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Jianging Fan! Yingying Fan* and Yichao Wu?

Abstract

In this chapter, we give a comprehensive overview on high-dimensional clas-
sification, which is prominently featured in many contemporary statistical
problems. Emphasis is given on the impact of dimensionality on implemen-
tation and statistical performance and on the feature selection to enhance
statistical performance as well as scientific understanding between collected
variables and the outcome. Penalized methods and independence learning
are introduced for feature selection in ultrahigh dimensional feature space.
Popular methods such as the Fisher linear discriminant, Bayes classifiers,
independence rules, distance-based classifiers and loss-based classification
rules are introduced and their merits are critically examined. Extensions to
multi-class problems are also given.

Keywords: Bayes classifier, classification error rates, distanced-based clas-
sifier, feature selection, impact of dimensionality, independence learning, in-
dependence rule, loss-based classifier, penalized methods, variable screening.

1 Introduction

Classification is a supervised learning technique. It arises frequently from bioinfor-
matics such as disease classifications using high throughput data like micorarrays
or SNPs and machine learning such as document classification and image recog-
nition. It tries to learn a function from training data consisting of pairs of input
features and categorical output. This function will be used to predict a class label
of any valid input feature. Well known classification methods include (multiple)
logistic regression, Fisher discriminant analysis, k-th-nearest-neighbor classifier,
support vector machines, and many others. When the dimensionality of the input
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feature space is large, things become complicated. In this chapter we will try to
investigate how the dimensionality impacts classification performance. Then we
propose new methods to alleviate the impact of high dimensionality and reduce
dimensionality.

We present some background on classification in Section 2. Section 3 is de-
voted to study the impact of high dimensionality on classification. We discuss
distance-based classification rules in Section 4 and feature selection by indepen-
dence rule in Section 5. Another family of classification algorithms based on dif-
ferent loss functions is presented in Section 6. Section 7 extends the iterative sure
independent screening scheme to these loss-based classification algorithms. We
conclude with Section 8 which summarizes some loss-based multicategory classifi-
cation methods.

2 Elements of classifications

Suppose we have some input space X and some output space ). Assume that there
are independent training data (X;,Y;) € X x Y, ¢ = 1,...,n coming from some
unknown distribution P, where Y; is the i-th observation of the response variable
and X; is its associated feature or covariate vector. In classification problems,
the response variable Y; is qualitative and the set ) has only finite values. For
example, in the cancer classification using gene expression data, each feature vector
X; represents the gene expression level of a patient, and the response Y; indicates
whether this patient has cancer or not. Note that the response categories can
be coded by using indicator variables. Without loss of generality, we assume
that there are K categories and Y = {1,2,..., K}. Given a new observation X,
classification aims at finding a classification function g : X — ), which can predict
the unknown class label Y of this new observation using available training data as
accurately as possible.

To access the accuracy of classification, a loss function is needed. A commonly
used loss function for classification is the zero-one loss:

L(y,9(x)) = {(1) gg; L zf (2.1)

This loss function assigns a single unit to all misclassifications. Thus the risk of
a classification function g, which is the expected classification error for an new
observation X, takes the following form:

K

> Lk, g(X)P(Y = kX)

k=1

=1-PY =g(x)|X =x), (2.2)

W(g) = EIL(Y,g(X))| = E

where Y is the class label of X. Therefore, the optimal classifier in terms of
minimizing the misclassification rate is

g"(x) = argmax P( X = x) (2.3)
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This classifier is known as the Bayes classifier in the literature. Intuitively, Bayes
classifier assigns a new observation to the most possible class by using the posterior
probability of the response. By definition, Bayes classifier achieves the minimum
misclassification rate over all measurable functions:

W(g") = min W(g). (2.4)

This misclassification rate W (g*) is called the Bayes risk. The Bayes risk is the
minimum misclassification rate when distribution is known and is usually set as
the benchmark when solving classification problems.

Let fr(x) be the conditional density of an observation X being in class k,
and 7 be the prior probability of being in class k with Zfil m; = 1. Then by
Bayes theorem it can be derived that the posterior probability of an observation
X being in class k is

P(Y =KX =x) = I{’“(Xi (2.5)
Zi=1 fi(x)m;
Using the above notation, it is easy to see that the Bayes classifier becomes
g (x) = arg max fre(x)m. (2.6)

For the following of this chapter, if not specified we shall consider the classifi-
cation between two classes, that is, K = 2. The extension of various classification
methods to the case where K > 2 will be discussed in the last section.

The Fisher linear discriminant analysis approaches the classification problem
by assuming that both class densities are multivariate Gaussian N(p,,X) and
N(py, X), respectively, where py, k = 1,2 are the class mean vectors, and X is
the common positive definite covariance matrix. If an observation X belongs to
class k, then its density is

Fulo) = (2) P2 Aen(2) 2 exp {5 x - T o (2)

where p is the dimension of the feature vectors X;. Under this assumption, the
Bayes classifier assigns X to class 1 if

m1f1(X) 2 m2 f2(X), (2.8)

which is equivalent to
™1 —
log .y + (X =)= (g — o) 20, (2.9)

where g1 = 1(py + p,). In view of (2.6), it is easy to see that the classification
rule defined in (2.8) is the same as the Bayes classifier. The function

Sr(x) = (x = ) =7 1y — ) (2.10)
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is called the Fisher discriminant function. It assigns X to class 1 if 6 (X) > log ;—f;
otherwise to class 2. It can be seen that the Fisher discriminant function is linear
in x. In general, a classifier is said to be linear if its discriminant function is a
linear function of the feature vector. Knowing the discriminant function dp, the
classification function of Fisher discriminant analysis can be written as gp(x) =
2 — I(6p(x) > logZ2) with I(-) the indicator function. Thus the classification
function is determined by the discriminant function. In the following, when we
talk about a classification rule, it could be the classification function g or the
corresponding discriminant function 4.

Denote by 6 = (41, 1o, X) the parameters of the two Gaussian distributions
N(pq,X) and N(py, ). Write W(4, 0) as the misclassification rate of a classifier
with discriminant function §. Then the discriminant function dp of the Bayes
classifier minimizes W (8, 80). Let ®(t) be the distribution function of a univariate
standard normal distribution. If 71 = 79 = %, it can easily be calculated that the
misclassification rate for Fisher discriminant function is

2
W(r,0) = (—d ;0)) : (2.11)
where d(0) = {(p; — py)"Z 7 (py, — py)}/? and is named as the Mahalanobis
distance in the literature. It measures the distance between two classes and was
introduced by Mahalanobis (1930). Since under the normality assumption the
Fisher discriminant analysis is the Bayes classifier, the misclassification rate given
in (2.11) is in fact the Bayes risk. It is easy to see from (2.11) that the Bayes risk
is a decreasing function of the distance between two classes, which is consistent
with our common sense.

Let I' be some parameter space. With a slight abuse of the notation, we
define the maximum misclassification rate of a discriminant function § over I' as

Wr(8) = sup W (4,0). (2.12)
Ocr
It measures the worst classification result of a classifier § over the parameter space
I". In some cases, we are also interested in the minimaz regret of a classifier, which
is the difference between the maximum misclassification rate and the minimax
misclassification rate, that is,

Rr(0) = Wr(8) — sup min W (4, 6). (2.13)
fer °
Since the Bayes classification rule 65 minimizes the misclassification rate W (4, @),
the minimax regret of § can be rewritten as
Rr(8) = Wr(8) — sup W(ég, ). (2.14)
er

From (2.11) it is easy to see that for classification between two Gaussian distribu-
tions with common covariance matrix, the minimax regret of § is

1
Rr(6) = Wr(d) — 2121;4) <_§d(0)> . (2.15)
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Figure 2.1 Illustration of distance-based classification. The centroid of each subsample
in the training data is first computed by taking the sample mean or median. Then, for
a future observation, indicated by query, it is classified according to its distances to the
centroids.

The Fisher discriminant rule can be regarded as a specific method of distance-
based classifiers, which have attracted much attention of researchers. Popularly
used distance-based classifiers include support vector machine, naive Bayes clas-
sifier, and k-th-nearest-neighbor classifier. The distance-based classifier assigns a
new observation X to class k if it is on average closer to the data in class k than
to the data in any other classes. The “distance” and “average” are interpreted
differently in different methods. Two widely used measures for distance are the
Euclidean distance and the Mahalanobis distance. Assume that the center of class
¢ distribution is p; and the common convariance matrix is 3. Here “center” could
be the mean or the median of a distribution. We use dist(x, ;) to denote the
distance of a feature vector x to the centriod of class i. Then if the Euclidean
distance is used,

dist s (x, ;) = /(% — )T (x — pay), (2.16)

and the Mahalanobis distance between a feature vector x and class 7 is

distar (%, 1) = \/ (x — ) TZ 7 (x — pr,): (2.17)
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Thus the distance-based classifier places a new observation X to class k if

arg mi)r}l dist(X, p;) = k. (2.18)
1€

Figure 2.1 illustrates the idea of distanced classifier classification.

