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This Supplementary Material contains some intermediate steps of the
proof of Theorem 1 and additional numerical studies and technical details,
as well as the details about the post-screening interaction selection.

APPENDIX B: POST-SCREENING INTERACTION SELECTION

The screening step of IPDC can reduce the problem of interaction iden-
tification from a huge scale to a moderate one as shown in Section 2. In
particular, the reduced interaction model can be of dimensionality smaller
than the sample size. After the screening step, IPDC further selects im-
portant interactions and main effects. Thanks to the much reduced scale,
the selection step can be conducted in a computationally efficient fashion
by exploiting regularization methods for the multi-response regression. Var-
ious regularization methods have been developed for multi-response linear
models. See, for example, [3], [7], [5], [6], [25], and references therein. Those
methods were usually investigated for the scenario of no interactions. For the
selection step of IPDC, we aim at interaction model recovery by employing
a two-step variable selection procedure, where we first recover the support
union using the idea of group variable selection [35] and then estimate the
individual supports for each column of the regression coefficient matrix via
an additional refitting step of Lasso [32] applied to the recovered support
union (see, e.g., [14] for connections and differences among regularization
methods).

To simplify the presentation, hereafter we assume that the response vector
y is centered with mean zero and all interactions XkX` are also centered
to have mean zero with a slight abuse of notation, which eliminates the
intercept vector α in model (1). Thus given an i.i.d. sample (yi,xi)

n
i=1, the

multi-response interaction model (1) can be rewritten in the matrix form

(A.1) Y = X̃B + W,
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where Y = (y1, · · · ,yn)T ∈ Rn×q is the response matrix, X̃ = (X,Z) ∈
Rn×p̃ with p̃ = p(p + 1)/2 is the full augmented design matrix with X =
(x1, · · · ,xn)T ∈ Rn×p the main effect matrix and Z = (z1, · · · , zn)T ∈
Rn×[p(p−1)/2] the interaction matrix, zi’s are defined similarly to z, B =
(BT

x ,B
T
z )T ∈ Rp̃×q is the regression coefficient matrix with Bx ∈ Rp×q and

Bz ∈ R[p(p−1)/2]×q, and W = (w1, · · · ,wn)T ∈ Rn×q is the error matrix.

B.1. Interaction and main effect selection. Let S be the row sup-
port of the true regression coefficient matrix B∗ in model (A.1), which cor-
responds to the index set of nonzero rows of B∗; that is, if k ∈ S, then
the kth row of B∗ has at least one nonzero component. Denote by J =
{j1, · · · , jd1} ⊂ {1, · · · , p} and K = {k1, · · · , kd2} ⊂ {1, · · · , p} the index sets
of retained main effects and interaction variables after the screening step of
IPDC, respectively. Then the reduced design matrix is (x̃j1 , · · · , x̃jd1 , x̃k1 ◦
x̃k2 , · · · , x̃kd2−1

◦ x̃kd2 ) ∈ Rn×d with d = d1 + d2(d2 − 1)/2, where x̃` is the

`th column of X. Let S̃ ⊂ {1, · · · , p̃} be the index set given by the columns
of such a reduced matrix in the full matrix X̃. As guaranteed by Theorem
1, the true row support S can be contained in the reduced set S̃ by IPDC
with high probability that converges to one at a fast rate as sample size n
increases.

Observe that the true row support S is the union of individual supports
of the columns of the true regression coefficient matrix B∗ corresponding to
the q responses. Given any set J ⊂ {1, · · · , p̃}, denote by BJ a submatrix
of B formed by the rows indexed by J . For the support union recovery, we
exploit the multivariate group Lasso given by the following regularization
problem

min
B

S̃c=0

{
1

2nq
‖Y− X̃B‖2F + λ‖B‖2, 1

}
,(A.2)

where S̃c is the complement of the set S̃, ‖·‖F denotes the Frobenius norm of
a matrix, λ ≥ 0 is a regularization parameter, and ‖ · ‖2,1 stands for the ma-
trix rowwise (2, 1)-norm defined as ‖M‖2,1 =

∑
i(
∑

jm
2
ij)

1/2 for any matrix

M = (mij). Note that S̃ and M̂ ∪ Î share the same cardinality. We should
remark that as ensured by Theorem 2, the computational cost of solving the
optimization problem (A.2) can be substantially reduced compared to that
of solving the same optimization problem without the screening step, that
is, with S̃ = {1, · · · , p̃}.

The multivariate group Lasso has been widely used in the multi-response
linear regression models typically without interaction terms. For example,
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[24] and [25] established the oracle inequalities for the case when the design
matrix is deterministic and the error matrix has i.i.d. Gaussian entries. [28]
investigated the model selection consistency in terms of support union recov-
ery of the multivariate group Lasso under the assumptions that the design
matrix is drawn with i.i.d. Gaussian row vectors and all the entries of the
error matrix are i.i.d. Gaussian. We will relax such Gaussianity assumptions
and justify that this group variable selection procedure continues to perform
well in the presence of interactions.

Once the row support of the true regression coefficient matrix is recovered,
it is straightforward to recover the individual supports of each column of the
regression coefficient matrix by an additional refitting step of applying the
ordinary Lasso to the recovered support union. Since the sampling properties
of Lasso have been extensively studied and are now well understood in the
literature, we will provide only theoretical analysis of the multivariate group
Lasso problem (A.2).

B.2. Support union recovery and oracle inequalities. To facili-
tate our technical analysis for the selection step of IPDC, we impose a few
additional regularity conditions.

Condition 4. The covariate vector x has a sub-Gaussian distribution
and s = |S| = O(nξ) for some constant 0 ≤ ξ < 1/4.

Condition 5 (RE(s) assumption). There exists some positive constant
κ such that

κ(s) = min
|J |≤s,∆∈Rp̃×q\{0}, ‖∆Jc‖2,1≤3‖∆J‖2,1

‖Σ1/2∆‖F
‖∆J‖F

≥ κ,

where Σ is the covariance matrix of x̃ = (xT , zT )T .

Condition 6. The error vector w has a sub-exponential distribution.

The first part of Condition 4 is a mild assumption on the distribution of
the covariates. It can be satisfied by many light-tailed distributions such as
Gaussian distributions and distributions with bounded support. The second
part of Condition 4 puts a row sparsity constraint on the true regression
coefficient matrix. In particular, the requirement of ξ < 1/4 reflects the
difficulty of interaction selection in high dimensions.

Condition 5 is a natural extension of the restricted eigenvalue (RE) as-
sumption introduced in [1] since here we use the rowwise (2, 1)-norm in
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place of the L1-norm. The RE assumption has been commonly used to es-
tablish the oracle inequalities for the Lasso and Dantzig selector [4]. For
simplicity we still refer to Condition 5 as the RE(s) assumption. This con-
dition is also similar to Condition 3.1 in [24] and Condition 4.1 in [25],
who considered the scenario of deterministic design matrix and no inter-
actions. Condition 6 assumes the sub-exponential distribution for the er-
ror vector, which is key to establishing the deviation probability bound for

‖X̃
T
W‖2,∞. Here ‖·‖2,∞ denotes the matrix rowwise (2,∞)-norm defined as

‖M‖2,∞ = maxi(
∑

jm
2
ij)

1/2 for any matrix M = (mij). Hereafter p involved
in the regularization parameter λ and probability bounds is understood im-
plicitly as max{n, p}.

Theorem 3. Assume that all the conditions of Theorem 1 and Con-
ditions 4–6 hold, q ≤ p, log p = o(nη) with η = min{η0, 1/2 − 2ξ}, and
set λ = c3

√
(log p)/(nq) with c3 > 0 some constant. Then with probability

at least 1 − O{exp(−Cnη0/2)} − O(p−c4) for some constants C, c4 > 0, the
minimizer B̂ of (A.2) satisfies

(nq)−1/2‖X̃(B̂−B∗)‖F ≤
8c3
κ

√
s(log p)/n,(A.3)

1
√
q
‖B̂−B∗‖2, 1 ≤

64c3
κ2

s
√

(log p)/n.(A.4)

If in addition minj∈S ‖B∗j‖/
√
q > 128c3κ

−2s
√

(log p)/n, then with the same

probability the row support of B̃ is identical to S, where the matrix B̃ is
obtained by thresholding the jth row of B̂ to zero for each j if ‖B̂j‖/

√
q ≤

64c3κ
−2s
√

(log p)/n. Moreover, if the RE(s) assumption in Condition 5 is
replaced by RE(2s), then it holds with the same probability that

1
√
q
‖B̂−B∗‖F ≤

16
√

10c3
κ2(2s)

√
s(log p)/n.(A.5)

Theorem 3 establishes the model selection consistency of the IPDC fol-
lowed by hard thresholding in terms of support union recovery. It also ex-
tends the oracle inequalities in Theorem 3.3 of [24] and Corollary 4.1 of [25]
in three important aspects: the inclusion of interaction terms, the analysis
of large random design matrix, and the relaxed distributional assumption.
Such extensions make the technical analyses more involved and challenging.
We should remark that the same results as in Theorem 3 hold with prob-
ability at least 1 − O(p−c4) for the regularized estimator with d = p̃, that
is, without the screening step. It is also worth mentioning that the value
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Table 5
Proportions of important main effects, important interaction, and all of them retained by

different screening methods.

Method X12 X22 X1X2 All

DCSIS2 1.00 1.00 0.06 0.06
DCSIS-square 0.00 0.81 1.00 0.00
IPDC 1.00 1.00 1.00 1.00

of the regularization parameter λ in our Theorem 3 is slightly larger than
those used in [24] and [25], due to the more general model setting considered
in our paper. In fact, such larger value of λ is needed to suppress the ad-
ditional noise caused by the presence of interactions and the heavier-tailed
distribution of model errors.

