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SUMMARY

Two important goals of high-dimensional modelling are prediction and variable selection. In
this article, we consider regularization with combined L1 and concave penalties, and study the
sampling properties of the global optimum of the suggested method in ultrahigh-dimensional set-
tings. The L1 penalty provides the minimum regularization needed for removing noise variables
in order to achieve oracle prediction risk, while a concave penalty imposes additional regulariza-
tion to control model sparsity. In the linear model setting, we prove that the global optimum of our
method enjoys the same oracle inequalities as the lasso estimator and admits an explicit bound
on the false sign rate, which can be asymptotically vanishing. Moreover, we establish oracle
risk inequalities for the method and the sampling properties of computable solutions. Numerical
studies suggest that our method yields more stable estimates than using a concave penalty alone.

Some key words: Concave penalty; Global optimum; Lasso penalty; Prediction; Variable selection.

1. INTRODUCTION

Prediction and variable selection are two important goals in many contemporary large-scale
problems. Many regularization methods in the context of penalized empirical risk minimiza-
tion have been proposed to select important covariates. See, for example, Fan & Lv (2010) for a
review of some recent developments in high-dimensional variable selection. Penalized empirical
risk minimization has two components: empirical risk for a chosen loss function for prediction,
and a penalty function on the magnitude of parameters for reducing model complexity. The loss
function is often chosen to be convex. The inclusion of the regularization term helps prevent over-
fitting when the number of covariates p is comparable to or exceeds the number of observations n.

Generally speaking, two classes of penalty functions have been proposed in the literature:
convex ones and concave ones. When a convex penalty such as the lasso penalty (Tibshirani,
1996) is used, the resulting estimator is a well-defined global optimizer. For the properties of
L1 regularization methods, see, for example, Chen et al. (1999), Efron et al. (2004), Zou (2006),
Candès & Tao (2007), Rosset & Zhu (2007), and Bickel et al. (2009). In particular, Bickel et al.
(2009) proved that using the L1 penalty leads to estimators satisfying the oracle inequalities under
the prediction loss and Lq loss, with 1 � q � 2, in high-dimensional nonparametric regression
models. An oracle inequality means that with an overwhelming probability, the loss of the regu-
larized estimator is within a logarithmic factor, a power of log p, of that of the oracle estimator,
with the power depending on the chosen estimation loss. Despite these nice properties, the L1
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58 Y. FAN AND J. LV

penalty tends to yield a larger model than the true one for optimizing predictions, and many of the
selected variables may be insignificant, showing that the resulting method may not be ideal for
variable selection. The relatively large model size also reduces the interpretability of the selected
model.

Concave penalties, on the other hand, have been shown to lead to nice variable selection prop-
erties. The oracle property was introduced in Fan & Li (2001) to characterize the performance
of concave regularization methods, in relation to the oracle procedure knowing the true sparse
model in advance. In fixed dimensions, concave regularization has been shown to have the ora-
cle property, recovering the true model with asymptotic probability one. This work has been
extended to higher dimensions in different contexts, and the key message is the same. See, for
example, Lv & Fan (2009), Zhang (2010), and Fan & Lv (2011). In particular, the weak oracle
property, a surrogate of the oracle property, was introduced in Lv & Fan (2009). When p > n, it
is generally difficult to study the properties of the global optimizer for concave regularization
methods. Thus, most studies have focused on some local optimizer that has appealing properties
in high-dimensional settings. The sampling properties of the global optimizers for these methods
are less well understood in high dimensions.

In this article, we characterize theoretically the global optimizer of the regularization method
with the combined L1 and concave penalty, in the setting of the high-dimensional linear model.
We prove that the resulting estimator combines the prediction power of the L1 penalty and the
variable selection power of the concave penalty. On the practical side, the L1 penalty contributes
the minimum amount of regularization necessary to remove noise variables for achieving oracle
prediction risk, while the concave penalty incorporates additional regularization to control model
sparsity. On the theoretical side, the use of an L1 penalty helps us to study the various properties of
the global optimizer. Specifically, we prove that the global optimizer enjoys the oracle inequalities
under the prediction loss and Lq loss, with 1 � q � 2, as well as an asymptotically vanishing
bound on the false sign rate. We also establish its oracle risk inequalities under various losses,
as well as the sampling properties of computable solutions. In addition, we show that the refitted
least-squares estimator can enjoy the oracle property, in the context of Fan & Li (2001). These
results are also closely related to those in Zhang & Zhang (2012). Our work complements theirs
in three important respects. First, the bound on the number of false positives in Zhang & Zhang
(2012) is generally of the same order as the true model size, while our bound on the stronger
measure of the rate of false signs can be asymptotically vanishing. Second, our estimation and
prediction bounds depend only on the universal regularization parameter for the L1 component
and are free of the regularization parameter λ for the concave component, whereas the bounds
in Zhang & Zhang (2012) generally depend on λ alone. Third, our oracle risk inequalities are
new and stronger than those for losses, since the risks involve the expectations of losses and thus
provide a more complete view of the stability of the method. It is unclear whether the concave
method alone would enjoy similar risk bounds.

Our proposal shares a similar spirit to that of Liu & Wu (2007), who proposed a combina-
tion of L0 and L1 penalties for variable selection and studied its properties in linear regression
with fixed dimensionality. Their new penalty yields more stable variable selection results than
the L0 penalty, and outperforms both L0 and L1 penalties in terms of variable selection, while
maintaining good prediction accuracy. Our theoretical results and numerical study reveal that
this advantage persists in high dimensions and for more general concave penalties. Our work
differs from theirs in two main respects: we provide more complete and unified theory in ultra
high-dimensional settings, and we consider a large class of concave penalties with only mild
conditions on their shape. The idea of combining strengths of different penalties has also been
exploited in, for example, Zou & Zhang (2009).
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Combined L1 and concave regularization 59

2. MODEL SETTING

Consider the linear regression model

y = Xβ + ε, (1)

where y = (Y1, . . . , Yn)
T is an n-dimensional vector of responses, X = (x1, . . . , x p) is an n × p

design matrix, β = (β1, . . . , βp)
T is an unknown p-dimensional vector of regression coefficients,

and ε = (ε1, . . . , εn)
T is an n-dimensional vector of noise variates. We are interested in variable

selection when the true regression coefficient vector β0 = (β0,1, . . . , β0,p)
T has many zero com-

ponents. The main goal is to effectively identify the true underlying sparse model, that is, the
support supp(β0) = { j = 1, . . . , p : β0, j |= 0}, with asymptotic probability one, and to efficiently
estimate the nonzero regression coefficients β0, j . A popular approach to estimating sparse β0 is
penalized least squares, which regularizes the conventional least-squares estimation by penaliz-
ing the magnitude of parameters |β j |. A zero component of the resulting estimate indicates that
the corresponding covariate x j is screened from the model.

