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SUMMARY 15

We present the proofs of the theoretical results in ‘Classification with imperfect training la-
bels’, as well as an illustrative example involving the 1-nn classifier.

A. PROOFS

A·1. Proofs from Section 3
Proof of Theorem 1. (i) First, we have that for PX -almost all x ∈ B, 20

η̃(x)− 1/2 = {η(x)− 1/2}{1− ρ0(x)− ρ1(x)}+
1

2
{ρ0(x)− ρ1(x)}

= {η(x)− 1/2}{1− ρ0(x)− ρ1(x)}
(

1− ρ1(x)− ρ0(x)

{2η(x)− 1}{1− ρ0(x)− ρ1(x)}

)
. (A1)

Thus, for PX -almost all x ∈ B, we have {ρ1(x)− ρ0(x)}/[{2η(x)− 1}{1− ρ0(x)− ρ1(x)}] < 1 if and
only if

sgn{η̃(x)− 1/2} = sgn{η(x)− 1/2}.

This completes the proof of (3). It follows that, if PX(Ac ∩ Sc) = 0, then PX({x ∈ B : C̃Bayes(x) = 25

CBayes(x)}c ∩ Sc) = 0. In other words PX({x ∈ Sc : C̃Bayes(x) 6= CBayes(x)}) = 0, i.e. (2) holds.
Here we have used the fact that A ⊆ B, so if PX(Ac ∩ Sc) = 0, then PX(Bc ∩ Sc) = 0.

(ii) For the proof of this part, we apply Proposition 1. First, since (2) holds, we have R̃(CBayes) =
R̃(C̃Bayes). From (A1), we have that for PX -almost all x ∈ B,

|2η̃(x)− 1| = |2η(x)− 1|{1− ρ0(x)− ρ1(x)}
(

1− ρ1(x)− ρ0(x)

{2η(x)− 1}{1− ρ0(x)− ρ1(x)}

)
30

≥ |2η(x)− 1|(1− 2ρ∗)(1− a∗). (A2)
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In fact, the conclusion of (A2) remains true trivially when x ∈ S. Thus, by Proposition 1,

R(C)−R(CBayes) ≤ inf
κ>0

{
κ{R̃(C)− R̃(C̃Bayes)}+ PX(Acκ)

}
≤ R̃(C)− R̃(C̃Bayes)

(1− 2ρ∗)(1− a∗)
+ PX(Ac(1−2ρ∗)−1(1−a∗)−1) =

R̃(C)− R̃(C̃Bayes)

(1− 2ρ∗)(1− a∗)
,

since PX(Ac(1−2ρ∗)−1(1−a∗)−1) ≤ PX(Ac(1−2ρ∗)−1(1−a∗)−1 ∩ B) + PX(Bc) = 0, by (A2). �35

Proposition 1 is a special case of the following result.

PROPOSITION A1. Let D =
{
x ∈ Sc : C̃Bayes(x) = CBayes(x)

}
, and recall the definition of Aκ in

Proposition 1. Then, for any classifier C,

R(C)−R(CBayes) ≤ R(C̃Bayes)−R(CBayes) + min
[
pr
{
{C(X) 6= C̃Bayes(X)} ∩ {X ∈ D}

}
,

inf
κ>0

{
κ{R̃(C)− R̃(C̃Bayes)}+ E

(
|2η(X)− 1|1{X∈D\Aκ}

)}]
.40

Remark: If (2) holds, i.e. PX(Dc ∩ Sc) = 0, then R(C̃Bayes) = R(CBayes), and moreover we have that
E
(
|2η(X)− 1|1{X∈D\Aκ}

)
≤ PX

(
D \Aκ

)
≤ PX

(
Acκ
)
.

Proof of Proposition A1. First write

R(C) =

∫
X

pr{C(x) 6= Y | X = x} dPX(x)

=

∫
X

[
pr{C(x) = 0}pr(Y = 1 | X = x) + pr{C(x) = 1}pr(Y = 0 | X = x)

]
dPX(x)45

=

∫
X

[
pr{C(x) = 0}{2η(x)− 1}+ {1− η(x)}

]
dPX(x). (A3)

Here we have implicitly assumed that the classifier C is random since it may depend on random training
data. However, in the case that C is non-random, one should interpret pr{C(x) = 0} as being equal to
1{C(x)=0}, for x ∈ X .

Now, for PX -almost all x ∈ D,50 [
pr{C(x) = 0} − 1{η̃(x)<1/2}

]
{2η(x)− 1} =

∣∣pr{C(x) = 0} − 1{η̃(x)<1/2}
∣∣|2η(x)− 1|

≤
∣∣pr{C(x) = 0} − 1{η̃(x)<1/2}

∣∣
= pr{C(x) 6= C̃Bayes(x)}.

