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Summary

We study the effect of imperfect training data labels on the performance of classification
methods. In a general setting, where the probability that an observation in the training dataset is
mislabelled may depend on both the feature vector and the true label, we bound the excess risk
of an arbitrary classifier trained with imperfect labels in terms of its excess risk for predicting a
noisy label. This reveals conditions under which a classifier trained with imperfect labels remains
consistent for classifying uncorrupted test data points. Furthermore, under stronger conditions,
we derive detailed asymptotic properties for the popular k-nearest neighbour, support vector
machine and linear discriminant analysis classifiers. One consequence of these results is that
the k-nearest neighbour and support vector machine classifiers are robust to imperfect training
labels, in the sense that the rate of convergence of the excess risk of these classifiers remains
unchanged; in fact, our theoretical and empirical results even show that in some cases, imperfect
labels may improve the performance of these methods. The linear discriminant analysis classifier
is shown to be typically inconsistent in the presence of label noise unless the prior probabilities
of the classes are equal. Our theoretical results are supported by a simulation study.

Some key words: Label noise; Linear discriminant analysis; Misclassification error; Nearest neighbour; Statistical
learning; Support vector machine.

1. Introduction

Supervised classification is one of the fundamental problems in statistical learning. In the basic,
binary setting, the task is to assign an observation to one of two classes, based on a number of
previous training observations from each class. Modern applications include diagnosing a disease
using genomics data (Wright et al., 2015), determining a user’s action from smartphone telemetry
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data (Lara & Labrador, 2013), and detecting fraud based on historical financial transactions
(Bolton & Hand, 2002), among many others.

In a classification problem it is often the case that the class labels in the training dataset
are inaccurate. For instance, an error could simply arise from a coding mistake when the data
were recorded. In other circumstances, such as the disease diagnosis application mentioned above,
errors may be due to the fact that, even to an expert, the true labels are hard to determine, especially
if there is insufficient information available. Moreover, in modern big data applications with huge
training datasets, it may be impractical and expensive to determine the true class labels, and as a
result the training data labels are often assigned by an imperfect algorithm. Services such as the
Amazon Mechanical Turk, https://www.mturk.com, allow practitioners to obtain training
data labels relatively cheaply via crowdsourcing. Of course, even after aggregating the labels
from a large crowd of workers, the result can still be inaccurate. Chen et al. (2015) and Zhang
et al. (2016) discuss crowdsourcing in more detail and investigated strategies for obtaining the
most accurate labels given a cost constraint.

The problem of label noise was first studied by Lachenbruch (1966), who investigated the
effect of imperfect labels in two-class linear discriminant analysis. Other early works of note
include Lachenbruch (1974), Angluin & Laird (1988) and Lugosi (1992).

Frénay & Kabán (2014) and Frénay & Verleysen (2014) provide recent overviews of work
on the topic. In the simplest, homogeneous setting, each observation in the training dataset is
mislabelled independently with some fixed probability. The effects of homogeneous label errors
on the performance of empirical risk minimization classifiers were studied by van Rooyen et al.
(2015), while Long & Servedio (2010) considered boosting methods in this same homogeneous
noise setting. Other recent works focus on class-dependent label noise, where the probability
that a training observation is mislabelled depends on the true class label of that observation;
see Stempfel & Ralaivola (2009), Natarajan et al. (2013), Scott et al. (2013), Blanchard et al.
(2016), Liu & Tao (2016) and Patrini et al. (2016). An alternative model assumes that the noise
rate depends on the feature vector of the observation. Manwani & Sastry (2013) and Ghosh
et al. (2015) investigated the properties of empirical risk minimization classifiers in this setting;
see also Awasthi et al. (2015). Menon et al. (2016) proposed a generalized boundary-consistent
label noise model, where observations near the optimal decision boundary are more likely to
be mislabelled, and studied the effects on the properties of the receiver operating characteristic
curve.

In the more general setting, where the probability of mislabelling is both feature- and
class-dependent, Bootkrajang & Kabán (2012, 2014) and Bootkrajang (2016) studied the
effect of label noise on logistic regression classifiers, while Li et al. (2017), Patrini et al.
(2017) and Rolnick et al. (2018) considered neural network classifiers. Cheng et al. (2019)
investigated the performance of an empirical risk minimization classifier in the feature-
and class-dependent noise setting when the true class conditional distributions have disjoint
support.

The first goal of the present paper is to provide general theory for characterizing the effect
of feature- and class-dependent heterogeneous label noise for an arbitrary classifier. We first
specify general conditions under which the optimal predictions of a true label and a noisy label
are the same for every feature vector. Then, under slightly stronger conditions, we relate the
misclassification error when predicting a true label to the corresponding error when predicting a
noisy label. More precisely, we show that the excess risk, i.e., the difference between the error
rate of the classifier and that of the optimal, Bayes classifier, is bounded above by the excess
risk associated with predicting a noisy label multiplied by a constant factor that does not depend
on the classifier used; see Theorem 1. Our results therefore provide conditions under which a
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classifier trained with imperfect labels remains consistent for classifying uncorrupted test data
points.

As applications of these ideas, we consider three popular approaches to classification problems,
namely the k-nearest neighbour, knn, support vector machine, SVM, and linear discriminant
analysis, LDA, classifiers. In the perfectly labelled setting, the knn classifier is consistent for
any data-generating distribution and the SVM classifier is consistent when the distribution of
the feature vectors is compactly supported. Since the label noise does not change the marginal
feature distribution, it follows from our results mentioned in the previous paragraph that these
two methods are still consistent when trained with imperfect labels that satisfy our assumptions,
which in the homogeneous noise case even allow up to half of the training data to be labelled
incorrectly. For the LDA classifier with Gaussian class-conditional distributions, we derive the
asymptotic risk in the homogeneous label noise case; this enables us to deduce that the LDA
classifier is typically not consistent when trained with imperfect labels, unless the class prior
probabilities are equal to 1/2.