Penalized least-squares estimation minimizes the objective function

(2n)−1‖y − Xβ‖2
2 + ‖pλ(β)‖1

over β ∈ R
p, where we use the compact notation pλ(β) = pλ(|β|) = (pλ(|β1|), . . . , pλ(|βp|))T

with |β| = (|β1|, . . . , |βp|)T, and pλ(t), t ∈ [0, ∞), is a penalty function indexed by the regular-
ization parameter λ � 0. The lasso (Tibshirani, 1996) corresponds to the L1 penalty pλ(t) = λt .
As shown in Bickel et al. (2009), the lasso enjoys the oracle inequalities for prediction and esti-
mation, but it tends to yield large models. Concave penalties have received much attention due
to their oracle properties. Yet, as discussed in § 1, the sampling properties of the global optimizer
for concave regularization methods are relatively less well understood in high dimensions. To
overcome these difficulties, we suggest combining the L1 penalty λ0t with a concave penalty
pλ(t), and study the resulting regularization problem

min
β∈Rp

{(2n)−1‖y − Xβ‖2
2 + λ0‖β‖1 + ‖pλ(β)‖1}, (2)

where λ0 = c{(log p)/n}1/2 for some positive constant c. Throughout the paper, we fix such a
choice of the universal regularization parameter for the L1 penalty, and the minimizer of (2)
is implicitly referred to as the global minimizer. The L1 component λ0‖β‖1 helps us to study
the global minimizer of (2), and reflects the minimum amount of regularization for removing
the noise in prediction. The concave component ‖pλ(β)‖1 serves to adapt the model sparsity
for variable selection.

3. MAIN RESULTS

3·1. Hard-thresholding property

To understand why the combination of L1 and concave penalties can yield better variable
selection than can the L1 penalty alone, we consider the hard-thresholding penalty pH,λ(t) =
2−1{λ2 − (λ − t)2+}, t � 0. Assume that each covariate x j is rescaled to have an L2-norm n1/2.

Let β̂ = (β̂1, . . . , β̂p)
T be the global minimizer of (2) with pλ(t) = pH,λ(t). The global optimality

of β̂ entails that each β̂ j is the global minimizer of the corresponding univariate penalized least-
squares problem along the j th coordinate. All these univariate problems share a common form,
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60 Y. FAN AND J. LV

with generally different scalars z,

β̂(z) = arg min
β∈R

{2−1(z − β)2 + λ0|β| + pH,λ(|β|)}, (3)

since all covariates have L2-norm n1/2. Simple calculus shows that the solution in (3) is

β̂(z) = sgn(z)(|z| − λ0)1{|z|>λ+λ0}, (4)

so the resulting estimator has the same feature as the hard-thresholded estimator: each compo-
nent is either zero or of magnitude larger than λ. This provides an appealing distinction between
insignificant covariates, whose coefficients are zero and should be estimated as such, and signifi-
cant covariates, whose coefficients are significantly nonzero and should be estimated as nonzero,
improving the variable selection performance of soft-thresholding by L1 penalty.

The hard-thresholding feature is shared by many other penalty functions, as now shown.

PROPOSITION 1. Assume that pλ(t) (t � 0) is increasing and concave with pλ(t) � pH,λ(t)
on [0, λ], p′

λ{(1 − c1)λ} � c1λ for some c1 ∈ [0, 1), and −p′′
λ(t) is decreasing on [0, (1 − c1)λ].

Then any local minimizer of (2) that is a global minimizer in each coordinate has the hard-
thresholding feature that each component is either zero or of magnitude larger than (1 − c1)λ.

Although we used the derivatives p′
λ(t) and p′′

λ(t) in the above proposition, the results continue
to hold if we replace −p′

λ(t) with the subdifferential of −pλ(t), and −p′′
λ(t) with the local con-

cavity of pλ(t) at point t , when the penalty function is nondifferentiable at t (Lv & Fan, 2009).
The hard-thresholding penalty pH,λ(t) satisfies the conditions of Proposition 1, with c1 = 0. This
class of penalty functions also includes, for example, the L0 penalty and the smooth integration
of counting and absolute deviation penalty (Lv & Fan, 2009), with suitably chosen c1 ∈ [0, 1)

and tuning parameters.

3·2. Technical conditions

We consider a wide range of error distributions for the linear model (1). Throughout this paper,
we make the following assumption on the distribution of the model error ε:

pr(‖n−1 X Tε‖∞ > λ0/2) = O(p−c0), (5)

where c0 is some arbitrarily large, positive constant depending only on c, the constant defining
λ0. This condition was imposed in Fan & Lv (2011), who showed for independent ε1, . . . , εn that
Gaussian errors and bounded errors satisfy (5) without any extra assumption, and that light-tailed
error distributions satisfy (5) with additional mild assumptions on the design matrix X .

Without loss of generality, we assume that only the first s components of β0 are nonzero,
where the true model size s can diverge with the sample size n. Write the true regression coeffi-
cient vector as β0 = (β̃T

0,1, β̃
T
0,2)

T with β̃0,1 = (β0,1, . . . , β0,s)
T ∈ R

s the subvector of all nonzero

coefficients and β̃0,2 = 0, and let pλ(∞) = limt→∞ pλ(t). We impose the following conditions
on the design matrix and penalty function, respectively.

Condition 1. For some positive constant κ0, min‖δ‖2=1, ‖δ‖0<2s n−1/2‖Xδ‖2 � κ0 and

κ = κ(s, 7) = min
δ |= 0, ‖δ̃2‖1�7‖δ̃1‖1

{n−1/2‖Xδ‖2/(‖δ̃1‖2 ∨ ‖δ̃′
2‖2)} > 0, (6)
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Combined L1 and concave regularization 61

where δ = (δ̃T
1, δ̃

T
2)

T with δ̃1 ∈ R
s and δ̃′

2 the subvector of δ̃2 consisting of the components with
the s largest absolute values.