Moreover, for PX -almost all x ∈ Dc, we have[
pr{C(x) = 0} − 1{η̃(x)<1/2}

]
{2η(x)− 1} ≤ 0 (A4)

It follows that55

R(C)−R(C̃Bayes) =

∫
X

[
pr{C(x) = 0} − 1{η̃(x)<1/2}

]
{2η(x)− 1} dPX(x)

=

∫
D

[
pr{C(x) = 0} − 1{η̃(x)<1/2}

]
{2η(x)− 1} dPX(x)

+

∫
Dc

[
pr{C(x) = 0} − 1{η̃(x)<1/2}

]
{2η(x)− 1} dPX(x)

≤ pr
(
{C(X) 6= C̃Bayes(X)} ∩ {X ∈ D}

)
.
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To see the right-hand bound, observe that by (A4), for κ > 0, 60

R(C)−R(C̃Bayes) =

∫
X

[
pr{C(x) = 0} − 1{η̃(x)<1/2}

]
{2η(x)− 1} dPX(x)

≤
∫
D

[
pr{C(x) = 0} − 1{η̃(x)<1/2}

]
{2η(x)− 1} dPX(x)

≤ κ
∫
D∩Aκ

[
pr{C(x) = 0} − 1{η̃(x)<1/2}

]
{2η̃(x)− 1} dPX(x)

+ E
(
|2η(X)− 1|1{X∈D\Aκ}

)
= κ{R̃(C)− R̃(C̃Bayes)}+ E

(
|2η(X)− 1|1{X∈D\Aκ}

)
, 65

where the last step follows from (A3). �

Example A1. Suppose that X ⊆ Rd and that the noise is ρ-homogeneous with ρ ∈ (0, 1/2). Consider
the 1-nearest neighbour classifier C̃1nn(x) = Ỹ(1), where (X(1), Ỹ(1)) = (X(1)(x), Ỹ(1)(x)) = (Xi∗ , Ỹi∗)
is the training data pair for which i∗ = sargmini=1,...,n ‖Xi − x‖, where sargmin denotes the small-
est index of the set of minimizers. We first study the first term in the minimum in (4). Noting that 70

R̃(C̃Bayes) = E[min{η̃(X), 1− η̃(X)}], we have∣∣pr{C̃1nn(X) 6= C̃Bayes(X)} − R̃(C̃Bayes)
∣∣

=
∣∣pr{Ỹ(1)(X) 6= C̃Bayes(X)} − R̃(C̃Bayes)

∣∣
=
∣∣E[1{η̃(X)<1/2}η̃(X(1)(X)) + 1{η̃(X)≥1/2}{1− η̃(X(1)(X))}]− R̃(C̃Bayes)

∣∣
=
∣∣E[1{η̃(X)<1/2}{η̃(X(1)(X))− η̃(X)}+ 1{η̃(X)≥1/2}{η̃(X)− η̃(X(1)(X))}]

∣∣ 75

≤ E
∣∣η̃(X(1)(X))− η̃(X)

∣∣→ 0, (A5)

where the final limit follows by Devroye et al. (1996, Lemma 5.4).
Now focusing on the second term in the minimum in (4), by Devroye et al. (1996, Theorem 5.1), we

have

R̃(C̃1nn)− R̃(C̃Bayes)→ 2E[η̃(X){1− η̃(X)}]− R̃(C̃Bayes).

Moreover, in this case, PX(Acκ) = 1 for all κ ≤ (1− 2ρ)−1, and 0 otherwise. Therefore, if ρ is small 80

enough that ρR̃(C̃Bayes) < R̃(C̃Bayes)− E[η̃(X){1− η̃(X)}], then

lim
n→∞

inf
κ>0

{
κ{R̃(C̃1nn)− R̃(C̃Bayes)}+ PX(Acκ)

}
= lim
n→∞

R̃(C̃1nn)− R̃(C̃Bayes)

1− 2ρ

=
2E[η̃(X){1− η̃(X)}]− R̃(C̃Bayes)

1− 2ρ

< R̃(C̃Bayes) = lim
n→∞

pr{C̃1nn(X) 6= C̃Bayes(X)}, (A6)

where the final equality is due to (A5). Thus, in this case, the second term in the minimum in (4) is smaller 85

for sufficiently large n. However, if ρR̃(C̃Bayes) > R̃(C̃Bayes)− E[η̃(X){1− η̃(X)}], the asymptoti-
cally better bound is given by the first term in the minimum in the conclusion of Proposition 1, because
then the inequality in (A6) is reversed. �
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Proof of Corollary 1. Let εn = max
[
supm≥n{R̃(C̃m)− R̃(C̃Bayes)}1/2, n−1

]
. Then, by Proposi-

tion A1,90

R(C̃n)−R(C̃Bayes) ≤ 1

εn
{R̃(C̃n)− R̃(C̃Bayes)}+ E

(
|2η(X)− 1|1{X∈D\A

ε
−1
n
}
)

≤ {R̃(C̃n)− R̃(C̃Bayes)}1/2 + PX(D \Aε−1
n

)
.

Since (εn) is decreasing, it follows that

lim sup
n→∞

R(C̃n)−R(CBayes) ≤ R(C̃Bayes)−R(CBayes) + PX(S̃ ∩ D).

In particular, if (2) holds, then

lim sup
n→∞

R(C̃n)−R(CBayes) ≤ PX(S̃ \ S),

as required. �95

A·2. Conditions and proof of Theorem 2
A formal description of the conditions of Theorem 2 is given below:

Assumption A1. The probability measures P0 and P1 are absolutely continuous with respect to
Lebesgue measure, with Radon–Nikodym derivatives f0 and f1, respectively. Moreover, the marginal
density of X , given by f̄ = π0f0 + π1f1, is continuous and positive.100

Assumption A2. The set S is non-empty and f̄ is bounded on S. There exists ε0 > 0 such that f̄ is
twice continuously differentiable on Sε0 = S +Bε0(0), and

F (δ) = sup
x0∈S:f̄(x0)≥δ

max

{
‖ ˙̄f(x0)‖
f̄(x0)

,
supu∈Bε0 (0) ‖ ¨̄f(x0 + u)‖op

f̄(x0)

}
= o(δ−τ ) (A7)

as δ ↘ 0, for every τ > 0. Furthermore, recalling ad = πd/2/Γ(1 + d/2) and writing pε(x) =
PX(Bε(x)), there exists µ0 ∈ (0, ad) such that for all x ∈ Rd and ε ∈ (0, ε0], we have

pε(x) ≥ µ0ε
df̄(x).

