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Abstract

Motivation: The rapid development of sequencing technologies has enabled us to generate a large num-
ber of metagenomic reads from genetic materials in microbial communities, making it possible to gain
deep insights into understanding the differences between the genetic materials of different groups of
microorganisms, such as bacteria, viruses, plasmids, etc. Computational methods based on k-mer frequ-
encies have been shown to be highly effective for classifying metagenomic sequencing reads into different
groups. However, such methods usually use all the k-mers as features for prediction without selecting
relevant k-mers for the different groups of sequences, i.e, unique nucleotide patterns containing biological
significance.
Results: To select k-mers for distinguishing different groups of sequences with guaranteed false discovery
rate (FDR) control, we develop KIMI, a general framework based on model-X Knockoffs regarded as the
state-of-the-art statistical method for false discovery rate (FDR) control, for sequence motif discovery with
arbitrary target FDR level, such that reproducibility can be theoretically guaranteed. KIMI is shown through
simulation studies to be effective in simultaneously controlling FDR and yielding high power, outperfor-
ming the broadly used Benjamini-Hochberg (B-H) procedure and the q-value method for FDR control. To
illustrate the usefulness of KIMI in analyzing real datasets, we take the viral motif discovery problem as an
example and implement KIMI on a real dataset consisting of viral and bacterial contigs. We show that the
accuracy of predicting viral and bacterial contigs can be increased by training the prediction model only
on relevant k-mers selected by KIMI.
Availability: Our implementation of KIMI is available at https://github.com/xinbaiusc/KIMI.
Contact: fanyingy@marshall.usc.edu or fsun@usc.edu
Supplementary information: Supplementary Materials are available at Bioinformatics online.

1 Introduction
With the ubiquitous data available in the era of big data, the iden-
tification of key variables that are relevant to an effect has become
tremendously important but challenging because of the potentially
complicated dependance structure such as the nonlinearity, high

dimensionality and collinearity. Yet, despite the large body of litera-
ture on variable selection, reproducibility of the results still remains
challenging, especially when dealing with biological data that often
exhibit significant variation (Sinha et al., 2017; Ricós et al., 2007).

Among all attempts to address the reproducibility issue, measu-
ring the false discovery rate (FDR) has been widely used. Existing
methods on FDR control typically depend on calculating p-values
measuring the significance of variables, such as the very widely
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used Benjamini-Hochberg (BH) procedure (Benjamini and Hoch-
berg, 1995). One basic assumption of the BH procedure is that valid
p-values satisfying additional conditions such as independence or
positive dependencies can be calculated for testing the variable
significance. However, this can be difficult to guarantee especially
in nonlinear or high dimensional cases. Recently, Candes et al.
(2018) proposed a new framework of model-X knockoffs to control
the FDR bypassing the use of p-values. The salient idea of model-X
knockoffs is to create the so-called knockoff variables that mimic the
dependence of original variables but are irrelevant to the response
conditional on the original variables. Thus, knockoff variables can
act as controls for assessing importance of original variables. It is
proved therein that model-X knockoffs can control FDR at the tar-
get level under arbitrary dimensionality and arbitrary dependence
structure between covariates and the response.

Due to the rapid development of sequencing technologies,
innumerable metagenomic reads have been generated, while the
understanding of the underlying principles governing the assembly
of microbial communities remains far behind. Recent studies focu-
sing on the microbial community have provided us deep insights into
the relationship between microbial communities and human dise-
ases (Dethlefsen et al., 2007), the environment (Hamman et al.,
2007), and the biosphere (Sogin et al., 2006), etc. Different groups
of microorganisms, such as bacteria, viruses, plasmids, etc, play
distinct roles and interact with each other in the microbial commu-
nity. Due to the nature of shotgun sequencing, the sources of the
short reads are lost. One basic yet essential problem is to classify
sequences into different categories in mixed metagenomic data-
sets. Several computational tools have been developed to solve
this problem (Ren et al., 2020; Roux et al., 2015; Ren et al., 2017;
Fang et al., 2019). Among all these efforts, VirFinder (Ren et al.,
2017), a novel k-mer based classification tool, uses frequencies
of all k-mers (or k-tuples, k-grams) as features to build the model
for classifying viruses and bacteria. Although high accuracy can be
achieved by VirFinder for the prediction of viral contigs, it remains
important to know which k-mers are indeed uniquely enriched or
depleted in viruses. While logistic regression with lasso penalty can
produce some support recovery, it is likely to miss some impor-
tant ones or to have inflated FDR. Therefore, the understanding
towards the scientific problem of the accurate identification of viral
specific motifs, i.e., k-mers that have different abundances in viru-
ses and bacteria, is lacking. The identification of specific k-mers
containing particular biological significance to a group of species,
also named motifs considered as patterns of residues or regions
within nucleotide sequences, is a key part of understanding function
and regulation within biological systems (Lones and Tyrrell, 2005).
Taking viruses as an example, understanding viral motifs could not
only help us identify viral sequences more accurately, but also pro-
mote the understanding of virus-host interactions, in which shuffled
motifs help to evade clustered regularly interspaced short palindro-
mic repeats (CRISPR) spacers (Andersson and Banfield, 2008).
Despite the fact that many existing studies are available for motif
finding (Galas et al., 1985; Mengeritsky and Smith, 1987; Lawre-
nce and Reilly, 1990; Lawrence et al., 1993; Marsan and Sagot,
2000), none of them could simultaneously control the FDR.