Condition 2. The penalty pλ(t) satisfies the conditions of Proposition 1 with p′
λ{(1 −

c1)λ} � λ0/4, and min j=1,...,s |β0, j | > max{(1 − c1)λ, 2κ−1
0 p1/2

λ (∞)}.

The first part of Condition 1 is a mild sparse eigenvalue condition, and the second part com-
bines the restricted eigenvalue assumptions in Bickel et al. (2009), which were introduced for
studying the oracle inequalities for the lasso estimator and Dantzig selector (Candès & Tao,
2007). To see the intuition for (6), recall that ordinary least-squares estimation requires that the
Gram matrix X T X be positive definite, that is,

min
0 |= δ∈Rp

{n−1/2‖Xδ‖2/‖δ‖2} > 0. (7)

In the high-dimensional setting where p > n, condition (7) is always violated. Condition 1
replaces the norm ‖δ‖2 in the denominator of (7) with the L2-norm of only a subvector of δ.
Condition 1 also has an additional bound involving ‖δ̃′

2‖2. This is needed only when dealing
with the Lq loss with q ∈ (1, 2]. For other losses, the bound can be relaxed to

κ = κ(s, 7) = min
δ |= 0, ‖δ̃2‖1�7‖δ̃1‖1

{n−1/2‖Xδ‖2/‖δ̃1‖2} > 0.

For simplicity, we use the same notation κ in these bounds.
In view of the basic constraint (A7), the restricted eigenvalue assumptions in (6) can be

weakened to other conditions such as the compatibility factor or the cone invertibility fac-
tor (Zhang & Zhang, 2012). We adopt the assumptions in Bickel et al. (2009) to simplify our
presentation.

Condition 2 ensures that the concave penalty pλ(t) satisfies the hard-thresholding property,
requires that its tail grow relatively slowly, and puts a constraint on the minimum signal strength.

3·3. Asymptotic properties of the global optimum

In this section, we study the sampling properties of the global minimizer β̂ of (2) with p
implicitly understood as max(n, p) in all bounds. To evaluate the variable selection performance,
we consider the number of falsely discovered signs,

FS(β̂) = |{ j = 1, . . . , p : sgn(β̂ j ) |= sgn(β0, j )}|,

which is a stronger measure than the total number of false positives and false negatives.

THEOREM 1. Assume that Conditions 1–2 and the deviation probability bound (5) hold, and
that pλ(t) is continuously differentiable. Then the global minimizer β̂ of (2) has the hard-
thresholding property stated in Proposition 1 and, with probability 1 − O(p−c0), satisfies simul-
taneously that

n−1/2‖X (β̂ − β0)‖2 = O(κ−1λ0s1/2), (8)

‖β̂ − β0‖q = O(κ−2λ0s1/q), q ∈ [1, 2], (9)

FS(β̂) = O{κ−4(λ0/λ)2s}.
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62 Y. FAN AND J. LV

If in addition λ � 56(1 − c1)
−1κ−2λ0s1/2, then with probability 1 − O(p−c0) we also have that

sgn(β̂) = sgn(β0) and ‖β̂ − β0‖∞ = O{λ0‖(n−1 X T
1 X1)

−1‖∞}, where X1 is the n × s submatrix
of X corresponding to s nonzero regression coefficients β0, j .

From Theorem 1, we see that if λ is chosen such that λ0/λ → 0, then the number of falsely
discovered signs FS(β̂) is of order o(s) and thus the false sign rate FS(β̂)/s is asymptotically
vanishing. In contrast, Bickel et al. (2009) showed that under the restricted eigenvalue assump-
tions, the lasso estimator, with the L1 component λ0‖β‖1 alone, generally gives a sparse model
with size of order O(φmaxs), where φmax is the largest eigenvalue of the Gram matrix n−1 X T X .
This implies that the false sign rate for the lasso estimator can be of order O(φmax), which does
not vanish asymptotically. Similarly, Zhang & Zhang (2012) proved that the number of false pos-
itives of the concave regularized estimator is generally of order O(s), which means that the false
sign rate can be asymptotically nonvanishing.

The convergence rates in the oracle inequalities (8)–(9), involving both sample size n and
dimensionality p, are the same as those for the L1 component alone in Bickel et al. (2009),
and are consistent with those for the concave component alone in Zhang & Zhang (2012). A
distinctive feature is that our estimation and prediction bounds in (8)–(9) depend only on the
universal regularization parameter λ0 = c{(log p)/n}1/2 for the L1 component, and are indepen-
dent of the regularization parameter λ for the concave component. In contrast, the bounds in
Zhang & Zhang (2012) generally depend on λ alone. The logarithmic factor log p reflects the
general price one needs to pay to search for important variables in high dimensions. In addi-
tion, when the signal strength is stronger and the regularization parameter λ is chosen suit-
ably, with the aid of the concave component we have a stronger variable selection result of
sign consistency than from using the L1 penalty alone, in addition to the oracle inequality.
Thanks to the inclusion of the L1 component, another nice feature is that our theory analyses
the sampling properties on the whole parameter space R

p, the full space of all possible mod-
els, rather than the restriction to the union of lower-dimensional coordinate subspaces such as in
Fan & Lv (2011).

The bound on the L∞ estimation loss in Theorem 1 involves ‖(n−1 X T
1 X1)

−1‖∞, which is
bounded from above by s1/2‖(n−1 X T

1 X1)
−1‖2 � s1/2κ−2

0 . The former bound is in general tighter
than the latter one. To see this, let us consider the special case where all column vectors of the
n × s subdesign matrix X1 have equal pairwise correlation ρ ∈ [0, 1). Then the Gram matrix
takes the form n−1 X T

1 X1 = (1 − ρ)Is + ρ1s1T
s . By the Sherman–Morrison–Woodbury formula,

we have (n−1 X T
1 X1)

−1 = (1 − ρ)−1 Is − ρ(1 − ρ)−1{1 + (s − 1)ρ}−11s1T
s , which gives

‖(n−1 X T
1 X1)

−1‖∞ = (1 − ρ)−1[1 + ρ(s − 2){1 + (s − 1)ρ}−1] � 2(1 − ρ)−1.

It is interesting to observe that the above matrix ∞-norm has a dimension-free upper bound.
Thus in this case, the bound on the L∞ estimation loss becomes O[{(log p)/n}1/2].