Assumption A3. We have infx0∈S ‖η̇(x0)‖ > 0, so that S is a (d− 1)-dimensional, orientable105

manifold. Moreover, supx∈S2ε0 ‖η̇(x)‖ <∞ and η̈ is uniformly continuous on S2ε0 with
supx∈S2ε0 ‖η̈(x)‖op <∞. Finally, the function η is continuous, and

inf
x∈Rd\Sε0

|η(x)− 1/2| > 0.

Assumption A4.(α). We have that
∫
Rd ‖x‖

α dPX(x) <∞ and
∫
S f̄(x0)d/(α+d) dVold−1(x0) <∞,

where dVold−1 denotes the (d− 1)-dimensional volume form on S.

Proof of Theorem 2. Part 1: We show that the distribution P̃ of the pair (X, Ỹ ) satisfies suitably mod-110

ified versions of Assumptions A1, A2, A3 and A4(α).
Assumption A1: For r ∈ {0, 1}, let P̃r denote the conditional distribution of X given Ỹ = r. For

x ∈ Rd, and r = 0, 1, define

f̃r(x) =
πr{1− ρr(x)}fr(x) + π1−rρ1−r(x)f1−r(x)∫

Rd πr{1− ρr(z)}f1−r(z) + π1−rρ1−r(z)f1−r(z) dz
.
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Now, for a Borel subset A of Rd, we have that

P̃1(A) = pr(X ∈ A | Ỹ = 1) =
pr(X ∈ A, Ỹ = 1)

pr(Ỹ = 1)
115

=
π1pr(X ∈ A, Ỹ = 1 | Y = 1) + π0pr(X ∈ A, Ỹ = 1 | Y = 1)

pr(Ỹ = 1)

=
π1

∫
A
{1− ρ1(x)}f1(x) dx+ π0

∫
A
ρ0(x)f0(x) dx

pr(Ỹ = 1)
=

∫
A

f̃1(x) dx.

Similarly, P̃0(A) =
∫
A
f̃0(x) dx. Hence P̃0 and P̃1 are absolutely continuous with respect to Lebesgue

measure, with Radon–Nikodym derivatives f̃0 and f̃1, respectively. Furthermore, f̃ = pr(Ỹ = 0)f̃0 +
pr(Ỹ = 1)f̃1 = f̄ is continuous and positive. 120

Assumption A2: Since A2 refers mainly to the marginal distribution of X , which is unchanged under
the addition of label noise, this assumption is trivially satisfied for f̃ = f̄ , as long as S̃ = {x ∈ Rd :
η̃(x) = 1/2} = S. To see this, let δ0 > 0 and note that for x satisfying η(x)− 1/2 > δ0, we have from (1)
that

η̃(x)− 1/2 = {η(x)− 1/2}{1− ρ0(x)− ρ1(x)}
{

1 +
ρ0(x)− ρ1(x)

{2η(x)− 1}{1− ρ0(x)− ρ1(x)}

}
125

> {η(x)− 1/2}(1− 2ρ∗)(1− a∗) ≥ δ0(1− 2ρ∗)(1− a∗). (A8)

Similarly, if 1/2− η(x) > δ0, then we have that 1/2− η̃(x) > δ0(1− 2ρ∗)(1− a∗). It follows that S̃ ⊆
S. Now, for x such that |η(x)− 1/2| < δ, we have

η̃(x)− 1/2 = η(x)− 1/2 + {1− η(x)}g(η(x))− η(x)g(1− η(x)). (A9)

Thus S ⊆ S̃.
Assumption A3: Since g is twice continuously differentiable, we have that η̃ is twice continuously 130

differentiable on the set {x ∈ S2ε0 : |η(x)− 1/2| < δ}. On this set, its gradient vector at x is

˙̃η(x) = η̇(x)
[
1− g(η(x))− g(1− η(x)) + {1− η(x)}ġ(η(x)) + η(x)ġ(1− η(x))

]
.

The corresponding Hessian matrix at x is

¨̃η(x) = η̈(x)
[
1− g(η(x))− g(1− η(x)) + {1− η(x)}ġ(η(x)) + η(x)ġ(1− η(x))

]
− η̇(x)

[
η̇(x)T ġ(η(x))− η̇(x)T ġ(1− η(x)) + η̇(x)T ġ(η(x)) 135

− {1− η(x)}η̇(x)T g̈(η(x))− η̇(x)T ġ(1− η(x)) + η(x)η̇(x)T g̈(1− η(x))
]
.

In particular, for x0 ∈ S we have

˙̃η(x0) = η̇(x0){1− 2g(1/2) + ġ(1/2)}; ¨̃η(x0) = η̈(x0){1− 2g(1/2) + ġ(1/2)}. (A10)

Now define

ε1 = sup
{
ε > 0 : sup

x∈S2ε

|η(x)− 1/2| < δ
}
> 0,

where the fact that ε1 is positive follows from Assumption A3. Set ε̃0 = min{ε0, ε1}/2. Then, using the
properties of g, we have that infx0∈S ‖ ˙̃η(x0)‖ > 0. Moreover, supx∈S2ε̃0 ‖ ˙̃η(x)‖ <∞ and ¨̃η is uniformly 140

continuous on S2ε̃0 with supx∈S2ε̃0 ‖¨̃η(x)‖op <∞. Finally, the function η̃ is continuous since ρ0, ρ1 are
continuous, and, by (A8),

inf
x∈Rd\S ε̃0

|η̃(x)− 1/2| > 0.
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Assumption A4(α): This holds for P̃ because the marginal distribution of X is unaffected by the label
noise and S̃ = S.