In this paper, we start from comparing the occurrence frequ-
encies of k-mers in two types of sequences given the sequence
labels. Our target is to identify important motifs (k-mers) that are
relevant to the binary sequence types with controlled FDR. One
challenge is that the frequencies of all k-mers, as compositional
data, sum up to one, resulting in the covariates being perfectly
collinear. A common practice to overcome this problem is to drop

one k-mer. However, this does not completely solve our problem
because the remaining k-mer frequencies can still have very high
collinearity. Another natural way to deal with compositional covaria-
tes is to use the log-ratio transformed covariates, which is equivalent
to taking log of the covariates with the constraint that the coeffici-
ents of the covariates sum up to 0, as proposed in (Lin et al., 2014).
We adopt the former one for KIMI throughout the paper and com-
pare the performance of KIMI with the results based on the log-ratio
transformation in the real data analysis. The second challenge is
that the joint distribution of covariates is assumed to be known for
the construction of knockoff variables, which specifically means the
joint distribution of all k-mer frequencies need to be known. Thus,
besides the afore-mentioned issue of high collinearity, we also face
the problem of unknown covariate distribution. These challenges
indicate that it is difficult to naively adapt the model-X knockoffs
framework to our motif identification problem.

We present KIMI, a general framework based on knockoff
inference, for motif identification from binary types of molecular
sequences with FDR control. First, we briefly review the framework
of model-X knockoffs. The key step for FDR control and for overco-
ming the collinearity issue is to generate valid knockoff variables
adapting to our problem. To tackle this, we directly generate the
knockoff variables for k-mer frequencies of the original sequences
by assuming multivariate normal distribution, which is shown to be
able to control FDR and obtain high power simultaneously in simula-
tion studies. The widely used BH procedure and the q-value method
for FDR control, on the contrary, yielded almost no power. Finally,
we consider an application example of viral motif identification, in
which we test KIMI on real viral and bacterial contigs from VirFinder
(Ren et al., 2017). Our results show that higher prediction accuracy
can be obtained by training the prediction model only on relevant
k-mers selected by KIMI, although predicting the contig labels is
not our primary goal. This application example demonstrates the
promising use of KIMI for analyzing real datasets.

2 Methods

2.1 Counting k-mer frequencies from metagenomic contigs

Metagenomic reads are generally short consisting of several hun-
dred of basepairs, making it challenging for statistical analysis. The
first step in most metagenomic studies is to assemble the reads into
contigs, consecutive regions of genomes with overlapping reads. To
facilitate statistical analysis, we consider contigs with length above
a certain threshold. Suppose there are n contigs, each labeled as
yi = 1 or yi = 0, 1 ≤ i ≤ n corresponding to two different cate-
gories, for example, viral or bacterial contigs. Our objective is to
develop a method that can classify whether an observed contig
comes from a virus or bacterium and simultaneously identify the
key factors driving the successful classification. We will consider
similar problems for multiple type classification in future studies.

We represent the i-th contig as Zi = Zi,1Zi,2 · · ·Zi,L, where
Zi,j ∈ A = {A,C,G, T} denotes the j-th nucleotide in the i-
th contig and L stands for the contig length. For any word w =

w1w2 · · ·wk of length k, we count its number of occurrences in con-
tig Zi and denote it as Ni(w). Then the k-mer counts are further
normalized into frequencies denoted as fi(w) by dividing the total
counts of all k-mers. Some previous studies used logistic regres-
sion on k-mers (Akhter et al., 2012; Ren et al., 2017) to distinguish
viral contigs from bacterial ones, showing strong associations betw-
een the composition abundance of k-mers and contig labels. In this
study, we focus on identifying k-mers that are particularly relevant
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to binary types of sequences, i.e., motifs containing essential bio-
logical meanings for characterizing particular types of sequences.
Hereafter, to simplify the presentation, we use S0 to denote the set
of such k-mers and refer them as relevant k-mers.