APPENDIX C: ADDITIONAL NUMERICAL STUDIES

C.1. Comparison of IPDC with individual components. Recall
that the new interaction screening approach of IPDC treats the screening for
interactions and the screening for main effects as two separate components.
Since the distance correlation can capture nonlinear dependency between
variables, a natural question is whether either of these two components might
suffice for the purpose of the joint screening for both interactions and main
effects. To ease the presentation, the component for interaction screening is
referred to as DCSIS-square, and the component for main effect screening is
called DCSIS2 as described in Section 3.1. Thus it is of interest to compare
IPDC with both DCSIS2 and DCSIS-square. To this end, we revisit the
setting 3 of Model 4 investigated in Section 3.1; see Table 1 for the screening
performance of DCSIS2 and IPDC.

Table 5 reports the comparison results of these three methods. We see
that DCSIS2, which is designed specifically for main effect screening, fails to
retain the important interaction X1X2, and DCSIS-square, which is designed
specifically for interaction screening, fails to retain the important main effect
X12. In contrast, the IPDC combines the strengths of its two individual
components in screening for both interactions and main effects. Such an
observation is in line with a key message spelled out in the Introduction,
that is, a separate screening step for interactions can significantly enhance
the screening performance if one aims at finding important interactions.

C.2. Performance of interaction and main effect selection.
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C.2.1. Selection in single-response models. After the screening step, we
further investigate the performance of selection for the interactions and main
effects in the reduced feature space. The selection step in the single-response
examples (Models 1–4) is implemented by the Lasso. Thus we refer to each
two-stage interaction screening and selection procedure by the SIS2-Lasso,
DCSIS2-Lasso, SIRI-Lasso, IP-Lasso, and IPDC-Lasso, respectively. The or-
acle procedure, which assumes that the true underlying sparse interaction
model is known in advance, is used as a benchmark for comparison. In par-
ticular, in Model 4 the indicator covariate I(X12 ≥ 0) instead of the linear
predictor X12 is used in the oracle procedure.

Three performance measures, the prediction error (PE), the number of
false positives (FP), and the number of false negatives (FN), are employed
to assess the variable selection performance of each method in the single-
response examples. The PE is defined as E(Y − Ŷ )2 with Ŷ the predicted
response. We generate an independent test sample of size 10, 000 to calculate
the PE. The FP is defined as the total number of unimportant interactions
and main effects included in the final model, while the FN is defined as the
total number of important interactions and main effects missed by the final
model.

Table 6 presents the means and standard errors of different performance
measures. Since the screening results by all methods in Model 1 under three
different settings are almost identical, one can expect that the correspond-
ing selection results should be very similar, which is indeed the case. Thus
we omit the selection results for Model 1 to save space. For Model 2, the
performance of all methods is very similar across three settings. As a result,
we only present the selection results under setting 2 of this model in Table 7
as a representative. The complete results are available upon request. Based
on Tables 6 and 7, the following observations can be made.

• In Model 2, we see that IPDC-Lasso performs the best and closest
to the oracle procedure across all measures, as shown in Table 7. For
Model 3 under all settings, our method IPDC-Lasso has far lower mean
prediction error than all other methods except for the oracle, according
to Table 6. The advantage of IPDC-Lasso over other methods is also
evident in Model 4.
• We remark that the gap between the prediction errors of the IPDC-

Lasso and oracle in Model 4 is mainly because as mentioned before,
the latter exploits the indicator covariate I(X12 ≥ 0) whereas such
prior information is unavailable to all other procedures. Even in this
scenario of model misspecification, our method still performs well in
identifying important interactions and main effects.



IPDC 7

Table 6
Means and standard errors (in parentheses) of different selection performance measures

for Models 3 and 4 over 100 replications.

Method Model 3 Model 4

PE FP FN PE FP FN

Setting 1: (p, ρ) = (2000, 0.5)
SIS2-Lasso 33.79 (0.87) 39.25 (3.79) 1.88 (0.04) 15.00 (0.32) 22.05 (2.50) 1.23 (0.06)
DCSIS2-Lasso 3.94 (0.41) 0.51 (0.17) 0.32 (0.05) 3.36 (0.38) 4.16 (0.72) 0.11 (0.04)
SIRI-Lasso 3.54 (0.40) 0.54 (0.36) 0.27 (0.05) 4.34 (0.49) 1.63 (0.40) 0.31 (0.07)
IP-Lasso 2.08 (0.28) 0.46 (0.11) 0.10 (0.03) 2.38 (0.05) 4.24 (0.64) 0.07 (0.03)
IPDC-Lasso 1.27 (0.10) 0.63 (0.20) 0.01 (0.01) 2.27 (0.02) 3.32 (0.47) 0.01 (0.01)
Oracle 1.017 (0.002) 0 (0) 0 (0) 1.022 (0.002) 0 (0) 0 (0)

Setting 2: (p, ρ) = (5000, 0.5)
SIS2-Lasso 36.31 (0.51) 61.78 (2.85) 1.97 (0.02) 15.27 (0.24) 39.29 (2.33) 1.15 (0.04)
DCSIS2-Lasso 5.81 (0.44) 1.20 (0.55) 0.54 (0.05) 4.17 (0.48) 3.45 (0.53) 0.20 (0.05)
SIRI-Lasso 4.48 (0.45) 0.42 (0.16) 0.37 (0.05) 4.70 (0.52) 2.24 (0.44) 0.37 (0.07)
IP-Lasso 2.52 (0.33) 1.83 (0.61) 0.15 (0.04) 2.51 (0.06) 6.75 (1.24) 0.14 (0.04)
IPDC-Lasso 1.38 (0.16) 0.91 (0.31) 0.02 (0.01) 2.30 (0.02) 4.39 (0.63) 0.01 (0.01)
Oracle 1.009 (0.002) 0 (0) 0 (0) 1.014 (0.002) 0 (0) 0 (0)

Setting 3: (p, ρ) = (2000, 0.1)
SIS2-Lasso 21.96 (0.19) 22.84 (3.18) 1.98 (0.01) 13.15 (0.10) 15.68 (2.04) 1.24 (0.05)
DCSIS2-Lasso 18.85 (0.47) 9.32 (2.47) 1.70 (0.05) 12.58 (0.28) 8.51 (1.73) 1.15 (0.05)
SIRI-Lasso 14.45 (0.72) 0.40 (0.17) 1.28 (0.07) 11.55 (0.45) 1.35 (0.43) 1.28 (0.07)
IP-Lasso 6.23 (0.63) 4.20 (1.37) 0.46 (0.06) 2.54 (0.17) 6.28 (1.54) 0.05 (0.02)
IPDC-Lasso 3.08 (0.44) 0.99 (0.21) 0.17 (0.04) 2.26 (0.01) 4.00 (0.79) 0.00 (0.00)
Oracle 1.017 (0.002) 0 (0) 0 (0) 1.022 (0.002) 0 (0) 0 (0)

Table 7
Means and standard errors (in parentheses) of different selection performance measures

for setting 2 of Model 2 over 100 replications.

Method PE FP FN
SIS2-Lasso 25.57 (1.61) 30.20 (3.31) 1.62 (0.10)
DCSIS2-Lasso 3.20 (0.40) 1.85 (0.44) 0.21 (0.04)
SIRI-Lasso 3.03 (0.38) 1.30 (0.23) 0.20 (0.04)
IP-Lasso 4.05 (0.45) 4.79 (1.06) 0.33 (0.05)
IPDC-Lasso 1.61 (0.20) 2.55 (0.49) 0.04 (0.02)
Oracle 1.014 (0.002) 0 (0) 0 (0)
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Table 8
Means and standard errors (in parentheses) of different selection performance measures

for Model 5 over 100 replications.

Method PE FP.main FP.int FN.main FN.int
SIS.max-GLasso 6.24 (0.06) 127.64 (4.72) 699.08 (27.37) 1.22 (0.23) 9.50 (0.12)
SIS.sum-GLasso 6.12 (0.08) 185.28 (3.64) 810.72 (20.19) 0.74 (0.14) 9.06 (0.17)
DCSIS-GLasso 4.29 (0.14) 157.74 (3.98) 830.19 (23.00) 0.50 (0.10) 5.63 (0.29)
IPDC-GLasso 2.74 (0.09) 124.77 (3.02) 878.93 (20.60) 0.04 (0.02) 2.46 (0.23)
SIS.max-GLasso-Lasso 5.11 (0.05) 11.92 (0.84) 52.40 (3.17) 3.44 (0.19) 9.60 (0.10)
SIS.sum-GLasso-Lasso 4.99 (0.07) 15.75 (0.86) 63.73 (3.39) 3.07 (0.20) 9.35 (0.16)
DCSIS-GLasso-Lasso 3.40 (0.12) 11.87 (0.70) 62.98 (2.94) 1.41 (0.17) 6.36 (0.28)
IPDC-GLasso-Lasso 2.08 (0.09) 7.42 (0.36) 58.95 (2.32) 0.37 (0.09) 3.28 (0.24)
Oracle 1.048 (0.001) 0 (0) 0 (0) 0 (0) 0 (0)

C.2.2. Selection in multi-response model. As mentioned before, interac-
tion and main effect selection in the multi-response model setting (Model
5) is conducted through a two-step procedure in the reduced feature space
obtained by screening. Such a method first selects rows of the regression
coefficient matrix using the group Lasso, and then applies the Lasso to each
individual response for further selection of the rows. The goal of the indi-
vidual Lasso is to eliminate the unimportant interactions and main effects
that are included in the model recovered by the group Lasso. The result-
ing interaction screening and selection procedures are referred to as the
SIS.max-GLasso-Lasso, SIS.sum-GLasso-Lasso, DCSIS-GLasso-Lasso, and
IPDC-GLasso-Lasso, respectively. We also include for comparison the pro-
cedures that exploit only the group Lasso in the selection step, which are
named by dropping the Lasso component. The oracle procedure is the or-
dinary least-squares estimation applied to each response separately on the
corresponding true support.