Part 2: Recall the function F defined in (A7). Let cn = F (k/(n− 1)), and set εn =145

{cnβ1/2 log1/2(n− 1)}−1, ∆n = k(n− 1)−1cdn logd((n− 1)/k), Rn = {x ∈ Rd : f̄(x) > ∆n} and
Sn = S ∩Rn. Then, by (A8) and the fact that infx0∈S ‖ ˙̃η(x0)‖ > 0, there exists c0 > 0 such that for
every ε ∈ (0, ε̃0],

inf
x∈Rd\Sε

|η̃(x)− 1/2| > c0ε.

Now let S̃n(x) = k−1
∑k
i=1 1{Ỹ(i)=1}, Xn = (X1, . . . , Xn) and µ̃(x,Xn) = E{S̃n(x) | Xn} =

k−1
∑k
i=1 η̃(X(i)). Define Ak =

{
‖X(k)(x)− x‖ ≤ εn/2 for all x ∈ Rn

}
. Now suppose that150

z1, . . . , zN ∈ Rn are such that ‖zj − z`‖ > εn/4 for all j 6= `, but supx∈Rn minj=1,...,N ‖x− zj‖ ≤
εn/4. Then by the final part of Assumption A2, for n ≥ 2 large enough that εn/8 ≤ ε0, we have

1 = PX(Rd) ≥
N∑
j=1

pεn/8(zj) ≥
Nµ0β

d/2 logd/2(n− 1)

8d(n− 1)1−β .

Then by a standard binomial tail bound (Shorack & Wellner, 1986, Equation (6), p. 440), for such n and
any M > 0,

pr(Ack) = pr
{

sup
x∈Rn

‖X(k)(x)− x‖ > εn/2
}
≤ pr

{
max

j=1,...,N
‖X(k)(zj)− zj‖ > εn/4

}
155

≤
N∑
j=1

pr
{
‖X(k)(zj)− zj‖ > εn/4

}
≤ N max

j=1,...,N
exp
(
−1

2
npεn/4(zj) + k

)
= O(n−M ),

uniformly for k ∈ Kβ .
Now, on the event Ak, for εn < ε̃0 and x ∈ Rn \ Sεn , the k nearest neighbours of x are on the same

side of S, so

|µ̃n(x,Xn)− 1/2| =
∣∣∣∣1k

k∑
i=1

η̃(X(i))−
1

2

∣∣∣∣ ≥ inf
z∈Bεn/2(x)

|η̃(z)− 1/2| ≥ c0
εn
2
.160

Moreover, conditional on Xn, S̃n(x) is the sum of k independent terms. Therefore, by Hoeffding’s in-
equality,

sup
k∈Kβ

sup
x∈Rn\Sεn

∣∣pr{C̃knn
n (x) = 0} − 1{η̃(x)<1/2}

∣∣
= sup
k∈Kβ

sup
x∈Rn\Sεn

∣∣pr{S̃n(x) < 1/2} − 1{η̃(x)<1/2}
∣∣

= sup
k∈Kβ

sup
x∈Rn\Sεn

∣∣E{pr{S̃n(x) < 1/2 | Xn} − 1{η̃(x)<1/2}}
∣∣165

≤ sup
k∈Kβ

sup
x∈Rn\Sεn

E
[
exp(−2k{µ̃n(x,Xn)− 1/2}2)1Ak

]
+ sup
k∈Kβ

pr(Ack) = O(n−M ) (A11)

for every M > 0.
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Next, for x ∈ Sε2 , we have |η(x)− 1/2| < δ, and therefore, letting t = η(x)− 1/2, from (A9) we can
write

2η(x)− 1− 2η̃(x)− 1

1− 2g(1/2) + ġ(1/2)
170

= {2η(x)− 1}
{

1− 1− g(η(x))− g(1− η(x))

1− 2g(1/2) + ġ(1/2)

}
− g(η(x))− g(1− η(x))

1− 2g(1/2) + ġ(1/2)

= 2t
{

1− 1− g(1/2 + t)− g(1/2− t)
1− 2g(1/2) + ġ(1/2)

}
− g(1/2 + t)− g(1/2− t)

1− 2g(1/2) + ġ(1/2)
= G(t),

say. Observe that

Ġ(t) = 2
{

1− 1− g(1/2 + t)− g(1/2− t)
1− 2g(1/2) + ġ(1/2)

}
+

(2t− 1)ġ(1/2 + t)− (2t+ 1)ġ(1/2− t)
1− 2g(1/2) + ġ(1/2)

;

and

G̈(t) =
4{ġ(1/2 + t)− ġ(1/2− t)}

1− 2g(1/2) + ġ(1/2)
+

(2t− 1)g̈(1/2 + t) + (2t+ 1)g̈(1/2− t)
1− 2g(1/2) + ġ(1/2)

.