When 71 = w3 = 1/2, the above defined Fisher discriminant analysis has the
interpretation of distance-based classifier. To understand this, note that (2.9) is
equivalent to

(X = p)"EZ X = ) (X = ) "E27HX = pay). (2.19)

Thus 6 assigns X to class 1 if its Mahalanobis distance to the center of class 1 is
smaller than its Mahalanobis distance to the center of class 2. We will introduce
in more details about distance-based classifiers in Section 4.

3 Impact of dimensionality on classification

A common feature of many contemporary classification problems is that the di-
mensionality p of the feature vector is much larger than the available training
sample size n. Moreover, in most cases, only a fraction of these p features are im-
portant in classification. While the classical methods introduced in Section 2 are
extremely useful, they no longer perform well or even break down in high dimen-
sional setting. See Donoho (2000) and Fan and Li (2006) for challenges in high
dimensional statistical inference. The impact of dimensionality is well understood
for regression problems, but not as well understood for classification problems. In
this section, we discuss the impact of high dimensionality on classification when
the dimension p diverges with the sample size n. For illustration, we will consider
discrimination between two Gaussian classes, and use the Fisher discriminant anal-
ysis and independence classification rule as examples. We assume in this section
that 71 = m9 = % and ny and ny are comparable.

3.1 Fisher discriminant analysis in high dimensions

Bickel and Levina (2004) theoretically studied the asymptotical performance of
the sample version of Fisher discriminant analysis defined in (2.10), when both
the dimensionality p and sample size n goes to infinity with p much larger than n.
The parameter space considered in their paper is

Iy ={0:d%0) >c* c1 < nin(E) € Anax(B) < o,y € Bk = 1,2}, (3.1)

where ¢, ¢; and cg are positive constants, Amin(X) and Apax(3) are the minimum

and maximum eigenvalues of 3, respectively, and B = Ba g = {u: Z(;il aju? <

d?} with d some constant, and a; — 00 as j — oo. Here, the mean vectors p,
k = 1,2 are viewed as points in Iy by adding zeros at the end. The condition on
eigenvalues ensures that %((EE)) < i—f < 00, and thus both ¥ and 7! are not
ill-conditioned. The condition d?(6) > ¢? is to make sure that the Mahalanobis
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distance between two classes is at least ¢. Thus the smaller the value of ¢, the
harder the classification problem is.

Given independent training data (X;,Y;), ¢ = 1,...,n, the common covari-
ance matrix can be estimated by using the sample covariance matrix

K
D= Xi- )X - )"/ (n - K). (3-2)
k=1Y;=k
For the mean vectors, Bickel and Levina (2004) showed that there exist estimators
o of py, k= 1,2 such that

max B[y, — | = o(1). (3:3)

Replacing the population parameters in the definition of dp by the above esti-
mators 1, and 3, we obtain the sample version of Fisher discriminant function
op.

It is well known that for fixed p, the worst case misclassification rate of Sp
converges to the worst case Bayes risk over I'y, that is,

Wr, (5r) — Ble/2), as n— o, (3.4)
where ®(t) = 1 —®(¢) is the tail probability of the standard Gaussian distribution.

Hence, 0 is asymptotically optimal for this low dimensional problem. However,
in high dimensional setting, the result is very different.

Bickel and Levina (2004) studied the worst case misclassification rate of o
when 17 = ns in high dimensional setting. Specifically they showed that under

some regularity conditions, if p/n — oo, then
— A 1
Wr,(0r) = 5 (3.5)

where the Moore-Penrose generalized inverse is used in the definition of 5p. Note
that 1/2 is the misclassification rate of random guessing. Thus although Fisher
discriminant analysis is asymptotically optimal and has Bayes risk when dimension
p is fixed and sample size n — oo, it performs asymptotically no better than
random guessing when the dimensionality p is much larger than the sample size
n. This shows the difficulty of high dimensional classification. As have been
demonstrated by Bickel and Levina (2004) and pointed out by Fan and Fan (2008),
the bad performance of Fisher discriminant analysis is due to the diverging spectra
(e.g., the condition number goes to infinity as dimensionality diverges) frequently
encountered in the estimation of high-dimensional covariance matrices. In fact,
even if the true covariance matrix is not ill conditioned, the singularity of the
sample covariance matrix will make the Fisher discrimination rule inapplicable
when the dimensionality is larger than the sample size.

3.2 Impact of dimensionality on independence rule

Fan and Fan (2008) studied the impact of high dimensionality on classification.
They pointed out that the difficulty of high dimensional classification is intrinsi-
cally caused by the existence of many noise features that do not contribute to the
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reduction of classification error. For example, for the Fisher discriminant analy-
sis discussed before, one needs to estimate the class mean vectors and covariance
matrix. Although individually each parameter can be estimated accurately, ag-
gregated estimation error over many features can be very large and this could
significantly increase the misclassification rate. This is another important reason
that causes the bad performance of Fisher discriminant analysis in high dimen-
sional setting. Greenshtein and Ritov (2004) and Greenshtein (2006) introduced
and studied the concept of persistence, which places more emphasis on misclassifi-
cation rates or expected loss rather than the accuracy of estimated parameters. In
high dimensional classification, since we care much more about the misclassifica-
tion rate instead of the accuracy of the estimated parameters, estimating the full
covariance matrix and the class mean vectors will result in very high accumulation
error and thus low classification accuracy.

To formally demonstrate the impact of high dimensionality on classification,
Fan and Fan (2008) theoretically studied the independence rule. The discriminant
function of independence rule is

6r(x) = (x — )" D™ (py — ), (3.6)

where D = diag{X}. It assigns a new observation X to class 1 if §;(X) > 0.
Compared to the Fisher discriminant function, the independence rule pretends
that features were independent and use the diagonal matrix D instead of the full
covariance matrix X to scale the feature. Thus the aforementioned problems of
diverging spectrum and singularity are avoided. Moreover, since there are far less
parameters need to be estimated when implementing the independence rule, the
error accumulation problem is much less serious when compared to the Fisher
discriminant function.

Using the sample mean i, = % > v,— Xi, k = 1,2 and sample covariance
matrix 3 as estimators and letting D= diag{f)}, we obtain the sample version
of independence rule

R ~—1

51x) = (x—)"D " (@i, — fin). (3.7)

Fan and Fan (2008) studied the theoretical performance of 67(x) in high dimen-
sional setting.

Let R = D2 D~ 1/2 be the common correlation matrix and Amax(R) be
its largest eigenvalue, and write @ = (a1, ..., ap)? = p; — p,. Fan and Fan (2008)
considered the parameter space

I ={(a,X): a'D " a > Cp, Amax(R) < by, min o7 >0}, (3.8)

<I<p
where C), is a deterministic positive sequence depending only on the dimensionality
P, by is a positive constant, and 0]2- is the j-th diagonal element of 3. The condition
a’Da > C, is similar to the condition d(6) > ¢ in Bickel and Levina (2004). In
fact, o’ D™ 'a is the accumulated marginal signal strength of p individual features,
and the condition o/ D 'ax > C)p imposes a lower bound on it. Since there is no
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restriction on the smallest eigenvalue, the condition number of R can diverge
with sample size. The last condition min;¢;<, 0]2- > 0 ensures that there are no
deterministic features that make classification trivial and the diagonal matrix D
is always invertible. It is easy to see that I'y covers a large family of classification
problems.

To access the impact of dimensionality, Fan and Fan (2008) studied the pos-
terior misclassification rate and the worst case posterior misclassification rate of
51 over the parameter space I's. Let X be a new observation from class 1. Define
the posterior misclassification rate and the worst case posterior misclassification
rate respectively as

W (b7,0) = P(6;(X) < 0|(X;,Yi),i=1,...,n), (3.9)
WF2(8[) = glEE;X W(SI,O). (3.10)

Fan and Fan (2008) showed that when logp = o(n), n = o(p) and nC, — oo, the
following inequality holds

mmz o/ D7 e+ 0p(1)) + /s (m — n2)

_ P nning

W(b;,0) <®
2/ Amax(R){1 + nina/(pn)a’ D~ (1 + 0, (1)) }

7 | -(3.11)

This inequality gives an upper bound on the classification error. Since ®(-) de-
creases with its argument, the right hand side decreases with the fraction inside
®. The second term in the numerator of the fraction shows the influence of sample
size on classification error. When there are more training data from class 1 than
those from class 2, i.e., n; > na, the fraction tends to be larger and thus the upper
bound is smaller. This is in line with our common sense, as if there are more
training data from class 1, then it is less likely that we misclassify X to class 2.