For any contig Zi, the k-mer frequencies always add up to one,
i.e.,

∑
w fi(w) = 1. Thus, naively including all k-mer frequencies

will lead to the problem of perfect collinearity in many computatio-
nal methods. Thus, to alleviate the collinearity problem, we propose
to drop one k-mer with the least likelihood of being relevant to viral
contig identification according to some criterion. The details for sele-
cting the dropped k-mer will be discussed later in Sections 2.4 and
2.5. Thus, the total number of interested k-mers will be p = 4k − 1.
Note that even after dropping one k-mer, the collinearity among k-
mer frequencies can still be very high, which is indeed the main
challenge in our study.

Hereafter to simplify notation, we use xi = (Xi1, · · · , Xip)′ ∈
Rp, i = 1, · · · , n to denote the vectors of transformed k-mer frequ-
encies (the transformation will be specified later), and yi’s to denote
the corresponding contig labels. The problem of identifying the set
of useful k-mers S0 from the full set of candidates is termed as vari-
able selection in statistics literature. We aim at recovering S0 from
observed (xi, yi), i = 1, · · · , n with controlled false discovery rate.

2.2 The knockoffs framework for variable selection and
FDR control

To evaluate variable selection methods, we first introduce some
performance measures. Let Ŝ be the set of k-mers selected by some
statistical methods. The associated false discovery rate (FDR) can
be defined as:

FDR = E[FDP], with FDP =
|Sc0 ∩ Ŝ|
|Ŝ|

, (1)

where FDP means false discovery proportion, | · | denotes the car-
dinality of a set, and Sc0 is the complement of S0, that is, the set
of non-relevant k-mers. Correspondingly, the power, which is the
expected fraction of selected relevant k-mers, is defined as:

Power = E[TDP], with TDP =
|S0 ∩ Ŝ|
|S0|

, (2)

where TDP means true discovery proportion. We aim to control
FDR and achieve high power simultaneously for the motif discovery
problem.

In Candes et al. (2018), a general model-X knockoffs framework
was proposed to control FDR, which can be regarded as a wrap-
per and can be combined with any underlying variable selection
methods that assign variable importance measure to achieve FDR
control. It has been proved in Candes et al. (2018) that the model-X
knockoffs framework controls FDR at the desired level with finite
sample size for any dependence structure between the response
and predictors. It also automatically adapts to the collinearity level in
predictors. Therefore, we start from the idea of model-X knockoffs
and adapt it to select relevant k-mers. We next give a brief review
on the Model-X knockoffs framework.

The salient idea of model-X knockoffs can be intuitively under-
stood as creating a set of "fake" variables, the so-called knockoff
variables, that mirror the dependence structure of original variables,
but are irrelevant to the dependent variable Y conditional on the ori-
ginal variables. These knockoff variables are then used as controls
for assessing importance of the original variables. The formal defi-
nition of Model-X knockoff variables (Candes et al., 2018) is given
below:

Definition 1. (Candes et al., 2018) Model-X knockoffs for the
family of random variables x = (X1, · · · , Xp)′ is a new family of
random variables x̃ = (X̃1, · · · , X̃p)′, constructed such that

• for any subset S ⊂ {1, · · · , p}

(x′, x̃′)swap(S)
d
= (x′, x̃′),

• conditional on the original variables x, the knockoff variables x̃
are independent of the response Y .

Here, swap(S) means we swap the entries Xj and X̃j for each

j ∈ S, and d
= means that the two vectors have identical distribution.

Candes et al. (2018) suggested a general algorithm for genera-
ting knockoff variables when the joint distribution of x is known. We
will discuss the details of implementation in our setting with unknown
covariate distribution in Section 2.3 for ease of presentation.

Now we assume such valid Model-X knockoffs have been gene-
rated. Let x̃i be the knockoff variable of xi, and x(i) = (x′i, x̃

′
i)
′ ∈

R2p the augmented feature vector. With (x(i), yi), i = 1, · · · , n, we
fit the following regularized logistic regression with the L1 penalty:

min
b0∈R,b∈R2p

{
−

1

n

n∑
i=1

[
yi(b0 + b′x(i))− log

(
1 + exp(b0 + b′x(i))

)]
+ λ
∥∥b‖1

}
, (3)

where λ > 0 is the regularization parameter. In implementation, we
choose λ by theK-fold cross validation method based on prediction
error.

With the obtained solution b̂ = (b̂1, . . . , b̂2p)′ to problem (3), we
then calculate the difference between the magnitudes of coefficients
of the original variables and their corresponding knockoff copies,
that is,

Vj = |b̂j | − |b̂j+p|, j = 1, · · · , p. (4)

These statistics are called knockoff statistics as in Candes et al.
(2018). A desired property of valid knockoff statistics is to measure
the importance of original variables: for relevant original variables,
their knockoff statistics are expected to be large and positive, and
for irrelevant ones, their knockoff statistics are expected to be small
in magnitudes and symmetric around zero. It has been shown that
Vj ’s defined in (4) are valid knockoff statistics (Candes et al., 2018).