In particular, we have G(0) = 0, Ġ(0) = 0, G̈(0) = 0 and G̈ is bounded on (−δ, δ). 175

Now there exists n0 such that εn < ε2, for all n > n0 and k ∈ Kβ . Therefore, writing Sεnn = Sεn ∩Rn,
for n > n0, we have that∣∣∣∣∣R(C̃knn)−R(CBayes)− R̃(C̃knn)− R̃(C̃Bayes)

1− 2g(1/2) + ġ(1/2)

∣∣∣∣∣
=

∣∣∣∣∣
∫
Rd

[pr{C̃knn(x) = 0} − 1{η̃(x)<1/2}]
{

2η(x)− 1− 2η̃(x)− 1

1− 2g(1/2) + ġ(1/2)

}
dPX(x)

∣∣∣∣∣
≤

∣∣∣∣∣
∫
Sεnn

[pr{C̃knn(x) = 0} − 1{η̃(x)<1/2}]
{

2η(x)− 1− 2η̃(x)− 1

1− 2g(1/2) + ġ(1/2)

}
dPX(x)

∣∣∣∣∣ 180

+

(
1 +

1

1− 2g(1/2) + ġ(1/2)

)
PX(Rcn) +O(n−M ),

uniformly for k ∈ Kβ , where the final claim uses (A11). Then, by a Taylor expansion of G about t = 0,
we have that∣∣∣∣∣
∫
Sεnn

[pr{C̃knn(x) = 0} − 1{η̃(x)<1/2}]
{

2η(x)− 1− 2η̃(x)− 1

1− 2g(1/2) + ġ(1/2)

}
dPX(x)

∣∣∣∣∣
≤ 1

2
sup

t∈(−δ,δ)
|G̈(t)|

∫
Sεnn
|pr{C̃knn(x) = 0} − 1{η̃(x)<1/2}|{2η(x)− 1}2 dPX(x) 185

≤ 1

2
sup

t∈(−δ,δ)
|G̈(t)| sup

x∈Sεnn
|2η(x)− 1|

∫
Sεnn
{pr{C̃knn(x) = 0} − 1{η̃(x)<1/2}}{2η(x)− 1} dPX(x)

≤ 1

2
sup

t∈(−δ,δ)
|G̈(t)| sup

x∈Sεnn
|2η(x)− 1|{R(C̃knn)−R(CBayes)}

≤ 1

2
sup

t∈(−δ,δ)
|G̈(t)| sup

x∈Sεnn
|2η(x)− 1| R̃(C̃knn)− R̃(C̃Bayes)

(1− 2ρ∗)(1− a∗)
= o
(
R̃(C̃knn)− R̃(C̃Bayes)

)
,

uniformly for k ∈ Kβ .
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Finally, to bound PX(Rcn), we have by the moment condition in Assumption A4(α) and Hölder’s190

inequality, that for any u ∈ (0, 1), and v > 0,

PX(Rcn) = pr{f̄(X) ≤ ∆n} ≤ (∆n)
α(1−u)
α+d

∫
x:f̄(x)≤∆n

f̄(x)1−α(1−u)
α+d dx

≤ (∆n)
α(1−u)
α+d

{∫
Rd

(1 + ‖x‖α)f̄(x) dx
}1−α(1−u)

α+d

{∫
Rd

1

(1 + ‖x‖α)
d+αu
α(1−u)

dx
}α(1−u)

α+d

= o

((k
n

)α(1−u)
α+d −v

)
,

uniformly for k ∈ Kβ .195

Since u ∈ (0, 1) was arbitrary, we have shown that, that for any v > 0,

R(C̃knn)−R(CBayes)− R̃(C̃knn)− R̃(C̃Bayes)

1− 2g(1/2) + ġ(1/2)
= o

(
R̃(C̃knn)− R̃(C̃Bayes) +

(k
n

) α
α+d−v

)
,

uniformly for k ∈ Kβ . Since Assumptions A1, A2, A3 and A4(α) hold for P̃ , the proof is completed by
an application of Cannings et al. (2018, Theorem 1), together with (A10). �

A·3. Proofs from Section 4·2
Before presenting the proofs from this section, we briefly discuss measurability issues for the SVM200

classifier. Since this is constructed by solving the minimization problem in (9), it is not immediately
clear that it is measurable. It is convenient to let Cd denote the set of all measurable functions from
Rd to {0, 1}. By Steinwart & Christmann (2008, Definition 6.2, Lemma 6.3 and Lemma 6.23), we
have that the function C̃SVM

n : (Rd × {0, 1})n → Cd and the map from (Rd × {0, 1})n × Rd to {0, 1}
given by

(
(x1, ỹ1), . . . , (xn, ỹn), x

)
7→ C̃SVM

n (x) are measurable with respect to the universal comple-205

tion of the product σ-algebras on (Rd × {0, 1})n and (Rd × {0, 1})n × Rd, respectively. We can there-
fore avoid measurability issues by taking our underlying probability space (Ω,F ,pr) to be as follows:
let Ω = (Rd × {0, 1} × {0, 1})n+1, and F to be the universal completion of the product σ-algebra
on Ω. Moreover, we let pr denote the canonical extension of the product measure on Ω. The triples
(X1, Y1, Ỹ1), . . . , (Xn, Yn, Ỹn), (X,Y, Ỹ ) can be taken to be the coordinate projections of the (n+ 1)210

components of Ω.