Due to the presence of the L1 penalty in (2), the resulting global minimizer β̂ characterized
in Theorem 1 may not have the oracle property in the context of Fan & Li (2001). This issue can
be resolved using the refitted least-squares estimator on the support supp(β̂).

COROLLARY 1. Assume that all conditions of Theorem 1 hold, and let β̃ be the refitted least-
squares estimator given by covariates in supp(β̂), with β̂ the estimator in Theorem 1. Then with
probability 1 − O(p−c0), β̃ equals the oracle estimator, and has the oracle property if the oracle
estimator is asymptotically normal.
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Combined L1 and concave regularization 63

Corollary 1 follows immediately from the second part of Theorem 1. Additional regularity
conditions ensuring the asymptotic normality of the oracle estimator can be found in, for example,
Theorem 4 in Fan & Lv (2011).

THEOREM 2. Assume that the conditions of Theorem 1 hold, with ε1, . . . , εn independent and
identically distributed as ε0. Then the regularized estimator β̂ in Theorem 1 satisfies that for
any τ > 0,

E{n−1‖X (β̂ − β0)‖2
2} = O(κ−2λ2

0s + m2,τ + γ λ0 p−c0), (10)

E(‖β̂ − β0‖q
q) = O[κ−2qλ

q
0s + (2 − q)λ−1

0 m2,τ + (q − 1)λ−2
0 m4,τ

+ {(2 − q)γ + (q − 1)γ 2}p−c0], q ∈ [1, 2], (11)

E{FS(β̂)} = O{κ−4(λ0/λ)2s + λ−2m2,τ + (γ λ0/λ
2 + s)p−c0}, (12)

where mq,τ = E(|ε0|q1{|ε0|>τ }) denotes the tail moment and γ = ‖β0‖1 + sλ−1
0 pλ(∞) + τ 2λ−1

0 .
If in addition λ � 56(1 − c1)

−1κ−2λ0s1/2, then we also have that E{FS(β̂)} = O{λ−2m2,τ +
(γ λ0/λ

2 + s)p−c0} and E(‖β̂ − β0‖∞) = O{λ0‖(n−1 X T
1 X1)

−1‖∞ + λ−1
0 m2,τ + γ p−c0}.

Observe that λ0 enters all bounds for the oracle risk inequalities, whereas λ enters only the
risk bound for the variable selection loss. This again reflects the different roles played by the L1
penalty and concave penalty in prediction and variable selection. The estimation and prediction
risk bounds in (10)–(11) as well as the variable selection risk bound in (12) can have leading
orders given in their first terms. To understand this, note that each of these first terms is indepen-
dent of τ and p−c0 , and the remainders in each upper bound can be made sufficiently small, since
τ and c0 can be chosen arbitrarily large. In fact, for bounded error εi with range [−b, b], taking
τ = b makes the tail moments mq,τ vanish. For Gaussian error εi ∼ N (0, σ 2), by the Gaussian
tail probability bound, we can show that mq,τ = O[τ q−1 exp{−τ 2/(2σ 2)}] for positive integer
q. In general, the tail moments can have sufficiently small order by taking a sufficiently large
τ diverging with n. All terms involving p−c0 can also be of sufficiently small order by taking a
sufficiently large positive constant c in λ0; see (5).

Our new oracle risk inequalities complement the common results on the oracle inequalities for
losses. The inclusion of the L1 component λ0t stabilizes prediction and variable selection, and
leads to oracle risk bounds. It is, however, unclear whether the concave method alone can enjoy
similar risk bounds.

3·4. Asymptotic properties of computable solutions

In § 3·3 we have shown that the global minimizer for combined L1 and concave regularization
can enjoy appealing asymptotic properties. Such a global minimizer, however, is not guaran-
teed to be found by a computational algorithm due to the general nonconvexity of the objective
function in (2). Thus a natural question is whether these nice properties can be shared by the
computable solution by any algorithm, where a computable solution is typically a local min-
imizer. Zhang & Zhang (2012) showed that under regularity conditions, any two sparse local
solutions can be close to each other. This result, along with the sparsity of the global minimizer
in Theorem 1, entails that any sparse computable solution, in the sense of being a local mini-
mizer, can be close to the global minimizer, and thus can enjoy properties similar to the global
minimizer. The following theorem establishes these results for sparse computable solutions.
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64 Y. FAN AND J. LV

THEOREM 3. Let β̂ be a computable local minimizer of (2) that is a global minimizer in each
coordinate produced by any algorithm satisfying ‖β̂‖0 � c2s and ‖n−1 X T(y − X β̂)‖∞ = O(λ0),
λ � c3λ0, and min‖δ‖2=1, ‖δ‖0�c4s n−1/2‖Xδ‖2 � κ0 for some positive constants c2, c3, κ0 and
sufficiently large positive constant c4. Then under the conditions of Theorem 1, β̂ has the same
asymptotic properties as the global minimizer in Theorem 1.

For practical implementation of the method in (2), we employ the path-following coordinate
optimization algorithm (Fan & Lv, 2011; Mazumder et al., 2011) and choose the initial estimate
to be the lasso estimator β̂lasso with the regularization parameter tuned to minimize the cross-
validated prediction error. An analysis of the convergence properties of such an algorithm was
presented by Lin & Lv (2013). The use of the lasso estimator as the initial value has also been
exploited in, for example, Zhang & Zhang (2012). With the coordinate optimization algorithm,
one can obtain a path of sparse computable solutions that are global minimizers in each coordi-
nate. Theorem 3 suggests that a sufficiently sparse computable solution with small correlation
between the residual vector and all covariates can enjoy desirable properties.

4. SIMULATION STUDY

We simulated 100 datasets from the linear regression model (1) with ε ∼ N (0, σ 2 In) and σ =
0·25. For each simulated dataset, the rows of X were sampled as independent and identically
distributed copies from N (0, �0) with �0 = (0·5|i− j |). We considered (n, p) = (80, 1000) and
(160, 4000), and set β as β0 = (1, −0·5, 0·7, −1·2, −0·9, 0·3, 0·55, 0, . . . , 0)T. For each dataset,
we employed the lasso, combined L1 and smoothly clipped absolute deviation (Fan & Li, 2001),
combined L1 and hard-thresholding, and combined L1 and smooth integration of counting and
absolute deviation penalties to produce a sparse estimate. The minimax concave penalty in Zhang
(2010) performed very similarly to the smoothly clipped absolute deviation penalty, so we omit
its results to save space. The tuning parameters were selected using BIC.