The same performance measures as defined in Section C.2.1 are employed
to evaluate different methods, except that the PE is now calculated as the
average prediction error across all q = 10 responses. To further differentiate
the false positives and false negatives for the main effects and interactions,
we attach “.main” and “.int” to both measures of FP and FN as shown in
Table 8.

Table 8 reports the selection results for Model 5. The FP.int is relatively
large for all methods since even after screening, there are still a large number
of interactions left, due to the presence of multiple responses. We observe
that a further step of individual Lasso implemented on the support of group
lasso for each response separately can substantially reduce the FP for both
interactions and main effects. Moreover, our method IPDC-GLasso-Lasso
outperforms all competitors under all performance measures.
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Table 9
Means and standard errors (in parentheses) of prediction error as well as numbers of

selected main effects and interactions for each method in mice data.

Model Size
Method PE (×10−3) Main Interaction

SIS2-Lasso 100.14 (5.57) 0.14 (0.03) 9.56 (0.11)
DCSIS2-Lasso 100.91 (6.12) 0.12 (0.03) 9.22 (0.11)
SIRI-Lasso 247.53 (10.11) 1.07 (0.03) 0.46 (0.13)
IP-Lasso 101.34 (4.99) 5.00 (0.09) 8.55 (0.21)
IPDC-Lasso 96.55 (5.40) 3.04 (0.07) 7.31 (0.11)

C.3. Univariate gene expression study. We study the the inbred
mouse microarray gene expression data set in Lan et al. [21]. There are 60
mouse arrays, with 31 from female mice and 29 from male mice. The response
variable is the gene expression level of stearoyl-CoA desaturase-1 (Scd1), a
gene involved in fat storage. Specifically, Scd1 controls lipid metabolism
and insulin sensitivity. The covariates are gene expression levels for 22,690
of the mice’s other genes. Therefore, the sample size n = 60, the number
of covariates p = 22, 690, and the number of responses q = 1. All variables
involved in this studey are continuous.

This data set is publicly available on the Gene Expression Omnibus web-
site (http://www.ncbi.nlm.nih.gov/geo; accession number GSE3330), and
has been studied in Hao and Zhang [16] and Narisetty and He [27]. Follow-
ing Narisetty and He [27], we randomly split the data into training and test
sets of sizes 55 and 5, respectively. Furthermore, to ameliorate the numerical
instability caused by the relatively small sample size we perform 200 ran-
dom splits and calculate the mean prediction errors and the corresponding
standard errors to better evaluate the performance of various methods. We
compare the IPDC with the SIS2, DCSIS2, SIRI, and IP. Detailed descrip-
tions of all these methods can be found in Sections 3 and C.2.

The final selection results on the prediction error and selected model size
are summarized in Table 9. We see that IPDC-Lasso performs noticeably
better than its competitors. Further, paired t-tests of prediction errors on
the 200 splits of IPDC-Lasso against SIS2-Lasso, DCSIS2-Lasso, SIRI-Lasso,
and IP-Lasso lead to p-values 3.40 × 10−2, 1.94 × 10−2, 1.90 × 10−36, and
2.64 × 10−2, respectively. These test results demonstrate the significantly
improved performance of IPDC over other methods at the 5% level.

APPENDIX D: ADDITIONAL PROOFS OF MAIN RESULTS

http://www.ncbi.nlm.nih.gov/geo
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D.1. Step 1.3 of Part 1 in the proof of Theorem 1. We now
consider the term T̂ ∗k1, 3 − Tk1, 3. Applying the Cauchy-Schwarz inequality
twice leads to

Tk1, 3 ≤
{
E
[
ψ2(y∗1,y

∗
2)
]
E
[
φ2(X∗1k, X

∗
2k)I{φ(X∗1k, X

∗
2k) > M1}

]}1/2
(A.6)

≤ E1/2[ψ2(y∗1,y
∗
2)]
{
E[φ4(X∗1k, X

∗
2k)]P{φ(X∗1k, X

∗
2k) > M1}

}1/4
.

In view of (17), we have

E[φ4(X∗1k, X
∗
2k)] ≤ E[(X2

1k +X2
2k)

4] ≤ E{[2(X4
1k +X4

2k)]
2}(A.7)

≤ E[8(X8
1k +X8

2k)] = 16E(X8
1k)

and by Bonferroni’s inequality,

P{φ(X∗1k, X
∗
2k) > M1} ≤ P (X2

1k +X2
2k > M1) ≤ P (X2

1k > M1/2)(A.8)

+ P (X2
2k > M1/2) = 2P (X2

1k > M1/2)

≤ 2 exp(−c0M1/2)E[exp(c0X
2
1k)].

Combining (25) with (A.6)–(A.8) and by Condition 2, we obtain Tk1, 3 ≤
C̃3 exp(−8−1c0M1), where C̃3 is some positive constant. Since M1 = nξ1 , it
holds that for any positive constant C̃,

(A.9) 0 ≤ Tk1, 3 ≤ C̃3 exp(−8−1c0n
ξ1) ≤ C̃n−κ2/48

for all 1 ≤ k ≤ p when n is sufficiently large. This entails that

P ( max
1≤k≤p

|T̂ ∗k1, 3 − Tk1, 3| ≥ C̃n−κ2/24)(A.10)

≤ P ( max
1≤k≤p

|T̂ ∗k1, 3| ≥ C̃n−κ2/48)

for all n sufficiently large. Thus applying Markov’s inequality and noting
that T̂ ∗k1, 3 ≥ 0 and E(T̂ ∗k1, 3) = Tk1, 3, we have

P (|T̂ ∗k1, 3| ≥ δ/2) ≤ (δ/2)−1E(|T̂ ∗k1, 3|) ≤ (δ/2)−1E(T̂ ∗k1, 3)

= (δ/2)−1Tk1, 3

for any δ > 0. Choosing δ = C̃n−κ2/24 in the above inequality and in view of
(A.9), it follows that P (|T̂ ∗k1, 3| ≥ C̃n−κ2/48) ≤ 48C̃−1C̃3n

κ2 exp(−8−1c0n
ξ1).

This inequality together with (A.10) and Bonferroni’s inequality yields

P ( max
1≤k≤p

|T̂ ∗k1, 3 − Tk1, 3| ≥ C̃n−κ2/24)(A.11)

≤ 48pC̃−1C̃3n
κ2 exp(−8−1c0n

ξ1).
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D.2. Step 2 of Part 1 in the proof of Theorem 1. In this step,
we handle the term max1≤k≤p |T̂k2 − Tk2|. Define Tk2, 1 = E [φ(X∗1k, X

∗
2k)]

and Tk2, 2 = E [ψ(y∗1,y
∗
2)]. Then Tk2 = Tk2, 1Tk2, 2. Similarly, T̂k2 can be

rewritten as T̂k2 = T̂k2, 1T̂k2, 2 by letting T̂k2, 1 = n−2
∑n

i,j=1 φ(X∗ik, X
∗
jk)

and T̂k2, 2 = n−2
∑n

i,j=1 ψ(y∗i ,y
∗
j ). An application of similar arguments as in

Step 1 results in that for any positive constant C̃, there exist some positive
constants C̃1, · · · , C̃4 such that

P
(
|T̂k2, 1 − Tk2, 1| ≥ C̃n−κ2/4

)
≤ C̃1 exp{−C̃2n

(1−2κ2)/3},

P
(
|T̂k2, 2 − Tk2, 2| ≥ C̃n−κ2/4

)
≤ C̃3 exp{−C̃4n

(1−2κ2)/5}.

In view of (17) and (18), we have Tk2, 1 ≤ 2E(X2
1k) and Tk2, 2 ≤ 2E(‖ỹ1‖2).

By Condition 2, Tk2, 1 and Tk2, 2 are uniformly bounded from above by some
positive constant for all 1 ≤ k ≤ p. Thus it follows from Lemma 1 that for
any positive constant C̃, there exist some positive constants C̃5 and C̃6 such
that

P
(
|T̂k2 − Tk2| ≥ C̃n−κ2/4

)
= P

(
|T̂k2, 1T̂k2, 2 − Tk2, 1Tk2, 2| ≥ C̃n−κ2/4

)
≤ C̃5 exp{−C̃6n

(1−2κ2)/5}

for all 1 ≤ k ≤ p. By Bonferroni’s inequality, we obtain

P
(

max
1≤k≤p

|T̂k2 − Tk2| ≥ C̃n−κ2/4
)
≤

p∑
k=1

P
(
|T̂k2 − Tk2| ≥ C̃n−κ2/4

)
(A.12)

≤ pC̃5 exp{−C̃6n
(1−2κ2)/5}.

D.3. Step 3 of Part 1 in the proof of Theorem 1. We now consider
the term T̂k3 − Tk3. Define a U -statistic

T̂ ∗k3 = 6[n(n− 1)(n− 2)]−1
∑
i<j<l

g(X∗ik,y
∗
i ;X

∗
jk,y

∗
j ;X

∗
lk,y

∗
l )

with the kernel g(X∗ik,y
∗
i ;X

∗
jk,y

∗
j ;X

∗
lk,y

∗
l ) given by

g(X∗ik,y
∗
i ;X

∗
jk,y

∗
j ;X

∗
lk,y

∗
l ) = φ(X∗ik, X

∗
jk)ψ(y∗i ,y

∗
l ) + φ(X∗ik, X

∗
lk)ψ(y∗i ,y

∗
j )

+ φ(X∗jk, X
∗
ik)ψ(y∗j ,y

∗
l ) + φ(X∗jk, X

∗
lk)ψ(y∗j ,y

∗
i )

+ φ(X∗lk, X
∗
ik)ψ(y∗l ,y

∗
j ) + φ(X∗lk, X

∗
jk)ψ(y∗l ,y

∗
i ).
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Then T̂k3 = n−2(n−1)(n−2)[T̂ ∗k3+(n−2)−1T̂ ∗k1]. By the triangle inequality,
we deduce

|T̂k3 − Tk3| =
∣∣∣(n− 1)(n− 2)

n2
(T̂ ∗k3 − Tk3)−

3n− 2

n2
Tk3(A.13)

+
n− 1

n2
(T̂ ∗k1 − Tk1) +

n− 1

n2
Tk1

∣∣∣ ≤ |T̂ ∗k3 − Tk3|
+ | 3

n
Tk3|+ |T̂ ∗k1 − Tk1|+ |

1

n
Tk1|.

