vj ,j,d̃j
AVj ,j,d̃j

−
3VT

j EW2Vj

d̃2j
)1/2Un +Opu

(
α2
n√
nd̃2j

).
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This together with Lemma 4 ensures that

eTi V̂j =
[
AT

ei,j,d̃j
AVj ,j,d̃j

+
AT

ei,j,d̃j

VT
j WBVj ,j,d̃j

d̃j
−

BT
ei,j,d̃j

WVjAVj ,j,d̃j

d̃j

+Opu
(
αn(logn)

3

√
nd̃2j

) +
eTi (W

2 −EW2)Vj

d̃2j
−

3eTi VjVT
j EW2Vj

d̃2j
+

eTi Rj

d̃2j

]

×
[
(AT

Vj ,j,d̃j
AVj ,j,d̃j

−
3VT

j EW2Vj

d̃2j
)−1/2Un +Opu

(
α2
n√
nd̃2j

)
]
,(S.121)

which ensures (S.118) by trivial calculation.
Now we prove (S.119). By Condition 3 and (S.104), (W − d̂kI) is invertible with high

probability and is in fact equal to G−1(d̂k). It follows from the definition of the eigenvalue
and the representation X=H+W= VDVT +W that

0 = det(X− d̂kI) = det(W− d̂kI+ VDVT ) = det[G−1(d̂k) + VDVT ]

= det[G−1(d̂k)] det[I+G(d̂k)VDVT ].

Therefore det[I+G(d̂k)VDVT ] = 0. Using the fact det(I+AB) = det(I+BA) for ma-
trices A and B, we obtain for each 1≤ k ≤K ,

(S.122) 0 = det[I+G(d̂k)VDVT ] = det[I+DVTG(d̂k)V],

where the second I represents an identity matrix of size K and we slightly abuse the notation
for simplicity. Since the diagonal matrix D is nonsingular by assumption, it follows from
(S.122) that

(S.123) det[d̃jVTG(d̂k)V + d̃jD
−1] = d̃j det(D

−1)det[I+DVTG(d̂k)V] = 0

for each 1≤ k ≤K . We next show that d̂k, which is a solution to (S.123) is asymptotically
close to its population counterpart d̃j . We will also provide its asymptotic expansion.

By (S.104) and (S.74), for k ∈ {Kj−1+1, · · · ,Kj}, we have d̃jvTℓ1G(d̂k)vℓ2 =−d̃jOpu
(d̂−2

k ) =

Opu
(1/|d̃j |) when ℓ1 ̸= ℓ2. Thus, we can see that all off diagonal entries of matrix

d̃jVTG(d̂k)V + d̃jD
−1 in (S.123) are of order Opu

(1/|d̃j |). For ℓ /∈ {Kj−1 + 1, . . . ,Kj},
the ℓ-th diagonal entry of d̃jVTG(d̂k)V + d̃jD

−1 equals d̃jv
T
ℓ G(d̂k)vℓ + d̃j/dℓ. By

(S.73), Corollary S.1 and Theorem S.1, we have d̃jv
T
ℓ G(d̂k)vℓ + 1 = o(1) +Opu

( αn√
n|d̃j |

),

k ∈ {Kj−1 + 1, · · · ,Kj}, l ∈ {1, . . . ,K}. Moreover, by Condition 3, |d̃j/d̃l − 1| ≥ c for
some positive constant c, j ̸= l. Hence, all these diagonal entries except the ones with diag-
onal indices in {Kj−1 + 1, · · · ,Kj} are of order at least Op(1) uniformly. Thus the matrix
(d̃jv

T
ℓ1
G(d̂k)vℓ2 + δℓ1ℓ2 d̃j/dℓ1)ℓ1,ℓ2 /∈{Kj−1+1,...,Kj} is invertible with significant probability,

where δℓ1ℓ2 = 1 when ℓ1 = ℓ2 and 0 otherwise. Recall the determinant identity for block
matrices from linear algebra

det

(
A11 A12

A21 A22

)
= det(A22)det(A11 − A12A−1

22 A21)

when the lower right block matrix A22 is nonsingular. Treating the sub matrix (d̃jv
T
ℓ1
G(z)vℓ2+

δℓ1ℓ2 d̃j/dℓ1)ℓ1,ℓ2∈{Kj−1+1,...,Kj} as the first block A11 and (d̃jv
T
ℓ1
G(z)vℓ2+δℓ1ℓ2 d̃j/dℓ1)ℓ1,ℓ2 /∈{Kj−1+1,...,Kj}

as the second block A22, summarizing the arguments above, we have with high probability
that

det[d̃jVTG(z)V + d̃jD
−1] = det(A22)det(A11 − A12A−1

22 A21),(S.124)
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for z ∈ [d̃j − 2∆, d̃j +2∆], where ∆= logn(∥VTEW2V
d̃j

∥∞ + ∥VTWV∥∞) +Opu
( α2

n√
nd̃j

).