We considered six performance measures for the estimate β̂: the prediction error, L2 loss, L1
loss, L∞ loss, the number of false positives, and the number of false negatives. The prediction
error is defined as E(Y − xTβ̂)2, with (xT, Y ) an independent observation, which was calculated
based on an independent test sample of size 10 000. The Lq loss for estimation is ‖β̂ − β0‖q . A
false positive means a selected covariate outside the true sparse model supp(β0), and a false
negative means a missed covariate in supp(β0).

Table 1 lists the results under different performance measures. The combined L1 and smoothly
clipped absolute deviation, combined L1 and hard-thresholding, and combined L1 and smooth
integration of counting and absolute deviation methods all performed similarly to the oracle pro-
cedure, outperforming the lasso. As the sample size increases, the performance of all methods
tends to improve. Although theoretically the oracle inequalities for the L1 penalty and the com-
bined L1 and concave penalty can have the same convergence rates, the constants in these oracle
inequalities matter in finite samples. This explains the differences in prediction errors and other
performance measures in Table 1 for various methods.

We also compared our method with the concave penalty alone. Simulation studies suggest
that they have similar performance, except that our method is more stable. To illustrate this, we
compared the smoothly clipped absolute deviation with the combined L1 and smoothly clipped
absolute deviation. Boxplots of different performance measures from the two methods showed
that the latter reduces outliers and variability, and thus stabilizes the estimate. This result reveals
that the same advantage as advocated in Liu & Wu (2007) remains true in high dimensions, with
more general concave penalties.
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Table 1. Means and standard errors (in parentheses) of different performance measures

Lasso L1 + SCAD L1 + Hard L1 + SICA Oracle

n = 80
PE (×10−2) 45·0 (1·7) 8·1 (0·2) 7·0 (0·1) 7·1 (0·1) 6·9 (0·0)
L2 loss (×10−2) 86·9 (1·9) 16·8 (1·0) 11·3 (0·4) 11·3 (0·5) 9·7 (0·3)
L1 loss (×10−1) 27·6 (0·6) 3·6 (0·2) 2·5 (0·1) 2·5 (0·1) 2·1 (0·1)
L∞ loss (×10−2) 48·2 (1·2) 12·1 (0·8) 7·5 (0·3) 7·5 (0·3) 6·6 (0·2)
FP 26·1 (0·5) 0·2 (0·0) 0 (0) 0 (0) 0 (0)
FN 1·0 (0·1) 0·1 (0·0) 0·0 (0·0) 0·0 (0·0) 0 (0)

n = 160
PE (×10−2) 16·9 (0·5) 6·7 (0·0) 7·0 (0·1) 7·0 (0·1) 6·6 (0·0)
L2 loss (×10−2) 45·3 (1·0) 7·7 (0·3) 9·2 (0·4) 9·2 (0·4) 6·6 (0·2)
L1 loss (×10−1) 16·2 (0·3) 1·7 (0·1) 2·1 (0·1) 2·1 (0·1) 1·4 (0·0)
L∞ loss (×10−2) 24·9 (0·6) 5·3 (0·2) 6·0 (0·2) 5·9 (0·2) 4·4 (0·1)
FP 52·8 (1·1) 0·1 (0·0) 0·7 (0·1) 0·7 (0·1) 0 (0)
FN 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

L1 + SCAD, combined L1 and smoothly clipped absolute deviation; L1 + Hard, combined L1 and hard-thresholding;
L1 + SICA, combined L1 and smooth integration of counting and absolute deviation; PE, prediction error; FP, number
of false positives; FN, number of false negatives.

5. REAL-DATA ANALYSIS

We applied our method to the lung cancer data originally studied in Gordon et al. (2002) and
analysed in Fan & Fan (2008). This dataset consists of 181 tissue samples, with 31 from the
malignant pleural mesothelioma of the lung, and 150 from the adenocarcinoma of the lung. Each
sample tissue is described by 12 533 genes.

To better evaluate the suggested method, we randomly split the 181 samples into a training set
and a test set such that the training set consists of 16 samples from the malignant pleural mesothe-
lioma class and 75 samples from the adenocarcinoma class. Correspondingly, the test set has 15
samples from the malignant pleural mesothelioma class and 75 samples from the adenocarci-
noma class. For each split, we employed the same methods as in § 4 to fit the logistic regression
model to the training data, and then calculated the classification error using the test data. The tun-
ing parameters were selected using crossvalidation. We repeated the random splitting 50 times,
and the means and standard errors of classification errors were 2·960 (0·254) for the lasso, 3·080
(0·262) for combined L1 and smoothly clipped absolute deviation, 2·960 (0·246) for combined
L1 and hard-thresholding, and 2·980 (0·228) for combined L1 and smooth integration of count-
ing and absolute deviation. We also calculated the median number of variables chosen by each
method: 19 for the first one, 11 for the second one, 11 for the third one, and 12 for the fourth one;
the mean model sizes are almost the same as the medians. For each method, we computed the
percentage of times each gene was selected, and list the most frequently chosen m genes in the
Supplementary Material, with m equal to the median model size by the method. The sets of genes
selected by the combined L1 and concave penalties are subsets of those selected by the lasso.