The set of relevant k-mers can then be selected as Ŝ = {j :

Vj ≥ τ+}, where τ+ is the Knockoffs+ threshold defined as

τ+ = min

{
t > 0 :

1 + #{Vj ≤ −t}
#{Vj ≥ t}

≤ ρ
}

with ρ the prespecified target FDR. It has been proved in Candes
et al. (2018) that such a procedure controls FDR at the target level
in finite sample size n and arbitrary dimensionality p.

The key step in implementing knockoffs FDR control is the con-
struction of valid knockoff variables. Since the joint distribution of
k-mer frequencies are generally unknown, the general algorithm in
(Candes et al., 2018) is not applicable and we need to develop new
methods for constructing knockoff variables. We investigate two dif-
ferent approaches for constructing knockoff variables by borrowing
ideas from two relevant publications (Sesia et al., 2019; Fan et al.,
2019b). The approach introduced in Sesia et al. (2019) constru-
cts knockoff Markov contigs for each original contig based on the
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transition matrices. One can then calculate k-mer frequencies from
the original contigs and knockoff contigs. However, this approach
does not produce valid knockoffs for k-mer frequencies because the
k-mer frequencies from knockoff contigs are not exchangeable in
distribution with the ones from the original contigs. Due to page limi-
tations, we discuss the knockoff Markov contig method and provide
detailed explanation on why it fails in our study in the Supplementary
Materials. Instead of modeling knockoff contigs, we directly gene-
rate knockoff k-mer frequencies by assuming multivariate normal
distribution of k-mer frequencies.

2.3 Generating knockoff k-mer frequencies

An applicable approach is to directly generate knockoffs for k-mer
frequencies, considering that our goal is to select relevant k-mer
frequencies. Let F = (fi(wj)), 1 ≤ i ≤ n, 1 ≤ j ≤ p be the n
by p matrix of original k-mer frequencies, where p = 4k − 1 is the
total number of k-mers of interest after dropping one k-mer. Then
rows of F, denoted by f1, · · · , fn, can be regarded as an estimate of
multinomial probabilities, where each entry of the multinomial distri-
bution represents one k-mer. Classical central limit theory motivates
us to model the rows of F as independent normal random vectors.
We further standardize each column of F to have mean 0 and stan-
dard deviation 1, and denote by X = (x1, · · · , xn)′ ∈ Rn×p the
k-mer frequency matrix after standardization. Thus, the rows of X
all have mean 0 and covariance matrix with diagonals equal 1. In
addition, we assume that the distribution of rows of X is still close
to multivariate normal. Assume indeed xi ∼i.i.d. N(0,ΣX) where
diag(ΣX) = Ip. Then a valid construction of knockoff variables is

x̃i|xi ∼ N
(
xi − diag(s)Ωxi, 2diag(s)− diag(s)Ωdiag(s)

)
, (5)

where Ω = Σ−1
X is the p by p precision matrix (the inverse covari-

ance matrix), and s is a vector of p nonnegative numbers satisfying
2diag(s) − diag(s)Ωdiag(s) being positive definite. Here diag(s)
is a diagonal matrix with items of s on the diagonal. The vector s

measures the dissimilarity between the original variables and the
knockoff copies. We denote the knockoff k-mer frequency matrix by
X̃ = (x̃1, · · · , x̃n)′. Notice that due to the high dimensionality of the
data, the normality assumption may be mis-specified and the con-
structed knockoff variables are not ideal. However, we evaluate KIMI
by its variable selection and prediction performance, and show that
it achieve controlled FDR and high power simultaneously in simula-
tions, and high prediction accuracy of the contig labels in real data
analysis. In addition, there has been some studies in the literature
showing that the knockoffs framework can achieve asymptotic FDR
control even with some model mispecifications (Fan et al., 2019b,a;
Barber et al., 2020).

To construct valid knockoff variables for k-mer frequencies, we
need the joint distribution of the normal random vector xi, which
is equivalent to knowing the precision matrix Ω. We assume that
p < n, which is generally not a problem since the number of con-
tigs is usually abundantly enough compared to the k-mer size. For
example, VirFinder analyzed a real metagenomic dataset from Qin
et al. (2014) in which 325,020 contigs longer than 1000bp were
identified, and VirFinder uses k up to 8. Therefore, we estimate Ω

by first calculating the sample covariance matrix Σ̂X of X, and then
calculating its inverse. This method is theoretically feasible because
the perfect collinearity is broken after dropping one k-mer. However,
in order to avoid the numerical instability in inverting Σ̂X caused by
high collinearity, we normalize Σ̂X by dividing the absolute value
of the median of entries in the sample covariance matrix. Then the

estimated precision matrix is calculated by inverting the normali-
zed sample covariance matrix. The original knockoff frequencies
are normalized correspondingly to match the normalized covaria-
nce matrix. For easy presentation, we slightly abuse the notation
and still use xi’s to denote the original variables and x̃i’s to denote
their knockoff copies.