The second main contribution of this paper is to provide greater detail on the asymptotic per-
formance of the knn and SVM classifiers in the presence of label noise, under stronger conditions
on the data-generating mechanism and noise model. In particular, for the knn classifier, we derive
the asymptotic limit of the ratio of the excess risks of the classifier trained with imperfect and
perfect labels. This reveals the nice surprise that using imperfectly labelled training data can in
fact improve the performance of the knn classifier in certain circumstances. To the best of our
knowledge, this is the first formal result showing that label noise can help with classification. For
the SVM classifier, we provide conditions under which the rate of convergence of the excess risk
is unaffected by label noise, and show empirically that this method can also benefit from label
noise in some cases.

In several respects, our theoretical analysis acts as a counterpoint to the folklore in this area.
For instance, Okamoto & Nobuhiro (1997) analysed the performance of the knn classifier in
the presence of label noise. They considered relatively small problem sizes and small values of
k , for which the knn classifier performs poorly when trained with imperfect labels; conversely,
our Theorem 2 reveals that for larger values of k , which diverge with n, the asymptotic effect
of label noise is relatively modest and may even improve the performance of the classifier. As
another example, Manwani & Sastry (2013) and Ghosh et al. (2015) claim that SVM classifiers
perform poorly in the presence of label noise; our Theorem 3 presents a different picture, however,
at least as far as the rate of convergence of the excess risk is concerned. Finally, in two-class
Gaussian discriminant analysis, Lachenbruch (1966) showed that LDA is robust to homogeneous
label noise when the two classes are equally likely (see also Frénay & Verleysen, 2014, § III-A).
We observe, though, that this robustness is very much the exception rather than the rule: if the
prior probabilities are not equal, then the LDA classifier is almost invariably not consistent when
trained with imperfect labels; see Theorem 4.

Although it is not the focus of this paper, we mention briefly that another line of work on
label noise explores techniques for identifying mislabelled observations and either relabelling
them or simply removing them from the training dataset. Such methods are sometimes referred
to as data cleansing or editing techniques; see, for example, Wilson (1972), Wilson & Martinez
(2000) and Cheng et al. (2019), as well as Frénay & Kabán (2014, § 3.2), which provides a
general overview of popular methods for editing training datasets. Other authors have focused
on estimating the noise rates and recovering the clean class-conditional distributions (Blanchard
et al., 2016; Northcutt et al., 2017).

The following notation is used throughout the paper. We write ‖ · ‖ for the Euclidean norm
on R

d , and for r > 0 and z ∈ R
d we write Bz(r) = {x ∈ R

d : ‖x − z‖ < r} for the open
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Fig. 1. A training dataset from the model in Example 1 for n = 1000: (a) without label noise; (b) with label noise.
Class 0 data points are plotted in red and class 1 data points in black.

Euclidean ball of radius r centred at z; we let ad = πd/2/�(1 + d/2) denote the d-dimensional
volume of B0(1). If A ∈ R

d×d , we write ‖A‖op for its operator norm. For a sufficiently smooth
real-valued function f defined on D ⊆ R

m and for x ∈ D, we write ḟ (x) = { f1(x), . . . , fm(x)}T

and f̈ (x) = {fjk(x)}m
j, k=1 for the gradient vector and Hessian matrix of f at x, respectively.

Finally, we denote by � the symmetric difference, so that A � B = (Ac ∩ B) ∪ (A ∩ Bc).
We conclude this section with a preliminary study to demonstrate our new results for the knn,

SVM and LDA classifiers in the homogeneous noise case.

Example 1. In this motivating example, we demonstrate the surprising effects of imperfect
labels on the performance of the knn, SVM and LDA classifiers. We generate n independent
training data pairs, where the prior probabilities of classes 0 and 1 are 9/10 and 1/10 respectively;
class 0 and class 1 observations have bivariate normal distributions with means μ0 = (−1, 0)T

and μ1 = (1, 0)T, respectively, and a common identity covariance matrix. We then introduce
label noise in the training dataset by flipping the true training data labels independently with
probability ρ = 0.3. An example of a dataset of size n = 1000 from this model, both before and
after label noise is added, is shown in Fig. 1.

In Fig. 2 we plot the percentage error rates, with and without label noise, of the knn, SVM
and LDA classifiers. The error rates were estimated by averaging over 1000 repetitions of the
experiment the percentages of misclassified observations on a test set, without label noise, of size
1000. We set k = kn = �n2/3/2	 for the knn classifier and take the tuning parameter λ = 1 for
the SVM classifier; see (8).

In this simple setting where the decision boundary of the Bayes classifier is a hyperplane,
all three classifiers perform very well with perfectly labelled training data, especially LDA,
whose derivation was motivated by Gaussian class-conditional distributions with a common
covariance matrix. With mislabelled training data, the performance of all three classifiers is
somewhat affected, but the knn and SVM classifiers are relatively robust to the label noise,
particularly for large n. Indeed, we will show that these classifiers remain consistent in this
setting. The gap between the performance of the LDA classifier and that of the Bayes classifier,
however, persists even for large n; this again is in line with our theory developed in Theorem 4,
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Fig. 2. Risks (%) of the knn (black), SVM (red) and LDA (blue) classifiers trained using perfect (solid) and imperfect
(dotted) labels. The dot-dashed line represents the Bayes risk, which is 7.0%.

where we derive the asymptotic risk of the LDA classifier trained with homogeneous label errors.
The limiting risk is given explicitly in terms of the noise rate ρ, the prior probabilities, and the
Mahalanobis distance between the two class-conditional distributions.

2. Statistical setting

Let X be a measurable space. In the basic binary classification problem, we observe inde-
pendent and identically distributed training data pairs (X1, Y1), . . . , (Xn, Yn) taking values in
X × {0, 1} with joint distribution P. The task is to predict the class Y of a new observation X ,
where (X , Y ) ∼ P is independent of the training data.

Define the prior probabilities π1 = pr(Y = 1) = 1 − π0 ∈ (0, 1) and class-conditional
distributions X | {Y = r} ∼ Pr for r = 0, 1. The marginal feature distribution of X is denoted
by PX , and we define the regression function η(x) = pr(Y = 1 | X = x). A classifier C is a
measurable function from X to {0, 1}, with the interpretation that a point x ∈ X is assigned to
class C(x).