Proof of Theorem 3. We first aim to show that P̃ satisfies the margin assumption with parameter γ1,
and has geometric noise exponent γ2. For the first of these claims, by (A2), we have for all t > 0 that

PX({x ∈ Rd : 0 < |η̃(x)− 1/2| ≤ t}) ≤ PX
({
x : 0 < |η(x)− 1/2|(1− 2ρ∗)(1− a∗) ≤ t

})
≤ κ1

(1− 2ρ∗)γ1(1− a∗)γ1
tγ1 ,215

as required; see also the discussion in Section 3.9.1 of the 2015 Australian National University PhD thesis
by M. van Rooyen (https://openresearch-repository.anu.edu.au/handle/1885/
99588). The proof of the second claim is more involved, because we require a bound on |2η̃(x)− 1|
in terms of |2η(x)− 1|. We consider separately the cases where |η(x)− 1/2| is small and large, and
for r > 0, define Er = {x ∈ Rd : |η(x)− 1/2| < r}. For x ∈ Eδ ∩ Sc, we can write t0 = η(x)− 1/2 ∈220

(−δ, δ), so that by (A9) again,

2η̃(x)− 1 = {2η(x)− 1}
{

1− g(η(x))− g(1− η(x)) +
g(η(x))− g(1− η(x))

2η(x)− 1

}
= {2η(x)− 1}

{
1− g(1/2 + t0)− g(1/2− t0) +

g(1/2 + t0)− g(1/2− t0)

2t0

}
. (A12)



Classification with imperfect training labels 9

Now, by reducing δ > 0 if necessary, and since 1− 2g(1/2) + ġ(1/2) > 0 by hypothesis, we may assume
that 225∣∣∣∣1− g(1/2 + t0)− g(1/2− t0) +

g(1/2 + t0)− g(1/2− t0)

2t0

∣∣∣∣ ≤ 2{1− 2g(1/2) + ġ(1/2)} (A13)

for all t0 ∈ [−δ, δ]. Moreover, for x ∈ Ecδ , we have∣∣∣{2η(x)− 1}{1− ρ0(x)− ρ1(x)}+ ρ0(x)− ρ1(x)
∣∣∣

= |2η(x)− 1|
∣∣∣∣1− ρ0(x)− ρ1(x) +

ρ0(x)− ρ1(x)

2η(x)− 1

∣∣∣∣
≤ |2η(x)− 1|

{
1 +
|ρ0(x)− ρ1(x)|

2δ

}
≤ |2η(x)− 1|

(
1 +

1

2δ0

)
. (A14)

Now that we have the required bounds on |2η̃(x)− 1|, we deduce from (A12), (A13) and (A14) that 230∫
Rd
|2η̃(x)− 1| exp

(
−τ

2
x

t2

)
dPX(x)

=

∫
Rd

∣∣∣{2η(x)− 1}{1− ρ0(x)− ρ1(x)}+ ρ0(x)− ρ1(x)
∣∣∣ exp

(
−τ

2
x

t

)
dPX(x)

≤ max
{

2− 4g(1/2) + 2ġ(1/2), 1 +
1

2δ0

}∫
Rd
|2η(x)− 1| exp

(
−τ

2
x

t

)
dPX(x)

≤ max
{

2− 4g(1/2) + 2ġ(1/2), 1 +
1

2δ0

}
κ2t

γ2d,

so P̃ does indeed have geometric noise exponent γ2. 235

Now, for an arbitrary classifier C, let L̃(C) = P̃
(
{(x, y) ∈ Rd × {0, 1} : C(x) 6= y}

)
denote the test

error. The quantity L̃(C̃SVM) is random because the classifier depends on the training data and the prob-
ability in the definition of L̃(·) is with respect to test data only. It follows by Steinwart & Scovel (2007,
Theorem 2.8) that, for all ε > 0, there exists M > 0 such that for all n ∈ N and all τ ≥ 1,

pr
(
L̃(C̃SVM)− L̃(C̃Bayes) > Mτ2n−Γ+ε

)
≤ e−τ .

We conclude by Theorem 1(ii) that 240

R(C̃SVM)−R(CBayes) ≤ R̃(C̃SVM)− R̃(C̃Bayes)

(1− 2ρ∗)(1− a∗)

=
1

(1− 2ρ∗)(1− a∗)

∫ ∞
0

pr
(
L̃(C̃SVM)− L̃(C̃Bayes) > u

)
du

=
2Mn−Γ+ε

(1− 2ρ∗)(1− a∗)

∫ ∞
0

τpr
(
L̃(C̃SVM)− L̃(C̃Bayes) > Mτ2n−Γ+ε

)
dτ

≤ 2Mn−Γ+ε

(1− 2ρ∗)(1− a∗)

{∫ 1

0

τ dτ +

∫ ∞
1

τ exp(−τ) dτ

}
=

Mn−Γ+ε

(1− 2ρ∗)(1− a∗)

(
1 +

4

e

)
,

as required. � 245

A·4. Proofs from Section 4·3
Proof of Lemma 1. Since, for homogeneous noise, the pair (X,Y ) and the noise indicator Z are inde-

pendent, we have pr{C(X) 6= Y | Z = r} = pr{C(X) 6= Y }, for r = 0, 1. It follows that

R̃(C) = pr{C(X) 6= Ỹ } = pr(Z = 1)pr{C(X) 6= Y | Z = 1}+ pr(Z = 0)pr{C(X) = Y | Z = 0}
= (1− ρ)pr{C(X) 6= Y }+ ρ[1− pr{C(X) 6= Y }] 250

= ρ+ (1− 2ρ)R(C).
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Rearranging terms gives the first part of the lemma, and the second part follows immediately. �

Proof of Theorem 4. For r ∈ {0, 1}, we have that π̂r
a.s.→ (1− ρ)πr + ρπ1−r = (1− 2ρ)πr + ρ. Now,

writing

µ̂r =
n−1

∑n
i=1Xi1{Ỹi=r}

π̂r
=
n−1

∑n
i=1Xi1{Ỹi=r}(1{Yi=r} + 1{Yi=1−r})

π̂r
,

we see that255

µ̂r
a.s.→ (1− ρ)πrµr + ρπ1−rµ1−r

(1− ρ)πr + ρπ1−r
.