2.4 Simulation studies

2.4.1 Simulation procedures for FDR control using KIMI
We start from simulating contigs using Markov models given that
Markov chains have been widely used in molecular sequence analy-
ses (Almagor, 1983; Arnold et al., 1988; Avery, 1987; Avery and
Henderson, 1999; Blaisdell, 1986, 1985; Reinert et al., 2000; Water-
man, 1995). Note that the Markov model assumption is only needed
to facilitate simulation studies and is not essential since no assum-
ptions on the data are needed for KIMI. We first generate n Markov
contigs with order r and lengthL. The contigs are simulated from the
same model and their labels will be determined later by prespecified
relevant k-mers. The transition probability matrix of Markov contigs
T with dimension 4r×4 is randomly simulated as follows. For each
row of T, we sample 4 random numbers following a uniform distri-
bution in (0,1) and then normalize by the sum of these 4 numbers
assuring the row sum equals to 1. These normalized numbers are
treated as the row entries of T. We repeat the random sampling
until all rows of T are generated. After that, we simulate Markov
contigs by starting from the initial distribution of equal probabilities
(1/4r, · · · , 1/4r). Then we continue the simulation according to
the corresponding transition probability matrix until the contig length
reaches L.

We count the occurrence of each k-mer in every original contig
and normalize the counts into frequency. We further standardize
the k-mer frequency matrix F as described at the end of Section
2.3, and denote by X the final data matrix.

Next, we sample the binary contig labels according to the follow-
ing procedures. First, we randomly pick κ k-mers from all 4k k-mers
to be relevant. Second, we sample y from a Bernoulli distribution
with parameter based on the following logistic model

P(yi = 1) =
exp(x′iβ)

1 + exp(x′iβ)
,

where β = (β1, · · · , βp)′ is a coefficient vector corresponding to
the effect of each k-mer on the contig labels. For those irrelevant
k-mers, we assign 0 as the coefficient. Those relevant k-mers
will be equally likely assigned a or −a as the coefficient, where
a is a positive number indicating the amplitude of contribution to
the probability of having label 1. Finally, we use the Wilcoxon-
Mann-Whitney (WMW) test (Mann and Whitney, 1947) to compare
each column of X for the two types of contigs and drop the k-mer
having the largest p-value, i.e., least likely being a relevant k-mer.
A knockoff matrix X̃ is then constructed using equation (5).

Once we obtain X and y, we can implement KIMI, starting from
calculating the knockoff statistics Vj (4) for each k-mer, followed
by estimating the Knockoff+ threshold τ+ based on a target FDR
ρ, and selecting k-mers with knockoff statistics larger than τ+. We
then calculate the FDP as in equation (1). The corresponding TDP
is also calculated using equation (2).

The above process is repeated 100 times and the means of FDP
and TDP are used as estimates of FDR and power, respectively.

Several parameters may impact the overall performance of k-
mer selection: 1) the number of relevant k-mers κ, 2) the signal
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amplitude a, 3) the number of contigs n, 4) the contig length L,
and 5) the target FDR ρ. We will keep other parameters unchanged
while studying the relationship between one particular parameter
and power/FDR. Notice that the choice of k-mer size of interest is
usually at the user’s discretion depending on the scientific problem
as long as n > p is not violated, while we acknowledge that larger
k will likely result in higher collinearity of the variables which may
make the sample covariance matrix numerically singular, as shown
in Section 3.1.

2.4.2 Simulation procedures for FDR control using the BH
procedure

The BH procedure based on p-values has been widely used for
variable selection with FDR control. To adapt to our problem, three
potential approaches for calculating the p-values are applicable.
The first is to compute the p-values from joint logistic regression
using R function "glm". We do not consider regularized logistic
regression because no available package could output p-values in
this scenario to the best of our knowledge. Specifically, we carry out
a logistic regression on data (X, y) to obtain the p-value for each k-
mer indicating the statistical significance against the null hypothesis
that the regression coefficient is 0 conditional on all other k-mers.
Therefore, a very small p-value suggests that the corresponding
k-mer is relevant. Here the data (X, y) are the same as in Section
2.4.1.

The second is to compute the p-value for each column inde-
pendently, which we refer to as marginal p-values. Note that these
marginal p-values are for testing the marginal independence of
each k-mer with the response, which is generally different from our
goal of testing the conditional independence of one k-mer with the
response given all others. Nevertheless, this alternative method has
been very popularly used especially in high dimensions when joint
regression is difficult. We use the Wilcoxon-Mann-Whitney (WMW)
test (Mann and Whitney, 1947) to compare the transformed k-mer
frequency for two types of contigs in this scenario.