It follows from the Cauchy-Schwarz inequality and (17)–(18) that

Tk3 ≤
{
E[φ2(X∗1k, X

∗
2k)]E[ψ2(y∗1,y

∗
3)]
}1/2

≤
{
E
[
(X2

1k +X2
2k)

2
]
E
[
(‖ỹ1‖2 + ‖ỹ3‖2)2

]}1/2
≤
{
E[2(X4

1k +X4
2k)]E[2(‖ỹ1‖4 + ‖ỹ3‖4)]

}1/2
= 4

{
E(X4

1k)E(‖ỹ1‖4)
}1/2

for all 1 ≤ k ≤ p.
In Step 1, we have shown that Tk1 ≤ 4

{
E(X4

1k)E(‖ỹ1‖4)
}1/2

for all 1 ≤
k ≤ p. By Condition 2, E(X4

1k) and E(‖y1‖4) are uniformly bounded from
above by some positive constant for all 1 ≤ k ≤ p. Note that Tk1 ≥ 0 and
Tk3 ≥ 0. Thus for any positive constant C̃, we have max1≤k≤p |3n−1Tk3| <
C̃n−κ2/16 and max1≤k≤p |n−1Tk1| < C̃n−κ2/16 for all n sufficiently large.
These two inequalities along with (A.13) entail

P ( max
1≤k≤p

|T̂k3 − Tk3| ≥ C̃n−κ2/4) ≤ P ( max
1≤k≤p

|T̂ ∗k3 − Tk3|(A.14)

≥ C̃n−κ2/16) + P ( max
1≤k≤p

|T̂ ∗k1 − Tk1| ≥ C̃n−κ2/16).

Replacing C̃ with C̃/2 in (31) gives

P ( max
1≤k≤p

|T̂ ∗k1 − Tk1| ≥ C̃n−κ2/16) ≤ pC̃1 exp{−C̃2n
(1−2κ2)/3−2η}(A.15)

+ C̃3 exp{−C̃4n
3η/2},

where C̃1, · · · , C̃4 are some positive constants.
It remains to bound P (max1≤k≤p |T̂ ∗k3 − Tk3| ≥ C̃n−κ2/16). Let Tk3 =

Tk3, 1 + Tk3, 2 + Tk3, 3 with

Tk3, 1 = E [φ(X∗1k, X
∗
2k)ψ(y∗1,y

∗
3)I{φ(X∗1k, X

∗
2k) ≤M3}I{ψ(y∗1,y

∗
3) ≤M4}] ,

Tk3, 2 = E [φ(X∗1k, X
∗
2k)ψ(y∗1,y

∗
3)I{φ(X∗1k, X

∗
2k) ≤M3}I{ψ(y∗1,y

∗
3) > M4}] ,

Tk3, 3 = E [φ(X∗1k, X
∗
2k)ψ(y∗1,y

∗
3)I{φ(X∗1k, X

∗
2k) > M3}] .
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Similarly, write T̂ ∗k3 as T̂ ∗k3 = T̂ ∗k3, 1 + T̂ ∗k3, 2 + T̂ ∗k3, 3, where

T̂ ∗k3, 1 =
1

n(n− 1)(n− 2)

∑
i<j<l

[
φ(X∗ik, X

∗
jk)ψ(y∗i ,y

∗
l )I{φ(X∗ik, X

∗
jk) ≤M3}

· I{ψ(y∗i ,y
∗
l ) ≤M4}

+ φ(X∗ik, X
∗
lk)ψ(y∗i ,y

∗
j )I{φ(X∗ik, X

∗
lk) ≤M3}I{ψ(y∗i ,y

∗
j ) ≤M4}

+ φ(X∗jk, X
∗
ik)ψ(y∗j ,y

∗
l )I{φ(X∗jk, X

∗
ik) ≤M3}I{ψ(y∗j ,y

∗
l ) ≤M4}

+ φ(X∗jk, X
∗
lk)ψ(y∗j ,y

∗
i )I{φ(X∗jk, X

∗
lk) ≤M3}I{ψ(y∗j ,y

∗
i ) ≤M4}

+ φ(X∗lk, X
∗
ik)ψ(y∗l ,y

∗
j )I{φ(X∗lk, X

∗
ik) ≤M3}I{ψ(y∗l ,y

∗
j ) ≤M4}

+ φ(X∗lk, X
∗
jk)ψ(y∗l ,y

∗
i )I{φ(X∗lk, X

∗
jk) ≤M3}I{ψ(y∗l ,y

∗
i ) ≤M4}

]
=:

6

n(n− 1)(n− 2)

∑
i<j<l

g̃(X∗ik,y
∗
i ;X

∗
jk,y

∗
j ;X

∗
lk,y

∗
l ),

T̂ ∗k3, 2 =
1

n(n− 1)(n− 2)

∑
i<j<l

[
φ(X∗ik, X

∗
jk)ψ(y∗i ,y

∗
l )I{φ(X∗ik, X

∗
jk) ≤M3}

· I{ψ(y∗i ,y
∗
l ) > M4}

+ φ(X∗ik, X
∗
lk)ψ(y∗i ,y

∗
j )I{φ(X∗ik, X

∗
lk) ≤M3}I{ψ(y∗i ,y

∗
j ) > M4}

+ φ(X∗jk, X
∗
ik)ψ(y∗j ,y

∗
l )I{φ(X∗jk, X

∗
ik) ≤M3}I{ψ(y∗j ,y

∗
l ) > M4}

+ φ(X∗jk, X
∗
lk)ψ(y∗j ,y

∗
i )I{φ(X∗jk, X

∗
lk) ≤M3}I{ψ(y∗j ,y

∗
i ) > M4}

+ φ(X∗lk, X
∗
ik)ψ(y∗l ,y

∗
j )I{φ(X∗lk, X

∗
ik) ≤M3}I{ψ(y∗l ,y

∗
j ) > M4}

+ φ(X∗lk, X
∗
jk)ψ(y∗l ,y

∗
i )I{φ(X∗lk, X

∗
jk) ≤M3}I{ψ(y∗l ,y

∗
i ) > M4}

]
,

T̂ ∗k3, 3 =
1

n(n− 1)(n− 2)

∑
i<j<l

[
φ(X∗ik, X

∗
jk)ψ(y∗i ,y

∗
l )I{φ(X∗ik, X

∗
jk) > M3}

+ φ(X∗ik, X
∗
lk)ψ(y∗i ,y

∗
j )I{φ(X∗ik, X

∗
lk) > M3}

+ φ(X∗jk, X
∗
ik)ψ(y∗j ,y

∗
l )I{φ(X∗jk, X

∗
ik) > M3}

+ φ(X∗jk, X
∗
lk)ψ(y∗j ,y

∗
i )I{φ(X∗jk, X

∗
lk) > M3}

+ φ(X∗lk, X
∗
ik)ψ(y∗l ,y

∗
j )I{φ(X∗lk, X

∗
ik) > M3}

+ φ(X∗lk, X
∗
jk)ψ(y∗l ,y

∗
i )I{φ(X∗lk, X

∗
jk) > M3}

]
.

Clearly, T̂ ∗k3, 1, T̂
∗
k3, 2, and T̂ ∗k3, 3 are unbiased estimators of Tk3, 1, Tk3, 2, and
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Tk3, 3, respectively. By the triangle inequality, we have

P ( max
1≤k≤p

|T̂ ∗k3 − Tk3| ≥ C̃n−κ2/16)(A.16)

≤
3∑
j=1

P ( max
1≤k≤p

|T̂ ∗k3, j − Tk3, j | ≥ C̃n−κ2/48).

Note that g̃ defined in the expression for T̂ ∗k3, 1 is the kernel of the U -

statistic T̂ ∗k3, 1 of order 3. Applying similar arguments to those for dealing

with T̂ ∗k1, 1 in Step 1 yields

P (|T̂ ∗k3, 1 − Tk3, 1| ≥ C̃n−κ2/48) ≤ 2 exp{−m3C̃
2n−2κ2/(1152M2

3M
2
4 )}

≤ 2 exp{−C̃5n
1−2κ2−2ξ3−2ξ4}

with C̃5 some positive constant, by setting M3 = nξ3 and M4 = nξ4 with
ξ3, ξ4 > 0 and noting that m3 = bn/3c. Thus it follows from Bonferroni’s
inequality that

P ( max
1≤k≤p

|T̂ ∗k3, 1 − Tk3, 1| ≥ C̃n−κ2/48)(A.17)

≤
∑

1≤k≤p
P (|T̂ ∗k3, 1 − Tk3, 1| ≥ C̃n−κ2/48)

≤ 2p exp{−C̃5n
1−2κ2−2ξ3−2ξ4}.

Using similar arguments to those for (29)–(30), we can show that

P ( max
1≤k≤p

|T̂ ∗k3, 2 − Tk3, 2| ≥ C̃n−κ2/48)(A.18)

≤ C̃6n
κ2+ξ3 exp{−2−3/2c0n

ξ4/2},

P ( max
1≤k≤p

|T̂ ∗k3, 3 − Tk3, 3| ≥ C̃n−κ2/48)(A.19)

≤ pC̃7n
κ2 exp(−8−1c0n

ξ3),

where C̃6 and C̃7 are some positive constants.
Combining the results in (A.16)–(A.19) leads to

P ( max
1≤k≤p

|T̂ ∗k3 − Tk3| ≥ C̃n−κ2/16) ≤ 2p exp{−C̃5n
1−2κ2−2ξ3−2ξ4}

+ pC̃7n
κ2 exp(−8−1c0n

ξ3) + C̃6n
κ2+ξ3 exp{−2−3/2c0n

ξ4/2}.
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Let ξ3 = (1− 2κ2)/3− 2η and ξ4 = 3η with some 0 < η < (1− 2κ2)/6. Then
we have

P ( max
1≤k≤p

|T̂ ∗k3 − Tk3| ≥ C̃n−κ2/16) ≤ pC̃8 exp{−C̃9n
(1−2κ2)/3−2η}

+ C̃10 exp{−C̃11n
3η/2},

where C̃8, · · · , C̃11 are some positive constants. This inequality together with
(A.14)–(A.15) entails

P ( max
1≤k≤p

|T̂k3 − Tk3| ≥ C̃n−κ2/4) ≤ pC̃1 exp{−C̃2n
(1−2κ2)/3−2η}(A.20)

+ C̃3 exp{−C̃4n
3η/2}

for some positive constants C̃1, · · · , C̃4.