Fan and Fan (2008) further showed that if \/nine/(np)C, — Co with Cy
some positive constant, then the worst case posterior classification error

Co ) (3.12)

2v/bo
We make some remarks on the above result (3.12). First of all, the impact of
dimensionality is shown as Cp/,/p in the definition of Cy. As dimensionality p
increases, so does the aggregated signal Cp, but a price of the factor \/p needs to
be paid for using more features. Since n; and ny are assumed to be comparable,
ning/(np) = O(n/p). Thus one can see that asymptotically Wr,(d;) increases
with y/n/pC,. Note that \/n/pC, measures the tradeoff between dimensionality
p and the overall signal strength C,,. When the signal level is not strong enough
to balance out the increase of dimensionality, i.e., v/n/pC, — 0 as n — oo, then

Wr, (67) - 6(

Wr, (5 1) N % This indicates that the independence rule 6; would be no better
than the random guessing due to noise accumulation, and using less features can
be beneficial.

The inequality (3.11) is very useful. Observe that if we only include the first
m features j = 1,...,m in the independence rule, then (3.11) still holds with each
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term replaced by its truncated version and p replaced by m. The contribution of
the j feature is governed by its marginal utility a? / a?. Let us assume that the
importance of the features is already ranked in the descending order of {oz? / 0']2-}.
Then m~! Z;nzl o /o% will most possibly first increase and then decrease as we
include more and more features, and thus the right hand side of (3.11) first de-
creases and then increases with m. Minimizing the upper bound in (3.11) can help
us to find the optimal number of features m.

L5 b

1_
“ILL bl
0|.| ||I || i '|I ||‘ |

_2 1 1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500

Figure 3.1 The centroid p, of class 1. The heights indicate the values of non-vanishing
elements.

To illustrate the impact of dimensionality, let us take p = 4500, X the identity
matrix, and p, = 0 whereas p, has 98% of coordinates zero and 2% non-zero,
generated from the double exponential distribution. Figure 3.1 illustrates the
vector pq, in which the heights show the values of non-vanishing coordinates.
Clearly, only about 2% of features have some discrimination power. The effective
number of features that have reasonable discrimination power (excluding those
with small values) is much smaller. If the best two features are used, it clearly has
discrimination power, as shown in Figure 3.2(a), whereas when all 4500 features
are used, they have little discrimination power (see Figure 3.2(d)) due to noise
accumulation. When m = 100 (about 90 features are useful and 10 useless: the
actual useful signals are less than 90 as many of them are weak) the signals are
strong enough to overwhelm the noise accumulation, where as when m = 500 (at
least 410 features are useless), the noise accumulation exceeds the strength of the
signals so that there is no discrimination power.
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(a) m=2 (b) m=100
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Figure 3.2 The plot of simulated data with “x” indicated the first class and “+” the

second class. The best m features are selected and the first two principal components

are computed based on the sample covariance matrix. The data are then projected onto

these two principal components and are shown in (a), (b) and (c). In (d), the data are
projected on two randomly selected directions in the 4500-dimensional space.

3.3 Linear discriminants in high dimensions

From discussions in the previous two subsections, we see that in high dimensional
setting, the performance of classifiers is very different from their performance when
dimension is fixed. As we have mentioned earlier, the bad performance is largely
caused by the error accumulation when estimating too many noise features with
little marginal utility a? / sz. Thus dimension reduction and feature selection are
very important in high dimensional classification.

A popular class of dimension reduction methods is projection. See, for ex-
ample, principal component analysis in Ghosh (2002), Zou et al. (2004), and Bair
et al. (2006); partial least squares in Nguyen and Rocke (2002), Huang and Pan
(2003), and Boulesteix (2004); and sliced inverse regression in Li (1991), Zhu et
al. (2006), and Bura and Pfeiffer (2003). As pointed out by Fan and Fan (2008),
these projection methods attempt to find directions that can result in small clas-
sification errors. In fact, the directions found by these methods put much more
weight on features that have large classification power. In general, however, linear
projection methods are likely to perform poorly unless the projection vector is
sparse, namely, the effective number of selected features is small. This is due to
the aforementioned noise accumulation prominently featured in high-dimensional
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problems.

To formally establish the result, let a be a p-dimensional unit random vector
coming from a uniform distribution over a (p—1)-dimensional sphere. Suppose that
we project all observations onto the vector a and apply the Fisher discriminant
analysis to the projected data a”X;,...,a” X, that is, we use the discriminant
function

da(x) = (a"x —a" @) (a" i, — a’ hy). (3.13)
Fan and Fan (2008) showed that under some regularity conditions, if p=* >°% |
a?/a? — 0, then
Pa(X) < 0, Y0 i =1, om) o 2 (3.14)
where X is a new observation coming from class 1, and the probability is taken
with respect to the random vector a and new observation X from class 1. The
result demonstrates that almost all linear discriminants cannot perform any better
than random guessing, due to the noise accumulation in the estimation of pop-
ulation mean vectors, unless the signals are very strong, namely the population
mean vectors are very far apart. In fact, since the projection direction vector
a is randomly chosen, it is nonsparse with probability one. When a nonsparse
projection vector is used, one essentially uses all features to do classification, and
thus the misclassification rate could be as high as random guessing due to the
noise accumulation. This once again shows the importance of feature selection in
high dimensionality classification. To illustrate the point, Figure 3.2(d) shows the
projected data onto two randomly selected directions. Clearly, neither projections
has discrimination power.

4 Distance-based classification rules

Many distance-based classifiers have been proposed in the literature to deal with
classification problems with high dimensionality and small sample size. They in-
tend to mitigate the “curse-of-dimensionality” in implementation. In this section,
we will first discuss some specific distance-based classifiers, and then talk about
the theoretical properties of general distance-based classifiers.

4.1 Naive Bayes classifier

As discussed in Section 2, the Bayes classifier predicts the class label of a new
observation by comparing the posterior probabilities of the response. It follows
from the Bayes theorem that
PX=x|Y =k
P(Y = kX =x) = K( d Jmk (4.1)
Yo PX=x|Y =i)m;

Since P(X =x|Y =) and m;, ¢ = 1,..., K are unknown in practice, to implement
the Bayes classifier we need to estimate them from the training data. However,
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this method is impractical in high dimensional setting due to the curse of dimen-
sionality and noise accumulation when estimating the distribution P(X|Y), as
discussed in Section 3. The naive Bayes classifier, on the other hand, overcomes
this difficulty by making a conditional independence assumption that dramatically
reduces the number of parameters to be estimated when modeling P(X|Y"). More
specifically, the naive Bayes classifier uses the following calculation:

P(X=x|Y =k) = f[ P(X; = z,|Y = k), (4.2)

where X; and z; are the j-th components of X and x, respectively. Thus the
conditional joint distribution of the p features depends only on the marginal dis-
tributions of them. So the naive Bayes rule utilizes the marginal information of
features to do classification, which mitigates the “curse-of-dimensionality” in im-
plementation. But, the dimensionality does have an impact on the performance
of the classifier, as shown in the previous section. Combining (2.6), (4.1) and
(4.2) we obtain that the predicted class label by naive Bayes classifier for a new
observation is

P
g(x) = arg max 1_[1 P(X; =Y =k). (4.3)
j=

In the case of classification between two normal distributions N(u,,3) and
N(py, X) with m = mp = %, it can be derived that the naive Bayes classifier has
the discriminant function

01(x) = (x = )" D7 (g — pso), (4.4)
where D = diag(X), the same as the independence rule (3.7), which assigns a
new observation X to class 1 if 6;(X) > 0; otherwise to class 2. It is easy to see
that d;(x) is a distance-based classifier with distance measure chosen to be the
weighted Lo-distance: distz(x, p;) = (x — ;)T D' (x — ;).

Although in deriving the naive Bayes classifier, it is assumed that the fea-
tures are conditionally independent, in practice it is widely used even when this
assumption is violated. In other words, the naive Bayes classifier pretends that the
features were conditionally independent with each other even if they are actually
not. For this reason, the naive Bayes classifier is also called independence rule in
the literature. In this chapter, we will interchangeably use the name “naive Bayes
classifier” and “independence rule”.

As pointed out by Bickel and Levina (2004), even when p and X are assumed
known, the corresponding independence rule does not lose much in terms of classi-
fication power when compared to the Bayes rule defined in (2.10). To understand
this, Bickel and Levina (2004) consider the errors of Bayes rule and independence
rule, which can be derived to be

e1 =P(p(X)<0)=0 (%{aTE_laPm) and

— (1 "D
— PO;(X)<0)= (= :
€2 (5I( ) 0) (2{aTD12D1a}1/2)
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respectively. Since the errors e, k = 1,2 are both decreasing functions of the
arguments of ®, the efficiency of the independence rule relative to the Bayes rule
is determined by the ratio r of the arguments of ®. Bickel and Levina (2004)
showed that the ratio r can be bounded as

@ (e2) "D ' L 2VE, (4.5)
r=— = > . .
@ 1(61) {(aTz—la)(aTD—lzD—la)}l/Q 1+K0
where Ky = maxr, % with R the common correlation matrix defined in

Section 3.2. Thus the error es of the independence rule can be bounded as

—( 2v/Kp ——1
61<62<q><1+;0q> (61)>. (4.6)

It can be seen that for moderate K, the performance of independence rule is
comparable to that of the Fisher discriminant analysis. Note that the bounds in
(4.6) represents the worst case performance. The actual performance of indepen-
dence rule could be better. In fact, in practice when a and X both need to be
estimated, the performance of independence rule is much better than that of the
Fisher discriminant analysis.