Post-selection inference provides another perspective of data-
driven variable selection by first selecting potentially relevant pre-
dictor variables and then carrying out statistical inference on those
selected variables (Berk et al., 2013). We use the R package "sele-
ctiveInference" to calculate p-values of conditional (post-selection)
hypothesis tests for lasso (Tibshirani et al., 2016) as the third option
for producing p-values.

After obtaining the joint p-values from logistic regression, the
independent p-values from the WMW test or the conditional post-
selection p-values for lasso for each of the k-mers, we use the BH
procedure to adjust the p-values at target FDR ρ = 0.2. Thus,
the selected k-mers and corresponding FDR and power can be
computed from 100 rounds of repetitions.

We also compare KIMI with the q-value method that has been
commonly used for FDR control (Storey, 2002). The details are
the same as those for the BH procedure except for the p-value
adjustment and are thus omitted.

The existing literature only shows that the BH and q-value
approaches work well under independence or certain types of
dependence assumptions of p-values (Gavrilov et al., 2009; Reiner-
Benaim, 2007; Storey et al., 2003; Jung, 2005). Since the k-mer
frequencies depend strongly on each other, these approaches are
not really applicable in such situations. We acknowledge that the
above mentioned p-values are not ideal. We are not aware of
any valid p-value calculating methods that completely adapt to the

BH and q-value approaches for k-mer selection to the best of our
knowledge.

2.5 Application in viral contig identification by identifying
relevant k-mers

We next present the usefulness of KIMI in real data analysis, appl-
ying KIMI on real datasets used in VirFinder (Ren et al., 2017) for
viral motif identification. Due to the lack of ground truth, we will eva-
luate the performance of KIMI by measuring the prediction accuracy
of contig labels based on only the k-mers selected by KIMI. In Ren
et al. (2017), all but one k-mer were used in lasso-penalized logistic
regression for viral contig prediction. Although lasso can produce a
sparse model with a set of selected k-mers, there is no guarantee
on FDR control.

For each contig length L, we use the same training and testing
sets as in Ren et al. (2017). Next, we fix the k-mer size k, count
the number of occurrences of each k-mer, and normalize the count
into frequency for each contig in the training set. The k-mer with
highest p-value of WMW test comparing the distributions of k-mer
frequencies in viral and bacterial contigs is then dropped. We further
normalize the design matrix following the procedure discussed at
the end of Section 2.3 and denote the resulting data as (X, y).

Then we apply KIMI to select relevant k-mers Ŝ based on (X, y)
from the training set according to details presented in Section 2.3.
We set the target FDR as ρ = 0.2. In addition to the current frame-
work of KIMI which drops one k-mer to avoid perfect collinearity, we
also select relevant k-mers using knockoff inference on the log-ratio
transformed data matrix and compare the prediction accuracy with
that of KIMI. The details are shown in the Supplementary Materials.

KIMI serves as a screening step for selecting relevant k-mers
that will be useful for viral contig prediction. For prediction purpose,
we only include k-mers in Ŝ as predictors. Using these selected fea-
tures, a logistic regression model with L1 penalty, which is identical
to the one VirFinder used, is trained using the training data, and is
then applied to the testing data to predict the probability of each con-
tig in the testing set coming from the viral group. A threshold is then
chosen, and contigs with predicted probabilities above it are clas-
sified to the viral group. True positive rate (TPR) and false positive
rate (FPR) vary with the threshold. To better compare the prediction
performances based on KIMI and VirFinder, we plot the receiver
operating characteristic (ROC) curve by varying the threshold. The
area under the ROC curve (AUC) is calculated as the measure of
accuracy. For VirFinder, AUC values based on 30 rounds of boot-
strap of the prediction scores in the testing set are presented. For
KIMI, we generate the knockoff k-mer frequency matrix X̃ for 30
times and calculate the AUC value for each time. We compare the
AUC values based on KIMI and those presented in VirFinder.

3 Results

3.1 The relationship between FDR/power and various
parameters in simulation studies

In this section, we present simulation results answering the following
questions. First, will KIMI control FDR and yield high power simulta-
neously for different simulated scenarios? Second, how do FDR and
power change with different parameters involved in simulations?

The results shown below are based on the selection of 4-mers
based on simulation procedures described in Section 2.4.1 with
the Markov order r specified as 3. Hence, the dimensionality is
p = 255, after dropping one k-mer. Although KIMI only requires
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Fig. 1. The maximum Spearman correlation between k-mer frequencies for
different k. The contigs are simulated from a third order Markov model with ran-
domly generated transition probability matrix. The number of contigs is 500 and the
contig length is 10kbp.

n > p, a larger k will generally increase the collinearity between
k-mer frequencies, as shown in Fig. 1. We focus on the maximum
correlation because it is the key factor dominating the numerical
behavior of computing the knockoff statistics by penalized logistic
regression and constructing the knockoff variables by inverting the
covariance matrix as the precision matrix.