6. DISCUSSION

Our theoretical analysis shows that the regularized estimate, as the global optimum, given by
combined L1 and concave regularization enjoys the same asymptotic properties as the lasso esti-
mator, but with improved sparsity and false sign rate, in ultrahigh-dimensional linear regression
models. These results may be extended to more general model settings and other convex penalties,
such as the L2 penalty. To quantify the stability of variable selection, one can use, for example,
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the bootstrap method (Efron, 1979) to estimate the selection probabilities, significance, and esti-
mation uncertainty of selected variables by the regularization method in practice.
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Supplementary material available at Biometrika online includes the proofs of Proposition 1
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APPENDIX

Proof of Theorem 1

Let δ = β̂ − β0 denote the estimation error with β̂ the global minimizer of (2). By Condition 2, we see
from Proposition 1 that each β̂ j is either 0 or of magnitude larger than (1 − c1)λ. It follows from the global
optimality of β̂ that

(2n)−1‖ε − X (β̂ − β0)‖2
2 + λ0‖β̂‖1 + ‖pλ(β̂)‖1 � (2n)−1‖ε‖2

2 + λ0‖β0‖1 + ‖pλ(β0)‖1. (A1)

With some simple algebra, (A1) becomes

(2n)−1‖Xδ‖2
2 − n−1εT Xδ + λ0‖β0 + δ‖1 + ‖pλ(β0 + δ)‖1 � λ0‖β0‖1 + ‖pλ(β0)‖1. (A2)

For notational simplicity, we let ã1 and ã2 denote the subvectors of a p-vector a consisting of its first s
components and remaining p − s components, respectively. Since β̃0,2 = 0, we have β̃0,2 + δ̃2 = δ̃2. Thus
we can rewrite (A2) as

(2n)−1‖Xδ‖2
2 − n−1εT Xδ + λ0‖δ̃2‖1 � λ0‖β̃0,1‖1 − λ0‖β̃0,1 + δ̃1‖1 + ‖pλ(β0)‖1 − ‖pλ(β0 + δ)‖1.

(A3)
The reverse triangle inequality |λ0‖β̃0,1‖1 − λ0‖β̃0,1 + δ̃1‖1| � λ0‖δ̃1‖1, along with (A3), yields

(2n)−1‖Xδ‖2
2 − n−1εT Xδ + λ0‖δ̃2‖1 � λ0‖δ̃1‖1 + ‖pλ(β0)‖1 − ‖pλ(β0 + δ)‖1, (A4)

which is key to establishing bounds on prediction and variable selection losses.
To analyse the behaviour of δ, we need to use the concentration property of n−1 X Tε around its mean

zero, as given in the deviation probability bound (5). Condition on the event E = {‖n−1 X Tε‖∞ � λ0/2}.
On this event, we have

−n−1εT Xδ + λ0‖δ̃2‖1 − λ0‖δ̃1‖1 � −(λ0/2)‖δ‖1 + λ0‖δ̃2‖1 − λ0‖δ̃1‖1 = (λ0/2)‖δ̃2‖1 − (3λ0/2)‖δ̃1‖1.

This inequality, together with (A4), gives

(2n)−1‖Xδ‖2
2 + (λ0/2)‖δ̃2‖1 � (3λ0/2)‖δ̃1‖1 + ‖pλ(β0)‖1 − ‖pλ(β0 + δ)‖1. (A5)

In order to proceed, we need to construct an upper bound for ‖pλ(β0)‖1 − ‖pλ(β0 + δ)‖1. We claim that
such an upper bound is (4n)−1‖Xδ‖2

2 + 4−1λ0‖δ‖1. To prove this, we consider two cases.
Case 1: ‖β̂‖0 � s. Then by Condition 2, we have |β0, j | > (1 − c1)λ ( j = 1, . . . , s) and p′

λ{(1 − c1)λ} �
λ0/4. For each j = 1, . . . , s, if β̂ j |= 0, we must have |β̂ j | > (1 − c1)λ, and thus by the mean-value
theorem, |pλ(|β0, j |) − pλ(|β̂ j |)| = p′

λ(t)|(|β̂ j | − |β0, j |)| � p′
λ(t)|δ j |, where t is between |β0, j | and |β̂ j |,

and δ j is the j th component of δ. Clearly t > (1 − c1)λ, which along with the concavity of pλ(t) leads to
p′

λ(t) � p′
λ{(1 − c1)λ} � λ0/4. This shows that |pλ(|β0, j |) − pλ(|β̂ j |)| � 4−1λ0|δ j | for each j = 1, . . . , s
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with β̂ j |= 0. We now consider j = 1, . . . , s with β̂ j = 0. Since ‖β̂‖0 � s, there exists some j ′ > s such
that β̂ j ′ |= 0 and the j ′ are distinct for different j . Similarly to above, we have that for some t1 between
(1 − c1)λ and |β0, j | and some t2 between (1 − c1)λ and |β̂ j ′ |,

|pλ(|β0, j |) − pλ(|β̂ j ′ |)| � |pλ(|β0, j |) − pλ{(1 − c1)λ}| + |pλ(|β̂ j ′ |) − pλ{(1 − c1)λ}|
= p′

λ(t1){|β0, j | − (1 − c1)λ} + p′
λ(t2){|β̂ j ′ | − (1 − c1)λ}

� p′
λ(t1)|δ j | + p′

λ(t2)|δ j ′ | � (λ0/4)(|δ j | + |δ j ′ |),

since β̂ j = 0 and β0, j ′ = 0. Combining these two sets of inequalities yields the desired upper bound
‖pλ(β0)‖1 − ‖pλ(β0 + δ)‖1 � (λ0/4)‖δ‖1 � (4n)−1‖Xδ‖2

2 + λ0‖δ‖1/4.
Case 2: ‖β̂‖0 = s − k for some k � 1. Then we have ‖δ‖0 � ‖β̂‖0 + ‖β0‖0 � s − k + s < 2s and ‖δ‖2 �

k1/2 min j=1,...,s |β0, j |, since there are at least k such j with j = 1, . . . , s and β̂ j = 0. Thus it follows from

the first part of Condition 1 and min j=1,...,s |β0, j | > 2κ−1
0 p1/2

λ (∞) in Condition 2 that

(4n)−1‖Xδ‖2
2 � 4−1κ2

0 ‖δ‖2
2 � 4−1κ2

0

(
k1/2 min

j=1,...,s
|β0, j |

)2

� kpλ(∞).