We use the same notation as that in Section 3, that is, we use 5 to denote
the sample version of Fisher discriminant function, and use 51 to denote the sample
version of the independence rule. Bickel and Levina (2004) theoretically compared
the asymptotical performance of 5p and é7. The asymptotic performance of Fisher
discriminant analysis is given in (3.5). As for the independence rule, under some
regularity conditions, Bickel and Levina (2004) showed that if logp/n — 0, then

lim sup Wl"l(éj) 25( vEo c),

n— oo

1+ VKo

where I'y is the parameter set defined in Section 3.1. Recall that (3.5) shows that
the Fisher discriminant analysis asymptotically performs no better than random
guessing when the dimensionality p is much larger than the sample size n. While
the above result (4.7) demonstrates that for the independence rule, the worst case
classification error is better than that of the random guessing, as long as the
dimensionality p does not grow exponentially faster than the sample size n and
Ky < oo. This shows the advantage of independence rule in high dimensional
classification. Note that the impact of dimensionality can not be seen in (4.7)
whereas it can be seen from (3.12). This is due to the difference of 'y from T'y.

On the practical side, Dudoit et al. (2002) compared the performance of
various classification methods, including the Fisher discriminant analysis and the
independence rule, for the classification of tumors based on gene expression data.
Their results show that the independence rule outperforms the Fisher discriminant
analysis.

Bickel and Levina (2004) also introduced a spectrum of classification rules
which interpolate between 5 r and 5 7 under the Gaussian coloured noise model as-
sumption. They showed that the minimax regret of their classifier has asymptotic

(4.7)
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rate O(n~"logn) with xk some positive number defined in their paper. See Bickel
and Levina (2004) for more details.

4.2 Centroid rule and k-nearest-neighbor rule

Hall et al. (2005) have given the geometric representation of high dimensional,
low sample size data, and used it to analyze the performance of several distance-
based classifiers, including the centroid rule and 1-nearest neighbor rule. In their
analysis, the dimensionality p — oo while the sample size n is fixed.

To appreciate their results, we first introduce some notations. Consider clas-
sification between two classes. Assume that within each class, observations are
independent and identically distributed. Let Z; = (Z11, Z12,...,Z1p)" be an ob-
servation from class 1, and Zo = (Za1, Zoo, . . ., ng)T be an observation from class
2. Assume the following results hold as p — oo

1o 1<
- Zvar(le) — o2, - Zvar(Zgj) — T2,
p= p=
j= j=
P
Y IB(ZY) - E(Z5)) — 7, (4.8)
=1

where o, T and k are some positive constants. Let C} be the centroid of the
training data from class k, where k = 1,2. Here, the centroid Cj could be the
mean or median of data in class k.

The “centroid rule” or “mean difference rule” classifies a new observation to
class 1 or class 2 according to its distance to their centroids. This approach is
popular in genomics. To study the theoretical property of this method, Hall et al.
(2005) first assumed that 02 /ny > T?/ny. They argued that if needed, the roles for
class 1 and class 2 can be interchanged to achieve this. Then under some regularity
conditions, they showed that if K2 > 02 /n; — T?/ns, then the probability that a
new datum from either class 1 or class 2 is correctly classified by the centroid rule
converges to 1 as p — oo; If instead k2 < 02/ny — T?/ns, then with probability
converging to 1, a new datum from either class will be classified by the centroid
rule as belonging to class 2. This property is also enjoyed by the support vector
machine method which to be discussed in a later section.

The nearest-neighbor rule uses those training data closest to X to predict
the label of X. Specifically, the k-nearest-neighbor rule predicts the class label of
X as

1
5(X) = Y, (1.9)
X, €Nk (X)

where Ni(X) is the neighborhood of X defined by the k closest observations in
the training sample. For two-class classification problems, X is assigned to class
1if 6(X) < 1.5. This is equivalent to the majority vote rule in the “committee”
Ni(X). For more details on the nearest-neighbor rule, see Hastie et al. (2009).
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Hall et al. (2005) also considered the l-nearest-neighbor rule. They first
assumed that o2 > T2. The same as before, the roles of class 1 and class 2
can be interchanged to achieve this. They showed that if k2 > 02 — T2, then the
probability that a new datum from either class 1 or class 2 is correctly classified by
the 1-nearest-neighbor rule converges to 1 as p — oo; if instead x2 < 02 — T2, then
with probability converging to 1, a new datum from either class will be classified
by the 1-nearest-neighbor rule as belonging to class 2.

Hall et al. (2005) further discussed the contrasts between the centroid rule
and the 1-nearest-neighbor rule. For simplicity, they assumed that n; = ns. They
pointed out that asymptotically, the centroid rule misclassifies data from at least
one of the classes only when k? < |02 — T?|/n1, whereas the 1-nearest-neighbor
rule leads to misclassification for data from at least one of the classes both in
the range k2 < |02 — T?|/n; and when |02 — T?|/n1 < k? < |0? — T?|. This
quantifies the inefficiency that might be expected from basing inference only on a
single nearest neighbor. For the choice of k£ in the nearest neighbor, see Hall, Park
and Samworth (2008).

For the properties of both classifiers discussed in this subsection, it can be
seen that their performances are greatly determined by the value of x2. However,
in view of (4.8), x2 could be very small or even 0 in high dimensional setting due
the the existence of many noise features that have very little or no classification
power (i.e. those with EZ?; ~ EZ3;). This once again shows the difficulty of
classification in high dimensional setting.

4.3 Theoretical properties of distance-based classifiers

Hall, Pittelkow and Ghosh (2008) suggested an approach to accessing the theoret-
ical performance of general distance-based classifiers. This technique is related to
the concept of “detection boundary” developed by Ingster and Donoho and Jin.
See, for example, Donoho and Jin (2004); Hall and Jin (2008). Ingster (2002);
and Jin (2006); Hall, Pittelkow and Ghosh (2008) studied the theoretical perfor-
mance of a variety distance-based classifiers constructed from high dimensional
data, and obtain the classification boundaries for them. We discuss their study in
this subsection.

Let g(-) = g(:|(X;,Y;),i = 1,...,n) be a distanced-based classifier which
assigns a new observation X to either class 1 or class 2. Hall, Pittelkow and
Ghosh (2008) argued that any plausible, distance-based classifier g should enjoy
the following two properties:

(a) g assigns X to class 1 if it is closer to each of the X/s in class 1 than it is to
any of the X’s in class 2;

(b) If g assigns X to class 1 then at least one of the Xs in class 1 is closer to X
than X is closer to the most distant X'’s in class 2.

These two properties together imply that
71 < Pr(g(X) = k) < mge, for k=1,2, (4.10)

where Py denotes the probability measure when assuming that X is from class k
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with k = 1,2, and 71 and 7o are defined as

T —,P(m X; — X|| < min X»—X) nd 4.11
k1 b ie%}f“ H jelng / H & ( )
T —,P(m'n X, — X|| < X X-—X) 4.12
k2 k ielgl | I jeag2 X [ ( )

with Gy = {i:1<i<nY,=1}and Go = {i: 1 <i < n,Y; = 2}. Hall, Pit-
telkow and Ghosh (2008) considered a family of distance-based classifiers satisfying
condition (4.10).