Hence

µ̂1 + µ̂0
a.s.→ (1− ρ)π1µ1 + ρπ0µ0

(1− ρ)π1 + ρπ0
+

(1− ρ)π0µ0 + ρπ1µ1

(1− ρ)π0 + ρπ1

= µ1

{
(1− 2ρ)2π0π1 + 2ρ(1− ρ)π1

(1− 2ρ)2π0π1 + ρ(1− ρ)

}
+ µ0

{
(1− 2ρ)2π0π1 + 2ρ(1− ρ)π0

(1− 2ρ)2π0π1 + ρ(1− ρ)

}
.

Moreover

µ̂1 − µ̂0
a.s.→ (1− ρ)π1µ1 + ρπ0µ0

(1− ρ)π1 + ρπ0
− (1− ρ)π0µ0 + ρπ1µ1

(1− ρ)π0 + ρπ1
260

=

{
(1− 2ρ)π0π1

(1− 2ρ)2π0π1 + ρ(1− ρ)

}
(µ1 − µ0).

Observe further that

Σ̂
a.s.→ cov

(
(X1 − µ̃1)(X1 − µ̃1)T1{Ỹ1=1} + (X1 − µ̃0)(X1 − µ̃0)T1{Ỹ1=0}

)
= {(1− 2ρ)π1 + ρ}Σ̃1 + {(1− 2ρ)π0 + ρ}Σ̃0,

where Σ̃r = cov(X | Ỹ = r), and we now seek to express Σ̃0 and Σ̃1 in terms of ρ, π0, π1, µ0, µ1 and Σ.265

To that end, we have that

Σ̃r = E{cov(X | Y, Ỹ = r) | Ỹ = r}+ cov{E(X | Y, Ỹ = r) | Ỹ = r} = Σ + cov{µY | Ỹ = r}.

Note that

pr(Y = 1 | Ỹ = 1) =
pr(Y = 1, Ỹ = 1)

pr(Ỹ = 1)
=

π1(1− ρ)

π1(1− ρ) + π0ρ
=

π1(1− ρ)

π1(1− 2ρ) + ρ
.

Hence

E(µY | Ỹ = 1) = µ1pr(Y = 1 | Ỹ = 1) + µ0pr(Y = 0 | Ỹ = 1) =
π1µ1(1− ρ) + π0µ0ρ

π1(1− 2ρ) + ρ
.
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It follows that

Σ̃1 =
π1(1− ρ)

π1(1− 2ρ) + ρ

(
µ1 −

π1µ1(1− ρ) + π0µ0ρ

π1(1− 2ρ) + ρ

)(
µ1 −

π1µ1(1− ρ) + π0µ0ρ

π1(1− 2ρ) + ρ

)T
270

+
π0ρ

π1(1− 2ρ) + ρ

(
µ0 −

π1µ1(1− ρ) + π0µ0ρ

π1(1− 2ρ) + ρ

)(
µ0 −

π1µ1(1− ρ) + π0µ0ρ

π1(1− 2ρ) + ρ

)T
=

π1(1− ρ)

π1(1− 2ρ) + ρ

( π0ρ(µ1 − µ0)

π1(1− 2ρ) + ρ

)( π0ρ(µ1 − µ0)

π1(1− 2ρ) + ρ

)T
+

π0ρ

π1(1− 2ρ) + ρ

(π1(1− ρ)(µ0 − µ1)

π1(1− 2ρ) + ρ

)(π1(1− ρ)(µ0 − µ1)

π1(1− 2ρ) + ρ

)T
=

π0π1ρ(1− ρ)

(π1(1− ρ) + π0ρ)2
(µ1 − µ0)(µ1 − µ0)T .

Similarly 275

Σ̃0 =
π0π1ρ(1− ρ)

(π0(1− ρ) + π1ρ)2
(µ1 − µ0)(µ1 − µ0)T .

We deduce that

Σ̃
a.s.→ Σ +

π0π1ρ(1− ρ)

π1π0(1− 2ρ)2 + ρ(1− ρ)
(µ1 − µ0)(µ1 − µ0)T = Σ + α(µ1 − µ0)(µ1 − µ0)T ,

where α = π0π1ρ(1− ρ)/{π0π1(1− 2ρ)2 + ρ(1− ρ)}. Now(
Σ + α(µ1 − µ0)(µ1 − µ0)T

)−1
= Σ−1 − αΣ−1(µ1 − µ0)(µ1 − µ0)TΣ−1

1 + α∆2
,

where ∆2 = (µ1 − µ0)TΣ−1(µ1 − µ0). It follows that there exists an event Ω0 with pr(Ω0) = 1 such
that on this event, for every x ∈ Rd,(

x− µ̂1 + µ̂0

2

)T
Σ̂−1(µ̂1 − µ̂0) 280

→
[
x− µ1

2

{ (1− 2ρ)2π0π1 + 2ρ(1− ρ)π1

(1− 2ρ)2π0π1 + ρ(1− ρ)

}
+
µ0

2

{ (1− 2ρ)2π0π1 + 2ρ(1− ρ)π0

(1− 2ρ)2π0π1 + ρ(1− ρ)