The risk of a classifier C is R(C) = pr{C(X ) |= Y }; it is minimized by the Bayes classifier

CBayes(x) =
{

1, η(x) � 1/2,

0, otherwise.

However, sinceη is typically unknown, in practice we construct a classifier Cn, say, that depends on
the n training data pairs.We say that (Cn) is consistent if R(Cn)−R(CBayes) → 0 as n → ∞.When
we write R(Cn) here, we implicitly assume that Cn is a measurable function from (X ×{0, 1})n×X
to {0, 1} and the probability is taken over the joint distribution of (X1, Y1), . . . , (Xn, Yn), (X , Y ).
It is convenient to set S = {x ∈ X : η(x) = 1/2}.
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In this paper, we study settings in which the true class labels Y1, . . . , Yn for the training
data are not observed. Instead we see Ỹ1, . . . , Ỹn, where the noisy label Ỹi still takes values
in {0, 1}, but may not be the same as Yi. The task, however, is still to predict the true class
label Y associated with the test point X . We can therefore consider an augmented model where
(X , Y , Ỹ ), (X1, Y1, Ỹ1), . . . , (Xn, Yn, Ỹn) are independent and identically distributed triples taking
values in X × {0, 1} × {0, 1}.

At this point the dependence between Y and Ỹ is left unrestricted, but we introduce the
following notation. Define measurable functions ρ0, ρ1 : X → [0, 1] by ρr(x) = pr(Ỹ |= Y |
X = x, Y = r). Then, letting Z | {X = x, Y = r} ∼ Bi{1, 1 − ρr(x)} for r = 0, 1, we can
write Ỹ = ZY + (1 − Z)(1 − Y ). We refer to the case where ρ0(x) = ρ1(x) = ρ for all
x ∈ X as ρ-homogeneous noise. Further, let P̃ denote the joint distribution of (X , Ỹ ) and let
η̃(x) = pr(Ỹ = 1 | X = x) be the regression function for Ỹ , so that

η̃(x) = η(x) pr(Ỹ = 1 | X = x, Y = 1) + {1 − η(x)} pr(Ỹ = 1 | X = x, Y = 0)

= η(x){1 − ρ1(x)} + {1 − η(x)}ρ0(x). (1)

We also define the corrupted Bayes classifier

C̃Bayes(x) =
{

1, η̃(x) � 1/2,

0, otherwise,

which minimizes the corrupted risk R̃(C) = pr{C(X ) |= Ỹ }.

3. Excess risk bounds for arbitrary classifiers

A key property shown in this work is that the Bayes classifier is preserved under label noise;
specifically, in Theorem 1(i) we provide conditions under which

PX
[{x ∈ Sc : C̃Bayes(x) |= CBayes(x)}] = 0. (2)

Theorem 1(ii) goes on to show that under slightly stronger conditions on the label error probabili-
ties and for an arbitrary classifier C, we can bound the excess risk R(C)−R(CBayes) of predicting
the true label by a multiple of the excess risk of predicting a noisy label, R̃(C)− R̃(C̃Bayes), where
this multiple does not depend on the classifier C. This latter result is particularly useful when the
classifier C is trained using the imperfect labels, i.e., with the training data (X1, Ỹ1), . . . , (Xn, Ỹn),
because, as will be shown in the next section, we can provide further control of R̃(C)− R̃(C̃Bayes)

for specific choices of C.
It is convenient to let B = {x ∈ Sc : ρ0(x) + ρ1(x) < 1} and

A =
{

x ∈ B :
ρ1(x) − ρ0(x)

{2η(x) − 1}{1 − ρ0(x) − ρ1(x)} < 1
}

.

Theorem 1. (i) We have that

PX
[A � {x ∈ B : C̃Bayes(x) = CBayes(x)}] = 0. (3)

In particular, if PX (Ac ∩ Sc) = 0, then (2) holds.
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(ii) Now suppose, in fact, that there exist ρ∗ < 1/2 and a∗ < 1 such that PX [{x ∈ Sc :
ρ0(x) + ρ1(x) > 2ρ∗}] = 0 and

PX

[{
x ∈ B :

ρ1(x) − ρ0(x)

{2η(x) − 1}{1 − ρ0(x) − ρ1(x)} > a∗
}]

= 0.

Then, for any classifier C,

R(C) − R(CBayes) � R̃(C) − R̃(C̃Bayes)

(1 − 2ρ∗)(1 − a∗)
.

In Theorem 1(i), the condition PX (Ac ∩ Sc) = 0 restricts the difference between the two
mislabelling probabilities at PX -almost all x ∈ Sc, with stronger restrictions where η(x) is
close to 1/2 and where ρ0(x) + ρ1(x) is close to 1. Moreover, since A ⊆ B, we also have
PX (Bc ∩ Sc) = 0, which limits the total amount of label noise at each point; cf. Menon et al.
(2016, Assumption 1). In particular, the condition ensures that

pr(Ỹ |= Y | X = x) = η(x)ρ1(x) + {1 − η(x)}ρ0(x) < 1

for PX -almost all x ∈ Sc. In part (ii), the requirement on a∗ imposes a slightly stronger restriction
on the same weighted difference between the two mislabelling probabilities than in part (i).

The conditions in Theorem 1 generalize those appearing in the existing literature by allowing
a wider class of noise mechanisms. For instance, in the case of ρ-homogeneous noise, we have
PX (Ac ∩Sc) = 0 provided only that ρ < 1/2. In fact, in this setting, we may take a∗ = 0 (Ghosh
et al., 2015, Theorem 1). More generally, we may also take a∗ = 0 if the noise depends only on
the feature vector and not the true class label, i.e., ρ0(x) = ρ1(x) for all x (Menon et al., 2016,
Proposition 4).

The proof of Theorem 1(ii) relies on the following proposition, which provides a bound on the
excess risk for predicting a true label, assuming only that (2) holds.

Proposition 1. Assume that (2) holds. Further, for κ > 0 let

Aκ = {
x ∈ X : |2η(x) − 1| � κ|2η̃(x) − 1|}.