To study the theoretical property of these distance-based classifiers, Hall,
Pittelkow and Ghosh (2008) considered the following model

Xij:ukj—i—z-:ij, forie G, k=1,2, (413)

where X;; denotes the j-th component of X, p; represents the j-th component of
mean vector i, and €;;’s are independent and identically distributed with mean 0
and finite fourth moment. Without loss of generality, they assumed that the class
1 population mean vector p; = 0. Under this model assumption, they showed
that if some mild conditions are satisfied, mp; — 0 and 7w — 0 if and only if
p = o(||p2]|*). Then using inequality (4.10), they obtained that the probability
of the classifier g correctly classifying a new observation from class 1 or class 2
converges to 1 if and only if p = o(||u,||*) as p — co. This result tells us just
how fast the norm of the two class mean difference vector p, must grow for it
to be possible to distinguish perfectly the two classes using the distance-based
classifier. Note that the above result is independent of the sample size n. The
result is consistent with (a specific case of) (3.12) for independent rule in which
Cp = ||25]|? in the current setting and misclassification rate goes to zero when the
signal is so strong that C2 /p — oo (if n is fixed) or ||py||*/p — co. The impact of
dimensionality is implied by the quantity ||z,[|*/\/p-

It is well known that the thresholding methods can improve the sensitivity
of distance-based classifiers. The thresholding in this setting is a feature selec-
tion method, using only features with distant away from the other. Denote by
ij'“ = X;;I(X;; > t) the thresholded data, i = 1,...,n, j = 1,...,p, with ¢ the
thresholding level. Let X{" = (X{7) be the thresholded vector and g'" be the
version of the classifier g based on thresholded data. The case where the absolute
values |X;;| are thresholded is very similar. Hall, Pittelkow and Ghosh (2008)
studied the properties of the threshold-based classifier g*”. For simplicity, they
assumed that p10; = v for ¢ distinct indices j, and ps; = 0 for the remaining p — ¢
indices, where

(a) v >t

(b) t =t(p) — oo as p increases,

(¢) q = q(p) satisfies ¢ — oo and 1 < ¢ < ¢p with 0 < ¢ < 1 fixed, and
(d) the errors ¢;; has a distribution that is unbounded to the right.

With the above assumptions and some regularity conditions, they proved that the
general thresholded distance-based classifier ¢g'” has a property that is analogue
to the standard distance-based classifier, that is, the probability that the classifier
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g'" correctly classifies a new observation from class 1 or class 2 tending to 1 if and
only if p = o(T) as p — oo, where T = (qv?)?/Ele};I(e;; > t)]. Compared to the
property of standard distance-based classifier, the thresholded classifier allows for
higher dimensionality if E[e};1(ei; > t)] — 0 as p — oo.

Hall, Pittelkow and Ghosh (2008) further compared the theoretical perfor-
mance of standard distanced-based classifiers and thresholded distance-based clas-
sifiers by using the classification boundaries. To obtain the explicit form of clas-
sification boundaries, they assumed that for j-th feature, the class 1 distribu-
tion is GN,(0,1) and the class 2 distribution is GN,(u2;,1), respectively. Here
GN, (11, 0%) denotes the Subbotin, or generalized normal distribution with proba-
bility density

x — ,Y
F el 1,0) = oot exp <‘|VTM|> , (4.14)

where 7,0 > 0 and C, is some normalization constant depending only on ~. It
is easy to see that the standard normal distribution is just the standard Subbotin
distribution with v = 2. By assuming that ¢ = O(p*~?), t = (yrlogp)*/7, and
v = (yslogp)/" with % < B <land0<r < s < 1,they derived that the sufficient
and necessary conditions for the classifiers g and ¢'" to produce asymptotically
correct classification results are

1-28>0and (4.15)
1—-26+s>0, (4.16)

respectively. Thus the classification boundary of ¢ is lower than that of g, indi-
cating that the distance-based classifier using truncated data are more sensible.

The classification boundaries for distance-based classifiers and for their thresh-
olded versions are both independent of the training sample size. As pointed out
by Hall, Pittelkow and Ghosh (2008), this conclusion is obtained from the fact
that for fixed sample size n and for distance-based classifiers, the probability of
correct classification converges to 1 if and only if the differences between distances
among data have a certain extremal property, and that this property holds for
one difference if and only if it holds for all of them. Hall, Pittelkow and Ghosh
(2008) further compared the classification boundary of distance-based classifiers
with that of the classifiers based on higher criticism. See their paper for more
comparison results.

5 Feature selection by independence rule

As has been discussed in Section 3, classification methods using all features do not
necessarily perform well due to the noise accumulation when estimating a large
number of noise features. Thus, feature selection is very important in high dimen-
sional classification. This has been advocated by Fan and Fan (2008) and many
other researchers. In fact, the thresholding methods discussed in Hall, Pittelkow
and Ghosh (2008) are also a type of feature selection.
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5.1 Features annealed independence rule

Fan and Fan (2008) proposed the Features Annealed Independence Rule (FAIR)
for feature selection and classification in high dimensional setting. We discuss
their method in this subsection.

There is a huge literature on the feature selection in high dimensional setting.
See, for example, Efron et al. (2004); Fan and Li (2001); Fan and Lv (2008, 2009);
Fan et al. (2008); Lv and Fan (2009); Tibshirani (1996). Two sample ¢ tests
are frequently used to select important features in classification problems. Let
Xij = 2y, Xij/mi and S3; = 3oy (Xij — Xg;)?/(ni, — 1) be the sample mean
and sample variance of j-th feature in class k, respectively, where k = 1,2 and
j=1,...,p. Then the two-sample t statistic for feature j is defined as

T, = ,
\/Sfj/nl + 53, /n2

jzl)"'7p' (5.1)

Fan and Fan (2008) studied the feature selection property of two-sample
t statistic. They considered the model (3.14) and assumed that the error e;;
satisfies the Cramér’s condition and that the population mean difference vector
B = p; — po = (1,...,p1p)7 is sparse with only the first s entries nonzero.
Here, s is allowed to diverge to oo with the sample size n. They showed that if

log(p — 3) = O(TLA/), IOgS = O(n%*ﬁn)7 and minlgjgs \/% = o(n*75n) with
15 23

some 3, — oo and vy € (0, %), then with z chosen in the order of O(n7/?), the
following result holds:

P(min |Tj| > z,max |Tj| < z) — 1. (5.2)
Jj<s j>s

1
V U%j +U§J
size n. As long as the rate of decay is not too fast and the dimensionality p does
not grow exponentially faster than n, the two-sample t-test can select all important

features with probability tending to 1.

Although the theoretical result (5.2) shows that the t-test can successfully
select features if the threshold is appropriately chosen, in practice it is usually very
hard to choose a good threshold value. Moreover, even all revelent features are
correctly selected by the two-sample ¢ test, it may not necessarily be the best to
use all of them, due to the possible existence of many faint features. Therefore, it
is necessary to further single out the most important ones. To address this issue,
Fan and Fan (2008) proposed the features annealed independence rule. Instead of
constructing independence rule using all features, FAIR selects the most important
ones and use them to construct independence rule. To appreciate the idea of FAIR,
first note that the relative importance of features can be measured by the ranking
of {|a;|/o;}. If such oracle ranking information is available, then one can construct
the independence rule using m features with the largest {|a;|/o;}. The optimal

This result allows the lowest signal level min; ;s to decay with sample
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value of m is to be determined. In this case, FAIR takes the following form:

P
Z = 13)/ T3 a1 oy >0} (5-3)

where b is a positive constant chosen in a way such that there are m features with
|aj|/oj > b. Thus choosing the optimal m is equivalent to selecting the optimal b.
Since in practice such oracle information is unavailable, we need to learn it from
the data. Observe that |a;|/o; can be estimated by |&;|/6;. Thus the sample
version of FAIR is

p
0(x) =Y aj(x; — 3)/671a,1/6,>b)- (5.4)

In the case where the two population covariance matrices are the same, we have

|&j1/85 = v/n/(n1n2)|Tj].

Thus the sample version of the discriminant function of FAIR can be rewritten as

p
5FAIR Z MJ / {‘/n/(nlnz )T51>b}" (5'5)

It is clear from (5.5) that FAIR works the same way as that we first sort
the features by the absolute values of their ¢-statistics in the descending order,
and then take out the first m features to construct the classifier. The number of
features m can be selected by minimizing the upper bound of the classification
error given in (3.11). To understand this, note that the upper bound on the right
hand side of (3.11) is a function of the number of features. If the features are
sorted in the descending order of |c;|/0;, then this upper bound will first increase
and then decrease as we include more and more features. The optimal m in the
sense of minimizing the upper bound takes the form

1 [ ad/of +m(1/ny —1/m)]?

max nm/(nan) + Z;nzl a?/o—?

Mept = arg max

1<m<p A ’

where A, is the largest eigenvalue of the correlation matrix R™ of the truncated

observations. It can be estimated from the training data as
1 [0 63/67 +m(1/n2 — 1/ny)]?
Mopy = arg max —
ovt & 1Sty Amo o mm/(mng) + 3070 65 /63

1 n[ijz1 T? 4+ m(ni —ng)/n)?
1<m<p Am. mmning + ning Z;”Zl T?

(5.6)

Note that the above t-statistics are the sorted ones. Fan and Fan (2008) used
simulation study and real data analysis to demonstrate the performance of FAIR.
See their paper for the numerical results.
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5.2 Nearest shrunken centroids method

In this section, we will discuss the nearest shrunken centroids (NSC) method pro-
posed by Tibshirani et al. (2002). This method is used to identify a subset of
features that best characterize each class and do classification. Compared to the
centroid rule discussed in Section 3.2, it takes into account the feature selection.
Moreover, it is general and can be applied to high-dimensional multi-class classi-
fication.