To study the relationship between FDR/power and a parameter,
we vary a particular parameter while keep all others fixed. Unless
declared, we set the following default values for the parameters:
1) the number of relevant k-mers κ = 20, 2) the signal amplitude
a = 0.2, 3) the number of contigs n = 3000, 4) the contig length
L = 1kbp and 5) the target FDR ρ = 0.2.

We start by exploring how the power and FDR change with the
number of relevant k-mers κ. All other parameters are fixed at their
default values. The power and FDR for different values of κ are
shown in Fig. 2 a. As shown therein, the power decreases with κ,
which is reasonable given that selecting all relevant k-mers beco-
mes harder when the target set grows larger. The power remains
generally high, i.e., around or above 0.9 though. In addition to
achieving high power, we also observe that the FDR is mostly
controlled.

Next, we explore the relationship between FDR/power and the
signal amplitude a. It is shown in Fig. 2 b that there is an obvious
increasing trend for the power with a. The power at a = 0.1 is
around 0.25 and increase steeply to above 0.9 at a = 0.2. The
growth then slow down until the power reaches almost 1 at a = 0.3.
The variation of power also decreases with a, showing larger signal
amplitude helps stabilize the performance of KIMI. Meanwhile, the
FDR keeps under control in all scenarios.

The relationship between FDR/power and the number of contigs
in one round is presented in Fig. 2 c. Generally the trend of power
is similar to what is shown in Fig. 2 b, which is reasonable given lar-
ger sample size also strengthens the signal. The FDR also slightly
increases with n but remains safely under controlled.

We show in Fig. 2 d that the power also rises with the contig
length L, which can be explained as the k-mer frequency in longer
contigs tend to become stationary. The FDR is again strictly under
controlled for all values of L.

Among all 2000 rounds of simulations of which results are shown
in Fig. 2, the relevant k-mer is dropped in only 5 rounds. In general,
the chance of dropping a relevant k-mer is very rare in simulations.

Fig. 2. The relationship between power/FDR and various parameters in simu-
lation studies. a, The relationship between power/FDR and the number of relevant
k-mers κ. b, The relationship between power/FDR and the signal amplitude a. c,
The relationship between power/FDR and the number of contigs n. d, The relation-
ship between power/FDR and the length of contigsL. The thick black horizontal line
indicates the target FDR at ρ = 0.2. Standard error of the mean (SEM) calculated
from 100 rounds is added to each data point.
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Fig. 3. KIMI outperforms both the BH procedure and the q-value method by
simultaneously achieveing controlled FDR and high power. Default parame-
ters for simulation studies are used for the comparison. We implement the BH
procedure and the q-value method based on p-values calculated from joint logi-
stic regression implemented by the R package "glm", marginal p-values calculated
from independent WMW tests, and conditional p-values of post selection inference
for lasso by the R package "selectiveInference". The black horizontal line indicates
the target FDR at ρ = 0.2. Standard error of the mean (SEM) calculated from 100
rounds of simulations is added to each data point.

Due to page limitations, we present the effect of the target FDR
ρ on the power and FDR as Fig. S1 in the Supplementary Materials.
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3.2 The BH procedure and the q-value method produce
very low power compared to KIMI

We next investigate the FDR and power of the BH procedure and
the q-value method using the similar simulation procedures as for
KIMI. All default parameters are used as in Section 3.1 for KIMI, the
BH procedure and the q-value method.

The results for comparing the performances of KIMI, the BH
procedure, and the q-value method are summarized in Fig. 3. In
contrast to KIMI that simultaneously achieves controlled FDR and
high power at around 0.9, both the BH procedure and the q-value
method regardless of using joint, marginal or post selection p-values
failed to produce noticeable power, i.e., the power remains almost
0, making these methods meaningless despite that the FDR is con-
trolled. In addition, the variation of FDR from both methods is larger
than that of KIMI. The failure of both methods using p-values from
joint logistic regression and post selection inference for lasso is pos-
sibly due to the very high collinearity of k-mer frequencies, and the
marginal p-values are also unsurprisingly useless since they are
used to test the marginal independence between each k-mer and
the response instead of the conditional independence. Notice that
the "glm" R package by default uses Wald tests to compute p-values
from the joint logistic regression. The results based on the likelih-
ood ratio test (LRT) are similar and are presented as Fig. S2 in
the Supplementary Materials. These results show that neither the
BH procedure nor the q-value method is applicable in our problem,
highlighting the necessity and usefulness of KIMI for motif discovery.

3.3 Prediction accuracy of viral contigs based on relevant
k-mers selected by KIMI is higher than that of VirFinder

To see the applications of KIMI for motif identification in real data
analysis, we test KIMI on contigs sampled from real viral and bacte-
rial genomes, as discussed in Section 2.5. We fix the k-mer size of
interest at 3 as a simple example. Our objective is to carry out a pre-
screening of 3-mers by KIMI, train a classification model based on
logistic regression and lasso regularization on those selected rele-
vant 3-mers, and predict viral contigs on the independent testing
set with a focus on selecting 3-mers with controlled FDR.