Then, for any classifier C,

R(C) − R(CBayes)

� min
(

pr
{
C(X ) |= C̃Bayes(X )

}
, inf

κ>0

[
κ
{
R̃(C) − R̃(C̃Bayes)

} + PX (Ac
κ)

])
. (4)

The main focus of this work is on settings where C̃Bayes and CBayes agree, i.e., where (2)
holds, because this is the situation in which we can hope for classifiers to be robust to label noise.
However, we present a more general version of Proposition 1 in the Supplementary Material; this
bounds the excess risk of an arbitrary classifier without the assumption that (2) holds. We see in
that result that there is an additional contribution to the risk bound of R(C̃Bayes)−R(CBayes) � 0.
See also Natarajan et al. (2013), for example, which considers asymmetric homogeneous noise,
where ρ0(x) = ρ0 |= ρ1 = ρ1(x) with ρ0 and ρ1 known.

We can regard |2η(x) − 1| as a measure of the ease of classifying x. Hence, in Proposition 1
we can interpret Aκ as the set of points x at which the relative difficulty of classifying x in the
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corrupted problem compared with its uncorrupted version is controlled. The level of this control
can then be traded off against the measure of the exceptional set Ac

κ .
To gain further understanding of Proposition 1, observe that in general we have

R̃(C) − R̃(C̃Bayes) =
∫

X

[
pr{C(x) = 0} − 1{η̃(x)<1/2}

]{2η̃(x) − 1} dPX (x)

� pr{C(X ) |= C̃Bayes(X )}.
Hence, if PX (Ac

1) = 0, then the second term in the minimum in (4) gives a better bound than the
first. However, in practice we typically would have PX (Ac

1) |= 0, and indeed in the Supplementary
Material we show that for the 1-nearest neighbour classifier with homogeneous noise, either of the
two terms in the minimum in (4) can be smaller, depending on the noise level. As a consequence
of Proposition 1, we have the following result.

Corollary 1. Suppose that (C̃n) is a sequence of classifiers satisfying R̃(C̃n) → R̃(C̃Bayes)

and assume that (2) holds. Further, let S̃ = {x ∈ X : η̃(x) = 1/2}. Then

lim sup
n→∞

R(C̃n) − R(CBayes) � PX (S̃ \ S).

In particular, if PX (S̃ \ S) = 0, then R(C̃n) → R(CBayes) as n → ∞.

The condition R̃(C̃n) → R̃(C̃Bayes) requires that the classifier be consistent for predicting a
corrupted test label. In § 4 we will see that appropriate versions of the corrupted knn and SVM
classifiers satisfy this condition, provided, in the latter case, that the feature vectors have compact
support. To understand the strength of Corollary 1, consider the special case of ρ-homogeneous
noise and a classifier C̃n that is consistent for predicting a noisy label when trained with corrupted
data. Then S̃ = S by (1); so provided only that ρ < 1/2, Corollary 1 ensures that C̃n remains
consistent for predicting a true label when trained using the corrupted data.

4. Asymptotic properties

4.1. The k-nearest neighbour classifier

We now specialize to the case of X = R
d . The knn classifier assigns the test point X to a class

based on a majority vote over the class labels of the k nearest points among the training data.
More precisely, given x ∈ R

d , let (X(1), Y(1)), . . . , (X(n), Y(n)) be the reordering of the training
data pairs such that

‖X(1) − x‖ � · · · � ‖X(n) − x‖,

where ties are broken by preserving the original ordering of the indices. For k ∈ {1, . . . , n}, the
k-nearest neighbour classifier is

Cknn(x) = Cknn
n (x) =

{
1, 1

k

∑k
i=1 1{Y(i)=1} � 1/2,

0, otherwise.

This simple and intuitive method has received considerable attention since it was introduced by
Fix & Hodges (1951, 1989). Stone (1977) showed that the knn classifier is universally consistent,
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i.e., R(Cknn) → R(CBayes) for any distribution P, as long as k = kn → ∞ and k/n → 0 as
n → ∞. For a comprehensive overview of early work on the theoretical properties of the knn
classifier, see Devroye et al. (1996). Some more recent studies include Kulkarni & Posner (1995),
Audibert & Tsybakov (2007), Hall et al. (2008), Biau et al. (2010), Samworth (2012), Chaudhuri
& Dasgupta (2014), Gadat et al. (2016), Celisse & Mary-Huard (2018) and Cannings et al. (2019).

Here we study the properties of the corrupted k-nearest neighbour classifier

C̃knn(x) = C̃knn
n (x) =

{
1, 1

k

∑k
i=1 1{Ỹ(i)=1} � 1/2,

0, otherwise,

where Ỹ(i) denotes the corrupted label of (X(i), Y(i)). Since the knn classifier is universally con-
sistent, we have that R̃(C̃knn) → R̃(C̃Bayes) for any choice of k satisfying Stone’s conditions.
Hence, by Corollary 1, if (2) holds and PX (S̃ \S) = 0, then the corrupted knn classifier remains
universally consistent. In particular, in the special case of ρ-homogeneous noise, provided only
that ρ < 1/2, this result tells us that the corrupted knn classifier remains universally consistent.

We now show that under further regularity conditions on the data distribution P and the noise
mechanism, it is possible to give a more precise description of the asymptotic error properties of
the corrupted knn classifier. Since our conditions on P, which are slight simplifications of those
used in Cannings et al. (2019) to analyse the uncorrupted knn classifier, are somewhat technical,
we give an informal summary of them here, deferring formal statements of Assumptions S1–S4
to just before the proof of Theorem 2 in the Supplementary Material. First, we assume that each
of the class-conditional distributions has a density with respect to Lebesgue measure such that
the marginal feature density f̄ is continuous and positive. It turns out that the dominant terms in
the asymptotic expansion of the excess risk of knn classifiers are driven by the behaviour of P in
a neighbourhood Sε of the set S which consists of points that are difficult to classify correctly,
so we impose further regularity conditions on the restriction of P to Sε . In particular, we ask for
both f̄ and η to have two well-behaved derivatives in Sε , and for η̇ to be bounded away from 0
on S. This amounts to requiring that the class-conditional densities, when weighted by the prior
probabilities of each class, cut at an angle, and ensures that the set S is a (d − 1)-dimensional
orientable manifold. Away from the set Sε , we need only weaker conditions on PX and for η

to be bounded away from 1/2. Finally, we ask for two αth moment conditions to hold, namely
that

∫
Rd ‖x‖α dPX (x) < ∞ and

∫
S f̄ (x0)

d/(α+d) dVold−1(x0) < ∞, where dVold−1 denotes the
(d − 1)-dimensional volume form on S.