Define ij = ZiEQk Xij/ni as the j-th component of the centroid for class
k,and X; = Y1, X;;/n as the j-th component of the overall centroid. The basic
idea of NSC is to shrink the class centroids to the overall centroid. Tibshirani et
al. (2002) first normalized the centroids by the within class standard deviation for
each feature, i.e.,

X - X,

. i
Y mi(S) + s0)”

(5.7)
where s is a positive constant, and .S; is the pooled within class standard deviation
for j-th feature with

S;=> > (Xy—Xiy)*/(n—K)

k=11€Gy

and my = y/1/ny — 1/n the normalization constant. As pointed out by Tibshirani
et al. (2002), di; defined in (5.7) is a ¢-statistic for feature j comparing the k-th
class to the average. The constant sg is included to guard against the possibility
of large dy; simply caused by very small value of S;. Then (5.7) can be rewritten
as

Xij = Xj +mi(Sj + s0)di;- (5.8)

Tibshirani et al. (2002) proposed to shrink each dj; toward zero by using soft
thresholding. More specifically, they define

i = sen(dix) (|dij| — &)+, (5.9)

where sgn(-) is the sign function, and ¢4 = ¢ if ¢t > 0 and ¢4 = 0 otherwise. This
yields the new shrunken centroids

Xl/cj = Xj + mk(Sj + SO)d;g]‘- (5.10)

As argued in their paper, since many of X %; are noisy and close to the overall mean
X, using soft thresholding produces more reliable estimates of the true means. If
the shrinkage level A is large enough, many of the dj; will be shrunken to zero
and the corresponding shrunken centroid X ,;j for feature j will be equal to the
overall centroid for feature j. Thus these features do not contribute to the nearest
centroid computation.
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To choose the amount of shrinkage A, Tibshirani et al. (2002) proposed to
use the cross validation method. For example, if 10-fold cross validation is used,
then the training data set is randomly split into 10 approximately equal-size sub-
samples. We first fit the model by using 90% of the training data, and then
predict the class labels of the remaining 10% of the training data. This procedure
is repeated 10 times for a fixed A, with each of the 10 sub-samples of the data
used as the test sample to calculate the prediction error. The prediction errors on
all 10 parts are then added together as the overall prediction error. The optimal
A is then chosen to be the one that minimizes the overall prediction error.

After obtaining the shrunken centroids, Tibshirani et al. (2002) proposed to
classify a new observation X to the class whose shrunken centroid is closest to this
new observation. They define the discriminant score for class k as

. P(X; - X})?
5k(X):Zﬁ—210gwk. (5.11)

The first term is the standardized squared distance of X to the k-th shrunken
centroid, and the second term is a correction based on the prior probability .
Then the classification rule is

9(X) = argmin or(X). (5.12)

It is clear that NSC is a type of distance-based classification method.

Compared to FAIR introduced in Section 5.1, NSC shares the same idea of
using marginal information of features to do classification. Both methods conduct
feature selection by t-statistic. But FAIR selects the number of features by using
mathematical formula that is derived to minimize the upper bound of classifica-
tion error, while NSC obtains the number of features by using cross validation.
Practical implementation shows that FAIR is more stable in terms of the number
of selected features and classification error. See Fan and Fan (2008).

6 Loss-based classification

Another popular class of classification methods is based on different (margin-
based) loss functions. It includes many well known classification methods such
as the support vector machine (SVM, Cristianini and Shawe-Taylor, 2000; Vap-
nik, 1998).

6.1 Support vector machine

As mentioned in Section 2, the zero-one loss is typically used to access the accu-
racy of a classification rule. Thus, based on the training data, one may ideally
.. . n . . .
minimize ) ", Iyx,)+y, with respect to g(-) over a function space to obtain an
estimated classification rule §(-). However the indicator function is neither con-
vex nor smooth. The corresponding optimization is difficult, if not impossible, to
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solve. Alternatively, several convex surrogate loss functions have been proposed
to replace the zero-one loss.

For binary classification, we may equivalently code the categorical response
Y as either —1 or +1. The SVM replaces the zero-one loss by the hinge loss
H(u) = [1 — u]y, where [u]; = max{0,u} denotes the positive part of u. Note
that the hinge loss is convex. Replacing the zero-one loss with the hinge loss, the
SVM minimizes

ZH(YJ(XJ) +AJ(f) (6.1)

with respect to f, where the first term quantifies the data fitting, J(f) is some
roughness (complexity) penalty of f, and A is a tuning parameter balancing the
data fit measured by the hinge loss and the roughness of f(-) measured by J(f).
Denote the minimizer by f (). Then the SVM classification rule is given by g(x) =
sign(f(x)). Note that the hinge loss is non-increasing. While minimizing the
hinge loss, the SVM encourages positive Y f(X) which corresponds to correct
classification.

For linear SVM with f(x) = b+ x7 3, the standard SVM uses the 2-norm
penalty J(f) = 4 Z§:1 5]2-. While in this exposition, we are formulating the SVM
in the regularization framework. However it is worthwhile to point out that the
SVM was originally introduced by V. Vapnik and his colleagues with the idea of
searching for the optimal separating hyperplane. Interested readers may consult
Boser, Guyon and Vapnik (1992) and Vapnik (1998) for more details. It was shown
by Wahba (1998) that the SVM can be equivalently fit into the regularization
framework by solving (6.1) as presented in the previous paragraph. Different from
those methods that focus on conditional probabilities P(Y|X = x), the SVM
targets at estimating the decision boundary {x: P(Y = 1|X = x) = 1/2} directly.

A general loss function £(-) is called Fisher consistent if the minimizer of
El(Y f(X)|X = x)] has the same sign as P(Y = +1|X = x) — 1/2 (Lin, 2004).
Fisher consistency is also known as classification-calibration (Bartlett, Jordan, and
McAuliffe, 2006) and infinite-sample consistency (Zhang, 2004). It is a desirable
property for a loss function.

Lin (2002) showed that the minimizer of E[H (Y f(X)|X = x)] is exactly
sign(P(Y = +1|1X = x) — 1/2), the decision-theoretically optimal classification
rule with the smallest risk, which is also known as the Bayes classification rule.
Thus the hinge loss is Fisher consistent for binary classification.

When dealing with problems with many predictor variables, Zhu, Rosset,
Hastie, and Tibshirani (2003) proposed the 1-norm SVM by using the L; penalty
J(f) = ?:1 |B;] to achieve variable selection; Zhang, Ahn, Lin and Park (2006)
proposed the SCAD SVM by using the SCAD penalty (Fan and Li, 2001); Liu and
Wu (2007) proposed to regularize the SVM with a combination of the Ly and Lq
penalties; and many others.

Either basis expansion or kernel mapping (Cristianini and Shawe-Taylor,
2000) may be used to accomplish nonlinear SVM. For the case of kernel learn-
ing, a bivariate kernel function K (-, -), which maps from X x X to R, is employed.
Then f(x) = b+ ., K(x,X;) by the theory of reproducing kernel Hilbert spaces
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(RKSH), see Wahba (1990). In this case, the 2-norm of f(x) — b in RKHS with
K(-,-) is typically used as J(f). Using the representor theorem (Kimeldorf and
Wahba, 1971), J(f) can be represented as J(f) = 3 31" | > Gl (X, X)ey.

6.2 1-learning

The hinge loss H(u) is unbounded and shoots to infinity when ¢ goes to negative
infinity. This characteristic makes the SVM tend to be sensitive to noisy training
data. When there exist points far away from their own classes (namely, “outliers”
in the training data), the SVM classifier tends to be strongly affected by such
points due to the unboundedness of the hinge loss. In order to improve over the
SVM, Shen, Tseng, Zhang, and Wong (2003) proposed to replace the convex hinge
loss by a nonconvex -loss function. The -loss function t(u) satisfies

UZyYu)>0ifuel0,T]
Y(u) =1 —sign(u) otherwise,

where 0 < U < 2and T > 0 are constants. The positive values of ¢(u) for u € [0, T
eliminate the scaling issue of the sign function and avoid too many points piling
around the decision boundary. Their method was named the -learning. They
showed that the 1-learning can achieve more accurate class prediction.

Similarly motivated, Wu and Liu (2007a) proposed to truncate the hinge
loss function by defining H,(u) = min(H (s), H(u)) for s < 0 and worked on the
more general multi-category classification. According to their Proposition 1, the
truncated hinge loss is also Fisher consistent for binary classification.