D.4. Proof of Theorem 3. For simplicity, we provide here only the
proof for the case without variable screening, that is, d1 = d2 = p. The case
with variable screening can be proved using similar arguments, in view of
the sure screening property established in Theorem 1. By the definition of
B̂, we have

1

2nq
‖Y− X̃B̂‖2F + λ‖B̂‖2, 1 ≤

1

2nq
‖Y− X̃B∗‖2F + λ‖B∗‖2, 1.

Substituting Y = X̃B∗ + W and rearranging terms yield

1

2nq
‖X̃∆̂‖2F ≤

1

nq
tr(WT X̃∆̂) + λ(‖B∗‖2, 1 − ‖B̂‖2, 1),(A.21)

where ∆̂ = B̂−B∗. An application of the Cauchy-Schwarz inequality gives

tr(WT X̃∆̂) = tr(∆̂WT X̃) =
∑
k

∆̂k

[
(X̃

T
W)k

]T
(A.22)

≤
∑
k

‖∆̂k‖2 · ‖(X̃
T
W)k‖2 ≤ ‖X̃

T
W‖2,∞‖∆̂‖2,1,

where ∆̂k and (X̃
T
W)k are the kth rows of ∆̂ and X̃

T
W, respectively.

Note that q ≤ p and log p = o(nη) with η = min{η0, 1/2−2ξ}. By Lemmas
7–8, with probability at least 1−O{exp(−C̃1n

1/2−2ξ)}−O(p−c) = 1−O(p−c4)
for some constants C̃1, c, c4 > 0 it holds that

1

nq
‖X̃

T
W‖2,∞ ≤

λ

2
(A.23)
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and

min
|J |≤s,∆∈Rp̃×q\{0}, ‖∆Jc‖2,1≤3‖∆J‖2,1

‖X̃∆‖F√
n‖∆J‖F

≥ κ

2
.(A.24)

From now on, we condition on the event that these two inequalities hold. In
view of (A.21) and (A.22), we have the following basic inequality

1

2nq
‖X̃∆̂‖2F +

λ

2
‖B̂−B∗‖2,1 ≤ λ(‖B∗‖2, 1 − ‖B̂‖2, 1(A.25)

+ ‖B̂−B∗‖2,1) ≤ 2λ‖(B̂−B∗)S‖2,1,

where we have used the fact that ‖(B∗)Sc‖2, 1−‖(B̂)Sc‖2, 1+‖(B̂−B∗)Sc‖2,1 =
0 and the triangle inequality.

The basic inequality (A.25) implies

1

2nq
‖X̃∆̂‖2F ≤ 2λ‖∆̂S‖2,1 ≤ 2λ

√
s‖∆̂S‖F ,(A.26)

where the last inequality holds since

‖∆̂S‖2,1 =
∑
k∈S
‖∆̂k‖2 ≤

√
s
∑
k∈S
‖∆̂k‖22 =

√
s‖∆̂S‖F .(A.27)

Moreover, it follows from (A.25) that ‖∆̂Sc‖2,1 ≤ 3‖∆̂S‖2,1 and thus by

(A.24), we have ‖∆̂S‖F ≤ 2‖X̃∆̂‖F /(κ
√
n). This inequality along with

(A.25)–(A.27) yields

1

2nq
‖X̃∆̂‖2F +

λ

2
‖B̂−B∗‖2,1 ≤

4λ
√
s‖X̃∆̂‖F
κ
√
n

,

which gives n−1/2‖X̃∆̂‖F ≤ 8qλ
√
s/κ. Therefore, we obtain

1

2nq
‖X̃(B̂−B∗)‖2F +

λ

2
‖B̂−B∗‖2,1 ≤

32qsλ2

κ2
,

which completes the proof for the first part of Theorem 3.
We next proceed to prove the second part of Theorem 3. We condition on

the event that (A.4) holds. Denote by S(B) the row support of any matrix
B. We need to show that with the same probability S(B̃) = S(B∗) holds.
To this end, we first prove S(B∗) ⊂ S(B̃). For any j0 ∈ S(B∗), if j0 6∈ S(B̃)
then the j0th row of B̃ is zero, which means ‖B̂j0‖ ≤ 64c3κ

−2s
√
q(log p)/n.
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It then follows from the condition of minj∈S ‖B∗j‖ > 128c3κ
−2s
√
q(log p)/n

that

1
√
q
‖B̂−B∗‖2,1 ≥

1
√
q
‖B̂j0 −B∗j0‖ ≥

1
√
q

(‖B∗j0‖ − ‖B̂j0‖)

>64c3κ
−2s
√

(log p)/n,

which leads to a contradiction to the estimation bound (A.4). Thus it holds
that S(B∗) ⊂ S(B̃). We can also show that S(B̃) ⊂ S(B∗). In fact, if
there exists some j0 such that j0 ∈ S(B̃) and j0 6∈ S(B∗), then we have
‖B̂j0‖ > 64c3κ

−2s
√
q(log p)/n and B∗j0 = 0, and thus

1
√
q
‖B̂−B∗‖2,1 ≥

1
√
q
‖B̂j0 −B∗j0‖ > 64c3κ

−2s
√

(log p)/n,

which contradicts again the bound (A.4). Combining these results yields
that with the same probability, the row support of B̃ is identical to the true
row support S.

We finally prove (A.5). By assumption, the RE(2s) condition holds. Us-
ing similar arguments as for proving (A.23)–(A.24), we can show that with
probability at least 1−O{exp(−C̃1

· n1/2−2ξ)}−O(p−c) = 1−O(p−c4) for some constants C̃1, c, c4 > 0, it holds
that

1

nq
‖X̃

T
W‖2,∞ ≤

λ

2
(A.28)

and

min
|J |≤2s,∆∈Rp̃×q\{0}, ‖∆Jc‖2,1≤3‖∆J‖2,1

‖X̃∆‖F√
n‖∆J‖F

≥ κ(2s)

2
.(A.29)

Recall that ∆̂ = B̂ − B∗. Let S′ be a subset of Sc corresponding to the
s largest values of ‖∆̂k‖. Then we have |S ∪ S′| = 2s. From now on, we
condition on the event that inequalities (A.28) and (A.29) hold. Condi-
tional on such an event, the basic inequality (A.25) still holds. Thus we
have ‖∆̂Sc‖2,1 ≤ 3‖∆̂S‖2,1, which entails

‖∆̂(S∪S′)c‖2, 1 ≤ ‖∆̂Sc‖2, 1 ≤ 3‖∆̂S‖2, 1 ≤ 3‖∆̂S∪S′‖2, 1.

This together with (A.29) yields ‖∆̂S∪S′‖F ≤ 2‖X̃∆̂‖F /(κ(2s)
√
n). From

(A.26), we have

1

2nq
‖X̃∆̂‖2F ≤ 2λ

√
s‖∆̂S‖F ≤ 2λ

√
s‖∆̂S∪S′‖F .
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Combining these two results gives

‖∆̂S∪S′‖F ≤ 16qλ
√
s/κ2(2s).(A.30)

Since the jth largest norm in the set {‖∆̂k‖ : k ∈ Sc} is bounded from
above by ‖∆̂Sc‖2, 1/j, it holds that

∑
k∈(S∪S′)c

‖∆̂k‖2 ≤
p̃−s∑

k=s+1

‖∆̂Sc‖22, 1
k2

≤
‖∆̂Sc‖22, 1

s
≤

9‖∆̂S‖22, 1
s

≤ 9
∑
k∈S
‖∆̂k‖2 ≤ 9

∑
k∈S∪S′

‖∆̂k‖2,

which results in ‖∆̂‖2F ≤ 10‖∆̂S∪S′‖2F . This inequality along with (A.30)
yields

1
√
q
‖∆̂‖F ≤

16
√

10c3
κ2(2s)

√
s(log p)/n,

which concludes the proof for the third part of Theorem 3.

APPENDIX E: ADDITIONAL TECHNICAL DETAILS AND LEMMAS

E.1. Terms E(Y |Xj) and E(Y 2|Xj) under model (2). Since the
covariates X1, · · · , Xp are all independent with mean zero and the random
error W is of mean zero and independent of all Xj ’s, it is immediate that
E(Y |Xj) = α+ βjXj . We now calculate E(Y 2|Xj). Define

J1 =

p∑
j=1

βjXj , J2 =

p−1∑
k=1

p∑
`=k+1

γk`XkX`, J3 =
∑
k 6=j

βkXk,

J4 =

j−1∑
k=1

γkjXk +

p∑
`=j+1

γj`X`, J5 =

p−1∑
k=1,k 6=j

p∑
`=k+1,`6=j

γk`XkX`.