For β ∈ (0, 1/2), let Kβ = {�(n − 1)β�, . . . , �(n − 1)1−β	} denote the set of values of k to be
considered for the knn classifier. Define

B1 =
∫

S

f̄ (x0)

4‖η̇(x0)‖ dVold−1(x0), B2 =
∫

S

f̄ (x0)
1−4/d

‖η̇(x0)‖ a(x0)
2 dVold−1(x0),

where

a(x) =
∑d

j=1

{
ηj(x)f̄j(x) + 1

2ηjj(x)f̄ (x)
}

(d + 2)a2/d
d f̄ (x)

.

We will also make use of the following condition on the noise rates near the Bayes decision
boundary.
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Assumption 1. There exist δ > 0 and a function g : (1/2 − δ, 1/2 + δ) → [0, 1) that is
differentiable at 1/2 and has the property that for any x such that η(x) ∈ (1/2 − δ, 1/2 + δ), we
have ρ0(x) = g{η(x)} and ρ1(x) = g{1 − η(x)}.

This assumption says that when η(x) is close to 1/2, the probability of label noise depends
only on x through η(x) and, moreover, this probability varies smoothly with η(x). In other words,
Assumption 1 says that the probability of mislabelling an observation with true class label 0
depends only on the extent to which it appeared to be from class 1; conversely, the probability
of mislabelling an observation with true label 1 depends only, and in a symmetric way, on the
extent to which it appeared to be from class 0. To give just one of many possible examples,
imagine that the probability of a doctor misdiagnosing a malignant tumour as benign depends
on the extent to which the tumour appears to be malignant, and vice versa. Menon et al. (2016,
Definition 11) introduced a related probabilistically transformed noise model, where ρ0 = g0 ◦η

and ρ1 = g1 ◦ η, but they also require that g0 and g1 be increasing on [0, 1/2] and decreasing on
[1/2, 1]; see also Bylander (1997).

Theorem 2. Suppose that Assumptions S1–S3 and S4(α) in the Supplementary Material hold.
Assume also that ρ0 and ρ1 are continuous and that

ρ∗ = 1

2
sup
x∈Rd

{ρ0(x) + ρ1(x)} <
1

2
, a∗ = sup

x∈B

ρ1(x) − ρ0(x)

{2η(x) − 1}{1 − ρ0(x) − ρ1(x)} < 1.

Moreover, suppose Assumption 1 holds with the additional conditions that g is twice continuously
differentiable, ġ(1/2) > 2g(1/2)− 1, and g̈ is uniformly continuous. Then we have the following
two cases.

(i) If d � 5 and α > 4d/(d − 4), then for each β ∈ (0, 1/2),

R(C̃knn) − R(CBayes) = B1

k{1 − 2g(1/2) + ġ(1/2)}2 + B2

(
k

n

)4/d

+ o

{
1

k
+

(
k

n

)4/d}

as n → ∞, uniformly for k ∈ Kβ .
(ii) If either d � 4 or d � 5 and α � 4d/(d − 4), then for each β ∈ (0, 1/2) and each ε > 0

we have that

R(C̃knn) − R(CBayes) = B1

k{1 − 2g(1/2) + ġ(1/2)}2 + o

{
1

k
+

(
k

n

)α/(α+d)−ε}

as n → ∞, uniformly for k ∈ Kβ .

The proof of Theorem 2 is given in the Supplementary Material and involves two key ideas.
First, we demonstrate that the conditions assumed for η also hold for the corrupted regression
function η̃. Second, we show that the dominant asymptotic contribution to the desired excess risk
R(C̃knn) − R(CBayes) is {R̃(C̃knn) − R̃(C̃Bayes)}/{1 − 2g(1/2) + ġ(1/2)}, a scalar multiple of
the excess risk when predicting a noisy label. We then conclude the argument by appealing to
Theorem 1 of Cannings et al. (2019) and, of course, can recover the conclusion of that result for
noiseless labels as a special case of Theorem 2 by setting g = 0.

In the conclusion of Theorem 2(i), the terms B1/[k{1 − 2g(1/2) + ġ(1/2)}2] and B2(k/n)4/d

can be thought of as the leading-order contributions to, respectively, the variance and squared
bias of the corrupted knn classifier. It is both surprising and interesting that the type of label
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noise considered here affects only the leading-order variance term compared with the noiseless
case; the dominant bias term is unchanged. To give a concrete example, ρ-homogeneous noise
satisfies the conditions of Theorem 2, and in the setting of Theorem 2(i) we see that the dominant
variance term is inflated by a factor of (1 − 2ρ)−2.

We now quantify the relative asymptotic performance of the corrupted knn and uncorrupted
knn classifiers. Since this performance depends on the choice of k in each case, we couple these
choices together in the following way: given any k to be used by the uncorrupted classifier Cknn

and given the function g from Theorem 2, we consider the choice

kg = ⌊{1 − 2g(1/2) + ġ(1/2)}−2d/(d+4)k
⌋

(5)

for the noisy label classifier C̃knn. This coupling reflects the ratio of the optimal choices of k for
the corrupted and uncorrupted label settings.

Corollary 2. Under the assumptions of Theorem 2(i) and provided that B2 > 0, we have
that for any β ∈ (0, 1/2),

R(C̃kgnn) − R(CBayes)

R(Cknn) − R(CBayes)
→ {1 − 2g(1/2) + ġ(1/2)}−8/(d+4) (6)

as n → ∞, uniformly for k ∈ Kβ .