We next investigate the prediction accuracy of viral contigs in
the testing data using the selected k-mers. The AUC values mea-
suring the prediction accuracy on the testing set for different contig
lengths by KIMI and VirFinder are shown in Fig. 4 a showing that
the AUC values using the k-mers selected by KIMI are consistently
higher than those of VirFinder for all contig lengths. For example,
although longer contigs tend to have higher prediction accuracy in
general, the prediction accuracy based on KIMI selected k-mers
at contig length 3kbp (5kbp) is higher than that based on VirFinder
using all k-mers at 5kbp (10kbp), respectively. The results show the
superiority of KIMI selecting relevant k-mers since we are using the
same feature type (k-mer frequency) and prediction model (logistic
regression with lasso regression). The improved prediction accu-
racy provides evidence on the relevance of k-mers selected by KIMI.
We also show the fractions of selected relevant k-mers among all
k-mers in Fig. 4 b. Around 0.6-0.75 of all the k-mers are sele-
cted by KIMI for different contig lengths, indicating that majority of
the k-mers may have different frequency compositions in viral and
bacterial contigs. The large proportion of selected k-mers may be
due to the high correlation between k-mer frequencies or diverse
compositions of k-mer abundance in viral and bacterial genomes.
We also present the consistency of k-mers selected by KIMI in each
round since the construction of knockoff variables involves random
sampling. As shown in Fig. 4 c, among the k-mers that have been

Fig. 4. Prediction accuracy of viral contigs based on relevant k-mers selected
by KIMI is higher than that of VirFinder. The k-mer size is fixed as 3. a, The AUC
values on the testing set for different contig lengths by using all k-mers (VirFinder)
and subset of k-mers selected by KIMI. Error bars indicate the standard deviation
of AUC values calculated from 30 rounds. b, The fractions of 3-mers selected by
knockoffs for different contig lengths. Error bars indicate the standard deviation of
fractions calculated from 30 rounds. c, Among those 3-mers that are selected by
KIMI in at least 1 round, the fractions of 3-mers that are consistently selected by
KIMI in 100% (30 times) and 80% (24 times) of all the 30 rounds.

selected by KIMI in at least 1 round, around 80% of those have
been consistently selected in all 30 rounds, showing that KIMI is
highly stable for k-mer selection in this real dataset. The fraction
will increase to around 85% to 90% if we lower the threshold to 24
rounds (80% of all rounds).

Lin et al. (2014) developed a method to predict responses based
on composition data using log-ratio of the relative frequencies. We
extend KIMI to this model and investigate the prediction accuracy
of viral contigs with the same data set based on KIMI selected vari-
ables. We show that the prediction accuracy using the log-ratio is
lower than that presented in this paper. Details of the results are
given as Fig. S3.
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4 Discussion and conclusions
Identification of motifs relevant to specific types of molecular seque-
nces is of paramount importance for understanding the composition
of genetic materials of particular species, accurately classifying
metagenomic reads, and capturing the underlying mechanisms of
how different types of molecules evolve, interact with other molecu-
les, impact public health, etc. Although many existing methods may
be applied for identifying k-mers, or motifs, it is still crucial to develop
methods that can enhance the reproducibility, or equivalently, con-
trol the FDR and no such methods are yet available yet to the best
of our knowledge. We develop KIMI, a wrapped framework based
on knockoff inference for identifying k-mers relevant to binarily labe-
led contigs using their occurrence frequency with guaranteed FDR
control. Several key findings were shown in this paper. First, we
adapted the Model-X knockoffs framework to the motif identification
problem despite the difficulty from high collinearity among k-mer
frequencies. Second, we showed through simulation studies that
KIMI could simultaneously yield a high power and controlled FDR,
while the popularly used BH procedure and q-value method for FDR
control suffer from producing very low power. Third, we presented
that KIMI could be reliably used in real data analysis by showing that
the prediction accuracy of contig labels could be increased with only
those k-mers selected by KIMI used, compared to VirFinder. The
results are consistent for all contig lengths. We expect that KIMI
can be generalized for any binary types of contigs assembled from
real metagenomic data and output k-mers under guaranteed target
FDR level.

In spite of the key findings, KIMI also has some limitations. First,
KIMI assumes that the sample size is greater than the k-mer size,
which may be violated if the sample size is not large enough and
large k is being investigated. Second, even if n > p is guaran-
teed, the high collinearity caused by large k may make the sample
covariance matrix numerically singular, prompting challenges on
the construction of knockoff k-mer frequencies. Finally, KIMI curren-
tly deals with two types of molecules. In many real word problems,
there are many different types of molecules and it is important to
extend our framework to multiple types of molecules. This is a topic
for future research.
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