Then we have Y = α + J1 + J2 + W with J1 = βjXj + J3 and J2 =
J4Xj+J5, and J3, J4, and J5 are independent of Xj . Applying the properties
of conditional expectation yields

E[(α+ J1 + J2)W |Xj ] = E{E[(α+ J1 + J2)W |X1, · · · , Xp]|Xj}
= E[(α+ J1 + J2)E(W |X1, · · · , Xp)|Xj ] = 0
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and

E[(α+ J1 + J2)
2|Xj ] = E{[(βj + J4)Xj + (α+ J3 + J5)]

2|Xj}
=X2

jE[(βj + J4)
2] + 2XjE[(βj + J4)(α+ J3 + J5)] + E[(α+ J3 + J5)

2]

=

β2j +

j−1∑
k=1

γ2kjE(X2
k) +

p∑
`=j+1

γ2j`E(X2
` )

X2
j

+ 2

βjα+

j−1∑
k=1

βkγkjE(X2
k) +

p∑
`=j+1

β`γj`E(X2
` )

Xj

+ α2 +
∑
k 6=j

β2kE(X2
k) +

p−1∑
k=1,k 6=j

p∑
`=k+1,` 6=j

γ2k`E(X2
k)E(X2

` ).

Therefore, it holds that

E(Y 2|Xj) = E[(α+ J1 + J2)
2|Xj ] + 2E[(α+ J1 + J2)W |Xj ] + E(W 2|Xj)

=

β2j +

j−1∑
k=1

γ2kjE(X2
k) +

p∑
`=j+1

γ2j`E(X2
` )

X2
j

+ 2

βjα+

j−1∑
k=1

βkγkjE(X2
k) +

p∑
`=j+1

β`γj`E(X2
` )

Xj + Cj ,

where Cj = α2+
∑

k 6=j β
2
kE(X2

k)+
∑p−1

k=1,k 6=j
∑p

`=k+1,` 6=j γ
2
k`E(X2

k)E(X2
` )+σ2

is a constant that is free of Xj , and σ2 is the variance of W .

E.2. Lemma 1 and its proof.

Lemma 1. Let Â and B̂ be estimates of A and B, respectively, based
on a sample of size n. Assume that both A and B are bounded and for any
constant C̃ > 0, there exist positive constants C̃1, · · · , C̃4 such that

P
(
|Â−A| ≥ C̃n−κ

)
≤ C̃1 exp

{
−C̃2n

f(κ)
}

P
(
|B̂ −B| ≥ C̃n−κ

)
≤ C̃3 exp

{
−C̃4n

f(κ)
}

with f(κ) some function of κ. Then for any constant C̃ > 0, there exist
positive constants C̃5 and C̃6 such that

P (|ÂB̂ −AB| ≥ C̃n−κ) ≤ C̃5 exp
{
−C̃6n

f(κ)
}
.
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Proof. Note that |ÂB̂ − AB| ≤ |Â(B̂ − B)| + |(Â − A)B|. Thus for any
positive constant C̃, we have

P (|ÂB̂ −AB| ≥ C̃n−κ) ≤ P (|Â(B̂ −B)| ≥ C̃n−κ/2)(A.31)

+ P (|(Â−A)B| ≥ C̃n−κ/2).

We first deal with the second term on the right hand side of (A.31). Since
both A and B are bounded, there exists some positive constant L such that
|A| ≤ L and |B| ≤ L. It follows that

P (|(Â−A)B| ≥ C̃n−κ/2) ≤ P (|Â−A|L ≥ C̃n−κ/2)(A.32)

= P{|Â−A| ≥ (2L)−1C̃n−κ1} ≤ C̃1 exp
{
−C̃2n

f(κ1)
}
,

where C̃1 and C̃2 are some positive constants.
We next consider the first term on the right hand side of (A.31). Note

that

P (|Â(B̂ −B)| ≥ C̃n−κ/2) ≤ P
{
|Â(B̂ −B)| ≥ C̃n−κ/2,(A.33)

|Â| ≥ L+
C̃

2
n−κ

}
+ P

(
|Â(B̂ −B)| ≥ C̃

2
n−κ, |Â| < L+

C̃

2
n−κ

)
≤ P (|Â| ≥ L+

C̃

2
n−κ) + P (|Â(B̂ −B)| ≥ C̃

2
n−κ, |Â| < L+ C̃)

≤ P (|Â| ≥ L+ C̃n−κ/2) + P{(L+ C̃)|B̂ −B| ≥ C̃n−κ/2}.

We will bound the two terms on the right hand side of (A.33) separately. It
follows from |A| ≤ L that

P (|Â| ≥ L+ C̃n−κ/2) ≤ P (|Â−A|+ |A| ≥ L+ C̃n−κ/2)(A.34)

≤ P{|Â−A| ≥ 2−1C̃n−κ} ≤ C̃3 exp
{
−C̃4n

f(κ1)
}
,

where C̃3 and C̃4 are some positive constants. It also holds that

P ((L+ C̃)|B̂ −B| ≥ C̃n−κ/2) = P{|B̂ −B| ≥ (2L+ 2C̃)−1C̃n−κ}

≤ C̃7 exp
{
−C̃8n

f(κ)
}
,

where C̃7 and C̃8 are some positive constants. This inequality together with
(A.31)–(A.34) entails

P (|ÂB̂ −AB| ≥ C̃n−κ) ≤ C̃1 exp
{
−C̃2n

f(κ)
}

+ C̃3 exp
{
−C̃4n

f(κ)
}

+ C̃7 exp
{
−C̃8n

f(κ)
}
≤ C̃5 exp

{
−C̃6n

f(κ)
}
,

where C̃5 = C̃1 + C̃3 + C̃7 and C̃6 = min{C̃2, C̃4, C̃8}.
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E.3. Lemma 2 and its proof. For any set D, we denote by |D| its
cardinality throughout the paper.

Lemma 2. Let B̂j ≥ 0 be an estimate of Bj based on a sample of size n
for each j ∈ D ⊂ {1, · · · , p}. Assume that minj∈D Bj ≥ L for some positive

constant L, and for any constant C̃ > 0, there exist positive constants C̃1

and C̃2 such that

P

(
max
j∈D
|B̂j −Bj | ≥ C̃n−κ

)
≤ |D|C̃1 exp

{
−C̃2n

f(κ)
}

with f(κ) some function of κ. Then for any constant C̃ > 0, there exist
positve constants C̃3 and C̃4 such that

P

(
max
j∈D
|
√
B̂j −

√
Bj | ≥ C̃n−κ

)
≤ |D|C̃3 exp

{
−C̃4n

f(κ)
}
.

Proof. Since minj∈D Bj ≥ L for some positive constant L, there exists a

constant L0 such that 0 < L0 < L. Note that for any positive constant C̃,

P (max
j∈D
|
√
B̂j −

√
Bj | ≥ C̃n−κ) ≤ P

{
max
j∈D
|
√
B̂j −

√
Bj | ≥ C̃n−κ,(A.35)

min
j∈D
|B̂j | ≤ L− L0n

−κ
}

+ P
{

max
j∈D
|
√
B̂j −

√
Bj | ≥ C̃n−κ,

min
j∈D
|B̂j | > L− L0n

−κ
}
≤ P (min

j∈D
|B̂j | ≤ L− L0n

−κ)

+ P (max
j∈D

|B̂j −Bj |

|
√
B̂j +

√
Bj |
≥ C̃n−κ,min

j∈D
|B̂j | > L− L0).

We first consider the first term on the right hand side of (A.35). It follows
from minj∈D Bj ≥ L that

P (min
j∈D
|B̂j | ≤ L− L0n

−κ) ≤ P
{

min
j∈D
|Bj | −max

j∈D
|B̂j −Bj |(A.36)

≤ L− L0n
−κ
}
≤ P (max

j∈D
|B̂j −Bj | ≥ L0n

−κ)

≤ |D|C̃1 exp
{
−C̃2n

f(κ)
}
,

where C̃1 and C̃2 are some positive constants.
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Next we consider the second term on the right hand side of (A.35). For
any positive constant C̃, we have

P (max
j∈D

|B̂j −Bj |

|
√
B̂j +

√
Bj |
≥ C̃n−κ,min

j∈D
|B̂j | > L− L0)(A.37)

≤ P{max
j∈D
|B̂j −Bj | ≥ C̃(

√
L− L0 +

√
L)n−κ}

≤ |D|C̃5 exp
{
−C̃6n

f(κ)
}
,

where C̃5 and C̃6 are some positive constants. Combining (A.35)–(A.37)
yields

(A.38) P (max
j∈D
|
√
B̂j −

√
Bj | ≥ C̃n−κ) ≤ |D|C̃3 exp

{
−C̃4n

f(κ)
}
,

where C̃3 = C̃1 + C̃5 and C̃4 = min{C̃2, C̃6}.

E.4. Lemma 3 and its proof.

Lemma 3. Let Âj and B̂j be estimates of Aj and Bj, respectively, based
on a sample of size n for each j ∈ D ⊂ {1, · · · , p}. Assume that Aj and
Bj satisfy maxj∈D |Aj | ≤ L1 and minj∈D |Bj | ≥ L2 for some constants

L1, L2 > 0, and for any constant C̃ > 0, there exist constants C̃1, · · · , C̃6 > 0
such that

P
(

max
j∈D
|Âj −Aj | ≥ C̃n−κ

)
≤ |D|C̃1 exp

{
− C̃2n

f(κ)
}

+ C̃3 exp
{
− C̃4n

g(κ)
}
,

P
(

max
j∈D
|B̂j −Bj | ≥ C̃n−κ

)
≤ |D|C̃5 exp

{
− C̃6n

f(κ)
}

with f(κ) and g(κ) some functions of κ. Then for any constant C̃ > 0, there
exist positive constants C̃7, · · · , C̃10 such that

P

(
max
j∈D

∣∣∣∣∣ ÂjB̂j − Aj
Bj

∣∣∣∣∣ ≥ C̃n−κ
)
≤ |D|C̃7 exp

{
−C̃8n

f(κ)
}

+ C̃9 exp
{
−C̃10n

g(κ)
}
.