If ġ(1/2) > 2g(1/2), then the limiting regret ratio in (6) is less than 1; this means that the
label noise helps in terms of the asymptotic performance! This is due to the fact that, under the
noise model in Theorem 2, if ġ(1/2) > 2g(1/2) then for points Xi with η(Xi) close to 1/2, the
noisy labels Ỹi are more likely than the true labels Yi to be equal to the Bayes labels, 1{η(Xi)�1/2}.
To understand this phenomenon, first observe that upon rearranging (1) we obtain

η̃(x) − 1/2 = {η(x) − 1/2}{1 − ρ0(x) − ρ1(x)} + 1

2
{ρ0(x) − ρ1(x)}.

Then η̃(x) − 1/2 = η(x) − 1/2 for x ∈ S by Assumption 1. For x ∈ Sc we have

η̃(x) − 1/2 = {η(x) − 1/2}
{

1 − ρ0(x) − ρ1(x) + ρ0(x) − ρ1(x)

2η(x) − 1

}
. (7)

We next study the term enclosed in the second set of parentheses on the right-hand side of (7).
Write t = η(x) − 1/2; then for x such that |η(x) − 1/2| ∈ (0, δ) we have ρ0(x) = g(1/2 + t) and
ρ1(x) = g(1/2 − t). It follows that for such x,

1−ρ0(x)−ρ1(x)+ ρ0(x) − ρ1(x)

2η(x) − 1
= 1 − g(1/2 + t) − g(1/2 − t) + g(1/2 + t) − g(1/2 − t)

2t

→ 1 − 2g(1/2) + ġ(1/2)

as |t| ↘ 0. Since 1 − 2g(1/2) + ġ(1/2) > 1, we obtain that for any ε ∈ {0, ġ(1/2)/2 − g(1/2)}
there exists δ0 ∈ (0, δ) such that for all x with |η(x) − 1/2| ∈ (0, δ0),

1 − ρ0(x) − ρ1(x) + ρ0(x) − ρ1(x)

2(η(x) − 1/2)
> 1 − 2g(1/2) + ġ(1/2) − ε > 1.
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This, together with (7), ensures that for all x such that |η(x) − 1/2| ∈ (0, δ0), we have

|η̃(x) − 1/2| > |η(x) − 1/2|.

Example 2. Suppose that for some g0 ∈ (0, 1/2) and h0 > 2 − 1/g0 we have g(1/2 + t) =
g0(1 + h0t) for t ∈ (−δ, δ). Then g(1/2) = g0 and ġ(1/2) = g0h0, which gives 1 − 2g(1/2) +
ġ(1/2) = 1 + (h0 − 2)g0. We therefore see from Corollary 2 that if h0 < 2 then the limiting
regret ratio is greater than 1, but if h0 > 2 then the limiting regret ratio is less than 1, so the label
noise aids performance.

4.2. Support vector machine classifiers

In general, the term support vector machines refers to classifiers of the form

CSVM(x) = CSVM
n (x) =

{
1, f̂ (x) � 0,

0, otherwise,

where the decision function f̂ satisfies

f̂ ∈ arg min
f ∈H

[
1

n

n∑
i=1

L{Yi, f (Xi)} + (λ, ‖f ‖H )

]
;

see, for example, Cortes & Vapnik (1995) and Steinwart & Christmann (2008). Here L : R×R →
R is a loss function,  : R × R → R is a regularization function, λ > 0 is a tuning parameter,
and H is a reproducing kernel Hilbert space with norm ‖ · ‖H (Steinwart & Christmann, 2008,
Ch. 4).

We focus throughout on the L1-svm, where L(y, t) = max{0, 1 − (2y − 1)t} is the hinge loss
function and (λ, t) = λt2. Let K : R

d × R
d → R be the positive-definite kernel function

associated with the reproducing kernel Hilbert space. We consider the Gaussian radial basis
function, K(x, x′) = exp(−σ 2‖x − x′‖2) for σ > 0. The corrupted SVM classifier is

C̃SVM(x) = C̃SVM
n (x) =

{
1, f̃ (x) � 0,

0, otherwise,
(8)

where

f̃ ∈ arg min
f ∈H

[
1

n

n∑
i=1

max
{
0, 1 − (2Ỹi − 1)f (Xi)

} + λ‖f ‖2
H

]
. (9)

Steinwart (2005, Corollary 3.6 and Example 3.8) showed that the uncorrupted L1-SVM clas-
sifier is consistent as long as PX is compactly supported and λ = λn is such that λn → 0,
but nλn/(|log λn|d+1) → ∞. Therefore, under these conditions, provided that (2) holds and
PX (S̃ \ S) = 0, by Corollary 1 we have that R(C̃SVM) → R(CBayes) as n → ∞.

Under further conditions on the noise probabilities and the distribution P, we can also have
more precise control of the excess risk for the SVM classifier. Our analysis will make use of
the results of Steinwart & Scovel (2007), who studied the rate of convergence of the SVM
classifier with Gaussian kernels in the noiseless label setting. Other works of note on the rate of
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convergence of SVM classifiers include Lin (2002) and Blanchard et al. (2008); see also Steinwart
& Christmann (2008, Ch. 6 and 8).

We recall two definitions used in the perfect labels context. The first is the well-known margin
assumption of, for example, Audibert & Tsybakov (2007). We say that the distribution P satisfies
the margin assumption with parameter γ1 ∈ [0, ∞) if there exists κ1 > 0 such that

PX
[{x ∈ R

d : 0 < |η(x) − 1/2| � t}] � κ1tγ1

for all t > 0. If P satisfies the margin assumption for all γ1 ∈ [0, ∞), then we say that P satisfies
the margin assumption with parameter ∞. The margin assumption controls the probability mass
of the region where η is close to 1/2.

The second definition we need is that of the geometric noise exponent (Steinwart & Scovel,
2007, Definition 2.3). Let S+ = {x ∈ R

d : η(x) > 1/2} and S− = {x ∈ R
d : η(x) < 1/2}, and

for x ∈ R
d let τx = inf x′∈S∪S+ ‖x − x′‖+ inf x′∈S∪S− ‖x − x′‖. We say that the distribution P has

geometric noise exponent γ2 ∈ [0, ∞) if there exists κ2 > 0 such that

∫
Rd

|2η(x) − 1| exp
(

−τ 2
x

t2

)
dPX (x) � κ2tγ2d

for all t > 0. If P has geometric noise exponent γ2 for all γ2 ∈ [0, ∞), then we say it has
geometric noise exponent ∞.