Here ∆ is chosen to ensure the invertibility of A22 and we will show that the solution d̂k
belongs to the interval [d̃j−2∆, d̃j+2∆]. It is easy to see that for all z ∈ [d̃j−αn logn, d̃j+
αn logn], the sign of det(A22) keeps the same with high probability. Moreover, with high
probability we have

sign(det(A11 − A12A−1
22 A21)) = (−1)Kj , z ∈ [d̃j − αn logn, d̃j − 2∆],

and

sign(det(A11 − A12A−1
22 A21)) = 1, z ∈ [d̃j + 2∆, d̃j + αn logn].

In view of (S.124), the sign of the determinant det[dkVTG(z)V+dkD
−1] does not change in

[d̃j−αn logn, d̃j−2∆] and [d̃j+2∆, d̃j+αn logn] with high probability. Hence, d̂k /∈ [d̃j−
αn logn, d̃j − 2∆]∪ [d̃j + 2∆, d̃j + αn logn]. Finally, by Theorem 6.2 of [4], d̂k must be in
the interval (d̃j −αn logn, d̃j +αn logn) with high probability. The proof is completed.

8.4. Theorems 3.1–3.4 under multiplicity.

THEOREM S.2. Under Conditions 1-6, the conclusions in Theorems 3.1–3.4 hold under
their corresponding assumptions.

PROOF. The proof of Theorems 3.1–3.4 in the case of no-multiplicity is essentially based
on Theorem S.1, Corollary S.1, Lemmas 2 and 3. Lemmas 4-5 are similar to Lemmas 2-
3 except we do not have the explicit asymptotic expansion of d̂k and the denominators in
the expansions of eigenvectors are polynomials of d̃j . For the denominators, the difference
is negligible by (S.119). Moreover, the explicit asymptotic expansion of d̂k does not play
an important role in the proof of Theorems 3.1–3.4, while we only need the order of the
difference between d̂k and d̃j . Finally, whether the eigenvalues are distinct or not does not
affect Theorem S.1 and Corollary S.1. Theorem S.2 is proved by combining the arguments
above.

REFERENCES

[1] FAN, J., FAN, Y., HAN, X. and LV, J. (2020). Asymptotic Theory of Eigenvectors for Ran-
dom Matrices with Diverging Spikes*. Journal of the American Statistical Association 0 1-63.
https://doi.org/10.1080/01621459.2020.1840990

[2] FAN, J., FAN, Y., HAN, X. and LV, J. (2021). SIMPLE: Statistical Inference on Membership Profiles in
Large Networks. arXiv preprint arXiv:1910.01734.

[3] MAO, X., SARKAR, P. and CHAKRABARTI, D. (2020). Estimating mixed memberships with sharp eigen-
vector deviations. Journal of the American Statistical Association 1–13.

[4] TROPP, J. (2012). User-friendly tail bounds for sums of random matrices. Found. Comput. Math. 12 389–434.

https://doi.org/10.1080/01621459.2020.1840990

	RIRS_AOSmain4
	Introduction
	Notations

	Model setting and motivation
	Model setting
	Motivation

	Rank inference via residual subsampling
	A universal RIRS test
	Remarks on the conditions
	Choice of m
	A special case: networks with selfloops
	Estimation of K
	Networks without selfloops: why subsampling?

	Simulation studies
	 Network models
	SBM
	DCMM
	Estimating the Number of Communities

	Low rank data matrix

	Real data analysis
	Proof of the main results
	Outline of The Proof
	Proof of Theorem 3.1

	Acknowledgments
	Funding
	References

	RIRS_AOSsup4
	Additional simulation results
	Proof of other main results
	Lemma 1 and its proof
	Proof of Theorem 3.2
	Proof of Theorem 3.3
	Proof of (14) in Theorem 3.4
	Proof of Theorem 3.5
	Proof of (15) and (16) in Theorem 3.4
	Proof of Theorem 3.6
	Proof of Corollary 2

	Lemmas and their proofs
	Lemma 2
	Lemma 3
	Lemmas with multiplicity and their proofs
	Lemma 4 and its proof
	Lemma 5 and its proof

	Theorems 3.1–3.4 under multiplicity

	References