Since pλ(|β0, j |) � pλ(∞) and there are s − k nonzero quantities β̂ j , applying the same arguments
as in Case 1 gives our desired upper bound ‖pλ(β0)‖1 − ‖pλ(β0 + δ)‖1 � kpλ(∞) + (λ0/4)‖δ‖1 �
(4n)−1‖Xδ‖2

2 + (λ0/4)‖δ‖1.
Combining Cases 1 and 2 above along with (A5) and ‖δ‖1 = ‖δ̃1‖1 + ‖δ̃2‖1 yields

n−1‖Xδ‖2
2 + λ0‖δ̃2‖1 � 7λ0‖δ̃1‖1, (A6)

which entails a basic constraint
‖δ̃2‖1 � 7‖δ̃1‖1. (A7)

With the aid of (A7), we will first establish a useful bound on ‖δ̃2‖2. In view of (A7), the restricted eigen-
value assumption in the second part of Condition 1 and (A6), as well as the Cauchy–Schwartz inequality,
lead to

4−1κ2(s, 7)(‖δ̃1‖2
2 ∨ ‖δ̃′

2‖2
2) � (4n)−1‖Xδ‖2

2 � (7/4)λ0‖δ̃1‖1 � (7/4)λ0s1/2‖δ̃1‖2. (A8)

Solving this inequality gives

‖δ̃1‖2 � 7λ0s1/2/κ2(s, 7), ‖δ̃1‖1 � s1/2‖δ̃1‖2 � 7λ0s/κ2(s, 7). (A9)

Since the kth largest absolute component of δ̃2 is bounded from above by ‖δ̃2‖1/k, we have ‖δ̃3‖2
2 �∑p−s

k=s+1 ‖δ̃2‖2
1/k2 � s−1‖δ̃2‖2

1, where δ̃3 is a subvector of δ̃2 consisting of components excluding those
with the s largest magnitudes. This inequality, (A7), and the Cauchy–Schwartz inequality imply that
‖δ̃3‖2 � s−1/2‖δ̃2‖1 � 7s−1/2‖δ̃1‖1 � 7‖δ̃1‖2, and thus ‖δ̃2‖2 � 7‖δ̃1‖2 + ‖δ̃′

2‖2. By (A8), we have ‖δ̃′
2‖2 �

71/2λ
1/2
0 s1/4‖δ̃1‖1/2

2 /κ(s, 7). Combining these two inequalities with (A9) gives

‖δ̃2‖2 � 7‖δ̃1‖2 + 71/2λ
1/2
0 s1/4‖δ̃1‖1/2

2 /κ(s, 7) � 56λ0s1/2/κ2(s, 7). (A10)

This bound enables us to conduct more delicate analysis on δ.
We proceed to prove the first part of Theorem 1. The inequality (8) on the prediction loss can be obtained

by inserting (A9) into (A6):
n−1/2‖Xδ‖2 � 7λ0s1/2/κ(s, 7). (A11)

Combining (A9) with (A10) yields the following bound on the L2 estimation loss,

‖δ‖2 � ‖δ̃1‖2 + ‖δ̃2‖2 � 63λ0s1/2/κ2(s, 7). (A12)

For each 1 � q < 2, an application of Hölder’s inequality gives

‖δ‖q � {s(2−q)/2‖δ̃1‖q
2}1/q = s(2−q)/(2q)‖δ‖2 � 63λ0s1/q/κ2(s, 7). (A13)
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Now we bound the number of falsely discovered signs FS(β̂). If sgn(β̂ j ) |= sgn(β0, j ), then by Proposition 1
and Condition 2, |δ j | = |β̂ j − β0, j | � (1 − c1)λ. Thus, it follows that ‖δ‖2 � {FS(β̂)}1/2(1 − c1)λ. This,
together with (A12), entails that

FS(β̂) � {63/(1 − c1)}2(λ0/λ)2s/κ4(s, 7). (A14)

We finally note that all the above bounds for β̂ are conditional on the event E , and thus hold simultaneously
with probability 1 − O(p−c0), which concludes the proof of the first part of Theorem 1.

It remains to prove the second part of Theorem 1. Since λ � 56(1 − c1)
−1λ0s1/2/κ2(s, 7), we have by

Condition 2 that min j=1,...,s |β0, j | > 56λ0s1/2/κ2(s, 7). This inequality, together with (A9), implies that for
each j = 1, . . . , s,

sgn(β̂ j ) = sgn(β0, j ), (A15)

by a simple contradiction argument. In view of (A10) and the hard-thresholding feature of β̂ = (β̂T
0,1, β̂

T
0,2)

T

with β̂0,1 = (β̂1, . . . , β̂s)
T, a similar contradiction argument shows that β̂0,2 = 0. Combining this result with

(A15) leads to sgn(β̂) = sgn(β0). With this strong result on the sign consistency of β̂, we can derive tight
bounds on the L∞ loss. By Theorem 1 of Lv & Fan (2009), β̂0,1 solves the following equation for γ ∈ R

s :

γ = β̃0,1 − (n−1 X T
1 X1)

−1b, (A16)

where X1 is an n × s submatrix of X corresponding to s nonzero regression coefficients β0, j and b =
{λ01s + p′

λ(|γ |)} ◦ sgn(β̃0,1) − n−1 X T
1ε, with the derivative taken componentwise and ◦ the Hadamard,

componentwise, product. It follows from the concavity and monotonicity of pλ(t) and Condition 2 that for
any t > (1 − c1)λ, we have 0 � p′

λ(t) � p′
λ{(1 − c1)λ} � λ0/4. In view of (A15) and the hard-thresholding

feature of β̂, each component of β̂0,1 has magnitude larger than (1 − c1)λ. Since ‖n−1 X T
1ε‖∞ �

‖n−1 X Tε‖∞ � λ0/2 on the event E , combining these results leads to

sgn(b) = sgn(β̃0,1), λ0/2 � ‖b‖∞ � 7λ0/4. (A17)

Clearly δ̃2 = β̂0,2 = 0. Thus it follows from (A16), (A17), and the first part of Condition 1 that

‖δ‖∞ � ‖(n−1 X T
1 X1)

−1‖∞‖b‖∞ � (7/4)λ0‖(n−1 X T
1 X1)

−1‖∞,

which concludes the proof of the second part of Theorem 1.