Proof. Since minj∈D |Bj | ≥ L2 > 0, there exists some constant L0 such
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that 0 < L0 < L2. Note that for any positive constant C̃, we have

P (max
j∈D
| Âj
B̂j
− Aj
Bj
| ≥ C̃n−κ) ≤ P

{
max
j∈D
| Âj
B̂j
− Aj
Bj
| ≥ C̃n−κ,(A.39)

min
j∈D
|B̂j | ≤ L2 − L0n

−κ
}

+ P
{

max
j∈D
| Âj
B̂j
− Aj
Bj
| ≥ C̃n−κ,

min
j∈D
|B̂j | > L2 − L0n

−κ
}
≤ P (min

j∈D
|B̂j | ≤ L2 − L0n

−κ)

+ P (max
j∈D
| Âj
B̂j
− Aj
Bj
| ≥ C̃n−κ,min

j∈D
|B̂j | > L2 − L0).

We start with the first term on the right hand side of (A.39). In light of
minj∈D |Bj | ≥ L2, we deduce

P (min
j∈D
|B̂j | ≤ L2 − L0n

−k) ≤ P
{

min
j∈D
|Bj | −max

j∈D
|B̂j −Bj |(A.40)

≤ L2 − L0n
−κ
}
≤ P (max

j∈D
|B̂j −Bj | ≥ L0n

−κ)

≤ |D|C̃1 exp
{
−C̃2n

f(κ)
}
,

where C̃1 and C̃2 are some positive constants.
The second term on the right hand side of (A.39) can be bounded as

P (max
j∈D
| Âj
B̂j
− Aj
Bj
| ≥ C̃n−κ, min

j∈D
|B̂j | > L2 − L0)(A.41)

≤ P (max
j∈D
| Âj
B̂j
− Aj

B̂j
| ≥ C̃n−κ/2, min

j∈D
|B̂j | > L2 − L0)

+ P (max
j∈D
|Aj
B̂j
− Aj
Bj
| ≥ C̃n−κ/2, min

j∈D
|B̂j | > L2 − L0)

≤ P{max
j∈D
|Âj −Aj | ≥ 2−1(L2 − L0)C̃n

−κ}

+ P{max
j∈D
|B̂j −Bj | ≥ (2L1)

−1(L2 − L0)L2C̃n
−κ}

≤ |D|C̃3 exp
{
−C̃4n

f(κ)
}

+ C̃9 exp
{
−C̃10n

g(κ)
}

+ |D|C̃5 exp
{
−C̃6n

f(κ)
}
,

where C̃3, · · · , C̃6, and C̃9, C̃10 are some positive constants. Combining (A.39)–



24 Y. KONG, D. LI, Y. FAN AND J. LV

(A.41) results in

P (max
j∈D
| Âj
B̂j
− Aj
Bj
| ≥ C̃n−κ) ≤ |D|C̃7 exp

{
−C̃8n

f(κ)
}

+ C̃9 exp
{
−C̃10n

g(κ)
}
,

where C̃7 = C̃1 + C̃3 + C̃5 and C̃8 = min{C̃2, C̃4, C̃6}.

E.5. Lemma 4 and its proof.

Lemma 4. Let Z be a nonnegative random variable satisfying P (Z >
t) ≤ C̃1 exp(−C̃2t

2) for all t > 0 with C̃1, C̃2 > 0 some constants. Then

E

[
exp

(
C̃2

2
Z2

)]
≤ 1 + C̃1 and E(Z2m) ≤ (1 + C̃1)(2C̃

−1
2 )mm!

for any nonnegative integer m.

Proof. Let F (t) be the cumulative distribution function of Z. Then

1− F (t) = P (Z > t) ≤ C̃1 exp(−C̃2t
2)

for all t > 0. Using integration by parts, we have

E

[
exp

(
C̃2

2
Z2

)]
= −

∫ ∞
0

exp

(
C̃2

2
t2

)
d[1− F (t)]

= 1 +

∫ ∞
0

C̃2t exp

(
C̃2

2
t2

)
[1− F (t)] dt

≤ 1 + C̃1

∫ ∞
0

c2t exp

(
− C̃2

2
t2

)
dt = 1 + C̃1.

With the Taylor series of the exponential function, we obtain

E

[
exp

(
C̃2

2
Z2

)]
=
∞∑
k=0

C̃k2E(Z2k)

2kk!
≥ C̃m2 E(Z2m)

2mm!

for any nonnegative integer m. Thus E(Z2m) ≤ (1 + C̃1)(2C̃
−1
2 )mm!.
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E.6. Lemma 5 and its proof.

Lemma 5. Let Z be a nonnegative random variable satisfying P (Z >
t) ≤ C̃1 exp(−C̃2t) for all t > 0 with C̃1, C̃2 > 0 some constants. Then

E

[
exp

(
C̃2

2
Z

)]
≤ 1 + C̃1 and E(Zm) ≤ (1 + C̃1)(2C̃

−1
2 )mm!

for any nonnegative integer m.

Proof. Let F (t) be the cumulative distribution function of Z. Then

1− F (t) = P (Z > t) ≤ C̃1 exp(−C̃2t)

for all t > 0. It follows from integration by parts that

E

[
exp

(
C̃2

2
Z

)]
= −

∫ ∞
0

exp

(
C̃2

2
t

)
d[1− F (t)]

= 1 +

∫ ∞
0

exp

(
C̃2

2
t

)
[1− F (t)] dt

≤ 1 + C̃1

∫ ∞
0

C̃2

2
exp

(
− C̃2

2
t

)
dt = 1 + C̃1.

Applying the Taylor series of the exponential function leads to

E

[
exp

(
C̃2

2
Z

)]
=

∞∑
k=0

C̃k2E(Zk)

2kk!
≥ C̃m2 E(Zm)

2mm!

for any nonnegative integer m. Thus E(Zm) ≤ (1 + C̃1)(2C̃
−1
2 )mm!.

E.7. Lemma 6 and its proof.

Lemma 6. Under Condition 2, both dcov2(Xk,y) and dcov2(X∗k ,y
∗) are

uniformly bounded in k.

Proof. We will show that dcov2(X∗k ,y
∗) are uniformly bounded in 1 ≤ k ≤

p. Similar arguments apply to prove that dcov2(Xk,y) are also uniformly
bounded in k. Recall that dcov2(X∗k ,y

∗) = Tk1 + Tk2 − 2Tk3 where Tk1 =
E [φ(X∗1k, X

∗
2k)ψ(y∗1,y

∗
2)], Tk2 = E [φ(X∗1k, X

∗
2k)]E [ψ(y∗1,y

∗
2)], and Tk3 =
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E [φ(X∗1k, X
∗
2k)ψ(y∗1,y

∗
3)]. Here φ(X∗1k, X

∗
2k) = |X∗1k −X∗2k| and ψ(y∗1,y

∗
2) =

‖y∗1 − y∗2‖. Thus an application of the triangle inequality gives

0 ≤ dcov2(X∗k ,y
∗) ≤ |Tk1|+ |Tk2|+ 2|Tk3|.(A.42)

To prove that dcov2(X∗k ,y
∗) are uniformly bounded in k, it suffices to show

that each term on the right hand side above is uniformly bounded in view
of (A.42). As shown in Step 1 of Part 1 in the proof of Theorem 1, under
Condition 2 the first quantity Tk1 is uniformly bounded in 1 ≤ k ≤ p. Using
similar arguments, we can show that Tk2 and Tk3 are also uniformly bounded
in k, which completes the proof.

E.8. Lemma 7 and its proof.

Lemma 7. Assume that Conditions 4–5 hold and log p = o(n1/2−2ξ).
Then with probability at least 1 − O{exp(−C̃1n

1/2−2ξ)} for some constant
C̃1 > 0, it holds that

min
|J |≤s,∆∈Rp̃×q\{0}, ‖∆Jc‖2,1≤3‖∆J‖2,1

‖X̃∆‖F√
n‖∆J‖F

≥ κ

2
.

Proof. The main idea of the proof is to first introduce an event with a
high probability and then derive the desired inequality conditional on that
event. Define an event

E = {‖n−1X̃
T
X̃−Σ‖∞ < ε},

where ‖ · ‖∞ denotes the entrywise matrix L∞-norm and 0 < ε < 1 will
be specified later. In view of the first part of Condition 4, it follows from
Lemmas 4 and 10 that P (E) ≥ 1− C̃2p̃

2 exp(−C̃3n
1/2ε2) for some constants

C̃2, C̃3 > 0.
From now on, we condition on the event E . By the definition of the Frobe-

nius norm, we have

n−1‖X̃∆‖2F = tr[∆T (n−1X̃
T
X̃−Σ)∆] + tr(∆TΣ∆).(A.43)

For any matrix M, denote by Mij the (i, j)-entry of M. Then conditional
on the event E , the first term on the right hand of (A.43) can be bounded
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as ∣∣∣tr[∆T (n−1X̃
T
X̃−Σ)∆]

∣∣∣ =
∣∣∣tr[(n−1X̃T

X̃−Σ)∆∆T ]
∣∣∣(A.44)

= |
p̃∑
i=1

p̃∑
j=1

(n−1X̃
T
X̃−Σ)ij(∆∆T )ij |

≤ ε
p̃∑
i=1

p̃∑
j=1

q∑
k=1

|∆ik||∆jk| = ε

q∑
k=1

∑
j∈J
|∆jk|+

∑
j∈Jc

|∆jk|

2

≤ 2ε

q∑
k=1

∑
j∈J
|∆jk|

2

+ 2ε

q∑
k=1

∑
j∈Jc

|∆jk|

2

,

where we have used the fact that (a+ b)2 ≤ 2(a2 + b2) in the last inequality.
By the Cauchy-Schwarz inequality, for any set J satisfying |J | ≤ s we

have

q∑
k=1

∑
j∈J
|∆jk|

2

≤
q∑

k=1

|J |
∑
j∈J

∆2
jk = |J | · ‖∆J‖2F ≤ s‖∆J‖2F .(A.45)

For any ∆ ∈ Rp̃×q\{0} satisfying ‖∆Jc‖2,1 ≤ 3‖∆J‖2,1 with |J | ≤ s, similar
arguments apply to show that

q∑
k=1

∑
j∈Jc

|∆jk|

2

=
∑
j∈Jc

∑
j′∈Jc

q∑
k=1

|∆jk||∆j′k| ≤
∑
j∈Jc

∑
j′∈Jc

(
q∑

k=1

∆2
jk

)1/2

·

(
q∑

k=1

∆2
j′k

)1/2

=
∑
j∈Jc

∑
j′∈Jc

‖∆j‖2 · ‖∆j′‖2 =

∑
j∈Jc

‖∆j‖2

2

= ‖∆Jc‖22,1 ≤ 9‖∆J‖22,1 = 9

∑
j∈J
‖∆j‖2

2

≤ 9|J |

∑
j∈J
‖∆j‖22


= 9|J |‖∆J‖2F ≤ 9s‖∆J‖2F ,

which along with (A.44)–(A.45) entails

|tr[∆T (n−1X̃
T
X̃−Σ)∆]| ≤ 20sε‖∆J‖2F .
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Combining the above inequality with (A.43) and by Condition 5, we ob-
tain

min
|J |≤s,∆∈Rp̃×q\{0},‖∆Jc‖2,1≤3‖∆J‖2,1

(
‖X̃∆‖F√
n‖∆J‖F

)2

≥ κ2 − 20sε.