}]T
(

Σ−1 − αΣ−1(µ1 − µ0)(µ1 − µ0)TΣ−1

1 + α∆2

){ (1− 2ρ)π0π1

(1− 2ρ)2π0π1 + ρ(1− ρ)

}
(µ1 − µ0)

=

[
x− µ1

2

{ (1− 2ρ)2π0π1 + 2ρ(1− ρ)π1

(1− 2ρ)2π0π1 + ρ(1− ρ)

}
+
µ0

2

{ (1− 2ρ)2π0π1 + 2ρ(1− ρ)π0

(1− 2ρ)2π0π1 + ρ(1− ρ)

}]T
( 1

1 + α∆2

){ (1− 2ρ)π0π1

(1− 2ρ)2π0π1 + ρ(1− ρ)

}
Σ−1(µ1 − µ0)

=

(
x− µ1 + µ0

2

)T( 1

1 + α∆2

){ (1− 2ρ)π0π1

(1− 2ρ)2π0π1 + ρ(1− ρ)

}
Σ−1(µ1 − µ0) 285

−
[
µ1

2

{ (2π1 − 1)ρ(1− ρ)

(1− 2ρ)2π0π1 + ρ(1− ρ)

}
+
µ0

2

{ (2π0 − 1)ρ(1− ρ)

(1− 2ρ)2π0π1 + ρ(1− ρ)

}]T
( 1

1 + α∆2

){ (1− 2ρ)π0π1

(1− 2ρ)2π0π1 + ρ(1− ρ)

}
Σ−1(µ1 − µ0).

Hence, on Ω0,

lim
n→∞

C̃LDA(x) =

{
1 if c0 +

(
x− µ1+µ0

2

)T
Σ−1(µ1 − µ0) > 0

0 if c0 +
(
x− µ1+µ0

2

)T
Σ−1(µ1 − µ0) < 0,
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where

c0 =
(1 + α∆2)ρ(1− ρ)

α(1− 2ρ)
log

(
(1− 2ρ)π1 + ρ

(1− 2ρ)π0 + ρ

)
− (π1 − π0)α∆2

2π0π1
.290

This proves the first claim of the theorem. It follows that

lim
n→∞

R(C̃LDA) = π0Φ

(
c0
∆
− ∆

2

)
+ π1Φ

(
−c0

∆
− ∆

2

)
,

which proves the second claim. Now consider the function

ψ(c0) = π0Φ

(
c0
∆
− ∆

2

)
+ π1Φ

(
−c0

∆
− ∆

2

)
.

We have

ψ̇(c0) =
π0

∆
φ

(
c0
∆
− ∆

2

)
− π1

∆
φ

(
−c0

∆
− ∆

2

)
=
π0

∆
φ

(
c0
∆
− ∆

2

){
1− π1

π0
exp(−c0)

}
,

where φ denotes the standard normal density function. Since sgn
(
ψ̇(c0)

)
= sgn

(
c0 − log(π1/π0)

)
, we295

deduce that

π0Φ

(
c0
∆
− ∆

2

)
+ π1Φ

(
−c0

∆
− ∆

2

)
≥ R(CBayes),

and it remains to show that if ρ ∈ (0, 1/2) and π1 6= π0, then there is a unique ∆ > 0 with c0 =
log(π1/π0). To that end, suppose without loss of generality that π1 > π0 and note that

(π1 − π0)(1− 2ρ)

(1− 2ρ)2π0π1 + ρ(1− ρ)
=

π1(1− 2ρ) + ρ

(1− 2ρ)2π1π0 + ρ(1− ρ)
− π0(1− 2ρ) + ρ

(1− 2ρ)2π1π0 + ρ(1− ρ)

=
1

(1− 2ρ)π0 + ρ
− 1

(1− 2ρ)π1 + ρ
.300

Hence, writing t = (1− 2ρ)π1 + ρ > 1/2, we have

log
( (1− 2ρ)π1 + ρ

(1− 2ρ)π0 + ρ

)
− (π1 − π0)(1− 2ρ)

2{(1− 2ρ)2π1π0 + ρ(1− ρ)}
= log

( t

1− t

)
+

1

2t
− 1

2(1− t)
< 0.

Next, let

χ(π1) = log
(π1

π0

)
− ρ(1− ρ)

α(1− 2ρ)
log
( (1− 2ρ)π1 + ρ

(1− 2ρ)π0 + ρ

)
= log

( π1

1− π1

)
− (1− 2ρ)2π1(1− π1) + ρ(1− ρ)

(1− 2ρ)π1(1− π1)
log
( (1− 2ρ)π1 + ρ

(1− 2ρ)(1− π1) + ρ

)
.

Then305

χ̇(π1) =
ρ(1− ρ)(1− 2π1)

(1− 2ρ)π2
1(1− π1)2

log
( (1− 2ρ)π1 + ρ

(1− 2ρ)(1− π1) + ρ

)
< 0,

for all π1 ∈ (0, 1). Since χ(1/2) = 0, we conclude that χ(π1) < 0 for all π1 > π0. But

c0 − log
(π1

π0

)
=

∆2ρ(1− ρ)

1− 2ρ

{
log
( (1− 2ρ)π1 + ρ

(1− 2ρ)π0 + ρ

)
− (π1 − π0)(1− 2ρ)

2{(1− 2ρ)2π1π0 + ρ(1− ρ)}

}
− χ(π1),

so the final claim follows. �
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