Proof of Theorem 2

Let β̂ be the global minimizer of (2) given in Theorem 1, with δ = β̂ − β0 denoting the estimation
error. To calculate the risk of the regularized estimator β̂ for different losses, we need to analyse its tail
behaviour on the event E c = {‖n−1 X Tε‖∞ > λ0/2}. We work directly with inequality (A1). It follows easily
from (A1) that

(2n)−1‖Xδ − ε‖2
2 + λ0‖δ‖1 + ‖pλ(β̂)‖1 � (2n)−1‖ε‖2

2 + 2λ0‖β0‖1 + ‖pλ(β0)‖1. (A18)

We need to bound the term E{(2n)−1‖ε‖2
21E c} from above, where ε = (ε1, . . . , εn)

T. Consider the cases of
bounded or unbounded error.

Case 1: Bounded error with range [−b, b]. Then in view of the deviation probability bound (5), we have

E{(2n)−1‖ε‖2
21E c} � (b2/2)pr(E c) = O(p−c0). (A19)

Case 2: Unbounded error. Then it follows from (5) that for each i = 1, . . . , n and any τ > 0,

E{ε2
i 1E c} � E{ε2

i 1{|εi |�τ }∩E c} + E{ε2
i 1{|εi |>τ }} � τ 2pr(E c) + E{ε2

01{|ε0|>τ }}
= O(τ 2 p−c0) + E{ε2

01{|ε0|>τ }}.
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Thus we have

E{(2n)−1‖ε‖2
21E c} = (2n)−1

n∑
i=1

E{ε2
i 1E c} � 2−1 E{ε2

01{|ε0|>τ }} + O(τ 2 p−c0). (A20)

Clearly, the bound (A19) is a special case of the general bound (A20), with τ = b.
We first consider the risks under the L1 loss and prediction loss. Note that ‖pλ(β0)‖1 � spλ(∞). By

(A18), (A20), and (5), we have

E{‖δ‖11E c} � λ−1
0 E{(2n)−1‖ε‖2

21E c} + O[{2‖β0‖1 + sλ−1
0 pλ(∞)}p−c0 ]

� (2λ0)
−1 E{ε2

01{|ε0|>τ }} + O(γ p−c0), (A21)

where γ = ‖β0‖1 + sλ−1
0 pλ(∞) + τ 2λ−1

0 . This inequality, along with (A13) on the event E , yields that for
any τ > 0, E‖δ‖1 � 63λ0s/κ2(s, 7) + (2λ0)

−1 E{ε2
01{|ε0|>τ }} + O(γ p−c0). Note that (2n)−1‖Xδ − ε‖2

2 �
(4n)−1‖Xδ‖2

2 − (2n)−1‖ε‖2
2. Thus in view of (A18), a similar argument to the one for (A21) applies to

show that E{n−1‖Xδ‖2
21E c} � 4E{ε2

01{|ε0|>τ }} + O(γ λ0 p−c0). Combining this inequality with (A11) on
the event E gives

E{n−1‖Xδ‖2
2} � 49λ2

0s/κ2(s, 7) + 4E{ε2
01{|ε0|>τ }} + O(γ λ0 p−c0).

We now consider the risk under the variable selection loss. To this end, we need to bound ‖β̂‖0 on the
event E c. Since β̂ always has the hard-thresholding property ensured by Proposition 1, it follows from
the monotonicity of pλ(t) and Condition 2 that ‖pλ(β̂)‖1 � ‖β̂‖0 pλ{(1 − c1)λ} � ‖β̂‖0 pH,λ{(1 − c1)λ} =
‖β̂‖02−1(1 − c2

1)λ
2. This inequality, along with (A18), shows that

‖β̂‖0 � 2(1 − c2
1)

−1λ−2{(2n)−1‖ε‖2
2 + 2λ0‖β0‖1 + ‖pλ(β0)‖1}. (A22)

Clearly, FS(β̂) � ‖β̂‖0 + s. Thus by (A22), applying a similar argument to the one for (A21) gives

E{FS(β̂)1E c} � (1 − c2
1)

−1λ−2 E{ε2
01{|ε0|>τ }} + O{(γ λ0/λ

2 + s)p−c0}.

It follows from this bound and inequality (A14) on the event E that

E{FS(β̂)} � 632(1 − c1)
−2(λ0/λ)2s/κ4(s, 7) + (1 − c2

1)
−1λ−2 E{ε2

01{|ε0|>τ }} + O{(γ λ0/λ
2 + s)p−c0}.

We finally consider the risks under the Lq loss with q ∈ (1, 2]. By (A18) and the norm inequality
‖δ‖2 � ‖δ‖1, we have

‖δ‖2
2 � λ−2

0 {(2n)−1‖ε‖2
2 + 2λ0‖β0‖1 + ‖pλ(β0)‖1}2 � 3λ−2

0 {(2n)−2‖ε‖4
2 + 4λ2

0‖β0‖2
1 + ‖pλ(β0)‖2

1}

� 3λ−2
0

{
(4n)−1

n∑
i=1

ε4
i + 4λ2

0‖β0‖2
1 + s2 p2

λ(∞)

}
.

With this inequality and (5), a similar argument to the one for (A20) applies to show that for any τ > 0,

E{‖δ‖2
21E c} � 3λ−2

0

[
(4n)−1

n∑
i=1

E(ε4
i 1E c) + {4λ2

0‖β0‖2
1 + s2 p2

λ(∞)}pr(E c)

]

� (3/4)λ−2
0 E(ε4

01{|ε0|>τ }) + O(γ 2 p−c0). (A23)

Combining (A23) with (A12) on the event E yields E‖δ‖2
2 � 632λ2

0s/κ4(s, 7) + (3/4)λ−2
0 E{ε4

01{|ε0|>τ }} +
O(γ 2 p−c0). For the Lq loss with q ∈ (1, 2), an application of Hölder’s inequality and Young’s inequality
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with (A21) and (A23) gives

E{‖δ‖q
q1E c} = E

⎛
⎝ p∑

j=1

|δ j |2−q |δ j |2q−21E c

⎞
⎠ � {E(‖δ‖11E c)}2−q{E(‖δ‖2

21E c)}q−1

� (2 − q)E{‖δ‖11E c} + (q − 1)E{‖δ‖2
21E c}

� (2 − q)(2λ0)
−1 E{ε2

01{|ε0|>τ }}
+ (q − 1)(3/4)λ−2

0 E{ε4
01{|ε0|>τ }} + O[{(2 − q)γ + (q − 1)γ 2}p−c0 ],

where δ = (δ1, . . . , δp)
T. It follows from this inequality and (A13) on the event E that

E(‖δ‖q
q) � 63qλ

q
0sκ−2q(s, 7) + (2 − q)(2λ0)

−1 E{ε2
01{|ε0|>τ }} + (q − 1)(3/4)λ−2

0 E{ε4
01{|ε0|>τ }}

+ O[{(2 − q)γ + (q − 1)γ 2}p−c0 ],

which completes the proof of the first part of Theorem 2.
The second part of Theorem 2 can be proved by noting that sgn(β̂) = sgn(β0) under the additional

condition and using similar arguments to the above.
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