6.3 AdaBoost

Boosting is another very successful algorithm for solving binary classification. The
basic idea of boosting is to combine weaker learners to improve performance (Fre-
und, 1995; Schapire, 1990). The AdaBoost algorithm, a special boosting algorithm,
was first introduced by Freund and Schapire (1996). It constructs a “strong” clas-
sifier as a linear combination

T
F0) =) athi(x)
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of “simple”, “weak” classifiers h;(x). The “weak” classifiers h;(x)’s can be thought
of as features and H(x) = sign(f(x)) is called “strong” or final classifier. It works
by sequentially reweighing the training data, applying a classification algorithm
(weaker learner) to the reweighed training data, and then taking a weighted major-
ity vote of the thus-obtained classifier sequence. This simple reweighing strategy
improves performance of many weaker learners. Freund and Schapire (1996) and
Breiman (1997) tried to provide a theoretic understanding based on game theory.
Another attempt to investigate its behavior was made by Breiman (1998) using
bias and variance tradeoff. Later Friedman, Hastie, and Tibshirani (2000) provided
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a new statistical perspective, namely using additively modeling and maximum like-
lihood, to understand why this seemingly mysterious AdaBoost algorithm works
so well. They showed that AdaBoost is equivalent to using the exponential loss
L(u) =e ™.

6.4 Other loss functions

There are many other loss functions in this regularization framework. Examples
include the squared loss £(u) = (1 — u)? used in the proximal SVM (Fung and
Mangasarian, 2001) and the least square SVM (Suykens and Vandewalle, 1999),
the logistic loss £(u) = log(1+e ") of the logistic regression, and the modified least
squared loss £(u) = ([1 —u]4)? proposed by Zhang and Oles (2001). In particular,
the logistic loss is motivated by assuming that the probability of Y = +1 given
X = x is given by e/®) /(14 e/*®)). Consequently the logistic regression is capable
of estimating the conditional probability.

7 Feature selection in loss-based classification

As mentioned above, variable selection-capable penalty functions such as the L
and SCAD can be applied to the regularization framework to achieve variable
selection when dealing with data with many predictor variables. Examples include
the Ly SVM (Zhu, Rosset, Hastie, and Tibshirani, 2003), SCAD SVM (Zhang,
Ahn, Lin and Park, 2006), SCAD logistic regression (Fan and Peng, 2004). These
methods work fine for the case with a fair number of predictor variables. However
the remarkable recent development of computing power and other technology has
allowed scientists to collect data of unprecedented size and complexity. Examples
include data from microarrays, proteomics, functional MRI, SNPs and others.
When dealing with such high or ultra-high dimensional data, the usefulness of
these methods becomes limited.

In order to handle linear regression with ultra-high dimensional data, Fan and
Lv (2008) proposed the sure independence screening (SIS) to reduce the dimension-
ality from ultra-high p to a fairly high d. It works by ranking predictor variables
according to the absolute value of the marginal correlation between the response
variable and each individual predictor variable and selecting the top ranked d pre-
dictor variables. This screening step is followed by applying a refined method
such as the SCAD to these d predictor variables that have been selected. In a
fairly general asymptotic framework, this simple but effective correlation learning
is shown to have the sure screening property even for the case of exponentially
growing dimensionality, that is, the screening retains the true important predictor
variables with probability tending to one exponentially fast.

The SIS methodology may break down if a predictor variable is marginally
unrelated, but jointly related with the response, or if a predictor variable is jointly
uncorrelated with the response but has higher marginal correlation with the re-
sponse than some important predictors. In the former case, the important feature
has already been screened out at the first stage, whereas in the latter case, the
unimportant feature is ranked too high by the independent screening technique.
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Iterative SIS (ISIS) was proposed to overcome these difficulties by using more fully
the joint covariate information while retaining computational expedience and sta-
bility as in SIS. Basically, ISIS works by iteratively applying SIS to recruit a small
number of predictors, computing residuals based on the model fitted using these
recruited variables, and then using the working residuals as the response variable
to continue recruiting new predictors. Numerical examples in Fan and Lv (2008)
have demonstrated the improvement of ISIS. The crucial step is to compute the
working residuals, which is easy for the least-squares regression problem but not
obvious for other problems. By sidestepping the computation of working residuals,
Fan et al. (2008) has extended (I)SIS to a general pseudo-likelihood framework,
which includes generalized linear models as a special case. Roughly they use the
additional contribution of each predictor variable given the variables that have
been recruited to rank and recruit new predictors.

In this section, we will elaborate (I)SIS in the context of binary classification
using loss functions presented in the previous section. While presenting the (I)SIS
methodology, we use a general loss function #(-). The R-code is publicly available
at cran.r-project.org.

7.1 Feature ranking by marginal utilities

By assuming a linear model f(x) = b+ x’ 3, the corresponding model fitting
amounts to minimizing

n

Qb B) = = 3" ¥ilb + X)) + M),

i=1

where J(f) can be the 2-norm or some other penalties that are capable of variable
selection. The marginal utility of the j-th feature is

n

o : T
4 hgﬁglm;@( b+ X58))).

For some loss functions such as the hinge loss, another term %5]2 + % > Bz
me My
may be required to avoid possible identifiability issue. In that case

l —min{ié( (b+XT5J))+%ﬂ§}. (7.1)
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The idea of SIS is to compute the vector of marginal utilities £ = (¢1,¢a,...,0,)7T
and rank predictor variables according to their corresponding marginal utilities.
The smaller the marginal utility is the more important the corresponding predictor
variable is. We select d variables corresponding to the d smallest components of
£. Namely, variable j is selected if ¢; is one of the d smallest components of £.
A typical choice of d is |n/logn|. Fan and Song (2009) provided an extensive
account on the sure screening property of the independence learning and on the
capacity of the model size reduction.
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7.2 Penalization

With the d variables crudely selected by SIS, parameter estimation and variable
selection can be further carried out simultaneously using a more refined penaliza-
tion method. This step takes joint information into consideration. By reordering
the variables if necessary, we may assume without loss of generality that X7, Xo,
., Xq are the variables that have been recruited by SIS. In the regularization
framework, we use a penalty that is capable of variable selection and minimize

_ZZ b"'ZXWBJ +ZPA (1851) (7.2)

where py(-) denotes a general penalty function and A > 0 is a regularization
parameter. For example, px(-) can be chosen to be the L; (Tibshirani, 1996),
SCAD (Fan and Li, 2001), adaptive Ly (Zhang and Lu, 2007; Zou, 2006), or some
other penalty.

7.3 Iterative feature selection

As mentioned before, the SIS methodology may break down if a predictor is
marginally unrelated, but jointly related with the response, or if a predictor is
jointly uncorrelated with the response but has higher marginal correlation with
the response than some important predictors. To handle such difficult scenario,
iterative SIS may be required. ISIS seeks to overcome these difficulties by using
more fully the joint covariate information.

The first step is to apply SIS to select a set A; of indices of size d, and then
employ (7.2) with the L; or SCAD penalty to select a subset M of these indices.
This is our initial estimate of the set of indices of important variables.

Next, we compute the conditional marginal utility

—mmZe (b + X7 0, B, + X585)) (7.3)

forany j € M§ ={1,2,...,p}\ M, where X; rq, is the sub-vector of X; consisting
of those elements in M;. If necessary, the term of %5]2 may be added in (7.3)
to avoid identifiability issue just as the case of defining the marginal utilities in
(7.1). The conditional marginal utility £§2) measures the additional contribution
of variable X; given that the variables in M have been included. We then rank
variables in M according to their corresponding conditional marginal utilities and
form the set Ay consisting of the indices corresponding to the smallest d — | M|
elements.

The above prescreening step using the conditional utility is followed by solv-
ing

Ze b+ X 0 By +XE 0B Y. a8 (T4)

b, ﬁMl Ba, i JEM1UA,
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The penalty px(-) leads to a sparse solution. The indices in M; U Az that have
non-zero [3; yield a new estimate My of the active indices.

This process of iteratively recruiting and deleting variables may be repeated
until we obtain a set of indices My, which either reaches the prescribed size d or
satisfies convergence criterion My = Mj_1.

7.4 Reducing false discovery rate

Sure independence screening is a simple but effective method to screen out ir-
relevant variables. They are usually conservative and include many unimportant
variables. Next we present two possible variants of (I)SIS that have some attractive
theoretical properties in terms of reducing the false discovery rate (FDR).

Denote A to be the set of active indices, namely the set containing those
indices j for which §; # 0 in the true model. Denote X4 = {X;,j € A} and
X4 ={X;,j € A°} to be the corresponding sets of active and inactive variables
respectively.

Assume for simplicity that n is even. We randomly split the sample into two
halves. Apply SIS separately to each half with d = |n/logn| or larger, yielding
two estimates A and A® of the set of active indices A. Both A®) and A2 may
have large FDRs because they are constructed by SIS, a crude screening method.
Assume that both AM and A® have the sure screening property, P(A C A(j)) —
1, for j =1 and 2. Then

PAC AP N A®) - 1.