It follows from the second part of Condition that s ≤ C̃4n
ξ for some positive

constant C̃4. We choose ε = 3κ2/(80C̃4n
ξ). Then we have κ2 − 20sε ≥ κ2/4

and for sufficiently large n, 0 < ε < 1. Therefore, it holds with probability
at least 1−O{exp(−C̃1n

1/2−2ξ)} for some constant C̃1 > 0 that

min
|J |≤s,∆∈Rp̃×q\{0},‖∆Jc‖2,1≤3‖∆J‖2,1

‖X̃∆‖F√
n‖∆J‖F

≥ κ

2
,

which completes the proof.

E.9. Lemma 8 and its proof.

Lemma 8. Assume that Condition 6 and the first part of Condition 4
hold, q ≤ p, log p = o(n1/3), and λ = c3

√
(log p)/(nq) with c3 > 0 some

large enough constant. Then with probability at least 1 − O(p−c) for some
positive constant c, it holds that

1

nq
‖X̃

T
W‖2,∞ ≤

λ

2
.

Proof. An application of the union bound leads to

P (‖X̃
T
W‖2,∞ ≥ nqλ/2) ≤

p̃∑
j=1

P

{
q∑

k=1

(X̃
T
W)2jk ≥ (nqλ/2)2

}
(A.46)

for any λ ≥ 0, where (X̃
T
W)jk is the (j, k)-entry of X̃

T
W. The key in-

gredient of the proof is to bound P{
∑q

k=1(X̃
T
W)2jk ≥ (nqλ/2)2}. Define

Tjk,1 =
∑n

i=1 X̃ijWikI(|X̃ij | ≤ L) and Tjk,2 =
∑n

i=1 X̃ijWikI(|X̃ij | > L),

where L > 0 will be specified later. Since (X̃
T
W)jk =

∑n
i=1 X̃ijWik =
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Tjk,1 + Tjk,2, we deduce

P

{
q∑

k=1

(X̃
T
W)2jk ≥ (nqλ/2)2

}
≤ P

{
q∑

k=1

T 2
jk,1 ≥ (nqλ/4)2

}
(A.47)

+ P

{
q∑

k=1

T 2
jk,2 ≥ (nqλ/4)2

}

≤
q∑

k=1

P {|Tjk,1| ≥
√
qnλ/4}+ P

{
q∑

k=1

T 2
jk,2 ≥ (nqλ/4)2

}
.

We will deal with the two terms on the right hand side above separately.
We first bound P

{
|Tjk,1| ≥

√
qnλ/4

}
. By the first part of Condition 4,

there exist some positive constants a1 and b1 such that

P (|vTxi| > t) ≤ a1 exp(−b1t2)

for any ‖v‖2 = 1 and t > 0, where xTi = (Xi1, · · · ,Xip) is the ith row of the
main effect design matrix X. Then choosing v as a unit vector with the jth
component being 1 gives

P (|Xij | > t) ≤ a1 exp(−b1t2)

for any 1 ≤ i ≤ n, 1 ≤ j ≤ p, and t > 0. Thus it follows from Lemma 4 that

E(X2
ij) ≤ 2(1 + a1)/b1 and E(X4

ij) ≤ 8(1 + a1)/b
2
1

for all i and j.
Note that X̃ij = Xij for 1 ≤ j ≤ p and X̃ij = Xi`Xi`′ with 1 ≤ ` < `′ ≤ p

for p+ 1 ≤ j ≤ p̃. Thus E(X̃
2

jk) are uniformly bounded from above by some

positive constant C̃1. Similarly, by Condition 6 and Lemma 5 there exist
some positive constants a2 and b2 such that E(|Wik|m) ≤ a2b

m
2 m! for any

nonnegative integer m and indices i and k. Since X̃ij is independent of Wik,
we have

E
[
|X̃ijWikI(|X̃ij | ≤ L)|m

]
≤ Lm−2E(X̃

2

ij)E(|Wik|m)

≤ m!(Lb2)
m−2(2a2b

2
2C̃1)/2

for each integer m ≥ 2. In view of Tjk,1 =
∑n

i=1 X̃ijWikI(|X̃ij | ≤ L),
applying Bernstein’s inequality (Lemma 2.2.11 of [33]) yields

P {|Tjk,1| ≥
√
qnλ/4} ≤2 exp

(
− qnλ2

64a2b22C̃1 + 8b2L
√
qλ

)
.(A.48)
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We next bound P
{∑q

k=1 T
2
jk,2 ≥ (nqλ/4)2

}
. By the definition of Tjk,2, it

is seen that for each j, such an event satisfies{
q∑

k=1

T 2
jk,2 ≥ (nqλ/4)2

}
⊂
{
|X̃ij | > L for some 1 ≤ i ≤ n

}
.

Thus using the union bound, we obtain

P

{
q∑

k=1

T 2
jk,2 ≥ (nqλ/4)2

}
≤

n∑
i=1

P{|X̃ij | > L}.

Combining this inequality with (A.46)–(A.48) gives

P (‖X̃
T
W‖2,∞ ≥ nqλ/2) ≤ 2p̃q exp

(
− qnλ2

64a2b22C̃1 + 8b2L
√
qλ

)
(A.49)

+
n∑
i=1

p∑
j=1

P{|Xij | > L}+
n∑
i=1

p∑
1≤`<`′≤p

P{|Xi`Xi`′ | > L}

≤ qp2 exp

(
− qnλ2

64a2b22C̃1 + 8b2L
√
qλ

)
+ a1np exp(−b1L2)

+ a1np
2 exp(−b1L).

Note that λ = c3
√

(log p)/(nq) with some large enough positive constant

c3. Therefore, setting L = C̃2

√
n/(log p) for some large positive constant C̃2

ensures that there exists some positive constant c4 such that

P (‖X̃
T
W‖2,∞ ≥ nqλ/2) ≤ O(p−c),(A.50)

where we have used the assupmtion that q ≤ p and log p = o(n1/3). This
concludes the proof.

E.10. Additional lemmas.

Lemma 9 (Hoeffding’s inequality). Let X be a real-valued random vari-
able with E(X) = 0. If P (a ≤ X ≤ b) = 1 for some a, b ∈ R, then
E[exp(tX)] ≤ exp[t2(b− a)2/8] for any t > 0.

Lemma 10 (Lemma B.4 of Hao and Zhang [16]). Let Z1, · · · , Zn be in-
dependent random variables with zero mean and E[exp(T0|Zi|α)] ≤ A0 for
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constants T0, A0 > 0 and 0 < α ≤ 1. Then there exist some constants
C̃3, C̃4 > 0 such that

P
(∣∣n−1 n∑

i=1

Zi
∣∣ > ε

)
≤ C̃3 exp(−C̃4n

αε2)

for any 0 < ε ≤ 1.

Department of Information Systems and Decision Sciences
Mihaylo College of Business and Economics
California State University at Fullerton
Fullerton, CA 92831
USA
E-mail: yinfeiko@usc.edu

Department of Statistics
University of Central Florida
Orlando, FL 32816-2370
USA
E-mail: daoji.li@ucf.edu

Data Sciences and Operations Department
Marshall School of Business
University of Southern California
Los Angeles, CA 90089
USA
E-mail: fanyingy@marshall.usc.edu

jinchilv@marshall.usc.edu

mailto:yinfeiko@usc.edu
mailto:daoji.li@ucf.edu
mailto:fanyingy@marshall.usc.edu
mailto:jinchilv@marshall.usc.edu

	Introduction
	A new interaction screening approach
	Motivation of the new method
	Interaction screening
	Sure screening property

	Simulation studies
	Screening in single-response models
	Screening in multi-response model
	Screening in multi-response model with discrete covariates

	Real data analysis
	Discussions
	Proofs of main results
	Proof of Theorem 1
	Proof of Theorem 2

	Supplementary Material
	References
	Post-screening interaction selection
	Interaction and main effect selection
	Support union recovery and oracle inequalities

	Additional numerical studies
	Comparison of IPDC with individual components
	Performance of interaction and main effect selection
	Selection in single-response models
	Selection in multi-response model

	Univariate gene expression study

	Additional proofs of main results
	Step 1.3 of Part 1 in the proof of Theorem 1
	Step 2 of Part 1 in the proof of Theorem 1
	Step 3 of Part 1 in the proof of Theorem 1
	Proof of Theorem 3

	Additional technical details and lemmas
	Terms E(Y|Xj) and E(Y2|Xj) under model (2)
	Lemma 1 and its proof
	Lemma 2 and its proof
	Lemma 3 and its proof
	Lemma 4 and its proof
	Lemma 5 and its proof
	Lemma 6 and its proof
	Lemma 7 and its proof
	Lemma 8 and its proof
	Additional lemmas

	Author's addresses