Under these two conditions, Steinwart & Scovel (2007, Theorem 2.8) proved that if PX is
supported on the closed unit ball, then for appropriate choices of the tuning parameters the SVM
classifier achieves a convergence rate of O(n−�+ε) for every ε > 0, where

� =

⎧⎪⎨
⎪⎩

γ2

2γ2 + 1
, γ2 � γ1 + 2

2γ1
,

2γ2(γ1 + 1)

2γ2(γ1 + 2) + 3γ1 + 4
, otherwise.

In the imperfect labels setting and under our stronger assumption on the noise mechanism
where η is close to 1/2, we see that the SVM classifier trained with imperfect labels satisfies the
same bound on the rate of convergence as in the perfect labels case.

Theorem 3. Suppose that P satisfies the margin assumption with parameter γ1 ∈ [0, ∞] and
has geometric noise exponent γ2 ∈ (0, ∞), and assume that PX is supported on the closed unit
ball. Suppose that the conditions of Theorem 1(ii) and Assumption 1 hold. Then

R(C̃SVM) − R(CBayes) = O(n−�+ε)

as n → ∞, for every ε > 0. If γ2 = ∞, then the same conclusion is true provided that σn = σ

is a constant with σ > 2d1/2.

4.3. Linear discriminant analysis

If P0 = Nd(μ0, �) and P1 = Nd(μ1, �), then the Bayes classifier is

CBayes(x) =
{

1, log
(

π1
π0

) + (
x − μ1+μ0

2

)T
�−1(μ1 − μ0) � 0,

0, otherwise.
(10)
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The Bayes risk can be expressed in terms of π0, π1 and the squared Mahalanobis distance
�2 = (μ1 − μ0)

T�−1(μ1 − μ0) between the classes as

R(CBayes) = π0�

{
1

�
log

(
π1

π0

)
− �

2

}
+ π1�

{
1

�
log

(
π0

π1

)
− �

2

}
,

where � denotes the standard normal distribution function.
The LDA classifier is constructed by substituting training data estimates of π0, π1, μ0, μ1

and � into (10). With imperfect training data labels and for r = 0, 1, we define estimates
π̂r = n−1 ∑n

i=1 1{Ỹi=r} of πr , as well as estimates μ̂r = ∑n
i=1 Xi1{Ỹi=r}/

∑n
i=1 1{Ỹi=r} of the

class-conditional means μr , and set

�̂ = 1

n − 2

n∑
i=1

1∑
r=0

(Xi − μ̂r)(Xi − μ̂r)
T1{Ỹi=r}.

This allows us to define the corrupted LDA classifier

C̃LDA(x) = C̃LDA
n (x) =

{
1, log

(
π̂1
π̂0

) + (
x − μ̂1+μ̂0

2

)T
�̂−1(μ̂1 − μ̂0) � 0,

0, otherwise.

Consider now the ρ-homogeneous noise setting. In this case, writing P̃r (r = 0, 1) for the
distribution of X | {Ỹ = r}, we have P̃r = prNd(μr , �) + (1 − pr)Nd(μ1−r , �), where pr =
πr(1 − ρ)/{πr(1 − ρ) + π1−rρ}. Notice that, while π̂r , μ̂r and �̂ are intended to be estimators
of πr , μr and �, respectively, with label noise they will in fact be consistent estimators of
π̃r = πr(1 − ρ) + π1−rρ, μ̃r = prμr + (1 − pr)μ1−r and �̃ = � + α(μ1 − μ0)(μ1 − μ0)

T,
respectively, where α > 0 is given in the proof of Theorem 4.

We will also make use of the following well-known lemma in the homogeneous label noise
case (see, e.g., Ghosh et al., 2015, Theorem 1), which holds for an arbitrary classifier and data-
generating distribution. We include the short proof for completeness.

Lemma 1. For ρ-homogeneous noise with ρ ∈ [0, 1/2) and for any classifier C, we have
R(C) = {R̃(C) − ρ}/(1 − 2ρ). Moreover, R(C) − R(CBayes) = {R̃(C) − R̃(CBayes)}/(1 − 2ρ).

The following is the main result of this subsection.

Theorem 4. Suppose that Pr = Nd(μr , �) for r = 0, 1 and that the noise is ρ-homogeneous
with ρ ∈ [0, 1/2). Then

lim
n→∞ C̃LDA(x) =

{
1, c0 + (

x − μ1+μ0
2

)T
�−1(μ1 − μ0) > 0,

0, c0 + (
x − μ1+μ0

2

)T
�−1(μ1 − μ0) < 0,

where

c0 =
{
(1 − 2ρ) + ρ(1 − ρ)(1 + π0π1�

2)

(1 − 2ρ)π1π0

}
log

{
(1 − 2ρ)π1 + ρ

(1 − 2ρ)π0 + ρ

}

− (π1 − π0)ρ(1 − ρ)�2

2{(1 − 2ρ)2π1π0 + ρ(1 − ρ)} .
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As a consequence,

lim
n→∞ R(C̃LDA) = π0�

(
c0

�
− �

2

)
+ π1�

(
−c0

�
− �

2

)
� R(CBayes). (11)

For each ρ ∈ (0, 1/2) and π0 |= π1, there exists a unique value of � > 0 for which equality is
attained in the inequality in (11).

The first conclusion of this theorem reveals the interesting fact that, regardless of the level
ρ ∈ (0, 1/2) of label noise, the limiting corrupted LDA classifier has a decision hyperplane that
is parallel to that of the Bayes classifier; see also Lachenbruch (1966) and Manwani & Sastry
(2013, Corollary 1). However, for each fixed ρ ∈ (0, 1/2) and π0 |= π1, there is only one value
of � > 0 for which the offset is correct and the corrupted LDA classifier is consistent.