Thus motivated, we define our first variant of SIS by estimating A with A =
AN N A@,

To provide some theoretical support, we make the following assumption:
Exchangeability Condition: Let r € IN, the set of natural numbers. The model
satisfies the exchangeability condition at level r if the set of random vectors

{(YV, X4, X;,,...,X;,)  j1,- .., jr are distinct elements of A}

is exchangeable.

The Exchangeability Condition ensures that each inactive variable has the
same chance to be recruited by SIS. Then we have the following nonasymptotic
probabilistic bound.

Let r € IN, and assume that the model satisfies the Exchangeability Condition
at level r. For A= AM N A? defined above, we have

d 2
(p<7”)A> <2t

r

PAU Al >7) <

where there second inequality requires d? < p — |AJ.
When r = 1, the above probabilistic bound implies that, when the number
of selected variables d < mn, we have with high probability A reports no ‘false
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positives’ if the exchangeability condition is satisfied at level 1 and if p is large by
comparison with n2. It means that it is very likely that any index in the estimated
active set also belongs to the active set in the true model, which, together with
sure screening assumption, implies the model selection consistency. The nature of
this result is somehow unusual in that it suggests that a ‘blessing of dimensionality’
the probability bound one false positives decreases with p. However, this is only
part of the full store, because the probability of missing elements of the true active
set is expected to increase with p.

The iterative version of the first variant of SIS can be defined analogously.
We apply SIS to each partition separately to get two estimates of the active index
set Agl) and A(IQ), each having d elements. After forming the intersection A; =
A§1) N /Algz), we carry out penalized estimation with all data to obtain a first
approximation M to the true active index set. We then perform a second stage

of the ISIS procedure to each partition separately to obtain sets of indices MluAS)

and M u/té”. Take their intersection and re-estimate parameters using penalized

estimation to get a second approximation M to the true active set. This process
can be continued until convergence criterion is met as in the definition of ISIS.

8 Multi-category classification

Sections 6 and 7 focus on binary classifications. In this section, we will discuss
how to handle classification problems with more than two classes.

When dealing with classification problems with a multi-category response,
one typically label the response as Y € {1,2,..., K}, where K is the number
of classes. Define conditional probabilities p;(x) = P(Y = j|X = x) for j =
1,2,..., K. The corresponding Bayes rule classifies a test sample with predictor
vector x to the class with the largest p;(x). Namely the Bayes rule is given by
argmax p;(x).

J

Existing methods for handling multi-category problems can be generally di-
vided into two groups. One is to solve the multi-category classification by solving
a series of binary classifications while the other considers all the classes simul-
taneously. Among the first group, both methods of constructing either pairwise
classifiers (Krefsel, 1998; Schmidt and Gish, 1996) or one-versus-all classifiers (Hsu
and Lin, 2002; Rifkin and Klautau, 2004) are popularly used. In the one-versus-all
approach, one is required to train K distinct binary classifiers to separate one
class from all others and each binary classifier uses all training samples. For the
pairwise approach, there are K (K — 1)/2 binary classifier to be trained with one
for each pair of classes. Comparing to the one-versus-all approach, the number of
classifiers is much larger for the pairwise approach but each one involves only a
subsample of the training data and thus is easier to train. Next we will focus on
the second group of methods.

Weston and Watkins (1999) proposed the k-class support vector machine. It
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solves

n K
min =3 Y@= [ (X) — KD AN ST 5D

=1 jAY;

The linear classifier takes the form f;(x) = b; + ,Bij, whereas the penalty in (8.1)
can be taken as the Lo-norm || f;|| = w;|B;||* for some weight w;. Let fi(x) be

the solution to (8.1). Then the classifier assigns a new observation x to class k =
argmax; fi(x). Zhang (2004) generalized this loss to kry O(fy (X) — fi(X)) and
called it pairwise comparison method. Here ¢(-) can be any decreasing function
so that a large value fy(X) — fi(X) for k # Y is favored while optimizing. In
particular Weston and Watkins (1999) essentially used the hinge loss up to a scale
of factor 2. By assuming the differentiability of ¢(-), Zhang (2004) showed that the
desirable property of order preserving. See Theorem 5 of Zhang (2004). However
the differentiability condition on ¢(:) rules out the important case of hinge loss
function.

Lee, Lin, and Wahba (2004) proposed a nonparametric multi-category SVM
by minimizing

3) (5, +L> +AZ|| £ (5.2

i=1 j#Y;

subject to the sum-to-zero constraint in the reproducing kernel Hilbert space.
Their loss function works with the sum-to-zero constraint to encourage fy (X) =1
and fr(X)=—-1/(k—1) for k #Y. For their loss function, they obtained Fisher
consistency by proving that the minimizer of £} ., (f;(X) —1/(k — 1))+ under
the sum-to-zero constraint at X = x is given by f;(x) = 1 if j = argmax,,, pym(x)
and —1/(k—1) otherwise. This formulation motivated the constrained comparison
method in Zhang (2004). The constrained comparison method use the loss function
> kzy (= fi(X)). Zhang (2004) showed that this loss function in combination
with the sum-to-zero constraint has the order preserving property as well (Theorem
7, Zhang 2004).

Liu and Shen (2006) proposed one formulation to extend the 1-learning from
binary to multicategory. Their loss performs multiple comparisons of class Y
versus other classes in a more natural way by solving

K
mm—Zw min (. (Xo) = f5(X) + A 11 | (8.3)

subject to the sum-to-zero constraint. Note that the ¢ loss function is non-
increasing. The minimization in (8.3) encourages fy,(X;) to be larger than f;(X;)
for all j # Y; thus leading to correct classification. They provided some statistical
learning theory for the multicategory w-learning methodology and obtained fast
convergence rates for both linear and nonlinear learning examples.

Similarly motivated as Liu and Shen (2006), Wu and Liu (2007a) proposed the
robust truncated hinge loss support vector machines. They define the truncated
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hinge loss function to be Hs(u) = min{H (u), H(s)} for some s < 0. The robust
truncated hinge loss support vector machine solves

n K
min 3 H(mip (.(X0) = /5X0) + A D2 1451 (8.4)
i=1 ‘ j=1

Wu and Liu (2007a) used the idea of support vectors to show that the robust
truncated hinge loss support vector machine is less sensitive to outliers than the
SVM. Note that Hs(u) = H(u) — [s — u]+. This decomposition makes it possible
to use the difference convex algorithm (An and Tao, 1997) to solve (8.4). In this
way, they showed that the robust truncated hinge loss support vector machine
removes some support vectors form the SVM and consequently its corresponding
support vectors are a subset of the support vectors of the SVM. Fisher consistency
is also established for the robust truncated hinge loss support vector machine when
s € [-1/(K —1),0]. Recall that K is the number of classes. This tells us that
more truncation is needed to guarantee consistency for larger K.

The truncation idea is in fact very general. It can be applied to other loss
functions such as the logistic loss in logistic regression and the exponential loss
in AdaBoost. Corresponding Fisher consistency is also available. Wu and Liu
(2007a) only used the hinge loss to demonstrate how the truncation works. In
another work, Wu and Liu (2007b) studied the truncated hinge loss function using
the formulation of Lee, Lin, and Wahba (2004).

Other formulations of multicategory classification includes those of Vapnik
(1998), Bredensteiner and Bennett (1999), Crammer and Singer (2001) among
many others. Due to limited space, we cannot list all of them here. Interested
readers may read those papers and references therein for more formulations.

In the aforementioned different formulations of multicategory classification
with linear assumption that fi(x) = by + Bix for k = 1,2,..., K, variable
selection-capable penalty function can be used in place of || fi || to achieve vari-
able selection. For example Wang and Shen (2007) studied the L; norm multi-
class support vector machine by using penalty Eszl Z§:1 |Bjx]. Note that the
L1 norm treats all the coefficients equally. It ignores the fact that the group
of Bj1, Bj2, ..., Bjx corresponds to the same predictor variable X;. As a result
the L; norm SVM is not efficient in achieving variable selection. By including
this group information into consideration, Zhang, Liu, Wu, and Zhu (2008) pro-
posed the adaptive super norm penalty for multi-category SVM. They use the

penalty E§:1 wj,_max |Bjk|, where the adaptive weight w; is based on a con-

sistent estimate in the same way as the adaptive Ly penalty (Zhang and Lu, 2007;
Zou, 2006) does. Note that the super norm penalty encourages the entire group
Bi1, B2, ..., Bijk to be exactly zero for any noise variable X; and thus achieves
more efficient variable selection.

Variable selection-capable penalty works effectively when the dimensionality
is fairly high. However when it comes to ultrahigh dimensionality, things may
get complicated. For example, the computational complexity grows with the di-
mensionality. In this case, the (I)SIS method may be extended to aforementioned
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multi-category classifications as they are all given in loss function based formu-
lations. Fan et al. (2008) considered (I)SIS for the formulation by Lee, Lin, and
Wahba (2004). They used a couple of microarray datasets to demonstrated its
practical utilities.
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