5. Numerical comparison

In this section, we investigate empirically how the different types of label noise affect the
performance of the knn, SVM and LDA classifiers. We consider two different model settings for
the pair (X , Y ).

Model 1: Let pr(Y = 1) = π1 ∈ {0.5, 0.9} and X | {Y = r} ∼ Nd(μr , Id), where μ1 =
(3/2, 0, . . . , 0)T = −μ0 ∈ R

d and Id denotes the d × d identity matrix.

Model 2: For d � 2, let X ∼ Un([0, 1]d) and pr(Y = 1 | X = x) = η(x1, . . . , xd) =
min{4(x1 − 1/2)2 + 4(x2 − 1/2)2, 1}.

In each setting, our risk estimates are based on an uncorrupted test set of size 1000, and we
repeat each experiment 1000 times. This ensures that all standard errors are less than 0.4% and
0.14 for the risk and regret ratio estimates, respectively; in fact, they are often much smaller.

Our first goal is to illustrate numerically our consistency and inconsistency results for the
knn, SVM and LDA classifiers. In Fig. 3 we present estimates of the risk for the three classifiers
with different levels of homogeneous label noise. We see that for Model 1, where the class prior
probabilities are equal, all three classifiers perform well and in particular appear to be consistent,
even when as many as 30% of the training data labels are incorrect on average. For the knn and
SVM classifiers we observe very similar results for Model 2; the LDA classifier does not perform
well in this setting, however, since the Bayes decision boundary is nonlinear. These conclusions
are in accordance with Corollary 1 and Theorem 4.

We further investigate the effect of homogeneous label noise on the performance of the LDA
classifier for data from Model 1, but now with d = 5 and unbalanced class prior probabilities.
Recall that in Theorem 4 we derived the asymptotic limit of the risk in terms of the Mahalanobis
distance between the true class distributions, the class prior probabilities and the noise rate. In
Fig. 4 we present the estimated risks of the LDA classifier for data from Model 1 with π1 = 0.9 for
different homogeneous noise rates, alongside the limit specified by Theorem 4. This articulates
the inconsistency of the corrupted LDA classifier, as observed in Theorem 4.

Finally, we study empirically the asymptotic regret ratios for the knn and SVM classifiers. We
focus on the noise model in Example 2 in § 4, where the label errors occur at random as follows:
fix g0 ∈ (0, 1/2) and h0 > 2 − 1/g0, and let g(1/2 + t) = max[0, min{g0(1 + h0t), 2g0}]; then
set ρ0(x) = g{η(x)} and ρ1(x) = g{1 − η(x)}. In particular, we consider the following settings:
(i) g0 = 0.1 and h0 = 0; (ii) g0 = 0.1 and h0 = −1; (iii) g0 = 0.1 and h0 = 1; (iv) g0 = 0.1 and
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Fig. 3. Risk estimates for the knn (left), SVM (middle) and LDA (right) classifiers: top panels show results for Model 1
with d = 2, π1 = 0.5 and a Bayes risk of 6.68%, represented by the black dotted line; bottom panels show results for
Model 2 with d = 2 and a Bayes risk of 19.63%. In each panel the curves represent results without label noise (black)

and with homogeneous label noise at rates ρ = 0.1 (red) and 0.3 (blue).
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Fig. 4. Risk estimates for the LDA classifier for Model 1 with d = 5, π1 = 0.9 and a Bayes risk of 3.37%: the curves
represent the estimated error without label noise (black) and with homogeneous label noise at rates ρ = 0.1 (red), 0.2
(blue), 0.3 (green) and 0.4 (purple); the dotted lines represent the corresponding asymptotic limits given by Theorem 4.

h0 = 2; (v) g0 = 0.1 and h0 = 3. Noise setting (i), where h0 = 0, corresponds to g0-homogeneous
noise.

For the knn classifier, where k is chosen to satisfy the conditions of Corollary 2, our theory
says that when d = 5 in Models 1 and 2, the asymptotic regret ratios in the five noise settings
are 1.22, 1.37, 1.10, 1 and 0.92, respectively. We see from the left-hand plots of Fig. 5 that for
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Fig. 5. Estimated regret ratios for the knn (left) and SVM (right) classifiers: top panels show results for Model 1
with d = 5 and π1 = 0.5; bottom panels show results for Model 2 with d = 5. In each panel the different curves

represent the results with label noise of types (i) (red), (ii) (blue), (iii) (green), (iv) (black) and (v) (purple).

k chosen separately in the corrupted and uncorrupted cases via cross-validation, the empirical
results agree well with our theory, especially in the last three settings. Reasons for the slight
discrepancies between our asymptotic theory and empirically observed regret ratios in the first
two noise settings include that the choices of k in the noisy and noiseless label settings do not
necessarily satisfy (5) exactly; that the asymptotics in n may not have fully kicked in; and Monte
Carlo error, because when n is large we are computing the ratio of two small quantities, so that
the standard error tends to be larger. The performance of the SVM classifier is similar to that of
the knn classifier for both models.

Finally, we discuss tuning parameter selection. We have seen that for the knn classifier the
choice of k is important for achieving the optimal bias-variance trade-off; see also Hall et al.
(2008). Similarly, we need to choose an appropriate value of λ for the SVM classifier; in practice,
this is typically done via cross-validation. When the classifier C̃ is trained with ρ-homogeneous
noisy labels, we would like to select a tuning parameter to minimize R(C̃), but since the training
data are corrupted, a tuning parameter selection method will target the minimizer of R̃(C̃). By
Lemma 1 we have R(C̃) = {R̃(C̃) − ρ}/(1 − 2ρ), and it follows that our tuning parameter
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selection method requires no modification when trained with noisy labels. In the heterogeneous
noise case, however, we do not have this direct relationship; see Inouye et al. (2017) for more on
this topic.

In our simulations, we chose k for the knn classifier and λ for the SVM classifier via leave-one-
out and 10-fold cross-validation, respectively, where the cross-validation was performed over the
noisy training dataset. Moreover, for the SVM classifier, we used the default choice σ 2 = 1/d
for the hyperparameter of the kernel function.
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